]> Git Repo - linux.git/blame - arch/mips/kernel/smtc.c
[MIPS] lockdep: Deal with interrupt disable hazard in TRACE_IRQFLAGS
[linux.git] / arch / mips / kernel / smtc.c
CommitLineData
41c594ab
RB
1/* Copyright (C) 2004 Mips Technologies, Inc */
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/cpumask.h>
6#include <linux/interrupt.h>
ec43c014 7#include <linux/module.h>
41c594ab
RB
8
9#include <asm/cpu.h>
10#include <asm/processor.h>
11#include <asm/atomic.h>
12#include <asm/system.h>
13#include <asm/hardirq.h>
14#include <asm/hazards.h>
15#include <asm/mmu_context.h>
16#include <asm/smp.h>
17#include <asm/mipsregs.h>
18#include <asm/cacheflush.h>
19#include <asm/time.h>
20#include <asm/addrspace.h>
21#include <asm/smtc.h>
22#include <asm/smtc_ipi.h>
23#include <asm/smtc_proc.h>
24
25/*
26 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
27 */
28
41c594ab
RB
29#define MIPS_CPU_IPI_IRQ 1
30
31#define LOCK_MT_PRA() \
32 local_irq_save(flags); \
33 mtflags = dmt()
34
35#define UNLOCK_MT_PRA() \
36 emt(mtflags); \
37 local_irq_restore(flags)
38
39#define LOCK_CORE_PRA() \
40 local_irq_save(flags); \
41 mtflags = dvpe()
42
43#define UNLOCK_CORE_PRA() \
44 evpe(mtflags); \
45 local_irq_restore(flags)
46
47/*
48 * Data structures purely associated with SMTC parallelism
49 */
50
51
52/*
53 * Table for tracking ASIDs whose lifetime is prolonged.
54 */
55
56asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
57
58/*
59 * Clock interrupt "latch" buffers, per "CPU"
60 */
61
62unsigned int ipi_timer_latch[NR_CPUS];
63
64/*
65 * Number of InterProcessor Interupt (IPI) message buffers to allocate
66 */
67
68#define IPIBUF_PER_CPU 4
69
5868756d
RB
70static struct smtc_ipi_q IPIQ[NR_CPUS];
71static struct smtc_ipi_q freeIPIq;
41c594ab
RB
72
73
74/* Forward declarations */
75
937a8015 76void ipi_decode(struct smtc_ipi *);
5868756d
RB
77static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
78static void setup_cross_vpe_interrupts(void);
41c594ab
RB
79void init_smtc_stats(void);
80
81/* Global SMTC Status */
82
83unsigned int smtc_status = 0;
84
85/* Boot command line configuration overrides */
86
87static int vpelimit = 0;
88static int tclimit = 0;
89static int ipibuffers = 0;
90static int nostlb = 0;
91static int asidmask = 0;
92unsigned long smtc_asid_mask = 0xff;
93
94static int __init maxvpes(char *str)
95{
96 get_option(&str, &vpelimit);
97 return 1;
98}
99
100static int __init maxtcs(char *str)
101{
102 get_option(&str, &tclimit);
103 return 1;
104}
105
106static int __init ipibufs(char *str)
107{
108 get_option(&str, &ipibuffers);
109 return 1;
110}
111
112static int __init stlb_disable(char *s)
113{
114 nostlb = 1;
115 return 1;
116}
117
118static int __init asidmask_set(char *str)
119{
120 get_option(&str, &asidmask);
4bf42d42 121 switch (asidmask) {
41c594ab
RB
122 case 0x1:
123 case 0x3:
124 case 0x7:
125 case 0xf:
126 case 0x1f:
127 case 0x3f:
128 case 0x7f:
129 case 0xff:
130 smtc_asid_mask = (unsigned long)asidmask;
131 break;
132 default:
133 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
134 }
135 return 1;
136}
137
138__setup("maxvpes=", maxvpes);
139__setup("maxtcs=", maxtcs);
140__setup("ipibufs=", ipibufs);
141__setup("nostlb", stlb_disable);
142__setup("asidmask=", asidmask_set);
143
c68644d3 144#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
41c594ab
RB
145
146static int hang_trig = 0;
147
148static int __init hangtrig_enable(char *s)
149{
150 hang_trig = 1;
151 return 1;
152}
153
154
155__setup("hangtrig", hangtrig_enable);
156
157#define DEFAULT_BLOCKED_IPI_LIMIT 32
158
159static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
160
161static int __init tintq(char *str)
162{
163 get_option(&str, &timerq_limit);
164 return 1;
165}
166
167__setup("tintq=", tintq);
168
169int imstuckcount[2][8];
170/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
171int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
172int tcnoprog[NR_CPUS];
173static atomic_t idle_hook_initialized = {0};
174static int clock_hang_reported[NR_CPUS];
175
c68644d3 176#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
41c594ab
RB
177
178/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
179
180void __init sanitize_tlb_entries(void)
181{
182 printk("Deprecated sanitize_tlb_entries() invoked\n");
183}
184
185
186/*
187 * Configure shared TLB - VPC configuration bit must be set by caller
188 */
189
5868756d 190static void smtc_configure_tlb(void)
41c594ab
RB
191{
192 int i,tlbsiz,vpes;
193 unsigned long mvpconf0;
194 unsigned long config1val;
195
196 /* Set up ASID preservation table */
197 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
198 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
199 smtc_live_asid[vpes][i] = 0;
200 }
201 }
202 mvpconf0 = read_c0_mvpconf0();
203
204 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
205 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
206 /* If we have multiple VPEs, try to share the TLB */
207 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
208 /*
209 * If TLB sizing is programmable, shared TLB
210 * size is the total available complement.
