]>
Commit | Line | Data |
---|---|---|
b20a3503 CL |
1 | /* |
2 | * Memory Migration functionality - linux/mm/migration.c | |
3 | * | |
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
5 | * | |
6 | * Page migration was first developed in the context of the memory hotplug | |
7 | * project. The main authors of the migration code are: | |
8 | * | |
9 | * IWAMOTO Toshihiro <[email protected]> | |
10 | * Hirokazu Takahashi <[email protected]> | |
11 | * Dave Hansen <[email protected]> | |
cde53535 | 12 | * Christoph Lameter |
b20a3503 CL |
13 | */ |
14 | ||
15 | #include <linux/migrate.h> | |
b95f1b31 | 16 | #include <linux/export.h> |
b20a3503 | 17 | #include <linux/swap.h> |
0697212a | 18 | #include <linux/swapops.h> |
b20a3503 | 19 | #include <linux/pagemap.h> |
e23ca00b | 20 | #include <linux/buffer_head.h> |
b20a3503 | 21 | #include <linux/mm_inline.h> |
b488893a | 22 | #include <linux/nsproxy.h> |
b20a3503 | 23 | #include <linux/pagevec.h> |
e9995ef9 | 24 | #include <linux/ksm.h> |
b20a3503 CL |
25 | #include <linux/rmap.h> |
26 | #include <linux/topology.h> | |
27 | #include <linux/cpu.h> | |
28 | #include <linux/cpuset.h> | |
04e62a29 | 29 | #include <linux/writeback.h> |
742755a1 CL |
30 | #include <linux/mempolicy.h> |
31 | #include <linux/vmalloc.h> | |
86c3a764 | 32 | #include <linux/security.h> |
8a9f3ccd | 33 | #include <linux/memcontrol.h> |
4f5ca265 | 34 | #include <linux/syscalls.h> |
290408d4 | 35 | #include <linux/hugetlb.h> |
5a0e3ad6 | 36 | #include <linux/gfp.h> |
b20a3503 | 37 | |
0d1836c3 MN |
38 | #include <asm/tlbflush.h> |
39 | ||
b20a3503 CL |
40 | #include "internal.h" |
41 | ||
b20a3503 | 42 | /* |
742755a1 | 43 | * migrate_prep() needs to be called before we start compiling a list of pages |
748446bb MG |
44 | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is |
45 | * undesirable, use migrate_prep_local() | |
b20a3503 CL |
46 | */ |
47 | int migrate_prep(void) | |
48 | { | |
b20a3503 CL |
49 | /* |
50 | * Clear the LRU lists so pages can be isolated. | |
51 | * Note that pages may be moved off the LRU after we have | |
52 | * drained them. Those pages will fail to migrate like other | |
53 | * pages that may be busy. | |
54 | */ | |
55 | lru_add_drain_all(); | |
56 | ||
57 | return 0; | |
58 | } | |
59 | ||
748446bb MG |
60 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ |
61 | int migrate_prep_local(void) | |
62 | { | |
63 | lru_add_drain(); | |
64 | ||
65 | return 0; | |
66 | } | |
67 | ||
b20a3503 | 68 | /* |
894bc310 LS |
69 | * Add isolated pages on the list back to the LRU under page lock |
70 | * to avoid leaking evictable pages back onto unevictable list. | |
b20a3503 | 71 | */ |
e13861d8 | 72 | void putback_lru_pages(struct list_head *l) |
b20a3503 CL |
73 | { |
74 | struct page *page; | |
75 | struct page *page2; | |
b20a3503 CL |
76 | |
77 | list_for_each_entry_safe(page, page2, l, lru) { | |
e24f0b8f | 78 | list_del(&page->lru); |
a731286d | 79 | dec_zone_page_state(page, NR_ISOLATED_ANON + |
6c0b1351 | 80 | page_is_file_cache(page)); |
894bc310 | 81 | putback_lru_page(page); |
b20a3503 | 82 | } |
b20a3503 CL |
83 | } |
84 | ||
0697212a CL |
85 | /* |
86 | * Restore a potential migration pte to a working pte entry | |
87 | */ | |
e9995ef9 HD |
88 | static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, |
89 | unsigned long addr, void *old) | |
0697212a CL |
90 | { |
91 | struct mm_struct *mm = vma->vm_mm; | |
92 | swp_entry_t entry; | |
93 | pgd_t *pgd; | |
94 | pud_t *pud; | |
95 | pmd_t *pmd; | |
96 | pte_t *ptep, pte; | |
97 | spinlock_t *ptl; | |
98 | ||
290408d4 NH |
99 | if (unlikely(PageHuge(new))) { |
100 | ptep = huge_pte_offset(mm, addr); | |
101 | if (!ptep) | |
102 | goto out; | |
103 | ptl = &mm->page_table_lock; | |
104 | } else { | |
105 | pgd = pgd_offset(mm, addr); | |
106 | if (!pgd_present(*pgd)) | |
107 | goto out; | |
0697212a | 108 | |
290408d4 NH |
109 | pud = pud_offset(pgd, addr); |
110 | if (!pud_present(*pud)) | |
111 | goto out; | |
0697212a | 112 | |
290408d4 | 113 | pmd = pmd_offset(pud, addr); |
500d65d4 AA |
114 | if (pmd_trans_huge(*pmd)) |
115 | goto out; | |
290408d4 NH |
116 | if (!pmd_present(*pmd)) |
117 | goto out; | |
0697212a | 118 | |
290408d4 | 119 | ptep = pte_offset_map(pmd, addr); |
0697212a | 120 | |
486cf46f HD |
121 | /* |
122 | * Peek to check is_swap_pte() before taking ptlock? No, we | |
123 | * can race mremap's move_ptes(), which skips anon_vma lock. | |
124 | */ | |
290408d4 NH |
125 | |
126 | ptl = pte_lockptr(mm, pmd); | |
127 | } | |
0697212a | 128 | |
0697212a CL |
129 | spin_lock(ptl); |
130 | pte = *ptep; | |
131 | if (!is_swap_pte(pte)) | |
e9995ef9 | 132 | goto unlock; |
0697212a CL |
133 | |
134 | entry = pte_to_swp_entry(pte); | |
135 | ||
e9995ef9 HD |
136 | if (!is_migration_entry(entry) || |
137 | migration_entry_to_page(entry) != old) | |
138 | goto unlock; | |
0697212a | 139 | |
0697212a CL |
140 | get_page(new); |
141 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | |
142 | if (is_write_migration_entry(entry)) | |
143 | pte = pte_mkwrite(pte); | |
3ef8fd7f | 144 | #ifdef CONFIG_HUGETLB_PAGE |
290408d4 NH |
145 | if (PageHuge(new)) |
146 | pte = pte_mkhuge(pte); | |
3ef8fd7f | 147 | #endif |
97ee0524 | 148 | flush_cache_page(vma, addr, pte_pfn(pte)); |
0697212a | 149 | set_pte_at(mm, addr, ptep, pte); |
04e62a29 | 150 | |
290408d4 NH |
151 | if (PageHuge(new)) { |
152 | if (PageAnon(new)) | |
153 | hugepage_add_anon_rmap(new, vma, addr); | |
154 | else | |
155 | page_dup_rmap(new); | |
156 | } else if (PageAnon(new)) | |
04e62a29 CL |
157 | page_add_anon_rmap(new, vma, addr); |
158 | else | |
159 | page_add_file_rmap(new); | |
160 | ||
161 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 162 | update_mmu_cache(vma, addr, ptep); |
e9995ef9 | 163 | unlock: |
0697212a | 164 | pte_unmap_unlock(ptep, ptl); |
e9995ef9 HD |
165 | out: |
166 | return SWAP_AGAIN; | |
0697212a CL |
167 | } |
168 | ||
04e62a29 CL |
169 | /* |
170 | * Get rid of all migration entries and replace them by | |
171 | * references to the indicated page. | |
172 | */ | |
173 | static void remove_migration_ptes(struct page *old, struct page *new) | |
174 | { | |
e9995ef9 | 175 | rmap_walk(new, remove_migration_pte, old); |
04e62a29 CL |
176 | } |
177 | ||
0697212a CL |
178 | /* |
179 | * Something used the pte of a page under migration. We need to | |
180 | * get to the page and wait until migration is finished. | |
