]> Git Repo - linux.git/blame_incremental - mm/vmscan.c
mm/page-writeback.c: use setup_deferrable_timer
[linux.git] / mm / vmscan.c
... / ...
CommitLineData
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/mm.h>
17#include <linux/sched/mm.h>
18#include <linux/module.h>
19#include <linux/gfp.h>
20#include <linux/kernel_stat.h>
21#include <linux/swap.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/highmem.h>
25#include <linux/vmpressure.h>
26#include <linux/vmstat.h>
27#include <linux/file.h>
28#include <linux/writeback.h>
29#include <linux/blkdev.h>
30#include <linux/buffer_head.h> /* for try_to_release_page(),
31 buffer_heads_over_limit */
32#include <linux/mm_inline.h>
33#include <linux/backing-dev.h>
34#include <linux/rmap.h>
35#include <linux/topology.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/compaction.h>
39#include <linux/notifier.h>
40#include <linux/rwsem.h>
41#include <linux/delay.h>
42#include <linux/kthread.h>
43#include <linux/freezer.h>
44#include <linux/memcontrol.h>
45#include <linux/delayacct.h>
46#include <linux/sysctl.h>
47#include <linux/oom.h>
48#include <linux/prefetch.h>
49#include <linux/printk.h>
50#include <linux/dax.h>
51
52#include <asm/tlbflush.h>
53#include <asm/div64.h>
54
55#include <linux/swapops.h>
56#include <linux/balloon_compaction.h>
57
58#include "internal.h"
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/vmscan.h>
62
63struct scan_control {
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 /* This context's GFP mask */
68 gfp_t gfp_mask;
69
70 /* Allocation order */
71 int order;
72
73 /*
74 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * are scanned.
76 */
77 nodemask_t *nodemask;
78
79 /*
80 * The memory cgroup that hit its limit and as a result is the
81 * primary target of this reclaim invocation.
82 */
83 struct mem_cgroup *target_mem_cgroup;
84
85 /* Scan (total_size >> priority) pages at once */
86 int priority;
87
88 /* The highest zone to isolate pages for reclaim from */
89 enum zone_type reclaim_idx;
90
91 /* Writepage batching in laptop mode; RECLAIM_WRITE */
92 unsigned int may_writepage:1;
93
94 /* Can mapped pages be reclaimed? */
95 unsigned int may_unmap:1;
96
97 /* Can pages be swapped as part of reclaim? */
98 unsigned int may_swap:1;
99
100 /* Can cgroups be reclaimed below their normal consumption range? */
101 unsigned int may_thrash:1;
102
103 unsigned int hibernation_mode:1;
104
105 /* One of the zones is ready for compaction */
106 unsigned int compaction_ready:1;
107
108 /* Incremented by the number of inactive pages that were scanned */
109 unsigned long nr_scanned;
110
111 /* Number of pages freed so far during a call to shrink_zones() */
112 unsigned long nr_reclaimed;
113};
114
115#ifdef ARCH_HAS_PREFETCH
116#define prefetch_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetch(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129#ifdef ARCH_HAS_PREFETCHW
130#define prefetchw_prev_lru_page(_page, _base, _field) \
131 do { \
132 if ((_page)->lru.prev != _base) { \
133 struct page *prev; \
134 \
135 prev = lru_to_page(&(_page->lru)); \
136 prefetchw(&prev->_field); \
137 } \
138 } while (0)
139#else
140#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
141#endif
142
143/*
144 * From 0 .. 100. Higher means more swappy.
145 */
146int vm_swappiness = 60;
147/*
148 * The total number of pages which are beyond the high watermark within all
149 * zones.
150 */
151unsigned long vm_total_pages;
152
153static LIST_HEAD(shrinker_list);
154static DECLARE_RWSEM(shrinker_rwsem);
155
156#ifdef CONFIG_MEMCG
157static bool global_reclaim(struct scan_control *sc)
158{
159 return !sc->target_mem_cgroup;
160}
161
162/**
163 * sane_reclaim - is the usual dirty throttling mechanism operational?
164 * @sc: scan_control in question
165 *
166 * The normal page dirty throttling mechanism in balance_dirty_pages() is
167 * completely broken with the legacy memcg and direct stalling in
168 * shrink_page_list() is used for throttling instead, which lacks all the
169 * niceties such as fairness, adaptive pausing, bandwidth proportional
170 * allocation and configurability.
171 *
172 * This function tests whether the vmscan currently in progress can assume
173 * that the normal dirty throttling mechanism is operational.
174 */
175static bool sane_reclaim(struct scan_control *sc)
176{
177 struct mem_cgroup *memcg = sc->target_mem_cgroup;
178
179 if (!memcg)
180 return true;
181#ifdef CONFIG_CGROUP_WRITEBACK
182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
183 return true;
184#endif
185 return false;
186}
187#else
188static bool global_reclaim(struct scan_control *sc)
189{
190 return true;
191}
192
193static bool sane_reclaim(struct scan_control *sc)
194{
195 return true;
196}
197#endif
198
199/*
200 * This misses isolated pages which are not accounted for to save counters.
201 * As the data only determines if reclaim or compaction continues, it is
202 * not expected that isolated pages will be a dominating factor.
203 */
204unsigned long zone_reclaimable_pages(struct zone *zone)
205{
206 unsigned long nr;
207
208 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
209 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
210 if (get_nr_swap_pages() > 0)
211 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
213
214 return nr;
215}
216
217unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
218{
219 unsigned long nr;
220
221 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
222 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
223 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
224
225 if (get_nr_swap_pages() > 0)
226 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
227 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
228 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
229
230 return nr;
231}
232
233/**
234 * lruvec_lru_size - Returns the number of pages on the given LRU list.
235 * @lruvec: lru vector
236 * @lru: lru to use
237 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
238 */
239unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
240{
241 unsigned long lru_size;
242 int zid;
243
244 if (!mem_cgroup_disabled())
245 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
246 else
247 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
248
249 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
250 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
251 unsigned long size;
252
253 if (!managed_zone(zone))
254 continue;
255
256 if (!mem_cgroup_disabled())
257 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
258 else
259 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
260 NR_ZONE_LRU_BASE + lru);
261 lru_size -= min(size, lru_size);
262 }
263
264 return lru_size;
265
266}
267
268/*
269 * Add a shrinker callback to be called from the vm.
270 */
271int register_shrinker(struct shrinker *shrinker)
272{
273 size_t size = sizeof(*shrinker->nr_deferred);
274
275 if (shrinker->flags & SHRINKER_NUMA_AWARE)
276 size *= nr_node_ids;
277
278 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
279 if (!shrinker->nr_deferred)
280 return -ENOMEM;
281
282 down_write(&shrinker_rwsem);
283 list_add_tail(&shrinker->list, &shrinker_list);
284 up_write(&shrinker_rwsem);
285 return 0;
286}
287EXPORT_SYMBOL(register_shrinker);
288
289/*
290 * Remove one
291 */
292void unregister_shrinker(struct shrinker *shrinker)
293{
294 down_write(&shrinker_rwsem);
295 list_del(&shrinker->list);
296 up_write(&shrinker_rwsem);
297 kfree(shrinker->nr_deferred);
298}
299EXPORT_SYMBOL(unregister_shrinker);
300
301#define SHRINK_BATCH 128
302
303static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
304 struct shrinker *shrinker,
305 unsigned long nr_scanned,
306 unsigned long nr_eligible)
307{
308 unsigned long freed = 0;
309 unsigned long long delta;
310 long total_scan;
311 long freeable;
312 long nr;
313 long new_nr;
314 int nid = shrinkctl->nid;
315 long batch_size = shrinker->batch ? shrinker->batch
316 : SHRINK_BATCH;
317 long scanned = 0, next_deferred;
318
319 freeable = shrinker->count_objects(shrinker, shrinkctl);
320 if (freeable == 0)
321 return 0;
322
323 /*
324 * copy the current shrinker scan count into a local variable
325 * and zero it so that other concurrent shrinker invocations
326 * don't also do this scanning work.
327 */
328 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
329
330 total_scan = nr;
331 delta = (4 * nr_scanned) / shrinker->seeks;
332 delta *= freeable;
333 do_div(delta, nr_eligible + 1);
334 total_scan += delta;
335 if (total_scan < 0) {
336 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
337 shrinker->scan_objects, total_scan);
338 total_scan = freeable;
339 next_deferred = nr;
340 } else
341 next_deferred = total_scan;
342
343 /*
344 * We need to avoid excessive windup on filesystem shrinkers
345 * due to large numbers of GFP_NOFS allocations causing the
346 * shrinkers to return -1 all the time. This results in a large
347 * nr being built up so when a shrink that can do some work
348 * comes along it empties the entire cache due to nr >>>
349 * freeable. This is bad for sustaining a working set in
350 * memory.
351 *
352 * Hence only allow the shrinker to scan the entire cache when
353 * a large delta change is calculated directly.
354 */
355 if (delta < freeable / 4)
356 total_scan = min(total_scan, freeable / 2);
357
358 /*
359 * Avoid risking looping forever due to too large nr value:
360 * never try to free more than twice the estimate number of
361 * freeable entries.
362 */
363 if (total_scan > freeable * 2)
364 total_scan = freeable * 2;
365
366 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
367 nr_scanned, nr_eligible,
368 freeable, delta, total_scan);
369
370 /*
371 * Normally, we should not scan less than batch_size objects in one
372 * pass to avoid too frequent shrinker calls, but if the slab has less
373 * than batch_size objects in total and we are really tight on memory,
374 * we will try to reclaim all available objects, otherwise we can end
375 * up failing allocations although there are plenty of reclaimable
376 * objects spread over several slabs with usage less than the
377 * batch_size.
378 *
379 * We detect the "tight on memory" situations by looking at the total
380 * number of objects we want to scan (total_scan). If it is greater
381 * than the total number of objects on slab (freeable), we must be
382 * scanning at high prio and therefore should try to reclaim as much as
383 * possible.
384 */
385 while (total_scan >= batch_size ||
386 total_scan >= freeable) {
387 unsigned long ret;
388 unsigned long nr_to_scan = min(batch_size, total_scan);
389
390 shrinkctl->nr_to_scan = nr_to_scan;
391 ret = shrinker->scan_objects(shrinker, shrinkctl);
392 if (ret == SHRINK_STOP)
393 break;
394 freed += ret;
395
396 count_vm_events(SLABS_SCANNED, nr_to_scan);
397 total_scan -= nr_to_scan;
398 scanned += nr_to_scan;
399
400 cond_resched();
401 }
402
403 if (next_deferred >= scanned)
404 next_deferred -= scanned;
405 else
406 next_deferred = 0;
407 /*
408 * move the unused scan count back into the shrinker in a
409 * manner that handles concurrent updates. If we exhausted the
410 * scan, there is no need to do an update.
411 */
412 if (next_deferred > 0)
413 new_nr = atomic_long_add_return(next_deferred,
414 &shrinker->nr_deferred[nid]);
415 else
416 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
417
418 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
419 return freed;
420}
421
422/**
423 * shrink_slab - shrink slab caches
424 * @gfp_mask: allocation context
425 * @nid: node whose slab caches to target
426 * @memcg: memory cgroup whose slab caches to target
427 * @nr_scanned: pressure numerator
428 * @nr_eligible: pressure denominator
429 *
430 * Call the shrink functions to age shrinkable caches.
431 *
432 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
433 * unaware shrinkers will receive a node id of 0 instead.
434 *
435 * @memcg specifies the memory cgroup to target. If it is not NULL,
436 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
437 * objects from the memory cgroup specified. Otherwise, only unaware
438 * shrinkers are called.
439 *
440 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
441 * the available objects should be scanned. Page reclaim for example
442 * passes the number of pages scanned and the number of pages on the
443 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
444 * when it encountered mapped pages. The ratio is further biased by
445 * the ->seeks setting of the shrink function, which indicates the
446 * cost to recreate an object relative to that of an LRU page.
447 *
448 * Returns the number of reclaimed slab objects.
449 */
450static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
451 struct mem_cgroup *memcg,
452 unsigned long nr_scanned,
453 unsigned long nr_eligible)
454{
455 struct shrinker *shrinker;
456 unsigned long freed = 0;
457
458 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
459 return 0;
460
461 if (nr_scanned == 0)
462 nr_scanned = SWAP_CLUSTER_MAX;
463
464 if (!down_read_trylock(&shrinker_rwsem)) {
465 /*
466 * If we would return 0, our callers would understand that we
467 * have nothing else to shrink and give up trying. By returning
468 * 1 we keep it going and assume we'll be able to shrink next
469 * time.
470 */
471 freed = 1;
472 goto out;
473 }
474
475 list_for_each_entry(shrinker, &shrinker_list, list) {
476 struct shrink_control sc = {
477 .gfp_mask = gfp_mask,
478 .nid = nid,
479 .memcg = memcg,
480 };
481
482 /*
483 * If kernel memory accounting is disabled, we ignore
484 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
485 * passing NULL for memcg.
486 */
487 if (memcg_kmem_enabled() &&
488 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
489 continue;
490
491 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
492 sc.nid = 0;
493
494 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
495 }
496
497 up_read(&shrinker_rwsem);
498out:
499 cond_resched();
500 return freed;
501}
502
503void drop_slab_node(int nid)
504{
505 unsigned long freed;
506
507 do {
508 struct mem_cgroup *memcg = NULL;
509
510 freed = 0;
511 do {
512 freed += shrink_slab(GFP_KERNEL, nid, memcg,
513 1000, 1000);
514 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
515 } while (freed > 10);
516}
517
518void drop_slab(void)
519{
520 int nid;
521
522 for_each_online_node(nid)
523 drop_slab_node(nid);
524}
525
526static inline int is_page_cache_freeable(struct page *page)
527{
528 /*
529 * A freeable page cache page is referenced only by the caller
530 * that isolated the page, the page cache radix tree and
531 * optional buffer heads at page->private.
532 */
533 return page_count(page) - page_has_private(page) == 2;
534}
535
536static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
537{
538 if (current->flags & PF_SWAPWRITE)
539 return 1;
540 if (!inode_write_congested(inode))
541 return 1;
542 if (inode_to_bdi(inode) == current->backing_dev_info)
543 return 1;
544 return 0;
545}
546
547/*
548 * We detected a synchronous write error writing a page out. Probably
549 * -ENOSPC. We need to propagate that into the address_space for a subsequent
550 * fsync(), msync() or close().
551 *
552 * The tricky part is that after writepage we cannot touch the mapping: nothing
553 * prevents it from being freed up. But we have a ref on the page and once
554 * that page is locked, the mapping is pinned.
555 *
556 * We're allowed to run sleeping lock_page() here because we know the caller has
557 * __GFP_FS.
