]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * balloc.c | |
3 | * | |
4 | * PURPOSE | |
5 | * Block allocation handling routines for the OSTA-UDF(tm) filesystem. | |
6 | * | |
1da177e4 LT |
7 | * COPYRIGHT |
8 | * This file is distributed under the terms of the GNU General Public | |
9 | * License (GPL). Copies of the GPL can be obtained from: | |
10 | * ftp://prep.ai.mit.edu/pub/gnu/GPL | |
11 | * Each contributing author retains all rights to their own work. | |
12 | * | |
13 | * (C) 1999-2001 Ben Fennema | |
14 | * (C) 1999 Stelias Computing Inc | |
15 | * | |
16 | * HISTORY | |
17 | * | |
18 | * 02/24/99 blf Created. | |
19 | * | |
20 | */ | |
21 | ||
22 | #include "udfdecl.h" | |
23 | ||
24 | #include <linux/quotaops.h> | |
25 | #include <linux/buffer_head.h> | |
26 | #include <linux/bitops.h> | |
27 | ||
28 | #include "udf_i.h" | |
29 | #include "udf_sb.h" | |
30 | ||
31 | #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) | |
32 | #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) | |
33 | #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) | |
34 | #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) | |
35 | #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) | |
36 | ||
37 | #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) | |
38 | #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) | |
39 | #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) | |
40 | #define uintBPL_t uint(BITS_PER_LONG) | |
41 | #define uint(x) xuint(x) | |
42 | #define xuint(x) __le ## x | |
43 | ||
ddc0f846 | 44 | static inline int find_next_one_bit (void * addr, int size, int offset) |
1da177e4 LT |
45 | { |
46 | uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); | |
47 | int result = offset & ~(BITS_PER_LONG-1); | |
48 | unsigned long tmp; | |
49 | ||
50 | if (offset >= size) | |
51 | return size; | |
52 | size -= result; | |
53 | offset &= (BITS_PER_LONG-1); | |
54 | if (offset) | |
55 | { | |
56 | tmp = leBPL_to_cpup(p++); | |
57 | tmp &= ~0UL << offset; | |
58 | if (size < BITS_PER_LONG) | |
59 | goto found_first; | |
60 | if (tmp) | |
61 | goto found_middle; | |
62 | size -= BITS_PER_LONG; | |
63 | result += BITS_PER_LONG; | |
64 | } | |
65 | while (size & ~(BITS_PER_LONG-1)) | |
66 | { | |
67 | if ((tmp = leBPL_to_cpup(p++))) | |
68 | goto found_middle; | |
69 | result += BITS_PER_LONG; | |
70 | size -= BITS_PER_LONG; | |
71 | } | |
72 | if (!size) | |
73 | return result; | |
74 | tmp = leBPL_to_cpup(p); | |
75 | found_first: | |
76 | tmp &= ~0UL >> (BITS_PER_LONG-size); | |
77 | found_middle: | |
78 | return result + ffz(~tmp); | |
79 | } | |
80 | ||
81 | #define find_first_one_bit(addr, size)\ | |
82 | find_next_one_bit((addr), (size), 0) | |
83 | ||
84 | static int read_block_bitmap(struct super_block * sb, | |
85 | struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr) | |
86 | { | |
87 | struct buffer_head *bh = NULL; | |
88 | int retval = 0; | |
89 | kernel_lb_addr loc; | |
90 | ||
91 | loc.logicalBlockNum = bitmap->s_extPosition; | |
92 | loc.partitionReferenceNum = UDF_SB_PARTITION(sb); | |
93 | ||
94 | bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); | |
95 | if (!bh) | |
96 | { | |
97 | retval = -EIO; | |
98 | } | |
99 | bitmap->s_block_bitmap[bitmap_nr] = bh; | |
100 | return retval; | |
101 | } | |
102 | ||
103 | static int __load_block_bitmap(struct super_block * sb, | |
104 | struct udf_bitmap *bitmap, unsigned int block_group) | |
105 | { | |
106 | int retval = 0; | |
107 | int nr_groups = bitmap->s_nr_groups; | |
108 | ||
109 | if (block_group >= nr_groups) | |
110 | { | |
111 | udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups); | |
112 | } | |
113 | ||
114 | if (bitmap->s_block_bitmap[block_group]) | |
115 | return block_group; | |
116 | else | |
117 | { | |
118 | retval = read_block_bitmap(sb, bitmap, block_group, block_group); | |
119 | if (retval < 0) | |
120 | return retval; | |
121 | return block_group; | |
122 | } | |
123 | } | |
124 | ||
125 | static inline int load_block_bitmap(struct super_block * sb, | |
126 | struct udf_bitmap *bitmap, unsigned int block_group) | |
127 | { | |
