]>
Commit | Line | Data |
---|---|---|
1 | // SPDX-License-Identifier: GPL-2.0 | |
2 | /* | |
3 | * fs/mpage.c | |
4 | * | |
5 | * Copyright (C) 2002, Linus Torvalds. | |
6 | * | |
7 | * Contains functions related to preparing and submitting BIOs which contain | |
8 | * multiple pagecache pages. | |
9 | * | |
10 | * 15May2002 Andrew Morton | |
11 | * Initial version | |
12 | * 27Jun2002 [email protected] | |
13 | * use bio_add_page() to build bio's just the right size | |
14 | */ | |
15 | ||
16 | #include <linux/kernel.h> | |
17 | #include <linux/export.h> | |
18 | #include <linux/mm.h> | |
19 | #include <linux/kdev_t.h> | |
20 | #include <linux/gfp.h> | |
21 | #include <linux/bio.h> | |
22 | #include <linux/fs.h> | |
23 | #include <linux/buffer_head.h> | |
24 | #include <linux/blkdev.h> | |
25 | #include <linux/highmem.h> | |
26 | #include <linux/prefetch.h> | |
27 | #include <linux/mpage.h> | |
28 | #include <linux/mm_inline.h> | |
29 | #include <linux/writeback.h> | |
30 | #include <linux/backing-dev.h> | |
31 | #include <linux/pagevec.h> | |
32 | #include "internal.h" | |
33 | ||
34 | /* | |
35 | * I/O completion handler for multipage BIOs. | |
36 | * | |
37 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | |
38 | * If a page does not map to a contiguous run of blocks then it simply falls | |
39 | * back to block_read_full_folio(). | |
40 | * | |
41 | * Why is this? If a page's completion depends on a number of different BIOs | |
42 | * which can complete in any order (or at the same time) then determining the | |
43 | * status of that page is hard. See end_buffer_async_read() for the details. | |
44 | * There is no point in duplicating all that complexity. | |
45 | */ | |
46 | static void mpage_read_end_io(struct bio *bio) | |
47 | { | |
48 | struct folio_iter fi; | |
49 | int err = blk_status_to_errno(bio->bi_status); | |
50 | ||
51 | bio_for_each_folio_all(fi, bio) { | |
52 | if (err) | |
53 | folio_set_error(fi.folio); | |
54 | else | |
55 | folio_mark_uptodate(fi.folio); | |
56 | folio_unlock(fi.folio); | |
57 | } | |
58 | ||
59 | bio_put(bio); | |
60 | } | |
61 | ||
62 | static void mpage_write_end_io(struct bio *bio) | |
63 | { | |
64 | struct folio_iter fi; | |
65 | int err = blk_status_to_errno(bio->bi_status); | |
66 | ||
67 | bio_for_each_folio_all(fi, bio) { | |
68 | if (err) { | |
69 | folio_set_error(fi.folio); | |
70 | mapping_set_error(fi.folio->mapping, err); | |
71 | } | |
72 | folio_end_writeback(fi.folio); | |
73 | } | |
74 | ||
75 | bio_put(bio); | |
76 | } | |
77 | ||
78 | static struct bio *mpage_bio_submit_read(struct bio *bio) | |
79 | { | |
80 | bio->bi_end_io = mpage_read_end_io; | |
81 | guard_bio_eod(bio); | |
82 | submit_bio(bio); | |
83 | return NULL; | |
84 | } | |
85 | ||
86 | static struct bio *mpage_bio_submit_write(struct bio *bio) | |
87 | { | |
88 | bio->bi_end_io = mpage_write_end_io; | |
89 | guard_bio_eod(bio); | |
90 | submit_bio(bio); | |
91 | return NULL; | |
92 | } | |
93 | ||
94 | /* | |
95 | * support function for mpage_readahead. The fs supplied get_block might | |
96 | * return an up to date buffer. This is used to map that buffer into | |
97 | * the page, which allows read_folio to avoid triggering a duplicate call | |
98 | * to get_block. | |
99 | * | |
100 | * The idea is to avoid adding buffers to pages that don't already have | |
101 | * them. So when the buffer is up to date and the page size == block size, | |
