]>
Commit | Line | Data |
---|---|---|
1 | /* CPU control. | |
2 | * (C) 2001, 2002, 2003, 2004 Rusty Russell | |
3 | * | |
4 | * This code is licenced under the GPL. | |
5 | */ | |
6 | #include <linux/proc_fs.h> | |
7 | #include <linux/smp.h> | |
8 | #include <linux/init.h> | |
9 | #include <linux/notifier.h> | |
10 | #include <linux/sched/signal.h> | |
11 | #include <linux/sched/hotplug.h> | |
12 | #include <linux/sched/task.h> | |
13 | #include <linux/unistd.h> | |
14 | #include <linux/cpu.h> | |
15 | #include <linux/oom.h> | |
16 | #include <linux/rcupdate.h> | |
17 | #include <linux/export.h> | |
18 | #include <linux/bug.h> | |
19 | #include <linux/kthread.h> | |
20 | #include <linux/stop_machine.h> | |
21 | #include <linux/mutex.h> | |
22 | #include <linux/gfp.h> | |
23 | #include <linux/suspend.h> | |
24 | #include <linux/lockdep.h> | |
25 | #include <linux/tick.h> | |
26 | #include <linux/irq.h> | |
27 | #include <linux/nmi.h> | |
28 | #include <linux/smpboot.h> | |
29 | #include <linux/relay.h> | |
30 | #include <linux/slab.h> | |
31 | #include <linux/percpu-rwsem.h> | |
32 | ||
33 | #include <trace/events/power.h> | |
34 | #define CREATE_TRACE_POINTS | |
35 | #include <trace/events/cpuhp.h> | |
36 | ||
37 | #include "smpboot.h" | |
38 | ||
39 | /** | |
40 | * cpuhp_cpu_state - Per cpu hotplug state storage | |
41 | * @state: The current cpu state | |
42 | * @target: The target state | |
43 | * @thread: Pointer to the hotplug thread | |
44 | * @should_run: Thread should execute | |
45 | * @rollback: Perform a rollback | |
46 | * @single: Single callback invocation | |
47 | * @bringup: Single callback bringup or teardown selector | |
48 | * @cb_state: The state for a single callback (install/uninstall) | |
49 | * @result: Result of the operation | |
50 | * @done_up: Signal completion to the issuer of the task for cpu-up | |
51 | * @done_down: Signal completion to the issuer of the task for cpu-down | |
52 | */ | |
53 | struct cpuhp_cpu_state { | |
54 | enum cpuhp_state state; | |
55 | enum cpuhp_state target; | |
56 | enum cpuhp_state fail; | |
57 | #ifdef CONFIG_SMP | |
58 | struct task_struct *thread; | |
59 | bool should_run; | |
60 | bool rollback; | |
61 | bool single; | |
62 | bool bringup; | |
63 | struct hlist_node *node; | |
64 | struct hlist_node *last; | |
65 | enum cpuhp_state cb_state; | |
66 | int result; | |
67 | struct completion done_up; | |
68 | struct completion done_down; | |
69 | #endif | |
70 | }; | |
71 | ||
72 | static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { | |
73 | .fail = CPUHP_INVALID, | |
74 | }; | |
75 | ||
76 | #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) | |
77 | static struct lockdep_map cpuhp_state_up_map = | |
78 | STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); | |
79 | static struct lockdep_map cpuhp_state_down_map = | |
80 | STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); | |
81 | ||
82 | ||
83 | static inline void cpuhp_lock_acquire(bool bringup) | |
84 | { | |
85 | lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); | |
86 | } | |
87 | ||
88 | static inline void cpuhp_lock_release(bool bringup) | |
89 | { | |
90 | lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); | |
91 | } | |
92 | #else | |
93 | ||
94 | static inline void cpuhp_lock_acquire(bool bringup) { } | |
95 | static inline void cpuhp_lock_release(bool bringup) { } | |
96 | ||
97 | #endif | |
98 | ||
99 | /** | |
100 | * cpuhp_step - Hotplug state machine step | |
101 | * @name: Name of the step | |
102 | * @startup: Startup function of the step | |
103 | * @teardown: Teardown function of the step | |
104 | * @skip_onerr: Do not invoke the functions on error rollback | |
105 | * Will go away once the notifiers are gone | |
106 | * @cant_stop: Bringup/teardown can't be stopped at this step | |
107 | */ | |
108 | struct cpuhp_step { | |
109 | const char *name; | |
110 | union { | |
111 | int (*single)(unsigned int cpu); | |
112 | int (*multi)(unsigned int cpu, | |
113 | struct hlist_node *node); | |
114 | } startup; | |
115 | union { | |
116 | int (*single)(unsigned int cpu); | |
117 | int (*multi)(unsigned int cpu, | |
118 | struct hlist_node *node); | |
119 | } teardown; | |
120 | struct hlist_head list; | |
121 | bool skip_onerr; | |
122 | bool cant_stop; | |
123 | bool multi_instance; | |
124 | }; | |
125 | ||
126 | static DEFINE_MUTEX(cpuhp_state_mutex); | |
127 | static struct cpuhp_step cpuhp_hp_states[]; | |
128 | ||
129 | static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) | |
130 | { | |
131 | return cpuhp_hp_states + state; | |
132 | } | |
133 | ||
134 | /** | |
135 | * cpuhp_invoke_callback _ Invoke the callbacks for a given state | |
136 | * @cpu: The cpu for which the callback should be invoked | |
137 | * @state: The state to do callbacks for | |
138 | * @bringup: True if the bringup callback should be invoked | |
139 | * @node: For multi-instance, do a single entry callback for install/remove | |
140 | * @lastp: For multi-instance rollback, remember how far we got | |
141 | * | |
142 | * Called from cpu hotplug and from the state register machinery. | |
143 | */ | |
144 | static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, | |
145 | bool bringup, struct hlist_node *node, | |
146 | struct hlist_node **lastp) | |
147 | { | |
148 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
149 | struct cpuhp_step *step = cpuhp_get_step(state); | |
150 | int (*cbm)(unsigned int cpu, struct hlist_node *node); | |
151 | int (*cb)(unsigned int cpu); | |
152 | int ret, cnt; | |
153 | ||
154 | if (st->fail == state) { | |
155 | st->fail = CPUHP_INVALID; | |
156 | ||
157 | if (!(bringup ? step->startup.single : step->teardown.single)) | |
158 | return 0; | |
159 | ||
160 | return -EAGAIN; | |
161 | } | |
162 | ||
163 | if (!step->multi_instance) { | |
164 | WARN_ON_ONCE(lastp && *lastp); | |
165 | cb = bringup ? step->startup.single : step->teardown.single; | |
166 | if (!cb) | |
167 | return 0; | |
168 | trace_cpuhp_enter(cpu, st->target, state, cb); | |
169 | ret = cb(cpu); | |
170 | trace_cpuhp_exit(cpu, st->state, state, ret); | |
171 | return ret; | |
172 | } | |
173 | cbm = bringup ? step->startup.multi : step->teardown.multi; | |
174 | if (!cbm) | |
175 | return 0; | |
176 | ||
177 | /* Single invocation for instance add/remove */ | |
178 | if (node) { | |
179 | WARN_ON_ONCE(lastp && *lastp); | |
180 | trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | |
181 | ret = cbm(cpu, node); | |
182 | trace_cpuhp_exit(cpu, st->state, state, ret); | |
183 | return ret; | |
184 | } | |
185 | ||
186 | /* State transition. Invoke on all instances */ | |
187 | cnt = 0; | |
188 | hlist_for_each(node, &step->list) { | |
189 | if (lastp && node == *lastp) | |
190 | break; | |
191 | ||
192 | trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | |
193 | ret = cbm(cpu, node); | |
194 | trace_cpuhp_exit(cpu, st->state, state, ret); | |
195 | if (ret) { | |
196 | if (!lastp) | |
197 | goto err; | |
198 | ||
199 | *lastp = node; | |
200 | return ret; | |
201 | } | |
202 | cnt++; | |
203 | } | |
204 | if (lastp) | |
205 | *lastp = NULL; | |
206 | return 0; | |
207 | err: | |
208 | /* Rollback the instances if one failed */ | |
209 | cbm = !bringup ? step->startup.multi : step->teardown.multi; | |
210 | if (!cbm) | |
211 | return ret; | |
212 | ||
213 | hlist_for_each(node, &step->list) { | |
214 | if (!cnt--) | |
215 | break; | |
216 | ||
217 | trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); | |
218 | ret = cbm(cpu, node); | |
219 | trace_cpuhp_exit(cpu, st->state, state, ret); | |
220 | /* | |
221 | * Rollback must not fail, | |
222 | */ | |
223 | WARN_ON_ONCE(ret); | |
224 | } | |
225 | return ret; | |
226 | } | |
227 | ||
228 | #ifdef CONFIG_SMP | |
229 | static bool cpuhp_is_ap_state(enum cpuhp_state state) | |
230 | { | |
231 | /* | |
232 | * The extra check for CPUHP_TEARDOWN_CPU is only for documentation | |
233 | * purposes as that state is handled explicitly in cpu_down. | |
234 | */ | |
235 | return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; | |
236 | } | |
237 | ||
238 | static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) | |
239 | { | |
240 | struct completion *done = bringup ? &st->done_up : &st->done_down; | |
