]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * fs/f2fs/node.h | |
4 | * | |
5 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
6 | * http://www.samsung.com/ | |
7 | */ | |
8 | /* start node id of a node block dedicated to the given node id */ | |
9 | #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) | |
10 | ||
11 | /* node block offset on the NAT area dedicated to the given start node id */ | |
12 | #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) | |
13 | ||
14 | /* # of pages to perform synchronous readahead before building free nids */ | |
15 | #define FREE_NID_PAGES 8 | |
16 | #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) | |
17 | ||
18 | #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ | |
19 | ||
20 | /* maximum readahead size for node during getting data blocks */ | |
21 | #define MAX_RA_NODE 128 | |
22 | ||
23 | /* control the memory footprint threshold (10MB per 1GB ram) */ | |
24 | #define DEF_RAM_THRESHOLD 1 | |
25 | ||
26 | /* control dirty nats ratio threshold (default: 10% over max nid count) */ | |
27 | #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 | |
28 | /* control total # of nats */ | |
29 | #define DEF_NAT_CACHE_THRESHOLD 100000 | |
30 | ||
31 | /* vector size for gang look-up from nat cache that consists of radix tree */ | |
32 | #define NATVEC_SIZE 64 | |
33 | #define SETVEC_SIZE 32 | |
34 | ||
35 | /* return value for read_node_page */ | |
36 | #define LOCKED_PAGE 1 | |
37 | ||
38 | /* For flag in struct node_info */ | |
39 | enum { | |
40 | IS_CHECKPOINTED, /* is it checkpointed before? */ | |
41 | HAS_FSYNCED_INODE, /* is the inode fsynced before? */ | |
42 | HAS_LAST_FSYNC, /* has the latest node fsync mark? */ | |
43 | IS_DIRTY, /* this nat entry is dirty? */ | |
44 | IS_PREALLOC, /* nat entry is preallocated */ | |
45 | }; | |
46 | ||
47 | /* | |
48 | * For node information | |
49 | */ | |
50 | struct node_info { | |
51 | nid_t nid; /* node id */ | |
52 | nid_t ino; /* inode number of the node's owner */ | |
53 | block_t blk_addr; /* block address of the node */ | |
54 | unsigned char version; /* version of the node */ | |
55 | unsigned char flag; /* for node information bits */ | |
56 | }; | |
57 | ||
58 | struct nat_entry { | |
59 | struct list_head list; /* for clean or dirty nat list */ | |
60 | struct node_info ni; /* in-memory node information */ | |
61 | }; | |
62 | ||
63 | #define nat_get_nid(nat) ((nat)->ni.nid) | |
64 | #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) | |
65 | #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) | |
66 | #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) | |
67 | #define nat_get_ino(nat) ((nat)->ni.ino) | |
68 | #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) | |
69 | #define nat_get_version(nat) ((nat)->ni.version) | |
70 | #define nat_set_version(nat, v) ((nat)->ni.version = (v)) | |
71 | ||
72 | #define inc_node_version(version) (++(version)) | |
73 | ||
74 | static inline void copy_node_info(struct node_info *dst, | |
75 | struct node_info *src) | |
76 | { | |
77 | dst->nid = src->nid; | |
78 | dst->ino = src->ino; | |
79 | dst->blk_addr = src->blk_addr; | |
80 | dst->version = src->version; | |
81 | /* should not copy flag here */ | |
82 | } | |
83 | ||
84 | static inline void set_nat_flag(struct nat_entry *ne, | |
85 | unsigned int type, bool set) | |
86 | { | |
87 | unsigned char mask = 0x01 << type; | |
88 | if (set) | |
89 | ne->ni.flag |= mask; | |
90 | else | |
91 | ne->ni.flag &= ~mask; | |
92 | } | |
93 | ||
94 | static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) | |
95 | { | |
96 | unsigned char mask = 0x01 << type; | |
97 | return ne->ni.flag & mask; | |
98 | } | |
99 | ||
100 | static inline void nat_reset_flag(struct nat_entry *ne) | |
101 | { | |
102 | /* these states can be set only after checkpoint was done */ | |
103 | set_nat_flag(ne, IS_CHECKPOINTED, true); | |
104 | set_nat_flag(ne, HAS_FSYNCED_INODE, false); | |
105 | set_nat_flag(ne, HAS_LAST_FSYNC, true); | |
106 | } | |
107 | ||