102 | * this marks the page up to date instead of adding new buffers. | |
103 | */ | |
104 | static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh, | |
105 | int page_block) | |
106 | { | |
107 | struct inode *inode = folio->mapping->host; | |
108 | struct buffer_head *page_bh, *head; | |
109 | int block = 0; | |
110 | ||
111 | head = folio_buffers(folio); | |
112 | if (!head) { | |
113 | /* | |
114 | * don't make any buffers if there is only one buffer on | |
115 | * the folio and the folio just needs to be set up to date | |
116 | */ | |
117 | if (inode->i_blkbits == PAGE_SHIFT && | |
118 | buffer_uptodate(bh)) { | |
119 | folio_mark_uptodate(folio); | |
120 | return; | |
121 | } | |
122 | head = create_empty_buffers(folio, i_blocksize(inode), 0); | |
123 | } | |
124 | ||
125 | page_bh = head; | |
126 | do { | |
127 | if (block == page_block) { | |
128 | page_bh->b_state = bh->b_state; | |
129 | page_bh->b_bdev = bh->b_bdev; | |
130 | page_bh->b_blocknr = bh->b_blocknr; | |
131 | break; | |
132 | } | |
133 | page_bh = page_bh->b_this_page; | |
134 | block++; | |
135 | } while (page_bh != head); | |
136 | } | |
137 | ||
138 | struct mpage_readpage_args { | |
139 | struct bio *bio; | |
140 | struct folio *folio; | |
141 | unsigned int nr_pages; | |
142 | bool is_readahead; | |
143 | sector_t last_block_in_bio; | |
144 | struct buffer_head map_bh; | |
145 | unsigned long first_logical_block; | |
146 | get_block_t *get_block; | |
147 | }; | |
148 | ||
149 | /* | |
150 | * This is the worker routine which does all the work of mapping the disk | |
151 | * blocks and constructs largest possible bios, submits them for IO if the | |
152 | * blocks are not contiguous on the disk. | |
153 | * | |
154 | * We pass a buffer_head back and forth and use its buffer_mapped() flag to | |
155 | * represent the validity of its disk mapping and to decide when to do the next | |
156 | * get_block() call. | |
157 | */ | |
158 | static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) | |
159 | { | |
160 | struct folio *folio = args->folio; | |
161 | struct inode *inode = folio->mapping->host; | |
162 | const unsigned blkbits = inode->i_blkbits; | |
163 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | |
164 | const unsigned blocksize = 1 << blkbits; | |
165 | struct buffer_head *map_bh = &args->map_bh; | |
166 | sector_t block_in_file; | |
167 | sector_t last_block; | |
168 | sector_t last_block_in_file; | |
169 | sector_t first_block; | |
170 | unsigned page_block; | |
171 | unsigned first_hole = blocks_per_page; | |
172 | struct block_device *bdev = NULL; | |
173 | int length; | |
174 | int fully_mapped = 1; | |
175 | blk_opf_t opf = REQ_OP_READ; | |
176 | unsigned nblocks; | |
177 | unsigned relative_block; | |
178 | gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); | |
179 | ||
180 | /* MAX_BUF_PER_PAGE, for example */ | |
181 | VM_BUG_ON_FOLIO(folio_test_large(folio), folio); | |
182 | ||
183 | if (args->is_readahead) { | |
184 | opf |= REQ_RAHEAD; | |
185 | gfp |= __GFP_NORETRY | __GFP_NOWARN; | |
186 | } | |
187 | ||
188 | if (folio_buffers(folio)) | |
189 | goto confused; | |
190 | ||
191 | block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits); | |
192 | last_block = block_in_file + args->nr_pages * blocks_per_page; | |
193 | last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; | |
194 | if (last_block > last_block_in_file) | |
195 | last_block = last_block_in_file; | |
196 | page_block = 0; | |
197 | ||