128 | int slot; | |
129 | ||
130 | slot = __load_block_bitmap(sb, bitmap, block_group); | |
131 | ||
132 | if (slot < 0) | |
133 | return slot; | |
134 | ||
135 | if (!bitmap->s_block_bitmap[slot]) | |
136 | return -EIO; | |
137 | ||
138 | return slot; | |
139 | } | |
140 | ||
141 | static void udf_bitmap_free_blocks(struct super_block * sb, | |
142 | struct inode * inode, | |
143 | struct udf_bitmap *bitmap, | |
144 | kernel_lb_addr bloc, uint32_t offset, uint32_t count) | |
145 | { | |
146 | struct udf_sb_info *sbi = UDF_SB(sb); | |
147 | struct buffer_head * bh = NULL; | |
148 | unsigned long block; | |
149 | unsigned long block_group; | |
150 | unsigned long bit; | |
151 | unsigned long i; | |
152 | int bitmap_nr; | |
153 | unsigned long overflow; | |
154 | ||
1e7933de | 155 | mutex_lock(&sbi->s_alloc_mutex); |
1da177e4 LT |
156 | if (bloc.logicalBlockNum < 0 || |
157 | (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) | |
158 | { | |
159 | udf_debug("%d < %d || %d + %d > %d\n", | |
160 | bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, | |
161 | UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); | |
162 | goto error_return; | |
163 | } | |
164 | ||
165 | block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); | |
166 | ||
167 | do_more: | |
168 | overflow = 0; | |
169 | block_group = block >> (sb->s_blocksize_bits + 3); | |
170 | bit = block % (sb->s_blocksize << 3); | |
171 | ||
172 | /* | |
173 | * Check to see if we are freeing blocks across a group boundary. | |
174 | */ | |
175 | if (bit + count > (sb->s_blocksize << 3)) | |
176 | { | |
177 | overflow = bit + count - (sb->s_blocksize << 3); | |
178 | count -= overflow; | |
179 | } | |
180 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | |
181 | if (bitmap_nr < 0) | |
182 | goto error_return; | |
183 | ||
184 | bh = bitmap->s_block_bitmap[bitmap_nr]; | |
185 | for (i=0; i < count; i++) | |
186 | { | |
187 | if (udf_set_bit(bit + i, bh->b_data)) | |
188 | { | |
189 | udf_debug("bit %ld already set\n", bit + i); | |
190 | udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); | |
191 | } | |
192 | else | |
193 | { | |
194 | if (inode) | |
195 | DQUOT_FREE_BLOCK(inode, 1); | |
196 | if (UDF_SB_LVIDBH(sb)) | |
197 | { | |
198 | UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = | |
199 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1); | |
200 | } | |
201 | } | |
202 | } | |
203 | mark_buffer_dirty(bh); | |
204 | if (overflow) | |
205 | { | |
206 | block += count; | |
207 | count = overflow; | |
208 | goto do_more; | |
209 | } | |
210 | error_return: | |
211 | sb->s_dirt = 1; | |
212 | if (UDF_SB_LVIDBH(sb)) | |
213 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | |
1e7933de | 214 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
215 | return; |
216 | } | |
217 | ||
218 | static int udf_bitmap_prealloc_blocks(struct super_block * sb, | |
219 | struct inode * inode, | |
220 | struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block, | |
221 | uint32_t block_count) | |
222 | { | |
223 | struct udf_sb_info *sbi = UDF_SB(sb); | |
224 | int alloc_count = 0; | |
225 | int bit, block, block_group, group_start; | |
226 | int nr_groups, bitmap_nr; | |
227 | struct buffer_head *bh; | |
228 | ||
1e7933de | 229 | mutex_lock(&sbi->s_alloc_mutex); |
1da177e4 LT |
230 | if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) |
231 | goto out; | |
232 | ||
233 | if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) | |
234 | block_count = UDF_SB_PARTLEN(sb, partition) - first_block; | |
235 | ||
236 | repeat: | |
237 | nr_groups = (UDF_SB_PARTLEN(sb, partition) + | |
238 | (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); | |
239 | block = first_block + (sizeof(struct spaceBitmapDesc) << 3); | |
240 | block_group = block >> (sb->s_blocksize_bits + 3); | |
241 | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | |
242 | ||
243 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | |
244 | if (bitmap_nr < 0) | |
245 | goto out; | |
246 | bh = bitmap->s_block_bitmap[bitmap_nr]; | |
247 | ||
248 | bit = block % (sb->s_blocksize << 3); | |
249 | ||
