]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
15 | ||
16 | #include <linux/mm.h> | |
17 | #include <linux/sched/mm.h> | |
18 | #include <linux/module.h> | |
19 | #include <linux/gfp.h> | |
20 | #include <linux/kernel_stat.h> | |
21 | #include <linux/swap.h> | |
22 | #include <linux/pagemap.h> | |
23 | #include <linux/init.h> | |
24 | #include <linux/highmem.h> | |
25 | #include <linux/vmpressure.h> | |
26 | #include <linux/vmstat.h> | |
27 | #include <linux/file.h> | |
28 | #include <linux/writeback.h> | |
29 | #include <linux/blkdev.h> | |
30 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
31 | buffer_heads_over_limit */ | |
32 | #include <linux/mm_inline.h> | |
33 | #include <linux/backing-dev.h> | |
34 | #include <linux/rmap.h> | |
35 | #include <linux/topology.h> | |
36 | #include <linux/cpu.h> | |
37 | #include <linux/cpuset.h> | |
38 | #include <linux/compaction.h> | |
39 | #include <linux/notifier.h> | |
40 | #include <linux/rwsem.h> | |
41 | #include <linux/delay.h> | |
42 | #include <linux/kthread.h> | |
43 | #include <linux/freezer.h> | |
44 | #include <linux/memcontrol.h> | |
45 | #include <linux/delayacct.h> | |
46 | #include <linux/sysctl.h> | |
47 | #include <linux/oom.h> | |
48 | #include <linux/prefetch.h> | |
49 | #include <linux/printk.h> | |
50 | #include <linux/dax.h> | |
51 | ||
52 | #include <asm/tlbflush.h> | |
53 | #include <asm/div64.h> | |
54 | ||
55 | #include <linux/swapops.h> | |
56 | #include <linux/balloon_compaction.h> | |
57 | ||
58 | #include "internal.h" | |
59 | ||
60 | #define CREATE_TRACE_POINTS | |
61 | #include <trace/events/vmscan.h> | |
62 | ||
63 | struct scan_control { | |
64 | /* How many pages shrink_list() should reclaim */ | |
65 | unsigned long nr_to_reclaim; | |
66 | ||
67 | /* This context's GFP mask */ | |
68 | gfp_t gfp_mask; | |
69 | ||
70 | /* Allocation order */ | |
71 | int order; | |
72 | ||
73 | /* | |
74 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
75 | * are scanned. | |
76 | */ | |
77 | nodemask_t *nodemask; | |
78 | ||
79 | /* | |
80 | * The memory cgroup that hit its limit and as a result is the | |
81 | * primary target of this reclaim invocation. | |
82 | */ | |
83 | struct mem_cgroup *target_mem_cgroup; | |
84 | ||
85 | /* Scan (total_size >> priority) pages at once */ | |
86 | int priority; | |
87 | ||
88 | /* The highest zone to isolate pages for reclaim from */ | |
89 | enum zone_type reclaim_idx; | |
90 | ||
91 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ | |
92 | unsigned int may_writepage:1; | |
93 | ||
94 | /* Can mapped pages be reclaimed? */ | |
95 | unsigned int may_unmap:1; | |
96 | ||
97 | /* Can pages be swapped as part of reclaim? */ | |
98 | unsigned int may_swap:1; | |
99 | ||
100 | /* Can cgroups be reclaimed below their normal consumption range? */ | |
101 | unsigned int may_thrash:1; | |
102 | ||
103 | unsigned int hibernation_mode:1; | |
104 | ||
105 | /* One of the zones is ready for compaction */ | |
106 | unsigned int compaction_ready:1; | |
107 | ||
108 | /* Incremented by the number of inactive pages that were scanned */ | |
109 | unsigned long nr_scanned; | |
110 | ||
111 | /* Number of pages freed so far during a call to shrink_zones() */ | |
112 | unsigned long nr_reclaimed; | |
113 | }; | |
114 | ||
115 | #ifdef ARCH_HAS_PREFETCH | |
116 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
117 | do { \ | |
118 | if ((_page)->lru.prev != _base) { \ | |
119 | struct page *prev; \ | |
120 | \ | |
121 | prev = lru_to_page(&(_page->lru)); \ | |
122 | prefetch(&prev->_field); \ | |
123 | } \ | |
124 | } while (0) | |
125 | #else | |
126 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
127 | #endif | |
128 | ||
129 | #ifdef ARCH_HAS_PREFETCHW | |
130 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
131 | do { \ | |
132 | if ((_page)->lru.prev != _base) { \ | |
133 | struct page *prev; \ | |
134 | \ | |
135 | prev = lru_to_page(&(_page->lru)); \ | |
136 | prefetchw(&prev->_field); \ | |
137 | } \ | |
138 | } while (0) | |
139 | #else | |
140 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
141 | #endif | |
142 | ||
143 | /* | |
144 | * From 0 .. 100. Higher means more swappy. | |
145 | */ | |
146 | int vm_swappiness = 60; | |
147 | /* | |
148 | * The total number of pages which are beyond the high watermark within all | |
149 | * zones. | |
150 | */ | |
151 | unsigned long vm_total_pages; | |
152 | ||
153 | static LIST_HEAD(shrinker_list); | |
154 | static DECLARE_RWSEM(shrinker_rwsem); | |
155 | ||
156 | #ifdef CONFIG_MEMCG | |
157 | static bool global_reclaim(struct scan_control *sc) | |
158 | { | |
159 | return !sc->target_mem_cgroup; | |
160 | } | |
161 | ||
162 | /** | |
163 | * sane_reclaim - is the usual dirty throttling mechanism operational? | |
164 | * @sc: scan_control in question | |
165 | * | |
166 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
167 | * completely broken with the legacy memcg and direct stalling in | |
168 | * shrink_page_list() is used for throttling instead, which lacks all the | |
169 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
170 | * allocation and configurability. | |
171 | * | |
172 | * This function tests whether the vmscan currently in progress can assume | |
173 | * that the normal dirty throttling mechanism is operational. | |
174 | */ | |
175 | static bool sane_reclaim(struct scan_control *sc) | |
176 | { | |
177 | struct mem_cgroup *memcg = sc->target_mem_cgroup; | |
178 | ||
179 | if (!memcg) | |
180 | return true; | |
181 | #ifdef CONFIG_CGROUP_WRITEBACK | |
182 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | |
183 | return true; | |
184 | #endif | |
185 | return false; | |
186 | } | |
187 | #else | |
188 | static bool global_reclaim(struct scan_control *sc) | |
189 | { | |
190 | return true; | |
191 | } | |
192 | ||
193 | static bool sane_reclaim(struct scan_control *sc) | |
194 | { | |
195 | return true; | |
196 | } | |
197 | #endif | |
198 | ||
199 | /* | |
200 | * This misses isolated pages which are not accounted for to save counters. | |
201 | * As the data only determines if reclaim or compaction continues, it is | |
202 | * not expected that isolated pages will be a dominating factor. | |
203 | */ | |
204 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
205 | { | |
206 | unsigned long nr; | |
207 | ||
208 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | |
209 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | |
210 | if (get_nr_swap_pages() > 0) | |
211 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | |
212 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | |
213 | ||
214 | return nr; | |
215 | } | |
216 | ||
217 | unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) | |
218 | { | |
219 | unsigned long nr; | |
220 | ||
221 | nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + | |
222 | node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + | |
223 | node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); | |
224 | ||
225 | if (get_nr_swap_pages() > 0) | |
226 | nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + | |
227 | node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + | |
228 | node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); | |
229 | ||
230 | return nr; | |
231 | } | |
232 | ||
233 | /** | |
234 | * lruvec_lru_size - Returns the number of pages on the given LRU list. | |
235 | * @lruvec: lru vector | |
236 | * @lru: lru to use | |
237 | * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) | |
238 | */ | |
239 | unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) | |
240 | { | |
241 | unsigned long lru_size; | |
242 | int zid; | |
243 | ||
244 | if (!mem_cgroup_disabled()) | |
245 | lru_size = mem_cgroup_get_lru_size(lruvec, lru); | |
246 | else | |
247 | lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); | |
248 | ||
249 | for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { | |
250 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; | |
251 | unsigned long size; | |
252 | ||
253 | if (!managed_zone(zone)) | |
254 | continue; | |
255 | ||
256 | if (!mem_cgroup_disabled()) | |
257 | size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | |
258 | else | |
259 | size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], | |
260 | NR_ZONE_LRU_BASE + lru); | |
261 | lru_size -= min(size, lru_size); | |
262 | } | |
263 | ||
264 | return lru_size; | |
265 | ||
266 | } | |
267 | ||
268 | /* | |
269 | * Add a shrinker callback to be called from the vm. | |
270 | */ | |
271 | int register_shrinker(struct shrinker *shrinker) | |
272 | { | |
273 | size_t size = sizeof(*shrinker->nr_deferred); | |
274 | ||
275 | if (shrinker->flags & SHRINKER_NUMA_AWARE) | |
276 | size *= nr_node_ids; | |
277 | ||
278 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | |
279 | if (!shrinker->nr_deferred) | |
280 | return -ENOMEM; | |
281 | ||
282 | down_write(&shrinker_rwsem); | |
283 | list_add_tail(&shrinker->list, &shrinker_list); | |
284 | up_write(&shrinker_rwsem); | |
285 | return 0; | |
286 | } | |
287 | EXPORT_SYMBOL(register_shrinker); | |
288 | ||
289 | /* | |
290 | * Remove one | |
291 | */ | |
292 | void unregister_shrinker(struct shrinker *shrinker) | |
293 | { | |
294 | down_write(&shrinker_rwsem); | |
295 | list_del(&shrinker->list); | |
296 | up_write(&shrinker_rwsem); | |
297 | kfree(shrinker->nr_deferred); | |
298 | } | |
299 | EXPORT_SYMBOL(unregister_shrinker); | |
300 | ||
301 | #define SHRINK_BATCH 128 | |
302 | ||
303 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, | |
304 | struct shrinker *shrinker, | |
305 | unsigned long nr_scanned, | |
306 | unsigned long nr_eligible) | |
307 | { | |
308 | unsigned long freed = 0; | |
309 | unsigned long long delta; | |
310 | long total_scan; | |
311 | long freeable; | |
312 | long nr; | |
313 | long new_nr; | |
314 | int nid = shrinkctl->nid; | |
315 | long batch_size = shrinker->batch ? shrinker->batch | |
316 | : SHRINK_BATCH; | |
317 | long scanned = 0, next_deferred; | |
318 | ||
319 | freeable = shrinker->count_objects(shrinker, shrinkctl); | |
320 | if (freeable == 0) | |
321 | return 0; | |
322 | ||
323 | /* | |
324 | * copy the current shrinker scan count into a local variable | |
325 | * and zero it so that other concurrent shrinker invocations | |
326 | * don't also do this scanning work. | |
327 | */ | |
328 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | |
329 | ||
330 | total_scan = nr; | |
331 | delta = (4 * nr_scanned) / shrinker->seeks; | |
332 | delta *= freeable; | |
333 | do_div(delta, nr_eligible + 1); | |
334 | total_scan += delta; | |
335 | if (total_scan < 0) { | |
336 | pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", | |
337 | shrinker->scan_objects, total_scan); | |
338 | total_scan = freeable; | |
339 | next_deferred = nr; | |
340 | } else | |
341 | next_deferred = total_scan; | |
342 | ||
343 | /* | |
344 | * We need to avoid excessive windup on filesystem shrinkers | |
345 | * due to large numbers of GFP_NOFS allocations causing the | |
346 | * shrinkers to return -1 all the time. This results in a large | |
347 | * nr being built up so when a shrink that can do some work | |
348 | * comes along it empties the entire cache due to nr >>> | |
349 | * freeable. This is bad for sustaining a working set in | |
350 | * memory. | |
351 | * | |
352 | * Hence only allow the shrinker to scan the entire cache when | |
353 | * a large delta change is calculated directly. | |
354 | */ | |
355 | if (delta < freeable / 4) | |
356 | total_scan = min(total_scan, freeable / 2); | |
357 | ||
358 | /* | |
359 | * Avoid risking looping forever due to too large nr value: | |
360 | * never try to free more than twice the estimate number of | |
361 | * freeable entries. | |
362 | */ | |
363 | if (total_scan > freeable * 2) | |
364 | total_scan = freeable * 2; | |
365 | ||
366 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | |
367 | nr_scanned, nr_eligible, | |
368 | freeable, delta, total_scan); | |
369 | ||
370 | /* | |
371 | * Normally, we should not scan less than batch_size objects in one | |
372 | * pass to avoid too frequent shrinker calls, but if the slab has less | |
373 | * than batch_size objects in total and we are really tight on memory, | |
374 | * we will try to reclaim all available objects, otherwise we can end | |
375 | * up failing allocations although there are plenty of reclaimable | |
376 | * objects spread over several slabs with usage less than the | |
377 | * batch_size. | |
378 | * | |
379 | * We detect the "tight on memory" situations by looking at the total | |
380 | * number of objects we want to scan (total_scan). If it is greater | |
381 | * than the total number of objects on slab (freeable), we must be | |
382 | * scanning at high prio and therefore should try to reclaim as much as | |
383 | * possible. | |
384 | */ | |
385 | while (total_scan >= batch_size || | |
386 | total_scan >= freeable) { | |
387 | unsigned long ret; | |
388 | unsigned long nr_to_scan = min(batch_size, total_scan); | |
389 | ||
390 | shrinkctl->nr_to_scan = nr_to_scan; | |
391 | ret = shrinker->scan_objects(shrinker, shrinkctl); | |
392 | if (ret == SHRINK_STOP) | |
393 | break; | |
394 | freed += ret; | |
395 | ||
396 | count_vm_events(SLABS_SCANNED, nr_to_scan); | |
397 | total_scan -= nr_to_scan; | |
398 | scanned += nr_to_scan; | |
399 | ||
400 | cond_resched(); | |
401 | } | |
402 | ||
403 | if (next_deferred >= scanned) | |
404 | next_deferred -= scanned; | |
405 | else | |
406 | next_deferred = 0; | |
407 | /* | |
408 | * move the unused scan count back into the shrinker in a | |
409 | * manner that handles concurrent updates. If we exhausted the | |
410 | * scan, there is no need to do an update. | |
411 | */ | |
412 | if (next_deferred > 0) | |
413 | new_nr = atomic_long_add_return(next_deferred, | |
414 | &shrinker->nr_deferred[nid]); | |
415 | else | |
416 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); | |
417 | ||
418 | trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); | |
419 | return freed; | |
420 | } | |
421 | ||
422 | /** | |
423 | * shrink_slab - shrink slab caches | |
424 | * @gfp_mask: allocation context | |
425 | * @nid: node whose slab caches to target | |
426 | * @memcg: memory cgroup whose slab caches to target | |
427 | * @nr_scanned: pressure numerator | |
428 | * @nr_eligible: pressure denominator | |
429 | * | |
430 | * Call the shrink functions to age shrinkable caches. | |
431 | * | |
432 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, | |
433 | * unaware shrinkers will receive a node id of 0 instead. | |
434 | * | |
435 | * @memcg specifies the memory cgroup to target. If it is not NULL, | |
436 | * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan | |
437 | * objects from the memory cgroup specified. Otherwise, only unaware | |
438 | * shrinkers are called. | |
439 | * | |
440 | * @nr_scanned and @nr_eligible form a ratio that indicate how much of | |
441 | * the available objects should be scanned. Page reclaim for example | |
442 | * passes the number of pages scanned and the number of pages on the | |
443 | * LRU lists that it considered on @nid, plus a bias in @nr_scanned | |
444 | * when it encountered mapped pages. The ratio is further biased by | |
445 | * the ->seeks setting of the shrink function, which indicates the | |
446 | * cost to recreate an object relative to that of an LRU page. | |
447 | * | |
448 | * Returns the number of reclaimed slab objects. | |
449 | */ | |
450 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, | |
451 | struct mem_cgroup *memcg, | |
452 | unsigned long nr_scanned, | |
453 | unsigned long nr_eligible) | |
454 | { | |
455 | struct shrinker *shrinker; | |
456 | unsigned long freed = 0; | |
457 | ||
458 | if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) | |
459 | return 0; | |
460 | ||
461 | if (nr_scanned == 0) | |
462 | nr_scanned = SWAP_CLUSTER_MAX; | |
463 | ||
464 | if (!down_read_trylock(&shrinker_rwsem)) { | |
465 | /* | |
466 | * If we would return 0, our callers would understand that we | |
467 | * have nothing else to shrink and give up trying. By returning | |
468 | * 1 we keep it going and assume we'll be able to shrink next | |
469 | * time. | |
470 | */ | |
471 | freed = 1; | |
472 | goto out; | |
473 | } | |
474 | ||
475 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
476 | struct shrink_control sc = { | |
477 | .gfp_mask = gfp_mask, | |
478 | .nid = nid, | |
479 | .memcg = memcg, | |
480 | }; | |
481 | ||
482 | /* | |
483 | * If kernel memory accounting is disabled, we ignore | |
484 | * SHRINKER_MEMCG_AWARE flag and call all shrinkers | |
485 | * passing NULL for memcg. | |
486 | */ | |
487 | if (memcg_kmem_enabled() && | |
488 | !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
489 | continue; | |
490 | ||
491 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) | |
492 | sc.nid = 0; | |
493 | ||
494 | freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); | |
495 | } | |
496 | ||
497 | up_read(&shrinker_rwsem); | |
498 | out: | |
499 | cond_resched(); | |
500 | return freed; | |
501 | } | |
502 | ||
503 | void drop_slab_node(int nid) | |
504 | { | |
505 | unsigned long freed; | |
506 | ||
507 | do { | |
508 | struct mem_cgroup *memcg = NULL; | |
509 | ||
510 | freed = 0; | |
511 | do { | |
512 | freed += shrink_slab(GFP_KERNEL, nid, memcg, | |
513 | 1000, 1000); | |
514 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | |
515 | } while (freed > 10); | |
516 | } | |
517 | ||
518 | void drop_slab(void) | |
519 | { | |
520 | int nid; | |
521 | ||
522 | for_each_online_node(nid) | |
523 | drop_slab_node(nid); | |
524 | } | |
525 | ||
526 | static inline int is_page_cache_freeable(struct page *page) | |
527 | { | |
528 | /* | |
529 | * A freeable page cache page is referenced only by the caller | |
