]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License as published by | |
6 | * the Free Software Foundation; either version 2 of the License, or | |
7 | * (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write to the Free Software | |
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
17 | * | |
01c1c660 | 18 | * Copyright IBM Corporation, 2001 |
1da177e4 LT |
19 | * |
20 | * Authors: Dipankar Sarma <[email protected]> | |
21 | * Manfred Spraul <[email protected]> | |
a71fca58 | 22 | * |
1da177e4 LT |
23 | * Based on the original work by Paul McKenney <[email protected]> |
24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | |
25 | * Papers: | |
26 | * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf | |
27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | |
28 | * | |
29 | * For detailed explanation of Read-Copy Update mechanism see - | |
a71fca58 | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
1da177e4 LT |
31 | * |
32 | */ | |
33 | #include <linux/types.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/init.h> | |
36 | #include <linux/spinlock.h> | |
37 | #include <linux/smp.h> | |
38 | #include <linux/interrupt.h> | |
39 | #include <linux/sched.h> | |
60063497 | 40 | #include <linux/atomic.h> |
1da177e4 | 41 | #include <linux/bitops.h> |
1da177e4 LT |
42 | #include <linux/percpu.h> |
43 | #include <linux/notifier.h> | |
1da177e4 | 44 | #include <linux/cpu.h> |
9331b315 | 45 | #include <linux/mutex.h> |
9984de1a | 46 | #include <linux/export.h> |
e3818b8d | 47 | #include <linux/hardirq.h> |
e3ebfb96 | 48 | #include <linux/delay.h> |
1da177e4 | 49 | |
29c00b4a PM |
50 | #define CREATE_TRACE_POINTS |
51 | #include <trace/events/rcu.h> | |
52 | ||
53 | #include "rcu.h" | |
54 | ||
9dd8fb16 PM |
55 | #ifdef CONFIG_PREEMPT_RCU |
56 | ||
2a3fa843 PM |
57 | /* |
58 | * Preemptible RCU implementation for rcu_read_lock(). | |
59 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | |
60 | * if we block. | |
61 | */ | |
62 | void __rcu_read_lock(void) | |
63 | { | |
64 | current->rcu_read_lock_nesting++; | |
65 | barrier(); /* critical section after entry code. */ | |
66 | } | |
67 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | |
68 | ||
69 | /* | |
70 | * Preemptible RCU implementation for rcu_read_unlock(). | |
71 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | |
72 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | |
73 | * invoke rcu_read_unlock_special() to clean up after a context switch | |
74 | * in an RCU read-side critical section and other special cases. | |
75 | */ | |
76 | void __rcu_read_unlock(void) | |
77 | { | |
78 | struct task_struct *t = current; | |
79 | ||
80 | if (t->rcu_read_lock_nesting != 1) { | |
81 | --t->rcu_read_lock_nesting; | |
82 | } else { | |
83 | barrier(); /* critical section before exit code. */ | |
84 | t->rcu_read_lock_nesting = INT_MIN; | |
e3ebfb96 PM |
85 | #ifdef CONFIG_PROVE_RCU_DELAY |
86 | udelay(10); /* Make preemption more probable. */ | |
87 | #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ | |
2a3fa843 PM |
88 | barrier(); /* assign before ->rcu_read_unlock_special load */ |
89 | if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | |
90 | rcu_read_unlock_special(t); | |
91 | barrier(); /* ->rcu_read_unlock_special load before assign */ | |
92 | t->rcu_read_lock_nesting = 0; | |
93 | } | |
94 | #ifdef CONFIG_PROVE_LOCKING | |
95 | { | |
96 | int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting); | |
97 | ||
98 | WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); | |
99 | } | |
100 | #endif /* #ifdef CONFIG_PROVE_LOCKING */ | |
101 | } | |
102 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | |
103 | ||
9dd8fb16 PM |
104 | /* |
105 | * Check for a task exiting while in a preemptible-RCU read-side | |
106 | * critical section, clean up if so. No need to issue warnings, | |