108 | static inline void node_info_from_raw_nat(struct node_info *ni, | |
109 | struct f2fs_nat_entry *raw_ne) | |
110 | { | |
111 | ni->ino = le32_to_cpu(raw_ne->ino); | |
112 | ni->blk_addr = le32_to_cpu(raw_ne->block_addr); | |
113 | ni->version = raw_ne->version; | |
114 | } | |
115 | ||
116 | static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, | |
117 | struct node_info *ni) | |
118 | { | |
119 | raw_ne->ino = cpu_to_le32(ni->ino); | |
120 | raw_ne->block_addr = cpu_to_le32(ni->blk_addr); | |
121 | raw_ne->version = ni->version; | |
122 | } | |
123 | ||
124 | static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) | |
125 | { | |
126 | return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * | |
127 | NM_I(sbi)->dirty_nats_ratio / 100; | |
128 | } | |
129 | ||
130 | static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) | |
131 | { | |
132 | return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; | |
133 | } | |
134 | ||
135 | static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi) | |
136 | { | |
137 | return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8; | |
138 | } | |
139 | ||
140 | enum mem_type { | |
141 | FREE_NIDS, /* indicates the free nid list */ | |
142 | NAT_ENTRIES, /* indicates the cached nat entry */ | |
143 | DIRTY_DENTS, /* indicates dirty dentry pages */ | |
144 | INO_ENTRIES, /* indicates inode entries */ | |
145 | EXTENT_CACHE, /* indicates extent cache */ | |
146 | INMEM_PAGES, /* indicates inmemory pages */ | |
147 | BASE_CHECK, /* check kernel status */ | |
148 | }; | |
149 | ||
150 | struct nat_entry_set { | |
151 | struct list_head set_list; /* link with other nat sets */ | |
152 | struct list_head entry_list; /* link with dirty nat entries */ | |
153 | nid_t set; /* set number*/ | |
154 | unsigned int entry_cnt; /* the # of nat entries in set */ | |
155 | }; | |
156 | ||
157 | struct free_nid { | |
158 | struct list_head list; /* for free node id list */ | |
159 | nid_t nid; /* node id */ | |
160 | int state; /* in use or not: FREE_NID or PREALLOC_NID */ | |
161 | }; | |
162 | ||
163 | static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) | |
164 | { | |
165 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
166 | struct free_nid *fnid; | |
167 | ||
168 | spin_lock(&nm_i->nid_list_lock); | |
169 | if (nm_i->nid_cnt[FREE_NID] <= 0) { | |
170 | spin_unlock(&nm_i->nid_list_lock); | |
171 | return; | |
172 | } | |
173 | fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); | |
174 | *nid = fnid->nid; | |
175 | spin_unlock(&nm_i->nid_list_lock); | |
176 | } | |
177 | ||
178 | /* | |
179 | * inline functions | |
180 | */ | |
181 | static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) | |
182 | { | |
183 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
184 | ||
185 | #ifdef CONFIG_F2FS_CHECK_FS | |
186 | if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, | |
187 | nm_i->bitmap_size)) | |
188 | f2fs_bug_on(sbi, 1); | |
189 | #endif | |
190 | memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); | |
191 | } | |
192 | ||
193 | static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) | |
194 | { | |
195 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
196 | pgoff_t block_off; | |
197 | pgoff_t block_addr; | |
198 | ||
199 | /* | |
200 | * block_off = segment_off * 512 + off_in_segment | |
201 | * OLD = (segment_off * 512) * 2 + off_in_segment | |
202 | * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment | |
203 | */ | |
204 | block_off = NAT_BLOCK_OFFSET(start); | |
205 | ||
206 | block_addr = (pgoff_t)(nm_i->nat_blkaddr + | |
207 | (block_off << 1) - | |
208 | (block_off & (sbi->blocks_per_seg - 1))); | |
209 | ||
210 | if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) | |
211 | block_addr += sbi->blocks_per_seg; | |
212 | ||
213 | return block_addr; | |
214 | } | |
215 | ||
216 | static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, | |
217 | pgoff_t block_addr) | |
218 | { | |
219 | struct f2fs_nm_info *nm_i = NM_I(sbi); | |
220 | ||