530 | * that isolated the page, the page cache radix tree and | |
531 | * optional buffer heads at page->private. | |
532 | */ | |
533 | return page_count(page) - page_has_private(page) == 2; | |
534 | } | |
535 | ||
536 | static int may_write_to_inode(struct inode *inode, struct scan_control *sc) | |
537 | { | |
538 | if (current->flags & PF_SWAPWRITE) | |
539 | return 1; | |
540 | if (!inode_write_congested(inode)) | |
541 | return 1; | |
542 | if (inode_to_bdi(inode) == current->backing_dev_info) | |
543 | return 1; | |
544 | return 0; | |
545 | } | |
546 | ||
547 | /* | |
548 | * We detected a synchronous write error writing a page out. Probably | |
549 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
550 | * fsync(), msync() or close(). | |
551 | * | |
552 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
553 | * prevents it from being freed up. But we have a ref on the page and once | |
554 | * that page is locked, the mapping is pinned. | |
555 | * | |
556 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
557 | * __GFP_FS. | |
558 | */ | |
559 | static void handle_write_error(struct address_space *mapping, | |
560 | struct page *page, int error) | |
561 | { | |
562 | lock_page(page); | |
563 | if (page_mapping(page) == mapping) | |
564 | mapping_set_error(mapping, error); | |
565 | unlock_page(page); | |
566 | } | |
567 | ||
568 | /* possible outcome of pageout() */ | |
569 | typedef enum { | |
570 | /* failed to write page out, page is locked */ | |
571 | PAGE_KEEP, | |
572 | /* move page to the active list, page is locked */ | |
573 | PAGE_ACTIVATE, | |
574 | /* page has been sent to the disk successfully, page is unlocked */ | |
575 | PAGE_SUCCESS, | |
576 | /* page is clean and locked */ | |
577 | PAGE_CLEAN, | |
578 | } pageout_t; | |
579 | ||
580 | /* | |
581 | * pageout is called by shrink_page_list() for each dirty page. | |
582 | * Calls ->writepage(). | |
583 | */ | |
584 | static pageout_t pageout(struct page *page, struct address_space *mapping, | |
585 | struct scan_control *sc) | |
586 | { | |
587 | /* | |
588 | * If the page is dirty, only perform writeback if that write | |
589 | * will be non-blocking. To prevent this allocation from being | |
590 | * stalled by pagecache activity. But note that there may be | |
591 | * stalls if we need to run get_block(). We could test | |
592 | * PagePrivate for that. | |
593 | * | |
594 | * If this process is currently in __generic_file_write_iter() against | |
595 | * this page's queue, we can perform writeback even if that | |
596 | * will block. | |
597 | * | |
598 | * If the page is swapcache, write it back even if that would | |
599 | * block, for some throttling. This happens by accident, because | |
600 | * swap_backing_dev_info is bust: it doesn't reflect the | |
601 | * congestion state of the swapdevs. Easy to fix, if needed. | |
602 | */ | |
603 | if (!is_page_cache_freeable(page)) | |
604 | return PAGE_KEEP; | |
605 | if (!mapping) { | |
606 | /* | |
607 | * Some data journaling orphaned pages can have | |
608 | * page->mapping == NULL while being dirty with clean buffers. | |
609 | */ | |
610 | if (page_has_private(page)) { | |
611 | if (try_to_free_buffers(page)) { | |
612 | ClearPageDirty(page); | |
613 | pr_info("%s: orphaned page\n", __func__); | |
614 | return PAGE_CLEAN; | |
615 | } | |
616 | } | |
617 | return PAGE_KEEP; | |
618 | } | |
619 | if (mapping->a_ops->writepage == NULL) | |
620 | return PAGE_ACTIVATE; | |
621 | if (!may_write_to_inode(mapping->host, sc)) | |
622 | return PAGE_KEEP; | |
623 | ||
624 | if (clear_page_dirty_for_io(page)) { | |
625 | int res; | |
626 | struct writeback_control wbc = { | |
627 | .sync_mode = WB_SYNC_NONE, | |
628 | .nr_to_write = SWAP_CLUSTER_MAX, | |
629 | .range_start = 0, | |
630 | .range_end = LLONG_MAX, | |
631 | .for_reclaim = 1, | |
632 | }; | |
633 | ||
634 | SetPageReclaim(page); | |
635 | res = mapping->a_ops->writepage(page, &wbc); | |
636 | if (res < 0) | |
637 | handle_write_error(mapping, page, res); | |
638 | if (res == AOP_WRITEPAGE_ACTIVATE) { | |
639 | ClearPageReclaim(page); | |
640 | return PAGE_ACTIVATE; | |
641 | } | |
642 | ||
643 | if (!PageWriteback(page)) { | |
644 | /* synchronous write or broken a_ops? */ | |
645 | ClearPageReclaim(page); | |
646 | } | |
647 | trace_mm_vmscan_writepage(page); | |
648 | inc_node_page_state(page, NR_VMSCAN_WRITE); | |
649 | return PAGE_SUCCESS; | |
650 | } | |
651 | ||
652 | return PAGE_CLEAN; | |
653 | } | |
654 | ||
655 | /* | |
656 | * Same as remove_mapping, but if the page is removed from the mapping, it | |
657 | * gets returned with a refcount of 0. | |
658 | */ | |
659 | static int __remove_mapping(struct address_space *mapping, struct page *page, | |
660 | bool reclaimed) | |
661 | { | |
662 | unsigned long flags; | |
663 | ||
664 | BUG_ON(!PageLocked(page)); | |
665 | BUG_ON(mapping != page_mapping(page)); | |
666 | ||
667 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
668 | /* | |
669 | * The non racy check for a busy page. | |
670 | * | |
671 | * Must be careful with the order of the tests. When someone has | |
672 | * a ref to the page, it may be possible that they dirty it then | |
673 | * drop the reference. So if PageDirty is tested before page_count | |
674 | * here, then the following race may occur: | |
675 | * | |
676 | * get_user_pages(&page); | |
677 | * [user mapping goes away] | |
678 | * write_to(page); | |
679 | * !PageDirty(page) [good] | |
680 | * SetPageDirty(page); | |
681 | * put_page(page); | |
682 | * !page_count(page) [good, discard it] | |
683 | * | |
684 | * [oops, our write_to data is lost] | |
685 | * | |
686 | * Reversing the order of the tests ensures such a situation cannot | |
687 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
688 | * load is not satisfied before that of page->_refcount. | |
689 | * | |
690 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
691 | * and thus under tree_lock, then this ordering is not required. | |
692 | */ | |
693 | if (!page_ref_freeze(page, 2)) | |
694 | goto cannot_free; | |
695 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ | |
696 | if (unlikely(PageDirty(page))) { | |
697 | page_ref_unfreeze(page, 2); | |
698 | goto cannot_free; | |
699 | } | |
700 | ||
701 | if (PageSwapCache(page)) { | |
702 | swp_entry_t swap = { .val = page_private(page) }; | |
703 | mem_cgroup_swapout(page, swap); | |
704 | __delete_from_swap_cache(page); | |
705 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
706 | swapcache_free(swap); | |
707 | } else { | |
708 | void (*freepage)(struct page *); | |
709 | void *shadow = NULL; | |
710 | ||
711 | freepage = mapping->a_ops->freepage; | |
712 | /* | |
713 | * Remember a shadow entry for reclaimed file cache in | |
714 | * order to detect refaults, thus thrashing, later on. | |
715 | * | |
716 | * But don't store shadows in an address space that is | |
717 | * already exiting. This is not just an optizimation, | |
718 | * inode reclaim needs to empty out the radix tree or | |
719 | * the nodes are lost. Don't plant shadows behind its | |
720 | * back. | |
721 | * | |
722 | * We also don't store shadows for DAX mappings because the | |
723 | * only page cache pages found in these are zero pages | |
724 | * covering holes, and because we don't want to mix DAX | |
725 | * exceptional entries and shadow exceptional entries in the | |
726 | * same page_tree. | |
727 | */ | |
728 | if (reclaimed && page_is_file_cache(page) && | |
729 | !mapping_exiting(mapping) && !dax_mapping(mapping)) | |
730 | shadow = workingset_eviction(mapping, page); | |
731 | __delete_from_page_cache(page, shadow); | |
732 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
733 | ||
734 | if (freepage != NULL) | |
735 | freepage(page); | |
736 | } | |
737 | ||
738 | return 1; | |
739 | ||
740 | cannot_free: | |
741 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
742 | return 0; | |
743 | } | |
744 | ||
745 | /* | |
746 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
747 | * someone else has a ref on the page, abort and return 0. If it was | |
748 | * successfully detached, return 1. Assumes the caller has a single ref on | |
749 | * this page. | |
750 | */ | |
751 | int remove_mapping(struct address_space *mapping, struct page *page) | |
752 | { | |
753 | if (__remove_mapping(mapping, page, false)) { | |
754 | /* | |
755 | * Unfreezing the refcount with 1 rather than 2 effectively | |
756 | * drops the pagecache ref for us without requiring another | |
757 | * atomic operation. | |
758 | */ | |
759 | page_ref_unfreeze(page, 1); | |
760 | return 1; | |
761 | } | |
762 | return 0; | |
763 | } | |
764 | ||
765 | /** | |
766 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
767 | * @page: page to be put back to appropriate lru list | |
768 | * | |
769 | * Add previously isolated @page to appropriate LRU list. | |
770 | * Page may still be unevictable for other reasons. | |
771 | * | |
772 | * lru_lock must not be held, interrupts must be enabled. | |
773 | */ | |
774 | void putback_lru_page(struct page *page) | |
775 | { | |
776 | bool is_unevictable; | |
777 | int was_unevictable = PageUnevictable(page); | |
778 | ||
779 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
780 | ||
781 | redo: | |
782 | ClearPageUnevictable(page); | |
783 | ||
784 | if (page_evictable(page)) { | |
785 | /* | |
786 | * For evictable pages, we can use the cache. | |
787 | * In event of a race, worst case is we end up with an | |
788 | * unevictable page on [in]active list. | |
789 | * We know how to handle that. | |
790 | */ | |
791 | is_unevictable = false; | |
792 | lru_cache_add(page); | |
793 | } else { | |
794 | /* | |
795 | * Put unevictable pages directly on zone's unevictable | |
796 | * list. | |
797 | */ | |
798 | is_unevictable = true; | |
799 | add_page_to_unevictable_list(page); | |
800 | /* | |
801 | * When racing with an mlock or AS_UNEVICTABLE clearing | |
802 | * (page is unlocked) make sure that if the other thread | |
803 | * does not observe our setting of PG_lru and fails | |
804 | * isolation/check_move_unevictable_pages, | |
805 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move | |
806 | * the page back to the evictable list. | |
807 | * | |
808 | * The other side is TestClearPageMlocked() or shmem_lock(). | |
809 | */ | |
810 | smp_mb(); | |
811 | } | |
812 | ||
813 | /* | |
814 | * page's status can change while we move it among lru. If an evictable | |
815 | * page is on unevictable list, it never be freed. To avoid that, | |
816 | * check after we added it to the list, again. | |
817 | */ | |
818 | if (is_unevictable && page_evictable(page)) { | |
819 | if (!isolate_lru_page(page)) { | |
820 | put_page(page); | |
821 | goto redo; | |
822 | } | |
823 | /* This means someone else dropped this page from LRU | |
824 | * So, it will be freed or putback to LRU again. There is | |
825 | * nothing to do here. | |
826 | */ | |
827 | } | |
828 | ||
829 | if (was_unevictable && !is_unevictable) | |
830 | count_vm_event(UNEVICTABLE_PGRESCUED); | |
831 | else if (!was_unevictable && is_unevictable) | |
832 | count_vm_event(UNEVICTABLE_PGCULLED); | |
833 | ||
834 | put_page(page); /* drop ref from isolate */ | |
835 | } | |
836 | ||
837 | enum page_references { | |
838 | PAGEREF_RECLAIM, | |
839 | PAGEREF_RECLAIM_CLEAN, | |
840 | PAGEREF_KEEP, | |
841 | PAGEREF_ACTIVATE, | |
842 | }; | |
843 | ||
844 | static enum page_references page_check_references(struct page *page, | |
845 | struct scan_control *sc) | |
846 | { | |
847 | int referenced_ptes, referenced_page; | |
848 | unsigned long vm_flags; | |
849 | ||
850 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, | |
851 | &vm_flags); | |
852 | referenced_page = TestClearPageReferenced(page); | |
853 | ||
854 | /* | |
855 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
856 | * move the page to the unevictable list. | |
857 | */ | |
858 | if (vm_flags & VM_LOCKED) | |
859 | return PAGEREF_RECLAIM; | |
860 | ||
861 | if (referenced_ptes) { | |
862 | if (PageSwapBacked(page)) | |
863 | return PAGEREF_ACTIVATE; | |
864 | /* | |
865 | * All mapped pages start out with page table | |
866 | * references from the instantiating fault, so we need | |
867 | * to look twice if a mapped file page is used more | |
868 | * than once. | |
869 | * | |
870 | * Mark it and spare it for another trip around the | |
871 | * inactive list. Another page table reference will | |
872 | * lead to its activation. | |
873 | * | |
874 | * Note: the mark is set for activated pages as well | |
875 | * so that recently deactivated but used pages are | |
876 | * quickly recovered. | |
877 | */ | |
878 | SetPageReferenced(page); | |
879 | ||
880 | if (referenced_page || referenced_ptes > 1) | |
881 | return PAGEREF_ACTIVATE; | |
882 | ||
883 | /* | |
884 | * Activate file-backed executable pages after first usage. | |
885 | */ | |
886 | if (vm_flags & VM_EXEC) | |
887 | return PAGEREF_ACTIVATE; | |
888 | ||
889 | return PAGEREF_KEEP; | |
890 | } | |
891 | ||
892 | /* Reclaim if clean, defer dirty pages to writeback */ | |
893 | if (referenced_page && !PageSwapBacked(page)) | |
894 | return PAGEREF_RECLAIM_CLEAN; | |
895 | ||
896 | return PAGEREF_RECLAIM; | |
897 | } | |
898 | ||
899 | /* Check if a page is dirty or under writeback */ | |
900 | static void page_check_dirty_writeback(struct page *page, | |
901 | bool *dirty, bool *writeback) | |
902 | { | |
903 | struct address_space *mapping; | |
904 | ||
905 | /* | |
906 | * Anonymous pages are not handled by flushers and must be written | |
907 | * from reclaim context. Do not stall reclaim based on them | |
908 | */ | |
909 | if (!page_is_file_cache(page)) { | |
910 | *dirty = false; | |
911 | *writeback = false; | |
912 | return; | |
913 | } | |
914 | ||
915 | /* By default assume that the page flags are accurate */ | |
916 | *dirty = PageDirty(page); | |
917 | *writeback = PageWriteback(page); | |
918 | ||
919 | /* Verify dirty/writeback state if the filesystem supports it */ | |
920 | if (!page_has_private(page)) | |
921 | return; | |
922 | ||
923 | mapping = page_mapping(page); | |
924 | if (mapping && mapping->a_ops->is_dirty_writeback) | |
925 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); | |
926 | } | |
927 | ||
928 | struct reclaim_stat { | |
929 | unsigned nr_dirty; | |
930 | unsigned nr_unqueued_dirty; | |
931 | unsigned nr_congested; | |
932 | unsigned nr_writeback; | |
933 | unsigned nr_immediate; | |
934 | unsigned nr_activate; | |
935 | unsigned nr_ref_keep; | |
936 | unsigned nr_unmap_fail; | |
937 | }; | |
938 | ||
939 | /* | |
940 | * shrink_page_list() returns the number of reclaimed pages | |
941 | */ | |
942 | static unsigned long shrink_page_list(struct list_head *page_list, | |
943 | struct pglist_data *pgdat, | |
944 | struct scan_control *sc, | |
945 | enum ttu_flags ttu_flags, | |
946 | struct reclaim_stat *stat, | |
947 | bool force_reclaim) | |
948 | { | |
949 | LIST_HEAD(ret_pages); | |
950 | LIST_HEAD(free_pages); | |
951 | int pgactivate = 0; | |
952 | unsigned nr_unqueued_dirty = 0; | |
953 | unsigned nr_dirty = 0; | |
954 | unsigned nr_congested = 0; | |
955 | unsigned nr_reclaimed = 0; | |
956 | unsigned nr_writeback = 0; | |
957 | unsigned nr_immediate = 0; | |
958 | unsigned nr_ref_keep = 0; | |
959 | unsigned nr_unmap_fail = 0; | |
960 | ||
961 | cond_resched(); | |
962 | ||
963 | while (!list_empty(page_list)) { | |
964 | struct address_space *mapping; | |
965 | struct page *page; | |
966 | int may_enter_fs; | |
967 | enum page_references references = PAGEREF_RECLAIM_CLEAN; | |
968 | bool dirty, writeback; | |
969 | bool lazyfree = false; | |
970 | int ret = SWAP_SUCCESS; | |
971 | ||
972 | cond_resched(); | |
973 | ||
974 | page = lru_to_page(page_list); | |
975 | list_del(&page->lru); | |
976 | ||
977 | if (!trylock_page(page)) | |
978 | goto keep; | |
979 | ||
980 | VM_BUG_ON_PAGE(PageActive(page), page); | |
981 | ||
982 | sc->nr_scanned++; | |
983 | ||
984 | if (unlikely(!page_evictable(page))) | |
985 | goto cull_mlocked; | |
986 | ||
987 | if (!sc->may_unmap && page_mapped(page)) | |
988 | goto keep_locked; | |
989 | ||
990 | /* Double the slab pressure for mapped and swapcache pages */ | |
991 | if (page_mapped(page) || PageSwapCache(page)) | |
992 | sc->nr_scanned++; | |
993 | ||
994 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | |
995 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
996 | ||
997 | /* | |
998 | * The number of dirty pages determines if a zone is marked | |
999 | * reclaim_congested which affects wait_iff_congested. kswapd | |
1000 | * will stall and start writing pages if the tail of the LRU | |
1001 | * is all dirty unqueued pages. | |
1002 | */ | |
1003 | page_check_dirty_writeback(page, &dirty, &writeback); | |
1004 | if (dirty || writeback) | |
1005 | nr_dirty++; | |
1006 | ||
1007 | if (dirty && !writeback) | |
1008 | nr_unqueued_dirty++; | |
1009 | ||
1010 | /* | |
1011 | * Treat this page as congested if the underlying BDI is or if | |
1012 | * pages are cycling through the LRU so quickly that the | |
1013 | * pages marked for immediate reclaim are making it to the | |
1014 | * end of the LRU a second time. | |
1015 | */ | |
1016 | mapping = page_mapping(page); | |
1017 | if (((dirty || writeback) && mapping && | |
1018 | inode_write_congested(mapping->host)) || | |
1019 | (writeback && PageReclaim(page))) | |
1020 | nr_congested++; | |
1021 | ||
1022 | /* | |
1023 | * If a page at the tail of the LRU is under writeback, there | |
1024 | * are three cases to consider. | |
1025 | * | |
1026 | * 1) If reclaim is encountering an excessive number of pages | |
1027 | * under writeback and this page is both under writeback and | |
1028 | * PageReclaim then it indicates that pages are being queued | |
1029 | * for IO but are being recycled through the LRU before the | |
1030 | * IO can complete. Waiting on the page itself risks an | |