250 | while (bit < (sb->s_blocksize << 3) && block_count > 0) | |
251 | { | |
252 | if (!udf_test_bit(bit, bh->b_data)) | |
253 | goto out; | |
254 | else if (DQUOT_PREALLOC_BLOCK(inode, 1)) | |
255 | goto out; | |
256 | else if (!udf_clear_bit(bit, bh->b_data)) | |
257 | { | |
258 | udf_debug("bit already cleared for block %d\n", bit); | |
259 | DQUOT_FREE_BLOCK(inode, 1); | |
260 | goto out; | |
261 | } | |
262 | block_count --; | |
263 | alloc_count ++; | |
264 | bit ++; | |
265 | block ++; | |
266 | } | |
267 | mark_buffer_dirty(bh); | |
268 | if (block_count > 0) | |
269 | goto repeat; | |
270 | out: | |
271 | if (UDF_SB_LVIDBH(sb)) | |
272 | { | |
273 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | |
274 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); | |
275 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | |
276 | } | |
277 | sb->s_dirt = 1; | |
1e7933de | 278 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
279 | return alloc_count; |
280 | } | |
281 | ||
282 | static int udf_bitmap_new_block(struct super_block * sb, | |
283 | struct inode * inode, | |
284 | struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err) | |
285 | { | |
286 | struct udf_sb_info *sbi = UDF_SB(sb); | |
287 | int newbit, bit=0, block, block_group, group_start; | |
288 | int end_goal, nr_groups, bitmap_nr, i; | |
289 | struct buffer_head *bh = NULL; | |
290 | char *ptr; | |
291 | int newblock = 0; | |
292 | ||
293 | *err = -ENOSPC; | |
1e7933de | 294 | mutex_lock(&sbi->s_alloc_mutex); |
1da177e4 LT |
295 | |
296 | repeat: | |
297 | if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) | |
298 | goal = 0; | |
299 | ||
300 | nr_groups = bitmap->s_nr_groups; | |
301 | block = goal + (sizeof(struct spaceBitmapDesc) << 3); | |
302 | block_group = block >> (sb->s_blocksize_bits + 3); | |
303 | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | |
304 | ||
305 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | |
306 | if (bitmap_nr < 0) | |
307 | goto error_return; | |
308 | bh = bitmap->s_block_bitmap[bitmap_nr]; | |
309 | ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); | |
310 | ||
311 | if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) | |
312 | { | |
313 | bit = block % (sb->s_blocksize << 3); | |
314 | ||
315 | if (udf_test_bit(bit, bh->b_data)) | |
316 | { | |
317 | goto got_block; | |
318 | } | |
319 | end_goal = (bit + 63) & ~63; | |
320 | bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); | |
321 | if (bit < end_goal) | |
322 | goto got_block; | |
323 | ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); | |
324 | newbit = (ptr - ((char *)bh->b_data)) << 3; | |
325 | if (newbit < sb->s_blocksize << 3) | |
326 | { | |
327 | bit = newbit; | |
328 | goto search_back; | |
329 | } | |
330 | newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); | |
331 | if (newbit < sb->s_blocksize << 3) | |
332 | { | |
333 | bit = newbit; | |
334 | goto got_block; | |
335 | } | |
336 | } | |
337 | ||
338 | for (i=0; i<(nr_groups*2); i++) | |
339 | { | |
340 | block_group ++; | |
341 | if (block_group >= nr_groups) | |
342 | block_group = 0; | |
343 | group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | |
344 | ||
345 | bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | |
346 | if (bitmap_nr < 0) | |
347 | goto error_return; | |
348 | bh = bitmap->s_block_bitmap[bitmap_nr]; | |
349 | if (i < nr_groups) | |
350 | { | |
351 | ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); | |
352 | if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) | |
353 | { | |
354 | bit = (ptr - ((char *)bh->b_data)) << 3; | |
355 | break; | |
356 | } | |
357 | } | |
358 | else | |
359 | { | |
360 | bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3); | |
361 | if (bit < sb->s_blocksize << 3) | |
362 | break; | |
363 | } | |
364 | } | |
365 | if (i >= (nr_groups*2)) | |
366 | { | |
1e7933de | 367 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
368 | return newblock; |
369 | } | |
370 | if (bit < sb->s_blocksize << 3) | |
371 | goto search_back; | |
372 | else | |
373 | bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); | |
374 | if (bit >= sb->s_blocksize << 3) | |