241 | wait_for_completion(done); | |
242 | } | |
243 | ||
244 | static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) | |
245 | { | |
246 | struct completion *done = bringup ? &st->done_up : &st->done_down; | |
247 | complete(done); | |
248 | } | |
249 | ||
250 | /* | |
251 | * The former STARTING/DYING states, ran with IRQs disabled and must not fail. | |
252 | */ | |
253 | static bool cpuhp_is_atomic_state(enum cpuhp_state state) | |
254 | { | |
255 | return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; | |
256 | } | |
257 | ||
258 | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ | |
259 | static DEFINE_MUTEX(cpu_add_remove_lock); | |
260 | bool cpuhp_tasks_frozen; | |
261 | EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); | |
262 | ||
263 | /* | |
264 | * The following two APIs (cpu_maps_update_begin/done) must be used when | |
265 | * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. | |
266 | */ | |
267 | void cpu_maps_update_begin(void) | |
268 | { | |
269 | mutex_lock(&cpu_add_remove_lock); | |
270 | } | |
271 | ||
272 | void cpu_maps_update_done(void) | |
273 | { | |
274 | mutex_unlock(&cpu_add_remove_lock); | |
275 | } | |
276 | ||
277 | /* | |
278 | * If set, cpu_up and cpu_down will return -EBUSY and do nothing. | |
279 | * Should always be manipulated under cpu_add_remove_lock | |
280 | */ | |
281 | static int cpu_hotplug_disabled; | |
282 | ||
283 | #ifdef CONFIG_HOTPLUG_CPU | |
284 | ||
285 | DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); | |
286 | ||
287 | void cpus_read_lock(void) | |
288 | { | |
289 | percpu_down_read(&cpu_hotplug_lock); | |
290 | } | |
291 | EXPORT_SYMBOL_GPL(cpus_read_lock); | |
292 | ||
293 | void cpus_read_unlock(void) | |
294 | { | |
295 | percpu_up_read(&cpu_hotplug_lock); | |
296 | } | |
297 | EXPORT_SYMBOL_GPL(cpus_read_unlock); | |
298 | ||
299 | void cpus_write_lock(void) | |
300 | { | |
301 | percpu_down_write(&cpu_hotplug_lock); | |
302 | } | |
303 | ||
304 | void cpus_write_unlock(void) | |
305 | { | |
306 | percpu_up_write(&cpu_hotplug_lock); | |
307 | } | |
308 | ||
309 | void lockdep_assert_cpus_held(void) | |
310 | { | |
311 | percpu_rwsem_assert_held(&cpu_hotplug_lock); | |
312 | } | |
313 | ||
314 | /* | |
315 | * Wait for currently running CPU hotplug operations to complete (if any) and | |
316 | * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects | |
317 | * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the | |
318 | * hotplug path before performing hotplug operations. So acquiring that lock | |
319 | * guarantees mutual exclusion from any currently running hotplug operations. | |
320 | */ | |
321 | void cpu_hotplug_disable(void) | |
322 | { | |
323 | cpu_maps_update_begin(); | |
324 | cpu_hotplug_disabled++; | |
325 | cpu_maps_update_done(); | |
326 | } | |
327 | EXPORT_SYMBOL_GPL(cpu_hotplug_disable); | |
328 | ||
329 | static void __cpu_hotplug_enable(void) | |
330 | { | |
331 | if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) | |
332 | return; | |
333 | cpu_hotplug_disabled--; | |
334 | } | |
335 | ||
336 | void cpu_hotplug_enable(void) | |
337 | { | |
338 | cpu_maps_update_begin(); | |
339 | __cpu_hotplug_enable(); | |
340 | cpu_maps_update_done(); | |
341 | } | |
342 | EXPORT_SYMBOL_GPL(cpu_hotplug_enable); | |
343 | #endif /* CONFIG_HOTPLUG_CPU */ | |
344 | ||
345 | static inline enum cpuhp_state | |
346 | cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) | |
347 | { | |
348 | enum cpuhp_state prev_state = st->state; | |
349 | ||
350 | st->rollback = false; | |
351 | st->last = NULL; | |
352 | ||
353 | st->target = target; | |
354 | st->single = false; | |
355 | st->bringup = st->state < target; | |
356 | ||
357 | return prev_state; | |
358 | } | |
359 | ||
360 | static inline void | |
361 | cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) | |
362 | { | |
363 | st->rollback = true; | |
364 | ||
365 | /* | |
366 | * If we have st->last we need to undo partial multi_instance of this | |
367 | * state first. Otherwise start undo at the previous state. | |
368 | */ | |
369 | if (!st->last) { | |
370 | if (st->bringup) | |
371 | st->state--; | |
372 | else | |
373 | st->state++; | |
374 | } | |
375 | ||
376 | st->target = prev_state; | |
377 | st->bringup = !st->bringup; | |
378 | } | |
379 | ||
380 | /* Regular hotplug invocation of the AP hotplug thread */ | |
381 | static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) | |
382 | { | |
383 | if (!st->single && st->state == st->target) | |
384 | return; | |
385 | ||
386 | st->result = 0; | |
387 | /* | |
388 | * Make sure the above stores are visible before should_run becomes | |
389 | * true. Paired with the mb() above in cpuhp_thread_fun() | |
390 | */ | |
391 | smp_mb(); | |
392 | st->should_run = true; | |
393 | wake_up_process(st->thread); | |
394 | wait_for_ap_thread(st, st->bringup); | |
395 | } | |
396 | ||
397 | static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) | |
398 | { | |
399 | enum cpuhp_state prev_state; | |
400 | int ret; | |
401 | ||
402 | prev_state = cpuhp_set_state(st, target); | |
403 | __cpuhp_kick_ap(st); | |
404 | if ((ret = st->result)) { | |
405 | cpuhp_reset_state(st, prev_state); | |
406 | __cpuhp_kick_ap(st); | |
407 | } | |
408 | ||
409 | return ret; | |
410 | } | |
411 | ||
412 | static int bringup_wait_for_ap(unsigned int cpu) | |
413 | { | |
414 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
415 | ||
416 | /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ | |
417 | wait_for_ap_thread(st, true); | |
418 | if (WARN_ON_ONCE((!cpu_online(cpu)))) | |
419 | return -ECANCELED; | |
420 | ||
421 | /* Unpark the stopper thread and the hotplug thread of the target cpu */ | |
422 | stop_machine_unpark(cpu); | |
423 | kthread_unpark(st->thread); | |
424 | ||
425 | if (st->target <= CPUHP_AP_ONLINE_IDLE) | |
426 | return 0; | |
427 | ||
428 | return cpuhp_kick_ap(st, st->target); | |
429 | } | |
430 | ||
431 | static int bringup_cpu(unsigned int cpu) | |
432 | { | |
433 | struct task_struct *idle = idle_thread_get(cpu); | |
434 | int ret; | |
435 | ||
436 | /* | |
437 | * Some architectures have to walk the irq descriptors to | |
438 | * setup the vector space for the cpu which comes online. | |
439 | * Prevent irq alloc/free across the bringup. | |
440 | */ | |
441 | irq_lock_sparse(); | |
442 | ||
443 | /* Arch-specific enabling code. */ | |
444 | ret = __cpu_up(cpu, idle); | |
445 | irq_unlock_sparse(); | |
446 | if (ret) | |
447 | return ret; | |
448 | return bringup_wait_for_ap(cpu); | |
449 | } | |
450 | ||
451 | /* | |
452 | * Hotplug state machine related functions | |
453 | */ | |
454 | ||
455 | static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) | |
456 | { | |
457 | for (st->state--; st->state > st->target; st->state--) { | |
458 | struct cpuhp_step *step = cpuhp_get_step(st->state); | |
459 | ||
460 | if (!step->skip_onerr) | |
461 | cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); | |
462 | } | |
463 | } | |
464 | ||
465 | static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, | |
466 | enum cpuhp_state target) | |
467 | { | |
468 | enum cpuhp_state prev_state = st->state; | |
469 | int ret = 0; | |
470 | ||
471 | while (st->state < target) { | |
472 | st->state++; | |
473 | ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); | |
474 | if (ret) { | |
475 | st->target = prev_state; | |
476 | undo_cpu_up(cpu, st); | |
477 | break; | |
478 | } | |
479 | } | |
480 | return ret; | |
481 | } | |
482 | ||
483 | /* | |
484 | * The cpu hotplug threads manage the bringup and teardown of the cpus | |
485 | */ | |
486 | static void cpuhp_create(unsigned int cpu) | |
487 | { | |
488 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
489 | ||
490 | init_completion(&st->done_up); | |
491 | init_completion(&st->done_down); | |
492 | } | |
493 | ||
494 | static int cpuhp_should_run(unsigned int cpu) | |
495 | { | |
496 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | |
497 | ||
498 | return st->should_run; | |
499 | } | |
500 | ||
501 | /* | |
502 | * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke | |
503 | * callbacks when a state gets [un]installed at runtime. | |
504 | * | |
505 | * Each invocation of this function by the smpboot thread does a single AP | |
506 | * state callback. | |