1031 | * indefinite stall if it is impossible to writeback the | |
1032 | * page due to IO error or disconnected storage so instead | |
1033 | * note that the LRU is being scanned too quickly and the | |
1034 | * caller can stall after page list has been processed. | |
1035 | * | |
1036 | * 2) Global or new memcg reclaim encounters a page that is | |
1037 | * not marked for immediate reclaim, or the caller does not | |
1038 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
1039 | * not to fs). In this case mark the page for immediate | |
1040 | * reclaim and continue scanning. | |
1041 | * | |
1042 | * Require may_enter_fs because we would wait on fs, which | |
1043 | * may not have submitted IO yet. And the loop driver might | |
1044 | * enter reclaim, and deadlock if it waits on a page for | |
1045 | * which it is needed to do the write (loop masks off | |
1046 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
1047 | * would probably show more reasons. | |
1048 | * | |
1049 | * 3) Legacy memcg encounters a page that is already marked | |
1050 | * PageReclaim. memcg does not have any dirty pages | |
1051 | * throttling so we could easily OOM just because too many | |
1052 | * pages are in writeback and there is nothing else to | |
1053 | * reclaim. Wait for the writeback to complete. | |
1054 | * | |
1055 | * In cases 1) and 2) we activate the pages to get them out of | |
1056 | * the way while we continue scanning for clean pages on the | |
1057 | * inactive list and refilling from the active list. The | |
1058 | * observation here is that waiting for disk writes is more | |
1059 | * expensive than potentially causing reloads down the line. | |
1060 | * Since they're marked for immediate reclaim, they won't put | |
1061 | * memory pressure on the cache working set any longer than it | |
1062 | * takes to write them to disk. | |
1063 | */ | |
1064 | if (PageWriteback(page)) { | |
1065 | /* Case 1 above */ | |
1066 | if (current_is_kswapd() && | |
1067 | PageReclaim(page) && | |
1068 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { | |
1069 | nr_immediate++; | |
1070 | goto activate_locked; | |
1071 | ||
1072 | /* Case 2 above */ | |
1073 | } else if (sane_reclaim(sc) || | |
1074 | !PageReclaim(page) || !may_enter_fs) { | |
1075 | /* | |
1076 | * This is slightly racy - end_page_writeback() | |
1077 | * might have just cleared PageReclaim, then | |
1078 | * setting PageReclaim here end up interpreted | |
1079 | * as PageReadahead - but that does not matter | |
1080 | * enough to care. What we do want is for this | |
1081 | * page to have PageReclaim set next time memcg | |
1082 | * reclaim reaches the tests above, so it will | |
1083 | * then wait_on_page_writeback() to avoid OOM; | |
1084 | * and it's also appropriate in global reclaim. | |
1085 | */ | |
1086 | SetPageReclaim(page); | |
1087 | nr_writeback++; | |
1088 | goto activate_locked; | |
1089 | ||
1090 | /* Case 3 above */ | |
1091 | } else { | |
1092 | unlock_page(page); | |
1093 | wait_on_page_writeback(page); | |
1094 | /* then go back and try same page again */ | |
1095 | list_add_tail(&page->lru, page_list); | |
1096 | continue; | |
1097 | } | |
1098 | } | |
1099 | ||
1100 | if (!force_reclaim) | |
1101 | references = page_check_references(page, sc); | |
1102 | ||
1103 | switch (references) { | |
1104 | case PAGEREF_ACTIVATE: | |
1105 | goto activate_locked; | |
1106 | case PAGEREF_KEEP: | |
1107 | nr_ref_keep++; | |
1108 | goto keep_locked; | |
1109 | case PAGEREF_RECLAIM: | |
1110 | case PAGEREF_RECLAIM_CLEAN: | |
1111 | ; /* try to reclaim the page below */ | |
1112 | } | |
1113 | ||
1114 | /* | |
1115 | * Anonymous process memory has backing store? | |
1116 | * Try to allocate it some swap space here. | |
1117 | */ | |
1118 | if (PageAnon(page) && !PageSwapCache(page)) { | |
1119 | if (!(sc->gfp_mask & __GFP_IO)) | |
1120 | goto keep_locked; | |
1121 | if (!add_to_swap(page, page_list)) | |
1122 | goto activate_locked; | |
1123 | lazyfree = true; | |
1124 | may_enter_fs = 1; | |
1125 | ||
1126 | /* Adding to swap updated mapping */ | |
1127 | mapping = page_mapping(page); | |
1128 | } else if (unlikely(PageTransHuge(page))) { | |
1129 | /* Split file THP */ | |
1130 | if (split_huge_page_to_list(page, page_list)) | |
1131 | goto keep_locked; | |
1132 | } | |
1133 | ||
1134 | VM_BUG_ON_PAGE(PageTransHuge(page), page); | |
1135 | ||
1136 | /* | |
1137 | * The page is mapped into the page tables of one or more | |
1138 | * processes. Try to unmap it here. | |
1139 | */ | |
1140 | if (page_mapped(page) && mapping) { | |
1141 | switch (ret = try_to_unmap(page, lazyfree ? | |
1142 | (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : | |
1143 | (ttu_flags | TTU_BATCH_FLUSH))) { | |
1144 | case SWAP_FAIL: | |
1145 | nr_unmap_fail++; | |
1146 | goto activate_locked; | |
1147 | case SWAP_AGAIN: | |
1148 | goto keep_locked; | |
1149 | case SWAP_MLOCK: | |
1150 | goto cull_mlocked; | |
1151 | case SWAP_LZFREE: | |
1152 | goto lazyfree; | |
1153 | case SWAP_SUCCESS: | |
1154 | ; /* try to free the page below */ | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | if (PageDirty(page)) { | |
1159 | /* | |
1160 | * Only kswapd can writeback filesystem pages | |
1161 | * to avoid risk of stack overflow. But avoid | |
1162 | * injecting inefficient single-page IO into | |
1163 | * flusher writeback as much as possible: only | |
1164 | * write pages when we've encountered many | |
1165 | * dirty pages, and when we've already scanned | |
1166 | * the rest of the LRU for clean pages and see | |
1167 | * the same dirty pages again (PageReclaim). | |
1168 | */ | |
1169 | if (page_is_file_cache(page) && | |
1170 | (!current_is_kswapd() || !PageReclaim(page) || | |
1171 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | |
1172 | /* | |
1173 | * Immediately reclaim when written back. | |
1174 | * Similar in principal to deactivate_page() | |
1175 | * except we already have the page isolated | |
1176 | * and know it's dirty | |
1177 | */ | |
1178 | inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); | |
1179 | SetPageReclaim(page); | |
1180 | ||
1181 | goto activate_locked; | |
1182 | } | |
1183 | ||
1184 | if (references == PAGEREF_RECLAIM_CLEAN) | |
1185 | goto keep_locked; | |
1186 | if (!may_enter_fs) | |
1187 | goto keep_locked; | |
1188 | if (!sc->may_writepage) | |
1189 | goto keep_locked; | |
1190 | ||
1191 | /* | |
1192 | * Page is dirty. Flush the TLB if a writable entry | |
1193 | * potentially exists to avoid CPU writes after IO | |
1194 | * starts and then write it out here. | |
1195 | */ | |
1196 | try_to_unmap_flush_dirty(); | |
1197 | switch (pageout(page, mapping, sc)) { | |
1198 | case PAGE_KEEP: | |
1199 | goto keep_locked; | |
1200 | case PAGE_ACTIVATE: | |
1201 | goto activate_locked; | |
1202 | case PAGE_SUCCESS: | |
1203 | if (PageWriteback(page)) | |
1204 | goto keep; | |
1205 | if (PageDirty(page)) | |
1206 | goto keep; | |
1207 | ||
1208 | /* | |
1209 | * A synchronous write - probably a ramdisk. Go | |
1210 | * ahead and try to reclaim the page. | |
1211 | */ | |
1212 | if (!trylock_page(page)) | |
1213 | goto keep; | |
1214 | if (PageDirty(page) || PageWriteback(page)) | |
1215 | goto keep_locked; | |
1216 | mapping = page_mapping(page); | |
1217 | case PAGE_CLEAN: | |
1218 | ; /* try to free the page below */ | |
1219 | } | |
1220 | } | |
1221 | ||
1222 | /* | |
1223 | * If the page has buffers, try to free the buffer mappings | |
1224 | * associated with this page. If we succeed we try to free | |
1225 | * the page as well. | |
1226 | * | |
1227 | * We do this even if the page is PageDirty(). | |
1228 | * try_to_release_page() does not perform I/O, but it is | |
1229 | * possible for a page to have PageDirty set, but it is actually | |
1230 | * clean (all its buffers are clean). This happens if the | |
1231 | * buffers were written out directly, with submit_bh(). ext3 | |
1232 | * will do this, as well as the blockdev mapping. | |
1233 | * try_to_release_page() will discover that cleanness and will | |
1234 | * drop the buffers and mark the page clean - it can be freed. | |
1235 | * | |
1236 | * Rarely, pages can have buffers and no ->mapping. These are | |
1237 | * the pages which were not successfully invalidated in | |
1238 | * truncate_complete_page(). We try to drop those buffers here | |
1239 | * and if that worked, and the page is no longer mapped into | |
1240 | * process address space (page_count == 1) it can be freed. | |
1241 | * Otherwise, leave the page on the LRU so it is swappable. | |
1242 | */ | |
1243 | if (page_has_private(page)) { | |
1244 | if (!try_to_release_page(page, sc->gfp_mask)) | |
1245 | goto activate_locked; | |
1246 | if (!mapping && page_count(page) == 1) { | |
1247 | unlock_page(page); | |
1248 | if (put_page_testzero(page)) | |
1249 | goto free_it; | |
1250 | else { | |
1251 | /* | |
1252 | * rare race with speculative reference. | |
1253 | * the speculative reference will free | |
1254 | * this page shortly, so we may | |
1255 | * increment nr_reclaimed here (and | |
1256 | * leave it off the LRU). | |
1257 | */ | |
1258 | nr_reclaimed++; | |
1259 | continue; | |
1260 | } | |
1261 | } | |
1262 | } | |
1263 | ||
1264 | lazyfree: | |
1265 | if (!mapping || !__remove_mapping(mapping, page, true)) | |
1266 | goto keep_locked; | |
1267 | ||
1268 | /* | |
1269 | * At this point, we have no other references and there is | |
1270 | * no way to pick any more up (removed from LRU, removed | |
1271 | * from pagecache). Can use non-atomic bitops now (and | |
1272 | * we obviously don't have to worry about waking up a process | |
1273 | * waiting on the page lock, because there are no references. | |
1274 | */ | |
1275 | __ClearPageLocked(page); | |
1276 | free_it: | |
1277 | if (ret == SWAP_LZFREE) | |
1278 | count_vm_event(PGLAZYFREED); | |
1279 | ||
1280 | nr_reclaimed++; | |
1281 | ||
1282 | /* | |
1283 | * Is there need to periodically free_page_list? It would | |
1284 | * appear not as the counts should be low | |
1285 | */ | |
1286 | list_add(&page->lru, &free_pages); | |
1287 | continue; | |
1288 | ||
1289 | cull_mlocked: | |
1290 | if (PageSwapCache(page)) | |
1291 | try_to_free_swap(page); | |
1292 | unlock_page(page); | |
1293 | list_add(&page->lru, &ret_pages); | |
1294 | continue; | |
1295 | ||
1296 | activate_locked: | |
1297 | /* Not a candidate for swapping, so reclaim swap space. */ | |
1298 | if (PageSwapCache(page) && mem_cgroup_swap_full(page)) | |
1299 | try_to_free_swap(page); | |
1300 | VM_BUG_ON_PAGE(PageActive(page), page); | |
1301 | SetPageActive(page); | |
1302 | pgactivate++; | |
1303 | keep_locked: | |
1304 | unlock_page(page); | |
1305 | keep: | |
1306 | list_add(&page->lru, &ret_pages); | |
1307 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); | |
1308 | } | |
1309 | ||
1310 | mem_cgroup_uncharge_list(&free_pages); | |
1311 | try_to_unmap_flush(); | |
1312 | free_hot_cold_page_list(&free_pages, true); | |
1313 | ||
1314 | list_splice(&ret_pages, page_list); | |
1315 | count_vm_events(PGACTIVATE, pgactivate); | |
1316 | ||
1317 | if (stat) { | |
1318 | stat->nr_dirty = nr_dirty; | |
1319 | stat->nr_congested = nr_congested; | |
1320 | stat->nr_unqueued_dirty = nr_unqueued_dirty; | |
1321 | stat->nr_writeback = nr_writeback; | |
1322 | stat->nr_immediate = nr_immediate; | |
1323 | stat->nr_activate = pgactivate; | |
1324 | stat->nr_ref_keep = nr_ref_keep; | |
1325 | stat->nr_unmap_fail = nr_unmap_fail; | |
1326 | } | |
1327 | return nr_reclaimed; | |
1328 | } | |
1329 | ||
1330 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, | |
1331 | struct list_head *page_list) | |
1332 | { | |
1333 | struct scan_control sc = { | |
1334 | .gfp_mask = GFP_KERNEL, | |
1335 | .priority = DEF_PRIORITY, | |
1336 | .may_unmap = 1, | |
1337 | }; | |
1338 | unsigned long ret; | |
1339 | struct page *page, *next; | |
1340 | LIST_HEAD(clean_pages); | |
1341 | ||
1342 | list_for_each_entry_safe(page, next, page_list, lru) { | |
1343 | if (page_is_file_cache(page) && !PageDirty(page) && | |
1344 | !__PageMovable(page)) { | |
1345 | ClearPageActive(page); | |
1346 | list_move(&page->lru, &clean_pages); | |
1347 | } | |
1348 | } | |
1349 | ||
1350 | ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, | |
1351 | TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true); | |
1352 | list_splice(&clean_pages, page_list); | |
1353 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); | |
1354 | return ret; | |
1355 | } | |
1356 | ||
1357 | /* | |
1358 | * Attempt to remove the specified page from its LRU. Only take this page | |
1359 | * if it is of the appropriate PageActive status. Pages which are being | |
1360 | * freed elsewhere are also ignored. | |
1361 | * | |
1362 | * page: page to consider | |
1363 | * mode: one of the LRU isolation modes defined above | |
1364 | * | |
1365 | * returns 0 on success, -ve errno on failure. | |
1366 | */ | |
1367 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) | |
1368 | { | |
1369 | int ret = -EINVAL; | |
1370 | ||
1371 | /* Only take pages on the LRU. */ | |
1372 | if (!PageLRU(page)) | |
1373 | return ret; | |
1374 | ||
1375 | /* Compaction should not handle unevictable pages but CMA can do so */ | |
1376 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
1377 | return ret; | |
1378 | ||
1379 | ret = -EBUSY; | |
1380 | ||
1381 | /* | |
1382 | * To minimise LRU disruption, the caller can indicate that it only | |
1383 | * wants to isolate pages it will be able to operate on without | |
1384 | * blocking - clean pages for the most part. | |
1385 | * | |
1386 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | |
1387 | * that it is possible to migrate without blocking | |
1388 | */ | |
1389 | if (mode & ISOLATE_ASYNC_MIGRATE) { | |
1390 | /* All the caller can do on PageWriteback is block */ | |
1391 | if (PageWriteback(page)) | |
1392 | return ret; | |
1393 | ||
1394 | if (PageDirty(page)) { | |
1395 | struct address_space *mapping; | |
1396 | ||
1397 | /* | |
1398 | * Only pages without mappings or that have a | |
1399 | * ->migratepage callback are possible to migrate | |
1400 | * without blocking | |
1401 | */ | |
1402 | mapping = page_mapping(page); | |
1403 | if (mapping && !mapping->a_ops->migratepage) | |
1404 | return ret; | |
1405 | } | |
1406 | } | |
1407 | ||
1408 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) | |
1409 | return ret; | |
1410 | ||
1411 | if (likely(get_page_unless_zero(page))) { | |
1412 | /* | |
1413 | * Be careful not to clear PageLRU until after we're | |
1414 | * sure the page is not being freed elsewhere -- the | |
1415 | * page release code relies on it. | |
1416 | */ | |
1417 | ClearPageLRU(page); | |
1418 | ret = 0; | |
1419 | } | |
1420 | ||
1421 | return ret; | |
1422 | } | |
1423 | ||
1424 | ||
1425 | /* | |
1426 | * Update LRU sizes after isolating pages. The LRU size updates must | |
1427 | * be complete before mem_cgroup_update_lru_size due to a santity check. | |
1428 | */ | |
1429 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | |
1430 | enum lru_list lru, unsigned long *nr_zone_taken) | |
1431 | { | |
1432 | int zid; | |
1433 | ||
1434 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1435 | if (!nr_zone_taken[zid]) | |
1436 | continue; | |
1437 | ||
1438 | __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | |
1439 | #ifdef CONFIG_MEMCG | |
1440 | mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | |
1441 | #endif | |
1442 | } | |
1443 | ||
1444 | } | |
1445 | ||
1446 | /* | |
1447 | * zone_lru_lock is heavily contended. Some of the functions that | |
1448 | * shrink the lists perform better by taking out a batch of pages | |
1449 | * and working on them outside the LRU lock. | |
1450 | * | |
1451 | * For pagecache intensive workloads, this function is the hottest | |
1452 | * spot in the kernel (apart from copy_*_user functions). | |
1453 | * | |
1454 | * Appropriate locks must be held before calling this function. | |
1455 | * | |
1456 | * @nr_to_scan: The number of pages to look through on the list. | |
1457 | * @lruvec: The LRU vector to pull pages from. | |
1458 | * @dst: The temp list to put pages on to. | |
1459 | * @nr_scanned: The number of pages that were scanned. | |
1460 | * @sc: The scan_control struct for this reclaim session | |
1461 | * @mode: One of the LRU isolation modes | |
1462 | * @lru: LRU list id for isolating | |
1463 | * | |
1464 | * returns how many pages were moved onto *@dst. | |
1465 | */ | |
1466 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |
1467 | struct lruvec *lruvec, struct list_head *dst, | |
1468 | unsigned long *nr_scanned, struct scan_control *sc, | |
1469 | isolate_mode_t mode, enum lru_list lru) | |
1470 | { | |
1471 | struct list_head *src = &lruvec->lists[lru]; | |
1472 | unsigned long nr_taken = 0; | |
1473 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; | |
1474 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; | |
1475 | unsigned long skipped = 0; | |
1476 | unsigned long scan, nr_pages; | |
1477 | LIST_HEAD(pages_skipped); | |
1478 | ||
1479 | for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && | |
1480 | !list_empty(src); scan++) { | |
1481 | struct page *page; | |
1482 | ||
1483 | page = lru_to_page(src); | |
1484 | prefetchw_prev_lru_page(page, src, flags); | |
1485 | ||
1486 | VM_BUG_ON_PAGE(!PageLRU(page), page); | |
1487 | ||
1488 | if (page_zonenum(page) > sc->reclaim_idx) { | |
1489 | list_move(&page->lru, &pages_skipped); | |
1490 | nr_skipped[page_zonenum(page)]++; | |
1491 | continue; | |
1492 | } | |
1493 | ||
1494 | switch (__isolate_lru_page(page, mode)) { | |
1495 | case 0: | |
1496 | nr_pages = hpage_nr_pages(page); | |
1497 | nr_taken += nr_pages; | |
1498 | nr_zone_taken[page_zonenum(page)] += nr_pages; | |
1499 | list_move(&page->lru, dst); | |
1500 | break; | |