375 | { | |
1e7933de | 376 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
377 | return 0; |
378 | } | |
379 | ||
380 | search_back: | |
381 | for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--); | |
382 | ||
383 | got_block: | |
384 | ||
385 | /* | |
386 | * Check quota for allocation of this block. | |
387 | */ | |
388 | if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) | |
389 | { | |
1e7933de | 390 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
391 | *err = -EDQUOT; |
392 | return 0; | |
393 | } | |
394 | ||
395 | newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - | |
396 | (sizeof(struct spaceBitmapDesc) << 3); | |
397 | ||
398 | if (!udf_clear_bit(bit, bh->b_data)) | |
399 | { | |
400 | udf_debug("bit already cleared for block %d\n", bit); | |
401 | goto repeat; | |
402 | } | |
403 | ||
404 | mark_buffer_dirty(bh); | |
405 | ||
406 | if (UDF_SB_LVIDBH(sb)) | |
407 | { | |
408 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | |
409 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); | |
410 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | |
411 | } | |
412 | sb->s_dirt = 1; | |
1e7933de | 413 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
414 | *err = 0; |
415 | return newblock; | |
416 | ||
417 | error_return: | |
418 | *err = -EIO; | |
1e7933de | 419 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
420 | return 0; |
421 | } | |
422 | ||
423 | static void udf_table_free_blocks(struct super_block * sb, | |
424 | struct inode * inode, | |
425 | struct inode * table, | |
426 | kernel_lb_addr bloc, uint32_t offset, uint32_t count) | |
427 | { | |
428 | struct udf_sb_info *sbi = UDF_SB(sb); | |
429 | uint32_t start, end; | |
ff116fc8 JK |
430 | uint32_t elen; |
431 | kernel_lb_addr eloc; | |
432 | struct extent_position oepos, epos; | |
1da177e4 LT |
433 | int8_t etype; |
434 | int i; | |
435 | ||
1e7933de | 436 | mutex_lock(&sbi->s_alloc_mutex); |
1da177e4 LT |
437 | if (bloc.logicalBlockNum < 0 || |
438 | (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) | |
439 | { | |
440 | udf_debug("%d < %d || %d + %d > %d\n", | |
441 | bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, | |
442 | UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); | |
443 | goto error_return; | |
444 | } | |
445 | ||
446 | /* We do this up front - There are some error conditions that could occure, | |
447 | but.. oh well */ | |
448 | if (inode) | |
449 | DQUOT_FREE_BLOCK(inode, count); | |
450 | if (UDF_SB_LVIDBH(sb)) | |
451 | { | |
452 | UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = | |
453 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count); | |
454 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | |
455 | } | |
456 | ||
457 | start = bloc.logicalBlockNum + offset; | |
458 | end = bloc.logicalBlockNum + offset + count - 1; | |
459 | ||
ff116fc8 | 460 | epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry); |
1da177e4 | 461 | elen = 0; |
ff116fc8 JK |
462 | epos.block = oepos.block = UDF_I_LOCATION(table); |
463 | epos.bh = oepos.bh = NULL; | |
1da177e4 LT |
464 | |
465 | while (count && (etype = | |
ff116fc8 | 466 | udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) |
1da177e4 LT |
467 | { |
468 | if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == | |
469 | start)) | |
470 | { | |
471 | if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) | |
472 | { | |
473 | count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | |
474 | start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | |
475 | elen = (etype << 30) | (0x40000000 - sb->s_blocksize); | |
476 | } | |
477 | else | |
478 | { | |
479 | elen = (etype << 30) | | |
480 | (elen + (count << sb->s_blocksize_bits)); | |
481 | start += count; | |
482 | count = 0; | |
483 | } | |
ff116fc8 | 484 | udf_write_aext(table, &oepos, eloc, elen, 1); |
1da177e4 LT |
485 | } |
486 | else if (eloc.logicalBlockNum == (end + 1)) | |
487 | { | |
488 | if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) | |
489 | { | |
490 | count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | |
491 | end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | |
