]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * RAID-6 data recovery in dual failure mode based on the XC instruction. | |
4 | * | |
5 | * Copyright IBM Corp. 2016 | |
6 | * Author(s): Martin Schwidefsky <[email protected]> | |
7 | */ | |
8 | ||
9 | #include <linux/export.h> | |
10 | #include <linux/raid/pq.h> | |
11 | ||
12 | static inline void xor_block(u8 *p1, u8 *p2) | |
13 | { | |
14 | typedef struct { u8 _[256]; } addrtype; | |
15 | ||
16 | asm volatile( | |
17 | " xc 0(256,%[p1]),0(%[p2])\n" | |
18 | : "+m" (*(addrtype *) p1) : "m" (*(addrtype *) p2), | |
19 | [p1] "a" (p1), [p2] "a" (p2) : "cc"); | |
20 | } | |
21 | ||
22 | /* Recover two failed data blocks. */ | |
23 | static void raid6_2data_recov_s390xc(int disks, size_t bytes, int faila, | |
24 | int failb, void **ptrs) | |
25 | { | |
26 | u8 *p, *q, *dp, *dq; | |
27 | const u8 *pbmul; /* P multiplier table for B data */ | |
28 | const u8 *qmul; /* Q multiplier table (for both) */ | |
29 | int i; | |
30 | ||
31 | p = (u8 *)ptrs[disks-2]; | |
32 | q = (u8 *)ptrs[disks-1]; | |
33 | ||
34 | /* Compute syndrome with zero for the missing data pages | |
35 | Use the dead data pages as temporary storage for | |
36 | delta p and delta q */ | |
37 | dp = (u8 *)ptrs[faila]; | |
38 | ptrs[faila] = (void *)raid6_empty_zero_page; | |
39 | ptrs[disks-2] = dp; | |
40 | dq = (u8 *)ptrs[failb]; | |
41 | ptrs[failb] = (void *)raid6_empty_zero_page; | |
42 | ptrs[disks-1] = dq; | |
43 | ||
44 | raid6_call.gen_syndrome(disks, bytes, ptrs); | |
45 | ||
46 | /* Restore pointer table */ | |
47 | ptrs[faila] = dp; | |
48 | ptrs[failb] = dq; | |
49 | ptrs[disks-2] = p; | |
50 | ptrs[disks-1] = q; | |
51 | ||
52 | /* Now, pick the proper data tables */ | |
53 | pbmul = raid6_gfmul[raid6_gfexi[failb-faila]]; | |
54 | qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]]; | |
55 | ||
56 | /* Now do it... */ | |
57 | while (bytes) { | |
58 | xor_block(dp, p); | |
59 | xor_block(dq, q); | |
60 | for (i = 0; i < 256; i++) | |
61 | dq[i] = pbmul[dp[i]] ^ qmul[dq[i]]; | |
62 | xor_block(dp, dq); | |
63 | p += 256; | |
64 | q += 256; | |
65 | dp += 256; | |
66 | dq += 256; | |
67 | bytes -= 256; | |
68 | } | |
69 | } | |
70 | ||
71 | /* Recover failure of one data block plus the P block */ | |
72 | static void raid6_datap_recov_s390xc(int disks, size_t bytes, int faila, | |
73 | void **ptrs) | |
74 | { | |
75 | u8 *p, *q, *dq; | |
76 | const u8 *qmul; /* Q multiplier table */ | |
77 | int i; | |
78 | ||
79 | p = (u8 *)ptrs[disks-2]; | |
80 | q = (u8 *)ptrs[disks-1]; | |
81 | ||
82 | /* Compute syndrome with zero for the missing data page | |
83 | Use the dead data page as temporary storage for delta q */ | |
84 | dq = (u8 *)ptrs[faila]; | |
85 | ptrs[faila] = (void *)raid6_empty_zero_page; | |
86 | ptrs[disks-1] = dq; | |
87 | ||
88 | raid6_call.gen_syndrome(disks, bytes, ptrs); | |
89 | ||
90 | /* Restore pointer table */ | |
91 | ptrs[faila] = dq; | |
92 | ptrs[disks-1] = q; | |
93 | ||
94 | /* Now, pick the proper data tables */ | |
95 | qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]]]; | |
96 | ||
97 | /* Now do it... */ | |
98 | while (bytes) { | |
99 | xor_block(dq, q); | |
100 | for (i = 0; i < 256; i++) | |
101 | dq[i] = qmul[dq[i]]; | |
102 | xor_block(p, dq); | |
103 | p += 256; | |
104 | q += 256; | |
105 | dq += 256; | |
106 | bytes -= 256; | |
107 | } | |
108 | } | |
109 | ||
110 | ||
111 | const struct raid6_recov_calls raid6_recov_s390xc = { | |
112 | .data2 = raid6_2data_recov_s390xc, | |
113 | .datap = raid6_datap_recov_s390xc, | |
114 | .valid = NULL, | |
115 | .name = "s390xc", | |
116 | .priority = 1, | |
117 | }; |