1501 | ||
1502 | case -EBUSY: | |
1503 | /* else it is being freed elsewhere */ | |
1504 | list_move(&page->lru, src); | |
1505 | continue; | |
1506 | ||
1507 | default: | |
1508 | BUG(); | |
1509 | } | |
1510 | } | |
1511 | ||
1512 | /* | |
1513 | * Splice any skipped pages to the start of the LRU list. Note that | |
1514 | * this disrupts the LRU order when reclaiming for lower zones but | |
1515 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | |
1516 | * scanning would soon rescan the same pages to skip and put the | |
1517 | * system at risk of premature OOM. | |
1518 | */ | |
1519 | if (!list_empty(&pages_skipped)) { | |
1520 | int zid; | |
1521 | ||
1522 | list_splice(&pages_skipped, src); | |
1523 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1524 | if (!nr_skipped[zid]) | |
1525 | continue; | |
1526 | ||
1527 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | |
1528 | skipped += nr_skipped[zid]; | |
1529 | } | |
1530 | } | |
1531 | *nr_scanned = scan; | |
1532 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, | |
1533 | scan, skipped, nr_taken, mode, lru); | |
1534 | update_lru_sizes(lruvec, lru, nr_zone_taken); | |
1535 | return nr_taken; | |
1536 | } | |
1537 | ||
1538 | /** | |
1539 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1540 | * @page: page to isolate from its LRU list | |
1541 | * | |
1542 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1543 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1544 | * | |
1545 | * Returns 0 if the page was removed from an LRU list. | |
1546 | * Returns -EBUSY if the page was not on an LRU list. | |
1547 | * | |
1548 | * The returned page will have PageLRU() cleared. If it was found on | |
1549 | * the active list, it will have PageActive set. If it was found on | |
1550 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1551 | * may need to be cleared by the caller before letting the page go. | |
1552 | * | |
1553 | * The vmstat statistic corresponding to the list on which the page was | |
1554 | * found will be decremented. | |
1555 | * | |
1556 | * Restrictions: | |
1557 | * (1) Must be called with an elevated refcount on the page. This is a | |
1558 | * fundamentnal difference from isolate_lru_pages (which is called | |
1559 | * without a stable reference). | |
1560 | * (2) the lru_lock must not be held. | |
1561 | * (3) interrupts must be enabled. | |
1562 | */ | |
1563 | int isolate_lru_page(struct page *page) | |
1564 | { | |
1565 | int ret = -EBUSY; | |
1566 | ||
1567 | VM_BUG_ON_PAGE(!page_count(page), page); | |
1568 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); | |
1569 | ||
1570 | if (PageLRU(page)) { | |
1571 | struct zone *zone = page_zone(page); | |
1572 | struct lruvec *lruvec; | |
1573 | ||
1574 | spin_lock_irq(zone_lru_lock(zone)); | |
1575 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); | |
1576 | if (PageLRU(page)) { | |
1577 | int lru = page_lru(page); | |
1578 | get_page(page); | |
1579 | ClearPageLRU(page); | |
1580 | del_page_from_lru_list(page, lruvec, lru); | |
1581 | ret = 0; | |
1582 | } | |
1583 | spin_unlock_irq(zone_lru_lock(zone)); | |
1584 | } | |
1585 | return ret; | |
1586 | } | |
1587 | ||
1588 | /* | |
1589 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and | |
1590 | * then get resheduled. When there are massive number of tasks doing page | |
1591 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1592 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1593 | * unnecessary swapping, thrashing and OOM. | |
1594 | */ | |
1595 | static int too_many_isolated(struct pglist_data *pgdat, int file, | |
1596 | struct scan_control *sc) | |
1597 | { | |
1598 | unsigned long inactive, isolated; | |
1599 | ||
1600 | if (current_is_kswapd()) | |
1601 | return 0; | |
1602 | ||
1603 | if (!sane_reclaim(sc)) | |
1604 | return 0; | |
1605 | ||
1606 | if (file) { | |
1607 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); | |
1608 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | |
1609 | } else { | |
1610 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); | |
1611 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | |
1612 | } | |
1613 | ||
1614 | /* | |
1615 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1616 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1617 | * deadlock. | |
1618 | */ | |
1619 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) | |
1620 | inactive >>= 3; | |
1621 | ||
1622 | return isolated > inactive; | |
1623 | } | |
1624 | ||
1625 | static noinline_for_stack void | |
1626 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) | |
1627 | { | |
1628 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
1629 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
1630 | LIST_HEAD(pages_to_free); | |
1631 | ||
1632 | /* | |
1633 | * Put back any unfreeable pages. | |
1634 | */ | |
1635 | while (!list_empty(page_list)) { | |
1636 | struct page *page = lru_to_page(page_list); | |
1637 | int lru; | |
1638 | ||
1639 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
1640 | list_del(&page->lru); | |
1641 | if (unlikely(!page_evictable(page))) { | |
1642 | spin_unlock_irq(&pgdat->lru_lock); | |
1643 | putback_lru_page(page); | |
1644 | spin_lock_irq(&pgdat->lru_lock); | |
1645 | continue; | |
1646 | } | |
1647 | ||
1648 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | |
1649 | ||
1650 | SetPageLRU(page); | |
1651 | lru = page_lru(page); | |
1652 | add_page_to_lru_list(page, lruvec, lru); | |
1653 | ||
1654 | if (is_active_lru(lru)) { | |
1655 | int file = is_file_lru(lru); | |
1656 | int numpages = hpage_nr_pages(page); | |
1657 | reclaim_stat->recent_rotated[file] += numpages; | |
1658 | } | |
1659 | if (put_page_testzero(page)) { | |
1660 | __ClearPageLRU(page); | |
1661 | __ClearPageActive(page); | |
1662 | del_page_from_lru_list(page, lruvec, lru); | |
1663 | ||
1664 | if (unlikely(PageCompound(page))) { | |
1665 | spin_unlock_irq(&pgdat->lru_lock); | |
1666 | mem_cgroup_uncharge(page); | |
1667 | (*get_compound_page_dtor(page))(page); | |
1668 | spin_lock_irq(&pgdat->lru_lock); | |
1669 | } else | |
1670 | list_add(&page->lru, &pages_to_free); | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | /* | |
1675 | * To save our caller's stack, now use input list for pages to free. | |
1676 | */ | |
1677 | list_splice(&pages_to_free, page_list); | |
1678 | } | |
1679 | ||
1680 | /* | |
1681 | * If a kernel thread (such as nfsd for loop-back mounts) services | |
1682 | * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. | |
1683 | * In that case we should only throttle if the backing device it is | |
1684 | * writing to is congested. In other cases it is safe to throttle. | |
1685 | */ | |
1686 | static int current_may_throttle(void) | |
1687 | { | |
1688 | return !(current->flags & PF_LESS_THROTTLE) || | |
1689 | current->backing_dev_info == NULL || | |
1690 | bdi_write_congested(current->backing_dev_info); | |
1691 | } | |
1692 | ||
1693 | /* | |
1694 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number | |
1695 | * of reclaimed pages | |
1696 | */ | |
1697 | static noinline_for_stack unsigned long | |
1698 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, | |
1699 | struct scan_control *sc, enum lru_list lru) | |
1700 | { | |
1701 | LIST_HEAD(page_list); | |
1702 | unsigned long nr_scanned; | |
1703 | unsigned long nr_reclaimed = 0; | |
1704 | unsigned long nr_taken; | |
1705 | struct reclaim_stat stat = {}; | |
1706 | isolate_mode_t isolate_mode = 0; | |
1707 | int file = is_file_lru(lru); | |
1708 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
1709 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
1710 | ||
1711 | while (unlikely(too_many_isolated(pgdat, file, sc))) { | |
1712 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
1713 | ||
1714 | /* We are about to die and free our memory. Return now. */ | |
1715 | if (fatal_signal_pending(current)) | |
1716 | return SWAP_CLUSTER_MAX; | |
1717 | } | |
1718 | ||
1719 | lru_add_drain(); | |
1720 | ||
1721 | if (!sc->may_unmap) | |
1722 | isolate_mode |= ISOLATE_UNMAPPED; | |
1723 | ||
1724 | spin_lock_irq(&pgdat->lru_lock); | |
1725 | ||
1726 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, | |
1727 | &nr_scanned, sc, isolate_mode, lru); | |
1728 | ||
1729 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | |
1730 | reclaim_stat->recent_scanned[file] += nr_taken; | |
1731 | ||
1732 | if (global_reclaim(sc)) { | |
1733 | if (current_is_kswapd()) | |
1734 | __count_vm_events(PGSCAN_KSWAPD, nr_scanned); | |
1735 | else | |
1736 | __count_vm_events(PGSCAN_DIRECT, nr_scanned); | |
1737 | } | |
1738 | spin_unlock_irq(&pgdat->lru_lock); | |
1739 | ||
1740 | if (nr_taken == 0) | |
1741 | return 0; | |
1742 | ||
1743 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, | |
1744 | &stat, false); | |
1745 | ||
1746 | spin_lock_irq(&pgdat->lru_lock); | |
1747 | ||
1748 | if (global_reclaim(sc)) { | |
1749 | if (current_is_kswapd()) | |
1750 | __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); | |
1751 | else | |
1752 | __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); | |
1753 | } | |
1754 | ||
1755 | putback_inactive_pages(lruvec, &page_list); | |
1756 | ||
1757 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
1758 | ||
1759 | spin_unlock_irq(&pgdat->lru_lock); | |
1760 | ||
1761 | mem_cgroup_uncharge_list(&page_list); | |
1762 | free_hot_cold_page_list(&page_list, true); | |
1763 | ||
1764 | /* | |
1765 | * If reclaim is isolating dirty pages under writeback, it implies | |
1766 | * that the long-lived page allocation rate is exceeding the page | |
1767 | * laundering rate. Either the global limits are not being effective | |
1768 | * at throttling processes due to the page distribution throughout | |
1769 | * zones or there is heavy usage of a slow backing device. The | |
1770 | * only option is to throttle from reclaim context which is not ideal | |
1771 | * as there is no guarantee the dirtying process is throttled in the | |
1772 | * same way balance_dirty_pages() manages. | |
1773 | * | |
1774 | * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number | |
1775 | * of pages under pages flagged for immediate reclaim and stall if any | |
1776 | * are encountered in the nr_immediate check below. | |
1777 | */ | |
1778 | if (stat.nr_writeback && stat.nr_writeback == nr_taken) | |
1779 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
1780 | ||
1781 | /* | |
1782 | * Legacy memcg will stall in page writeback so avoid forcibly | |
1783 | * stalling here. | |
1784 | */ | |
1785 | if (sane_reclaim(sc)) { | |
1786 | /* | |
1787 | * Tag a zone as congested if all the dirty pages scanned were | |
1788 | * backed by a congested BDI and wait_iff_congested will stall. | |
1789 | */ | |
1790 | if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) | |
1791 | set_bit(PGDAT_CONGESTED, &pgdat->flags); | |
1792 | ||
1793 | /* | |
1794 | * If dirty pages are scanned that are not queued for IO, it | |
1795 | * implies that flushers are not doing their job. This can | |
1796 | * happen when memory pressure pushes dirty pages to the end of | |
1797 | * the LRU before the dirty limits are breached and the dirty | |
1798 | * data has expired. It can also happen when the proportion of | |
1799 | * dirty pages grows not through writes but through memory | |
1800 | * pressure reclaiming all the clean cache. And in some cases, | |
1801 | * the flushers simply cannot keep up with the allocation | |
1802 | * rate. Nudge the flusher threads in case they are asleep, but | |
1803 | * also allow kswapd to start writing pages during reclaim. | |
1804 | */ | |
1805 | if (stat.nr_unqueued_dirty == nr_taken) { | |
1806 | wakeup_flusher_threads(0, WB_REASON_VMSCAN); | |
1807 | set_bit(PGDAT_DIRTY, &pgdat->flags); | |
1808 | } | |
1809 | ||
1810 | /* | |
1811 | * If kswapd scans pages marked marked for immediate | |
1812 | * reclaim and under writeback (nr_immediate), it implies | |
1813 | * that pages are cycling through the LRU faster than | |
1814 | * they are written so also forcibly stall. | |
1815 | */ | |
1816 | if (stat.nr_immediate && current_may_throttle()) | |
1817 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
1818 | } | |
1819 | ||
1820 | /* | |
1821 | * Stall direct reclaim for IO completions if underlying BDIs or zone | |
1822 | * is congested. Allow kswapd to continue until it starts encountering | |
1823 | * unqueued dirty pages or cycling through the LRU too quickly. | |
1824 | */ | |
1825 | if (!sc->hibernation_mode && !current_is_kswapd() && | |
1826 | current_may_throttle()) | |
1827 | wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); | |
1828 | ||
1829 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, | |
1830 | nr_scanned, nr_reclaimed, | |
1831 | stat.nr_dirty, stat.nr_writeback, | |
1832 | stat.nr_congested, stat.nr_immediate, | |
1833 | stat.nr_activate, stat.nr_ref_keep, | |
1834 | stat.nr_unmap_fail, | |
1835 | sc->priority, file); | |
1836 | return nr_reclaimed; | |
1837 | } | |
1838 | ||
1839 | /* | |
1840 | * This moves pages from the active list to the inactive list. | |
1841 | * | |
1842 | * We move them the other way if the page is referenced by one or more | |
1843 | * processes, from rmap. | |
1844 | * | |
1845 | * If the pages are mostly unmapped, the processing is fast and it is | |
1846 | * appropriate to hold zone_lru_lock across the whole operation. But if | |
1847 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1848 | * should drop zone_lru_lock around each page. It's impossible to balance | |
1849 | * this, so instead we remove the pages from the LRU while processing them. | |
1850 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1851 | * nobody will play with that bit on a non-LRU page. | |
1852 | * | |
1853 | * The downside is that we have to touch page->_refcount against each page. | |
1854 | * But we had to alter page->flags anyway. | |
1855 | * | |
1856 | * Returns the number of pages moved to the given lru. | |
1857 | */ | |
1858 | ||
1859 | static unsigned move_active_pages_to_lru(struct lruvec *lruvec, | |
1860 | struct list_head *list, | |
1861 | struct list_head *pages_to_free, | |
1862 | enum lru_list lru) | |
1863 | { | |
1864 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
1865 | struct page *page; | |
1866 | int nr_pages; | |
1867 | int nr_moved = 0; | |
1868 | ||
1869 | while (!list_empty(list)) { | |
1870 | page = lru_to_page(list); | |
1871 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | |
1872 | ||
1873 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
1874 | SetPageLRU(page); | |
1875 | ||
1876 | nr_pages = hpage_nr_pages(page); | |
1877 | update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); | |
1878 | list_move(&page->lru, &lruvec->lists[lru]); | |
1879 | ||
1880 | if (put_page_testzero(page)) { | |
1881 | __ClearPageLRU(page); | |
1882 | __ClearPageActive(page); | |
1883 | del_page_from_lru_list(page, lruvec, lru); | |
1884 | ||
1885 | if (unlikely(PageCompound(page))) { | |
1886 | spin_unlock_irq(&pgdat->lru_lock); | |
1887 | mem_cgroup_uncharge(page); | |
1888 | (*get_compound_page_dtor(page))(page); | |
1889 | spin_lock_irq(&pgdat->lru_lock); | |
1890 | } else | |
1891 | list_add(&page->lru, pages_to_free); | |
1892 | } else { | |
1893 | nr_moved += nr_pages; | |
1894 | } | |
1895 | } | |
1896 | ||
1897 | if (!is_active_lru(lru)) | |
1898 | __count_vm_events(PGDEACTIVATE, nr_moved); | |
1899 | ||
1900 | return nr_moved; | |
1901 | } | |
1902 | ||
1903 | static void shrink_active_list(unsigned long nr_to_scan, | |
1904 | struct lruvec *lruvec, | |
1905 | struct scan_control *sc, | |
1906 | enum lru_list lru) | |
1907 | { | |
1908 | unsigned long nr_taken; | |
1909 | unsigned long nr_scanned; | |
1910 | unsigned long vm_flags; | |
1911 | LIST_HEAD(l_hold); /* The pages which were snipped off */ | |
1912 | LIST_HEAD(l_active); | |
1913 | LIST_HEAD(l_inactive); | |
1914 | struct page *page; | |
1915 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
1916 | unsigned nr_deactivate, nr_activate; | |
1917 | unsigned nr_rotated = 0; | |
1918 | isolate_mode_t isolate_mode = 0; | |
1919 | int file = is_file_lru(lru); | |
1920 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
1921 | ||
1922 | lru_add_drain(); | |
1923 | ||
1924 | if (!sc->may_unmap) | |
1925 | isolate_mode |= ISOLATE_UNMAPPED; | |
1926 | ||
1927 | spin_lock_irq(&pgdat->lru_lock); | |
1928 | ||
1929 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, | |
1930 | &nr_scanned, sc, isolate_mode, lru); | |
1931 | ||
1932 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); | |
1933 | reclaim_stat->recent_scanned[file] += nr_taken; | |
1934 | ||
1935 | __count_vm_events(PGREFILL, nr_scanned); | |
1936 | ||
1937 | spin_unlock_irq(&pgdat->lru_lock); | |
1938 | ||
1939 | while (!list_empty(&l_hold)) { | |
1940 | cond_resched(); | |
1941 | page = lru_to_page(&l_hold); | |
1942 | list_del(&page->lru); | |
1943 | ||
1944 | if (unlikely(!page_evictable(page))) { | |
1945 | putback_lru_page(page); | |
1946 | continue; | |
1947 | } | |
1948 | ||
1949 | if (unlikely(buffer_heads_over_limit)) { | |
1950 | if (page_has_private(page) && trylock_page(page)) { | |
1951 | if (page_has_private(page)) | |
1952 | try_to_release_page(page, 0); | |
1953 | unlock_page(page); | |
1954 | } | |
1955 | } | |
1956 | ||
1957 | if (page_referenced(page, 0, sc->target_mem_cgroup, | |
1958 | &vm_flags)) { | |
1959 | nr_rotated += hpage_nr_pages(page); | |
1960 | /* | |
1961 | * Identify referenced, file-backed active pages and | |
1962 | * give them one more trip around the active list. So | |
1963 | * that executable code get better chances to stay in | |
1964 | * memory under moderate memory pressure. Anon pages | |
1965 | * are not likely to be evicted by use-once streaming | |
1966 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