181 | * When we return from this function the fault will be retried. | |
0697212a CL |
182 | */ |
183 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | |
184 | unsigned long address) | |
185 | { | |
186 | pte_t *ptep, pte; | |
187 | spinlock_t *ptl; | |
188 | swp_entry_t entry; | |
189 | struct page *page; | |
190 | ||
191 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
192 | pte = *ptep; | |
193 | if (!is_swap_pte(pte)) | |
194 | goto out; | |
195 | ||
196 | entry = pte_to_swp_entry(pte); | |
197 | if (!is_migration_entry(entry)) | |
198 | goto out; | |
199 | ||
200 | page = migration_entry_to_page(entry); | |
201 | ||
e286781d NP |
202 | /* |
203 | * Once radix-tree replacement of page migration started, page_count | |
204 | * *must* be zero. And, we don't want to call wait_on_page_locked() | |
205 | * against a page without get_page(). | |
206 | * So, we use get_page_unless_zero(), here. Even failed, page fault | |
207 | * will occur again. | |
208 | */ | |
209 | if (!get_page_unless_zero(page)) | |
210 | goto out; | |
0697212a CL |
211 | pte_unmap_unlock(ptep, ptl); |
212 | wait_on_page_locked(page); | |
213 | put_page(page); | |
214 | return; | |
215 | out: | |
216 | pte_unmap_unlock(ptep, ptl); | |
217 | } | |
218 | ||
b969c4ab MG |
219 | #ifdef CONFIG_BLOCK |
220 | /* Returns true if all buffers are successfully locked */ | |
a6bc32b8 MG |
221 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, |
222 | enum migrate_mode mode) | |
b969c4ab MG |
223 | { |
224 | struct buffer_head *bh = head; | |
225 | ||
226 | /* Simple case, sync compaction */ | |
a6bc32b8 | 227 | if (mode != MIGRATE_ASYNC) { |
b969c4ab MG |
228 | do { |
229 | get_bh(bh); | |
230 | lock_buffer(bh); | |
231 | bh = bh->b_this_page; | |
232 | ||
233 | } while (bh != head); | |
234 | ||
235 | return true; | |
236 | } | |
237 | ||
238 | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | |
239 | do { | |
240 | get_bh(bh); | |
241 | if (!trylock_buffer(bh)) { | |
242 | /* | |
243 | * We failed to lock the buffer and cannot stall in | |
244 | * async migration. Release the taken locks | |
245 | */ | |
246 | struct buffer_head *failed_bh = bh; | |
247 | put_bh(failed_bh); | |
248 | bh = head; | |
249 | while (bh != failed_bh) { | |
250 | unlock_buffer(bh); | |
251 | put_bh(bh); | |
252 | bh = bh->b_this_page; | |
253 | } | |
254 | return false; | |
255 | } | |
256 | ||
257 | bh = bh->b_this_page; | |
258 | } while (bh != head); | |
259 | return true; | |
260 | } | |
261 | #else | |
262 | static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, | |
a6bc32b8 | 263 | enum migrate_mode mode) |
b969c4ab MG |
264 | { |
265 | return true; | |
266 | } | |
267 | #endif /* CONFIG_BLOCK */ | |
268 | ||
b20a3503 | 269 | /* |
c3fcf8a5 | 270 | * Replace the page in the mapping. |
5b5c7120 CL |
271 | * |
272 | * The number of remaining references must be: | |
273 | * 1 for anonymous pages without a mapping | |
274 | * 2 for pages with a mapping | |
266cf658 | 275 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
b20a3503 | 276 | */ |
2d1db3b1 | 277 | static int migrate_page_move_mapping(struct address_space *mapping, |
b969c4ab | 278 | struct page *newpage, struct page *page, |
a6bc32b8 | 279 | struct buffer_head *head, enum migrate_mode mode) |
b20a3503 | 280 | { |
e286781d | 281 | int expected_count; |
7cf9c2c7 | 282 | void **pslot; |
b20a3503 | 283 | |
6c5240ae | 284 | if (!mapping) { |
0e8c7d0f | 285 | /* Anonymous page without mapping */ |
6c5240ae CL |
286 | if (page_count(page) != 1) |
287 | return -EAGAIN; | |
288 | return 0; | |
289 | } | |
290 | ||
19fd6231 | 291 | spin_lock_irq(&mapping->tree_lock); |
b20a3503 | 292 | |
7cf9c2c7 NP |
293 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
294 | page_index(page)); | |
b20a3503 | 295 | |
edcf4748 | 296 | expected_count = 2 + page_has_private(page); |
e286781d | 297 | if (page_count(page) != expected_count || |
29c1f677 | 298 | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { |
19fd6231 | 299 | spin_unlock_irq(&mapping->tree_lock); |
e23ca00b | 300 | return -EAGAIN; |
b20a3503 CL |
301 | } |
302 | ||
e286781d | 303 | if (!page_freeze_refs(page, expected_count)) { |
19fd6231 | 304 | spin_unlock_irq(&mapping->tree_lock); |
e286781d NP |
305 | return -EAGAIN; |
306 | } | |
307 | ||
b969c4ab MG |
308 | /* |
309 | * In the async migration case of moving a page with buffers, lock the | |
310 | * buffers using trylock before the mapping is moved. If the mapping | |
311 | * was moved, we later failed to lock the buffers and could not move | |
312 | * the mapping back due to an elevated page count, we would have to | |
313 | * block waiting on other references to be dropped. | |
314 | */ | |
a6bc32b8 MG |
315 | if (mode == MIGRATE_ASYNC && head && |
316 | !buffer_migrate_lock_buffers(head, mode)) { | |
b969c4ab MG |
317 | page_unfreeze_refs(page, expected_count); |
318 | spin_unlock_irq(&mapping->tree_lock); | |
319 | return -EAGAIN; | |
320 | } | |
321 | ||
b20a3503 CL |
322 | /* |
323 | * Now we know that no one else is looking at the page. | |
b20a3503 | 324 | */ |
7cf9c2c7 | 325 | get_page(newpage); /* add cache reference */ |
b20a3503 CL |
326 | if (PageSwapCache(page)) { |
327 | SetPageSwapCache(newpage); | |
328 | set_page_private(newpage, page_private(page)); | |
329 | } | |
330 | ||
7cf9c2c7 NP |
331 | radix_tree_replace_slot(pslot, newpage); |
332 | ||
333 | /* | |
937a94c9 JG |
334 | * Drop cache reference from old page by unfreezing |
335 | * to one less reference. | |
7cf9c2c7 NP |
336 | * We know this isn't the last reference. |
337 | */ | |
937a94c9 | 338 | page_unfreeze_refs(page, expected_count - 1); |
7cf9c2c7 | 339 | |
0e8c7d0f CL |
340 | /* |
341 | * If moved to a different zone then also account | |
342 | * the page for that zone. Other VM counters will be | |
343 | * taken care of when we establish references to the | |
344 | * new page and drop references to the old page. | |
345 | * | |
346 | * Note that anonymous pages are accounted for | |
347 | * via NR_FILE_PAGES and NR_ANON_PAGES if they | |
348 | * are mapped to swap space. | |
349 | */ | |
350 | __dec_zone_page_state(page, NR_FILE_PAGES); | |
351 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | |
99a15e21 | 352 | if (!PageSwapCache(page) && PageSwapBacked(page)) { |
4b02108a KM |
353 | __dec_zone_page_state(page, NR_SHMEM); |
354 | __inc_zone_page_state(newpage, NR_SHMEM); | |
355 | } | |