492 | eloc.logicalBlockNum -= | |
493 | ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | |
494 | elen = (etype << 30) | (0x40000000 - sb->s_blocksize); | |
495 | } | |
496 | else | |
497 | { | |
498 | eloc.logicalBlockNum = start; | |
499 | elen = (etype << 30) | | |
500 | (elen + (count << sb->s_blocksize_bits)); | |
501 | end -= count; | |
502 | count = 0; | |
503 | } | |
ff116fc8 | 504 | udf_write_aext(table, &oepos, eloc, elen, 1); |
1da177e4 LT |
505 | } |
506 | ||
ff116fc8 | 507 | if (epos.bh != oepos.bh) |
1da177e4 LT |
508 | { |
509 | i = -1; | |
ff116fc8 JK |
510 | oepos.block = epos.block; |
511 | udf_release_data(oepos.bh); | |
512 | atomic_inc(&epos.bh->b_count); | |
513 | oepos.bh = epos.bh; | |
514 | oepos.offset = 0; | |
1da177e4 LT |
515 | } |
516 | else | |
ff116fc8 | 517 | oepos.offset = epos.offset; |
1da177e4 LT |
518 | } |
519 | ||
520 | if (count) | |
521 | { | |
522 | /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate | |
523 | a new block, and since we hold the super block lock already | |
524 | very bad things would happen :) | |
525 | ||
526 | We copy the behavior of udf_add_aext, but instead of | |
527 | trying to allocate a new block close to the existing one, | |
528 | we just steal a block from the extent we are trying to add. | |
529 | ||
530 | It would be nice if the blocks were close together, but it | |
531 | isn't required. | |
532 | */ | |
533 | ||
534 | int adsize; | |
535 | short_ad *sad = NULL; | |
536 | long_ad *lad = NULL; | |
537 | struct allocExtDesc *aed; | |
538 | ||
539 | eloc.logicalBlockNum = start; | |
540 | elen = EXT_RECORDED_ALLOCATED | | |
541 | (count << sb->s_blocksize_bits); | |
542 | ||
543 | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | |
544 | adsize = sizeof(short_ad); | |
545 | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | |
546 | adsize = sizeof(long_ad); | |
547 | else | |
548 | { | |
ff116fc8 JK |
549 | udf_release_data(oepos.bh); |
550 | udf_release_data(epos.bh); | |
1da177e4 LT |
551 | goto error_return; |
552 | } | |
553 | ||
ff116fc8 | 554 | if (epos.offset + (2 * adsize) > sb->s_blocksize) |
1da177e4 LT |
555 | { |
556 | char *sptr, *dptr; | |
557 | int loffset; | |
558 | ||
ff116fc8 JK |
559 | udf_release_data(oepos.bh); |
560 | oepos = epos; | |
1da177e4 LT |
561 | |
562 | /* Steal a block from the extent being free'd */ | |
ff116fc8 | 563 | epos.block.logicalBlockNum = eloc.logicalBlockNum; |
1da177e4 LT |
564 | eloc.logicalBlockNum ++; |
565 | elen -= sb->s_blocksize; | |
566 | ||
ff116fc8 JK |
567 | if (!(epos.bh = udf_tread(sb, |
568 | udf_get_lb_pblock(sb, epos.block, 0)))) | |
1da177e4 | 569 | { |
ff116fc8 | 570 | udf_release_data(oepos.bh); |
1da177e4 LT |
571 | goto error_return; |
572 | } | |
ff116fc8 JK |
573 | aed = (struct allocExtDesc *)(epos.bh->b_data); |
574 | aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum); | |
575 | if (epos.offset + adsize > sb->s_blocksize) | |
1da177e4 | 576 | { |
ff116fc8 | 577 | loffset = epos.offset; |
1da177e4 | 578 | aed->lengthAllocDescs = cpu_to_le32(adsize); |
ff116fc8 | 579 | sptr = UDF_I_DATA(inode) + epos.offset - |
99603966 KZ |
580 | udf_file_entry_alloc_offset(inode) + |
581 | UDF_I_LENEATTR(inode) - adsize; | |
ff116fc8 | 582 | dptr = epos.bh->b_data + sizeof(struct allocExtDesc); |
1da177e4 | 583 | memcpy(dptr, sptr, adsize); |
ff116fc8 | 584 | epos.offset = sizeof(struct allocExtDesc) + adsize; |
1da177e4 LT |
585 | } |
586 | else | |
587 | { | |
ff116fc8 | 588 | loffset = epos.offset + adsize; |
1da177e4 | 589 | aed->lengthAllocDescs = cpu_to_le32(0); |
ff116fc8 JK |
590 | sptr = oepos.bh->b_data + epos.offset; |
591 | epos.offset = sizeof(struct allocExtDesc); | |
1da177e4 | 592 | |
ff116fc8 | 593 | if (oepos.bh) |
1da177e4 | 594 | { |
ff116fc8 | 595 | aed = (struct allocExtDesc *)oepos.bh->b_data; |
1da177e4 LT |
596 | aed->lengthAllocDescs = |
597 | cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); | |
598 | } | |
599 | else | |
600 | { | |
601 | UDF_I_LENALLOC(table) += adsize; | |
602 | mark_inode_dirty(table); | |
603 | } | |
604 | } | |
605 | if (UDF_SB_UDFREV(sb) >= 0x0200) | |