221 | block_addr -= nm_i->nat_blkaddr; | |
222 | block_addr ^= 1 << sbi->log_blocks_per_seg; | |
223 | return block_addr + nm_i->nat_blkaddr; | |
224 | } | |
225 | ||
226 | static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) | |
227 | { | |
228 | unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); | |
229 | ||
230 | f2fs_change_bit(block_off, nm_i->nat_bitmap); | |
231 | #ifdef CONFIG_F2FS_CHECK_FS | |
232 | f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); | |
233 | #endif | |
234 | } | |
235 | ||
236 | static inline nid_t ino_of_node(struct page *node_page) | |
237 | { | |
238 | struct f2fs_node *rn = F2FS_NODE(node_page); | |
239 | return le32_to_cpu(rn->footer.ino); | |
240 | } | |
241 | ||
242 | static inline nid_t nid_of_node(struct page *node_page) | |
243 | { | |
244 | struct f2fs_node *rn = F2FS_NODE(node_page); | |
245 | return le32_to_cpu(rn->footer.nid); | |
246 | } | |
247 | ||
248 | static inline unsigned int ofs_of_node(struct page *node_page) | |
249 | { | |
250 | struct f2fs_node *rn = F2FS_NODE(node_page); | |
251 | unsigned flag = le32_to_cpu(rn->footer.flag); | |
252 | return flag >> OFFSET_BIT_SHIFT; | |
253 | } | |
254 | ||
255 | static inline __u64 cpver_of_node(struct page *node_page) | |
256 | { | |
257 | struct f2fs_node *rn = F2FS_NODE(node_page); | |
258 | return le64_to_cpu(rn->footer.cp_ver); | |
259 | } | |
260 | ||
261 | static inline block_t next_blkaddr_of_node(struct page *node_page) | |
262 | { | |
263 | struct f2fs_node *rn = F2FS_NODE(node_page); | |
264 | return le32_to_cpu(rn->footer.next_blkaddr); | |
265 | } | |
266 | ||
267 | static inline void fill_node_footer(struct page *page, nid_t nid, | |
268 | nid_t ino, unsigned int ofs, bool reset) | |
269 | { | |
270 | struct f2fs_node *rn = F2FS_NODE(page); | |
271 | unsigned int old_flag = 0; | |
272 | ||
273 | if (reset) | |
274 | memset(rn, 0, sizeof(*rn)); | |
275 | else | |
276 | old_flag = le32_to_cpu(rn->footer.flag); | |
277 | ||
278 | rn->footer.nid = cpu_to_le32(nid); | |
279 | rn->footer.ino = cpu_to_le32(ino); | |
280 | ||
281 | /* should remain old flag bits such as COLD_BIT_SHIFT */ | |
282 | rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | | |
283 | (old_flag & OFFSET_BIT_MASK)); | |
284 | } | |
285 | ||
286 | static inline void copy_node_footer(struct page *dst, struct page *src) | |
287 | { | |
288 | struct f2fs_node *src_rn = F2FS_NODE(src); | |
289 | struct f2fs_node *dst_rn = F2FS_NODE(dst); | |
290 | memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); | |
291 | } | |
292 | ||
293 | static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) | |
294 | { | |
295 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); | |
296 | struct f2fs_node *rn = F2FS_NODE(page); | |
297 | __u64 cp_ver = cur_cp_version(ckpt); | |
298 | ||
299 | if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) | |
300 | cp_ver |= (cur_cp_crc(ckpt) << 32); | |
301 | ||
302 | rn->footer.cp_ver = cpu_to_le64(cp_ver); | |
303 | rn->footer.next_blkaddr = cpu_to_le32(blkaddr); | |
304 | } | |
305 | ||
306 | static inline bool is_recoverable_dnode(struct page *page) | |
307 | { | |
308 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); | |
309 | __u64 cp_ver = cur_cp_version(ckpt); | |
310 | ||
311 | /* Don't care crc part, if fsck.f2fs sets it. */ | |
312 | if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) | |
313 | return (cp_ver << 32) == (cpver_of_node(page) << 32); | |
314 | ||
315 | if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) | |
316 | cp_ver |= (cur_cp_crc(ckpt) << 32); | |
317 | ||
318 | return cp_ver == cpver_of_node(page); | |
319 | } | |
320 | ||
321 | /* | |
322 | * f2fs assigns the following node offsets described as (num). | |
323 | * N = NIDS_PER_BLOCK | |
324 | * | |
325 | * Inode block (0) | |
326 | * |- direct node (1) | |
327 | * |- direct node (2) | |
328 | * |- indirect node (3) | |
329 | * | `- direct node (4 => 4 + N - 1) | |
330 | * |- indirect node (4 + N) | |
331 | * | `- direct node (5 + N => 5 + 2N - 1) | |