19fd6231 | 356 | spin_unlock_irq(&mapping->tree_lock); |
b20a3503 CL |
357 | |
358 | return 0; | |
359 | } | |
b20a3503 | 360 | |
290408d4 NH |
361 | /* |
362 | * The expected number of remaining references is the same as that | |
363 | * of migrate_page_move_mapping(). | |
364 | */ | |
365 | int migrate_huge_page_move_mapping(struct address_space *mapping, | |
366 | struct page *newpage, struct page *page) | |
367 | { | |
368 | int expected_count; | |
369 | void **pslot; | |
370 | ||
371 | if (!mapping) { | |
372 | if (page_count(page) != 1) | |
373 | return -EAGAIN; | |
374 | return 0; | |
375 | } | |
376 | ||
377 | spin_lock_irq(&mapping->tree_lock); | |
378 | ||
379 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | |
380 | page_index(page)); | |
381 | ||
382 | expected_count = 2 + page_has_private(page); | |
383 | if (page_count(page) != expected_count || | |
29c1f677 | 384 | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { |
290408d4 NH |
385 | spin_unlock_irq(&mapping->tree_lock); |
386 | return -EAGAIN; | |
387 | } | |
388 | ||
389 | if (!page_freeze_refs(page, expected_count)) { | |
390 | spin_unlock_irq(&mapping->tree_lock); | |
391 | return -EAGAIN; | |
392 | } | |
393 | ||
394 | get_page(newpage); | |
395 | ||
396 | radix_tree_replace_slot(pslot, newpage); | |
397 | ||
937a94c9 | 398 | page_unfreeze_refs(page, expected_count - 1); |
290408d4 NH |
399 | |
400 | spin_unlock_irq(&mapping->tree_lock); | |
401 | return 0; | |
402 | } | |
403 | ||
b20a3503 CL |
404 | /* |
405 | * Copy the page to its new location | |
406 | */ | |
290408d4 | 407 | void migrate_page_copy(struct page *newpage, struct page *page) |
b20a3503 | 408 | { |
290408d4 NH |
409 | if (PageHuge(page)) |
410 | copy_huge_page(newpage, page); | |
411 | else | |
412 | copy_highpage(newpage, page); | |
b20a3503 CL |
413 | |
414 | if (PageError(page)) | |
415 | SetPageError(newpage); | |
416 | if (PageReferenced(page)) | |
417 | SetPageReferenced(newpage); | |
418 | if (PageUptodate(page)) | |
419 | SetPageUptodate(newpage); | |
894bc310 LS |
420 | if (TestClearPageActive(page)) { |
421 | VM_BUG_ON(PageUnevictable(page)); | |
b20a3503 | 422 | SetPageActive(newpage); |
418b27ef LS |
423 | } else if (TestClearPageUnevictable(page)) |
424 | SetPageUnevictable(newpage); | |
b20a3503 CL |
425 | if (PageChecked(page)) |
426 | SetPageChecked(newpage); | |
427 | if (PageMappedToDisk(page)) | |
428 | SetPageMappedToDisk(newpage); | |
429 | ||
430 | if (PageDirty(page)) { | |
431 | clear_page_dirty_for_io(page); | |
3a902c5f NP |
432 | /* |
433 | * Want to mark the page and the radix tree as dirty, and | |
434 | * redo the accounting that clear_page_dirty_for_io undid, | |
435 | * but we can't use set_page_dirty because that function | |
436 | * is actually a signal that all of the page has become dirty. | |
25985edc | 437 | * Whereas only part of our page may be dirty. |
3a902c5f NP |
438 | */ |
439 | __set_page_dirty_nobuffers(newpage); | |
b20a3503 CL |
440 | } |
441 | ||
b291f000 | 442 | mlock_migrate_page(newpage, page); |
e9995ef9 | 443 | ksm_migrate_page(newpage, page); |
b291f000 | 444 | |
b20a3503 | 445 | ClearPageSwapCache(page); |
b20a3503 CL |
446 | ClearPagePrivate(page); |
447 | set_page_private(page, 0); | |
b20a3503 CL |
448 | |
449 | /* | |
450 | * If any waiters have accumulated on the new page then | |
451 | * wake them up. | |
452 | */ | |
453 | if (PageWriteback(newpage)) | |
454 | end_page_writeback(newpage); | |
455 | } | |
b20a3503 | 456 | |
1d8b85cc CL |
457 | /************************************************************ |
458 | * Migration functions | |
459 | ***********************************************************/ | |
460 | ||
461 | /* Always fail migration. Used for mappings that are not movable */ | |
2d1db3b1 CL |
462 | int fail_migrate_page(struct address_space *mapping, |
463 | struct page *newpage, struct page *page) | |
1d8b85cc CL |
464 | { |
465 | return -EIO; | |
466 | } | |
467 | EXPORT_SYMBOL(fail_migrate_page); | |
468 | ||
b20a3503 CL |
469 | /* |
470 | * Common logic to directly migrate a single page suitable for | |
266cf658 | 471 | * pages that do not use PagePrivate/PagePrivate2. |
b20a3503 CL |
472 | * |
473 | * Pages are locked upon entry and exit. | |
474 | */ | |
2d1db3b1 | 475 | int migrate_page(struct address_space *mapping, |
a6bc32b8 MG |
476 | struct page *newpage, struct page *page, |
477 | enum migrate_mode mode) | |
b20a3503 CL |
478 | { |
479 | int rc; | |
480 | ||
481 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
482 | ||
a6bc32b8 | 483 | rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); |
b20a3503 CL |
484 | |
485 | if (rc) | |
486 | return rc; | |
487 | ||
488 | migrate_page_copy(newpage, page); | |
b20a3503 CL |
489 | return 0; |
490 | } | |
491 | EXPORT_SYMBOL(migrate_page); | |
492 | ||
9361401e | 493 | #ifdef CONFIG_BLOCK |
1d8b85cc CL |
494 | /* |
495 | * Migration function for pages with buffers. This function can only be used | |
496 | * if the underlying filesystem guarantees that no other references to "page" | |
497 | * exist. | |
498 | */ | |
2d1db3b1 | 499 | int buffer_migrate_page(struct address_space *mapping, |
a6bc32b8 | 500 | struct page *newpage, struct page *page, enum migrate_mode mode) |
1d8b85cc | 501 | { |
1d8b85cc CL |
502 | struct buffer_head *bh, *head; |
503 | int rc; | |
504 | ||
1d8b85cc | 505 | if (!page_has_buffers(page)) |
a6bc32b8 | 506 | return migrate_page(mapping, newpage, page, mode); |
1d8b85cc CL |
507 | |
508 | head = page_buffers(page); | |
509 | ||
a6bc32b8 | 510 | rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); |
1d8b85cc CL |
511 | |
512 | if (rc) | |
513 | return rc; | |
514 | ||
b969c4ab MG |
515 | /* |
516 | * In the async case, migrate_page_move_mapping locked the buffers | |
517 | * with an IRQ-safe spinlock held. In the sync case, the buffers | |
518 | * need to be locked now | |
519 | */ | |
a6bc32b8 MG |
520 | if (mode != MIGRATE_ASYNC) |
521 | BUG_ON(!buffer_migrate_lock_buffers(head, mode)); | |
1d8b85cc CL |
522 | |
523 | ClearPagePrivate(page); | |
524 | set_page_private(newpage, page_private(page)); | |
525 | set_page_private(page, 0); | |
526 | put_page(page); | |
527 | get_page(newpage); | |
528 | ||
529 | bh = head; | |
530 | do { | |
531 | set_bh_page(bh, newpage, bh_offset(bh)); | |
532 | bh = bh->b_this_page; | |
533 | ||
534 | } while (bh != head); | |
535 | ||
536 | SetPagePrivate(newpage); | |
537 | ||