198 | /* | |
199 | * Map blocks using the result from the previous get_blocks call first. | |
200 | */ | |
201 | nblocks = map_bh->b_size >> blkbits; | |
202 | if (buffer_mapped(map_bh) && | |
203 | block_in_file > args->first_logical_block && | |
204 | block_in_file < (args->first_logical_block + nblocks)) { | |
205 | unsigned map_offset = block_in_file - args->first_logical_block; | |
206 | unsigned last = nblocks - map_offset; | |
207 | ||
208 | first_block = map_bh->b_blocknr + map_offset; | |
209 | for (relative_block = 0; ; relative_block++) { | |
210 | if (relative_block == last) { | |
211 | clear_buffer_mapped(map_bh); | |
212 | break; | |
213 | } | |
214 | if (page_block == blocks_per_page) | |
215 | break; | |
216 | page_block++; | |
217 | block_in_file++; | |
218 | } | |
219 | bdev = map_bh->b_bdev; | |
220 | } | |
221 | ||
222 | /* | |
223 | * Then do more get_blocks calls until we are done with this folio. | |
224 | */ | |
225 | map_bh->b_folio = folio; | |
226 | while (page_block < blocks_per_page) { | |
227 | map_bh->b_state = 0; | |
228 | map_bh->b_size = 0; | |
229 | ||
230 | if (block_in_file < last_block) { | |
231 | map_bh->b_size = (last_block-block_in_file) << blkbits; | |
232 | if (args->get_block(inode, block_in_file, map_bh, 0)) | |
233 | goto confused; | |
234 | args->first_logical_block = block_in_file; | |
235 | } | |
236 | ||
237 | if (!buffer_mapped(map_bh)) { | |
238 | fully_mapped = 0; | |
239 | if (first_hole == blocks_per_page) | |
240 | first_hole = page_block; | |
241 | page_block++; | |
242 | block_in_file++; | |
243 | continue; | |
244 | } | |
245 | ||
246 | /* some filesystems will copy data into the page during | |
247 | * the get_block call, in which case we don't want to | |
248 | * read it again. map_buffer_to_folio copies the data | |
249 | * we just collected from get_block into the folio's buffers | |
250 | * so read_folio doesn't have to repeat the get_block call | |
251 | */ | |
252 | if (buffer_uptodate(map_bh)) { | |
253 | map_buffer_to_folio(folio, map_bh, page_block); | |
254 | goto confused; | |
255 | } | |
256 | ||
257 | if (first_hole != blocks_per_page) | |
258 | goto confused; /* hole -> non-hole */ | |
259 | ||
260 | /* Contiguous blocks? */ | |
261 | if (!page_block) | |
262 | first_block = map_bh->b_blocknr; | |
263 | else if (first_block + page_block != map_bh->b_blocknr) | |
264 | goto confused; | |
265 | nblocks = map_bh->b_size >> blkbits; | |
266 | for (relative_block = 0; ; relative_block++) { | |
267 | if (relative_block == nblocks) { | |
268 | clear_buffer_mapped(map_bh); | |
269 | break; | |
270 | } else if (page_block == blocks_per_page) | |
271 | break; | |
272 | page_block++; | |
273 | block_in_file++; | |
274 | } | |
275 | bdev = map_bh->b_bdev; | |
276 | } | |
277 | ||
278 | if (first_hole != blocks_per_page) { | |
279 | folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE); | |
280 | if (first_hole == 0) { | |
281 | folio_mark_uptodate(folio); | |
282 | folio_unlock(folio); | |
283 | goto out; | |
284 | } | |
285 | } else if (fully_mapped) { | |
286 | folio_set_mappedtodisk(folio); | |
287 | } | |
288 | ||
289 | /* | |
290 | * This folio will go to BIO. Do we need to send this BIO off first? | |
291 | */ | |
292 | if (args->bio && (args->last_block_in_bio != first_block - 1)) | |
293 | args->bio = mpage_bio_submit_read(args->bio); | |
294 | ||
295 | alloc_new: | |
296 | if (args->bio == NULL) { | |