ff116fc8 JK |
606 | udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1, |
607 | epos.block.logicalBlockNum, sizeof(tag)); | |
1da177e4 | 608 | else |
ff116fc8 JK |
609 | udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1, |
610 | epos.block.logicalBlockNum, sizeof(tag)); | |
1da177e4 LT |
611 | switch (UDF_I_ALLOCTYPE(table)) |
612 | { | |
613 | case ICBTAG_FLAG_AD_SHORT: | |
614 | { | |
615 | sad = (short_ad *)sptr; | |
616 | sad->extLength = cpu_to_le32( | |
617 | EXT_NEXT_EXTENT_ALLOCDECS | | |
618 | sb->s_blocksize); | |
ff116fc8 | 619 | sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum); |
1da177e4 LT |
620 | break; |
621 | } | |
622 | case ICBTAG_FLAG_AD_LONG: | |
623 | { | |
624 | lad = (long_ad *)sptr; | |
625 | lad->extLength = cpu_to_le32( | |
626 | EXT_NEXT_EXTENT_ALLOCDECS | | |
627 | sb->s_blocksize); | |
ff116fc8 | 628 | lad->extLocation = cpu_to_lelb(epos.block); |
1da177e4 LT |
629 | break; |
630 | } | |
631 | } | |
ff116fc8 | 632 | if (oepos.bh) |
1da177e4 | 633 | { |
ff116fc8 JK |
634 | udf_update_tag(oepos.bh->b_data, loffset); |
635 | mark_buffer_dirty(oepos.bh); | |
1da177e4 LT |
636 | } |
637 | else | |
638 | mark_inode_dirty(table); | |
639 | } | |
640 | ||
641 | if (elen) /* It's possible that stealing the block emptied the extent */ | |
642 | { | |
ff116fc8 | 643 | udf_write_aext(table, &epos, eloc, elen, 1); |
1da177e4 | 644 | |
ff116fc8 | 645 | if (!epos.bh) |
1da177e4 LT |
646 | { |
647 | UDF_I_LENALLOC(table) += adsize; | |
648 | mark_inode_dirty(table); | |
649 | } | |
650 | else | |
651 | { | |
ff116fc8 | 652 | aed = (struct allocExtDesc *)epos.bh->b_data; |
1da177e4 LT |
653 | aed->lengthAllocDescs = |
654 | cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); | |
ff116fc8 JK |
655 | udf_update_tag(epos.bh->b_data, epos.offset); |
656 | mark_buffer_dirty(epos.bh); | |
1da177e4 LT |
657 | } |
658 | } | |
659 | } | |
660 | ||
ff116fc8 JK |
661 | udf_release_data(epos.bh); |
662 | udf_release_data(oepos.bh); | |
1da177e4 LT |
663 | |
664 | error_return: | |
665 | sb->s_dirt = 1; | |
1e7933de | 666 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
667 | return; |
668 | } | |
669 | ||
670 | static int udf_table_prealloc_blocks(struct super_block * sb, | |
671 | struct inode * inode, | |
672 | struct inode *table, uint16_t partition, uint32_t first_block, | |
673 | uint32_t block_count) | |
674 | { | |
675 | struct udf_sb_info *sbi = UDF_SB(sb); | |
676 | int alloc_count = 0; | |
ff116fc8 JK |
677 | uint32_t elen, adsize; |
678 | kernel_lb_addr eloc; | |
679 | struct extent_position epos; | |
1da177e4 LT |
680 | int8_t etype = -1; |
681 | ||
682 | if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) | |
683 | return 0; | |
684 | ||
685 | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | |
686 | adsize = sizeof(short_ad); | |
687 | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | |
688 | adsize = sizeof(long_ad); | |
689 | else | |
690 | return 0; | |
691 | ||
1e7933de | 692 | mutex_lock(&sbi->s_alloc_mutex); |
ff116fc8 JK |
693 | epos.offset = sizeof(struct unallocSpaceEntry); |
694 | epos.block = UDF_I_LOCATION(table); | |
695 | epos.bh = NULL; | |
1da177e4 LT |
696 | eloc.logicalBlockNum = 0xFFFFFFFF; |
697 | ||
698 | while (first_block != eloc.logicalBlockNum && (etype = | |
ff116fc8 | 699 | udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) |
1da177e4 LT |
700 | { |
701 | udf_debug("eloc=%d, elen=%d, first_block=%d\n", | |
702 | eloc.logicalBlockNum, elen, first_block); | |
703 | ; /* empty loop body */ | |
704 | } | |
705 | ||
706 | if (first_block == eloc.logicalBlockNum) | |
707 | { | |
ff116fc8 | 708 | epos.offset -= adsize; |
1da177e4 LT |
709 | |
710 | alloc_count = (elen >> sb->s_blocksize_bits); | |
711 | if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) | |
712 | alloc_count = 0; | |
713 | else if (alloc_count > block_count) | |
714 | { | |
715 | alloc_count = block_count; | |
716 | eloc.logicalBlockNum += alloc_count; | |
717 | elen -= (alloc_count << sb->s_blocksize_bits); | |
ff116fc8 | 718 | udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1); |
1da177e4 LT |
719 | } |