211 * Otherwise, we have to take the sum of all
212 * static VPE TLB entries.
213 */
214 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
215 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
216 /*
217 * If there's more than one VPE, there had better
218 * be more than one TC, because we need one to bind
219 * to each VPE in turn to be able to read
220 * its configuration state!
221 */
222 settc(1);
223 /* Stop the TC from doing anything foolish */
224 write_tc_c0_tchalt(TCHALT_H);
225 mips_ihb();
226 /* No need to un-Halt - that happens later anyway */
227 for (i=0; i < vpes; i++) {
228 write_tc_c0_tcbind(i);
229 /*
230 * To be 100% sure we're really getting the right
231 * information, we exit the configuration state
232 * and do an IHB after each rebinding.
233 */
234 write_c0_mvpcontrol(
235 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
236 mips_ihb();
237 /*
238 * Only count if the MMU Type indicated is TLB
239 */
4bf42d42 240 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
41c594ab
RB
241 config1val = read_vpe_c0_config1();
242 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
243 }
244
245 /* Put core back in configuration state */
246 write_c0_mvpcontrol(
247 read_c0_mvpcontrol() | MVPCONTROL_VPC );
248 mips_ihb();
249 }
250 }
251 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
c80697b3 252 ehb();
41c594ab
RB
253
254 /*
255 * Setup kernel data structures to use software total,
256 * rather than read the per-VPE Config1 value. The values
257 * for "CPU 0" gets copied to all the other CPUs as part
258 * of their initialization in smtc_cpu_setup().
259 */
260
a0b62180
RB
261 /* MIPS32 limits TLB indices to 64 */
262 if (tlbsiz > 64)
263 tlbsiz = 64;
264 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
41c594ab 265 smtc_status |= SMTC_TLB_SHARED;
a0b62180 266 local_flush_tlb_all();
41c594ab
RB
267
268 printk("TLB of %d entry pairs shared by %d VPEs\n",
269 tlbsiz, vpes);
270 } else {
271 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
272 }
273 }
274}
275
276
277/*
278 * Incrementally build the CPU map out of constituent MIPS MT cores,
279 * using the specified available VPEs and TCs. Plaform code needs
280 * to ensure that each MIPS MT core invokes this routine on reset,
281 * one at a time(!).
282 *
283 * This version of the build_cpu_map and prepare_cpus routines assumes
284 * that *all* TCs of a MIPS MT core will be used for Linux, and that
285 * they will be spread across *all* available VPEs (to minimise the
286 * loss of efficiency due to exception service serialization).
287 * An improved version would pick up configuration information and
288 * possibly leave some TCs/VPEs as "slave" processors.
289 *
290 * Use c0_MVPConf0 to find out how many TCs are available, setting up
291 * phys_cpu_present_map and the logical/physical mappings.
292 */
293
294int __init mipsmt_build_cpu_map(int start_cpu_slot)
295{
296 int i, ntcs;
297
298 /*
299 * The CPU map isn't actually used for anything at this point,
300 * so it's not clear what else we should do apart from set
301 * everything up so that "logical" = "physical".
302 */
303 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
304 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
305 cpu_set(i, phys_cpu_present_map);
306 __cpu_number_map[i] = i;
307 __cpu_logical_map[i] = i;
308 }
309 /* Initialize map of CPUs with FPUs */
310 cpus_clear(mt_fpu_cpumask);
311
312 /* One of those TC's is the one booting, and not a secondary... */
313 printk("%i available secondary CPU TC(s)\n", i - 1);
314
315 return i;
316}
317
318/*
319 * Common setup before any secondaries are started
320 * Make sure all CPU's are in a sensible state before we boot any of the
321 * secondaries.
322 *
323 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
324 * as possible across the available VPEs.
325 */
326
327static void smtc_tc_setup(int vpe, int tc, int cpu)
328{
329 settc(tc);
330 write_tc_c0_tchalt(TCHALT_H);
331 mips_ihb();
332 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
333 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
334 | TCSTATUS_A);
335 write_tc_c0_tccontext(0);
336 /* Bind tc to vpe */
337 write_tc_c0_tcbind(vpe);
338 /* In general, all TCs should have the same cpu_data indications */
339 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
340 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
341 if (cpu_data[0].cputype == CPU_34K)
342 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
343 cpu_data[cpu].vpe_id = vpe;
344 cpu_data[cpu].tc_id = tc;
345}
346
347
348void mipsmt_prepare_cpus(void)
349{
350 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
351 unsigned long flags;
352 unsigned long val;
353 int nipi;
354 struct smtc_ipi *pipi;
355
356 /* disable interrupts so we can disable MT */
357 local_irq_save(flags);
358 /* disable MT so we can configure */
359 dvpe();
360 dmt();
361
34af946a 362 spin_lock_init(&freeIPIq.lock);
41c594ab
RB
363
364 /*
365 * We probably don't have as many VPEs as we do SMP "CPUs",
366 * but it's possible - and in any case we'll never use more!