538 | migrate_page_copy(newpage, page); | |
539 | ||
540 | bh = head; | |
541 | do { | |
542 | unlock_buffer(bh); | |
543 | put_bh(bh); | |
544 | bh = bh->b_this_page; | |
545 | ||
546 | } while (bh != head); | |
547 | ||
548 | return 0; | |
549 | } | |
550 | EXPORT_SYMBOL(buffer_migrate_page); | |
9361401e | 551 | #endif |
1d8b85cc | 552 | |
04e62a29 CL |
553 | /* |
554 | * Writeback a page to clean the dirty state | |
555 | */ | |
556 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 557 | { |
04e62a29 CL |
558 | struct writeback_control wbc = { |
559 | .sync_mode = WB_SYNC_NONE, | |
560 | .nr_to_write = 1, | |
561 | .range_start = 0, | |
562 | .range_end = LLONG_MAX, | |
04e62a29 CL |
563 | .for_reclaim = 1 |
564 | }; | |
565 | int rc; | |
566 | ||
567 | if (!mapping->a_ops->writepage) | |
568 | /* No write method for the address space */ | |
569 | return -EINVAL; | |
570 | ||
571 | if (!clear_page_dirty_for_io(page)) | |
572 | /* Someone else already triggered a write */ | |
573 | return -EAGAIN; | |
574 | ||
8351a6e4 | 575 | /* |
04e62a29 CL |
576 | * A dirty page may imply that the underlying filesystem has |
577 | * the page on some queue. So the page must be clean for | |
578 | * migration. Writeout may mean we loose the lock and the | |
579 | * page state is no longer what we checked for earlier. | |
580 | * At this point we know that the migration attempt cannot | |
581 | * be successful. | |
8351a6e4 | 582 | */ |
04e62a29 | 583 | remove_migration_ptes(page, page); |
8351a6e4 | 584 | |
04e62a29 | 585 | rc = mapping->a_ops->writepage(page, &wbc); |
8351a6e4 | 586 | |
04e62a29 CL |
587 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
588 | /* unlocked. Relock */ | |
589 | lock_page(page); | |
590 | ||
bda8550d | 591 | return (rc < 0) ? -EIO : -EAGAIN; |
04e62a29 CL |
592 | } |
593 | ||
594 | /* | |
595 | * Default handling if a filesystem does not provide a migration function. | |
596 | */ | |
597 | static int fallback_migrate_page(struct address_space *mapping, | |
a6bc32b8 | 598 | struct page *newpage, struct page *page, enum migrate_mode mode) |
04e62a29 | 599 | { |
b969c4ab | 600 | if (PageDirty(page)) { |
a6bc32b8 MG |
601 | /* Only writeback pages in full synchronous migration */ |
602 | if (mode != MIGRATE_SYNC) | |
b969c4ab | 603 | return -EBUSY; |
04e62a29 | 604 | return writeout(mapping, page); |
b969c4ab | 605 | } |
8351a6e4 CL |
606 | |
607 | /* | |
608 | * Buffers may be managed in a filesystem specific way. | |
609 | * We must have no buffers or drop them. | |
610 | */ | |
266cf658 | 611 | if (page_has_private(page) && |
8351a6e4 CL |
612 | !try_to_release_page(page, GFP_KERNEL)) |
613 | return -EAGAIN; | |
614 | ||
a6bc32b8 | 615 | return migrate_page(mapping, newpage, page, mode); |
8351a6e4 CL |
616 | } |
617 | ||
e24f0b8f CL |
618 | /* |
619 | * Move a page to a newly allocated page | |
620 | * The page is locked and all ptes have been successfully removed. | |
621 | * | |
622 | * The new page will have replaced the old page if this function | |
623 | * is successful. | |
894bc310 LS |
624 | * |
625 | * Return value: | |
626 | * < 0 - error code | |
627 | * == 0 - success | |
e24f0b8f | 628 | */ |
3fe2011f | 629 | static int move_to_new_page(struct page *newpage, struct page *page, |
a6bc32b8 | 630 | int remap_swapcache, enum migrate_mode mode) |
e24f0b8f CL |
631 | { |
632 | struct address_space *mapping; | |
633 | int rc; | |
634 | ||
635 | /* | |
636 | * Block others from accessing the page when we get around to | |
637 | * establishing additional references. We are the only one | |
638 | * holding a reference to the new page at this point. | |
639 | */ | |
529ae9aa | 640 | if (!trylock_page(newpage)) |
e24f0b8f CL |
641 | BUG(); |
642 | ||
643 | /* Prepare mapping for the new page.*/ | |
644 | newpage->index = page->index; | |
645 | newpage->mapping = page->mapping; | |
b2e18538 RR |
646 | if (PageSwapBacked(page)) |
647 | SetPageSwapBacked(newpage); | |
e24f0b8f CL |
648 | |
649 | mapping = page_mapping(page); | |
650 | if (!mapping) | |
a6bc32b8 | 651 | rc = migrate_page(mapping, newpage, page, mode); |
b969c4ab | 652 | else if (mapping->a_ops->migratepage) |
e24f0b8f | 653 | /* |
b969c4ab MG |
654 | * Most pages have a mapping and most filesystems provide a |
655 | * migratepage callback. Anonymous pages are part of swap | |
656 | * space which also has its own migratepage callback. This | |
657 | * is the most common path for page migration. | |
e24f0b8f | 658 | */ |
b969c4ab | 659 | rc = mapping->a_ops->migratepage(mapping, |
a6bc32b8 | 660 | newpage, page, mode); |
b969c4ab | 661 | else |
a6bc32b8 | 662 | rc = fallback_migrate_page(mapping, newpage, page, mode); |
e24f0b8f | 663 | |
3fe2011f | 664 | if (rc) { |
e24f0b8f | 665 | newpage->mapping = NULL; |
3fe2011f MG |
666 | } else { |
667 | if (remap_swapcache) | |
668 | remove_migration_ptes(page, newpage); | |
35512eca | 669 | page->mapping = NULL; |
3fe2011f | 670 | } |
e24f0b8f CL |
671 | |
672 | unlock_page(newpage); | |
673 | ||
674 | return rc; | |
675 | } | |
676 | ||
0dabec93 | 677 | static int __unmap_and_move(struct page *page, struct page *newpage, |
a6bc32b8 | 678 | int force, bool offlining, enum migrate_mode mode) |
e24f0b8f | 679 | { |
0dabec93 | 680 | int rc = -EAGAIN; |
3fe2011f | 681 | int remap_swapcache = 1; |
ae41be37 | 682 | int charge = 0; |
56039efa | 683 | struct mem_cgroup *mem; |
3f6c8272 | 684 | struct anon_vma *anon_vma = NULL; |
95a402c3 | 685 | |
529ae9aa | 686 | if (!trylock_page(page)) { |
a6bc32b8 | 687 | if (!force || mode == MIGRATE_ASYNC) |
0dabec93 | 688 | goto out; |
3e7d3449 MG |
689 | |
690 | /* | |
691 | * It's not safe for direct compaction to call lock_page. | |
692 | * For example, during page readahead pages are added locked | |
693 | * to the LRU. Later, when the IO completes the pages are | |
694 | * marked uptodate and unlocked. However, the queueing | |
695 | * could be merging multiple pages for one bio (e.g. | |
696 | * mpage_readpages). If an allocation happens for the | |
697 | * second or third page, the process can end up locking | |
698 | * the same page twice and deadlocking. Rather than | |
699 | * trying to be clever about what pages can be locked, | |
700 | * avoid the use of lock_page for direct compaction | |
701 | * altogether. | |
702 | */ | |
703 | if (current->flags & PF_MEMALLOC) | |
0dabec93 | 704 | goto out; |
3e7d3449 | 705 | |
e24f0b8f CL |
706 | lock_page(page); |
707 | } | |