1967 | * so we ignore them here. | |
1968 | */ | |
1969 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { | |
1970 | list_add(&page->lru, &l_active); | |
1971 | continue; | |
1972 | } | |
1973 | } | |
1974 | ||
1975 | ClearPageActive(page); /* we are de-activating */ | |
1976 | list_add(&page->lru, &l_inactive); | |
1977 | } | |
1978 | ||
1979 | /* | |
1980 | * Move pages back to the lru list. | |
1981 | */ | |
1982 | spin_lock_irq(&pgdat->lru_lock); | |
1983 | /* | |
1984 | * Count referenced pages from currently used mappings as rotated, | |
1985 | * even though only some of them are actually re-activated. This | |
1986 | * helps balance scan pressure between file and anonymous pages in | |
1987 | * get_scan_count. | |
1988 | */ | |
1989 | reclaim_stat->recent_rotated[file] += nr_rotated; | |
1990 | ||
1991 | nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); | |
1992 | nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
1993 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
1994 | spin_unlock_irq(&pgdat->lru_lock); | |
1995 | ||
1996 | mem_cgroup_uncharge_list(&l_hold); | |
1997 | free_hot_cold_page_list(&l_hold, true); | |
1998 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, | |
1999 | nr_deactivate, nr_rotated, sc->priority, file); | |
2000 | } | |
2001 | ||
2002 | /* | |
2003 | * The inactive anon list should be small enough that the VM never has | |
2004 | * to do too much work. | |
2005 | * | |
2006 | * The inactive file list should be small enough to leave most memory | |
2007 | * to the established workingset on the scan-resistant active list, | |
2008 | * but large enough to avoid thrashing the aggregate readahead window. | |
2009 | * | |
2010 | * Both inactive lists should also be large enough that each inactive | |
2011 | * page has a chance to be referenced again before it is reclaimed. | |
2012 | * | |
2013 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages | |
2014 | * on this LRU, maintained by the pageout code. A zone->inactive_ratio | |
2015 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. | |
2016 | * | |
2017 | * total target max | |
2018 | * memory ratio inactive | |
2019 | * ------------------------------------- | |
2020 | * 10MB 1 5MB | |
2021 | * 100MB 1 50MB | |
2022 | * 1GB 3 250MB | |
2023 | * 10GB 10 0.9GB | |
2024 | * 100GB 31 3GB | |
2025 | * 1TB 101 10GB | |
2026 | * 10TB 320 32GB | |
2027 | */ | |
2028 | static bool inactive_list_is_low(struct lruvec *lruvec, bool file, | |
2029 | struct scan_control *sc, bool trace) | |
2030 | { | |
2031 | unsigned long inactive_ratio; | |
2032 | unsigned long inactive, active; | |
2033 | enum lru_list inactive_lru = file * LRU_FILE; | |
2034 | enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; | |
2035 | unsigned long gb; | |
2036 | ||
2037 | /* | |
2038 | * If we don't have swap space, anonymous page deactivation | |
2039 | * is pointless. | |
2040 | */ | |
2041 | if (!file && !total_swap_pages) | |
2042 | return false; | |
2043 | ||
2044 | inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); | |
2045 | active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); | |
2046 | ||
2047 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | |
2048 | if (gb) | |
2049 | inactive_ratio = int_sqrt(10 * gb); | |
2050 | else | |
2051 | inactive_ratio = 1; | |
2052 | ||
2053 | if (trace) | |
2054 | trace_mm_vmscan_inactive_list_is_low(lruvec_pgdat(lruvec)->node_id, | |
2055 | sc->reclaim_idx, | |
2056 | lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, | |
2057 | lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, | |
2058 | inactive_ratio, file); | |
2059 | ||
2060 | return inactive * inactive_ratio < active; | |
2061 | } | |
2062 | ||
2063 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, | |
2064 | struct lruvec *lruvec, struct scan_control *sc) | |
2065 | { | |
2066 | if (is_active_lru(lru)) { | |
2067 | if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) | |
2068 | shrink_active_list(nr_to_scan, lruvec, sc, lru); | |
2069 | return 0; | |
2070 | } | |
2071 | ||
2072 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); | |
2073 | } | |
2074 | ||
2075 | enum scan_balance { | |
2076 | SCAN_EQUAL, | |
2077 | SCAN_FRACT, | |
2078 | SCAN_ANON, | |
2079 | SCAN_FILE, | |
2080 | }; | |
2081 | ||
2082 | /* | |
2083 | * Determine how aggressively the anon and file LRU lists should be | |
2084 | * scanned. The relative value of each set of LRU lists is determined | |
2085 | * by looking at the fraction of the pages scanned we did rotate back | |
2086 | * onto the active list instead of evict. | |
2087 | * | |
2088 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan | |
2089 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
2090 | */ | |
2091 | static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, | |
2092 | struct scan_control *sc, unsigned long *nr, | |
2093 | unsigned long *lru_pages) | |
2094 | { | |
2095 | int swappiness = mem_cgroup_swappiness(memcg); | |
2096 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
2097 | u64 fraction[2]; | |
2098 | u64 denominator = 0; /* gcc */ | |
2099 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); | |
2100 | unsigned long anon_prio, file_prio; | |
2101 | enum scan_balance scan_balance; | |
2102 | unsigned long anon, file; | |
2103 | unsigned long ap, fp; | |
2104 | enum lru_list lru; | |
2105 | ||
2106 | /* If we have no swap space, do not bother scanning anon pages. */ | |
2107 | if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { | |
2108 | scan_balance = SCAN_FILE; | |
2109 | goto out; | |
2110 | } | |
2111 | ||
2112 | /* | |
2113 | * Global reclaim will swap to prevent OOM even with no | |
2114 | * swappiness, but memcg users want to use this knob to | |
2115 | * disable swapping for individual groups completely when | |
2116 | * using the memory controller's swap limit feature would be | |
2117 | * too expensive. | |
2118 | */ | |
2119 | if (!global_reclaim(sc) && !swappiness) { | |
2120 | scan_balance = SCAN_FILE; | |
2121 | goto out; | |
2122 | } | |
2123 | ||
2124 | /* | |
2125 | * Do not apply any pressure balancing cleverness when the | |
2126 | * system is close to OOM, scan both anon and file equally | |
2127 | * (unless the swappiness setting disagrees with swapping). | |
2128 | */ | |
2129 | if (!sc->priority && swappiness) { | |
2130 | scan_balance = SCAN_EQUAL; | |
2131 | goto out; | |
2132 | } | |
2133 | ||
2134 | /* | |
2135 | * Prevent the reclaimer from falling into the cache trap: as | |
2136 | * cache pages start out inactive, every cache fault will tip | |
2137 | * the scan balance towards the file LRU. And as the file LRU | |
2138 | * shrinks, so does the window for rotation from references. | |
2139 | * This means we have a runaway feedback loop where a tiny | |
2140 | * thrashing file LRU becomes infinitely more attractive than | |
2141 | * anon pages. Try to detect this based on file LRU size. | |
2142 | */ | |
2143 | if (global_reclaim(sc)) { | |
2144 | unsigned long pgdatfile; | |
2145 | unsigned long pgdatfree; | |
2146 | int z; | |
2147 | unsigned long total_high_wmark = 0; | |
2148 | ||
2149 | pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); | |
2150 | pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + | |
2151 | node_page_state(pgdat, NR_INACTIVE_FILE); | |
2152 | ||
2153 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
2154 | struct zone *zone = &pgdat->node_zones[z]; | |
2155 | if (!managed_zone(zone)) | |
2156 | continue; | |
2157 | ||
2158 | total_high_wmark += high_wmark_pages(zone); | |
2159 | } | |
2160 | ||
2161 | if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { | |
2162 | scan_balance = SCAN_ANON; | |
2163 | goto out; | |
2164 | } | |
2165 | } | |
2166 | ||
2167 | /* | |
2168 | * If there is enough inactive page cache, i.e. if the size of the | |
2169 | * inactive list is greater than that of the active list *and* the | |
2170 | * inactive list actually has some pages to scan on this priority, we | |
2171 | * do not reclaim anything from the anonymous working set right now. | |
2172 | * Without the second condition we could end up never scanning an | |
2173 | * lruvec even if it has plenty of old anonymous pages unless the | |
2174 | * system is under heavy pressure. | |
2175 | */ | |
2176 | if (!inactive_list_is_low(lruvec, true, sc, false) && | |
2177 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { | |
2178 | scan_balance = SCAN_FILE; | |
2179 | goto out; | |
2180 | } | |
2181 | ||
2182 | scan_balance = SCAN_FRACT; | |
2183 | ||
2184 | /* | |
2185 | * With swappiness at 100, anonymous and file have the same priority. | |
2186 | * This scanning priority is essentially the inverse of IO cost. | |
2187 | */ | |
2188 | anon_prio = swappiness; | |
2189 | file_prio = 200 - anon_prio; | |
2190 | ||
2191 | /* | |
2192 | * OK, so we have swap space and a fair amount of page cache | |
2193 | * pages. We use the recently rotated / recently scanned | |
2194 | * ratios to determine how valuable each cache is. | |
2195 | * | |
2196 | * Because workloads change over time (and to avoid overflow) | |
2197 | * we keep these statistics as a floating average, which ends | |
2198 | * up weighing recent references more than old ones. | |
2199 | * | |
2200 | * anon in [0], file in [1] | |
2201 | */ | |
2202 | ||
2203 | anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + | |
2204 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); | |
2205 | file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + | |
2206 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); | |
2207 | ||
2208 | spin_lock_irq(&pgdat->lru_lock); | |
2209 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { | |
2210 | reclaim_stat->recent_scanned[0] /= 2; | |
2211 | reclaim_stat->recent_rotated[0] /= 2; | |
2212 | } | |
2213 | ||
2214 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { | |
2215 | reclaim_stat->recent_scanned[1] /= 2; | |
2216 | reclaim_stat->recent_rotated[1] /= 2; | |
2217 | } | |
2218 | ||
2219 | /* | |
2220 | * The amount of pressure on anon vs file pages is inversely | |
2221 | * proportional to the fraction of recently scanned pages on | |
2222 | * each list that were recently referenced and in active use. | |
2223 | */ | |
2224 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); | |
2225 | ap /= reclaim_stat->recent_rotated[0] + 1; | |
2226 | ||
2227 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); | |
2228 | fp /= reclaim_stat->recent_rotated[1] + 1; | |
2229 | spin_unlock_irq(&pgdat->lru_lock); | |
2230 | ||
2231 | fraction[0] = ap; | |
2232 | fraction[1] = fp; | |
2233 | denominator = ap + fp + 1; | |
2234 | out: | |
2235 | *lru_pages = 0; | |
2236 | for_each_evictable_lru(lru) { | |
2237 | int file = is_file_lru(lru); | |
2238 | unsigned long size; | |
2239 | unsigned long scan; | |
2240 | ||
2241 | size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); | |
2242 | scan = size >> sc->priority; | |
2243 | /* | |
2244 | * If the cgroup's already been deleted, make sure to | |
2245 | * scrape out the remaining cache. | |
2246 | */ | |
2247 | if (!scan && !mem_cgroup_online(memcg)) | |
2248 | scan = min(size, SWAP_CLUSTER_MAX); | |
2249 | ||
2250 | switch (scan_balance) { | |
2251 | case SCAN_EQUAL: | |
2252 | /* Scan lists relative to size */ | |
2253 | break; | |
2254 | case SCAN_FRACT: | |
2255 | /* | |
2256 | * Scan types proportional to swappiness and | |
2257 | * their relative recent reclaim efficiency. | |
2258 | */ | |
2259 | scan = div64_u64(scan * fraction[file], | |
2260 | denominator); | |
2261 | break; | |
2262 | case SCAN_FILE: | |
2263 | case SCAN_ANON: | |
2264 | /* Scan one type exclusively */ | |
2265 | if ((scan_balance == SCAN_FILE) != file) { | |
2266 | size = 0; | |
2267 | scan = 0; | |
2268 | } | |
2269 | break; | |
2270 | default: | |
2271 | /* Look ma, no brain */ | |
2272 | BUG(); | |
2273 | } | |
2274 | ||
2275 | *lru_pages += size; | |
2276 | nr[lru] = scan; | |
2277 | } | |
2278 | } | |
2279 | ||
2280 | /* | |
2281 | * This is a basic per-node page freer. Used by both kswapd and direct reclaim. | |
2282 | */ | |
2283 | static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, | |
2284 | struct scan_control *sc, unsigned long *lru_pages) | |
2285 | { | |
2286 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); | |
2287 | unsigned long nr[NR_LRU_LISTS]; | |
2288 | unsigned long targets[NR_LRU_LISTS]; | |
2289 | unsigned long nr_to_scan; | |
2290 | enum lru_list lru; | |
2291 | unsigned long nr_reclaimed = 0; | |
2292 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
2293 | struct blk_plug plug; | |
2294 | bool scan_adjusted; | |
2295 | ||
2296 | get_scan_count(lruvec, memcg, sc, nr, lru_pages); | |
2297 | ||
2298 | /* Record the original scan target for proportional adjustments later */ | |
2299 | memcpy(targets, nr, sizeof(nr)); | |
2300 | ||
2301 | /* | |
2302 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
2303 | * event that can occur when there is little memory pressure e.g. | |
2304 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
2305 | * when the requested number of pages are reclaimed when scanning at | |
2306 | * DEF_PRIORITY on the assumption that the fact we are direct | |
2307 | * reclaiming implies that kswapd is not keeping up and it is best to | |
2308 | * do a batch of work at once. For memcg reclaim one check is made to | |
2309 | * abort proportional reclaim if either the file or anon lru has already | |
2310 | * dropped to zero at the first pass. | |
2311 | */ | |
2312 | scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && | |
2313 | sc->priority == DEF_PRIORITY); | |
2314 | ||
2315 | blk_start_plug(&plug); | |
2316 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
2317 | nr[LRU_INACTIVE_FILE]) { | |
2318 | unsigned long nr_anon, nr_file, percentage; | |
2319 | unsigned long nr_scanned; | |
2320 | ||
2321 | for_each_evictable_lru(lru) { | |
2322 | if (nr[lru]) { | |
2323 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
2324 | nr[lru] -= nr_to_scan; | |
2325 | ||
2326 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
2327 | lruvec, sc); | |
2328 | } | |
2329 | } | |
2330 | ||
2331 | cond_resched(); | |
2332 | ||
2333 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) | |
2334 | continue; | |
2335 | ||
2336 | /* | |
2337 | * For kswapd and memcg, reclaim at least the number of pages | |
2338 | * requested. Ensure that the anon and file LRUs are scanned | |
2339 | * proportionally what was requested by get_scan_count(). We | |
2340 | * stop reclaiming one LRU and reduce the amount scanning | |
2341 | * proportional to the original scan target. | |
2342 | */ | |
2343 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
2344 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
2345 | ||
2346 | /* | |
2347 | * It's just vindictive to attack the larger once the smaller | |
2348 | * has gone to zero. And given the way we stop scanning the | |
2349 | * smaller below, this makes sure that we only make one nudge | |
2350 | * towards proportionality once we've got nr_to_reclaim. | |
2351 | */ | |
2352 | if (!nr_file || !nr_anon) | |
2353 | break; | |
2354 | ||
2355 | if (nr_file > nr_anon) { | |
2356 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
2357 | targets[LRU_ACTIVE_ANON] + 1; | |
2358 | lru = LRU_BASE; | |
2359 | percentage = nr_anon * 100 / scan_target; | |
2360 | } else { | |
2361 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
2362 | targets[LRU_ACTIVE_FILE] + 1; | |
2363 | lru = LRU_FILE; | |
2364 | percentage = nr_file * 100 / scan_target; | |
2365 | } | |
2366 | ||
2367 | /* Stop scanning the smaller of the LRU */ | |
2368 | nr[lru] = 0; | |
2369 | nr[lru + LRU_ACTIVE] = 0; | |
2370 | ||
2371 | /* | |
2372 | * Recalculate the other LRU scan count based on its original | |
2373 | * scan target and the percentage scanning already complete | |
2374 | */ | |
2375 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
2376 | nr_scanned = targets[lru] - nr[lru]; | |
2377 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2378 | nr[lru] -= min(nr[lru], nr_scanned); | |
2379 | ||
2380 | lru += LRU_ACTIVE; | |
2381 | nr_scanned = targets[lru] - nr[lru]; | |
2382 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2383 | nr[lru] -= min(nr[lru], nr_scanned); | |
2384 | ||
2385 | scan_adjusted = true; | |
2386 | } | |
2387 | blk_finish_plug(&plug); | |
2388 | sc->nr_reclaimed += nr_reclaimed; | |
2389 | ||
2390 | /* | |
2391 | * Even if we did not try to evict anon pages at all, we want to | |
2392 | * rebalance the anon lru active/inactive ratio. | |
2393 | */ | |
2394 | if (inactive_list_is_low(lruvec, false, sc, true)) | |
2395 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
2396 | sc, LRU_ACTIVE_ANON); | |
2397 | } | |
2398 | ||
2399 | /* Use reclaim/compaction for costly allocs or under memory pressure */ | |
2400 | static bool in_reclaim_compaction(struct scan_control *sc) | |
2401 | { | |
2402 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && | |
2403 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || | |
2404 | sc->priority < DEF_PRIORITY - 2)) | |
2405 | return true; | |
2406 | ||
2407 | return false; | |
2408 | } | |
2409 | ||
2410 | /* | |
2411 | * Reclaim/compaction is used for high-order allocation requests. It reclaims | |
2412 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
2413 | * true if more pages should be reclaimed such that when the page allocator | |
2414 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
2415 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
2416 | */ | |
2417 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, | |
2418 | unsigned long nr_reclaimed, | |
2419 | unsigned long nr_scanned, | |
2420 | struct scan_control *sc) | |
2421 | { | |
2422 | unsigned long pages_for_compaction; | |