297 | args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf, | |
298 | gfp); | |
299 | if (args->bio == NULL) | |
300 | goto confused; | |
301 | args->bio->bi_iter.bi_sector = first_block << (blkbits - 9); | |
302 | } | |
303 | ||
304 | length = first_hole << blkbits; | |
305 | if (!bio_add_folio(args->bio, folio, length, 0)) { | |
306 | args->bio = mpage_bio_submit_read(args->bio); | |
307 | goto alloc_new; | |
308 | } | |
309 | ||
310 | relative_block = block_in_file - args->first_logical_block; | |
311 | nblocks = map_bh->b_size >> blkbits; | |
312 | if ((buffer_boundary(map_bh) && relative_block == nblocks) || | |
313 | (first_hole != blocks_per_page)) | |
314 | args->bio = mpage_bio_submit_read(args->bio); | |
315 | else | |
316 | args->last_block_in_bio = first_block + blocks_per_page - 1; | |
317 | out: | |
318 | return args->bio; | |
319 | ||
320 | confused: | |
321 | if (args->bio) | |
322 | args->bio = mpage_bio_submit_read(args->bio); | |
323 | if (!folio_test_uptodate(folio)) | |
324 | block_read_full_folio(folio, args->get_block); | |
325 | else | |
326 | folio_unlock(folio); | |
327 | goto out; | |
328 | } | |
329 | ||
330 | /** | |
331 | * mpage_readahead - start reads against pages | |
332 | * @rac: Describes which pages to read. | |
333 | * @get_block: The filesystem's block mapper function. | |
334 | * | |
335 | * This function walks the pages and the blocks within each page, building and | |
336 | * emitting large BIOs. | |
337 | * | |
338 | * If anything unusual happens, such as: | |
339 | * | |
340 | * - encountering a page which has buffers | |
341 | * - encountering a page which has a non-hole after a hole | |
342 | * - encountering a page with non-contiguous blocks | |
343 | * | |
344 | * then this code just gives up and calls the buffer_head-based read function. | |
345 | * It does handle a page which has holes at the end - that is a common case: | |
346 | * the end-of-file on blocksize < PAGE_SIZE setups. | |
347 | * | |
348 | * BH_Boundary explanation: | |
349 | * | |
350 | * There is a problem. The mpage read code assembles several pages, gets all | |
351 | * their disk mappings, and then submits them all. That's fine, but obtaining | |
352 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | |
353 | * | |
354 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | |
355 | * submitted in the following order: | |
356 | * | |
357 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 | |
358 | * | |
359 | * because the indirect block has to be read to get the mappings of blocks | |
360 | * 13,14,15,16. Obviously, this impacts performance. | |
361 | * | |
362 | * So what we do it to allow the filesystem's get_block() function to set | |
363 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | |
364 | * after this one will require I/O against a block which is probably close to | |
365 | * this one. So you should push what I/O you have currently accumulated. | |
366 | * | |
367 | * This all causes the disk requests to be issued in the correct order. | |
368 | */ | |
369 | void mpage_readahead(struct readahead_control *rac, get_block_t get_block) | |
370 | { | |
371 | struct folio *folio; | |
372 | struct mpage_readpage_args args = { | |
373 | .get_block = get_block, | |
374 | .is_readahead = true, | |
375 | }; | |
376 | ||
377 | while ((folio = readahead_folio(rac))) { | |
378 | prefetchw(&folio->flags); | |
379 | args.folio = folio; | |
380 | args.nr_pages = readahead_count(rac); | |