558 */
559static void handle_write_error(struct address_space *mapping,
560 struct page *page, int error)
561{
562 lock_page(page);
563 if (page_mapping(page) == mapping)
564 mapping_set_error(mapping, error);
565 unlock_page(page);
566}
567
568/* possible outcome of pageout() */
569typedef enum {
570 /* failed to write page out, page is locked */
571 PAGE_KEEP,
572 /* move page to the active list, page is locked */
573 PAGE_ACTIVATE,
574 /* page has been sent to the disk successfully, page is unlocked */
575 PAGE_SUCCESS,
576 /* page is clean and locked */
577 PAGE_CLEAN,
578} pageout_t;
579
580/*
581 * pageout is called by shrink_page_list() for each dirty page.
582 * Calls ->writepage().
583 */
584static pageout_t pageout(struct page *page, struct address_space *mapping,
585 struct scan_control *sc)
586{
587 /*
588 * If the page is dirty, only perform writeback if that write
589 * will be non-blocking. To prevent this allocation from being
590 * stalled by pagecache activity. But note that there may be
591 * stalls if we need to run get_block(). We could test
592 * PagePrivate for that.
593 *
594 * If this process is currently in __generic_file_write_iter() against
595 * this page's queue, we can perform writeback even if that
596 * will block.
597 *
598 * If the page is swapcache, write it back even if that would
599 * block, for some throttling. This happens by accident, because
600 * swap_backing_dev_info is bust: it doesn't reflect the
601 * congestion state of the swapdevs. Easy to fix, if needed.
602 */
603 if (!is_page_cache_freeable(page))
604 return PAGE_KEEP;
605 if (!mapping) {
606 /*
607 * Some data journaling orphaned pages can have
608 * page->mapping == NULL while being dirty with clean buffers.
609 */
610 if (page_has_private(page)) {
611 if (try_to_free_buffers(page)) {
612 ClearPageDirty(page);
613 pr_info("%s: orphaned page\n", __func__);
614 return PAGE_CLEAN;
615 }
616 }
617 return PAGE_KEEP;
618 }
619 if (mapping->a_ops->writepage == NULL)
620 return PAGE_ACTIVATE;
621 if (!may_write_to_inode(mapping->host, sc))
622 return PAGE_KEEP;
623
624 if (clear_page_dirty_for_io(page)) {
625 int res;
626 struct writeback_control wbc = {
627 .sync_mode = WB_SYNC_NONE,
628 .nr_to_write = SWAP_CLUSTER_MAX,
629 .range_start = 0,
630 .range_end = LLONG_MAX,
631 .for_reclaim = 1,
632 };
633
634 SetPageReclaim(page);
635 res = mapping->a_ops->writepage(page, &wbc);
636 if (res < 0)
637 handle_write_error(mapping, page, res);
638 if (res == AOP_WRITEPAGE_ACTIVATE) {
639 ClearPageReclaim(page);
640 return PAGE_ACTIVATE;
641 }
642
643 if (!PageWriteback(page)) {
644 /* synchronous write or broken a_ops? */
645 ClearPageReclaim(page);
646 }
647 trace_mm_vmscan_writepage(page);
648 inc_node_page_state(page, NR_VMSCAN_WRITE);
649 return PAGE_SUCCESS;
650 }
651
652 return PAGE_CLEAN;
653}
654
655/*
656 * Same as remove_mapping, but if the page is removed from the mapping, it
657 * gets returned with a refcount of 0.
658 */
659static int __remove_mapping(struct address_space *mapping, struct page *page,
660 bool reclaimed)
661{
662 unsigned long flags;
663
664 BUG_ON(!PageLocked(page));
665 BUG_ON(mapping != page_mapping(page));
666
667 spin_lock_irqsave(&mapping->tree_lock, flags);
668 /*
669 * The non racy check for a busy page.
670 *
671 * Must be careful with the order of the tests. When someone has
672 * a ref to the page, it may be possible that they dirty it then
673 * drop the reference. So if PageDirty is tested before page_count
674 * here, then the following race may occur:
675 *
676 * get_user_pages(&page);
677 * [user mapping goes away]
678 * write_to(page);
679 * !PageDirty(page) [good]
680 * SetPageDirty(page);
681 * put_page(page);
682 * !page_count(page) [good, discard it]
683 *
684 * [oops, our write_to data is lost]
685 *
686 * Reversing the order of the tests ensures such a situation cannot
687 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
688 * load is not satisfied before that of page->_refcount.
689 *
690 * Note that if SetPageDirty is always performed via set_page_dirty,
691 * and thus under tree_lock, then this ordering is not required.
692 */
693 if (!page_ref_freeze(page, 2))
694 goto cannot_free;
695 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
696 if (unlikely(PageDirty(page))) {
697 page_ref_unfreeze(page, 2);
698 goto cannot_free;
699 }
700
701 if (PageSwapCache(page)) {
702 swp_entry_t swap = { .val = page_private(page) };
703 mem_cgroup_swapout(page, swap);
704 __delete_from_swap_cache(page);
705 spin_unlock_irqrestore(&mapping->tree_lock, flags);
706 swapcache_free(swap);
707 } else {
708 void (*freepage)(struct page *);
709 void *shadow = NULL;
710
711 freepage = mapping->a_ops->freepage;
712 /*
713 * Remember a shadow entry for reclaimed file cache in
714 * order to detect refaults, thus thrashing, later on.
715 *
716 * But don't store shadows in an address space that is
717 * already exiting. This is not just an optizimation,
718 * inode reclaim needs to empty out the radix tree or
719 * the nodes are lost. Don't plant shadows behind its
720 * back.
721 *
722 * We also don't store shadows for DAX mappings because the
723 * only page cache pages found in these are zero pages
724 * covering holes, and because we don't want to mix DAX
725 * exceptional entries and shadow exceptional entries in the
726 * same page_tree.
727 */
728 if (reclaimed && page_is_file_cache(page) &&
729 !mapping_exiting(mapping) && !dax_mapping(mapping))
730 shadow = workingset_eviction(mapping, page);
731 __delete_from_page_cache(page, shadow);
732 spin_unlock_irqrestore(&mapping->tree_lock, flags);
733
734 if (freepage != NULL)
735 freepage(page);
736 }
737
738 return 1;
739
740cannot_free:
741 spin_unlock_irqrestore(&mapping->tree_lock, flags);
742 return 0;
743}
744
745/*
746 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
747 * someone else has a ref on the page, abort and return 0. If it was
748 * successfully detached, return 1. Assumes the caller has a single ref on
749 * this page.
750 */
751int remove_mapping(struct address_space *mapping, struct page *page)
752{
753 if (__remove_mapping(mapping, page, false)) {
754 /*
755 * Unfreezing the refcount with 1 rather than 2 effectively
756 * drops the pagecache ref for us without requiring another
757 * atomic operation.
758 */
759 page_ref_unfreeze(page, 1);
760 return 1;
761 }
762 return 0;
763}
764
765/**
766 * putback_lru_page - put previously isolated page onto appropriate LRU list
767 * @page: page to be put back to appropriate lru list
768 *
769 * Add previously isolated @page to appropriate LRU list.
770 * Page may still be unevictable for other reasons.
771 *
772 * lru_lock must not be held, interrupts must be enabled.
773 */
774void putback_lru_page(struct page *page)
775{
776 bool is_unevictable;
777 int was_unevictable = PageUnevictable(page);
778
779 VM_BUG_ON_PAGE(PageLRU(page), page);
780
781redo:
782 ClearPageUnevictable(page);
783
784 if (page_evictable(page)) {
785 /*
786 * For evictable pages, we can use the cache.
787 * In event of a race, worst case is we end up with an
788 * unevictable page on [in]active list.
789 * We know how to handle that.
790 */
791 is_unevictable = false;
792 lru_cache_add(page);
793 } else {
794 /*
795 * Put unevictable pages directly on zone's unevictable
796 * list.
797 */
798 is_unevictable = true;
799 add_page_to_unevictable_list(page);
800 /*
801 * When racing with an mlock or AS_UNEVICTABLE clearing
802 * (page is unlocked) make sure that if the other thread
803 * does not observe our setting of PG_lru and fails
804 * isolation/check_move_unevictable_pages,
805 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
806 * the page back to the evictable list.
807 *
808 * The other side is TestClearPageMlocked() or shmem_lock().
809 */
810 smp_mb();
811 }
812
813 /*
814 * page's status can change while we move it among lru. If an evictable
815 * page is on unevictable list, it never be freed. To avoid that,
816 * check after we added it to the list, again.
817 */
818 if (is_unevictable && page_evictable(page)) {
819 if (!isolate_lru_page(page)) {
820 put_page(page);
821 goto redo;
822 }
823 /* This means someone else dropped this page from LRU
824 * So, it will be freed or putback to LRU again. There is
825 * nothing to do here.
826 */
827 }
828
829 if (was_unevictable && !is_unevictable)
830 count_vm_event(UNEVICTABLE_PGRESCUED);
831 else if (!was_unevictable && is_unevictable)
832 count_vm_event(UNEVICTABLE_PGCULLED);
833
834 put_page(page); /* drop ref from isolate */
835}
836
837enum page_references {
838 PAGEREF_RECLAIM,
839 PAGEREF_RECLAIM_CLEAN,
840 PAGEREF_KEEP,
841 PAGEREF_ACTIVATE,
842};
843
844static enum page_references page_check_references(struct page *page,
845 struct scan_control *sc)
846{
847 int referenced_ptes, referenced_page;
848 unsigned long vm_flags;
849
850 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
851 &vm_flags);
852 referenced_page = TestClearPageReferenced(page);
853
854 /*
855 * Mlock lost the isolation race with us. Let try_to_unmap()
856 * move the page to the unevictable list.
857 */
858 if (vm_flags & VM_LOCKED)
859 return PAGEREF_RECLAIM;
860
861 if (referenced_ptes) {
862 if (PageSwapBacked(page))
863 return PAGEREF_ACTIVATE;
864 /*
865 * All mapped pages start out with page table
866 * references from the instantiating fault, so we need
867 * to look twice if a mapped file page is used more
868 * than once.
869 *
870 * Mark it and spare it for another trip around the
871 * inactive list. Another page table reference will
872 * lead to its activation.
873 *
874 * Note: the mark is set for activated pages as well
875 * so that recently deactivated but used pages are
876 * quickly recovered.
877 */
878 SetPageReferenced(page);
879
880 if (referenced_page || referenced_ptes > 1)
881 return PAGEREF_ACTIVATE;
882
883 /*
884 * Activate file-backed executable pages after first usage.
885 */
886 if (vm_flags & VM_EXEC)
887 return PAGEREF_ACTIVATE;
888
889 return PAGEREF_KEEP;
890 }
891
892 /* Reclaim if clean, defer dirty pages to writeback */
893 if (referenced_page && !PageSwapBacked(page))
894 return PAGEREF_RECLAIM_CLEAN;
895
896 return PAGEREF_RECLAIM;
897}
898
899/* Check if a page is dirty or under writeback */
900static void page_check_dirty_writeback(struct page *page,
901 bool *dirty, bool *writeback)
902{
903 struct address_space *mapping;
904
905 /*
906 * Anonymous pages are not handled by flushers and must be written
907 * from reclaim context. Do not stall reclaim based on them
908 */
909 if (!page_is_file_cache(page)) {
910 *dirty = false;
911 *writeback = false;
912 return;
913 }
914
915 /* By default assume that the page flags are accurate */
916 *dirty = PageDirty(page);
917 *writeback = PageWriteback(page);
918
919 /* Verify dirty/writeback state if the filesystem supports it */
920 if (!page_has_private(page))
921 return;
922
923 mapping = page_mapping(page);
924 if (mapping && mapping->a_ops->is_dirty_writeback)
925 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
926}
927
928struct reclaim_stat {
929 unsigned nr_dirty;
930 unsigned nr_unqueued_dirty;
931 unsigned nr_congested;
932 unsigned nr_writeback;
933 unsigned nr_immediate;
934 unsigned nr_activate;
935 unsigned nr_ref_keep;
936 unsigned nr_unmap_fail;
937};
938
939/*
940 * shrink_page_list() returns the number of reclaimed pages
941 */
942static unsigned long shrink_page_list(struct list_head *page_list,
943 struct pglist_data *pgdat,
944 struct scan_control *sc,
945 enum ttu_flags ttu_flags,
946 struct reclaim_stat *stat,
947 bool force_reclaim)
948{
949 LIST_HEAD(ret_pages);
950 LIST_HEAD(free_pages);
951 int pgactivate = 0;
952 unsigned nr_unqueued_dirty = 0;
953 unsigned nr_dirty = 0;
954 unsigned nr_congested = 0;
955 unsigned nr_reclaimed = 0;
956 unsigned nr_writeback = 0;
957 unsigned nr_immediate = 0;
958 unsigned nr_ref_keep = 0;
959 unsigned nr_unmap_fail = 0;
960
961 cond_resched();
962
963 while (!list_empty(page_list)) {
964 struct address_space *mapping;
965 struct page *page;
966 int may_enter_fs;
967 enum page_references references = PAGEREF_RECLAIM_CLEAN;
968 bool dirty, writeback;
969 bool lazyfree = false;
970 int ret = SWAP_SUCCESS;
971
972 cond_resched();
973
974 page = lru_to_page(page_list);
975 list_del(&page->lru);
976
977 if (!trylock_page(page))
978 goto keep;
979
980 VM_BUG_ON_PAGE(PageActive(page), page);
981
982 sc->nr_scanned++;
983
984 if (unlikely(!page_evictable(page)))
985 goto cull_mlocked;
986
987 if (!sc->may_unmap && page_mapped(page))
988 goto keep_locked;
989
990 /* Double the slab pressure for mapped and swapcache pages */
991 if (page_mapped(page) || PageSwapCache(page))
992 sc->nr_scanned++;
993
994 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
995 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
996
997 /*
998 * The number of dirty pages determines if a zone is marked
999 * reclaim_congested which affects wait_iff_congested. kswapd
1000 * will stall and start writing pages if the tail of the LRU
1001 * is all dirty unqueued pages.
1002 */
1003 page_check_dirty_writeback(page, &dirty, &writeback);
1004 if (dirty || writeback)
1005 nr_dirty++;
1006
1007 if (dirty && !writeback)
1008 nr_unqueued_dirty++;
1009
1010 /*
1011 * Treat this page as congested if the underlying BDI is or if
1012 * pages are cycling through the LRU so quickly that the
1013 * pages marked for immediate reclaim are making it to the
1014 * end of the LRU a second time.
1015 */
1016 mapping = page_mapping(page);
1017 if (((dirty || writeback) && mapping &&
1018 inode_write_congested(mapping->host)) ||
1019 (writeback && PageReclaim(page)))
1020 nr_congested++;
1021
1022 /*
1023 * If a page at the tail of the LRU is under writeback, there
1024 * are three cases to consider.