332 | * `- double indirect node (5 + 2N) | |
333 | * `- indirect node (6 + 2N) | |
334 | * `- direct node | |
335 | * ...... | |
336 | * `- indirect node ((6 + 2N) + x(N + 1)) | |
337 | * `- direct node | |
338 | * ...... | |
339 | * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) | |
340 | * `- direct node | |
341 | */ | |
342 | static inline bool IS_DNODE(struct page *node_page) | |
343 | { | |
344 | unsigned int ofs = ofs_of_node(node_page); | |
345 | ||
346 | if (f2fs_has_xattr_block(ofs)) | |
347 | return true; | |
348 | ||
349 | if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || | |
350 | ofs == 5 + 2 * NIDS_PER_BLOCK) | |
351 | return false; | |
352 | if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { | |
353 | ofs -= 6 + 2 * NIDS_PER_BLOCK; | |
354 | if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) | |
355 | return false; | |
356 | } | |
357 | return true; | |
358 | } | |
359 | ||
360 | static inline int set_nid(struct page *p, int off, nid_t nid, bool i) | |
361 | { | |
362 | struct f2fs_node *rn = F2FS_NODE(p); | |
363 | ||
364 | f2fs_wait_on_page_writeback(p, NODE, true, true); | |
365 | ||
366 | if (i) | |
367 | rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); | |
368 | else | |
369 | rn->in.nid[off] = cpu_to_le32(nid); | |
370 | return set_page_dirty(p); | |
371 | } | |
372 | ||
373 | static inline nid_t get_nid(struct page *p, int off, bool i) | |
374 | { | |
375 | struct f2fs_node *rn = F2FS_NODE(p); | |
376 | ||
377 | if (i) | |
378 | return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); | |
379 | return le32_to_cpu(rn->in.nid[off]); | |
380 | } | |
381 | ||
382 | /* | |
383 | * Coldness identification: | |
384 | * - Mark cold files in f2fs_inode_info | |
385 | * - Mark cold node blocks in their node footer | |
386 | * - Mark cold data pages in page cache | |
387 | */ | |
388 | static inline int is_cold_data(struct page *page) | |
389 | { | |
390 | return PageChecked(page); | |
391 | } | |
392 | ||
393 | static inline void set_cold_data(struct page *page) | |
394 | { | |
395 | SetPageChecked(page); | |
396 | } | |
397 | ||
398 | static inline void clear_cold_data(struct page *page) | |
399 | { | |
400 | ClearPageChecked(page); | |
401 | } | |
402 | ||
403 | static inline int is_node(struct page *page, int type) | |
404 | { | |
405 | struct f2fs_node *rn = F2FS_NODE(page); | |
406 | return le32_to_cpu(rn->footer.flag) & (1 << type); | |
407 | } | |
408 | ||
409 | #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) | |
410 | #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) | |
411 | #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) | |
412 | ||
413 | static inline int is_inline_node(struct page *page) | |
414 | { | |
415 | return PageChecked(page); | |
416 | } | |
417 | ||
418 | static inline void set_inline_node(struct page *page) | |
419 | { | |
420 | SetPageChecked(page); | |
421 | } | |
422 | ||
423 | static inline void clear_inline_node(struct page *page) | |
424 | { | |
425 | ClearPageChecked(page); | |
426 | } | |
427 | ||
428 | static inline void set_cold_node(struct page *page, bool is_dir) | |
429 | { | |
430 | struct f2fs_node *rn = F2FS_NODE(page); | |
431 | unsigned int flag = le32_to_cpu(rn->footer.flag); | |
432 | ||
433 | if (is_dir) | |
434 | flag &= ~(0x1 << COLD_BIT_SHIFT); | |
435 | else | |
436 | flag |= (0x1 << COLD_BIT_SHIFT); | |
437 | rn->footer.flag = cpu_to_le32(flag); | |
438 | } | |
439 | ||
440 | static inline void set_mark(struct page *page, int mark, int type) | |
441 | { | |
442 | struct f2fs_node *rn = F2FS_NODE(page); | |
443 | unsigned int flag = le32_to_cpu(rn->footer.flag); | |
444 | if (mark) | |
445 | flag |= (0x1 << type); | |
446 | else | |
447 | flag &= ~(0x1 << type); | |
448 | rn->footer.flag = cpu_to_le32(flag); | |
449 | ||
450 | #ifdef CONFIG_F2FS_CHECK_FS | |
451 | f2fs_inode_chksum_set(F2FS_P_SB(page), page); | |
452 | #endif | |
453 | } | |
454 | #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) | |
455 | #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) |