507 | * | |
508 | * It has 3 modes of operation: | |
509 | * - single: runs st->cb_state | |
510 | * - up: runs ++st->state, while st->state < st->target | |
511 | * - down: runs st->state--, while st->state > st->target | |
512 | * | |
513 | * When complete or on error, should_run is cleared and the completion is fired. | |
514 | */ | |
515 | static void cpuhp_thread_fun(unsigned int cpu) | |
516 | { | |
517 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | |
518 | bool bringup = st->bringup; | |
519 | enum cpuhp_state state; | |
520 | ||
521 | /* | |
522 | * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures | |
523 | * that if we see ->should_run we also see the rest of the state. | |
524 | */ | |
525 | smp_mb(); | |
526 | ||
527 | if (WARN_ON_ONCE(!st->should_run)) | |
528 | return; | |
529 | ||
530 | cpuhp_lock_acquire(bringup); | |
531 | ||
532 | if (st->single) { | |
533 | state = st->cb_state; | |
534 | st->should_run = false; | |
535 | } else { | |
536 | if (bringup) { | |
537 | st->state++; | |
538 | state = st->state; | |
539 | st->should_run = (st->state < st->target); | |
540 | WARN_ON_ONCE(st->state > st->target); | |
541 | } else { | |
542 | state = st->state; | |
543 | st->state--; | |
544 | st->should_run = (st->state > st->target); | |
545 | WARN_ON_ONCE(st->state < st->target); | |
546 | } | |
547 | } | |
548 | ||
549 | WARN_ON_ONCE(!cpuhp_is_ap_state(state)); | |
550 | ||
551 | if (st->rollback) { | |
552 | struct cpuhp_step *step = cpuhp_get_step(state); | |
553 | if (step->skip_onerr) | |
554 | goto next; | |
555 | } | |
556 | ||
557 | if (cpuhp_is_atomic_state(state)) { | |
558 | local_irq_disable(); | |
559 | st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); | |
560 | local_irq_enable(); | |
561 | ||
562 | /* | |
563 | * STARTING/DYING must not fail! | |
564 | */ | |
565 | WARN_ON_ONCE(st->result); | |
566 | } else { | |
567 | st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); | |
568 | } | |
569 | ||
570 | if (st->result) { | |
571 | /* | |
572 | * If we fail on a rollback, we're up a creek without no | |
573 | * paddle, no way forward, no way back. We loose, thanks for | |
574 | * playing. | |
575 | */ | |
576 | WARN_ON_ONCE(st->rollback); | |
577 | st->should_run = false; | |
578 | } | |
579 | ||
580 | next: | |
581 | cpuhp_lock_release(bringup); | |
582 | ||
583 | if (!st->should_run) | |
584 | complete_ap_thread(st, bringup); | |
585 | } | |
586 | ||
587 | /* Invoke a single callback on a remote cpu */ | |
588 | static int | |
589 | cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, | |
590 | struct hlist_node *node) | |
591 | { | |
592 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
593 | int ret; | |
594 | ||
595 | if (!cpu_online(cpu)) | |
596 | return 0; | |
597 | ||
598 | cpuhp_lock_acquire(false); | |
599 | cpuhp_lock_release(false); | |
600 | ||
601 | cpuhp_lock_acquire(true); | |
602 | cpuhp_lock_release(true); | |
603 | ||
604 | /* | |
605 | * If we are up and running, use the hotplug thread. For early calls | |
606 | * we invoke the thread function directly. | |
607 | */ | |
608 | if (!st->thread) | |
609 | return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); | |
610 | ||
611 | st->rollback = false; | |
612 | st->last = NULL; | |
613 | ||
614 | st->node = node; | |
615 | st->bringup = bringup; | |
616 | st->cb_state = state; | |
617 | st->single = true; | |
618 | ||
619 | __cpuhp_kick_ap(st); | |
620 | ||
621 | /* | |
622 | * If we failed and did a partial, do a rollback. | |
623 | */ | |
624 | if ((ret = st->result) && st->last) { | |
625 | st->rollback = true; | |
626 | st->bringup = !bringup; | |
627 | ||
628 | __cpuhp_kick_ap(st); | |
629 | } | |
630 | ||
631 | /* | |
632 | * Clean up the leftovers so the next hotplug operation wont use stale | |
633 | * data. | |
634 | */ | |
635 | st->node = st->last = NULL; | |
636 | return ret; | |
637 | } | |
638 | ||
639 | static int cpuhp_kick_ap_work(unsigned int cpu) | |
640 | { | |
641 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
642 | enum cpuhp_state prev_state = st->state; | |
643 | int ret; | |
644 | ||
645 | cpuhp_lock_acquire(false); | |
646 | cpuhp_lock_release(false); | |
647 | ||
648 | cpuhp_lock_acquire(true); | |
649 | cpuhp_lock_release(true); | |
650 | ||
651 | trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); | |
652 | ret = cpuhp_kick_ap(st, st->target); | |
653 | trace_cpuhp_exit(cpu, st->state, prev_state, ret); | |
654 | ||
655 | return ret; | |
656 | } | |
657 | ||
658 | static struct smp_hotplug_thread cpuhp_threads = { | |
659 | .store = &cpuhp_state.thread, | |
660 | .create = &cpuhp_create, | |
661 | .thread_should_run = cpuhp_should_run, | |
662 | .thread_fn = cpuhp_thread_fun, | |
663 | .thread_comm = "cpuhp/%u", | |
664 | .selfparking = true, | |
665 | }; | |
666 | ||
667 | void __init cpuhp_threads_init(void) | |
668 | { | |
669 | BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); | |
670 | kthread_unpark(this_cpu_read(cpuhp_state.thread)); | |
671 | } | |
672 | ||
673 | #ifdef CONFIG_HOTPLUG_CPU | |
674 | /** | |
675 | * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU | |
676 | * @cpu: a CPU id | |
677 | * | |
678 | * This function walks all processes, finds a valid mm struct for each one and | |
679 | * then clears a corresponding bit in mm's cpumask. While this all sounds | |
680 | * trivial, there are various non-obvious corner cases, which this function | |
681 | * tries to solve in a safe manner. | |
682 | * | |
683 | * Also note that the function uses a somewhat relaxed locking scheme, so it may | |
684 | * be called only for an already offlined CPU. | |
685 | */ | |
686 | void clear_tasks_mm_cpumask(int cpu) | |
687 | { | |
688 | struct task_struct *p; | |
689 | ||
690 | /* | |
691 | * This function is called after the cpu is taken down and marked | |
692 | * offline, so its not like new tasks will ever get this cpu set in | |
693 | * their mm mask. -- Peter Zijlstra | |
694 | * Thus, we may use rcu_read_lock() here, instead of grabbing | |
695 | * full-fledged tasklist_lock. | |
696 | */ | |
697 | WARN_ON(cpu_online(cpu)); | |
698 | rcu_read_lock(); | |
699 | for_each_process(p) { | |
700 | struct task_struct *t; | |
701 | ||
702 | /* | |
703 | * Main thread might exit, but other threads may still have | |
704 | * a valid mm. Find one. | |
705 | */ | |
706 | t = find_lock_task_mm(p); | |
707 | if (!t) | |
708 | continue; | |
709 | cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); | |
710 | task_unlock(t); | |
711 | } | |
712 | rcu_read_unlock(); | |
713 | } | |
714 | ||
715 | /* Take this CPU down. */ | |
716 | static int take_cpu_down(void *_param) | |
717 | { | |
718 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | |
719 | enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); | |
720 | int err, cpu = smp_processor_id(); | |
721 | int ret; | |
722 | ||
723 | /* Ensure this CPU doesn't handle any more interrupts. */ | |
724 | err = __cpu_disable(); | |
725 | if (err < 0) | |
726 | return err; | |
727 | ||
728 | /* | |
729 | * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not | |
730 | * do this step again. | |
731 | */ | |
732 | WARN_ON(st->state != CPUHP_TEARDOWN_CPU); | |
733 | st->state--; | |
734 | /* Invoke the former CPU_DYING callbacks */ | |
735 | for (; st->state > target; st->state--) { | |
736 | ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); | |
737 | /* | |
738 | * DYING must not fail! | |
739 | */ | |
740 | WARN_ON_ONCE(ret); | |
741 | } | |
742 | ||
743 | /* Give up timekeeping duties */ | |
744 | tick_handover_do_timer(); | |
745 | /* Park the stopper thread */ | |
746 | stop_machine_park(cpu); | |
747 | return 0; | |
748 | } | |
749 | ||
750 | static int takedown_cpu(unsigned int cpu) | |
751 | { | |
752 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
753 | int err; | |
754 | ||
755 | /* Park the smpboot threads */ | |
756 | kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); | |
757 | smpboot_park_threads(cpu); | |
758 | ||
759 | /* | |
760 | * Prevent irq alloc/free while the dying cpu reorganizes the | |
761 | * interrupt affinities. | |
762 | */ | |
763 | irq_lock_sparse(); | |
764 | ||
765 | /* | |
766 | * So now all preempt/rcu users must observe !cpu_active(). | |