1025 *
1026 * 1) If reclaim is encountering an excessive number of pages
1027 * under writeback and this page is both under writeback and
1028 * PageReclaim then it indicates that pages are being queued
1029 * for IO but are being recycled through the LRU before the
1030 * IO can complete. Waiting on the page itself risks an
1031 * indefinite stall if it is impossible to writeback the
1032 * page due to IO error or disconnected storage so instead
1033 * note that the LRU is being scanned too quickly and the
1034 * caller can stall after page list has been processed.
1035 *
1036 * 2) Global or new memcg reclaim encounters a page that is
1037 * not marked for immediate reclaim, or the caller does not
1038 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1039 * not to fs). In this case mark the page for immediate
1040 * reclaim and continue scanning.
1041 *
1042 * Require may_enter_fs because we would wait on fs, which
1043 * may not have submitted IO yet. And the loop driver might
1044 * enter reclaim, and deadlock if it waits on a page for
1045 * which it is needed to do the write (loop masks off
1046 * __GFP_IO|__GFP_FS for this reason); but more thought
1047 * would probably show more reasons.
1048 *
1049 * 3) Legacy memcg encounters a page that is already marked
1050 * PageReclaim. memcg does not have any dirty pages
1051 * throttling so we could easily OOM just because too many
1052 * pages are in writeback and there is nothing else to
1053 * reclaim. Wait for the writeback to complete.
1054 *
1055 * In cases 1) and 2) we activate the pages to get them out of
1056 * the way while we continue scanning for clean pages on the
1057 * inactive list and refilling from the active list. The
1058 * observation here is that waiting for disk writes is more
1059 * expensive than potentially causing reloads down the line.
1060 * Since they're marked for immediate reclaim, they won't put
1061 * memory pressure on the cache working set any longer than it
1062 * takes to write them to disk.
1063 */
1064 if (PageWriteback(page)) {
1065 /* Case 1 above */
1066 if (current_is_kswapd() &&
1067 PageReclaim(page) &&
1068 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1069 nr_immediate++;
1070 goto activate_locked;
1071
1072 /* Case 2 above */
1073 } else if (sane_reclaim(sc) ||
1074 !PageReclaim(page) || !may_enter_fs) {
1075 /*
1076 * This is slightly racy - end_page_writeback()
1077 * might have just cleared PageReclaim, then
1078 * setting PageReclaim here end up interpreted
1079 * as PageReadahead - but that does not matter
1080 * enough to care. What we do want is for this
1081 * page to have PageReclaim set next time memcg
1082 * reclaim reaches the tests above, so it will
1083 * then wait_on_page_writeback() to avoid OOM;
1084 * and it's also appropriate in global reclaim.
1085 */
1086 SetPageReclaim(page);
1087 nr_writeback++;
1088 goto activate_locked;
1089
1090 /* Case 3 above */
1091 } else {
1092 unlock_page(page);
1093 wait_on_page_writeback(page);
1094 /* then go back and try same page again */
1095 list_add_tail(&page->lru, page_list);
1096 continue;
1097 }
1098 }
1099
1100 if (!force_reclaim)
1101 references = page_check_references(page, sc);
1102
1103 switch (references) {
1104 case PAGEREF_ACTIVATE:
1105 goto activate_locked;
1106 case PAGEREF_KEEP:
1107 nr_ref_keep++;
1108 goto keep_locked;
1109 case PAGEREF_RECLAIM:
1110 case PAGEREF_RECLAIM_CLEAN:
1111 ; /* try to reclaim the page below */
1112 }
1113
1114 /*
1115 * Anonymous process memory has backing store?
1116 * Try to allocate it some swap space here.
1117 */
1118 if (PageAnon(page) && !PageSwapCache(page)) {
1119 if (!(sc->gfp_mask & __GFP_IO))
1120 goto keep_locked;
1121 if (!add_to_swap(page, page_list))
1122 goto activate_locked;
1123 lazyfree = true;
1124 may_enter_fs = 1;
1125
1126 /* Adding to swap updated mapping */
1127 mapping = page_mapping(page);
1128 } else if (unlikely(PageTransHuge(page))) {
1129 /* Split file THP */
1130 if (split_huge_page_to_list(page, page_list))
1131 goto keep_locked;
1132 }
1133
1134 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1135
1136 /*
1137 * The page is mapped into the page tables of one or more
1138 * processes. Try to unmap it here.
1139 */
1140 if (page_mapped(page) && mapping) {
1141 switch (ret = try_to_unmap(page, lazyfree ?
1142 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1143 (ttu_flags | TTU_BATCH_FLUSH))) {
1144 case SWAP_FAIL:
1145 nr_unmap_fail++;
1146 goto activate_locked;
1147 case SWAP_AGAIN:
1148 goto keep_locked;
1149 case SWAP_MLOCK:
1150 goto cull_mlocked;
1151 case SWAP_LZFREE:
1152 goto lazyfree;
1153 case SWAP_SUCCESS:
1154 ; /* try to free the page below */
1155 }
1156 }
1157
1158 if (PageDirty(page)) {
1159 /*
1160 * Only kswapd can writeback filesystem pages
1161 * to avoid risk of stack overflow. But avoid
1162 * injecting inefficient single-page IO into
1163 * flusher writeback as much as possible: only
1164 * write pages when we've encountered many
1165 * dirty pages, and when we've already scanned
1166 * the rest of the LRU for clean pages and see
1167 * the same dirty pages again (PageReclaim).
1168 */
1169 if (page_is_file_cache(page) &&
1170 (!current_is_kswapd() || !PageReclaim(page) ||
1171 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1172 /*
1173 * Immediately reclaim when written back.
1174 * Similar in principal to deactivate_page()
1175 * except we already have the page isolated
1176 * and know it's dirty
1177 */
1178 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1179 SetPageReclaim(page);
1180
1181 goto activate_locked;
1182 }
1183
1184 if (references == PAGEREF_RECLAIM_CLEAN)
1185 goto keep_locked;
1186 if (!may_enter_fs)
1187 goto keep_locked;
1188 if (!sc->may_writepage)
1189 goto keep_locked;
1190
1191 /*
1192 * Page is dirty. Flush the TLB if a writable entry
1193 * potentially exists to avoid CPU writes after IO
1194 * starts and then write it out here.
1195 */
1196 try_to_unmap_flush_dirty();
1197 switch (pageout(page, mapping, sc)) {
1198 case PAGE_KEEP:
1199 goto keep_locked;
1200 case PAGE_ACTIVATE:
1201 goto activate_locked;
1202 case PAGE_SUCCESS:
1203 if (PageWriteback(page))
1204 goto keep;
1205 if (PageDirty(page))
1206 goto keep;
1207
1208 /*
1209 * A synchronous write - probably a ramdisk. Go
1210 * ahead and try to reclaim the page.
1211 */
1212 if (!trylock_page(page))
1213 goto keep;
1214 if (PageDirty(page) || PageWriteback(page))
1215 goto keep_locked;
1216 mapping = page_mapping(page);
1217 case PAGE_CLEAN:
1218 ; /* try to free the page below */
1219 }
1220 }
1221
1222 /*
1223 * If the page has buffers, try to free the buffer mappings
1224 * associated with this page. If we succeed we try to free
1225 * the page as well.
1226 *
1227 * We do this even if the page is PageDirty().
1228 * try_to_release_page() does not perform I/O, but it is
1229 * possible for a page to have PageDirty set, but it is actually
1230 * clean (all its buffers are clean). This happens if the
1231 * buffers were written out directly, with submit_bh(). ext3
1232 * will do this, as well as the blockdev mapping.
1233 * try_to_release_page() will discover that cleanness and will
1234 * drop the buffers and mark the page clean - it can be freed.
1235 *
1236 * Rarely, pages can have buffers and no ->mapping. These are
1237 * the pages which were not successfully invalidated in
1238 * truncate_complete_page(). We try to drop those buffers here
1239 * and if that worked, and the page is no longer mapped into
1240 * process address space (page_count == 1) it can be freed.
1241 * Otherwise, leave the page on the LRU so it is swappable.
1242 */
1243 if (page_has_private(page)) {
1244 if (!try_to_release_page(page, sc->gfp_mask))
1245 goto activate_locked;
1246 if (!mapping && page_count(page) == 1) {
1247 unlock_page(page);
1248 if (put_page_testzero(page))
1249 goto free_it;
1250 else {
1251 /*
1252 * rare race with speculative reference.
1253 * the speculative reference will free
1254 * this page shortly, so we may
1255 * increment nr_reclaimed here (and
1256 * leave it off the LRU).
1257 */
1258 nr_reclaimed++;
1259 continue;
1260 }
1261 }
1262 }
1263
1264lazyfree:
1265 if (!mapping || !__remove_mapping(mapping, page, true))
1266 goto keep_locked;
1267
1268 /*
1269 * At this point, we have no other references and there is
1270 * no way to pick any more up (removed from LRU, removed
1271 * from pagecache). Can use non-atomic bitops now (and
1272 * we obviously don't have to worry about waking up a process
1273 * waiting on the page lock, because there are no references.
1274 */
1275 __ClearPageLocked(page);
1276free_it:
1277 if (ret == SWAP_LZFREE)
1278 count_vm_event(PGLAZYFREED);
1279
1280 nr_reclaimed++;
1281
1282 /*
1283 * Is there need to periodically free_page_list? It would
1284 * appear not as the counts should be low
1285 */
1286 list_add(&page->lru, &free_pages);
1287 continue;
1288
1289cull_mlocked:
1290 if (PageSwapCache(page))
1291 try_to_free_swap(page);
1292 unlock_page(page);
1293 list_add(&page->lru, &ret_pages);
1294 continue;
1295
1296activate_locked:
1297 /* Not a candidate for swapping, so reclaim swap space. */
1298 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1299 try_to_free_swap(page);
1300 VM_BUG_ON_PAGE(PageActive(page), page);
1301 SetPageActive(page);
1302 pgactivate++;
1303keep_locked:
1304 unlock_page(page);
1305keep:
1306 list_add(&page->lru, &ret_pages);
1307 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1308 }
1309
1310 mem_cgroup_uncharge_list(&free_pages);
1311 try_to_unmap_flush();
1312 free_hot_cold_page_list(&free_pages, true);
1313
1314 list_splice(&ret_pages, page_list);
1315 count_vm_events(PGACTIVATE, pgactivate);
1316
1317 if (stat) {
1318 stat->nr_dirty = nr_dirty;
1319 stat->nr_congested = nr_congested;
1320 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1321 stat->nr_writeback = nr_writeback;
1322 stat->nr_immediate = nr_immediate;
1323 stat->nr_activate = pgactivate;
1324 stat->nr_ref_keep = nr_ref_keep;
1325 stat->nr_unmap_fail = nr_unmap_fail;
1326 }
1327 return nr_reclaimed;
1328}
1329
1330unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1331 struct list_head *page_list)
1332{
1333 struct scan_control sc = {
1334 .gfp_mask = GFP_KERNEL,
1335 .priority = DEF_PRIORITY,
1336 .may_unmap = 1,
1337 };
1338 unsigned long ret;
1339 struct page *page, *next;
1340 LIST_HEAD(clean_pages);
1341
1342 list_for_each_entry_safe(page, next, page_list, lru) {
1343 if (page_is_file_cache(page) && !PageDirty(page) &&
1344 !__PageMovable(page)) {
1345 ClearPageActive(page);
1346 list_move(&page->lru, &clean_pages);
1347 }
1348 }
1349
1350 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1351 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1352 list_splice(&clean_pages, page_list);
1353 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1354 return ret;
1355}
1356
1357/*
1358 * Attempt to remove the specified page from its LRU. Only take this page
1359 * if it is of the appropriate PageActive status. Pages which are being
1360 * freed elsewhere are also ignored.
1361 *
1362 * page: page to consider
1363 * mode: one of the LRU isolation modes defined above
1364 *
1365 * returns 0 on success, -ve errno on failure.
1366 */
1367int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1368{
1369 int ret = -EINVAL;
1370
1371 /* Only take pages on the LRU. */
1372 if (!PageLRU(page))
1373 return ret;
1374
1375 /* Compaction should not handle unevictable pages but CMA can do so */
1376 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1377 return ret;
1378
1379 ret = -EBUSY;
1380
1381 /*
1382 * To minimise LRU disruption, the caller can indicate that it only
1383 * wants to isolate pages it will be able to operate on without
1384 * blocking - clean pages for the most part.
1385 *
1386 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1387 * that it is possible to migrate without blocking
1388 */
1389 if (mode & ISOLATE_ASYNC_MIGRATE) {
1390 /* All the caller can do on PageWriteback is block */
1391 if (PageWriteback(page))
1392 return ret;
1393
1394 if (PageDirty(page)) {
1395 struct address_space *mapping;
1396
1397 /*
1398 * Only pages without mappings or that have a
1399 * ->migratepage callback are possible to migrate
1400 * without blocking
1401 */
1402 mapping = page_mapping(page);
1403 if (mapping && !mapping->a_ops->migratepage)
1404 return ret;
1405 }
1406 }
1407
1408 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1409 return ret;
1410
1411 if (likely(get_page_unless_zero(page))) {
1412 /*
1413 * Be careful not to clear PageLRU until after we're
1414 * sure the page is not being freed elsewhere -- the
1415 * page release code relies on it.
1416 */
1417 ClearPageLRU(page);
1418 ret = 0;
1419 }
1420
1421 return ret;
1422}
1423
1424
1425/*
1426 * Update LRU sizes after isolating pages. The LRU size updates must
1427 * be complete before mem_cgroup_update_lru_size due to a santity check.
1428 */
1429static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1430 enum lru_list lru, unsigned long *nr_zone_taken)
1431{
1432 int zid;
1433
1434 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1435 if (!nr_zone_taken[zid])
1436 continue;
1437
1438 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1439#ifdef CONFIG_MEMCG
1440 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1441#endif
1442 }
1443
1444}
1445
1446/*
1447 * zone_lru_lock is heavily contended. Some of the functions that
1448 * shrink the lists perform better by taking out a batch of pages
1449 * and working on them outside the LRU lock.
1450 *
1451 * For pagecache intensive workloads, this function is the hottest
1452 * spot in the kernel (apart from copy_*_user functions).
1453 *
1454 * Appropriate locks must be held before calling this function.
1455 *
1456 * @nr_to_scan: The number of pages to look through on the list.
1457 * @lruvec: The LRU vector to pull pages from.
1458 * @dst: The temp list to put pages on to.
1459 * @nr_scanned: The number of pages that were scanned.
1460 * @sc: The scan_control struct for this reclaim session
1461 * @mode: One of the LRU isolation modes
1462 * @lru: LRU list id for isolating
1463 *
1464 * returns how many pages were moved onto *@dst.