2423 | unsigned long inactive_lru_pages; | |
2424 | int z; | |
2425 | ||
2426 | /* If not in reclaim/compaction mode, stop */ | |
2427 | if (!in_reclaim_compaction(sc)) | |
2428 | return false; | |
2429 | ||
2430 | /* Consider stopping depending on scan and reclaim activity */ | |
2431 | if (sc->gfp_mask & __GFP_REPEAT) { | |
2432 | /* | |
2433 | * For __GFP_REPEAT allocations, stop reclaiming if the | |
2434 | * full LRU list has been scanned and we are still failing | |
2435 | * to reclaim pages. This full LRU scan is potentially | |
2436 | * expensive but a __GFP_REPEAT caller really wants to succeed | |
2437 | */ | |
2438 | if (!nr_reclaimed && !nr_scanned) | |
2439 | return false; | |
2440 | } else { | |
2441 | /* | |
2442 | * For non-__GFP_REPEAT allocations which can presumably | |
2443 | * fail without consequence, stop if we failed to reclaim | |
2444 | * any pages from the last SWAP_CLUSTER_MAX number of | |
2445 | * pages that were scanned. This will return to the | |
2446 | * caller faster at the risk reclaim/compaction and | |
2447 | * the resulting allocation attempt fails | |
2448 | */ | |
2449 | if (!nr_reclaimed) | |
2450 | return false; | |
2451 | } | |
2452 | ||
2453 | /* | |
2454 | * If we have not reclaimed enough pages for compaction and the | |
2455 | * inactive lists are large enough, continue reclaiming | |
2456 | */ | |
2457 | pages_for_compaction = compact_gap(sc->order); | |
2458 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); | |
2459 | if (get_nr_swap_pages() > 0) | |
2460 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); | |
2461 | if (sc->nr_reclaimed < pages_for_compaction && | |
2462 | inactive_lru_pages > pages_for_compaction) | |
2463 | return true; | |
2464 | ||
2465 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
2466 | for (z = 0; z <= sc->reclaim_idx; z++) { | |
2467 | struct zone *zone = &pgdat->node_zones[z]; | |
2468 | if (!managed_zone(zone)) | |
2469 | continue; | |
2470 | ||
2471 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { | |
2472 | case COMPACT_SUCCESS: | |
2473 | case COMPACT_CONTINUE: | |
2474 | return false; | |
2475 | default: | |
2476 | /* check next zone */ | |
2477 | ; | |
2478 | } | |
2479 | } | |
2480 | return true; | |
2481 | } | |
2482 | ||
2483 | static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) | |
2484 | { | |
2485 | struct reclaim_state *reclaim_state = current->reclaim_state; | |
2486 | unsigned long nr_reclaimed, nr_scanned; | |
2487 | bool reclaimable = false; | |
2488 | ||
2489 | do { | |
2490 | struct mem_cgroup *root = sc->target_mem_cgroup; | |
2491 | struct mem_cgroup_reclaim_cookie reclaim = { | |
2492 | .pgdat = pgdat, | |
2493 | .priority = sc->priority, | |
2494 | }; | |
2495 | unsigned long node_lru_pages = 0; | |
2496 | struct mem_cgroup *memcg; | |
2497 | ||
2498 | nr_reclaimed = sc->nr_reclaimed; | |
2499 | nr_scanned = sc->nr_scanned; | |
2500 | ||
2501 | memcg = mem_cgroup_iter(root, NULL, &reclaim); | |
2502 | do { | |
2503 | unsigned long lru_pages; | |
2504 | unsigned long reclaimed; | |
2505 | unsigned long scanned; | |
2506 | ||
2507 | if (mem_cgroup_low(root, memcg)) { | |
2508 | if (!sc->may_thrash) | |
2509 | continue; | |
2510 | mem_cgroup_events(memcg, MEMCG_LOW, 1); | |
2511 | } | |
2512 | ||
2513 | reclaimed = sc->nr_reclaimed; | |
2514 | scanned = sc->nr_scanned; | |
2515 | ||
2516 | shrink_node_memcg(pgdat, memcg, sc, &lru_pages); | |
2517 | node_lru_pages += lru_pages; | |
2518 | ||
2519 | if (memcg) | |
2520 | shrink_slab(sc->gfp_mask, pgdat->node_id, | |
2521 | memcg, sc->nr_scanned - scanned, | |
2522 | lru_pages); | |
2523 | ||
2524 | /* Record the group's reclaim efficiency */ | |
2525 | vmpressure(sc->gfp_mask, memcg, false, | |
2526 | sc->nr_scanned - scanned, | |
2527 | sc->nr_reclaimed - reclaimed); | |
2528 | ||
2529 | /* | |
2530 | * Direct reclaim and kswapd have to scan all memory | |
2531 | * cgroups to fulfill the overall scan target for the | |
2532 | * node. | |
2533 | * | |
2534 | * Limit reclaim, on the other hand, only cares about | |
2535 | * nr_to_reclaim pages to be reclaimed and it will | |
2536 | * retry with decreasing priority if one round over the | |
2537 | * whole hierarchy is not sufficient. | |
2538 | */ | |
2539 | if (!global_reclaim(sc) && | |
2540 | sc->nr_reclaimed >= sc->nr_to_reclaim) { | |
2541 | mem_cgroup_iter_break(root, memcg); | |
2542 | break; | |
2543 | } | |
2544 | } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); | |
2545 | ||
2546 | /* | |
2547 | * Shrink the slab caches in the same proportion that | |
2548 | * the eligible LRU pages were scanned. | |
2549 | */ | |
2550 | if (global_reclaim(sc)) | |
2551 | shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, | |
2552 | sc->nr_scanned - nr_scanned, | |
2553 | node_lru_pages); | |
2554 | ||
2555 | if (reclaim_state) { | |
2556 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
2557 | reclaim_state->reclaimed_slab = 0; | |
2558 | } | |
2559 | ||
2560 | /* Record the subtree's reclaim efficiency */ | |
2561 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
2562 | sc->nr_scanned - nr_scanned, | |
2563 | sc->nr_reclaimed - nr_reclaimed); | |
2564 | ||
2565 | if (sc->nr_reclaimed - nr_reclaimed) | |
2566 | reclaimable = true; | |
2567 | ||
2568 | } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, | |
2569 | sc->nr_scanned - nr_scanned, sc)); | |
2570 | ||
2571 | /* | |
2572 | * Kswapd gives up on balancing particular nodes after too | |
2573 | * many failures to reclaim anything from them and goes to | |
2574 | * sleep. On reclaim progress, reset the failure counter. A | |
2575 | * successful direct reclaim run will revive a dormant kswapd. | |
2576 | */ | |
2577 | if (reclaimable) | |
2578 | pgdat->kswapd_failures = 0; | |
2579 | ||
2580 | return reclaimable; | |
2581 | } | |
2582 | ||
2583 | /* | |
2584 | * Returns true if compaction should go ahead for a costly-order request, or | |
2585 | * the allocation would already succeed without compaction. Return false if we | |
2586 | * should reclaim first. | |
2587 | */ | |
2588 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | |
2589 | { | |
2590 | unsigned long watermark; | |
2591 | enum compact_result suitable; | |
2592 | ||
2593 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); | |
2594 | if (suitable == COMPACT_SUCCESS) | |
2595 | /* Allocation should succeed already. Don't reclaim. */ | |
2596 | return true; | |
2597 | if (suitable == COMPACT_SKIPPED) | |
2598 | /* Compaction cannot yet proceed. Do reclaim. */ | |
2599 | return false; | |
2600 | ||
2601 | /* | |
2602 | * Compaction is already possible, but it takes time to run and there | |
2603 | * are potentially other callers using the pages just freed. So proceed | |
2604 | * with reclaim to make a buffer of free pages available to give | |
2605 | * compaction a reasonable chance of completing and allocating the page. | |
2606 | * Note that we won't actually reclaim the whole buffer in one attempt | |
2607 | * as the target watermark in should_continue_reclaim() is lower. But if | |
2608 | * we are already above the high+gap watermark, don't reclaim at all. | |
2609 | */ | |
2610 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); | |
2611 | ||
2612 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); | |
2613 | } | |
2614 | ||
2615 | /* | |
2616 | * This is the direct reclaim path, for page-allocating processes. We only | |
2617 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
2618 | * request. | |
2619 | * | |
2620 | * If a zone is deemed to be full of pinned pages then just give it a light | |
2621 | * scan then give up on it. | |
2622 | */ | |
2623 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) | |
2624 | { | |
2625 | struct zoneref *z; | |
2626 | struct zone *zone; | |
2627 | unsigned long nr_soft_reclaimed; | |
2628 | unsigned long nr_soft_scanned; | |
2629 | gfp_t orig_mask; | |
2630 | pg_data_t *last_pgdat = NULL; | |
2631 | ||
2632 | /* | |
2633 | * If the number of buffer_heads in the machine exceeds the maximum | |
2634 | * allowed level, force direct reclaim to scan the highmem zone as | |
2635 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
2636 | */ | |
2637 | orig_mask = sc->gfp_mask; | |
2638 | if (buffer_heads_over_limit) { | |
2639 | sc->gfp_mask |= __GFP_HIGHMEM; | |
2640 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); | |
2641 | } | |
2642 | ||
2643 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
2644 | sc->reclaim_idx, sc->nodemask) { | |
2645 | /* | |
2646 | * Take care memory controller reclaiming has small influence | |
2647 | * to global LRU. | |
2648 | */ | |
2649 | if (global_reclaim(sc)) { | |
2650 | if (!cpuset_zone_allowed(zone, | |
2651 | GFP_KERNEL | __GFP_HARDWALL)) | |
2652 | continue; | |
2653 | ||
2654 | /* | |
2655 | * If we already have plenty of memory free for | |
2656 | * compaction in this zone, don't free any more. | |
2657 | * Even though compaction is invoked for any | |
2658 | * non-zero order, only frequent costly order | |
2659 | * reclamation is disruptive enough to become a | |
2660 | * noticeable problem, like transparent huge | |
2661 | * page allocations. | |
2662 | */ | |
2663 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
2664 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
2665 | compaction_ready(zone, sc)) { | |
2666 | sc->compaction_ready = true; | |
2667 | continue; | |
2668 | } | |
2669 | ||
2670 | /* | |
2671 | * Shrink each node in the zonelist once. If the | |
2672 | * zonelist is ordered by zone (not the default) then a | |
2673 | * node may be shrunk multiple times but in that case | |
2674 | * the user prefers lower zones being preserved. | |
2675 | */ | |
2676 | if (zone->zone_pgdat == last_pgdat) | |
2677 | continue; | |
2678 | ||
2679 | /* | |
2680 | * This steals pages from memory cgroups over softlimit | |
2681 | * and returns the number of reclaimed pages and | |
2682 | * scanned pages. This works for global memory pressure | |
2683 | * and balancing, not for a memcg's limit. | |
2684 | */ | |
2685 | nr_soft_scanned = 0; | |
2686 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, | |
2687 | sc->order, sc->gfp_mask, | |
2688 | &nr_soft_scanned); | |
2689 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2690 | sc->nr_scanned += nr_soft_scanned; | |
2691 | /* need some check for avoid more shrink_zone() */ | |
2692 | } | |
2693 | ||
2694 | /* See comment about same check for global reclaim above */ | |
2695 | if (zone->zone_pgdat == last_pgdat) | |
2696 | continue; | |
2697 | last_pgdat = zone->zone_pgdat; | |
2698 | shrink_node(zone->zone_pgdat, sc); | |
2699 | } | |
2700 | ||
2701 | /* | |
2702 | * Restore to original mask to avoid the impact on the caller if we | |
2703 | * promoted it to __GFP_HIGHMEM. | |
2704 | */ | |
2705 | sc->gfp_mask = orig_mask; | |
2706 | } | |
2707 | ||
2708 | /* | |
2709 | * This is the main entry point to direct page reclaim. | |
2710 | * | |
2711 | * If a full scan of the inactive list fails to free enough memory then we | |
2712 | * are "out of memory" and something needs to be killed. | |
2713 | * | |
2714 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2715 | * high - the zone may be full of dirty or under-writeback pages, which this | |
2716 | * caller can't do much about. We kick the writeback threads and take explicit | |
2717 | * naps in the hope that some of these pages can be written. But if the | |
2718 | * allocating task holds filesystem locks which prevent writeout this might not | |
2719 | * work, and the allocation attempt will fail. | |
2720 | * | |
2721 | * returns: 0, if no pages reclaimed | |
2722 | * else, the number of pages reclaimed | |
2723 | */ | |
2724 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |
2725 | struct scan_control *sc) | |
2726 | { | |
2727 | int initial_priority = sc->priority; | |
2728 | retry: | |
2729 | delayacct_freepages_start(); | |
2730 | ||
2731 | if (global_reclaim(sc)) | |
2732 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); | |
2733 | ||
2734 | do { | |
2735 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, | |
2736 | sc->priority); | |
2737 | sc->nr_scanned = 0; | |
2738 | shrink_zones(zonelist, sc); | |
2739 | ||
2740 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) | |
2741 | break; | |
2742 | ||
2743 | if (sc->compaction_ready) | |
2744 | break; | |
2745 | ||
2746 | /* | |
2747 | * If we're getting trouble reclaiming, start doing | |
2748 | * writepage even in laptop mode. | |
2749 | */ | |
2750 | if (sc->priority < DEF_PRIORITY - 2) | |
2751 | sc->may_writepage = 1; | |
2752 | } while (--sc->priority >= 0); | |
2753 | ||
2754 | delayacct_freepages_end(); | |
2755 | ||
2756 | if (sc->nr_reclaimed) | |
2757 | return sc->nr_reclaimed; | |
2758 | ||
2759 | /* Aborted reclaim to try compaction? don't OOM, then */ | |
2760 | if (sc->compaction_ready) | |
2761 | return 1; | |
2762 | ||
2763 | /* Untapped cgroup reserves? Don't OOM, retry. */ | |
2764 | if (!sc->may_thrash) { | |
2765 | sc->priority = initial_priority; | |
2766 | sc->may_thrash = 1; | |
2767 | goto retry; | |
2768 | } | |
2769 | ||
2770 | return 0; | |
2771 | } | |
2772 | ||
2773 | static bool allow_direct_reclaim(pg_data_t *pgdat) | |
2774 | { | |
2775 | struct zone *zone; | |
2776 | unsigned long pfmemalloc_reserve = 0; | |
2777 | unsigned long free_pages = 0; | |
2778 | int i; | |
2779 | bool wmark_ok; | |
2780 | ||
2781 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
2782 | return true; | |
2783 | ||
2784 | for (i = 0; i <= ZONE_NORMAL; i++) { | |
2785 | zone = &pgdat->node_zones[i]; | |
2786 | if (!managed_zone(zone)) | |
2787 | continue; | |
2788 | ||
2789 | if (!zone_reclaimable_pages(zone)) | |
2790 | continue; | |
2791 | ||
2792 | pfmemalloc_reserve += min_wmark_pages(zone); | |
2793 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
2794 | } | |
2795 | ||
2796 | /* If there are no reserves (unexpected config) then do not throttle */ | |
2797 | if (!pfmemalloc_reserve) | |
2798 | return true; | |
2799 | ||
2800 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | |
2801 | ||
2802 | /* kswapd must be awake if processes are being throttled */ | |
2803 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
2804 | pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, | |
2805 | (enum zone_type)ZONE_NORMAL); | |
2806 | wake_up_interruptible(&pgdat->kswapd_wait); | |
2807 | } | |
2808 | ||
2809 | return wmark_ok; | |
2810 | } | |
2811 | ||
2812 | /* | |
2813 | * Throttle direct reclaimers if backing storage is backed by the network | |
2814 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
2815 | * depleted. kswapd will continue to make progress and wake the processes | |
2816 | * when the low watermark is reached. | |
2817 | * | |
2818 | * Returns true if a fatal signal was delivered during throttling. If this | |
2819 | * happens, the page allocator should not consider triggering the OOM killer. | |
2820 | */ | |
2821 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, | |
2822 | nodemask_t *nodemask) | |
2823 | { | |
2824 | struct zoneref *z; | |
2825 | struct zone *zone; | |
2826 | pg_data_t *pgdat = NULL; | |
2827 | ||
2828 | /* | |
2829 | * Kernel threads should not be throttled as they may be indirectly | |
2830 | * responsible for cleaning pages necessary for reclaim to make forward | |
2831 | * progress. kjournald for example may enter direct reclaim while | |
2832 | * committing a transaction where throttling it could forcing other | |
2833 | * processes to block on log_wait_commit(). | |
2834 | */ | |
2835 | if (current->flags & PF_KTHREAD) | |
2836 | goto out; | |
2837 | ||
2838 | /* | |
2839 | * If a fatal signal is pending, this process should not throttle. | |
2840 | * It should return quickly so it can exit and free its memory | |
2841 | */ | |
2842 | if (fatal_signal_pending(current)) | |
2843 | goto out; | |
2844 | ||
2845 | /* | |
2846 | * Check if the pfmemalloc reserves are ok by finding the first node | |
2847 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
2848 | * GFP_KERNEL will be required for allocating network buffers when | |
2849 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
2850 | * | |
2851 | * Throttling is based on the first usable node and throttled processes | |
2852 | * wait on a queue until kswapd makes progress and wakes them. There | |
2853 | * is an affinity then between processes waking up and where reclaim | |
2854 | * progress has been made assuming the process wakes on the same node. | |
2855 | * More importantly, processes running on remote nodes will not compete | |
2856 | * for remote pfmemalloc reserves and processes on different nodes | |
2857 | * should make reasonable progress. | |
2858 | */ | |
2859 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
2860 | gfp_zone(gfp_mask), nodemask) { | |
2861 | if (zone_idx(zone) > ZONE_NORMAL) | |
2862 | continue; | |
2863 | ||
2864 | /* Throttle based on the first usable node */ | |
2865 | pgdat = zone->zone_pgdat; | |
2866 | if (allow_direct_reclaim(pgdat)) | |
2867 | goto out; | |
2868 | break; | |
2869 | } | |
2870 | ||
2871 | /* If no zone was usable by the allocation flags then do not throttle */ | |
2872 | if (!pgdat) | |
2873 | goto out; | |
2874 | ||
2875 | /* Account for the throttling */ | |
2876 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
2877 | ||
2878 | /* | |
2879 | * If the caller cannot enter the filesystem, it's possible that it | |
2880 | * is due to the caller holding an FS lock or performing a journal | |
2881 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
2882 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
2883 | * blocked waiting on the same lock. Instead, throttle for up to a | |
2884 | * second before continuing. | |
2885 | */ | |
2886 | if (!(gfp_mask & __GFP_FS)) { | |
2887 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