367 */
368 for (i=0; i<NR_CPUS; i++) {
369 IPIQ[i].head = IPIQ[i].tail = NULL;
34af946a 370 spin_lock_init(&IPIQ[i].lock);
41c594ab
RB
371 IPIQ[i].depth = 0;
372 ipi_timer_latch[i] = 0;
373 }
374
375 /* cpu_data index starts at zero */
376 cpu = 0;
377 cpu_data[cpu].vpe_id = 0;
378 cpu_data[cpu].tc_id = 0;
379 cpu++;
380
381 /* Report on boot-time options */
382 mips_mt_set_cpuoptions ();
383 if (vpelimit > 0)
384 printk("Limit of %d VPEs set\n", vpelimit);
385 if (tclimit > 0)
386 printk("Limit of %d TCs set\n", tclimit);
387 if (nostlb) {
388 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
389 }
390 if (asidmask)
391 printk("ASID mask value override to 0x%x\n", asidmask);
392
393 /* Temporary */
c68644d3 394#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
41c594ab
RB
395 if (hang_trig)
396 printk("Logic Analyser Trigger on suspected TC hang\n");
c68644d3 397#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
41c594ab
RB
398
399 /* Put MVPE's into 'configuration state' */
400 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
401
402 val = read_c0_mvpconf0();
403 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
404 if (vpelimit > 0 && nvpe > vpelimit)
405 nvpe = vpelimit;
406 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
407 if (ntc > NR_CPUS)
408 ntc = NR_CPUS;
409 if (tclimit > 0 && ntc > tclimit)
410 ntc = tclimit;
411 tcpervpe = ntc / nvpe;
412 slop = ntc % nvpe; /* Residual TCs, < NVPE */
413
414 /* Set up shared TLB */
415 smtc_configure_tlb();
416
417 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
418 /*
419 * Set the MVP bits.
420 */
421 settc(tc);
422 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
423 if (vpe != 0)
424 printk(", ");
425 printk("VPE %d: TC", vpe);
426 for (i = 0; i < tcpervpe; i++) {
427 /*
428 * TC 0 is bound to VPE 0 at reset,
429 * and is presumably executing this
430 * code. Leave it alone!
431 */
432 if (tc != 0) {
433 smtc_tc_setup(vpe,tc, cpu);
434 cpu++;
435 }
436 printk(" %d", tc);
437 tc++;
438 }
439 if (slop) {
440 if (tc != 0) {
441 smtc_tc_setup(vpe,tc, cpu);
442 cpu++;
443 }
444 printk(" %d", tc);
445 tc++;
446 slop--;
447 }
448 if (vpe != 0) {
449 /*
450 * Clear any stale software interrupts from VPE's Cause
451 */
452 write_vpe_c0_cause(0);
453
454 /*
455 * Clear ERL/EXL of VPEs other than 0
456 * and set restricted interrupt enable/mask.
457 */
458 write_vpe_c0_status((read_vpe_c0_status()
459 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
460 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
461 | ST0_IE));
462 /*
463 * set config to be the same as vpe0,
464 * particularly kseg0 coherency alg
465 */
466 write_vpe_c0_config(read_c0_config());
467 /* Clear any pending timer interrupt */
468 write_vpe_c0_compare(0);
469 /* Propagate Config7 */
470 write_vpe_c0_config7(read_c0_config7());
64c590b7 471 write_vpe_c0_count(read_c0_count());
41c594ab
RB
472 }
473 /* enable multi-threading within VPE */
474 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
475 /* enable the VPE */
476 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
477 }
478
479 /*
480 * Pull any physically present but unused TCs out of circulation.
481 */
482 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
483 cpu_clear(tc, phys_cpu_present_map);
484 cpu_clear(tc, cpu_present_map);
485 tc++;
486 }
487
488 /* release config state */
489 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
490
491 printk("\n");
492
493 /* Set up coprocessor affinity CPU mask(s) */
494
495 for (tc = 0; tc < ntc; tc++) {
4bf42d42 496 if (cpu_data[tc].options & MIPS_CPU_FPU)
41c594ab
RB
497 cpu_set(tc, mt_fpu_cpumask);
498 }
499
500 /* set up ipi interrupts... */
501
502 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
503
504 if (nvpe > 1)
505 setup_cross_vpe_interrupts();
506
507 /* Set up queue of free IPI "messages". */
508 nipi = NR_CPUS * IPIBUF_PER_CPU;
509 if (ipibuffers > 0)
510 nipi = ipibuffers;
511
512 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
513 if (pipi == NULL)
514 panic("kmalloc of IPI message buffers failed\n");
515 else
516 printk("IPI buffer pool of %d buffers\n", nipi);
517 for (i = 0; i < nipi; i++) {
518 smtc_ipi_nq(&freeIPIq, pipi);
519 pipi++;
520 }
521
522 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
523 emt(EMT_ENABLE);
524 evpe(EVPE_ENABLE);
525 local_irq_restore(flags);
526 /* Initialize SMTC /proc statistics/diagnostics */
527 init_smtc_stats();
528}
529
530
531/*
532 * Setup the PC, SP, and GP of a secondary processor and start it
533 * running!