1465 */
1466static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1467 struct lruvec *lruvec, struct list_head *dst,
1468 unsigned long *nr_scanned, struct scan_control *sc,
1469 isolate_mode_t mode, enum lru_list lru)
1470{
1471 struct list_head *src = &lruvec->lists[lru];
1472 unsigned long nr_taken = 0;
1473 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1474 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1475 unsigned long skipped = 0;
1476 unsigned long scan, nr_pages;
1477 LIST_HEAD(pages_skipped);
1478
1479 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1480 !list_empty(src); scan++) {
1481 struct page *page;
1482
1483 page = lru_to_page(src);
1484 prefetchw_prev_lru_page(page, src, flags);
1485
1486 VM_BUG_ON_PAGE(!PageLRU(page), page);
1487
1488 if (page_zonenum(page) > sc->reclaim_idx) {
1489 list_move(&page->lru, &pages_skipped);
1490 nr_skipped[page_zonenum(page)]++;
1491 continue;
1492 }
1493
1494 switch (__isolate_lru_page(page, mode)) {
1495 case 0:
1496 nr_pages = hpage_nr_pages(page);
1497 nr_taken += nr_pages;
1498 nr_zone_taken[page_zonenum(page)] += nr_pages;
1499 list_move(&page->lru, dst);
1500 break;
1501
1502 case -EBUSY:
1503 /* else it is being freed elsewhere */
1504 list_move(&page->lru, src);
1505 continue;
1506
1507 default:
1508 BUG();
1509 }
1510 }
1511
1512 /*
1513 * Splice any skipped pages to the start of the LRU list. Note that
1514 * this disrupts the LRU order when reclaiming for lower zones but
1515 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1516 * scanning would soon rescan the same pages to skip and put the
1517 * system at risk of premature OOM.
1518 */
1519 if (!list_empty(&pages_skipped)) {
1520 int zid;
1521
1522 list_splice(&pages_skipped, src);
1523 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1524 if (!nr_skipped[zid])
1525 continue;
1526
1527 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1528 skipped += nr_skipped[zid];
1529 }
1530 }
1531 *nr_scanned = scan;
1532 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1533 scan, skipped, nr_taken, mode, lru);
1534 update_lru_sizes(lruvec, lru, nr_zone_taken);
1535 return nr_taken;
1536}
1537
1538/**
1539 * isolate_lru_page - tries to isolate a page from its LRU list
1540 * @page: page to isolate from its LRU list
1541 *
1542 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1543 * vmstat statistic corresponding to whatever LRU list the page was on.
1544 *
1545 * Returns 0 if the page was removed from an LRU list.
1546 * Returns -EBUSY if the page was not on an LRU list.
1547 *
1548 * The returned page will have PageLRU() cleared. If it was found on
1549 * the active list, it will have PageActive set. If it was found on
1550 * the unevictable list, it will have the PageUnevictable bit set. That flag
1551 * may need to be cleared by the caller before letting the page go.
1552 *
1553 * The vmstat statistic corresponding to the list on which the page was
1554 * found will be decremented.
1555 *
1556 * Restrictions:
1557 * (1) Must be called with an elevated refcount on the page. This is a
1558 * fundamentnal difference from isolate_lru_pages (which is called
1559 * without a stable reference).
1560 * (2) the lru_lock must not be held.
1561 * (3) interrupts must be enabled.
1562 */
1563int isolate_lru_page(struct page *page)
1564{
1565 int ret = -EBUSY;
1566
1567 VM_BUG_ON_PAGE(!page_count(page), page);
1568 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1569
1570 if (PageLRU(page)) {
1571 struct zone *zone = page_zone(page);
1572 struct lruvec *lruvec;
1573
1574 spin_lock_irq(zone_lru_lock(zone));
1575 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1576 if (PageLRU(page)) {
1577 int lru = page_lru(page);
1578 get_page(page);
1579 ClearPageLRU(page);
1580 del_page_from_lru_list(page, lruvec, lru);
1581 ret = 0;
1582 }
1583 spin_unlock_irq(zone_lru_lock(zone));
1584 }
1585 return ret;
1586}
1587
1588/*
1589 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1590 * then get resheduled. When there are massive number of tasks doing page
1591 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1592 * the LRU list will go small and be scanned faster than necessary, leading to
1593 * unnecessary swapping, thrashing and OOM.
1594 */
1595static int too_many_isolated(struct pglist_data *pgdat, int file,
1596 struct scan_control *sc)
1597{
1598 unsigned long inactive, isolated;
1599
1600 if (current_is_kswapd())
1601 return 0;
1602
1603 if (!sane_reclaim(sc))
1604 return 0;
1605
1606 if (file) {
1607 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1608 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1609 } else {
1610 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1611 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1612 }
1613
1614 /*
1615 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1616 * won't get blocked by normal direct-reclaimers, forming a circular
1617 * deadlock.
1618 */
1619 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1620 inactive >>= 3;
1621
1622 return isolated > inactive;
1623}
1624
1625static noinline_for_stack void
1626putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1627{
1628 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1629 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1630 LIST_HEAD(pages_to_free);
1631
1632 /*
1633 * Put back any unfreeable pages.
1634 */
1635 while (!list_empty(page_list)) {
1636 struct page *page = lru_to_page(page_list);
1637 int lru;
1638
1639 VM_BUG_ON_PAGE(PageLRU(page), page);
1640 list_del(&page->lru);
1641 if (unlikely(!page_evictable(page))) {
1642 spin_unlock_irq(&pgdat->lru_lock);
1643 putback_lru_page(page);
1644 spin_lock_irq(&pgdat->lru_lock);
1645 continue;
1646 }
1647
1648 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1649
1650 SetPageLRU(page);
1651 lru = page_lru(page);
1652 add_page_to_lru_list(page, lruvec, lru);
1653
1654 if (is_active_lru(lru)) {
1655 int file = is_file_lru(lru);
1656 int numpages = hpage_nr_pages(page);
1657 reclaim_stat->recent_rotated[file] += numpages;
1658 }
1659 if (put_page_testzero(page)) {
1660 __ClearPageLRU(page);
1661 __ClearPageActive(page);
1662 del_page_from_lru_list(page, lruvec, lru);
1663
1664 if (unlikely(PageCompound(page))) {
1665 spin_unlock_irq(&pgdat->lru_lock);
1666 mem_cgroup_uncharge(page);
1667 (*get_compound_page_dtor(page))(page);
1668 spin_lock_irq(&pgdat->lru_lock);
1669 } else
1670 list_add(&page->lru, &pages_to_free);
1671 }
1672 }
1673
1674 /*
1675 * To save our caller's stack, now use input list for pages to free.
1676 */
1677 list_splice(&pages_to_free, page_list);
1678}
1679
1680/*
1681 * If a kernel thread (such as nfsd for loop-back mounts) services
1682 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1683 * In that case we should only throttle if the backing device it is
1684 * writing to is congested. In other cases it is safe to throttle.
1685 */
1686static int current_may_throttle(void)
1687{
1688 return !(current->flags & PF_LESS_THROTTLE) ||
1689 current->backing_dev_info == NULL ||
1690 bdi_write_congested(current->backing_dev_info);
1691}
1692
1693/*
1694 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1695 * of reclaimed pages
1696 */
1697static noinline_for_stack unsigned long
1698shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1699 struct scan_control *sc, enum lru_list lru)
1700{
1701 LIST_HEAD(page_list);
1702 unsigned long nr_scanned;
1703 unsigned long nr_reclaimed = 0;
1704 unsigned long nr_taken;
1705 struct reclaim_stat stat = {};
1706 isolate_mode_t isolate_mode = 0;
1707 int file = is_file_lru(lru);
1708 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1709 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1710
1711 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1712 congestion_wait(BLK_RW_ASYNC, HZ/10);
1713
1714 /* We are about to die and free our memory. Return now. */
1715 if (fatal_signal_pending(current))
1716 return SWAP_CLUSTER_MAX;
1717 }
1718
1719 lru_add_drain();
1720
1721 if (!sc->may_unmap)
1722 isolate_mode |= ISOLATE_UNMAPPED;
1723
1724 spin_lock_irq(&pgdat->lru_lock);
1725
1726 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1727 &nr_scanned, sc, isolate_mode, lru);
1728
1729 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1730 reclaim_stat->recent_scanned[file] += nr_taken;
1731
1732 if (global_reclaim(sc)) {
1733 if (current_is_kswapd())
1734 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1735 else
1736 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1737 }
1738 spin_unlock_irq(&pgdat->lru_lock);
1739
1740 if (nr_taken == 0)
1741 return 0;
1742
1743 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1744 &stat, false);
1745
1746 spin_lock_irq(&pgdat->lru_lock);
1747
1748 if (global_reclaim(sc)) {
1749 if (current_is_kswapd())
1750 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1751 else
1752 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1753 }
1754
1755 putback_inactive_pages(lruvec, &page_list);
1756
1757 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1758
1759 spin_unlock_irq(&pgdat->lru_lock);
1760
1761 mem_cgroup_uncharge_list(&page_list);
1762 free_hot_cold_page_list(&page_list, true);
1763
1764 /*
1765 * If reclaim is isolating dirty pages under writeback, it implies
1766 * that the long-lived page allocation rate is exceeding the page
1767 * laundering rate. Either the global limits are not being effective
1768 * at throttling processes due to the page distribution throughout
1769 * zones or there is heavy usage of a slow backing device. The
1770 * only option is to throttle from reclaim context which is not ideal
1771 * as there is no guarantee the dirtying process is throttled in the
1772 * same way balance_dirty_pages() manages.
1773 *
1774 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1775 * of pages under pages flagged for immediate reclaim and stall if any
1776 * are encountered in the nr_immediate check below.
1777 */
1778 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1779 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1780
1781 /*
1782 * Legacy memcg will stall in page writeback so avoid forcibly
1783 * stalling here.
1784 */
1785 if (sane_reclaim(sc)) {
1786 /*
1787 * Tag a zone as congested if all the dirty pages scanned were
1788 * backed by a congested BDI and wait_iff_congested will stall.
1789 */
1790 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1791 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1792
1793 /*
1794 * If dirty pages are scanned that are not queued for IO, it
1795 * implies that flushers are not doing their job. This can
1796 * happen when memory pressure pushes dirty pages to the end of
1797 * the LRU before the dirty limits are breached and the dirty
1798 * data has expired. It can also happen when the proportion of
1799 * dirty pages grows not through writes but through memory
1800 * pressure reclaiming all the clean cache. And in some cases,
1801 * the flushers simply cannot keep up with the allocation
1802 * rate. Nudge the flusher threads in case they are asleep, but
1803 * also allow kswapd to start writing pages during reclaim.
1804 */
1805 if (stat.nr_unqueued_dirty == nr_taken) {
1806 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1807 set_bit(PGDAT_DIRTY, &pgdat->flags);
1808 }
1809
1810 /*
1811 * If kswapd scans pages marked marked for immediate
1812 * reclaim and under writeback (nr_immediate), it implies
1813 * that pages are cycling through the LRU faster than
1814 * they are written so also forcibly stall.
1815 */
1816 if (stat.nr_immediate && current_may_throttle())
1817 congestion_wait(BLK_RW_ASYNC, HZ/10);
1818 }
1819
1820 /*
1821 * Stall direct reclaim for IO completions if underlying BDIs or zone
1822 * is congested. Allow kswapd to continue until it starts encountering
1823 * unqueued dirty pages or cycling through the LRU too quickly.
1824 */
1825 if (!sc->hibernation_mode && !current_is_kswapd() &&
1826 current_may_throttle())
1827 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1828
1829 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1830 nr_scanned, nr_reclaimed,
1831 stat.nr_dirty, stat.nr_writeback,
1832 stat.nr_congested, stat.nr_immediate,
1833 stat.nr_activate, stat.nr_ref_keep,
1834 stat.nr_unmap_fail,
1835 sc->priority, file);
1836 return nr_reclaimed;
1837}
1838
1839/*
1840 * This moves pages from the active list to the inactive list.
1841 *
1842 * We move them the other way if the page is referenced by one or more
1843 * processes, from rmap.
1844 *
1845 * If the pages are mostly unmapped, the processing is fast and it is
1846 * appropriate to hold zone_lru_lock across the whole operation. But if
1847 * the pages are mapped, the processing is slow (page_referenced()) so we
1848 * should drop zone_lru_lock around each page. It's impossible to balance
1849 * this, so instead we remove the pages from the LRU while processing them.
1850 * It is safe to rely on PG_active against the non-LRU pages in here because
1851 * nobody will play with that bit on a non-LRU page.
1852 *
1853 * The downside is that we have to touch page->_refcount against each page.
1854 * But we had to alter page->flags anyway.
1855 *
1856 * Returns the number of pages moved to the given lru.
1857 */
1858
1859static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1860 struct list_head *list,
1861 struct list_head *pages_to_free,
1862 enum lru_list lru)
1863{
1864 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1865 struct page *page;
1866 int nr_pages;
1867 int nr_moved = 0;
1868
1869 while (!list_empty(list)) {
1870 page = lru_to_page(list);
1871 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1872
1873 VM_BUG_ON_PAGE(PageLRU(page), page);
1874 SetPageLRU(page);
1875
1876 nr_pages = hpage_nr_pages(page);
1877 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1878 list_move(&page->lru, &lruvec->lists[lru]);
1879
1880 if (put_page_testzero(page)) {
1881 __ClearPageLRU(page);
1882 __ClearPageActive(page);
1883 del_page_from_lru_list(page, lruvec, lru);
1884
1885 if (unlikely(PageCompound(page))) {
1886 spin_unlock_irq(&pgdat->lru_lock);
1887 mem_cgroup_uncharge(page);
1888 (*get_compound_page_dtor(page))(page);
1889 spin_lock_irq(&pgdat->lru_lock);
1890 } else
1891 list_add(&page->lru, pages_to_free);
1892 } else {
1893 nr_moved += nr_pages;
1894 }
1895 }
1896
1897 if (!is_active_lru(lru))
1898 __count_vm_events(PGDEACTIVATE, nr_moved);
1899
1900 return nr_moved;
1901}
1902
1903static void shrink_active_list(unsigned long nr_to_scan,
1904 struct lruvec *lruvec,
1905 struct scan_control *sc,
1906 enum lru_list lru)
1907{
1908 unsigned long nr_taken;
1909 unsigned long nr_scanned;
1910 unsigned long vm_flags;
1911 LIST_HEAD(l_hold); /* The pages which were snipped off */
1912 LIST_HEAD(l_active);
1913 LIST_HEAD(l_inactive);
1914 struct page *page;
1915 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1916 unsigned nr_deactivate, nr_activate;
1917 unsigned nr_rotated = 0;
1918 isolate_mode_t isolate_mode = 0;
1919 int file = is_file_lru(lru);
1920 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1921
1922 lru_add_drain();
1923
1924 if (!sc->may_unmap)
1925 isolate_mode |= ISOLATE_UNMAPPED;
1926
1927 spin_lock_irq(&pgdat->lru_lock);
1928
1929 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1930 &nr_scanned, sc, isolate_mode, lru);
1931
1932 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1933 reclaim_stat->recent_scanned[file] += nr_taken;
1934
1935 __count_vm_events(PGREFILL, nr_scanned);
1936
1937 spin_unlock_irq(&pgdat->lru_lock);
1938
1939 while (!list_empty(&l_hold)) {
1940 cond_resched();
1941 page = lru_to_page(&l_hold);
1942 list_del(&page->lru);
1943
1944 if (unlikely(!page_evictable(page))) {
1945 putback_lru_page(page);
1946 continue;
1947 }
1948
1949 if (unlikely(buffer_heads_over_limit)) {
1950 if (page_has_private(page) && trylock_page(page)) {
1951 if (page_has_private(page))
1952 try_to_release_page(page, 0);
1953 unlock_page(page);
1954 }
1955 }
1956
1957 if (page_referenced(page, 0, sc->target_mem_cgroup,
1958 &vm_flags)) {
1959 nr_rotated += hpage_nr_pages(page);
1960 /*
1961 * Identify referenced, file-backed active pages and
1962 * give them one more trip around the active list. So
1963 * that executable code get better chances to stay in
1964 * memory under moderate memory pressure. Anon pages
1965 * are not likely to be evicted by use-once streaming
1966 * IO, plus JVM can create lots of anon VM_EXEC pages,
1967 * so we ignore them here.