107 | * as debug_check_no_locks_held() already does this if lockdep | |
108 | * is enabled. | |
109 | */ | |
110 | void exit_rcu(void) | |
111 | { | |
112 | struct task_struct *t = current; | |
113 | ||
114 | if (likely(list_empty(¤t->rcu_node_entry))) | |
115 | return; | |
116 | t->rcu_read_lock_nesting = 1; | |
117 | barrier(); | |
118 | t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED; | |
119 | __rcu_read_unlock(); | |
120 | } | |
121 | ||
122 | #else /* #ifdef CONFIG_PREEMPT_RCU */ | |
123 | ||
124 | void exit_rcu(void) | |
125 | { | |
126 | } | |
127 | ||
128 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ | |
129 | ||
162cc279 PM |
130 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
131 | static struct lock_class_key rcu_lock_key; | |
132 | struct lockdep_map rcu_lock_map = | |
133 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | |
134 | EXPORT_SYMBOL_GPL(rcu_lock_map); | |
632ee200 PM |
135 | |
136 | static struct lock_class_key rcu_bh_lock_key; | |
137 | struct lockdep_map rcu_bh_lock_map = | |
138 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); | |
139 | EXPORT_SYMBOL_GPL(rcu_bh_lock_map); | |
140 | ||
141 | static struct lock_class_key rcu_sched_lock_key; | |
142 | struct lockdep_map rcu_sched_lock_map = | |
143 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); | |
144 | EXPORT_SYMBOL_GPL(rcu_sched_lock_map); | |
162cc279 PM |
145 | #endif |
146 | ||
e3818b8d PM |
147 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
148 | ||
bc293d62 PM |
149 | int debug_lockdep_rcu_enabled(void) |
150 | { | |
151 | return rcu_scheduler_active && debug_locks && | |
152 | current->lockdep_recursion == 0; | |
153 | } | |
154 | EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); | |
155 | ||
e3818b8d | 156 | /** |
ca5ecddf | 157 | * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? |
e3818b8d PM |
158 | * |
159 | * Check for bottom half being disabled, which covers both the | |
160 | * CONFIG_PROVE_RCU and not cases. Note that if someone uses | |
161 | * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) | |
ca5ecddf PM |
162 | * will show the situation. This is useful for debug checks in functions |
163 | * that require that they be called within an RCU read-side critical | |
164 | * section. | |
e3818b8d PM |
165 | * |
166 | * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. | |
c0d6d01b PM |
167 | * |
168 | * Note that rcu_read_lock() is disallowed if the CPU is either idle or | |
169 | * offline from an RCU perspective, so check for those as well. | |
e3818b8d PM |
170 | */ |
171 | int rcu_read_lock_bh_held(void) | |
172 | { | |
173 | if (!debug_lockdep_rcu_enabled()) | |
174 | return 1; | |
e6b80a3b FW |
175 | if (rcu_is_cpu_idle()) |
176 | return 0; | |
c0d6d01b PM |
177 | if (!rcu_lockdep_current_cpu_online()) |
178 | return 0; | |
773e3f93 | 179 | return in_softirq() || irqs_disabled(); |
e3818b8d PM |
180 | } |
181 | EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); | |
182 | ||
183 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | |
184 | ||
2c42818e PM |
185 | struct rcu_synchronize { |
186 | struct rcu_head head; | |
187 | struct completion completion; | |
188 | }; | |
189 | ||
fbf6bfca PM |
190 | /* |
191 | * Awaken the corresponding synchronize_rcu() instance now that a | |
192 | * grace period has elapsed. | |
193 | */ | |
2c42818e | 194 | static void wakeme_after_rcu(struct rcu_head *head) |
21a1ea9e | 195 | { |
01c1c660 PM |
196 | struct rcu_synchronize *rcu; |
197 | ||
198 | rcu = container_of(head, struct rcu_synchronize, head); | |
199 | complete(&rcu->completion); | |
21a1ea9e | 200 | } |
ee84b824 | 201 | |
2c42818e PM |
202 | void wait_rcu_gp(call_rcu_func_t crf) |
203 | { | |
204 | struct rcu_synchronize rcu; | |
205 | ||
206 | init_rcu_head_on_stack(&rcu.head); | |
207 | init_completion(&rcu.completion); | |
208 | /* Will wake me after RCU finished. */ | |