708 | ||
62b61f61 HD |
709 | /* |
710 | * Only memory hotplug's offline_pages() caller has locked out KSM, | |
711 | * and can safely migrate a KSM page. The other cases have skipped | |
712 | * PageKsm along with PageReserved - but it is only now when we have | |
713 | * the page lock that we can be certain it will not go KSM beneath us | |
714 | * (KSM will not upgrade a page from PageAnon to PageKsm when it sees | |
715 | * its pagecount raised, but only here do we take the page lock which | |
716 | * serializes that). | |
717 | */ | |
718 | if (PageKsm(page) && !offlining) { | |
719 | rc = -EBUSY; | |
720 | goto unlock; | |
721 | } | |
722 | ||
01b1ae63 | 723 | /* charge against new page */ |
ef6a3c63 | 724 | charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL); |
01b1ae63 KH |
725 | if (charge == -ENOMEM) { |
726 | rc = -ENOMEM; | |
727 | goto unlock; | |
728 | } | |
729 | BUG_ON(charge); | |
730 | ||
e24f0b8f | 731 | if (PageWriteback(page)) { |
11bc82d6 | 732 | /* |
a6bc32b8 MG |
733 | * Only in the case of a full syncronous migration is it |
734 | * necessary to wait for PageWriteback. In the async case, | |
735 | * the retry loop is too short and in the sync-light case, | |
736 | * the overhead of stalling is too much | |
11bc82d6 | 737 | */ |
a6bc32b8 | 738 | if (mode != MIGRATE_SYNC) { |
11bc82d6 AA |
739 | rc = -EBUSY; |
740 | goto uncharge; | |
741 | } | |
742 | if (!force) | |
01b1ae63 | 743 | goto uncharge; |
e24f0b8f CL |
744 | wait_on_page_writeback(page); |
745 | } | |
e24f0b8f | 746 | /* |
dc386d4d KH |
747 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
748 | * we cannot notice that anon_vma is freed while we migrates a page. | |
1ce82b69 | 749 | * This get_anon_vma() delays freeing anon_vma pointer until the end |
dc386d4d | 750 | * of migration. File cache pages are no problem because of page_lock() |
989f89c5 KH |
751 | * File Caches may use write_page() or lock_page() in migration, then, |
752 | * just care Anon page here. | |
dc386d4d | 753 | */ |
989f89c5 | 754 | if (PageAnon(page)) { |
1ce82b69 HD |
755 | /* |
756 | * Only page_lock_anon_vma() understands the subtleties of | |
757 | * getting a hold on an anon_vma from outside one of its mms. | |
758 | */ | |
746b18d4 | 759 | anon_vma = page_get_anon_vma(page); |
1ce82b69 HD |
760 | if (anon_vma) { |
761 | /* | |
746b18d4 | 762 | * Anon page |
1ce82b69 | 763 | */ |
1ce82b69 | 764 | } else if (PageSwapCache(page)) { |
3fe2011f MG |
765 | /* |
766 | * We cannot be sure that the anon_vma of an unmapped | |
767 | * swapcache page is safe to use because we don't | |
768 | * know in advance if the VMA that this page belonged | |
769 | * to still exists. If the VMA and others sharing the | |
770 | * data have been freed, then the anon_vma could | |
771 | * already be invalid. | |
772 | * | |
773 | * To avoid this possibility, swapcache pages get | |
774 | * migrated but are not remapped when migration | |
775 | * completes | |
776 | */ | |
777 | remap_swapcache = 0; | |
778 | } else { | |
1ce82b69 | 779 | goto uncharge; |
3fe2011f | 780 | } |
989f89c5 | 781 | } |
62e1c553 | 782 | |
dc386d4d | 783 | /* |
62e1c553 SL |
784 | * Corner case handling: |
785 | * 1. When a new swap-cache page is read into, it is added to the LRU | |
786 | * and treated as swapcache but it has no rmap yet. | |
787 | * Calling try_to_unmap() against a page->mapping==NULL page will | |
788 | * trigger a BUG. So handle it here. | |
789 | * 2. An orphaned page (see truncate_complete_page) might have | |
790 | * fs-private metadata. The page can be picked up due to memory | |
791 | * offlining. Everywhere else except page reclaim, the page is | |
792 | * invisible to the vm, so the page can not be migrated. So try to | |
793 | * free the metadata, so the page can be freed. | |
e24f0b8f | 794 | */ |
62e1c553 | 795 | if (!page->mapping) { |
1ce82b69 HD |
796 | VM_BUG_ON(PageAnon(page)); |
797 | if (page_has_private(page)) { | |
62e1c553 | 798 | try_to_free_buffers(page); |
1ce82b69 | 799 | goto uncharge; |
62e1c553 | 800 | } |
abfc3488 | 801 | goto skip_unmap; |
62e1c553 SL |
802 | } |
803 | ||
dc386d4d | 804 | /* Establish migration ptes or remove ptes */ |
14fa31b8 | 805 | try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
dc386d4d | 806 | |
abfc3488 | 807 | skip_unmap: |
e6a1530d | 808 | if (!page_mapped(page)) |
a6bc32b8 | 809 | rc = move_to_new_page(newpage, page, remap_swapcache, mode); |
e24f0b8f | 810 | |
3fe2011f | 811 | if (rc && remap_swapcache) |
e24f0b8f | 812 | remove_migration_ptes(page, page); |
3f6c8272 MG |
813 | |
814 | /* Drop an anon_vma reference if we took one */ | |
76545066 | 815 | if (anon_vma) |
9e60109f | 816 | put_anon_vma(anon_vma); |
3f6c8272 | 817 | |
01b1ae63 KH |
818 | uncharge: |
819 | if (!charge) | |
50de1dd9 | 820 | mem_cgroup_end_migration(mem, page, newpage, rc == 0); |
e24f0b8f CL |
821 | unlock: |
822 | unlock_page(page); | |
0dabec93 MK |
823 | out: |
824 | return rc; | |
825 | } | |
95a402c3 | 826 | |
0dabec93 MK |
827 | /* |
828 | * Obtain the lock on page, remove all ptes and migrate the page | |
829 | * to the newly allocated page in newpage. | |
830 | */ | |
831 | static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |
a6bc32b8 MG |
832 | struct page *page, int force, bool offlining, |
833 | enum migrate_mode mode) | |
0dabec93 MK |
834 | { |
835 | int rc = 0; | |
836 | int *result = NULL; | |
837 | struct page *newpage = get_new_page(page, private, &result); | |
838 | ||
839 | if (!newpage) | |
840 | return -ENOMEM; | |
841 | ||
842 | if (page_count(page) == 1) { | |
843 | /* page was freed from under us. So we are done. */ | |
844 | goto out; | |
845 | } | |
846 | ||
847 | if (unlikely(PageTransHuge(page))) | |
848 | if (unlikely(split_huge_page(page))) | |
849 | goto out; | |
850 | ||
a6bc32b8 | 851 | rc = __unmap_and_move(page, newpage, force, offlining, mode); |
0dabec93 | 852 | out: |
e24f0b8f | 853 | if (rc != -EAGAIN) { |
0dabec93 MK |
854 | /* |
855 | * A page that has been migrated has all references | |
856 | * removed and will be freed. A page that has not been | |
857 | * migrated will have kepts its references and be | |
858 | * restored. | |
859 | */ | |
860 | list_del(&page->lru); | |
a731286d | 861 | dec_zone_page_state(page, NR_ISOLATED_ANON + |
6c0b1351 | 862 | page_is_file_cache(page)); |
894bc310 | 863 | putback_lru_page(page); |
e24f0b8f | 864 | } |
95a402c3 CL |
865 | /* |