720 | else | |
ff116fc8 | 721 | udf_delete_aext(table, epos, eloc, (etype << 30) | elen); |
1da177e4 LT |
722 | } |
723 | else | |
724 | alloc_count = 0; | |
725 | ||
ff116fc8 | 726 | udf_release_data(epos.bh); |
1da177e4 LT |
727 | |
728 | if (alloc_count && UDF_SB_LVIDBH(sb)) | |
729 | { | |
730 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | |
731 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); | |
732 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | |
733 | sb->s_dirt = 1; | |
734 | } | |
1e7933de | 735 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
736 | return alloc_count; |
737 | } | |
738 | ||
739 | static int udf_table_new_block(struct super_block * sb, | |
740 | struct inode * inode, | |
741 | struct inode *table, uint16_t partition, uint32_t goal, int *err) | |
742 | { | |
743 | struct udf_sb_info *sbi = UDF_SB(sb); | |
744 | uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; | |
745 | uint32_t newblock = 0, adsize; | |
ff116fc8 JK |
746 | uint32_t elen, goal_elen = 0; |
747 | kernel_lb_addr eloc, goal_eloc; | |
748 | struct extent_position epos, goal_epos; | |
1da177e4 LT |
749 | int8_t etype; |
750 | ||
751 | *err = -ENOSPC; | |
752 | ||
753 | if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | |
754 | adsize = sizeof(short_ad); | |
755 | else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | |
756 | adsize = sizeof(long_ad); | |
757 | else | |
758 | return newblock; | |
759 | ||
1e7933de | 760 | mutex_lock(&sbi->s_alloc_mutex); |
1da177e4 LT |
761 | if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) |
762 | goal = 0; | |
763 | ||
764 | /* We search for the closest matching block to goal. If we find a exact hit, | |
765 | we stop. Otherwise we keep going till we run out of extents. | |
766 | We store the buffer_head, bloc, and extoffset of the current closest | |
767 | match and use that when we are done. | |
768 | */ | |
ff116fc8 JK |
769 | epos.offset = sizeof(struct unallocSpaceEntry); |
770 | epos.block = UDF_I_LOCATION(table); | |
771 | epos.bh = goal_epos.bh = NULL; | |
1da177e4 LT |
772 | |
773 | while (spread && (etype = | |
ff116fc8 | 774 | udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) |
1da177e4 LT |
775 | { |
776 | if (goal >= eloc.logicalBlockNum) | |
777 | { | |
778 | if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) | |
779 | nspread = 0; | |
780 | else | |
781 | nspread = goal - eloc.logicalBlockNum - | |
782 | (elen >> sb->s_blocksize_bits); | |
783 | } | |
784 | else | |
785 | nspread = eloc.logicalBlockNum - goal; | |
786 | ||
787 | if (nspread < spread) | |
788 | { | |
789 | spread = nspread; | |
ff116fc8 | 790 | if (goal_epos.bh != epos.bh) |
1da177e4 | 791 | { |
ff116fc8 JK |
792 | udf_release_data(goal_epos.bh); |
793 | goal_epos.bh = epos.bh; | |
794 | atomic_inc(&goal_epos.bh->b_count); | |
1da177e4 | 795 | } |
ff116fc8 JK |
796 | goal_epos.block = epos.block; |
797 | goal_epos.offset = epos.offset - adsize; | |
1da177e4 LT |
798 | goal_eloc = eloc; |
799 | goal_elen = (etype << 30) | elen; | |
800 | } | |
801 | } | |
802 | ||
ff116fc8 | 803 | udf_release_data(epos.bh); |
1da177e4 LT |
804 | |
805 | if (spread == 0xFFFFFFFF) | |
806 | { | |
ff116fc8 | 807 | udf_release_data(goal_epos.bh); |
1e7933de | 808 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
809 | return 0; |
810 | } | |
811 | ||
812 | /* Only allocate blocks from the beginning of the extent. | |
813 | That way, we only delete (empty) extents, never have to insert an | |
814 | extent because of splitting */ | |
815 | /* This works, but very poorly.... */ | |
816 | ||
817 | newblock = goal_eloc.logicalBlockNum; | |
818 | goal_eloc.logicalBlockNum ++; | |
819 | goal_elen -= sb->s_blocksize; | |
820 | ||
821 | if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) | |
822 | { | |
ff116fc8 | 823 | udf_release_data(goal_epos.bh); |
1e7933de | 824 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
825 | *err = -EDQUOT; |
826 | return 0; | |
827 | } | |
828 | ||
829 | if (goal_elen) | |
ff116fc8 | 830 | udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1); |
1da177e4 | 831 | else |
ff116fc8 JK |