534 * smp_bootstrap is the place to resume from
535 * __KSTK_TOS(idle) is apparently the stack pointer
536 * (unsigned long)idle->thread_info the gp
537 *
538 */
539void smtc_boot_secondary(int cpu, struct task_struct *idle)
540{
541 extern u32 kernelsp[NR_CPUS];
542 long flags;
543 int mtflags;
544
545 LOCK_MT_PRA();
546 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
547 dvpe();
548 }
549 settc(cpu_data[cpu].tc_id);
550
551 /* pc */
552 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
553
554 /* stack pointer */
555 kernelsp[cpu] = __KSTK_TOS(idle);
556 write_tc_gpr_sp(__KSTK_TOS(idle));
557
558 /* global pointer */
559 write_tc_gpr_gp((unsigned long)idle->thread_info);
560
561 smtc_status |= SMTC_MTC_ACTIVE;
562 write_tc_c0_tchalt(0);
563 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
564 evpe(EVPE_ENABLE);
565 }
566 UNLOCK_MT_PRA();
567}
568
569void smtc_init_secondary(void)
570{
571 /*
572 * Start timer on secondary VPEs if necessary.
54d0a216 573 * plat_timer_setup has already have been invoked by init/main
41c594ab
RB
574 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
575 * SMTC init code assigns TCs consdecutively and in ascending order
576 * to across available VPEs.
577 */
4bf42d42
RB
578 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
579 ((read_c0_tcbind() & TCBIND_CURVPE)
41c594ab
RB
580 != cpu_data[smp_processor_id() - 1].vpe_id)){
581 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
582 }
583
584 local_irq_enable();
585}
586
587void smtc_smp_finish(void)
588{
589 printk("TC %d going on-line as CPU %d\n",
590 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
591}
592
593void smtc_cpus_done(void)
594{
595}
596
597/*
598 * Support for SMTC-optimized driver IRQ registration
599 */
600
601/*
602 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
603 * in do_IRQ. These are passed in setup_irq_smtc() and stored
604 * in this table.
605 */
606
607int setup_irq_smtc(unsigned int irq, struct irqaction * new,
608 unsigned long hwmask)
609{
610 irq_hwmask[irq] = hwmask;
611
612 return setup_irq(irq, new);
613}
614
615/*
616 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
617 * Within a VPE one TC can interrupt another by different approaches.
618 * The easiest to get right would probably be to make all TCs except
619 * the target IXMT and set a software interrupt, but an IXMT-based
620 * scheme requires that a handler must run before a new IPI could
621 * be sent, which would break the "broadcast" loops in MIPS MT.
622 * A more gonzo approach within a VPE is to halt the TC, extract
623 * its Restart, Status, and a couple of GPRs, and program the Restart
624 * address to emulate an interrupt.
625 *
626 * Within a VPE, one can be confident that the target TC isn't in
627 * a critical EXL state when halted, since the write to the Halt
628 * register could not have issued on the writing thread if the
629 * halting thread had EXL set. So k0 and k1 of the target TC
630 * can be used by the injection code. Across VPEs, one can't
631 * be certain that the target TC isn't in a critical exception
632 * state. So we try a two-step process of sending a software
633 * interrupt to the target VPE, which either handles the event
634 * itself (if it was the target) or injects the event within
635 * the VPE.
636 */
637
5868756d 638static void smtc_ipi_qdump(void)
41c594ab
RB
639{
640 int i;
641
642 for (i = 0; i < NR_CPUS ;i++) {
643 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
644 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
645 IPIQ[i].depth);
646 }
647}
648
649/*
650 * The standard atomic.h primitives don't quite do what we want
651 * here: We need an atomic add-and-return-previous-value (which
652 * could be done with atomic_add_return and a decrement) and an
653 * atomic set/zero-and-return-previous-value (which can't really
654 * be done with the atomic.h primitives). And since this is
655 * MIPS MT, we can assume that we have LL/SC.
656 */
657static __inline__ int atomic_postincrement(unsigned int *pv)
658{
659 unsigned long result;
660
661 unsigned long temp;
662
663 __asm__ __volatile__(
664 "1: ll %0, %2 \n"
665 " addu %1, %0, 1 \n"
666 " sc %1, %2 \n"
667 " beqz %1, 1b \n"
668 " sync \n"
669 : "=&r" (result), "=&r" (temp), "=m" (*pv)
670 : "m" (*pv)
671 : "memory");
672
673 return result;
674}
675
41c594ab
RB
676void smtc_send_ipi(int cpu, int type, unsigned int action)
677{
678 int tcstatus;
679 struct smtc_ipi *pipi;
680 long flags;
681 int mtflags;
682
683 if (cpu == smp_processor_id()) {
684 printk("Cannot Send IPI to self!\n");
685 return;
686 }
687 /* Set up a descriptor, to be delivered either promptly or queued */
688 pipi = smtc_ipi_dq(&freeIPIq);
689 if (pipi == NULL) {
690 bust_spinlocks(1);
691 mips_mt_regdump(dvpe());
692 panic("IPI Msg. Buffers Depleted\n");
693 }
694 pipi->type = type;
695 pipi->arg = (void *)action;
696 pipi->dest = cpu;
697 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
698 /* If not on same VPE, enqueue and send cross-VPE interupt */
699 smtc_ipi_nq(&IPIQ[cpu], pipi);
700 LOCK_CORE_PRA();
701 settc(cpu_data[cpu].tc_id);
702 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
703 UNLOCK_CORE_PRA();
704 } else {
705 /*
706 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
707 * since ASID shootdown on the other VPE may
708 * collide with this operation.