767 | */ | |
768 | err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); | |
769 | if (err) { | |
770 | /* CPU refused to die */ | |
771 | irq_unlock_sparse(); | |
772 | /* Unpark the hotplug thread so we can rollback there */ | |
773 | kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); | |
774 | return err; | |
775 | } | |
776 | BUG_ON(cpu_online(cpu)); | |
777 | ||
778 | /* | |
779 | * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed | |
780 | * all runnable tasks from the CPU, there's only the idle task left now | |
781 | * that the migration thread is done doing the stop_machine thing. | |
782 | * | |
783 | * Wait for the stop thread to go away. | |
784 | */ | |
785 | wait_for_ap_thread(st, false); | |
786 | BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); | |
787 | ||
788 | /* Interrupts are moved away from the dying cpu, reenable alloc/free */ | |
789 | irq_unlock_sparse(); | |
790 | ||
791 | hotplug_cpu__broadcast_tick_pull(cpu); | |
792 | /* This actually kills the CPU. */ | |
793 | __cpu_die(cpu); | |
794 | ||
795 | tick_cleanup_dead_cpu(cpu); | |
796 | rcutree_migrate_callbacks(cpu); | |
797 | return 0; | |
798 | } | |
799 | ||
800 | static void cpuhp_complete_idle_dead(void *arg) | |
801 | { | |
802 | struct cpuhp_cpu_state *st = arg; | |
803 | ||
804 | complete_ap_thread(st, false); | |
805 | } | |
806 | ||
807 | void cpuhp_report_idle_dead(void) | |
808 | { | |
809 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | |
810 | ||
811 | BUG_ON(st->state != CPUHP_AP_OFFLINE); | |
812 | rcu_report_dead(smp_processor_id()); | |
813 | st->state = CPUHP_AP_IDLE_DEAD; | |
814 | /* | |
815 | * We cannot call complete after rcu_report_dead() so we delegate it | |
816 | * to an online cpu. | |
817 | */ | |
818 | smp_call_function_single(cpumask_first(cpu_online_mask), | |
819 | cpuhp_complete_idle_dead, st, 0); | |
820 | } | |
821 | ||
822 | static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) | |
823 | { | |
824 | for (st->state++; st->state < st->target; st->state++) { | |
825 | struct cpuhp_step *step = cpuhp_get_step(st->state); | |
826 | ||
827 | if (!step->skip_onerr) | |
828 | cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); | |
829 | } | |
830 | } | |
831 | ||
832 | static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, | |
833 | enum cpuhp_state target) | |
834 | { | |
835 | enum cpuhp_state prev_state = st->state; | |
836 | int ret = 0; | |
837 | ||
838 | for (; st->state > target; st->state--) { | |
839 | ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); | |
840 | if (ret) { | |
841 | st->target = prev_state; | |
842 | undo_cpu_down(cpu, st); | |
843 | break; | |
844 | } | |
845 | } | |
846 | return ret; | |
847 | } | |
848 | ||
849 | /* Requires cpu_add_remove_lock to be held */ | |
850 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, | |
851 | enum cpuhp_state target) | |
852 | { | |
853 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
854 | int prev_state, ret = 0; | |
855 | ||
856 | if (num_online_cpus() == 1) | |
857 | return -EBUSY; | |
858 | ||
859 | if (!cpu_present(cpu)) | |
860 | return -EINVAL; | |
861 | ||
862 | cpus_write_lock(); | |
863 | ||
864 | cpuhp_tasks_frozen = tasks_frozen; | |
865 | ||
866 | prev_state = cpuhp_set_state(st, target); | |
867 | /* | |
868 | * If the current CPU state is in the range of the AP hotplug thread, | |
869 | * then we need to kick the thread. | |
870 | */ | |
871 | if (st->state > CPUHP_TEARDOWN_CPU) { | |
872 | st->target = max((int)target, CPUHP_TEARDOWN_CPU); | |
873 | ret = cpuhp_kick_ap_work(cpu); | |
874 | /* | |
875 | * The AP side has done the error rollback already. Just | |
876 | * return the error code.. | |
877 | */ | |
878 | if (ret) | |
879 | goto out; | |
880 | ||
881 | /* | |
882 | * We might have stopped still in the range of the AP hotplug | |
883 | * thread. Nothing to do anymore. | |
884 | */ | |
885 | if (st->state > CPUHP_TEARDOWN_CPU) | |
886 | goto out; | |
887 | ||
888 | st->target = target; | |
889 | } | |
890 | /* | |
891 | * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need | |
892 | * to do the further cleanups. | |
893 | */ | |
894 | ret = cpuhp_down_callbacks(cpu, st, target); | |
895 | if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { | |
896 | cpuhp_reset_state(st, prev_state); | |
897 | __cpuhp_kick_ap(st); | |
898 | } | |
899 | ||
900 | out: | |
901 | cpus_write_unlock(); | |
902 | /* | |
903 | * Do post unplug cleanup. This is still protected against | |
904 | * concurrent CPU hotplug via cpu_add_remove_lock. | |
905 | */ | |
906 | lockup_detector_cleanup(); | |
907 | return ret; | |
908 | } | |
909 | ||
910 | static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) | |
911 | { | |
912 | int err; | |
913 | ||
914 | cpu_maps_update_begin(); | |
915 | ||
916 | if (cpu_hotplug_disabled) { | |
917 | err = -EBUSY; | |
918 | goto out; | |
919 | } | |
920 | ||
921 | err = _cpu_down(cpu, 0, target); | |
922 | ||
923 | out: | |
924 | cpu_maps_update_done(); | |
925 | return err; | |
926 | } | |
927 | ||
928 | int cpu_down(unsigned int cpu) | |
929 | { | |
930 | return do_cpu_down(cpu, CPUHP_OFFLINE); | |
931 | } | |
932 | EXPORT_SYMBOL(cpu_down); | |
933 | ||
934 | #else | |
935 | #define takedown_cpu NULL | |
936 | #endif /*CONFIG_HOTPLUG_CPU*/ | |
937 | ||
938 | /** | |
939 | * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU | |
940 | * @cpu: cpu that just started | |
941 | * | |
942 | * It must be called by the arch code on the new cpu, before the new cpu | |
943 | * enables interrupts and before the "boot" cpu returns from __cpu_up(). | |
944 | */ | |
945 | void notify_cpu_starting(unsigned int cpu) | |
946 | { | |
947 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
948 | enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); | |
949 | int ret; | |
950 | ||
951 | rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ | |
952 | while (st->state < target) { | |
953 | st->state++; | |
954 | ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); | |
955 | /* | |
956 | * STARTING must not fail! | |
957 | */ | |
958 | WARN_ON_ONCE(ret); | |
959 | } | |
960 | } | |
961 | ||
962 | /* | |
963 | * Called from the idle task. Wake up the controlling task which brings the | |
964 | * stopper and the hotplug thread of the upcoming CPU up and then delegates | |
965 | * the rest of the online bringup to the hotplug thread. | |
966 | */ | |
967 | void cpuhp_online_idle(enum cpuhp_state state) | |
968 | { | |
969 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); | |
970 | ||
971 | /* Happens for the boot cpu */ | |
972 | if (state != CPUHP_AP_ONLINE_IDLE) | |
973 | return; | |
974 | ||
975 | st->state = CPUHP_AP_ONLINE_IDLE; | |
976 | complete_ap_thread(st, true); | |
977 | } | |
978 | ||
979 | /* Requires cpu_add_remove_lock to be held */ | |
980 | static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) | |
981 | { | |
982 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
983 | struct task_struct *idle; | |
984 | int ret = 0; | |
985 | ||
986 | cpus_write_lock(); | |
987 | ||
988 | if (!cpu_present(cpu)) { | |
989 | ret = -EINVAL; | |
990 | goto out; | |
991 | } | |
992 | ||
993 | /* | |
994 | * The caller of do_cpu_up might have raced with another | |
995 | * caller. Ignore it for now. | |
996 | */ | |
997 | if (st->state >= target) | |
998 | goto out; | |
999 | ||
1000 | if (st->state == CPUHP_OFFLINE) { | |
1001 | /* Let it fail before we try to bring the cpu up */ | |
1002 | idle = idle_thread_get(cpu); | |
1003 | if (IS_ERR(idle)) { | |
1004 | ret = PTR_ERR(idle); | |
1005 | goto out; | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | cpuhp_tasks_frozen = tasks_frozen; | |
1010 | ||
1011 | cpuhp_set_state(st, target); | |
1012 | /* | |
1013 | * If the current CPU state is in the range of the AP hotplug thread, | |
1014 | * then we need to kick the thread once more. | |
1015 | */ | |
1016 | if (st->state > CPUHP_BRINGUP_CPU) { | |
1017 | ret = cpuhp_kick_ap_work(cpu); | |
1018 | /* | |
1019 | * The AP side has done the error rollback already. Just | |
1020 | * return the error code.. | |
1021 | */ | |
1022 | if (ret) | |
1023 | goto out; | |
1024 | } | |
1025 | ||
1026 | /* | |
1027 | * Try to reach the target state. We max out on the BP at | |