832 | udf_delete_aext(table, goal_epos, goal_eloc, goal_elen); |
833 | udf_release_data(goal_epos.bh); | |
1da177e4 LT |
834 | |
835 | if (UDF_SB_LVIDBH(sb)) | |
836 | { | |
837 | UDF_SB_LVID(sb)->freeSpaceTable[partition] = | |
838 | cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); | |
839 | mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | |
840 | } | |
841 | ||
842 | sb->s_dirt = 1; | |
1e7933de | 843 | mutex_unlock(&sbi->s_alloc_mutex); |
1da177e4 LT |
844 | *err = 0; |
845 | return newblock; | |
846 | } | |
847 | ||
848 | inline void udf_free_blocks(struct super_block * sb, | |
849 | struct inode * inode, | |
850 | kernel_lb_addr bloc, uint32_t offset, uint32_t count) | |
851 | { | |
852 | uint16_t partition = bloc.partitionReferenceNum; | |
853 | ||
854 | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | |
855 | { | |
856 | return udf_bitmap_free_blocks(sb, inode, | |
857 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | |
858 | bloc, offset, count); | |
859 | } | |
860 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | |
861 | { | |
862 | return udf_table_free_blocks(sb, inode, | |
863 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | |
864 | bloc, offset, count); | |
865 | } | |
866 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | |
867 | { | |
868 | return udf_bitmap_free_blocks(sb, inode, | |
869 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | |
870 | bloc, offset, count); | |
871 | } | |
872 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | |
873 | { | |
874 | return udf_table_free_blocks(sb, inode, | |
875 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | |
876 | bloc, offset, count); | |
877 | } | |
878 | else | |
879 | return; | |
880 | } | |
881 | ||
882 | inline int udf_prealloc_blocks(struct super_block * sb, | |
883 | struct inode * inode, | |
884 | uint16_t partition, uint32_t first_block, uint32_t block_count) | |
885 | { | |
886 | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | |
887 | { | |
888 | return udf_bitmap_prealloc_blocks(sb, inode, | |
889 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | |
890 | partition, first_block, block_count); | |
891 | } | |
892 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | |
893 | { | |
894 | return udf_table_prealloc_blocks(sb, inode, | |
895 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | |
896 | partition, first_block, block_count); | |
897 | } | |
898 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | |
899 | { | |
900 | return udf_bitmap_prealloc_blocks(sb, inode, | |
901 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | |
902 | partition, first_block, block_count); | |
903 | } | |
904 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | |
905 | { | |
906 | return udf_table_prealloc_blocks(sb, inode, | |
907 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | |
908 | partition, first_block, block_count); | |
909 | } | |
910 | else | |
911 | return 0; | |
912 | } | |
913 | ||
914 | inline int udf_new_block(struct super_block * sb, | |
915 | struct inode * inode, | |
916 | uint16_t partition, uint32_t goal, int *err) | |
917 | { | |
918 | if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | |
919 | { | |
920 | return udf_bitmap_new_block(sb, inode, | |
921 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | |
922 | partition, goal, err); | |
923 | } | |
924 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | |
925 | { | |
926 | return udf_table_new_block(sb, inode, | |
927 | UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | |
928 | partition, goal, err); | |
929 | } | |
930 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | |
931 | { | |
932 | return udf_bitmap_new_block(sb, inode, | |
933 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | |
934 | partition, goal, err); | |
935 | } | |
936 | else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | |
937 | { | |
938 | return udf_table_new_block(sb, inode, | |
939 | UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | |
940 | partition, goal, err); | |
941 | } | |
942 | else | |
943 | { | |
944 | *err = -EIO; | |
945 | return 0; | |
946 | } | |
947 | } |