866 | * Move the new page to the LRU. If migration was not successful | |
867 | * then this will free the page. | |
868 | */ | |
894bc310 | 869 | putback_lru_page(newpage); |
742755a1 CL |
870 | if (result) { |
871 | if (rc) | |
872 | *result = rc; | |
873 | else | |
874 | *result = page_to_nid(newpage); | |
875 | } | |
e24f0b8f CL |
876 | return rc; |
877 | } | |
878 | ||
290408d4 NH |
879 | /* |
880 | * Counterpart of unmap_and_move_page() for hugepage migration. | |
881 | * | |
882 | * This function doesn't wait the completion of hugepage I/O | |
883 | * because there is no race between I/O and migration for hugepage. | |
884 | * Note that currently hugepage I/O occurs only in direct I/O | |
885 | * where no lock is held and PG_writeback is irrelevant, | |
886 | * and writeback status of all subpages are counted in the reference | |
887 | * count of the head page (i.e. if all subpages of a 2MB hugepage are | |
888 | * under direct I/O, the reference of the head page is 512 and a bit more.) | |
889 | * This means that when we try to migrate hugepage whose subpages are | |
890 | * doing direct I/O, some references remain after try_to_unmap() and | |
891 | * hugepage migration fails without data corruption. | |
892 | * | |
893 | * There is also no race when direct I/O is issued on the page under migration, | |
894 | * because then pte is replaced with migration swap entry and direct I/O code | |
895 | * will wait in the page fault for migration to complete. | |
896 | */ | |
897 | static int unmap_and_move_huge_page(new_page_t get_new_page, | |
898 | unsigned long private, struct page *hpage, | |
a6bc32b8 MG |
899 | int force, bool offlining, |
900 | enum migrate_mode mode) | |
290408d4 NH |
901 | { |
902 | int rc = 0; | |
903 | int *result = NULL; | |
904 | struct page *new_hpage = get_new_page(hpage, private, &result); | |
290408d4 NH |
905 | struct anon_vma *anon_vma = NULL; |
906 | ||
907 | if (!new_hpage) | |
908 | return -ENOMEM; | |
909 | ||
910 | rc = -EAGAIN; | |
911 | ||
912 | if (!trylock_page(hpage)) { | |
a6bc32b8 | 913 | if (!force || mode != MIGRATE_SYNC) |
290408d4 NH |
914 | goto out; |
915 | lock_page(hpage); | |
916 | } | |
917 | ||
746b18d4 PZ |
918 | if (PageAnon(hpage)) |
919 | anon_vma = page_get_anon_vma(hpage); | |
290408d4 NH |
920 | |
921 | try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | |
922 | ||
923 | if (!page_mapped(hpage)) | |
a6bc32b8 | 924 | rc = move_to_new_page(new_hpage, hpage, 1, mode); |
290408d4 NH |
925 | |
926 | if (rc) | |
927 | remove_migration_ptes(hpage, hpage); | |
928 | ||
fd4a4663 | 929 | if (anon_vma) |
9e60109f | 930 | put_anon_vma(anon_vma); |
290408d4 NH |
931 | unlock_page(hpage); |
932 | ||
09761333 | 933 | out: |
290408d4 NH |
934 | if (rc != -EAGAIN) { |
935 | list_del(&hpage->lru); | |
936 | put_page(hpage); | |
937 | } | |
938 | ||
939 | put_page(new_hpage); | |
940 | ||
941 | if (result) { | |
942 | if (rc) | |
943 | *result = rc; | |
944 | else | |
945 | *result = page_to_nid(new_hpage); | |
946 | } | |
947 | return rc; | |
948 | } | |
949 | ||
b20a3503 CL |
950 | /* |
951 | * migrate_pages | |
952 | * | |
95a402c3 CL |
953 | * The function takes one list of pages to migrate and a function |
954 | * that determines from the page to be migrated and the private data | |
955 | * the target of the move and allocates the page. | |
b20a3503 CL |
956 | * |
957 | * The function returns after 10 attempts or if no pages | |
958 | * are movable anymore because to has become empty | |
cf608ac1 MK |
959 | * or no retryable pages exist anymore. |
960 | * Caller should call putback_lru_pages to return pages to the LRU | |
28bd6578 | 961 | * or free list only if ret != 0. |
b20a3503 | 962 | * |
95a402c3 | 963 | * Return: Number of pages not migrated or error code. |
b20a3503 | 964 | */ |
95a402c3 | 965 | int migrate_pages(struct list_head *from, |
7f0f2496 | 966 | new_page_t get_new_page, unsigned long private, bool offlining, |
a6bc32b8 | 967 | enum migrate_mode mode) |
b20a3503 | 968 | { |
e24f0b8f | 969 | int retry = 1; |
b20a3503 CL |
970 | int nr_failed = 0; |
971 | int pass = 0; | |
972 | struct page *page; | |
973 | struct page *page2; | |
974 | int swapwrite = current->flags & PF_SWAPWRITE; | |
975 | int rc; | |
976 | ||
977 | if (!swapwrite) | |
978 | current->flags |= PF_SWAPWRITE; | |
979 | ||
e24f0b8f CL |
980 | for(pass = 0; pass < 10 && retry; pass++) { |
981 | retry = 0; | |
b20a3503 | 982 | |
e24f0b8f | 983 | list_for_each_entry_safe(page, page2, from, lru) { |
e24f0b8f | 984 | cond_resched(); |
2d1db3b1 | 985 | |
95a402c3 | 986 | rc = unmap_and_move(get_new_page, private, |
77f1fe6b | 987 | page, pass > 2, offlining, |
a6bc32b8 | 988 | mode); |
2d1db3b1 | 989 | |
e24f0b8f | 990 | switch(rc) { |
95a402c3 CL |
991 | case -ENOMEM: |
992 | goto out; | |
e24f0b8f | 993 | case -EAGAIN: |
2d1db3b1 | 994 | retry++; |
e24f0b8f CL |
995 | break; |
996 | case 0: | |
e24f0b8f CL |
997 | break; |
998 | default: | |
2d1db3b1 | 999 | /* Permanent failure */ |
2d1db3b1 | 1000 | nr_failed++; |
e24f0b8f | 1001 | break; |
2d1db3b1 | 1002 | } |
b20a3503 CL |
1003 | } |
1004 | } | |
95a402c3 CL |
1005 | rc = 0; |
1006 | out: | |
b20a3503 CL |
1007 | if (!swapwrite) |
1008 | current->flags &= ~PF_SWAPWRITE; | |
1009 | ||
95a402c3 CL |
1010 | if (rc) |
1011 | return rc; | |
b20a3503 | 1012 | |
95a402c3 | 1013 | return nr_failed + retry; |
b20a3503 | 1014 | } |
95a402c3 | 1015 | |
290408d4 | 1016 | int migrate_huge_pages(struct list_head *from, |
7f0f2496 | 1017 | new_page_t get_new_page, unsigned long private, bool offlining, |
a6bc32b8 | 1018 | enum migrate_mode mode) |
290408d4 NH |
1019 | { |
1020 | int retry = 1; | |
1021 | int nr_failed = 0; | |
1022 | int pass = 0; | |
1023 | struct page *page; | |
1024 | struct page *page2; | |
1025 | int rc; | |
1026 | ||
1027 | for (pass = 0; pass < 10 && retry; pass++) { | |
1028 | retry = 0; | |
1029 | ||
1030 | list_for_each_entry_safe(page, page2, from, lru) { | |
1031 | cond_resched(); | |
1032 | ||
1033 | rc = unmap_and_move_huge_page(get_new_page, | |
77f1fe6b | 1034 | private, page, pass > 2, offlining, |
a6bc32b8 | 1035 | mode); |
290408d4 NH |
1036 | |
1037 | switch(rc) { | |
1038 | case -ENOMEM: | |
1039 | goto out; | |
1040 | case -EAGAIN: | |
1041 | retry++; | |
1042 | break; | |
1043 | case 0: | |
1044 | break; | |
1045 | default: | |
1046 | /* Permanent failure */ | |
1047 | nr_failed++; | |
1048 | break; | |
1049 | } | |
1050 | } | |