1968 */
1969 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1970 list_add(&page->lru, &l_active);
1971 continue;
1972 }
1973 }
1974
1975 ClearPageActive(page); /* we are de-activating */
1976 list_add(&page->lru, &l_inactive);
1977 }
1978
1979 /*
1980 * Move pages back to the lru list.
1981 */
1982 spin_lock_irq(&pgdat->lru_lock);
1983 /*
1984 * Count referenced pages from currently used mappings as rotated,
1985 * even though only some of them are actually re-activated. This
1986 * helps balance scan pressure between file and anonymous pages in
1987 * get_scan_count.
1988 */
1989 reclaim_stat->recent_rotated[file] += nr_rotated;
1990
1991 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1992 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1993 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1994 spin_unlock_irq(&pgdat->lru_lock);
1995
1996 mem_cgroup_uncharge_list(&l_hold);
1997 free_hot_cold_page_list(&l_hold, true);
1998 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1999 nr_deactivate, nr_rotated, sc->priority, file);
2000}
2001
2002/*
2003 * The inactive anon list should be small enough that the VM never has
2004 * to do too much work.
2005 *
2006 * The inactive file list should be small enough to leave most memory
2007 * to the established workingset on the scan-resistant active list,
2008 * but large enough to avoid thrashing the aggregate readahead window.
2009 *
2010 * Both inactive lists should also be large enough that each inactive
2011 * page has a chance to be referenced again before it is reclaimed.
2012 *
2013 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2014 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2015 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2016 *
2017 * total target max
2018 * memory ratio inactive
2019 * -------------------------------------
2020 * 10MB 1 5MB
2021 * 100MB 1 50MB
2022 * 1GB 3 250MB
2023 * 10GB 10 0.9GB
2024 * 100GB 31 3GB
2025 * 1TB 101 10GB
2026 * 10TB 320 32GB
2027 */
2028static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2029 struct scan_control *sc, bool trace)
2030{
2031 unsigned long inactive_ratio;
2032 unsigned long inactive, active;
2033 enum lru_list inactive_lru = file * LRU_FILE;
2034 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2035 unsigned long gb;
2036
2037 /*
2038 * If we don't have swap space, anonymous page deactivation
2039 * is pointless.
2040 */
2041 if (!file && !total_swap_pages)
2042 return false;
2043
2044 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2045 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2046
2047 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2048 if (gb)
2049 inactive_ratio = int_sqrt(10 * gb);
2050 else
2051 inactive_ratio = 1;
2052
2053 if (trace)
2054 trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id,
2055 sc->reclaim_idx,
2056 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2057 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2058 inactive_ratio, file);
2059
2060 return inactive * inactive_ratio < active;
2061}
2062
2063static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2064 struct lruvec *lruvec, struct scan_control *sc)
2065{
2066 if (is_active_lru(lru)) {
2067 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2068 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2069 return 0;
2070 }
2071
2072 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2073}
2074
2075enum scan_balance {
2076 SCAN_EQUAL,
2077 SCAN_FRACT,
2078 SCAN_ANON,
2079 SCAN_FILE,
2080};
2081
2082/*
2083 * Determine how aggressively the anon and file LRU lists should be
2084 * scanned. The relative value of each set of LRU lists is determined
2085 * by looking at the fraction of the pages scanned we did rotate back
2086 * onto the active list instead of evict.
2087 *
2088 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2089 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2090 */
2091static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2092 struct scan_control *sc, unsigned long *nr,
2093 unsigned long *lru_pages)
2094{
2095 int swappiness = mem_cgroup_swappiness(memcg);
2096 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2097 u64 fraction[2];
2098 u64 denominator = 0; /* gcc */
2099 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2100 unsigned long anon_prio, file_prio;
2101 enum scan_balance scan_balance;
2102 unsigned long anon, file;
2103 unsigned long ap, fp;
2104 enum lru_list lru;
2105
2106 /* If we have no swap space, do not bother scanning anon pages. */
2107 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2108 scan_balance = SCAN_FILE;
2109 goto out;
2110 }
2111
2112 /*
2113 * Global reclaim will swap to prevent OOM even with no
2114 * swappiness, but memcg users want to use this knob to
2115 * disable swapping for individual groups completely when
2116 * using the memory controller's swap limit feature would be
2117 * too expensive.
2118 */
2119 if (!global_reclaim(sc) && !swappiness) {
2120 scan_balance = SCAN_FILE;
2121 goto out;
2122 }
2123
2124 /*
2125 * Do not apply any pressure balancing cleverness when the
2126 * system is close to OOM, scan both anon and file equally
2127 * (unless the swappiness setting disagrees with swapping).
2128 */
2129 if (!sc->priority && swappiness) {
2130 scan_balance = SCAN_EQUAL;
2131 goto out;
2132 }
2133
2134 /*
2135 * Prevent the reclaimer from falling into the cache trap: as
2136 * cache pages start out inactive, every cache fault will tip
2137 * the scan balance towards the file LRU. And as the file LRU
2138 * shrinks, so does the window for rotation from references.
2139 * This means we have a runaway feedback loop where a tiny
2140 * thrashing file LRU becomes infinitely more attractive than
2141 * anon pages. Try to detect this based on file LRU size.
2142 */
2143 if (global_reclaim(sc)) {
2144 unsigned long pgdatfile;
2145 unsigned long pgdatfree;
2146 int z;
2147 unsigned long total_high_wmark = 0;
2148
2149 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2150 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2151 node_page_state(pgdat, NR_INACTIVE_FILE);
2152
2153 for (z = 0; z < MAX_NR_ZONES; z++) {
2154 struct zone *zone = &pgdat->node_zones[z];
2155 if (!managed_zone(zone))
2156 continue;
2157
2158 total_high_wmark += high_wmark_pages(zone);
2159 }
2160
2161 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2162 scan_balance = SCAN_ANON;
2163 goto out;
2164 }
2165 }
2166
2167 /*
2168 * If there is enough inactive page cache, i.e. if the size of the
2169 * inactive list is greater than that of the active list *and* the
2170 * inactive list actually has some pages to scan on this priority, we
2171 * do not reclaim anything from the anonymous working set right now.
2172 * Without the second condition we could end up never scanning an
2173 * lruvec even if it has plenty of old anonymous pages unless the
2174 * system is under heavy pressure.
2175 */
2176 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2177 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2178 scan_balance = SCAN_FILE;
2179 goto out;
2180 }
2181
2182 scan_balance = SCAN_FRACT;
2183
2184 /*
2185 * With swappiness at 100, anonymous and file have the same priority.
2186 * This scanning priority is essentially the inverse of IO cost.
2187 */
2188 anon_prio = swappiness;
2189 file_prio = 200 - anon_prio;
2190
2191 /*
2192 * OK, so we have swap space and a fair amount of page cache
2193 * pages. We use the recently rotated / recently scanned
2194 * ratios to determine how valuable each cache is.
2195 *
2196 * Because workloads change over time (and to avoid overflow)
2197 * we keep these statistics as a floating average, which ends
2198 * up weighing recent references more than old ones.
2199 *
2200 * anon in [0], file in [1]
2201 */
2202
2203 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2204 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2205 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2206 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2207
2208 spin_lock_irq(&pgdat->lru_lock);
2209 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2210 reclaim_stat->recent_scanned[0] /= 2;
2211 reclaim_stat->recent_rotated[0] /= 2;
2212 }
2213
2214 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2215 reclaim_stat->recent_scanned[1] /= 2;
2216 reclaim_stat->recent_rotated[1] /= 2;
2217 }
2218
2219 /*
2220 * The amount of pressure on anon vs file pages is inversely
2221 * proportional to the fraction of recently scanned pages on
2222 * each list that were recently referenced and in active use.
2223 */
2224 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2225 ap /= reclaim_stat->recent_rotated[0] + 1;
2226
2227 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2228 fp /= reclaim_stat->recent_rotated[1] + 1;
2229 spin_unlock_irq(&pgdat->lru_lock);
2230
2231 fraction[0] = ap;
2232 fraction[1] = fp;
2233 denominator = ap + fp + 1;
2234out:
2235 *lru_pages = 0;
2236 for_each_evictable_lru(lru) {
2237 int file = is_file_lru(lru);
2238 unsigned long size;
2239 unsigned long scan;
2240
2241 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2242 scan = size >> sc->priority;
2243 /*
2244 * If the cgroup's already been deleted, make sure to
2245 * scrape out the remaining cache.
2246 */
2247 if (!scan && !mem_cgroup_online(memcg))
2248 scan = min(size, SWAP_CLUSTER_MAX);
2249
2250 switch (scan_balance) {
2251 case SCAN_EQUAL:
2252 /* Scan lists relative to size */
2253 break;
2254 case SCAN_FRACT:
2255 /*
2256 * Scan types proportional to swappiness and
2257 * their relative recent reclaim efficiency.
2258 */
2259 scan = div64_u64(scan * fraction[file],
2260 denominator);
2261 break;
2262 case SCAN_FILE:
2263 case SCAN_ANON:
2264 /* Scan one type exclusively */
2265 if ((scan_balance == SCAN_FILE) != file) {
2266 size = 0;
2267 scan = 0;
2268 }
2269 break;
2270 default:
2271 /* Look ma, no brain */
2272 BUG();
2273 }
2274
2275 *lru_pages += size;
2276 nr[lru] = scan;
2277 }
2278}
2279
2280/*
2281 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2282 */
2283static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2284 struct scan_control *sc, unsigned long *lru_pages)
2285{
2286 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2287 unsigned long nr[NR_LRU_LISTS];
2288 unsigned long targets[NR_LRU_LISTS];
2289 unsigned long nr_to_scan;
2290 enum lru_list lru;
2291 unsigned long nr_reclaimed = 0;
2292 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2293 struct blk_plug plug;
2294 bool scan_adjusted;
2295
2296 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2297
2298 /* Record the original scan target for proportional adjustments later */
2299 memcpy(targets, nr, sizeof(nr));
2300
2301 /*
2302 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2303 * event that can occur when there is little memory pressure e.g.
2304 * multiple streaming readers/writers. Hence, we do not abort scanning
2305 * when the requested number of pages are reclaimed when scanning at
2306 * DEF_PRIORITY on the assumption that the fact we are direct
2307 * reclaiming implies that kswapd is not keeping up and it is best to
2308 * do a batch of work at once. For memcg reclaim one check is made to
2309 * abort proportional reclaim if either the file or anon lru has already
2310 * dropped to zero at the first pass.
2311 */
2312 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2313 sc->priority == DEF_PRIORITY);
2314
2315 blk_start_plug(&plug);
2316 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2317 nr[LRU_INACTIVE_FILE]) {
2318 unsigned long nr_anon, nr_file, percentage;
2319 unsigned long nr_scanned;
2320
2321 for_each_evictable_lru(lru) {
2322 if (nr[lru]) {
2323 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2324 nr[lru] -= nr_to_scan;
2325
2326 nr_reclaimed += shrink_list(lru, nr_to_scan,
2327 lruvec, sc);
2328 }
2329 }
2330
2331 cond_resched();
2332
2333 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2334 continue;
2335
2336 /*
2337 * For kswapd and memcg, reclaim at least the number of pages
2338 * requested. Ensure that the anon and file LRUs are scanned
2339 * proportionally what was requested by get_scan_count(). We
2340 * stop reclaiming one LRU and reduce the amount scanning
2341 * proportional to the original scan target.
2342 */
2343 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2344 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2345
2346 /*
2347 * It's just vindictive to attack the larger once the smaller
2348 * has gone to zero. And given the way we stop scanning the
2349 * smaller below, this makes sure that we only make one nudge
2350 * towards proportionality once we've got nr_to_reclaim.
2351 */
2352 if (!nr_file || !nr_anon)
2353 break;
2354
2355 if (nr_file > nr_anon) {
2356 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2357 targets[LRU_ACTIVE_ANON] + 1;
2358 lru = LRU_BASE;
2359 percentage = nr_anon * 100 / scan_target;
2360 } else {
2361 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2362 targets[LRU_ACTIVE_FILE] + 1;
2363 lru = LRU_FILE;
2364 percentage = nr_file * 100 / scan_target;
2365 }
2366
2367 /* Stop scanning the smaller of the LRU */
2368 nr[lru] = 0;
2369 nr[lru + LRU_ACTIVE] = 0;
2370
2371 /*
2372 * Recalculate the other LRU scan count based on its original
2373 * scan target and the percentage scanning already complete
2374 */
2375 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2376 nr_scanned = targets[lru] - nr[lru];
2377 nr[lru] = targets[lru] * (100 - percentage) / 100;
2378 nr[lru] -= min(nr[lru], nr_scanned);
2379
2380 lru += LRU_ACTIVE;
2381 nr_scanned = targets[lru] - nr[lru];
2382 nr[lru] = targets[lru] * (100 - percentage) / 100;
2383 nr[lru] -= min(nr[lru], nr_scanned);
2384
2385 scan_adjusted = true;
2386 }
2387 blk_finish_plug(&plug);
2388 sc->nr_reclaimed += nr_reclaimed;
2389
2390 /*
2391 * Even if we did not try to evict anon pages at all, we want to
2392 * rebalance the anon lru active/inactive ratio.