209 | crf(&rcu.head, wakeme_after_rcu); | |
210 | /* Wait for it. */ | |
211 | wait_for_completion(&rcu.completion); | |
212 | destroy_rcu_head_on_stack(&rcu.head); | |
213 | } | |
214 | EXPORT_SYMBOL_GPL(wait_rcu_gp); | |
215 | ||
ee84b824 PM |
216 | #ifdef CONFIG_PROVE_RCU |
217 | /* | |
218 | * wrapper function to avoid #include problems. | |
219 | */ | |
220 | int rcu_my_thread_group_empty(void) | |
221 | { | |
222 | return thread_group_empty(current); | |
223 | } | |
224 | EXPORT_SYMBOL_GPL(rcu_my_thread_group_empty); | |
225 | #endif /* #ifdef CONFIG_PROVE_RCU */ | |
551d55a9 MD |
226 | |
227 | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | |
228 | static inline void debug_init_rcu_head(struct rcu_head *head) | |
229 | { | |
230 | debug_object_init(head, &rcuhead_debug_descr); | |
231 | } | |
232 | ||
233 | static inline void debug_rcu_head_free(struct rcu_head *head) | |
234 | { | |
235 | debug_object_free(head, &rcuhead_debug_descr); | |
236 | } | |
237 | ||
238 | /* | |
239 | * fixup_init is called when: | |
240 | * - an active object is initialized | |
241 | */ | |
242 | static int rcuhead_fixup_init(void *addr, enum debug_obj_state state) | |
243 | { | |
244 | struct rcu_head *head = addr; | |
245 | ||
246 | switch (state) { | |
247 | case ODEBUG_STATE_ACTIVE: | |
248 | /* | |
249 | * Ensure that queued callbacks are all executed. | |
250 | * If we detect that we are nested in a RCU read-side critical | |
251 | * section, we should simply fail, otherwise we would deadlock. | |
fc2ecf7e MD |
252 | * In !PREEMPT configurations, there is no way to tell if we are |
253 | * in a RCU read-side critical section or not, so we never | |
254 | * attempt any fixup and just print a warning. | |
551d55a9 | 255 | */ |
fc2ecf7e | 256 | #ifndef CONFIG_PREEMPT |
108aae22 | 257 | WARN_ON_ONCE(1); |
fc2ecf7e MD |
258 | return 0; |
259 | #endif | |
551d55a9 MD |
260 | if (rcu_preempt_depth() != 0 || preempt_count() != 0 || |
261 | irqs_disabled()) { | |
108aae22 | 262 | WARN_ON_ONCE(1); |
551d55a9 MD |
263 | return 0; |
264 | } | |
265 | rcu_barrier(); | |
266 | rcu_barrier_sched(); | |
267 | rcu_barrier_bh(); | |
268 | debug_object_init(head, &rcuhead_debug_descr); | |
269 | return 1; | |
270 | default: | |
271 | return 0; | |
272 | } | |
273 | } | |
274 | ||
275 | /* | |
276 | * fixup_activate is called when: | |
277 | * - an active object is activated | |
278 | * - an unknown object is activated (might be a statically initialized object) | |
279 | * Activation is performed internally by call_rcu(). | |
280 | */ | |
281 | static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state) | |
282 | { | |
283 | struct rcu_head *head = addr; | |
284 | ||
285 | switch (state) { | |
286 | ||
287 | case ODEBUG_STATE_NOTAVAILABLE: | |
288 | /* | |
289 | * This is not really a fixup. We just make sure that it is | |
290 | * tracked in the object tracker. | |
291 | */ | |
292 | debug_object_init(head, &rcuhead_debug_descr); | |
293 | debug_object_activate(head, &rcuhead_debug_descr); | |
294 | return 0; | |
295 | ||
296 | case ODEBUG_STATE_ACTIVE: | |
297 | /* | |
298 | * Ensure that queued callbacks are all executed. | |
299 | * If we detect that we are nested in a RCU read-side critical | |
300 | * section, we should simply fail, otherwise we would deadlock. | |
fc2ecf7e MD |
301 | * In !PREEMPT configurations, there is no way to tell if we are |
302 | * in a RCU read-side critical section or not, so we never | |
303 | * attempt any fixup and just print a warning. | |
551d55a9 | 304 | */ |
fc2ecf7e | 305 | #ifndef CONFIG_PREEMPT |
108aae22 | 306 | WARN_ON_ONCE(1); |
fc2ecf7e MD |
307 | return 0; |
308 | #endif | |
551d55a9 MD |
309 | if (rcu_preempt_depth() != 0 || preempt_count() != 0 || |
310 | irqs_disabled()) { | |
108aae22 | 311 | WARN_ON_ONCE(1); |
551d55a9 MD |
312 | return 0; |
313 | } | |
314 | rcu_barrier(); | |
315 | rcu_barrier_sched(); | |