2888 | allow_direct_reclaim(pgdat), HZ); | |
2889 | ||
2890 | goto check_pending; | |
2891 | } | |
2892 | ||
2893 | /* Throttle until kswapd wakes the process */ | |
2894 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
2895 | allow_direct_reclaim(pgdat)); | |
2896 | ||
2897 | check_pending: | |
2898 | if (fatal_signal_pending(current)) | |
2899 | return true; | |
2900 | ||
2901 | out: | |
2902 | return false; | |
2903 | } | |
2904 | ||
2905 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |
2906 | gfp_t gfp_mask, nodemask_t *nodemask) | |
2907 | { | |
2908 | unsigned long nr_reclaimed; | |
2909 | struct scan_control sc = { | |
2910 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | |
2911 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), | |
2912 | .reclaim_idx = gfp_zone(gfp_mask), | |
2913 | .order = order, | |
2914 | .nodemask = nodemask, | |
2915 | .priority = DEF_PRIORITY, | |
2916 | .may_writepage = !laptop_mode, | |
2917 | .may_unmap = 1, | |
2918 | .may_swap = 1, | |
2919 | }; | |
2920 | ||
2921 | /* | |
2922 | * Do not enter reclaim if fatal signal was delivered while throttled. | |
2923 | * 1 is returned so that the page allocator does not OOM kill at this | |
2924 | * point. | |
2925 | */ | |
2926 | if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) | |
2927 | return 1; | |
2928 | ||
2929 | trace_mm_vmscan_direct_reclaim_begin(order, | |
2930 | sc.may_writepage, | |
2931 | gfp_mask, | |
2932 | sc.reclaim_idx); | |
2933 | ||
2934 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
2935 | ||
2936 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
2937 | ||
2938 | return nr_reclaimed; | |
2939 | } | |
2940 | ||
2941 | #ifdef CONFIG_MEMCG | |
2942 | ||
2943 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, | |
2944 | gfp_t gfp_mask, bool noswap, | |
2945 | pg_data_t *pgdat, | |
2946 | unsigned long *nr_scanned) | |
2947 | { | |
2948 | struct scan_control sc = { | |
2949 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | |
2950 | .target_mem_cgroup = memcg, | |
2951 | .may_writepage = !laptop_mode, | |
2952 | .may_unmap = 1, | |
2953 | .reclaim_idx = MAX_NR_ZONES - 1, | |
2954 | .may_swap = !noswap, | |
2955 | }; | |
2956 | unsigned long lru_pages; | |
2957 | ||
2958 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | |
2959 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
2960 | ||
2961 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, | |
2962 | sc.may_writepage, | |
2963 | sc.gfp_mask, | |
2964 | sc.reclaim_idx); | |
2965 | ||
2966 | /* | |
2967 | * NOTE: Although we can get the priority field, using it | |
2968 | * here is not a good idea, since it limits the pages we can scan. | |
2969 | * if we don't reclaim here, the shrink_node from balance_pgdat | |
2970 | * will pick up pages from other mem cgroup's as well. We hack | |
2971 | * the priority and make it zero. | |
2972 | */ | |
2973 | shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); | |
2974 | ||
2975 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
2976 | ||
2977 | *nr_scanned = sc.nr_scanned; | |
2978 | return sc.nr_reclaimed; | |
2979 | } | |
2980 | ||
2981 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, | |
2982 | unsigned long nr_pages, | |
2983 | gfp_t gfp_mask, | |
2984 | bool may_swap) | |
2985 | { | |
2986 | struct zonelist *zonelist; | |
2987 | unsigned long nr_reclaimed; | |
2988 | int nid; | |
2989 | struct scan_control sc = { | |
2990 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | |
2991 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | |
2992 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
2993 | .reclaim_idx = MAX_NR_ZONES - 1, | |
2994 | .target_mem_cgroup = memcg, | |
2995 | .priority = DEF_PRIORITY, | |
2996 | .may_writepage = !laptop_mode, | |
2997 | .may_unmap = 1, | |
2998 | .may_swap = may_swap, | |
2999 | }; | |
3000 | ||
3001 | /* | |
3002 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
3003 | * take care of from where we get pages. So the node where we start the | |
3004 | * scan does not need to be the current node. | |
3005 | */ | |
3006 | nid = mem_cgroup_select_victim_node(memcg); | |
3007 | ||
3008 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; | |
3009 | ||
3010 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
3011 | sc.may_writepage, | |
3012 | sc.gfp_mask, | |
3013 | sc.reclaim_idx); | |
3014 | ||
3015 | current->flags |= PF_MEMALLOC; | |
3016 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
3017 | current->flags &= ~PF_MEMALLOC; | |
3018 | ||
3019 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
3020 | ||
3021 | return nr_reclaimed; | |
3022 | } | |
3023 | #endif | |
3024 | ||
3025 | static void age_active_anon(struct pglist_data *pgdat, | |
3026 | struct scan_control *sc) | |
3027 | { | |
3028 | struct mem_cgroup *memcg; | |
3029 | ||
3030 | if (!total_swap_pages) | |
3031 | return; | |
3032 | ||
3033 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
3034 | do { | |
3035 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); | |
3036 | ||
3037 | if (inactive_list_is_low(lruvec, false, sc, true)) | |
3038 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
3039 | sc, LRU_ACTIVE_ANON); | |
3040 | ||
3041 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
3042 | } while (memcg); | |
3043 | } | |
3044 | ||
3045 | static bool zone_balanced(struct zone *zone, int order, int classzone_idx) | |
3046 | { | |
3047 | unsigned long mark = high_wmark_pages(zone); | |
3048 | ||
3049 | if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) | |
3050 | return false; | |
3051 | ||
3052 | /* | |
3053 | * If any eligible zone is balanced then the node is not considered | |
3054 | * to be congested or dirty | |
3055 | */ | |
3056 | clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); | |
3057 | clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); | |
3058 | clear_bit(PGDAT_WRITEBACK, &zone->zone_pgdat->flags); | |
3059 | ||
3060 | return true; | |
3061 | } | |
3062 | ||
3063 | /* | |
3064 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
3065 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
3066 | * | |
3067 | * Returns true if kswapd is ready to sleep | |
3068 | */ | |
3069 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) | |
3070 | { | |
3071 | int i; | |
3072 | ||
3073 | /* | |
3074 | * The throttled processes are normally woken up in balance_pgdat() as | |
3075 | * soon as allow_direct_reclaim() is true. But there is a potential | |
3076 | * race between when kswapd checks the watermarks and a process gets | |
3077 | * throttled. There is also a potential race if processes get | |
3078 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
3079 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
3080 | * the wake up checks. If kswapd is going to sleep, no process should | |
3081 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
3082 | * the wake up is premature, processes will wake kswapd and get | |
3083 | * throttled again. The difference from wake ups in balance_pgdat() is | |
3084 | * that here we are under prepare_to_wait(). | |
3085 | */ | |
3086 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) | |
3087 | wake_up_all(&pgdat->pfmemalloc_wait); | |
3088 | ||
3089 | /* Hopeless node, leave it to direct reclaim */ | |
3090 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
3091 | return true; | |
3092 | ||
3093 | for (i = 0; i <= classzone_idx; i++) { | |
3094 | struct zone *zone = pgdat->node_zones + i; | |
3095 | ||
3096 | if (!managed_zone(zone)) | |
3097 | continue; | |
3098 | ||
3099 | if (!zone_balanced(zone, order, classzone_idx)) | |
3100 | return false; | |
3101 | } | |
3102 | ||
3103 | return true; | |
3104 | } | |
3105 | ||
3106 | /* | |
3107 | * kswapd shrinks a node of pages that are at or below the highest usable | |
3108 | * zone that is currently unbalanced. | |
3109 | * | |
3110 | * Returns true if kswapd scanned at least the requested number of pages to | |
3111 | * reclaim or if the lack of progress was due to pages under writeback. | |
3112 | * This is used to determine if the scanning priority needs to be raised. | |
3113 | */ | |
3114 | static bool kswapd_shrink_node(pg_data_t *pgdat, | |
3115 | struct scan_control *sc) | |
3116 | { | |
3117 | struct zone *zone; | |
3118 | int z; | |
3119 | ||
3120 | /* Reclaim a number of pages proportional to the number of zones */ | |
3121 | sc->nr_to_reclaim = 0; | |
3122 | for (z = 0; z <= sc->reclaim_idx; z++) { | |
3123 | zone = pgdat->node_zones + z; | |
3124 | if (!managed_zone(zone)) | |
3125 | continue; | |
3126 | ||
3127 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); | |
3128 | } | |
3129 | ||
3130 | /* | |
3131 | * Historically care was taken to put equal pressure on all zones but | |
3132 | * now pressure is applied based on node LRU order. | |
3133 | */ | |
3134 | shrink_node(pgdat, sc); | |
3135 | ||
3136 | /* | |
3137 | * Fragmentation may mean that the system cannot be rebalanced for | |
3138 | * high-order allocations. If twice the allocation size has been | |
3139 | * reclaimed then recheck watermarks only at order-0 to prevent | |
3140 | * excessive reclaim. Assume that a process requested a high-order | |
3141 | * can direct reclaim/compact. | |
3142 | */ | |
3143 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) | |
3144 | sc->order = 0; | |
3145 | ||
3146 | return sc->nr_scanned >= sc->nr_to_reclaim; | |
3147 | } | |
3148 | ||
3149 | /* | |
3150 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones | |
3151 | * that are eligible for use by the caller until at least one zone is | |
3152 | * balanced. | |
3153 | * | |
3154 | * Returns the order kswapd finished reclaiming at. | |
3155 | * | |
3156 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
3157 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is | |
3158 | * found to have free_pages <= high_wmark_pages(zone), any page is that zone | |
3159 | * or lower is eligible for reclaim until at least one usable zone is | |
3160 | * balanced. | |
3161 | */ | |
3162 | static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) | |
3163 | { | |
3164 | int i; | |
3165 | unsigned long nr_soft_reclaimed; | |
3166 | unsigned long nr_soft_scanned; | |
3167 | struct zone *zone; | |
3168 | struct scan_control sc = { | |
3169 | .gfp_mask = GFP_KERNEL, | |
3170 | .order = order, | |
3171 | .priority = DEF_PRIORITY, | |
3172 | .may_writepage = !laptop_mode, | |
3173 | .may_unmap = 1, | |
3174 | .may_swap = 1, | |
3175 | }; | |
3176 | count_vm_event(PAGEOUTRUN); | |
3177 | ||
3178 | do { | |
3179 | unsigned long nr_reclaimed = sc.nr_reclaimed; | |
3180 | bool raise_priority = true; | |
3181 | ||
3182 | sc.reclaim_idx = classzone_idx; | |
3183 | ||
3184 | /* | |
3185 | * If the number of buffer_heads exceeds the maximum allowed | |
3186 | * then consider reclaiming from all zones. This has a dual | |
3187 | * purpose -- on 64-bit systems it is expected that | |
3188 | * buffer_heads are stripped during active rotation. On 32-bit | |
3189 | * systems, highmem pages can pin lowmem memory and shrinking | |
3190 | * buffers can relieve lowmem pressure. Reclaim may still not | |
3191 | * go ahead if all eligible zones for the original allocation | |
3192 | * request are balanced to avoid excessive reclaim from kswapd. | |
3193 | */ | |
3194 | if (buffer_heads_over_limit) { | |
3195 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | |
3196 | zone = pgdat->node_zones + i; | |
3197 | if (!managed_zone(zone)) | |
3198 | continue; | |
3199 | ||
3200 | sc.reclaim_idx = i; | |
3201 | break; | |
3202 | } | |
3203 | } | |
3204 | ||
3205 | /* | |
3206 | * Only reclaim if there are no eligible zones. Check from | |
3207 | * high to low zone as allocations prefer higher zones. | |
3208 | * Scanning from low to high zone would allow congestion to be | |
3209 | * cleared during a very small window when a small low | |
3210 | * zone was balanced even under extreme pressure when the | |
3211 | * overall node may be congested. Note that sc.reclaim_idx | |
3212 | * is not used as buffer_heads_over_limit may have adjusted | |
3213 | * it. | |
3214 | */ | |
3215 | for (i = classzone_idx; i >= 0; i--) { | |
3216 | zone = pgdat->node_zones + i; | |
3217 | if (!managed_zone(zone)) | |
3218 | continue; | |
3219 | ||
3220 | if (zone_balanced(zone, sc.order, classzone_idx)) | |
3221 | goto out; | |
3222 | } | |
3223 | ||
3224 | /* | |
3225 | * Do some background aging of the anon list, to give | |
3226 | * pages a chance to be referenced before reclaiming. All | |
3227 | * pages are rotated regardless of classzone as this is | |
3228 | * about consistent aging. | |
3229 | */ | |
3230 | age_active_anon(pgdat, &sc); | |
3231 | ||
3232 | /* | |
3233 | * If we're getting trouble reclaiming, start doing writepage | |
3234 | * even in laptop mode. | |
3235 | */ | |
3236 | if (sc.priority < DEF_PRIORITY - 2) | |
3237 | sc.may_writepage = 1; | |
3238 | ||
3239 | /* Call soft limit reclaim before calling shrink_node. */ | |
3240 | sc.nr_scanned = 0; | |
3241 | nr_soft_scanned = 0; | |
3242 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, | |
3243 | sc.gfp_mask, &nr_soft_scanned); | |
3244 | sc.nr_reclaimed += nr_soft_reclaimed; | |
3245 | ||
3246 | /* | |
3247 | * There should be no need to raise the scanning priority if | |
3248 | * enough pages are already being scanned that that high | |
3249 | * watermark would be met at 100% efficiency. | |
3250 | */ | |
3251 | if (kswapd_shrink_node(pgdat, &sc)) | |
3252 | raise_priority = false; | |
3253 | ||
3254 | /* | |
3255 | * If the low watermark is met there is no need for processes | |
3256 | * to be throttled on pfmemalloc_wait as they should not be | |
3257 | * able to safely make forward progress. Wake them | |
3258 | */ | |
3259 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
3260 | allow_direct_reclaim(pgdat)) | |
3261 | wake_up_all(&pgdat->pfmemalloc_wait); | |
3262 | ||
3263 | /* Check if kswapd should be suspending */ | |
3264 | if (try_to_freeze() || kthread_should_stop()) | |
3265 | break; | |
3266 | ||
3267 | /* | |
3268 | * Raise priority if scanning rate is too low or there was no | |
3269 | * progress in reclaiming pages | |
3270 | */ | |
3271 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; | |
3272 | if (raise_priority || !nr_reclaimed) | |
3273 | sc.priority--; | |
3274 | } while (sc.priority >= 1); | |
3275 | ||
3276 | if (!sc.nr_reclaimed) | |
3277 | pgdat->kswapd_failures++; | |
3278 | ||
3279 | out: | |
3280 | /* | |
3281 | * Return the order kswapd stopped reclaiming at as | |
3282 | * prepare_kswapd_sleep() takes it into account. If another caller | |
3283 | * entered the allocator slow path while kswapd was awake, order will | |
3284 | * remain at the higher level. | |
3285 | */ | |
3286 | return sc.order; | |
3287 | } | |
3288 | ||
3289 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, | |
3290 | unsigned int classzone_idx) | |
3291 | { | |
3292 | long remaining = 0; | |
3293 | DEFINE_WAIT(wait); | |
3294 | ||
3295 | if (freezing(current) || kthread_should_stop()) | |
3296 | return; | |
3297 | ||
3298 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3299 | ||
3300 | /* Try to sleep for a short interval */ | |
3301 | if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { | |
3302 | /* | |
3303 | * Compaction records what page blocks it recently failed to | |
3304 | * isolate pages from and skips them in the future scanning. | |
3305 | * When kswapd is going to sleep, it is reasonable to assume | |
3306 | * that pages and compaction may succeed so reset the cache. | |
3307 | */ | |
3308 | reset_isolation_suitable(pgdat); | |
3309 | ||
3310 | /* | |
3311 | * We have freed the memory, now we should compact it to make | |
3312 | * allocation of the requested order possible. | |
3313 | */ | |
3314 | wakeup_kcompactd(pgdat, alloc_order, classzone_idx); | |
3315 | ||
3316 | remaining = schedule_timeout(HZ/10); | |
3317 | ||
3318 | /* | |
3319 | * If woken prematurely then reset kswapd_classzone_idx and | |
3320 | * order. The values will either be from a wakeup request or | |
3321 | * the previous request that slept prematurely. | |
3322 | */ | |
3323 | if (remaining) { | |
3324 | pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); | |
3325 | pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); | |
3326 | } | |
3327 | ||
3328 | finish_wait(&pgdat->kswapd_wait, &wait); | |
3329 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3330 | } | |
3331 | ||
3332 | /* | |
3333 | * After a short sleep, check if it was a premature sleep. If not, then | |
3334 | * go fully to sleep until explicitly woken up. | |
3335 | */ | |
3336 | if (!remaining && | |
3337 | prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { | |
3338 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | |
3339 | ||
3340 | /* | |
3341 | * vmstat counters are not perfectly accurate and the estimated | |
3342 | * value for counters such as NR_FREE_PAGES can deviate from the | |
3343 | * true value by nr_online_cpus * threshold. To avoid the zone | |
3344 | * watermarks being breached while under pressure, we reduce the | |
3345 | * per-cpu vmstat threshold while kswapd is awake and restore | |
3346 | * them before going back to sleep. | |
3347 | */ | |
3348 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
3349 | ||
3350 | if (!kthread_should_stop()) | |
3351 | schedule(); | |
3352 | ||
3353 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); | |
3354 | } else { | |
3355 | if (remaining) | |
3356 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
3357 | else | |
3358 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
3359 | } | |
3360 | finish_wait(&pgdat->kswapd_wait, &wait); | |
3361 | } | |
3362 | ||
3363 | /* | |
3364 | * The background pageout daemon, started as a kernel thread | |