381 | args.bio = do_mpage_readpage(&args); | |
382 | } | |
383 | if (args.bio) | |
384 | mpage_bio_submit_read(args.bio); | |
385 | } | |
386 | EXPORT_SYMBOL(mpage_readahead); | |
387 | ||
388 | /* | |
389 | * This isn't called much at all | |
390 | */ | |
391 | int mpage_read_folio(struct folio *folio, get_block_t get_block) | |
392 | { | |
393 | struct mpage_readpage_args args = { | |
394 | .folio = folio, | |
395 | .nr_pages = 1, | |
396 | .get_block = get_block, | |
397 | }; | |
398 | ||
399 | args.bio = do_mpage_readpage(&args); | |
400 | if (args.bio) | |
401 | mpage_bio_submit_read(args.bio); | |
402 | return 0; | |
403 | } | |
404 | EXPORT_SYMBOL(mpage_read_folio); | |
405 | ||
406 | /* | |
407 | * Writing is not so simple. | |
408 | * | |
409 | * If the page has buffers then they will be used for obtaining the disk | |
410 | * mapping. We only support pages which are fully mapped-and-dirty, with a | |
411 | * special case for pages which are unmapped at the end: end-of-file. | |
412 | * | |
413 | * If the page has no buffers (preferred) then the page is mapped here. | |
414 | * | |
415 | * If all blocks are found to be contiguous then the page can go into the | |
416 | * BIO. Otherwise fall back to the mapping's writepage(). | |
417 | * | |
418 | * FIXME: This code wants an estimate of how many pages are still to be | |
419 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | |
420 | * just allocate full-size (16-page) BIOs. | |
421 | */ | |
422 | ||
423 | struct mpage_data { | |
424 | struct bio *bio; | |
425 | sector_t last_block_in_bio; | |
426 | get_block_t *get_block; | |
427 | }; | |
428 | ||
429 | /* | |
430 | * We have our BIO, so we can now mark the buffers clean. Make | |
431 | * sure to only clean buffers which we know we'll be writing. | |
432 | */ | |
433 | static void clean_buffers(struct folio *folio, unsigned first_unmapped) | |
434 | { | |
435 | unsigned buffer_counter = 0; | |
436 | struct buffer_head *bh, *head = folio_buffers(folio); | |
437 | ||
438 | if (!head) | |
439 | return; | |
440 | bh = head; | |
441 | ||
442 | do { | |
443 | if (buffer_counter++ == first_unmapped) | |
444 | break; | |
445 | clear_buffer_dirty(bh); | |
446 | bh = bh->b_this_page; | |
447 | } while (bh != head); | |
448 | ||
449 | /* | |
450 | * we cannot drop the bh if the page is not uptodate or a concurrent | |
451 | * read_folio would fail to serialize with the bh and it would read from | |
452 | * disk before we reach the platter. | |
453 | */ | |
454 | if (buffer_heads_over_limit && folio_test_uptodate(folio)) | |
455 | try_to_free_buffers(folio); | |
456 | } | |
457 | ||
458 | static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc, | |
459 | void *data) | |
460 | { | |
461 | struct mpage_data *mpd = data; | |
462 | struct bio *bio = mpd->bio; | |
463 | struct address_space *mapping = folio->mapping; | |
464 | struct inode *inode = mapping->host; | |
465 | const unsigned blkbits = inode->i_blkbits; | |
466 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | |
467 | sector_t last_block; | |
468 | sector_t block_in_file; | |
469 | sector_t first_block; | |
470 | unsigned page_block; | |
471 | unsigned first_unmapped = blocks_per_page; | |
472 | struct block_device *bdev = NULL; | |
473 | int boundary = 0; | |
474 | sector_t boundary_block = 0; | |
475 | struct block_device *boundary_bdev = NULL; | |
476 | size_t length; | |
477 | struct buffer_head map_bh; | |
478 | loff_t i_size = i_size_read(inode); | |