1028 | * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is | |
1029 | * responsible for bringing it up to the target state. | |
1030 | */ | |
1031 | target = min((int)target, CPUHP_BRINGUP_CPU); | |
1032 | ret = cpuhp_up_callbacks(cpu, st, target); | |
1033 | out: | |
1034 | cpus_write_unlock(); | |
1035 | return ret; | |
1036 | } | |
1037 | ||
1038 | static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) | |
1039 | { | |
1040 | int err = 0; | |
1041 | ||
1042 | if (!cpu_possible(cpu)) { | |
1043 | pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", | |
1044 | cpu); | |
1045 | #if defined(CONFIG_IA64) | |
1046 | pr_err("please check additional_cpus= boot parameter\n"); | |
1047 | #endif | |
1048 | return -EINVAL; | |
1049 | } | |
1050 | ||
1051 | err = try_online_node(cpu_to_node(cpu)); | |
1052 | if (err) | |
1053 | return err; | |
1054 | ||
1055 | cpu_maps_update_begin(); | |
1056 | ||
1057 | if (cpu_hotplug_disabled) { | |
1058 | err = -EBUSY; | |
1059 | goto out; | |
1060 | } | |
1061 | ||
1062 | err = _cpu_up(cpu, 0, target); | |
1063 | out: | |
1064 | cpu_maps_update_done(); | |
1065 | return err; | |
1066 | } | |
1067 | ||
1068 | int cpu_up(unsigned int cpu) | |
1069 | { | |
1070 | return do_cpu_up(cpu, CPUHP_ONLINE); | |
1071 | } | |
1072 | EXPORT_SYMBOL_GPL(cpu_up); | |
1073 | ||
1074 | #ifdef CONFIG_PM_SLEEP_SMP | |
1075 | static cpumask_var_t frozen_cpus; | |
1076 | ||
1077 | int freeze_secondary_cpus(int primary) | |
1078 | { | |
1079 | int cpu, error = 0; | |
1080 | ||
1081 | cpu_maps_update_begin(); | |
1082 | if (!cpu_online(primary)) | |
1083 | primary = cpumask_first(cpu_online_mask); | |
1084 | /* | |
1085 | * We take down all of the non-boot CPUs in one shot to avoid races | |
1086 | * with the userspace trying to use the CPU hotplug at the same time | |
1087 | */ | |
1088 | cpumask_clear(frozen_cpus); | |
1089 | ||
1090 | pr_info("Disabling non-boot CPUs ...\n"); | |
1091 | for_each_online_cpu(cpu) { | |
1092 | if (cpu == primary) | |
1093 | continue; | |
1094 | trace_suspend_resume(TPS("CPU_OFF"), cpu, true); | |
1095 | error = _cpu_down(cpu, 1, CPUHP_OFFLINE); | |
1096 | trace_suspend_resume(TPS("CPU_OFF"), cpu, false); | |
1097 | if (!error) | |
1098 | cpumask_set_cpu(cpu, frozen_cpus); | |
1099 | else { | |
1100 | pr_err("Error taking CPU%d down: %d\n", cpu, error); | |
1101 | break; | |
1102 | } | |
1103 | } | |
1104 | ||
1105 | if (!error) | |
1106 | BUG_ON(num_online_cpus() > 1); | |
1107 | else | |
1108 | pr_err("Non-boot CPUs are not disabled\n"); | |
1109 | ||
1110 | /* | |
1111 | * Make sure the CPUs won't be enabled by someone else. We need to do | |
1112 | * this even in case of failure as all disable_nonboot_cpus() users are | |
1113 | * supposed to do enable_nonboot_cpus() on the failure path. | |
1114 | */ | |
1115 | cpu_hotplug_disabled++; | |
1116 | ||
1117 | cpu_maps_update_done(); | |
1118 | return error; | |
1119 | } | |
1120 | ||
1121 | void __weak arch_enable_nonboot_cpus_begin(void) | |
1122 | { | |
1123 | } | |
1124 | ||
1125 | void __weak arch_enable_nonboot_cpus_end(void) | |
1126 | { | |
1127 | } | |
1128 | ||
1129 | void enable_nonboot_cpus(void) | |
1130 | { | |
1131 | int cpu, error; | |
1132 | ||
1133 | /* Allow everyone to use the CPU hotplug again */ | |
1134 | cpu_maps_update_begin(); | |
1135 | __cpu_hotplug_enable(); | |
1136 | if (cpumask_empty(frozen_cpus)) | |
1137 | goto out; | |
1138 | ||
1139 | pr_info("Enabling non-boot CPUs ...\n"); | |
1140 | ||
1141 | arch_enable_nonboot_cpus_begin(); | |
1142 | ||
1143 | for_each_cpu(cpu, frozen_cpus) { | |
1144 | trace_suspend_resume(TPS("CPU_ON"), cpu, true); | |
1145 | error = _cpu_up(cpu, 1, CPUHP_ONLINE); | |
1146 | trace_suspend_resume(TPS("CPU_ON"), cpu, false); | |
1147 | if (!error) { | |
1148 | pr_info("CPU%d is up\n", cpu); | |
1149 | continue; | |
1150 | } | |
1151 | pr_warn("Error taking CPU%d up: %d\n", cpu, error); | |
1152 | } | |
1153 | ||
1154 | arch_enable_nonboot_cpus_end(); | |
1155 | ||
1156 | cpumask_clear(frozen_cpus); | |
1157 | out: | |
1158 | cpu_maps_update_done(); | |
1159 | } | |
1160 | ||
1161 | static int __init alloc_frozen_cpus(void) | |
1162 | { | |
1163 | if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) | |
1164 | return -ENOMEM; | |
1165 | return 0; | |
1166 | } | |
1167 | core_initcall(alloc_frozen_cpus); | |
1168 | ||
1169 | /* | |
1170 | * When callbacks for CPU hotplug notifications are being executed, we must | |
1171 | * ensure that the state of the system with respect to the tasks being frozen | |
1172 | * or not, as reported by the notification, remains unchanged *throughout the | |
1173 | * duration* of the execution of the callbacks. | |
1174 | * Hence we need to prevent the freezer from racing with regular CPU hotplug. | |
1175 | * | |
1176 | * This synchronization is implemented by mutually excluding regular CPU | |
1177 | * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ | |
1178 | * Hibernate notifications. | |
1179 | */ | |
1180 | static int | |
1181 | cpu_hotplug_pm_callback(struct notifier_block *nb, | |
1182 | unsigned long action, void *ptr) | |
1183 | { | |
1184 | switch (action) { | |
1185 | ||
1186 | case PM_SUSPEND_PREPARE: | |
1187 | case PM_HIBERNATION_PREPARE: | |
1188 | cpu_hotplug_disable(); | |
1189 | break; | |
1190 | ||
1191 | case PM_POST_SUSPEND: | |
1192 | case PM_POST_HIBERNATION: | |
1193 | cpu_hotplug_enable(); | |
1194 | break; | |
1195 | ||
1196 | default: | |
1197 | return NOTIFY_DONE; | |
1198 | } | |
1199 | ||
1200 | return NOTIFY_OK; | |
1201 | } | |
1202 | ||
1203 | ||
1204 | static int __init cpu_hotplug_pm_sync_init(void) | |
1205 | { | |
1206 | /* | |
1207 | * cpu_hotplug_pm_callback has higher priority than x86 | |
1208 | * bsp_pm_callback which depends on cpu_hotplug_pm_callback | |
1209 | * to disable cpu hotplug to avoid cpu hotplug race. | |
1210 | */ | |
1211 | pm_notifier(cpu_hotplug_pm_callback, 0); | |
1212 | return 0; | |
1213 | } | |
1214 | core_initcall(cpu_hotplug_pm_sync_init); | |
1215 | ||
1216 | #endif /* CONFIG_PM_SLEEP_SMP */ | |
1217 | ||
1218 | int __boot_cpu_id; | |
1219 | ||
1220 | #endif /* CONFIG_SMP */ | |
1221 | ||
1222 | /* Boot processor state steps */ | |
1223 | static struct cpuhp_step cpuhp_hp_states[] = { | |
1224 | [CPUHP_OFFLINE] = { | |
1225 | .name = "offline", | |
1226 | .startup.single = NULL, | |
1227 | .teardown.single = NULL, | |
1228 | }, | |
1229 | #ifdef CONFIG_SMP | |
1230 | [CPUHP_CREATE_THREADS]= { | |
1231 | .name = "threads:prepare", | |
1232 | .startup.single = smpboot_create_threads, | |
1233 | .teardown.single = NULL, | |
1234 | .cant_stop = true, | |
1235 | }, | |
1236 | [CPUHP_PERF_PREPARE] = { | |
1237 | .name = "perf:prepare", | |
1238 | .startup.single = perf_event_init_cpu, | |
1239 | .teardown.single = perf_event_exit_cpu, | |
1240 | }, | |
1241 | [CPUHP_WORKQUEUE_PREP] = { | |
1242 | .name = "workqueue:prepare", | |
1243 | .startup.single = workqueue_prepare_cpu, | |
1244 | .teardown.single = NULL, | |
1245 | }, | |
1246 | [CPUHP_HRTIMERS_PREPARE] = { | |
1247 | .name = "hrtimers:prepare", | |
1248 | .startup.single = hrtimers_prepare_cpu, | |
1249 | .teardown.single = hrtimers_dead_cpu, | |
1250 | }, | |
1251 | [CPUHP_SMPCFD_PREPARE] = { | |
1252 | .name = "smpcfd:prepare", | |
1253 | .startup.single = smpcfd_prepare_cpu, | |
1254 | .teardown.single = smpcfd_dead_cpu, | |
1255 | }, | |
1256 | [CPUHP_RELAY_PREPARE] = { | |
1257 | .name = "relay:prepare", | |
1258 | .startup.single = relay_prepare_cpu, | |
1259 | .teardown.single = NULL, | |
1260 | }, | |
1261 | [CPUHP_SLAB_PREPARE] = { | |
1262 | .name = "slab:prepare", | |
1263 | .startup.single = slab_prepare_cpu, | |
1264 | .teardown.single = slab_dead_cpu, | |
1265 | }, | |
1266 | [CPUHP_RCUTREE_PREP] = { | |
1267 | .name = "RCU/tree:prepare", | |
1268 | .startup.single = rcutree_prepare_cpu, | |
1269 | .teardown.single = rcutree_dead_cpu, | |
1270 | }, | |
1271 | /* | |
1272 | * On the tear-down path, timers_dead_cpu() must be invoked | |
1273 | * before blk_mq_queue_reinit_notify() from notify_dead(), | |
1274 | * otherwise a RCU stall occurs. | |
1275 | */ | |
1276 | [CPUHP_TIMERS_PREPARE] = { | |
1277 | .name = "timers:dead", | |
1278 | .startup.single = timers_prepare_cpu, | |
1279 | .teardown.single = timers_dead_cpu, | |