3365 | * from the init process. | |
3366 | * | |
3367 | * This basically trickles out pages so that we have _some_ | |
3368 | * free memory available even if there is no other activity | |
3369 | * that frees anything up. This is needed for things like routing | |
3370 | * etc, where we otherwise might have all activity going on in | |
3371 | * asynchronous contexts that cannot page things out. | |
3372 | * | |
3373 | * If there are applications that are active memory-allocators | |
3374 | * (most normal use), this basically shouldn't matter. | |
3375 | */ | |
3376 | static int kswapd(void *p) | |
3377 | { | |
3378 | unsigned int alloc_order, reclaim_order, classzone_idx; | |
3379 | pg_data_t *pgdat = (pg_data_t*)p; | |
3380 | struct task_struct *tsk = current; | |
3381 | ||
3382 | struct reclaim_state reclaim_state = { | |
3383 | .reclaimed_slab = 0, | |
3384 | }; | |
3385 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | |
3386 | ||
3387 | lockdep_set_current_reclaim_state(GFP_KERNEL); | |
3388 | ||
3389 | if (!cpumask_empty(cpumask)) | |
3390 | set_cpus_allowed_ptr(tsk, cpumask); | |
3391 | current->reclaim_state = &reclaim_state; | |
3392 | ||
3393 | /* | |
3394 | * Tell the memory management that we're a "memory allocator", | |
3395 | * and that if we need more memory we should get access to it | |
3396 | * regardless (see "__alloc_pages()"). "kswapd" should | |
3397 | * never get caught in the normal page freeing logic. | |
3398 | * | |
3399 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
3400 | * you need a small amount of memory in order to be able to | |
3401 | * page out something else, and this flag essentially protects | |
3402 | * us from recursively trying to free more memory as we're | |
3403 | * trying to free the first piece of memory in the first place). | |
3404 | */ | |
3405 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; | |
3406 | set_freezable(); | |
3407 | ||
3408 | pgdat->kswapd_order = alloc_order = reclaim_order = 0; | |
3409 | pgdat->kswapd_classzone_idx = classzone_idx = 0; | |
3410 | for ( ; ; ) { | |
3411 | bool ret; | |
3412 | ||
3413 | kswapd_try_sleep: | |
3414 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | |
3415 | classzone_idx); | |
3416 | ||
3417 | /* Read the new order and classzone_idx */ | |
3418 | alloc_order = reclaim_order = pgdat->kswapd_order; | |
3419 | classzone_idx = pgdat->kswapd_classzone_idx; | |
3420 | pgdat->kswapd_order = 0; | |
3421 | pgdat->kswapd_classzone_idx = 0; | |
3422 | ||
3423 | ret = try_to_freeze(); | |
3424 | if (kthread_should_stop()) | |
3425 | break; | |
3426 | ||
3427 | /* | |
3428 | * We can speed up thawing tasks if we don't call balance_pgdat | |
3429 | * after returning from the refrigerator | |
3430 | */ | |
3431 | if (ret) | |
3432 | continue; | |
3433 | ||
3434 | /* | |
3435 | * Reclaim begins at the requested order but if a high-order | |
3436 | * reclaim fails then kswapd falls back to reclaiming for | |
3437 | * order-0. If that happens, kswapd will consider sleeping | |
3438 | * for the order it finished reclaiming at (reclaim_order) | |
3439 | * but kcompactd is woken to compact for the original | |
3440 | * request (alloc_order). | |
3441 | */ | |
3442 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, | |
3443 | alloc_order); | |
3444 | reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); | |
3445 | if (reclaim_order < alloc_order) | |
3446 | goto kswapd_try_sleep; | |
3447 | ||
3448 | alloc_order = reclaim_order = pgdat->kswapd_order; | |
3449 | classzone_idx = pgdat->kswapd_classzone_idx; | |
3450 | } | |
3451 | ||
3452 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); | |
3453 | current->reclaim_state = NULL; | |
3454 | lockdep_clear_current_reclaim_state(); | |
3455 | ||
3456 | return 0; | |
3457 | } | |
3458 | ||
3459 | /* | |
3460 | * A zone is low on free memory, so wake its kswapd task to service it. | |
3461 | */ | |
3462 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) | |
3463 | { | |
3464 | pg_data_t *pgdat; | |
3465 | int z; | |
3466 | ||
3467 | if (!managed_zone(zone)) | |
3468 | return; | |
3469 | ||
3470 | if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) | |
3471 | return; | |
3472 | pgdat = zone->zone_pgdat; | |
3473 | pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); | |
3474 | pgdat->kswapd_order = max(pgdat->kswapd_order, order); | |
3475 | if (!waitqueue_active(&pgdat->kswapd_wait)) | |
3476 | return; | |
3477 | ||
3478 | /* Hopeless node, leave it to direct reclaim */ | |
3479 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
3480 | return; | |
3481 | ||
3482 | /* Only wake kswapd if all zones are unbalanced */ | |
3483 | for (z = 0; z <= classzone_idx; z++) { | |
3484 | zone = pgdat->node_zones + z; | |
3485 | if (!managed_zone(zone)) | |
3486 | continue; | |
3487 | ||
3488 | if (zone_balanced(zone, order, classzone_idx)) | |
3489 | return; | |
3490 | } | |
3491 | ||
3492 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | |
3493 | wake_up_interruptible(&pgdat->kswapd_wait); | |
3494 | } | |
3495 | ||
3496 | #ifdef CONFIG_HIBERNATION | |
3497 | /* | |
3498 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of | |
3499 | * freed pages. | |
3500 | * | |
3501 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3502 | * LRU order by reclaiming preferentially | |
3503 | * inactive > active > active referenced > active mapped | |
3504 | */ | |
3505 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) | |
3506 | { | |
3507 | struct reclaim_state reclaim_state; | |
3508 | struct scan_control sc = { | |
3509 | .nr_to_reclaim = nr_to_reclaim, | |
3510 | .gfp_mask = GFP_HIGHUSER_MOVABLE, | |
3511 | .reclaim_idx = MAX_NR_ZONES - 1, | |
3512 | .priority = DEF_PRIORITY, | |
3513 | .may_writepage = 1, | |
3514 | .may_unmap = 1, | |
3515 | .may_swap = 1, | |
3516 | .hibernation_mode = 1, | |
3517 | }; | |
3518 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
3519 | struct task_struct *p = current; | |
3520 | unsigned long nr_reclaimed; | |
3521 | ||
3522 | p->flags |= PF_MEMALLOC; | |
3523 | lockdep_set_current_reclaim_state(sc.gfp_mask); | |
3524 | reclaim_state.reclaimed_slab = 0; | |
3525 | p->reclaim_state = &reclaim_state; | |
3526 | ||
3527 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | |
3528 | ||
3529 | p->reclaim_state = NULL; | |
3530 | lockdep_clear_current_reclaim_state(); | |
3531 | p->flags &= ~PF_MEMALLOC; | |
3532 | ||
3533 | return nr_reclaimed; | |
3534 | } | |
3535 | #endif /* CONFIG_HIBERNATION */ | |
3536 | ||
3537 | /* It's optimal to keep kswapds on the same CPUs as their memory, but | |
3538 | not required for correctness. So if the last cpu in a node goes | |
3539 | away, we get changed to run anywhere: as the first one comes back, | |
3540 | restore their cpu bindings. */ | |
3541 | static int kswapd_cpu_online(unsigned int cpu) | |
3542 | { | |
3543 | int nid; | |
3544 | ||
3545 | for_each_node_state(nid, N_MEMORY) { | |
3546 | pg_data_t *pgdat = NODE_DATA(nid); | |
3547 | const struct cpumask *mask; | |
3548 | ||
3549 | mask = cpumask_of_node(pgdat->node_id); | |
3550 | ||
3551 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) | |
3552 | /* One of our CPUs online: restore mask */ | |
3553 | set_cpus_allowed_ptr(pgdat->kswapd, mask); | |
3554 | } | |
3555 | return 0; | |
3556 | } | |
3557 | ||
3558 | /* | |
3559 | * This kswapd start function will be called by init and node-hot-add. | |
3560 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
3561 | */ | |
3562 | int kswapd_run(int nid) | |
3563 | { | |
3564 | pg_data_t *pgdat = NODE_DATA(nid); | |
3565 | int ret = 0; | |
3566 | ||
3567 | if (pgdat->kswapd) | |
3568 | return 0; | |
3569 | ||
3570 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
3571 | if (IS_ERR(pgdat->kswapd)) { | |
3572 | /* failure at boot is fatal */ | |
3573 | BUG_ON(system_state == SYSTEM_BOOTING); | |
3574 | pr_err("Failed to start kswapd on node %d\n", nid); | |
3575 | ret = PTR_ERR(pgdat->kswapd); | |
3576 | pgdat->kswapd = NULL; | |
3577 | } | |
3578 | return ret; | |
3579 | } | |
3580 | ||
3581 | /* | |
3582 | * Called by memory hotplug when all memory in a node is offlined. Caller must | |
3583 | * hold mem_hotplug_begin/end(). | |
3584 | */ | |
3585 | void kswapd_stop(int nid) | |
3586 | { | |
3587 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
3588 | ||
3589 | if (kswapd) { | |
3590 | kthread_stop(kswapd); | |
3591 | NODE_DATA(nid)->kswapd = NULL; | |
3592 | } | |
3593 | } | |
3594 | ||
3595 | static int __init kswapd_init(void) | |
3596 | { | |
3597 | int nid, ret; | |
3598 | ||
3599 | swap_setup(); | |
3600 | for_each_node_state(nid, N_MEMORY) | |
3601 | kswapd_run(nid); | |
3602 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | |
3603 | "mm/vmscan:online", kswapd_cpu_online, | |
3604 | NULL); | |
3605 | WARN_ON(ret < 0); | |
3606 | return 0; | |
3607 | } | |
3608 | ||
3609 | module_init(kswapd_init) | |
3610 | ||
3611 | #ifdef CONFIG_NUMA | |
3612 | /* | |
3613 | * Node reclaim mode | |
3614 | * | |
3615 | * If non-zero call node_reclaim when the number of free pages falls below | |
3616 | * the watermarks. | |
3617 | */ | |
3618 | int node_reclaim_mode __read_mostly; | |
3619 | ||
3620 | #define RECLAIM_OFF 0 | |
3621 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ | |
3622 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ | |
3623 | #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ | |
3624 | ||
3625 | /* | |
3626 | * Priority for NODE_RECLAIM. This determines the fraction of pages | |
3627 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
3628 | * a zone. | |
3629 | */ | |
3630 | #define NODE_RECLAIM_PRIORITY 4 | |
3631 | ||
3632 | /* | |
3633 | * Percentage of pages in a zone that must be unmapped for node_reclaim to | |
3634 | * occur. | |
3635 | */ | |
3636 | int sysctl_min_unmapped_ratio = 1; | |
3637 | ||
3638 | /* | |
3639 | * If the number of slab pages in a zone grows beyond this percentage then | |
3640 | * slab reclaim needs to occur. | |
3641 | */ | |
3642 | int sysctl_min_slab_ratio = 5; | |
3643 | ||
3644 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) | |
3645 | { | |
3646 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); | |
3647 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | |
3648 | node_page_state(pgdat, NR_ACTIVE_FILE); | |
3649 | ||
3650 | /* | |
3651 | * It's possible for there to be more file mapped pages than | |
3652 | * accounted for by the pages on the file LRU lists because | |
3653 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
3654 | */ | |
3655 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
3656 | } | |
3657 | ||
3658 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
3659 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) | |
3660 | { | |
3661 | unsigned long nr_pagecache_reclaimable; | |
3662 | unsigned long delta = 0; | |
3663 | ||
3664 | /* | |
3665 | * If RECLAIM_UNMAP is set, then all file pages are considered | |
3666 | * potentially reclaimable. Otherwise, we have to worry about | |
3667 | * pages like swapcache and node_unmapped_file_pages() provides | |
3668 | * a better estimate | |
3669 | */ | |
3670 | if (node_reclaim_mode & RECLAIM_UNMAP) | |
3671 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | |
3672 | else | |
3673 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); | |
3674 | ||
3675 | /* If we can't clean pages, remove dirty pages from consideration */ | |
3676 | if (!(node_reclaim_mode & RECLAIM_WRITE)) | |
3677 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | |
3678 | ||
3679 | /* Watch for any possible underflows due to delta */ | |
3680 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
3681 | delta = nr_pagecache_reclaimable; | |
3682 | ||
3683 | return nr_pagecache_reclaimable - delta; | |
3684 | } | |
3685 | ||
3686 | /* | |
3687 | * Try to free up some pages from this node through reclaim. | |
3688 | */ | |
3689 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | |
3690 | { | |
3691 | /* Minimum pages needed in order to stay on node */ | |
3692 | const unsigned long nr_pages = 1 << order; | |
3693 | struct task_struct *p = current; | |
3694 | struct reclaim_state reclaim_state; | |
3695 | int classzone_idx = gfp_zone(gfp_mask); | |
3696 | struct scan_control sc = { | |
3697 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), | |
3698 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), | |
3699 | .order = order, | |
3700 | .priority = NODE_RECLAIM_PRIORITY, | |
3701 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | |
3702 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | |
3703 | .may_swap = 1, | |
3704 | .reclaim_idx = classzone_idx, | |
3705 | }; | |
3706 | ||
3707 | cond_resched(); | |
3708 | /* | |
3709 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP | |
3710 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
3711 | * and RECLAIM_UNMAP. | |
3712 | */ | |
3713 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
3714 | lockdep_set_current_reclaim_state(gfp_mask); | |
3715 | reclaim_state.reclaimed_slab = 0; | |
3716 | p->reclaim_state = &reclaim_state; | |
3717 | ||
3718 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { | |
3719 | /* | |
3720 | * Free memory by calling shrink zone with increasing | |
3721 | * priorities until we have enough memory freed. | |
3722 | */ | |
3723 | do { | |
3724 | shrink_node(pgdat, &sc); | |
3725 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | |
3726 | } | |
3727 | ||
3728 | p->reclaim_state = NULL; | |
3729 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); | |
3730 | lockdep_clear_current_reclaim_state(); | |
3731 | return sc.nr_reclaimed >= nr_pages; | |
3732 | } | |
3733 | ||
3734 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) | |
3735 | { | |
3736 | int ret; | |
3737 | ||
3738 | /* | |
3739 | * Node reclaim reclaims unmapped file backed pages and | |
3740 | * slab pages if we are over the defined limits. | |
3741 | * | |
3742 | * A small portion of unmapped file backed pages is needed for | |
3743 | * file I/O otherwise pages read by file I/O will be immediately | |
3744 | * thrown out if the node is overallocated. So we do not reclaim | |
3745 | * if less than a specified percentage of the node is used by | |
3746 | * unmapped file backed pages. | |
3747 | */ | |
3748 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && | |
3749 | sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) | |
3750 | return NODE_RECLAIM_FULL; | |
3751 | ||
3752 | /* | |
3753 | * Do not scan if the allocation should not be delayed. | |
3754 | */ | |
3755 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) | |
3756 | return NODE_RECLAIM_NOSCAN; | |
3757 | ||
3758 | /* | |
3759 | * Only run node reclaim on the local node or on nodes that do not | |
3760 | * have associated processors. This will favor the local processor | |
3761 | * over remote processors and spread off node memory allocations | |
3762 | * as wide as possible. | |
3763 | */ | |
3764 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) | |
3765 | return NODE_RECLAIM_NOSCAN; | |
3766 | ||
3767 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) | |
3768 | return NODE_RECLAIM_NOSCAN; | |
3769 | ||
3770 | ret = __node_reclaim(pgdat, gfp_mask, order); | |
3771 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | |
3772 | ||
3773 | if (!ret) | |
3774 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
3775 | ||
3776 | return ret; | |
3777 | } | |
3778 | #endif | |
3779 | ||
3780 | /* | |
3781 | * page_evictable - test whether a page is evictable | |
3782 | * @page: the page to test | |
3783 | * | |
3784 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
3785 | * lists vs unevictable list. | |
3786 | * | |
3787 | * Reasons page might not be evictable: | |
3788 | * (1) page's mapping marked unevictable | |
3789 | * (2) page is part of an mlocked VMA | |
3790 | * | |
3791 | */ | |
3792 | int page_evictable(struct page *page) | |
3793 | { | |
3794 | return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); | |
3795 | } | |
3796 | ||
3797 | #ifdef CONFIG_SHMEM | |
3798 | /** | |
3799 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list | |
3800 | * @pages: array of pages to check | |
3801 | * @nr_pages: number of pages to check | |
3802 | * | |
3803 | * Checks pages for evictability and moves them to the appropriate lru list. | |
3804 | * | |
3805 | * This function is only used for SysV IPC SHM_UNLOCK. | |
3806 | */ | |
3807 | void check_move_unevictable_pages(struct page **pages, int nr_pages) | |
3808 | { | |
3809 | struct lruvec *lruvec; | |
3810 | struct pglist_data *pgdat = NULL; | |
3811 | int pgscanned = 0; | |
3812 | int pgrescued = 0; | |
3813 | int i; | |
3814 | ||
3815 | for (i = 0; i < nr_pages; i++) { | |
3816 | struct page *page = pages[i]; | |
3817 | struct pglist_data *pagepgdat = page_pgdat(page); | |
3818 | ||
3819 | pgscanned++; | |
3820 | if (pagepgdat != pgdat) { | |
3821 | if (pgdat) | |
3822 | spin_unlock_irq(&pgdat->lru_lock); | |
3823 | pgdat = pagepgdat; | |
3824 | spin_lock_irq(&pgdat->lru_lock); | |
3825 | } | |
3826 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | |
3827 | ||
3828 | if (!PageLRU(page) || !PageUnevictable(page)) | |
3829 | continue; | |
3830 | ||
3831 | if (page_evictable(page)) { | |
3832 | enum lru_list lru = page_lru_base_type(page); | |
3833 | ||
3834 | VM_BUG_ON_PAGE(PageActive(page), page); | |
3835 | ClearPageUnevictable(page); | |
3836 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); | |
3837 | add_page_to_lru_list(page, lruvec, lru); | |
3838 | pgrescued++; | |
3839 | } | |
3840 | } | |
3841 | ||
3842 | if (pgdat) { | |
3843 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
3844 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
3845 | spin_unlock_irq(&pgdat->lru_lock); | |
3846 | } | |
3847 | } | |
3848 | #endif /* CONFIG_SHMEM */ |