709 */
710 LOCK_CORE_PRA();
711 settc(cpu_data[cpu].tc_id);
712 /* Halt the targeted TC */
713 write_tc_c0_tchalt(TCHALT_H);
714 mips_ihb();
715
716 /*
717 * Inspect TCStatus - if IXMT is set, we have to queue
718 * a message. Otherwise, we set up the "interrupt"
719 * of the other TC
720 */
721 tcstatus = read_tc_c0_tcstatus();
722
723 if ((tcstatus & TCSTATUS_IXMT) != 0) {
724 /*
725 * Spin-waiting here can deadlock,
726 * so we queue the message for the target TC.
727 */
728 write_tc_c0_tchalt(0);
729 UNLOCK_CORE_PRA();
730 /* Try to reduce redundant timer interrupt messages */
4bf42d42
RB
731 if (type == SMTC_CLOCK_TICK) {
732 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
41c594ab
RB
733 smtc_ipi_nq(&freeIPIq, pipi);
734 return;
735 }
736 }
737 smtc_ipi_nq(&IPIQ[cpu], pipi);
738 } else {
739 post_direct_ipi(cpu, pipi);
740 write_tc_c0_tchalt(0);
741 UNLOCK_CORE_PRA();
742 }
743 }
744}
745
746/*
747 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
748 */
5868756d 749static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
41c594ab
RB
750{
751 struct pt_regs *kstack;
752 unsigned long tcstatus;
753 unsigned long tcrestart;
754 extern u32 kernelsp[NR_CPUS];
755 extern void __smtc_ipi_vector(void);
756
757 /* Extract Status, EPC from halted TC */
758 tcstatus = read_tc_c0_tcstatus();
759 tcrestart = read_tc_c0_tcrestart();
760 /* If TCRestart indicates a WAIT instruction, advance the PC */
761 if ((tcrestart & 0x80000000)
762 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
763 tcrestart += 4;
764 }
765 /*
766 * Save on TC's future kernel stack
767 *
768 * CU bit of Status is indicator that TC was
769 * already running on a kernel stack...
770 */
4bf42d42 771 if (tcstatus & ST0_CU0) {
41c594ab
RB
772 /* Note that this "- 1" is pointer arithmetic */
773 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
774 } else {
775 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
776 }
777
778 kstack->cp0_epc = (long)tcrestart;
779 /* Save TCStatus */
780 kstack->cp0_tcstatus = tcstatus;
781 /* Pass token of operation to be performed kernel stack pad area */
782 kstack->pad0[4] = (unsigned long)pipi;
783 /* Pass address of function to be called likewise */
784 kstack->pad0[5] = (unsigned long)&ipi_decode;
785 /* Set interrupt exempt and kernel mode */
786 tcstatus |= TCSTATUS_IXMT;
787 tcstatus &= ~TCSTATUS_TKSU;
788 write_tc_c0_tcstatus(tcstatus);
789 ehb();
790 /* Set TC Restart address to be SMTC IPI vector */
791 write_tc_c0_tcrestart(__smtc_ipi_vector);
792}
793
937a8015 794static void ipi_resched_interrupt(void)
41c594ab
RB
795{
796 /* Return from interrupt should be enough to cause scheduler check */
797}
798
799
937a8015 800static void ipi_call_interrupt(void)
41c594ab
RB
801{
802 /* Invoke generic function invocation code in smp.c */
803 smp_call_function_interrupt();
804}
805
937a8015 806void ipi_decode(struct smtc_ipi *pipi)
41c594ab
RB
807{
808 void *arg_copy = pipi->arg;
809 int type_copy = pipi->type;
810 int dest_copy = pipi->dest;
811
812 smtc_ipi_nq(&freeIPIq, pipi);
813 switch (type_copy) {
4bf42d42
RB
814 case SMTC_CLOCK_TICK:
815 /* Invoke Clock "Interrupt" */
816 ipi_timer_latch[dest_copy] = 0;
c68644d3 817#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
4bf42d42 818 clock_hang_reported[dest_copy] = 0;
c68644d3 819#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
937a8015 820 local_timer_interrupt(0, NULL);
4bf42d42
RB
821 break;
822 case LINUX_SMP_IPI:
823 switch ((int)arg_copy) {
824 case SMP_RESCHEDULE_YOURSELF:
937a8015 825 ipi_resched_interrupt();
41c594ab 826 break;
4bf42d42 827 case SMP_CALL_FUNCTION:
937a8015 828 ipi_call_interrupt();
41c594ab
RB
829 break;
830 default:
4bf42d42
RB
831 printk("Impossible SMTC IPI Argument 0x%x\n",
832 (int)arg_copy);
41c594ab 833 break;
4bf42d42
RB
834 }
835 break;
836 default:
837 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
838 break;
41c594ab
RB
839 }
840}
841
937a8015 842void deferred_smtc_ipi(void)
41c594ab
RB
843{
844 struct smtc_ipi *pipi;
845 unsigned long flags;
846/* DEBUG */
847 int q = smp_processor_id();
848
849 /*
850 * Test is not atomic, but much faster than a dequeue,
851 * and the vast majority of invocations will have a null queue.