1051 | } | |
1052 | rc = 0; | |
1053 | out: | |
290408d4 NH |
1054 | if (rc) |
1055 | return rc; | |
1056 | ||
1057 | return nr_failed + retry; | |
1058 | } | |
1059 | ||
742755a1 CL |
1060 | #ifdef CONFIG_NUMA |
1061 | /* | |
1062 | * Move a list of individual pages | |
1063 | */ | |
1064 | struct page_to_node { | |
1065 | unsigned long addr; | |
1066 | struct page *page; | |
1067 | int node; | |
1068 | int status; | |
1069 | }; | |
1070 | ||
1071 | static struct page *new_page_node(struct page *p, unsigned long private, | |
1072 | int **result) | |
1073 | { | |
1074 | struct page_to_node *pm = (struct page_to_node *)private; | |
1075 | ||
1076 | while (pm->node != MAX_NUMNODES && pm->page != p) | |
1077 | pm++; | |
1078 | ||
1079 | if (pm->node == MAX_NUMNODES) | |
1080 | return NULL; | |
1081 | ||
1082 | *result = &pm->status; | |
1083 | ||
6484eb3e | 1084 | return alloc_pages_exact_node(pm->node, |
769848c0 | 1085 | GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); |
742755a1 CL |
1086 | } |
1087 | ||
1088 | /* | |
1089 | * Move a set of pages as indicated in the pm array. The addr | |
1090 | * field must be set to the virtual address of the page to be moved | |
1091 | * and the node number must contain a valid target node. | |
5e9a0f02 | 1092 | * The pm array ends with node = MAX_NUMNODES. |
742755a1 | 1093 | */ |
5e9a0f02 BG |
1094 | static int do_move_page_to_node_array(struct mm_struct *mm, |
1095 | struct page_to_node *pm, | |
1096 | int migrate_all) | |
742755a1 CL |
1097 | { |
1098 | int err; | |
1099 | struct page_to_node *pp; | |
1100 | LIST_HEAD(pagelist); | |
1101 | ||
1102 | down_read(&mm->mmap_sem); | |
1103 | ||
1104 | /* | |
1105 | * Build a list of pages to migrate | |
1106 | */ | |
742755a1 CL |
1107 | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { |
1108 | struct vm_area_struct *vma; | |
1109 | struct page *page; | |
1110 | ||
742755a1 CL |
1111 | err = -EFAULT; |
1112 | vma = find_vma(mm, pp->addr); | |
70384dc6 | 1113 | if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) |
742755a1 CL |
1114 | goto set_status; |
1115 | ||
500d65d4 | 1116 | page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); |
89f5b7da LT |
1117 | |
1118 | err = PTR_ERR(page); | |
1119 | if (IS_ERR(page)) | |
1120 | goto set_status; | |
1121 | ||
742755a1 CL |
1122 | err = -ENOENT; |
1123 | if (!page) | |
1124 | goto set_status; | |
1125 | ||
62b61f61 HD |
1126 | /* Use PageReserved to check for zero page */ |
1127 | if (PageReserved(page) || PageKsm(page)) | |
742755a1 CL |
1128 | goto put_and_set; |
1129 | ||
1130 | pp->page = page; | |
1131 | err = page_to_nid(page); | |
1132 | ||
1133 | if (err == pp->node) | |
1134 | /* | |
1135 | * Node already in the right place | |
1136 | */ | |
1137 | goto put_and_set; | |
1138 | ||
1139 | err = -EACCES; | |
1140 | if (page_mapcount(page) > 1 && | |
1141 | !migrate_all) | |
1142 | goto put_and_set; | |
1143 | ||
62695a84 | 1144 | err = isolate_lru_page(page); |
6d9c285a | 1145 | if (!err) { |
62695a84 | 1146 | list_add_tail(&page->lru, &pagelist); |
6d9c285a KM |
1147 | inc_zone_page_state(page, NR_ISOLATED_ANON + |
1148 | page_is_file_cache(page)); | |
1149 | } | |
742755a1 CL |
1150 | put_and_set: |
1151 | /* | |
1152 | * Either remove the duplicate refcount from | |
1153 | * isolate_lru_page() or drop the page ref if it was | |
1154 | * not isolated. | |
1155 | */ | |
1156 | put_page(page); | |
1157 | set_status: | |
1158 | pp->status = err; | |
1159 | } | |
1160 | ||
e78bbfa8 | 1161 | err = 0; |
cf608ac1 | 1162 | if (!list_empty(&pagelist)) { |
742755a1 | 1163 | err = migrate_pages(&pagelist, new_page_node, |
a6bc32b8 | 1164 | (unsigned long)pm, 0, MIGRATE_SYNC); |
cf608ac1 MK |
1165 | if (err) |
1166 | putback_lru_pages(&pagelist); | |
1167 | } | |
742755a1 CL |
1168 | |
1169 | up_read(&mm->mmap_sem); | |
1170 | return err; | |
1171 | } | |
1172 | ||
5e9a0f02 BG |
1173 | /* |
1174 | * Migrate an array of page address onto an array of nodes and fill | |
1175 | * the corresponding array of status. | |
1176 | */ | |
1177 | static int do_pages_move(struct mm_struct *mm, struct task_struct *task, | |
1178 | unsigned long nr_pages, | |
1179 | const void __user * __user *pages, | |
1180 | const int __user *nodes, | |
1181 | int __user *status, int flags) | |
1182 | { | |
3140a227 | 1183 | struct page_to_node *pm; |
5e9a0f02 | 1184 | nodemask_t task_nodes; |
3140a227 BG |
1185 | unsigned long chunk_nr_pages; |
1186 | unsigned long chunk_start; | |
1187 | int err; | |
5e9a0f02 BG |
1188 | |
1189 | task_nodes = cpuset_mems_allowed(task); | |
1190 | ||
3140a227 BG |
1191 | err = -ENOMEM; |
1192 | pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); | |
1193 | if (!pm) | |
5e9a0f02 | 1194 | goto out; |
35282a2d BG |
1195 | |
1196 | migrate_prep(); | |
1197 | ||
5e9a0f02 | 1198 | /* |
3140a227 BG |
1199 | * Store a chunk of page_to_node array in a page, |
1200 | * but keep the last one as a marker | |
5e9a0f02 | 1201 | */ |
3140a227 | 1202 | chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; |
5e9a0f02 | 1203 | |
3140a227 BG |
1204 | for (chunk_start = 0; |
1205 | chunk_start < nr_pages; | |
1206 | chunk_start += chunk_nr_pages) { | |
1207 | int j; | |
5e9a0f02 | 1208 | |
3140a227 BG |
1209 | if (chunk_start + chunk_nr_pages > nr_pages) |
1210 | chunk_nr_pages = nr_pages - chunk_start; | |
1211 | ||
1212 | /* fill the chunk pm with addrs and nodes from user-space */ | |
1213 | for (j = 0; j < chunk_nr_pages; j++) { | |
1214 | const void __user *p; | |
5e9a0f02 BG |
1215 | int node; |
1216 | ||
3140a227 BG |
1217 | err = -EFAULT; |
1218 | if (get_user(p, pages + j + chunk_start)) | |
1219 | goto out_pm; | |
1220 | pm[j].addr = (unsigned long) p; | |
1221 | ||
1222 | if (get_user(node, nodes + j + chunk_start)) | |
5e9a0f02 BG |
1223 | goto out_pm; |
1224 | ||
1225 | err = -ENODEV; | |
6f5a55f1 LT |
1226 | if (node < 0 || node >= MAX_NUMNODES) |
1227 | goto out_pm; | |
1228 | ||
5e9a0f02 BG |
1229 | if (!node_state(node, N_HIGH_MEMORY)) |
1230 | goto out_pm; | |
1231 | ||
1232 | err = -EACCES; | |
1233 | if (!node_isset(node, task_nodes)) | |
1234 | goto out_pm; | |
1235 | ||
3140a227 BG |
1236 | pm[j].node = node; |
1237 | } | |
1238 | ||
1239 | /* End marker for this chunk */ | |
1240 | pm[chunk_nr_pages].node = MAX_NUMNODES; | |
1241 | ||
1242 | /* Migrate this chunk */ | |
1243 | err = do_move_page_to_node_array(mm, pm, | |
1244 | flags & MPOL_MF_MOVE_ALL); | |