2393 */
2394 if (inactive_list_is_low(lruvec, false, sc, true))
2395 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2396 sc, LRU_ACTIVE_ANON);
2397}
2398
2399/* Use reclaim/compaction for costly allocs or under memory pressure */
2400static bool in_reclaim_compaction(struct scan_control *sc)
2401{
2402 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2403 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2404 sc->priority < DEF_PRIORITY - 2))
2405 return true;
2406
2407 return false;
2408}
2409
2410/*
2411 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2412 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2413 * true if more pages should be reclaimed such that when the page allocator
2414 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2415 * It will give up earlier than that if there is difficulty reclaiming pages.
2416 */
2417static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2418 unsigned long nr_reclaimed,
2419 unsigned long nr_scanned,
2420 struct scan_control *sc)
2421{
2422 unsigned long pages_for_compaction;
2423 unsigned long inactive_lru_pages;
2424 int z;
2425
2426 /* If not in reclaim/compaction mode, stop */
2427 if (!in_reclaim_compaction(sc))
2428 return false;
2429
2430 /* Consider stopping depending on scan and reclaim activity */
2431 if (sc->gfp_mask & __GFP_REPEAT) {
2432 /*
2433 * For __GFP_REPEAT allocations, stop reclaiming if the
2434 * full LRU list has been scanned and we are still failing
2435 * to reclaim pages. This full LRU scan is potentially
2436 * expensive but a __GFP_REPEAT caller really wants to succeed
2437 */
2438 if (!nr_reclaimed && !nr_scanned)
2439 return false;
2440 } else {
2441 /*
2442 * For non-__GFP_REPEAT allocations which can presumably
2443 * fail without consequence, stop if we failed to reclaim
2444 * any pages from the last SWAP_CLUSTER_MAX number of
2445 * pages that were scanned. This will return to the
2446 * caller faster at the risk reclaim/compaction and
2447 * the resulting allocation attempt fails
2448 */
2449 if (!nr_reclaimed)
2450 return false;
2451 }
2452
2453 /*
2454 * If we have not reclaimed enough pages for compaction and the
2455 * inactive lists are large enough, continue reclaiming
2456 */
2457 pages_for_compaction = compact_gap(sc->order);
2458 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2459 if (get_nr_swap_pages() > 0)
2460 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2461 if (sc->nr_reclaimed < pages_for_compaction &&
2462 inactive_lru_pages > pages_for_compaction)
2463 return true;
2464
2465 /* If compaction would go ahead or the allocation would succeed, stop */
2466 for (z = 0; z <= sc->reclaim_idx; z++) {
2467 struct zone *zone = &pgdat->node_zones[z];
2468 if (!managed_zone(zone))
2469 continue;
2470
2471 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2472 case COMPACT_SUCCESS:
2473 case COMPACT_CONTINUE:
2474 return false;
2475 default:
2476 /* check next zone */
2477 ;
2478 }
2479 }
2480 return true;
2481}
2482
2483static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2484{
2485 struct reclaim_state *reclaim_state = current->reclaim_state;
2486 unsigned long nr_reclaimed, nr_scanned;
2487 bool reclaimable = false;
2488
2489 do {
2490 struct mem_cgroup *root = sc->target_mem_cgroup;
2491 struct mem_cgroup_reclaim_cookie reclaim = {
2492 .pgdat = pgdat,
2493 .priority = sc->priority,
2494 };
2495 unsigned long node_lru_pages = 0;
2496 struct mem_cgroup *memcg;
2497
2498 nr_reclaimed = sc->nr_reclaimed;
2499 nr_scanned = sc->nr_scanned;
2500
2501 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2502 do {
2503 unsigned long lru_pages;
2504 unsigned long reclaimed;
2505 unsigned long scanned;
2506
2507 if (mem_cgroup_low(root, memcg)) {
2508 if (!sc->may_thrash)
2509 continue;
2510 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2511 }
2512
2513 reclaimed = sc->nr_reclaimed;
2514 scanned = sc->nr_scanned;
2515
2516 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2517 node_lru_pages += lru_pages;
2518
2519 if (memcg)
2520 shrink_slab(sc->gfp_mask, pgdat->node_id,
2521 memcg, sc->nr_scanned - scanned,
2522 lru_pages);
2523
2524 /* Record the group's reclaim efficiency */
2525 vmpressure(sc->gfp_mask, memcg, false,
2526 sc->nr_scanned - scanned,
2527 sc->nr_reclaimed - reclaimed);
2528
2529 /*
2530 * Direct reclaim and kswapd have to scan all memory
2531 * cgroups to fulfill the overall scan target for the
2532 * node.
2533 *
2534 * Limit reclaim, on the other hand, only cares about
2535 * nr_to_reclaim pages to be reclaimed and it will
2536 * retry with decreasing priority if one round over the
2537 * whole hierarchy is not sufficient.
2538 */
2539 if (!global_reclaim(sc) &&
2540 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2541 mem_cgroup_iter_break(root, memcg);
2542 break;
2543 }
2544 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2545
2546 /*
2547 * Shrink the slab caches in the same proportion that
2548 * the eligible LRU pages were scanned.
2549 */
2550 if (global_reclaim(sc))
2551 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2552 sc->nr_scanned - nr_scanned,
2553 node_lru_pages);
2554
2555 if (reclaim_state) {
2556 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2557 reclaim_state->reclaimed_slab = 0;
2558 }
2559
2560 /* Record the subtree's reclaim efficiency */
2561 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2562 sc->nr_scanned - nr_scanned,
2563 sc->nr_reclaimed - nr_reclaimed);
2564
2565 if (sc->nr_reclaimed - nr_reclaimed)
2566 reclaimable = true;
2567
2568 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2569 sc->nr_scanned - nr_scanned, sc));
2570
2571 /*
2572 * Kswapd gives up on balancing particular nodes after too
2573 * many failures to reclaim anything from them and goes to
2574 * sleep. On reclaim progress, reset the failure counter. A
2575 * successful direct reclaim run will revive a dormant kswapd.
2576 */
2577 if (reclaimable)
2578 pgdat->kswapd_failures = 0;
2579
2580 return reclaimable;
2581}
2582
2583/*
2584 * Returns true if compaction should go ahead for a costly-order request, or
2585 * the allocation would already succeed without compaction. Return false if we
2586 * should reclaim first.
2587 */
2588static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2589{
2590 unsigned long watermark;
2591 enum compact_result suitable;
2592
2593 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2594 if (suitable == COMPACT_SUCCESS)
2595 /* Allocation should succeed already. Don't reclaim. */
2596 return true;
2597 if (suitable == COMPACT_SKIPPED)
2598 /* Compaction cannot yet proceed. Do reclaim. */
2599 return false;
2600
2601 /*
2602 * Compaction is already possible, but it takes time to run and there
2603 * are potentially other callers using the pages just freed. So proceed
2604 * with reclaim to make a buffer of free pages available to give
2605 * compaction a reasonable chance of completing and allocating the page.
2606 * Note that we won't actually reclaim the whole buffer in one attempt
2607 * as the target watermark in should_continue_reclaim() is lower. But if
2608 * we are already above the high+gap watermark, don't reclaim at all.
2609 */
2610 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2611
2612 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2613}
2614
2615/*
2616 * This is the direct reclaim path, for page-allocating processes. We only
2617 * try to reclaim pages from zones which will satisfy the caller's allocation
2618 * request.
2619 *
2620 * If a zone is deemed to be full of pinned pages then just give it a light
2621 * scan then give up on it.
2622 */
2623static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2624{
2625 struct zoneref *z;
2626 struct zone *zone;
2627 unsigned long nr_soft_reclaimed;
2628 unsigned long nr_soft_scanned;
2629 gfp_t orig_mask;
2630 pg_data_t *last_pgdat = NULL;
2631
2632 /*
2633 * If the number of buffer_heads in the machine exceeds the maximum
2634 * allowed level, force direct reclaim to scan the highmem zone as
2635 * highmem pages could be pinning lowmem pages storing buffer_heads
2636 */
2637 orig_mask = sc->gfp_mask;
2638 if (buffer_heads_over_limit) {
2639 sc->gfp_mask |= __GFP_HIGHMEM;
2640 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2641 }
2642
2643 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2644 sc->reclaim_idx, sc->nodemask) {
2645 /*
2646 * Take care memory controller reclaiming has small influence
2647 * to global LRU.
2648 */
2649 if (global_reclaim(sc)) {
2650 if (!cpuset_zone_allowed(zone,
2651 GFP_KERNEL | __GFP_HARDWALL))
2652 continue;
2653
2654 /*
2655 * If we already have plenty of memory free for
2656 * compaction in this zone, don't free any more.
2657 * Even though compaction is invoked for any
2658 * non-zero order, only frequent costly order
2659 * reclamation is disruptive enough to become a
2660 * noticeable problem, like transparent huge
2661 * page allocations.
2662 */
2663 if (IS_ENABLED(CONFIG_COMPACTION) &&
2664 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2665 compaction_ready(zone, sc)) {
2666 sc->compaction_ready = true;
2667 continue;
2668 }
2669
2670 /*
2671 * Shrink each node in the zonelist once. If the
2672 * zonelist is ordered by zone (not the default) then a
2673 * node may be shrunk multiple times but in that case
2674 * the user prefers lower zones being preserved.
2675 */
2676 if (zone->zone_pgdat == last_pgdat)
2677 continue;
2678
2679 /*
2680 * This steals pages from memory cgroups over softlimit
2681 * and returns the number of reclaimed pages and
2682 * scanned pages. This works for global memory pressure
2683 * and balancing, not for a memcg's limit.
2684 */
2685 nr_soft_scanned = 0;
2686 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2687 sc->order, sc->gfp_mask,
2688 &nr_soft_scanned);
2689 sc->nr_reclaimed += nr_soft_reclaimed;
2690 sc->nr_scanned += nr_soft_scanned;
2691 /* need some check for avoid more shrink_zone() */
2692 }
2693
2694 /* See comment about same check for global reclaim above */
2695 if (zone->zone_pgdat == last_pgdat)
2696 continue;
2697 last_pgdat = zone->zone_pgdat;
2698 shrink_node(zone->zone_pgdat, sc);
2699 }
2700
2701 /*
2702 * Restore to original mask to avoid the impact on the caller if we
2703 * promoted it to __GFP_HIGHMEM.
2704 */
2705 sc->gfp_mask = orig_mask;
2706}
2707
2708/*
2709 * This is the main entry point to direct page reclaim.
2710 *
2711 * If a full scan of the inactive list fails to free enough memory then we
2712 * are "out of memory" and something needs to be killed.
2713 *
2714 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2715 * high - the zone may be full of dirty or under-writeback pages, which this
2716 * caller can't do much about. We kick the writeback threads and take explicit
2717 * naps in the hope that some of these pages can be written. But if the
2718 * allocating task holds filesystem locks which prevent writeout this might not
2719 * work, and the allocation attempt will fail.
2720 *
2721 * returns: 0, if no pages reclaimed
2722 * else, the number of pages reclaimed
2723 */
2724static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2725 struct scan_control *sc)
2726{
2727 int initial_priority = sc->priority;
2728retry:
2729 delayacct_freepages_start();
2730
2731 if (global_reclaim(sc))
2732 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2733
2734 do {
2735 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2736 sc->priority);
2737 sc->nr_scanned = 0;
2738 shrink_zones(zonelist, sc);
2739
2740 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2741 break;
2742
2743 if (sc->compaction_ready)
2744 break;
2745
2746 /*
2747 * If we're getting trouble reclaiming, start doing
2748 * writepage even in laptop mode.
2749 */
2750 if (sc->priority < DEF_PRIORITY - 2)
2751 sc->may_writepage = 1;
2752 } while (--sc->priority >= 0);
2753
2754 delayacct_freepages_end();
2755
2756 if (sc->nr_reclaimed)
2757 return sc->nr_reclaimed;
2758
2759 /* Aborted reclaim to try compaction? don't OOM, then */
2760 if (sc->compaction_ready)
2761 return 1;
2762
2763 /* Untapped cgroup reserves? Don't OOM, retry. */
2764 if (!sc->may_thrash) {
2765 sc->priority = initial_priority;
2766 sc->may_thrash = 1;
2767 goto retry;
2768 }
2769
2770 return 0;
2771}
2772
2773static bool allow_direct_reclaim(pg_data_t *pgdat)
2774{
2775 struct zone *zone;
2776 unsigned long pfmemalloc_reserve = 0;
2777 unsigned long free_pages = 0;
2778 int i;
2779 bool wmark_ok;
2780
2781 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2782 return true;
2783
2784 for (i = 0; i <= ZONE_NORMAL; i++) {
2785 zone = &pgdat->node_zones[i];
2786 if (!managed_zone(zone))
2787 continue;
2788
2789 if (!zone_reclaimable_pages(zone))
2790 continue;
2791
2792 pfmemalloc_reserve += min_wmark_pages(zone);
2793 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2794 }
2795
2796 /* If there are no reserves (unexpected config) then do not throttle */
2797 if (!pfmemalloc_reserve)
2798 return true;
2799
2800 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2801
2802 /* kswapd must be awake if processes are being throttled */
2803 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2804 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2805 (enum zone_type)ZONE_NORMAL);
2806 wake_up_interruptible(&pgdat->kswapd_wait);
2807 }
2808
2809 return wmark_ok;
2810}
2811
2812/*
2813 * Throttle direct reclaimers if backing storage is backed by the network
2814 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2815 * depleted. kswapd will continue to make progress and wake the processes
2816 * when the low watermark is reached.
2817 *
2818 * Returns true if a fatal signal was delivered during throttling. If this
2819 * happens, the page allocator should not consider triggering the OOM killer.
2820 */
2821static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2822 nodemask_t *nodemask)
2823{
2824 struct zoneref *z;
2825 struct zone *zone;
2826 pg_data_t *pgdat = NULL;
2827
2828 /*
2829 * Kernel threads should not be throttled as they may be indirectly
2830 * responsible for cleaning pages necessary for reclaim to make forward
2831 * progress. kjournald for example may enter direct reclaim while
2832 * committing a transaction where throttling it could forcing other
2833 * processes to block on log_wait_commit().
2834 */
2835 if (current->flags & PF_KTHREAD)
2836 goto out;
2837
2838 /*
2839 * If a fatal signal is pending, this process should not throttle.
2840 * It should return quickly so it can exit and free its memory
2841 */
2842 if (fatal_signal_pending(current))
2843 goto out;
2844
2845 /*
2846 * Check if the pfmemalloc reserves are ok by finding the first node
2847 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2848 * GFP_KERNEL will be required for allocating network buffers when
2849 * swapping over the network so ZONE_HIGHMEM is unusable.
2850 *
2851 * Throttling is based on the first usable node and throttled processes
2852 * wait on a queue until kswapd makes progress and wakes them. There
2853 * is an affinity then between processes waking up and where reclaim
2854 * progress has been made assuming the process wakes on the same node.