1280 | }, | |
1281 | /* Kicks the plugged cpu into life */ | |
1282 | [CPUHP_BRINGUP_CPU] = { | |
1283 | .name = "cpu:bringup", | |
1284 | .startup.single = bringup_cpu, | |
1285 | .teardown.single = NULL, | |
1286 | .cant_stop = true, | |
1287 | }, | |
1288 | /* Final state before CPU kills itself */ | |
1289 | [CPUHP_AP_IDLE_DEAD] = { | |
1290 | .name = "idle:dead", | |
1291 | }, | |
1292 | /* | |
1293 | * Last state before CPU enters the idle loop to die. Transient state | |
1294 | * for synchronization. | |
1295 | */ | |
1296 | [CPUHP_AP_OFFLINE] = { | |
1297 | .name = "ap:offline", | |
1298 | .cant_stop = true, | |
1299 | }, | |
1300 | /* First state is scheduler control. Interrupts are disabled */ | |
1301 | [CPUHP_AP_SCHED_STARTING] = { | |
1302 | .name = "sched:starting", | |
1303 | .startup.single = sched_cpu_starting, | |
1304 | .teardown.single = sched_cpu_dying, | |
1305 | }, | |
1306 | [CPUHP_AP_RCUTREE_DYING] = { | |
1307 | .name = "RCU/tree:dying", | |
1308 | .startup.single = NULL, | |
1309 | .teardown.single = rcutree_dying_cpu, | |
1310 | }, | |
1311 | [CPUHP_AP_SMPCFD_DYING] = { | |
1312 | .name = "smpcfd:dying", | |
1313 | .startup.single = NULL, | |
1314 | .teardown.single = smpcfd_dying_cpu, | |
1315 | }, | |
1316 | /* Entry state on starting. Interrupts enabled from here on. Transient | |
1317 | * state for synchronsization */ | |
1318 | [CPUHP_AP_ONLINE] = { | |
1319 | .name = "ap:online", | |
1320 | }, | |
1321 | /* | |
1322 | * Handled on controll processor until the plugged processor manages | |
1323 | * this itself. | |
1324 | */ | |
1325 | [CPUHP_TEARDOWN_CPU] = { | |
1326 | .name = "cpu:teardown", | |
1327 | .startup.single = NULL, | |
1328 | .teardown.single = takedown_cpu, | |
1329 | .cant_stop = true, | |
1330 | }, | |
1331 | /* Handle smpboot threads park/unpark */ | |
1332 | [CPUHP_AP_SMPBOOT_THREADS] = { | |
1333 | .name = "smpboot/threads:online", | |
1334 | .startup.single = smpboot_unpark_threads, | |
1335 | .teardown.single = NULL, | |
1336 | }, | |
1337 | [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { | |
1338 | .name = "irq/affinity:online", | |
1339 | .startup.single = irq_affinity_online_cpu, | |
1340 | .teardown.single = NULL, | |
1341 | }, | |
1342 | [CPUHP_AP_PERF_ONLINE] = { | |
1343 | .name = "perf:online", | |
1344 | .startup.single = perf_event_init_cpu, | |
1345 | .teardown.single = perf_event_exit_cpu, | |
1346 | }, | |
1347 | [CPUHP_AP_WORKQUEUE_ONLINE] = { | |
1348 | .name = "workqueue:online", | |
1349 | .startup.single = workqueue_online_cpu, | |
1350 | .teardown.single = workqueue_offline_cpu, | |
1351 | }, | |
1352 | [CPUHP_AP_RCUTREE_ONLINE] = { | |
1353 | .name = "RCU/tree:online", | |
1354 | .startup.single = rcutree_online_cpu, | |
1355 | .teardown.single = rcutree_offline_cpu, | |
1356 | }, | |
1357 | #endif | |
1358 | /* | |
1359 | * The dynamically registered state space is here | |
1360 | */ | |
1361 | ||
1362 | #ifdef CONFIG_SMP | |
1363 | /* Last state is scheduler control setting the cpu active */ | |
1364 | [CPUHP_AP_ACTIVE] = { | |
1365 | .name = "sched:active", | |
1366 | .startup.single = sched_cpu_activate, | |
1367 | .teardown.single = sched_cpu_deactivate, | |
1368 | }, | |
1369 | #endif | |
1370 | ||
1371 | /* CPU is fully up and running. */ | |
1372 | [CPUHP_ONLINE] = { | |
1373 | .name = "online", | |
1374 | .startup.single = NULL, | |
1375 | .teardown.single = NULL, | |
1376 | }, | |
1377 | }; | |
1378 | ||
1379 | /* Sanity check for callbacks */ | |
1380 | static int cpuhp_cb_check(enum cpuhp_state state) | |
1381 | { | |
1382 | if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) | |
1383 | return -EINVAL; | |
1384 | return 0; | |
1385 | } | |
1386 | ||
1387 | /* | |
1388 | * Returns a free for dynamic slot assignment of the Online state. The states | |
1389 | * are protected by the cpuhp_slot_states mutex and an empty slot is identified | |
1390 | * by having no name assigned. | |
1391 | */ | |
1392 | static int cpuhp_reserve_state(enum cpuhp_state state) | |
1393 | { | |
1394 | enum cpuhp_state i, end; | |
1395 | struct cpuhp_step *step; | |
1396 | ||
1397 | switch (state) { | |
1398 | case CPUHP_AP_ONLINE_DYN: | |
1399 | step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; | |
1400 | end = CPUHP_AP_ONLINE_DYN_END; | |
1401 | break; | |
1402 | case CPUHP_BP_PREPARE_DYN: | |
1403 | step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; | |
1404 | end = CPUHP_BP_PREPARE_DYN_END; | |
1405 | break; | |
1406 | default: | |
1407 | return -EINVAL; | |
1408 | } | |
1409 | ||
1410 | for (i = state; i <= end; i++, step++) { | |
1411 | if (!step->name) | |
1412 | return i; | |
1413 | } | |
1414 | WARN(1, "No more dynamic states available for CPU hotplug\n"); | |
1415 | return -ENOSPC; | |
1416 | } | |
1417 | ||
1418 | static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, | |
1419 | int (*startup)(unsigned int cpu), | |
1420 | int (*teardown)(unsigned int cpu), | |
1421 | bool multi_instance) | |
1422 | { | |
1423 | /* (Un)Install the callbacks for further cpu hotplug operations */ | |
1424 | struct cpuhp_step *sp; | |
1425 | int ret = 0; | |
1426 | ||
1427 | /* | |
1428 | * If name is NULL, then the state gets removed. | |
1429 | * | |
1430 | * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on | |
1431 | * the first allocation from these dynamic ranges, so the removal | |
1432 | * would trigger a new allocation and clear the wrong (already | |
1433 | * empty) state, leaving the callbacks of the to be cleared state | |
1434 | * dangling, which causes wreckage on the next hotplug operation. | |
1435 | */ | |
1436 | if (name && (state == CPUHP_AP_ONLINE_DYN || | |
1437 | state == CPUHP_BP_PREPARE_DYN)) { | |
1438 | ret = cpuhp_reserve_state(state); | |
1439 | if (ret < 0) | |
1440 | return ret; | |
1441 | state = ret; | |
1442 | } | |
1443 | sp = cpuhp_get_step(state); | |
1444 | if (name && sp->name) | |
1445 | return -EBUSY; | |
1446 | ||
1447 | sp->startup.single = startup; | |
1448 | sp->teardown.single = teardown; | |
1449 | sp->name = name; | |
1450 | sp->multi_instance = multi_instance; | |
1451 | INIT_HLIST_HEAD(&sp->list); | |
1452 | return ret; | |
1453 | } | |
1454 | ||
1455 | static void *cpuhp_get_teardown_cb(enum cpuhp_state state) | |
1456 | { | |
1457 | return cpuhp_get_step(state)->teardown.single; | |
1458 | } | |
1459 | ||
1460 | /* | |
1461 | * Call the startup/teardown function for a step either on the AP or | |
1462 | * on the current CPU. | |
1463 | */ | |
1464 | static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, | |
1465 | struct hlist_node *node) | |
1466 | { | |
1467 | struct cpuhp_step *sp = cpuhp_get_step(state); | |
1468 | int ret; | |
1469 | ||
1470 | /* | |
1471 | * If there's nothing to do, we done. | |
1472 | * Relies on the union for multi_instance. | |
1473 | */ | |
1474 | if ((bringup && !sp->startup.single) || | |
1475 | (!bringup && !sp->teardown.single)) | |
1476 | return 0; | |
1477 | /* | |
1478 | * The non AP bound callbacks can fail on bringup. On teardown | |
1479 | * e.g. module removal we crash for now. | |
1480 | */ | |
1481 | #ifdef CONFIG_SMP | |
1482 | if (cpuhp_is_ap_state(state)) | |
1483 | ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); | |
1484 | else | |
1485 | ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); | |
1486 | #else | |
1487 | ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); | |
1488 | #endif | |
1489 | BUG_ON(ret && !bringup); | |
1490 | return ret; | |
1491 | } | |
1492 | ||
1493 | /* | |
1494 | * Called from __cpuhp_setup_state on a recoverable failure. | |
1495 | * | |
1496 | * Note: The teardown callbacks for rollback are not allowed to fail! | |
1497 | */ | |
1498 | static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, | |
1499 | struct hlist_node *node) | |
1500 | { | |
1501 | int cpu; | |
1502 | ||
1503 | /* Roll back the already executed steps on the other cpus */ | |
1504 | for_each_present_cpu(cpu) { | |
1505 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
1506 | int cpustate = st->state; | |
1507 | ||
1508 | if (cpu >= failedcpu) | |
1509 | break; | |
1510 | ||
1511 | /* Did we invoke the startup call on that cpu ? */ | |
1512 | if (cpustate >= state) | |
1513 | cpuhp_issue_call(cpu, state, false, node); | |