852 */
4bf42d42 853 if (IPIQ[q].head != NULL) {
41c594ab
RB
854 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
855 /* ipi_decode() should be called with interrupts off */
856 local_irq_save(flags);
937a8015 857 ipi_decode(pipi);
41c594ab
RB
858 local_irq_restore(flags);
859 }
860 }
861}
862
863/*
864 * Send clock tick to all TCs except the one executing the funtion
865 */
866
867void smtc_timer_broadcast(int vpe)
868{
869 int cpu;
870 int myTC = cpu_data[smp_processor_id()].tc_id;
871 int myVPE = cpu_data[smp_processor_id()].vpe_id;
872
873 smtc_cpu_stats[smp_processor_id()].timerints++;
874
875 for_each_online_cpu(cpu) {
876 if (cpu_data[cpu].vpe_id == myVPE &&
877 cpu_data[cpu].tc_id != myTC)
878 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
879 }
880}
881
882/*
883 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
884 * set via cross-VPE MTTR manipulation of the Cause register. It would be
885 * in some regards preferable to have external logic for "doorbell" hardware
886 * interrupts.
887 */
888
97dcb82d 889static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
41c594ab 890
937a8015 891static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
41c594ab
RB
892{
893 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
894 int my_tc = cpu_data[smp_processor_id()].tc_id;
895 int cpu;
896 struct smtc_ipi *pipi;
897 unsigned long tcstatus;
898 int sent;
899 long flags;
900 unsigned int mtflags;
901 unsigned int vpflags;
902
903 /*
904 * So long as cross-VPE interrupts are done via
905 * MFTR/MTTR read-modify-writes of Cause, we need
906 * to stop other VPEs whenever the local VPE does
907 * anything similar.
908 */
909 local_irq_save(flags);
910 vpflags = dvpe();
911 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
912 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
913 irq_enable_hazard();
914 evpe(vpflags);
915 local_irq_restore(flags);
916
917 /*
918 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
919 * queued for TCs on this VPE other than the current one.
920 * Return-from-interrupt should cause us to drain the queue
921 * for the current TC, so we ought not to have to do it explicitly here.
922 */
923
924 for_each_online_cpu(cpu) {
925 if (cpu_data[cpu].vpe_id != my_vpe)
926 continue;
927
928 pipi = smtc_ipi_dq(&IPIQ[cpu]);
929 if (pipi != NULL) {
930 if (cpu_data[cpu].tc_id != my_tc) {
931 sent = 0;
932 LOCK_MT_PRA();
933 settc(cpu_data[cpu].tc_id);
934 write_tc_c0_tchalt(TCHALT_H);
935 mips_ihb();
936 tcstatus = read_tc_c0_tcstatus();
937 if ((tcstatus & TCSTATUS_IXMT) == 0) {
938 post_direct_ipi(cpu, pipi);
939 sent = 1;
940 }
941 write_tc_c0_tchalt(0);
942 UNLOCK_MT_PRA();
943 if (!sent) {
944 smtc_ipi_req(&IPIQ[cpu], pipi);
945 }
946 } else {
947 /*
948 * ipi_decode() should be called
949 * with interrupts off
950 */
951 local_irq_save(flags);
937a8015 952 ipi_decode(pipi);
41c594ab
RB
953 local_irq_restore(flags);
954 }
955 }
956 }
957
958 return IRQ_HANDLED;
959}
960
937a8015 961static void ipi_irq_dispatch(void)
41c594ab 962{
937a8015 963 do_IRQ(cpu_ipi_irq);
41c594ab
RB
964}
965
966static struct irqaction irq_ipi;
967
5868756d 968static void setup_cross_vpe_interrupts(void)
41c594ab
RB
969{
970 if (!cpu_has_vint)
971 panic("SMTC Kernel requires Vectored Interupt support");
972
973 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
974
975 irq_ipi.handler = ipi_interrupt;
f40298fd 976 irq_ipi.flags = IRQF_DISABLED;
41c594ab
RB
977 irq_ipi.name = "SMTC_IPI";
978
979 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
980
981 irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1417836e 982 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
41c594ab
RB
983}
984
985/*
986 * SMTC-specific hacks invoked from elsewhere in the kernel.
987 */
988
ac8be955
RB
989void smtc_ipi_replay(void)
990{
991 /*
992 * To the extent that we've ever turned interrupts off,
993 * we may have accumulated deferred IPIs. This is subtle.
994 * If we use the smtc_ipi_qdepth() macro, we'll get an
995 * exact number - but we'll also disable interrupts
996 * and create a window of failure where a new IPI gets
997 * queued after we test the depth but before we re-enable
998 * interrupts. So long as IXMT never gets set, however,
999 * we should be OK: If we pick up something and dispatch
1000 * it here, that's great. If we see nothing, but concurrent
1001 * with this operation, another TC sends us an IPI, IXMT
1002 * is clear, and we'll handle it as a real pseudo-interrupt
1003 * and not a pseudo-pseudo interrupt.