2855 * More importantly, processes running on remote nodes will not compete
2856 * for remote pfmemalloc reserves and processes on different nodes
2857 * should make reasonable progress.
2858 */
2859 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2860 gfp_zone(gfp_mask), nodemask) {
2861 if (zone_idx(zone) > ZONE_NORMAL)
2862 continue;
2863
2864 /* Throttle based on the first usable node */
2865 pgdat = zone->zone_pgdat;
2866 if (allow_direct_reclaim(pgdat))
2867 goto out;
2868 break;
2869 }
2870
2871 /* If no zone was usable by the allocation flags then do not throttle */
2872 if (!pgdat)
2873 goto out;
2874
2875 /* Account for the throttling */
2876 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2877
2878 /*
2879 * If the caller cannot enter the filesystem, it's possible that it
2880 * is due to the caller holding an FS lock or performing a journal
2881 * transaction in the case of a filesystem like ext[3|4]. In this case,
2882 * it is not safe to block on pfmemalloc_wait as kswapd could be
2883 * blocked waiting on the same lock. Instead, throttle for up to a
2884 * second before continuing.
2885 */
2886 if (!(gfp_mask & __GFP_FS)) {
2887 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2888 allow_direct_reclaim(pgdat), HZ);
2889
2890 goto check_pending;
2891 }
2892
2893 /* Throttle until kswapd wakes the process */
2894 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2895 allow_direct_reclaim(pgdat));
2896
2897check_pending:
2898 if (fatal_signal_pending(current))
2899 return true;
2900
2901out:
2902 return false;
2903}
2904
2905unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2906 gfp_t gfp_mask, nodemask_t *nodemask)
2907{
2908 unsigned long nr_reclaimed;
2909 struct scan_control sc = {
2910 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2911 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2912 .reclaim_idx = gfp_zone(gfp_mask),
2913 .order = order,
2914 .nodemask = nodemask,
2915 .priority = DEF_PRIORITY,
2916 .may_writepage = !laptop_mode,
2917 .may_unmap = 1,
2918 .may_swap = 1,
2919 };
2920
2921 /*
2922 * Do not enter reclaim if fatal signal was delivered while throttled.
2923 * 1 is returned so that the page allocator does not OOM kill at this
2924 * point.
2925 */
2926 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2927 return 1;
2928
2929 trace_mm_vmscan_direct_reclaim_begin(order,
2930 sc.may_writepage,
2931 gfp_mask,
2932 sc.reclaim_idx);
2933
2934 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2935
2936 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2937
2938 return nr_reclaimed;
2939}
2940
2941#ifdef CONFIG_MEMCG
2942
2943unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2944 gfp_t gfp_mask, bool noswap,
2945 pg_data_t *pgdat,
2946 unsigned long *nr_scanned)
2947{
2948 struct scan_control sc = {
2949 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2950 .target_mem_cgroup = memcg,
2951 .may_writepage = !laptop_mode,
2952 .may_unmap = 1,
2953 .reclaim_idx = MAX_NR_ZONES - 1,
2954 .may_swap = !noswap,
2955 };
2956 unsigned long lru_pages;
2957
2958 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2959 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2960
2961 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2962 sc.may_writepage,
2963 sc.gfp_mask,
2964 sc.reclaim_idx);
2965
2966 /*
2967 * NOTE: Although we can get the priority field, using it
2968 * here is not a good idea, since it limits the pages we can scan.
2969 * if we don't reclaim here, the shrink_node from balance_pgdat
2970 * will pick up pages from other mem cgroup's as well. We hack
2971 * the priority and make it zero.
2972 */
2973 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2974
2975 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2976
2977 *nr_scanned = sc.nr_scanned;
2978 return sc.nr_reclaimed;
2979}
2980
2981unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2982 unsigned long nr_pages,
2983 gfp_t gfp_mask,
2984 bool may_swap)
2985{
2986 struct zonelist *zonelist;
2987 unsigned long nr_reclaimed;
2988 int nid;
2989 struct scan_control sc = {
2990 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2991 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2992 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2993 .reclaim_idx = MAX_NR_ZONES - 1,
2994 .target_mem_cgroup = memcg,
2995 .priority = DEF_PRIORITY,
2996 .may_writepage = !laptop_mode,
2997 .may_unmap = 1,
2998 .may_swap = may_swap,
2999 };
3000
3001 /*
3002 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3003 * take care of from where we get pages. So the node where we start the
3004 * scan does not need to be the current node.
3005 */
3006 nid = mem_cgroup_select_victim_node(memcg);
3007
3008 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3009
3010 trace_mm_vmscan_memcg_reclaim_begin(0,
3011 sc.may_writepage,
3012 sc.gfp_mask,
3013 sc.reclaim_idx);
3014
3015 current->flags |= PF_MEMALLOC;
3016 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3017 current->flags &= ~PF_MEMALLOC;
3018
3019 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3020
3021 return nr_reclaimed;
3022}
3023#endif
3024
3025static void age_active_anon(struct pglist_data *pgdat,
3026 struct scan_control *sc)
3027{
3028 struct mem_cgroup *memcg;
3029
3030 if (!total_swap_pages)
3031 return;
3032
3033 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3034 do {
3035 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3036
3037 if (inactive_list_is_low(lruvec, false, sc, true))
3038 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3039 sc, LRU_ACTIVE_ANON);
3040
3041 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3042 } while (memcg);
3043}
3044
3045static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3046{
3047 unsigned long mark = high_wmark_pages(zone);
3048
3049 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3050 return false;
3051
3052 /*
3053 * If any eligible zone is balanced then the node is not considered
3054 * to be congested or dirty
3055 */
3056 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3057 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3058 clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags);
3059
3060 return true;
3061}
3062
3063/*
3064 * Prepare kswapd for sleeping. This verifies that there are no processes
3065 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3066 *
3067 * Returns true if kswapd is ready to sleep
3068 */
3069static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3070{
3071 int i;
3072
3073 /*
3074 * The throttled processes are normally woken up in balance_pgdat() as
3075 * soon as allow_direct_reclaim() is true. But there is a potential
3076 * race between when kswapd checks the watermarks and a process gets
3077 * throttled. There is also a potential race if processes get
3078 * throttled, kswapd wakes, a large process exits thereby balancing the
3079 * zones, which causes kswapd to exit balance_pgdat() before reaching
3080 * the wake up checks. If kswapd is going to sleep, no process should
3081 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3082 * the wake up is premature, processes will wake kswapd and get
3083 * throttled again. The difference from wake ups in balance_pgdat() is
3084 * that here we are under prepare_to_wait().
3085 */
3086 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3087 wake_up_all(&pgdat->pfmemalloc_wait);
3088
3089 /* Hopeless node, leave it to direct reclaim */
3090 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3091 return true;
3092
3093 for (i = 0; i <= classzone_idx; i++) {
3094 struct zone *zone = pgdat->node_zones + i;
3095
3096 if (!managed_zone(zone))
3097 continue;
3098
3099 if (!zone_balanced(zone, order, classzone_idx))
3100 return false;
3101 }
3102
3103 return true;
3104}
3105
3106/*
3107 * kswapd shrinks a node of pages that are at or below the highest usable
3108 * zone that is currently unbalanced.
3109 *
3110 * Returns true if kswapd scanned at least the requested number of pages to
3111 * reclaim or if the lack of progress was due to pages under writeback.
3112 * This is used to determine if the scanning priority needs to be raised.
3113 */
3114static bool kswapd_shrink_node(pg_data_t *pgdat,
3115 struct scan_control *sc)
3116{
3117 struct zone *zone;
3118 int z;
3119
3120 /* Reclaim a number of pages proportional to the number of zones */
3121 sc->nr_to_reclaim = 0;
3122 for (z = 0; z <= sc->reclaim_idx; z++) {
3123 zone = pgdat->node_zones + z;
3124 if (!managed_zone(zone))
3125 continue;
3126
3127 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3128 }
3129
3130 /*
3131 * Historically care was taken to put equal pressure on all zones but
3132 * now pressure is applied based on node LRU order.
3133 */
3134 shrink_node(pgdat, sc);
3135
3136 /*
3137 * Fragmentation may mean that the system cannot be rebalanced for
3138 * high-order allocations. If twice the allocation size has been
3139 * reclaimed then recheck watermarks only at order-0 to prevent
3140 * excessive reclaim. Assume that a process requested a high-order
3141 * can direct reclaim/compact.
3142 */
3143 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3144 sc->order = 0;
3145
3146 return sc->nr_scanned >= sc->nr_to_reclaim;
3147}
3148
3149/*
3150 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3151 * that are eligible for use by the caller until at least one zone is
3152 * balanced.
3153 *
3154 * Returns the order kswapd finished reclaiming at.
3155 *
3156 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3157 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3158 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3159 * or lower is eligible for reclaim until at least one usable zone is
3160 * balanced.
3161 */
3162static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3163{
3164 int i;
3165 unsigned long nr_soft_reclaimed;
3166 unsigned long nr_soft_scanned;
3167 struct zone *zone;
3168 struct scan_control sc = {
3169 .gfp_mask = GFP_KERNEL,
3170 .order = order,
3171 .priority = DEF_PRIORITY,
3172 .may_writepage = !laptop_mode,
3173 .may_unmap = 1,
3174 .may_swap = 1,
3175 };
3176 count_vm_event(PAGEOUTRUN);
3177
3178 do {
3179 unsigned long nr_reclaimed = sc.nr_reclaimed;
3180 bool raise_priority = true;
3181
3182 sc.reclaim_idx = classzone_idx;
3183
3184 /*
3185 * If the number of buffer_heads exceeds the maximum allowed
3186 * then consider reclaiming from all zones. This has a dual
3187 * purpose -- on 64-bit systems it is expected that
3188 * buffer_heads are stripped during active rotation. On 32-bit
3189 * systems, highmem pages can pin lowmem memory and shrinking
3190 * buffers can relieve lowmem pressure. Reclaim may still not
3191 * go ahead if all eligible zones for the original allocation
3192 * request are balanced to avoid excessive reclaim from kswapd.
3193 */
3194 if (buffer_heads_over_limit) {
3195 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3196 zone = pgdat->node_zones + i;
3197 if (!managed_zone(zone))
3198 continue;
3199
3200 sc.reclaim_idx = i;
3201 break;
3202 }
3203 }
3204
3205 /*
3206 * Only reclaim if there are no eligible zones. Check from
3207 * high to low zone as allocations prefer higher zones.
3208 * Scanning from low to high zone would allow congestion to be
3209 * cleared during a very small window when a small low
3210 * zone was balanced even under extreme pressure when the
3211 * overall node may be congested. Note that sc.reclaim_idx
3212 * is not used as buffer_heads_over_limit may have adjusted
3213 * it.
3214 */
3215 for (i = classzone_idx; i >= 0; i--) {
3216 zone = pgdat->node_zones + i;
3217 if (!managed_zone(zone))
3218 continue;
3219
3220 if (zone_balanced(zone, sc.order, classzone_idx))
3221 goto out;
3222 }
3223
3224 /*
3225 * Do some background aging of the anon list, to give
3226 * pages a chance to be referenced before reclaiming. All
3227 * pages are rotated regardless of classzone as this is
3228 * about consistent aging.
3229 */
3230 age_active_anon(pgdat, &sc);
3231
3232 /*
3233 * If we're getting trouble reclaiming, start doing writepage
3234 * even in laptop mode.
3235 */
3236 if (sc.priority < DEF_PRIORITY - 2)
3237 sc.may_writepage = 1;
3238
3239 /* Call soft limit reclaim before calling shrink_node. */
3240 sc.nr_scanned = 0;
3241 nr_soft_scanned = 0;
3242 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3243 sc.gfp_mask, &nr_soft_scanned);
3244 sc.nr_reclaimed += nr_soft_reclaimed;
3245
3246 /*
3247 * There should be no need to raise the scanning priority if
3248 * enough pages are already being scanned that that high
3249 * watermark would be met at 100% efficiency.
3250 */
3251 if (kswapd_shrink_node(pgdat, &sc))
3252 raise_priority = false;
3253
3254 /*
3255 * If the low watermark is met there is no need for processes
3256 * to be throttled on pfmemalloc_wait as they should not be
3257 * able to safely make forward progress. Wake them
3258 */
3259 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3260 allow_direct_reclaim(pgdat))
3261 wake_up_all(&pgdat->pfmemalloc_wait);
3262
3263 /* Check if kswapd should be suspending */
3264 if (try_to_freeze() || kthread_should_stop())
3265 break;
3266
3267 /*
3268 * Raise priority if scanning rate is too low or there was no
3269 * progress in reclaiming pages
3270 */
3271 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3272 if (raise_priority || !nr_reclaimed)
3273 sc.priority--;
3274 } while (sc.priority >= 1);
3275
3276 if (!sc.nr_reclaimed)
3277 pgdat->kswapd_failures++;
3278
3279out:
3280 /*
3281 * Return the order kswapd stopped reclaiming at as
3282 * prepare_kswapd_sleep() takes it into account. If another caller
3283 * entered the allocator slow path while kswapd was awake, order will
3284 * remain at the higher level.
3285 */
3286 return sc.order;
3287}
3288
3289static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3290 unsigned int classzone_idx)
3291{
3292 long remaining = 0;
3293 DEFINE_WAIT(wait);
3294
3295 if (freezing(current) || kthread_should_stop())
3296 return;
3297
3298 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3299
3300 /* Try to sleep for a short interval */
3301 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3302 /*
3303 * Compaction records what page blocks it recently failed to
3304 * isolate pages from and skips them in the future scanning.
3305 * When kswapd is going to sleep, it is reasonable to assume
3306 * that pages and compaction may succeed so reset the cache.
3307 */
3308 reset_isolation_suitable(pgdat);
3309
3310 /*
3311 * We have freed the memory, now we should compact it to make
3312 * allocation of the requested order possible.
3313 */
3314 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3315
3316 remaining = schedule_timeout(HZ/10);
3317
3318 /*
3319 * If woken prematurely then reset kswapd_classzone_idx and
3320 * order. The values will either be from a wakeup request or
3321 * the previous request that slept prematurely.
3322 */
3323 if (remaining) {
3324 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3325 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3326 }
3327
3328 finish_wait(&pgdat->kswapd_wait, &wait);
3329 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3330 }
3331
3332 /*
3333 * After a short sleep, check if it was a premature sleep. If not, then
3334 * go fully to sleep until explicitly woken up.
3335 */
3336 if (!remaining &&
3337 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3338 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3339
3340 /*
3341 * vmstat counters are not perfectly accurate and the estimated
3342 * value for counters such as NR_FREE_PAGES can deviate from the
3343 * true value by nr_online_cpus * threshold. To avoid the zone
3344 * watermarks being breached while under pressure, we reduce the
3345 * per-cpu vmstat threshold while kswapd is awake and restore
3346 * them before going back to sleep.