479 | int ret = 0; | |
480 | struct buffer_head *head = folio_buffers(folio); | |
481 | ||
482 | if (head) { | |
483 | struct buffer_head *bh = head; | |
484 | ||
485 | /* If they're all mapped and dirty, do it */ | |
486 | page_block = 0; | |
487 | do { | |
488 | BUG_ON(buffer_locked(bh)); | |
489 | if (!buffer_mapped(bh)) { | |
490 | /* | |
491 | * unmapped dirty buffers are created by | |
492 | * block_dirty_folio -> mmapped data | |
493 | */ | |
494 | if (buffer_dirty(bh)) | |
495 | goto confused; | |
496 | if (first_unmapped == blocks_per_page) | |
497 | first_unmapped = page_block; | |
498 | continue; | |
499 | } | |
500 | ||
501 | if (first_unmapped != blocks_per_page) | |
502 | goto confused; /* hole -> non-hole */ | |
503 | ||
504 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | |
505 | goto confused; | |
506 | if (page_block) { | |
507 | if (bh->b_blocknr != first_block + page_block) | |
508 | goto confused; | |
509 | } else { | |
510 | first_block = bh->b_blocknr; | |
511 | } | |
512 | page_block++; | |
513 | boundary = buffer_boundary(bh); | |
514 | if (boundary) { | |
515 | boundary_block = bh->b_blocknr; | |
516 | boundary_bdev = bh->b_bdev; | |
517 | } | |
518 | bdev = bh->b_bdev; | |
519 | } while ((bh = bh->b_this_page) != head); | |
520 | ||
521 | if (first_unmapped) | |
522 | goto page_is_mapped; | |
523 | ||
524 | /* | |
525 | * Page has buffers, but they are all unmapped. The page was | |
526 | * created by pagein or read over a hole which was handled by | |
527 | * block_read_full_folio(). If this address_space is also | |
528 | * using mpage_readahead then this can rarely happen. | |
529 | */ | |
530 | goto confused; | |
531 | } | |
532 | ||
533 | /* | |
534 | * The page has no buffers: map it to disk | |
535 | */ | |
536 | BUG_ON(!folio_test_uptodate(folio)); | |
537 | block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits); | |
538 | /* | |
539 | * Whole page beyond EOF? Skip allocating blocks to avoid leaking | |
540 | * space. | |
541 | */ | |
542 | if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits) | |
543 | goto page_is_mapped; | |
544 | last_block = (i_size - 1) >> blkbits; | |
545 | map_bh.b_folio = folio; | |
546 | for (page_block = 0; page_block < blocks_per_page; ) { | |
547 | ||
548 | map_bh.b_state = 0; | |
549 | map_bh.b_size = 1 << blkbits; | |
550 | if (mpd->get_block(inode, block_in_file, &map_bh, 1)) | |
551 | goto confused; | |
552 | if (!buffer_mapped(&map_bh)) | |
553 | goto confused; | |
554 | if (buffer_new(&map_bh)) | |
555 | clean_bdev_bh_alias(&map_bh); | |
556 | if (buffer_boundary(&map_bh)) { | |
557 | boundary_block = map_bh.b_blocknr; | |
558 | boundary_bdev = map_bh.b_bdev; | |
559 | } | |
560 | if (page_block) { | |
561 | if (map_bh.b_blocknr != first_block + page_block) | |
562 | goto confused; | |
563 | } else { | |
564 | first_block = map_bh.b_blocknr; | |
565 | } | |
566 | page_block++; | |
567 | boundary = buffer_boundary(&map_bh); | |
568 | bdev = map_bh.b_bdev; | |
569 | if (block_in_file == last_block) | |
570 | break; | |
571 | block_in_file++; | |
572 | } | |
573 | BUG_ON(page_block == 0); | |
574 | ||
575 | first_unmapped = page_block; | |
576 | ||
577 | page_is_mapped: | |
578 | /* Don't bother writing beyond EOF, truncate will discard the folio */ | |
579 | if (folio_pos(folio) >= i_size) | |
580 | goto confused; | |
581 | length = folio_size(folio); | |
582 | if (folio_pos(folio) + length > i_size) { | |