1514 | } | |
1515 | } | |
1516 | ||
1517 | int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, | |
1518 | struct hlist_node *node, | |
1519 | bool invoke) | |
1520 | { | |
1521 | struct cpuhp_step *sp; | |
1522 | int cpu; | |
1523 | int ret; | |
1524 | ||
1525 | lockdep_assert_cpus_held(); | |
1526 | ||
1527 | sp = cpuhp_get_step(state); | |
1528 | if (sp->multi_instance == false) | |
1529 | return -EINVAL; | |
1530 | ||
1531 | mutex_lock(&cpuhp_state_mutex); | |
1532 | ||
1533 | if (!invoke || !sp->startup.multi) | |
1534 | goto add_node; | |
1535 | ||
1536 | /* | |
1537 | * Try to call the startup callback for each present cpu | |
1538 | * depending on the hotplug state of the cpu. | |
1539 | */ | |
1540 | for_each_present_cpu(cpu) { | |
1541 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
1542 | int cpustate = st->state; | |
1543 | ||
1544 | if (cpustate < state) | |
1545 | continue; | |
1546 | ||
1547 | ret = cpuhp_issue_call(cpu, state, true, node); | |
1548 | if (ret) { | |
1549 | if (sp->teardown.multi) | |
1550 | cpuhp_rollback_install(cpu, state, node); | |
1551 | goto unlock; | |
1552 | } | |
1553 | } | |
1554 | add_node: | |
1555 | ret = 0; | |
1556 | hlist_add_head(node, &sp->list); | |
1557 | unlock: | |
1558 | mutex_unlock(&cpuhp_state_mutex); | |
1559 | return ret; | |
1560 | } | |
1561 | ||
1562 | int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, | |
1563 | bool invoke) | |
1564 | { | |
1565 | int ret; | |
1566 | ||
1567 | cpus_read_lock(); | |
1568 | ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); | |
1569 | cpus_read_unlock(); | |
1570 | return ret; | |
1571 | } | |
1572 | EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); | |
1573 | ||
1574 | /** | |
1575 | * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state | |
1576 | * @state: The state to setup | |
1577 | * @invoke: If true, the startup function is invoked for cpus where | |
1578 | * cpu state >= @state | |
1579 | * @startup: startup callback function | |
1580 | * @teardown: teardown callback function | |
1581 | * @multi_instance: State is set up for multiple instances which get | |
1582 | * added afterwards. | |
1583 | * | |
1584 | * The caller needs to hold cpus read locked while calling this function. | |
1585 | * Returns: | |
1586 | * On success: | |
1587 | * Positive state number if @state is CPUHP_AP_ONLINE_DYN | |
1588 | * 0 for all other states | |
1589 | * On failure: proper (negative) error code | |
1590 | */ | |
1591 | int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, | |
1592 | const char *name, bool invoke, | |
1593 | int (*startup)(unsigned int cpu), | |
1594 | int (*teardown)(unsigned int cpu), | |
1595 | bool multi_instance) | |
1596 | { | |
1597 | int cpu, ret = 0; | |
1598 | bool dynstate; | |
1599 | ||
1600 | lockdep_assert_cpus_held(); | |
1601 | ||
1602 | if (cpuhp_cb_check(state) || !name) | |
1603 | return -EINVAL; | |
1604 | ||
1605 | mutex_lock(&cpuhp_state_mutex); | |
1606 | ||
1607 | ret = cpuhp_store_callbacks(state, name, startup, teardown, | |
1608 | multi_instance); | |
1609 | ||
1610 | dynstate = state == CPUHP_AP_ONLINE_DYN; | |
1611 | if (ret > 0 && dynstate) { | |
1612 | state = ret; | |
1613 | ret = 0; | |
1614 | } | |
1615 | ||
1616 | if (ret || !invoke || !startup) | |
1617 | goto out; | |
1618 | ||
1619 | /* | |
1620 | * Try to call the startup callback for each present cpu | |
1621 | * depending on the hotplug state of the cpu. | |
1622 | */ | |
1623 | for_each_present_cpu(cpu) { | |
1624 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
1625 | int cpustate = st->state; | |
1626 | ||
1627 | if (cpustate < state) | |
1628 | continue; | |
1629 | ||
1630 | ret = cpuhp_issue_call(cpu, state, true, NULL); | |
1631 | if (ret) { | |
1632 | if (teardown) | |
1633 | cpuhp_rollback_install(cpu, state, NULL); | |
1634 | cpuhp_store_callbacks(state, NULL, NULL, NULL, false); | |
1635 | goto out; | |
1636 | } | |
1637 | } | |
1638 | out: | |
1639 | mutex_unlock(&cpuhp_state_mutex); | |
1640 | /* | |
1641 | * If the requested state is CPUHP_AP_ONLINE_DYN, return the | |
1642 | * dynamically allocated state in case of success. | |
1643 | */ | |
1644 | if (!ret && dynstate) | |
1645 | return state; | |
1646 | return ret; | |
1647 | } | |
1648 | EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); | |
1649 | ||
1650 | int __cpuhp_setup_state(enum cpuhp_state state, | |
1651 | const char *name, bool invoke, | |
1652 | int (*startup)(unsigned int cpu), | |
1653 | int (*teardown)(unsigned int cpu), | |
1654 | bool multi_instance) | |
1655 | { | |
1656 | int ret; | |
1657 | ||
1658 | cpus_read_lock(); | |
1659 | ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, | |
1660 | teardown, multi_instance); | |
1661 | cpus_read_unlock(); | |
1662 | return ret; | |
1663 | } | |
1664 | EXPORT_SYMBOL(__cpuhp_setup_state); | |
1665 | ||
1666 | int __cpuhp_state_remove_instance(enum cpuhp_state state, | |
1667 | struct hlist_node *node, bool invoke) | |
1668 | { | |
1669 | struct cpuhp_step *sp = cpuhp_get_step(state); | |
1670 | int cpu; | |
1671 | ||
1672 | BUG_ON(cpuhp_cb_check(state)); | |
1673 | ||
1674 | if (!sp->multi_instance) | |
1675 | return -EINVAL; | |
1676 | ||
1677 | cpus_read_lock(); | |
1678 | mutex_lock(&cpuhp_state_mutex); | |
1679 | ||
1680 | if (!invoke || !cpuhp_get_teardown_cb(state)) | |
1681 | goto remove; | |
1682 | /* | |
1683 | * Call the teardown callback for each present cpu depending | |
1684 | * on the hotplug state of the cpu. This function is not | |
1685 | * allowed to fail currently! | |
1686 | */ | |
1687 | for_each_present_cpu(cpu) { | |
1688 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
1689 | int cpustate = st->state; | |
1690 | ||
1691 | if (cpustate >= state) | |
1692 | cpuhp_issue_call(cpu, state, false, node); | |
1693 | } | |
1694 | ||
1695 | remove: | |
1696 | hlist_del(node); | |
1697 | mutex_unlock(&cpuhp_state_mutex); | |
1698 | cpus_read_unlock(); | |
1699 | ||
1700 | return 0; | |
1701 | } | |
1702 | EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); | |
1703 | ||
1704 | /** | |
1705 | * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state | |
1706 | * @state: The state to remove | |
1707 | * @invoke: If true, the teardown function is invoked for cpus where | |
1708 | * cpu state >= @state | |
1709 | * | |
1710 | * The caller needs to hold cpus read locked while calling this function. | |
1711 | * The teardown callback is currently not allowed to fail. Think | |
1712 | * about module removal! | |
1713 | */ | |
1714 | void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) | |
1715 | { | |
1716 | struct cpuhp_step *sp = cpuhp_get_step(state); | |
1717 | int cpu; | |
1718 | ||
1719 | BUG_ON(cpuhp_cb_check(state)); | |
1720 | ||
1721 | lockdep_assert_cpus_held(); | |
1722 | ||
1723 | mutex_lock(&cpuhp_state_mutex); | |
1724 | if (sp->multi_instance) { | |
1725 | WARN(!hlist_empty(&sp->list), | |
1726 | "Error: Removing state %d which has instances left.\n", | |
1727 | state); | |
1728 | goto remove; | |
1729 | } | |
1730 | ||
1731 | if (!invoke || !cpuhp_get_teardown_cb(state)) | |
1732 | goto remove; | |
1733 | ||
1734 | /* | |
1735 | * Call the teardown callback for each present cpu depending | |
1736 | * on the hotplug state of the cpu. This function is not | |
1737 | * allowed to fail currently! | |
1738 | */ | |
1739 | for_each_present_cpu(cpu) { | |
1740 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); | |
1741 | int cpustate = st->state; | |
1742 | ||
1743 | if (cpustate >= state) | |
1744 | cpuhp_issue_call(cpu, state, false, NULL); | |
1745 | } | |
1746 | remove: | |
1747 | cpuhp_store_callbacks(state, NULL, NULL, NULL, false); | |
1748 | mutex_unlock(&cpuhp_state_mutex); | |
1749 | } | |
1750 | EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); | |
1751 | ||
1752 | void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) | |
1753 | { | |
1754 | cpus_read_lock(); | |
1755 | __cpuhp_remove_state_cpuslocked(state, invoke); | |
1756 | cpus_read_unlock(); | |
1757 | } | |
1758 | EXPORT_SYMBOL(__cpuhp_remove_state); | |
1759 | ||
1760 | #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) | |
1761 | static ssize_t show_cpuhp_state(struct device *dev, | |
1762 | struct device_attribute *attr, char *buf) | |