1004 */
1005 if (IPIQ[smp_processor_id()].depth > 0) {
1006 struct smtc_ipi *pipi;
1007 extern void self_ipi(struct smtc_ipi *);
1008
1009 while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
1010 self_ipi(pipi);
1011 smtc_cpu_stats[smp_processor_id()].selfipis++;
1012 }
1013 }
1014}
1015
ec43c014
RB
1016EXPORT_SYMBOL(smtc_ipi_replay);
1017
41c594ab
RB
1018void smtc_idle_loop_hook(void)
1019{
c68644d3 1020#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
41c594ab
RB
1021 int im;
1022 int flags;
1023 int mtflags;
1024 int bit;
1025 int vpe;
1026 int tc;
1027 int hook_ntcs;
1028 /*
1029 * printk within DMT-protected regions can deadlock,
1030 * so buffer diagnostic messages for later output.
1031 */
1032 char *pdb_msg;
1033 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1034
1035 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1036 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1037 int mvpconf0;
1038 /* Tedious stuff to just do once */
1039 mvpconf0 = read_c0_mvpconf0();
1040 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1041 if (hook_ntcs > NR_CPUS)
1042 hook_ntcs = NR_CPUS;
1043 for (tc = 0; tc < hook_ntcs; tc++) {
1044 tcnoprog[tc] = 0;
1045 clock_hang_reported[tc] = 0;
1046 }
1047 for (vpe = 0; vpe < 2; vpe++)
1048 for (im = 0; im < 8; im++)
1049 imstuckcount[vpe][im] = 0;
1050 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1051 atomic_set(&idle_hook_initialized, 1000);
1052 } else {
1053 /* Someone else is initializing in parallel - let 'em finish */
1054 while (atomic_read(&idle_hook_initialized) < 1000)
1055 ;
1056 }
1057 }
1058
1059 /* Have we stupidly left IXMT set somewhere? */
1060 if (read_c0_tcstatus() & 0x400) {
1061 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1062 ehb();
1063 printk("Dangling IXMT in cpu_idle()\n");
1064 }
1065
1066 /* Have we stupidly left an IM bit turned off? */
1067#define IM_LIMIT 2000
1068 local_irq_save(flags);
1069 mtflags = dmt();
1070 pdb_msg = &id_ho_db_msg[0];
1071 im = read_c0_status();
1072 vpe = cpu_data[smp_processor_id()].vpe_id;
1073 for (bit = 0; bit < 8; bit++) {
1074 /*
1075 * In current prototype, I/O interrupts
1076 * are masked for VPE > 0
1077 */
1078 if (vpemask[vpe][bit]) {
1079 if (!(im & (0x100 << bit)))
1080 imstuckcount[vpe][bit]++;
1081 else
1082 imstuckcount[vpe][bit] = 0;
1083 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1084 set_c0_status(0x100 << bit);
1085 ehb();
1086 imstuckcount[vpe][bit] = 0;
1087 pdb_msg += sprintf(pdb_msg,
1088 "Dangling IM %d fixed for VPE %d\n", bit,
1089 vpe);
1090 }
1091 }
1092 }
1093
1094 /*
1095 * Now that we limit outstanding timer IPIs, check for hung TC
1096 */
1097 for (tc = 0; tc < NR_CPUS; tc++) {
1098 /* Don't check ourself - we'll dequeue IPIs just below */
1099 if ((tc != smp_processor_id()) &&
1100 ipi_timer_latch[tc] > timerq_limit) {
1101 if (clock_hang_reported[tc] == 0) {
1102 pdb_msg += sprintf(pdb_msg,
1103 "TC %d looks hung with timer latch at %d\n",
1104 tc, ipi_timer_latch[tc]);
1105 clock_hang_reported[tc]++;
1106 }
1107 }
1108 }
1109 emt(mtflags);
1110 local_irq_restore(flags);
1111 if (pdb_msg != &id_ho_db_msg[0])
1112 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
c68644d3 1113#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
ac8be955 1114
41c594ab 1115 /*
ac8be955
RB
1116 * Replay any accumulated deferred IPIs. If "Instant Replay"
1117 * is in use, there should never be any.
41c594ab 1118 */
ac8be955
RB
1119#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1120 smtc_ipi_replay();
1121#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
41c594ab
RB
1122}
1123
1124void smtc_soft_dump(void)
1125{
1126 int i;
1127
1128 printk("Counter Interrupts taken per CPU (TC)\n");
1129 for (i=0; i < NR_CPUS; i++) {
1130 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1131 }
1132 printk("Self-IPI invocations:\n");
1133 for (i=0; i < NR_CPUS; i++) {
1134 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1135 }
1136 smtc_ipi_qdump();
1137 printk("Timer IPI Backlogs:\n");
1138 for (i=0; i < NR_CPUS; i++) {
1139 printk("%d: %d\n", i, ipi_timer_latch[i]);
1140 }
1141 printk("%d Recoveries of \"stolen\" FPU\n",
1142 atomic_read(&smtc_fpu_recoveries));
1143}
1144
1145
1146/*
1147 * TLB management routines special to SMTC
1148 */
1149
1150void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1151{
1152 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1153 int tlb, i;
1154
1155 /*
1156 * It would be nice to be able to use a spinlock here,
1157 * but this is invoked from within TLB flush routines
1158 * that protect themselves with DVPE, so if a lock is
e0daad44 1159 * held by another TC, it'll never be freed.