583 | /* | |
584 | * The page straddles i_size. It must be zeroed out on each | |
585 | * and every writepage invocation because it may be mmapped. | |
586 | * "A file is mapped in multiples of the page size. For a file | |
587 | * that is not a multiple of the page size, the remaining memory | |
588 | * is zeroed when mapped, and writes to that region are not | |
589 | * written out to the file." | |
590 | */ | |
591 | length = i_size - folio_pos(folio); | |
592 | folio_zero_segment(folio, length, folio_size(folio)); | |
593 | } | |
594 | ||
595 | /* | |
596 | * This page will go to BIO. Do we need to send this BIO off first? | |
597 | */ | |
598 | if (bio && mpd->last_block_in_bio != first_block - 1) | |
599 | bio = mpage_bio_submit_write(bio); | |
600 | ||
601 | alloc_new: | |
602 | if (bio == NULL) { | |
603 | bio = bio_alloc(bdev, BIO_MAX_VECS, | |
604 | REQ_OP_WRITE | wbc_to_write_flags(wbc), | |
605 | GFP_NOFS); | |
606 | bio->bi_iter.bi_sector = first_block << (blkbits - 9); | |
607 | wbc_init_bio(wbc, bio); | |
608 | } | |
609 | ||
610 | /* | |
611 | * Must try to add the page before marking the buffer clean or | |
612 | * the confused fail path above (OOM) will be very confused when | |
613 | * it finds all bh marked clean (i.e. it will not write anything) | |
614 | */ | |
615 | wbc_account_cgroup_owner(wbc, &folio->page, folio_size(folio)); | |
616 | length = first_unmapped << blkbits; | |
617 | if (!bio_add_folio(bio, folio, length, 0)) { | |
618 | bio = mpage_bio_submit_write(bio); | |
619 | goto alloc_new; | |
620 | } | |
621 | ||
622 | clean_buffers(folio, first_unmapped); | |
623 | ||
624 | BUG_ON(folio_test_writeback(folio)); | |
625 | folio_start_writeback(folio); | |
626 | folio_unlock(folio); | |
627 | if (boundary || (first_unmapped != blocks_per_page)) { | |
628 | bio = mpage_bio_submit_write(bio); | |
629 | if (boundary_block) { | |
630 | write_boundary_block(boundary_bdev, | |
631 | boundary_block, 1 << blkbits); | |
632 | } | |
633 | } else { | |
634 | mpd->last_block_in_bio = first_block + blocks_per_page - 1; | |
635 | } | |
636 | goto out; | |
637 | ||
638 | confused: | |
639 | if (bio) | |
640 | bio = mpage_bio_submit_write(bio); | |
641 | ||
642 | /* | |
643 | * The caller has a ref on the inode, so *mapping is stable | |
644 | */ | |
645 | ret = block_write_full_folio(folio, wbc, mpd->get_block); | |
646 | mapping_set_error(mapping, ret); | |
647 | out: | |
648 | mpd->bio = bio; | |
649 | return ret; | |
650 | } | |
651 | ||
652 | /** | |
653 | * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them | |
654 | * @mapping: address space structure to write | |
655 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
656 | * @get_block: the filesystem's block mapper function. | |
657 | * | |
658 | * This is a library function, which implements the writepages() | |
659 | * address_space_operation. | |
660 | */ | |
661 | int | |
662 | mpage_writepages(struct address_space *mapping, | |
663 | struct writeback_control *wbc, get_block_t get_block) | |
664 | { | |
665 | struct mpage_data mpd = { | |
666 | .get_block = get_block, | |
667 | }; | |
668 | struct blk_plug plug; | |
669 | int ret; | |
670 | ||
671 | blk_start_plug(&plug); | |
672 | ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); | |
673 | if (mpd.bio) | |
674 | mpage_bio_submit_write(mpd.bio); | |
675 | blk_finish_plug(&plug); | |
676 | return ret; | |
677 | } | |
678 | EXPORT_SYMBOL(mpage_writepages); |