3347 */
3348 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3349
3350 if (!kthread_should_stop())
3351 schedule();
3352
3353 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3354 } else {
3355 if (remaining)
3356 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3357 else
3358 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3359 }
3360 finish_wait(&pgdat->kswapd_wait, &wait);
3361}
3362
3363/*
3364 * The background pageout daemon, started as a kernel thread
3365 * from the init process.
3366 *
3367 * This basically trickles out pages so that we have _some_
3368 * free memory available even if there is no other activity
3369 * that frees anything up. This is needed for things like routing
3370 * etc, where we otherwise might have all activity going on in
3371 * asynchronous contexts that cannot page things out.
3372 *
3373 * If there are applications that are active memory-allocators
3374 * (most normal use), this basically shouldn't matter.
3375 */
3376static int kswapd(void *p)
3377{
3378 unsigned int alloc_order, reclaim_order, classzone_idx;
3379 pg_data_t *pgdat = (pg_data_t*)p;
3380 struct task_struct *tsk = current;
3381
3382 struct reclaim_state reclaim_state = {
3383 .reclaimed_slab = 0,
3384 };
3385 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3386
3387 lockdep_set_current_reclaim_state(GFP_KERNEL);
3388
3389 if (!cpumask_empty(cpumask))
3390 set_cpus_allowed_ptr(tsk, cpumask);
3391 current->reclaim_state = &reclaim_state;
3392
3393 /*
3394 * Tell the memory management that we're a "memory allocator",
3395 * and that if we need more memory we should get access to it
3396 * regardless (see "__alloc_pages()"). "kswapd" should
3397 * never get caught in the normal page freeing logic.
3398 *
3399 * (Kswapd normally doesn't need memory anyway, but sometimes
3400 * you need a small amount of memory in order to be able to
3401 * page out something else, and this flag essentially protects
3402 * us from recursively trying to free more memory as we're
3403 * trying to free the first piece of memory in the first place).
3404 */
3405 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3406 set_freezable();
3407
3408 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3409 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3410 for ( ; ; ) {
3411 bool ret;
3412
3413kswapd_try_sleep:
3414 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3415 classzone_idx);
3416
3417 /* Read the new order and classzone_idx */
3418 alloc_order = reclaim_order = pgdat->kswapd_order;
3419 classzone_idx = pgdat->kswapd_classzone_idx;
3420 pgdat->kswapd_order = 0;
3421 pgdat->kswapd_classzone_idx = 0;
3422
3423 ret = try_to_freeze();
3424 if (kthread_should_stop())
3425 break;
3426
3427 /*
3428 * We can speed up thawing tasks if we don't call balance_pgdat
3429 * after returning from the refrigerator
3430 */
3431 if (ret)
3432 continue;
3433
3434 /*
3435 * Reclaim begins at the requested order but if a high-order
3436 * reclaim fails then kswapd falls back to reclaiming for
3437 * order-0. If that happens, kswapd will consider sleeping
3438 * for the order it finished reclaiming at (reclaim_order)
3439 * but kcompactd is woken to compact for the original
3440 * request (alloc_order).
3441 */
3442 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3443 alloc_order);
3444 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3445 if (reclaim_order < alloc_order)
3446 goto kswapd_try_sleep;
3447
3448 alloc_order = reclaim_order = pgdat->kswapd_order;
3449 classzone_idx = pgdat->kswapd_classzone_idx;
3450 }
3451
3452 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3453 current->reclaim_state = NULL;
3454 lockdep_clear_current_reclaim_state();
3455
3456 return 0;
3457}
3458
3459/*
3460 * A zone is low on free memory, so wake its kswapd task to service it.
3461 */
3462void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3463{
3464 pg_data_t *pgdat;
3465 int z;
3466
3467 if (!managed_zone(zone))
3468 return;
3469
3470 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3471 return;
3472 pgdat = zone->zone_pgdat;
3473 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3474 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3475 if (!waitqueue_active(&pgdat->kswapd_wait))
3476 return;
3477
3478 /* Hopeless node, leave it to direct reclaim */
3479 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3480 return;
3481
3482 /* Only wake kswapd if all zones are unbalanced */
3483 for (z = 0; z <= classzone_idx; z++) {
3484 zone = pgdat->node_zones + z;
3485 if (!managed_zone(zone))
3486 continue;
3487
3488 if (zone_balanced(zone, order, classzone_idx))
3489 return;
3490 }
3491
3492 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3493 wake_up_interruptible(&pgdat->kswapd_wait);
3494}
3495
3496#ifdef CONFIG_HIBERNATION
3497/*
3498 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3499 * freed pages.
3500 *
3501 * Rather than trying to age LRUs the aim is to preserve the overall
3502 * LRU order by reclaiming preferentially
3503 * inactive > active > active referenced > active mapped
3504 */
3505unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3506{
3507 struct reclaim_state reclaim_state;
3508 struct scan_control sc = {
3509 .nr_to_reclaim = nr_to_reclaim,
3510 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3511 .reclaim_idx = MAX_NR_ZONES - 1,
3512 .priority = DEF_PRIORITY,
3513 .may_writepage = 1,
3514 .may_unmap = 1,
3515 .may_swap = 1,
3516 .hibernation_mode = 1,
3517 };
3518 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3519 struct task_struct *p = current;
3520 unsigned long nr_reclaimed;
3521
3522 p->flags |= PF_MEMALLOC;
3523 lockdep_set_current_reclaim_state(sc.gfp_mask);
3524 reclaim_state.reclaimed_slab = 0;
3525 p->reclaim_state = &reclaim_state;
3526
3527 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3528
3529 p->reclaim_state = NULL;
3530 lockdep_clear_current_reclaim_state();
3531 p->flags &= ~PF_MEMALLOC;
3532
3533 return nr_reclaimed;
3534}
3535#endif /* CONFIG_HIBERNATION */
3536
3537/* It's optimal to keep kswapds on the same CPUs as their memory, but
3538 not required for correctness. So if the last cpu in a node goes
3539 away, we get changed to run anywhere: as the first one comes back,
3540 restore their cpu bindings. */
3541static int kswapd_cpu_online(unsigned int cpu)
3542{
3543 int nid;
3544
3545 for_each_node_state(nid, N_MEMORY) {
3546 pg_data_t *pgdat = NODE_DATA(nid);
3547 const struct cpumask *mask;
3548
3549 mask = cpumask_of_node(pgdat->node_id);
3550
3551 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3552 /* One of our CPUs online: restore mask */
3553 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3554 }
3555 return 0;
3556}
3557
3558/*
3559 * This kswapd start function will be called by init and node-hot-add.
3560 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3561 */
3562int kswapd_run(int nid)
3563{
3564 pg_data_t *pgdat = NODE_DATA(nid);
3565 int ret = 0;
3566
3567 if (pgdat->kswapd)
3568 return 0;
3569
3570 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3571 if (IS_ERR(pgdat->kswapd)) {
3572 /* failure at boot is fatal */
3573 BUG_ON(system_state == SYSTEM_BOOTING);
3574 pr_err("Failed to start kswapd on node %d\n", nid);
3575 ret = PTR_ERR(pgdat->kswapd);
3576 pgdat->kswapd = NULL;
3577 }
3578 return ret;
3579}
3580
3581/*
3582 * Called by memory hotplug when all memory in a node is offlined. Caller must
3583 * hold mem_hotplug_begin/end().
3584 */
3585void kswapd_stop(int nid)
3586{
3587 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3588
3589 if (kswapd) {
3590 kthread_stop(kswapd);
3591 NODE_DATA(nid)->kswapd = NULL;
3592 }
3593}
3594
3595static int __init kswapd_init(void)
3596{
3597 int nid, ret;
3598
3599 swap_setup();
3600 for_each_node_state(nid, N_MEMORY)
3601 kswapd_run(nid);
3602 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3603 "mm/vmscan:online", kswapd_cpu_online,
3604 NULL);
3605 WARN_ON(ret < 0);
3606 return 0;
3607}
3608
3609module_init(kswapd_init)
3610
3611#ifdef CONFIG_NUMA
3612/*
3613 * Node reclaim mode
3614 *
3615 * If non-zero call node_reclaim when the number of free pages falls below
3616 * the watermarks.
3617 */
3618int node_reclaim_mode __read_mostly;
3619
3620#define RECLAIM_OFF 0
3621#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3622#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3623#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3624
3625/*
3626 * Priority for NODE_RECLAIM. This determines the fraction of pages
3627 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3628 * a zone.
3629 */
3630#define NODE_RECLAIM_PRIORITY 4
3631
3632/*
3633 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3634 * occur.
3635 */
3636int sysctl_min_unmapped_ratio = 1;
3637
3638/*
3639 * If the number of slab pages in a zone grows beyond this percentage then
3640 * slab reclaim needs to occur.
3641 */
3642int sysctl_min_slab_ratio = 5;
3643
3644static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3645{
3646 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3647 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3648 node_page_state(pgdat, NR_ACTIVE_FILE);
3649
3650 /*
3651 * It's possible for there to be more file mapped pages than
3652 * accounted for by the pages on the file LRU lists because
3653 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3654 */
3655 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3656}
3657
3658/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3659static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3660{
3661 unsigned long nr_pagecache_reclaimable;
3662 unsigned long delta = 0;
3663
3664 /*
3665 * If RECLAIM_UNMAP is set, then all file pages are considered
3666 * potentially reclaimable. Otherwise, we have to worry about
3667 * pages like swapcache and node_unmapped_file_pages() provides
3668 * a better estimate
3669 */
3670 if (node_reclaim_mode & RECLAIM_UNMAP)
3671 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3672 else
3673 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3674
3675 /* If we can't clean pages, remove dirty pages from consideration */
3676 if (!(node_reclaim_mode & RECLAIM_WRITE))
3677 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3678
3679 /* Watch for any possible underflows due to delta */
3680 if (unlikely(delta > nr_pagecache_reclaimable))
3681 delta = nr_pagecache_reclaimable;
3682
3683 return nr_pagecache_reclaimable - delta;
3684}
3685
3686/*
3687 * Try to free up some pages from this node through reclaim.
3688 */
3689static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3690{
3691 /* Minimum pages needed in order to stay on node */
3692 const unsigned long nr_pages = 1 << order;
3693 struct task_struct *p = current;
3694 struct reclaim_state reclaim_state;
3695 int classzone_idx = gfp_zone(gfp_mask);
3696 struct scan_control sc = {
3697 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3698 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3699 .order = order,
3700 .priority = NODE_RECLAIM_PRIORITY,
3701 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3702 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3703 .may_swap = 1,
3704 .reclaim_idx = classzone_idx,
3705 };
3706
3707 cond_resched();
3708 /*
3709 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3710 * and we also need to be able to write out pages for RECLAIM_WRITE
3711 * and RECLAIM_UNMAP.
3712 */
3713 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3714 lockdep_set_current_reclaim_state(gfp_mask);
3715 reclaim_state.reclaimed_slab = 0;
3716 p->reclaim_state = &reclaim_state;
3717
3718 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3719 /*
3720 * Free memory by calling shrink zone with increasing
3721 * priorities until we have enough memory freed.
3722 */
3723 do {
3724 shrink_node(pgdat, &sc);
3725 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3726 }
3727
3728 p->reclaim_state = NULL;
3729 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3730 lockdep_clear_current_reclaim_state();
3731 return sc.nr_reclaimed >= nr_pages;
3732}
3733
3734int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3735{
3736 int ret;
3737
3738 /*
3739 * Node reclaim reclaims unmapped file backed pages and
3740 * slab pages if we are over the defined limits.
3741 *
3742 * A small portion of unmapped file backed pages is needed for
3743 * file I/O otherwise pages read by file I/O will be immediately
3744 * thrown out if the node is overallocated. So we do not reclaim
3745 * if less than a specified percentage of the node is used by
3746 * unmapped file backed pages.
3747 */
3748 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3749 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3750 return NODE_RECLAIM_FULL;
3751
3752 /*
3753 * Do not scan if the allocation should not be delayed.
3754 */
3755 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3756 return NODE_RECLAIM_NOSCAN;
3757
3758 /*
3759 * Only run node reclaim on the local node or on nodes that do not
3760 * have associated processors. This will favor the local processor
3761 * over remote processors and spread off node memory allocations
3762 * as wide as possible.
3763 */
3764 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3765 return NODE_RECLAIM_NOSCAN;
3766
3767 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3768 return NODE_RECLAIM_NOSCAN;
3769
3770 ret = __node_reclaim(pgdat, gfp_mask, order);
3771 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3772
3773 if (!ret)
3774 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3775
3776 return ret;
3777}
3778#endif
3779
3780/*
3781 * page_evictable - test whether a page is evictable
3782 * @page: the page to test
3783 *
3784 * Test whether page is evictable--i.e., should be placed on active/inactive
3785 * lists vs unevictable list.
3786 *
3787 * Reasons page might not be evictable:
3788 * (1) page's mapping marked unevictable
3789 * (2) page is part of an mlocked VMA
3790 *
3791 */
3792int page_evictable(struct page *page)
3793{
3794 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3795}
3796
3797#ifdef CONFIG_SHMEM
3798/**
3799 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3800 * @pages: array of pages to check
3801 * @nr_pages: number of pages to check
3802 *
3803 * Checks pages for evictability and moves them to the appropriate lru list.
3804 *
3805 * This function is only used for SysV IPC SHM_UNLOCK.
3806 */
3807void check_move_unevictable_pages(struct page **pages, int nr_pages)
3808{
3809 struct lruvec *lruvec;
3810 struct pglist_data *pgdat = NULL;
3811 int pgscanned = 0;
3812 int pgrescued = 0;
3813 int i;
3814
3815 for (i = 0; i < nr_pages; i++) {
3816 struct page *page = pages[i];
3817 struct pglist_data *pagepgdat = page_pgdat(page);
3818
3819 pgscanned++;
3820 if (pagepgdat != pgdat) {
3821 if (pgdat)
3822 spin_unlock_irq(&pgdat->lru_lock);
3823 pgdat = pagepgdat;
3824 spin_lock_irq(&pgdat->lru_lock);
3825 }
3826 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3827
3828 if (!PageLRU(page) || !PageUnevictable(page))
3829 continue;
3830
3831 if (page_evictable(page)) {
3832 enum lru_list lru = page_lru_base_type(page);
3833
3834 VM_BUG_ON_PAGE(PageActive(page), page);
3835 ClearPageUnevictable(page);
3836 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3837 add_page_to_lru_list(page, lruvec, lru);
3838 pgrescued++;
3839 }
3840 }
3841
3842 if (pgdat) {
3843 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3844 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3845 spin_unlock_irq(&pgdat->lru_lock);
3846 }
3847}
3848#endif /* CONFIG_SHMEM */
This page took 0.078799 seconds and 4 git commands to generate.