41c594ab
RB
1160 *
1161 * DVPE/DMT must not be done with interrupts enabled,
1162 * so even so most callers will already have disabled
1163 * them, let's be really careful...
1164 */
1165
1166 local_irq_save(flags);
1167 if (smtc_status & SMTC_TLB_SHARED) {
1168 mtflags = dvpe();
1169 tlb = 0;
1170 } else {
1171 mtflags = dmt();
1172 tlb = cpu_data[cpu].vpe_id;
1173 }
1174 asid = asid_cache(cpu);
1175
1176 do {
1177 if (!((asid += ASID_INC) & ASID_MASK) ) {
1178 if (cpu_has_vtag_icache)
1179 flush_icache_all();
1180 /* Traverse all online CPUs (hack requires contigous range) */
1181 for (i = 0; i < num_online_cpus(); i++) {
1182 /*
1183 * We don't need to worry about our own CPU, nor those of
1184 * CPUs who don't share our TLB.
1185 */
1186 if ((i != smp_processor_id()) &&
1187 ((smtc_status & SMTC_TLB_SHARED) ||
1188 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1189 settc(cpu_data[i].tc_id);
1190 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1191 if (!prevhalt) {
1192 write_tc_c0_tchalt(TCHALT_H);
1193 mips_ihb();
1194 }
1195 tcstat = read_tc_c0_tcstatus();
1196 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1197 if (!prevhalt)
1198 write_tc_c0_tchalt(0);
1199 }
1200 }
1201 if (!asid) /* fix version if needed */
1202 asid = ASID_FIRST_VERSION;
1203 local_flush_tlb_all(); /* start new asid cycle */
1204 }
1205 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1206
1207 /*
1208 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1209 */
1210 for (i = 0; i < num_online_cpus(); i++) {
1211 if ((smtc_status & SMTC_TLB_SHARED) ||
1212 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1213 cpu_context(i, mm) = asid_cache(i) = asid;
1214 }
1215
1216 if (smtc_status & SMTC_TLB_SHARED)
1217 evpe(mtflags);
1218 else
1219 emt(mtflags);
1220 local_irq_restore(flags);
1221}
1222
1223/*
1224 * Invoked from macros defined in mmu_context.h
1225 * which must already have disabled interrupts
1226 * and done a DVPE or DMT as appropriate.
1227 */
1228
1229void smtc_flush_tlb_asid(unsigned long asid)
1230{
1231 int entry;
1232 unsigned long ehi;
1233
1234 entry = read_c0_wired();
1235
1236 /* Traverse all non-wired entries */
1237 while (entry < current_cpu_data.tlbsize) {
1238 write_c0_index(entry);
1239 ehb();
1240 tlb_read();
1241 ehb();
1242 ehi = read_c0_entryhi();
4bf42d42 1243 if ((ehi & ASID_MASK) == asid) {
41c594ab
RB
1244 /*
1245 * Invalidate only entries with specified ASID,
1246 * makiing sure all entries differ.
1247 */
1248 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1249 write_c0_entrylo0(0);
1250 write_c0_entrylo1(0);
1251 mtc0_tlbw_hazard();
1252 tlb_write_indexed();
1253 }
1254 entry++;
1255 }
1256 write_c0_index(PARKED_INDEX);
1257 tlbw_use_hazard();
1258}
1259
1260/*
1261 * Support for single-threading cache flush operations.
1262 */
1263
5868756d 1264static int halt_state_save[NR_CPUS];
41c594ab
RB
1265
1266/*
1267 * To really, really be sure that nothing is being done
1268 * by other TCs, halt them all. This code assumes that
1269 * a DVPE has already been done, so while their Halted
1270 * state is theoretically architecturally unstable, in
1271 * practice, it's not going to change while we're looking
1272 * at it.
1273 */
1274
1275void smtc_cflush_lockdown(void)
1276{
1277 int cpu;
1278
1279 for_each_online_cpu(cpu) {
1280 if (cpu != smp_processor_id()) {
1281 settc(cpu_data[cpu].tc_id);
1282 halt_state_save[cpu] = read_tc_c0_tchalt();
1283 write_tc_c0_tchalt(TCHALT_H);
1284 }
1285 }
1286 mips_ihb();
1287}
1288
1289/* It would be cheating to change the cpu_online states during a flush! */
1290
1291void smtc_cflush_release(void)
1292{
1293 int cpu;
1294
1295 /*
1296 * Start with a hazard barrier to ensure
1297 * that all CACHE ops have played through.
1298 */
1299 mips_ihb();
1300
1301 for_each_online_cpu(cpu) {
1302 if (cpu != smp_processor_id()) {
1303 settc(cpu_data[cpu].tc_id);
1304 write_tc_c0_tchalt(halt_state_save[cpu]);
1305 }
1306 }
1307 mips_ihb();
1308}
This page took 0.351405 seconds and 4 git commands to generate.