1245 | if (err < 0) | |
1246 | goto out_pm; | |
5e9a0f02 | 1247 | |
5e9a0f02 | 1248 | /* Return status information */ |
3140a227 BG |
1249 | for (j = 0; j < chunk_nr_pages; j++) |
1250 | if (put_user(pm[j].status, status + j + chunk_start)) { | |
5e9a0f02 | 1251 | err = -EFAULT; |
3140a227 BG |
1252 | goto out_pm; |
1253 | } | |
1254 | } | |
1255 | err = 0; | |
5e9a0f02 BG |
1256 | |
1257 | out_pm: | |
3140a227 | 1258 | free_page((unsigned long)pm); |
5e9a0f02 BG |
1259 | out: |
1260 | return err; | |
1261 | } | |
1262 | ||
742755a1 | 1263 | /* |
2f007e74 | 1264 | * Determine the nodes of an array of pages and store it in an array of status. |
742755a1 | 1265 | */ |
80bba129 BG |
1266 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
1267 | const void __user **pages, int *status) | |
742755a1 | 1268 | { |
2f007e74 | 1269 | unsigned long i; |
2f007e74 | 1270 | |
742755a1 CL |
1271 | down_read(&mm->mmap_sem); |
1272 | ||
2f007e74 | 1273 | for (i = 0; i < nr_pages; i++) { |
80bba129 | 1274 | unsigned long addr = (unsigned long)(*pages); |
742755a1 CL |
1275 | struct vm_area_struct *vma; |
1276 | struct page *page; | |
c095adbc | 1277 | int err = -EFAULT; |
2f007e74 BG |
1278 | |
1279 | vma = find_vma(mm, addr); | |
70384dc6 | 1280 | if (!vma || addr < vma->vm_start) |
742755a1 CL |
1281 | goto set_status; |
1282 | ||
2f007e74 | 1283 | page = follow_page(vma, addr, 0); |
89f5b7da LT |
1284 | |
1285 | err = PTR_ERR(page); | |
1286 | if (IS_ERR(page)) | |
1287 | goto set_status; | |
1288 | ||
742755a1 CL |
1289 | err = -ENOENT; |
1290 | /* Use PageReserved to check for zero page */ | |
62b61f61 | 1291 | if (!page || PageReserved(page) || PageKsm(page)) |
742755a1 CL |
1292 | goto set_status; |
1293 | ||
1294 | err = page_to_nid(page); | |
1295 | set_status: | |
80bba129 BG |
1296 | *status = err; |
1297 | ||
1298 | pages++; | |
1299 | status++; | |
1300 | } | |
1301 | ||
1302 | up_read(&mm->mmap_sem); | |
1303 | } | |
1304 | ||
1305 | /* | |
1306 | * Determine the nodes of a user array of pages and store it in | |
1307 | * a user array of status. | |
1308 | */ | |
1309 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | |
1310 | const void __user * __user *pages, | |
1311 | int __user *status) | |
1312 | { | |
1313 | #define DO_PAGES_STAT_CHUNK_NR 16 | |
1314 | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | |
1315 | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | |
80bba129 | 1316 | |
87b8d1ad PA |
1317 | while (nr_pages) { |
1318 | unsigned long chunk_nr; | |
80bba129 | 1319 | |
87b8d1ad PA |
1320 | chunk_nr = nr_pages; |
1321 | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | |
1322 | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | |
1323 | ||
1324 | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | |
1325 | break; | |
80bba129 BG |
1326 | |
1327 | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | |
1328 | ||
87b8d1ad PA |
1329 | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
1330 | break; | |
742755a1 | 1331 | |
87b8d1ad PA |
1332 | pages += chunk_nr; |
1333 | status += chunk_nr; | |
1334 | nr_pages -= chunk_nr; | |
1335 | } | |
1336 | return nr_pages ? -EFAULT : 0; | |
742755a1 CL |
1337 | } |
1338 | ||
1339 | /* | |
1340 | * Move a list of pages in the address space of the currently executing | |
1341 | * process. | |
1342 | */ | |
938bb9f5 HC |
1343 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
1344 | const void __user * __user *, pages, | |
1345 | const int __user *, nodes, | |
1346 | int __user *, status, int, flags) | |
742755a1 | 1347 | { |
c69e8d9c | 1348 | const struct cred *cred = current_cred(), *tcred; |
742755a1 | 1349 | struct task_struct *task; |
742755a1 | 1350 | struct mm_struct *mm; |
5e9a0f02 | 1351 | int err; |
742755a1 CL |
1352 | |
1353 | /* Check flags */ | |
1354 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
1355 | return -EINVAL; | |
1356 | ||
1357 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | |
1358 | return -EPERM; | |
1359 | ||
1360 | /* Find the mm_struct */ | |
a879bf58 | 1361 | rcu_read_lock(); |
228ebcbe | 1362 | task = pid ? find_task_by_vpid(pid) : current; |
742755a1 | 1363 | if (!task) { |
a879bf58 | 1364 | rcu_read_unlock(); |
742755a1 CL |
1365 | return -ESRCH; |
1366 | } | |
1367 | mm = get_task_mm(task); | |
a879bf58 | 1368 | rcu_read_unlock(); |
742755a1 CL |
1369 | |
1370 | if (!mm) | |
1371 | return -EINVAL; | |
1372 | ||
1373 | /* | |
1374 | * Check if this process has the right to modify the specified | |
1375 | * process. The right exists if the process has administrative | |
1376 | * capabilities, superuser privileges or the same | |
1377 | * userid as the target process. | |
1378 | */ | |
c69e8d9c DH |
1379 | rcu_read_lock(); |
1380 | tcred = __task_cred(task); | |
b6dff3ec DH |
1381 | if (cred->euid != tcred->suid && cred->euid != tcred->uid && |
1382 | cred->uid != tcred->suid && cred->uid != tcred->uid && | |
742755a1 | 1383 | !capable(CAP_SYS_NICE)) { |
c69e8d9c | 1384 | rcu_read_unlock(); |
742755a1 | 1385 | err = -EPERM; |
5e9a0f02 | 1386 | goto out; |
742755a1 | 1387 | } |
c69e8d9c | 1388 | rcu_read_unlock(); |
742755a1 | 1389 | |
86c3a764 DQ |
1390 | err = security_task_movememory(task); |
1391 | if (err) | |
5e9a0f02 | 1392 | goto out; |
86c3a764 | 1393 | |
5e9a0f02 BG |
1394 | if (nodes) { |
1395 | err = do_pages_move(mm, task, nr_pages, pages, nodes, status, | |
1396 | flags); | |
1397 | } else { | |
2f007e74 | 1398 | err = do_pages_stat(mm, nr_pages, pages, status); |
742755a1 CL |
1399 | } |
1400 | ||
742755a1 | 1401 | out: |
742755a1 CL |
1402 | mmput(mm); |
1403 | return err; | |
1404 | } | |
742755a1 | 1405 | |
7b2259b3 CL |
1406 | /* |
1407 | * Call migration functions in the vma_ops that may prepare | |
1408 | * memory in a vm for migration. migration functions may perform | |
1409 | * the migration for vmas that do not have an underlying page struct. | |
1410 | */ | |
1411 | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |
1412 | const nodemask_t *from, unsigned long flags) | |
1413 | { | |
1414 | struct vm_area_struct *vma; | |
1415 | int err = 0; | |
1416 | ||
1001c9fb | 1417 | for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { |
7b2259b3 CL |
1418 | if (vma->vm_ops && vma->vm_ops->migrate) { |
1419 | err = vma->vm_ops->migrate(vma, to, from, flags); | |
1420 | if (err) | |
1421 | break; | |
1422 | } | |
1423 | } | |
1424 | return err; | |
1425 | } | |
83d1674a | 1426 | #endif |