1763 | { | |
1764 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | |
1765 | ||
1766 | return sprintf(buf, "%d\n", st->state); | |
1767 | } | |
1768 | static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); | |
1769 | ||
1770 | static ssize_t write_cpuhp_target(struct device *dev, | |
1771 | struct device_attribute *attr, | |
1772 | const char *buf, size_t count) | |
1773 | { | |
1774 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | |
1775 | struct cpuhp_step *sp; | |
1776 | int target, ret; | |
1777 | ||
1778 | ret = kstrtoint(buf, 10, &target); | |
1779 | if (ret) | |
1780 | return ret; | |
1781 | ||
1782 | #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL | |
1783 | if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) | |
1784 | return -EINVAL; | |
1785 | #else | |
1786 | if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) | |
1787 | return -EINVAL; | |
1788 | #endif | |
1789 | ||
1790 | ret = lock_device_hotplug_sysfs(); | |
1791 | if (ret) | |
1792 | return ret; | |
1793 | ||
1794 | mutex_lock(&cpuhp_state_mutex); | |
1795 | sp = cpuhp_get_step(target); | |
1796 | ret = !sp->name || sp->cant_stop ? -EINVAL : 0; | |
1797 | mutex_unlock(&cpuhp_state_mutex); | |
1798 | if (ret) | |
1799 | goto out; | |
1800 | ||
1801 | if (st->state < target) | |
1802 | ret = do_cpu_up(dev->id, target); | |
1803 | else | |
1804 | ret = do_cpu_down(dev->id, target); | |
1805 | out: | |
1806 | unlock_device_hotplug(); | |
1807 | return ret ? ret : count; | |
1808 | } | |
1809 | ||
1810 | static ssize_t show_cpuhp_target(struct device *dev, | |
1811 | struct device_attribute *attr, char *buf) | |
1812 | { | |
1813 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | |
1814 | ||
1815 | return sprintf(buf, "%d\n", st->target); | |
1816 | } | |
1817 | static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); | |
1818 | ||
1819 | ||
1820 | static ssize_t write_cpuhp_fail(struct device *dev, | |
1821 | struct device_attribute *attr, | |
1822 | const char *buf, size_t count) | |
1823 | { | |
1824 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | |
1825 | struct cpuhp_step *sp; | |
1826 | int fail, ret; | |
1827 | ||
1828 | ret = kstrtoint(buf, 10, &fail); | |
1829 | if (ret) | |
1830 | return ret; | |
1831 | ||
1832 | /* | |
1833 | * Cannot fail STARTING/DYING callbacks. | |
1834 | */ | |
1835 | if (cpuhp_is_atomic_state(fail)) | |
1836 | return -EINVAL; | |
1837 | ||
1838 | /* | |
1839 | * Cannot fail anything that doesn't have callbacks. | |
1840 | */ | |
1841 | mutex_lock(&cpuhp_state_mutex); | |
1842 | sp = cpuhp_get_step(fail); | |
1843 | if (!sp->startup.single && !sp->teardown.single) | |
1844 | ret = -EINVAL; | |
1845 | mutex_unlock(&cpuhp_state_mutex); | |
1846 | if (ret) | |
1847 | return ret; | |
1848 | ||
1849 | st->fail = fail; | |
1850 | ||
1851 | return count; | |
1852 | } | |
1853 | ||
1854 | static ssize_t show_cpuhp_fail(struct device *dev, | |
1855 | struct device_attribute *attr, char *buf) | |
1856 | { | |
1857 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); | |
1858 | ||
1859 | return sprintf(buf, "%d\n", st->fail); | |
1860 | } | |
1861 | ||
1862 | static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); | |
1863 | ||
1864 | static struct attribute *cpuhp_cpu_attrs[] = { | |
1865 | &dev_attr_state.attr, | |
1866 | &dev_attr_target.attr, | |
1867 | &dev_attr_fail.attr, | |
1868 | NULL | |
1869 | }; | |
1870 | ||
1871 | static const struct attribute_group cpuhp_cpu_attr_group = { | |
1872 | .attrs = cpuhp_cpu_attrs, | |
1873 | .name = "hotplug", | |
1874 | NULL | |
1875 | }; | |
1876 | ||
1877 | static ssize_t show_cpuhp_states(struct device *dev, | |
1878 | struct device_attribute *attr, char *buf) | |
1879 | { | |
1880 | ssize_t cur, res = 0; | |
1881 | int i; | |
1882 | ||
1883 | mutex_lock(&cpuhp_state_mutex); | |
1884 | for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { | |
1885 | struct cpuhp_step *sp = cpuhp_get_step(i); | |
1886 | ||
1887 | if (sp->name) { | |
1888 | cur = sprintf(buf, "%3d: %s\n", i, sp->name); | |
1889 | buf += cur; | |
1890 | res += cur; | |
1891 | } | |
1892 | } | |
1893 | mutex_unlock(&cpuhp_state_mutex); | |
1894 | return res; | |
1895 | } | |
1896 | static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); | |
1897 | ||
1898 | static struct attribute *cpuhp_cpu_root_attrs[] = { | |
1899 | &dev_attr_states.attr, | |
1900 | NULL | |
1901 | }; | |
1902 | ||
1903 | static const struct attribute_group cpuhp_cpu_root_attr_group = { | |
1904 | .attrs = cpuhp_cpu_root_attrs, | |
1905 | .name = "hotplug", | |
1906 | NULL | |
1907 | }; | |
1908 | ||
1909 | static int __init cpuhp_sysfs_init(void) | |
1910 | { | |
1911 | int cpu, ret; | |
1912 | ||
1913 | ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, | |
1914 | &cpuhp_cpu_root_attr_group); | |
1915 | if (ret) | |
1916 | return ret; | |
1917 | ||
1918 | for_each_possible_cpu(cpu) { | |
1919 | struct device *dev = get_cpu_device(cpu); | |
1920 | ||
1921 | if (!dev) | |
1922 | continue; | |
1923 | ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); | |
1924 | if (ret) | |
1925 | return ret; | |
1926 | } | |
1927 | return 0; | |
1928 | } | |
1929 | device_initcall(cpuhp_sysfs_init); | |
1930 | #endif | |
1931 | ||
1932 | /* | |
1933 | * cpu_bit_bitmap[] is a special, "compressed" data structure that | |
1934 | * represents all NR_CPUS bits binary values of 1<<nr. | |
1935 | * | |
1936 | * It is used by cpumask_of() to get a constant address to a CPU | |
1937 | * mask value that has a single bit set only. | |
1938 | */ | |
1939 | ||
1940 | /* cpu_bit_bitmap[0] is empty - so we can back into it */ | |
1941 | #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) | |
1942 | #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) | |
1943 | #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) | |
1944 | #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) | |
1945 | ||
1946 | const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { | |
1947 | ||
1948 | MASK_DECLARE_8(0), MASK_DECLARE_8(8), | |
1949 | MASK_DECLARE_8(16), MASK_DECLARE_8(24), | |
1950 | #if BITS_PER_LONG > 32 | |
1951 | MASK_DECLARE_8(32), MASK_DECLARE_8(40), | |
1952 | MASK_DECLARE_8(48), MASK_DECLARE_8(56), | |
1953 | #endif | |
1954 | }; | |
1955 | EXPORT_SYMBOL_GPL(cpu_bit_bitmap); | |
1956 | ||
1957 | const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; | |
1958 | EXPORT_SYMBOL(cpu_all_bits); | |
1959 | ||
1960 | #ifdef CONFIG_INIT_ALL_POSSIBLE | |
1961 | struct cpumask __cpu_possible_mask __read_mostly | |
1962 | = {CPU_BITS_ALL}; | |
1963 | #else | |
1964 | struct cpumask __cpu_possible_mask __read_mostly; | |
1965 | #endif | |
1966 | EXPORT_SYMBOL(__cpu_possible_mask); | |
1967 | ||
1968 | struct cpumask __cpu_online_mask __read_mostly; | |
1969 | EXPORT_SYMBOL(__cpu_online_mask); | |
1970 | ||
1971 | struct cpumask __cpu_present_mask __read_mostly; | |
1972 | EXPORT_SYMBOL(__cpu_present_mask); | |
1973 | ||
1974 | struct cpumask __cpu_active_mask __read_mostly; | |
1975 | EXPORT_SYMBOL(__cpu_active_mask); | |
1976 | ||
1977 | void init_cpu_present(const struct cpumask *src) | |
1978 | { | |
1979 | cpumask_copy(&__cpu_present_mask, src); | |
1980 | } | |
1981 | ||
1982 | void init_cpu_possible(const struct cpumask *src) | |
1983 | { | |
1984 | cpumask_copy(&__cpu_possible_mask, src); | |
1985 | } | |
1986 | ||
1987 | void init_cpu_online(const struct cpumask *src) | |
1988 | { | |
1989 | cpumask_copy(&__cpu_online_mask, src); | |
1990 | } | |
1991 | ||
1992 | /* | |
1993 | * Activate the first processor. | |
1994 | */ | |
1995 | void __init boot_cpu_init(void) | |
1996 | { | |
1997 | int cpu = smp_processor_id(); | |
1998 | ||
1999 | /* Mark the boot cpu "present", "online" etc for SMP and UP case */ | |
2000 | set_cpu_online(cpu, true); | |
2001 | set_cpu_active(cpu, true); | |
2002 | set_cpu_present(cpu, true); | |
2003 | set_cpu_possible(cpu, true); | |
2004 | ||
2005 | #ifdef CONFIG_SMP | |
2006 | __boot_cpu_id = cpu; | |
2007 | #endif | |
2008 | } | |
2009 | ||
2010 | /* | |
2011 | * Must be called _AFTER_ setting up the per_cpu areas | |
2012 | */ | |
2013 | void __init boot_cpu_state_init(void) | |
2014 | { | |
2015 | per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; | |
2016 | } |