316 | rcu_barrier_bh(); | |
317 | debug_object_activate(head, &rcuhead_debug_descr); | |
318 | return 1; | |
319 | default: | |
320 | return 0; | |
321 | } | |
322 | } | |
323 | ||
324 | /* | |
325 | * fixup_free is called when: | |
326 | * - an active object is freed | |
327 | */ | |
328 | static int rcuhead_fixup_free(void *addr, enum debug_obj_state state) | |
329 | { | |
330 | struct rcu_head *head = addr; | |
331 | ||
332 | switch (state) { | |
333 | case ODEBUG_STATE_ACTIVE: | |
334 | /* | |
335 | * Ensure that queued callbacks are all executed. | |
336 | * If we detect that we are nested in a RCU read-side critical | |
337 | * section, we should simply fail, otherwise we would deadlock. | |
fc2ecf7e MD |
338 | * In !PREEMPT configurations, there is no way to tell if we are |
339 | * in a RCU read-side critical section or not, so we never | |
340 | * attempt any fixup and just print a warning. | |
551d55a9 | 341 | */ |
fc2ecf7e | 342 | #ifndef CONFIG_PREEMPT |
108aae22 | 343 | WARN_ON_ONCE(1); |
fc2ecf7e MD |
344 | return 0; |
345 | #endif | |
551d55a9 MD |
346 | if (rcu_preempt_depth() != 0 || preempt_count() != 0 || |
347 | irqs_disabled()) { | |
108aae22 | 348 | WARN_ON_ONCE(1); |
551d55a9 MD |
349 | return 0; |
350 | } | |
351 | rcu_barrier(); | |
352 | rcu_barrier_sched(); | |
353 | rcu_barrier_bh(); | |
354 | debug_object_free(head, &rcuhead_debug_descr); | |
355 | return 1; | |
551d55a9 MD |
356 | default: |
357 | return 0; | |
358 | } | |
359 | } | |
360 | ||
361 | /** | |
362 | * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects | |
363 | * @head: pointer to rcu_head structure to be initialized | |
364 | * | |
365 | * This function informs debugobjects of a new rcu_head structure that | |
366 | * has been allocated as an auto variable on the stack. This function | |
367 | * is not required for rcu_head structures that are statically defined or | |
368 | * that are dynamically allocated on the heap. This function has no | |
369 | * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | |
370 | */ | |
371 | void init_rcu_head_on_stack(struct rcu_head *head) | |
372 | { | |
373 | debug_object_init_on_stack(head, &rcuhead_debug_descr); | |
374 | } | |
375 | EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); | |
376 | ||
377 | /** | |
378 | * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects | |
379 | * @head: pointer to rcu_head structure to be initialized | |
380 | * | |
381 | * This function informs debugobjects that an on-stack rcu_head structure | |
382 | * is about to go out of scope. As with init_rcu_head_on_stack(), this | |
383 | * function is not required for rcu_head structures that are statically | |
384 | * defined or that are dynamically allocated on the heap. Also as with | |
385 | * init_rcu_head_on_stack(), this function has no effect for | |
386 | * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | |
387 | */ | |
388 | void destroy_rcu_head_on_stack(struct rcu_head *head) | |
389 | { | |
390 | debug_object_free(head, &rcuhead_debug_descr); | |
391 | } | |
392 | EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); | |
393 | ||
394 | struct debug_obj_descr rcuhead_debug_descr = { | |
395 | .name = "rcu_head", | |
396 | .fixup_init = rcuhead_fixup_init, | |
397 | .fixup_activate = rcuhead_fixup_activate, | |
398 | .fixup_free = rcuhead_fixup_free, | |
399 | }; | |
400 | EXPORT_SYMBOL_GPL(rcuhead_debug_descr); | |
401 | #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ | |
91afaf30 PM |
402 | |
403 | #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) | |
404 | void do_trace_rcu_torture_read(char *rcutorturename, struct rcu_head *rhp) | |
405 | { | |
406 | trace_rcu_torture_read(rcutorturename, rhp); | |
407 | } | |
408 | EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); | |
409 | #else | |
410 | #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) | |
411 | #endif |