]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
1da177e4 | 20 | #include "xfs_types.h" |
a844f451 | 21 | #include "xfs_bit.h" |
1da177e4 | 22 | #include "xfs_log.h" |
a844f451 NS |
23 | #include "xfs_inum.h" |
24 | #include "xfs_imap.h" | |
1da177e4 LT |
25 | #include "xfs_trans.h" |
26 | #include "xfs_trans_priv.h" | |
27 | #include "xfs_sb.h" | |
28 | #include "xfs_ag.h" | |
29 | #include "xfs_dir.h" | |
30 | #include "xfs_dir2.h" | |
31 | #include "xfs_dmapi.h" | |
32 | #include "xfs_mount.h" | |
1da177e4 | 33 | #include "xfs_bmap_btree.h" |
a844f451 | 34 | #include "xfs_alloc_btree.h" |
1da177e4 | 35 | #include "xfs_ialloc_btree.h" |
1da177e4 LT |
36 | #include "xfs_dir_sf.h" |
37 | #include "xfs_dir2_sf.h" | |
a844f451 | 38 | #include "xfs_attr_sf.h" |
1da177e4 | 39 | #include "xfs_dinode.h" |
1da177e4 | 40 | #include "xfs_inode.h" |
1da177e4 | 41 | #include "xfs_buf_item.h" |
a844f451 NS |
42 | #include "xfs_inode_item.h" |
43 | #include "xfs_btree.h" | |
44 | #include "xfs_alloc.h" | |
45 | #include "xfs_ialloc.h" | |
46 | #include "xfs_bmap.h" | |
1da177e4 LT |
47 | #include "xfs_rw.h" |
48 | #include "xfs_error.h" | |
1da177e4 LT |
49 | #include "xfs_utils.h" |
50 | #include "xfs_dir2_trace.h" | |
51 | #include "xfs_quota.h" | |
52 | #include "xfs_mac.h" | |
53 | #include "xfs_acl.h" | |
54 | ||
55 | ||
56 | kmem_zone_t *xfs_ifork_zone; | |
57 | kmem_zone_t *xfs_inode_zone; | |
58 | kmem_zone_t *xfs_chashlist_zone; | |
59 | ||
60 | /* | |
61 | * Used in xfs_itruncate(). This is the maximum number of extents | |
62 | * freed from a file in a single transaction. | |
63 | */ | |
64 | #define XFS_ITRUNC_MAX_EXTENTS 2 | |
65 | ||
66 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); | |
67 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | |
68 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | |
69 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | |
70 | ||
71 | ||
72 | #ifdef DEBUG | |
73 | /* | |
74 | * Make sure that the extents in the given memory buffer | |
75 | * are valid. | |
76 | */ | |
77 | STATIC void | |
78 | xfs_validate_extents( | |
79 | xfs_bmbt_rec_t *ep, | |
80 | int nrecs, | |
81 | int disk, | |
82 | xfs_exntfmt_t fmt) | |
83 | { | |
84 | xfs_bmbt_irec_t irec; | |
85 | xfs_bmbt_rec_t rec; | |
86 | int i; | |
87 | ||
88 | for (i = 0; i < nrecs; i++) { | |
89 | rec.l0 = get_unaligned((__uint64_t*)&ep->l0); | |
90 | rec.l1 = get_unaligned((__uint64_t*)&ep->l1); | |
91 | if (disk) | |
92 | xfs_bmbt_disk_get_all(&rec, &irec); | |
93 | else | |
94 | xfs_bmbt_get_all(&rec, &irec); | |
95 | if (fmt == XFS_EXTFMT_NOSTATE) | |
96 | ASSERT(irec.br_state == XFS_EXT_NORM); | |
97 | ep++; | |
98 | } | |
99 | } | |
100 | #else /* DEBUG */ | |
101 | #define xfs_validate_extents(ep, nrecs, disk, fmt) | |
102 | #endif /* DEBUG */ | |
103 | ||
104 | /* | |
105 | * Check that none of the inode's in the buffer have a next | |
106 | * unlinked field of 0. | |
107 | */ | |
108 | #if defined(DEBUG) | |
109 | void | |
110 | xfs_inobp_check( | |
111 | xfs_mount_t *mp, | |
112 | xfs_buf_t *bp) | |
113 | { | |
114 | int i; | |
115 | int j; | |
116 | xfs_dinode_t *dip; | |
117 | ||
118 | j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | |
119 | ||
120 | for (i = 0; i < j; i++) { | |
121 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | |
122 | i * mp->m_sb.sb_inodesize); | |
123 | if (!dip->di_next_unlinked) { | |
124 | xfs_fs_cmn_err(CE_ALERT, mp, | |
125 | "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", | |
126 | bp); | |
127 | ASSERT(dip->di_next_unlinked); | |
128 | } | |
129 | } | |
130 | } | |
131 | #endif | |
132 | ||
1da177e4 LT |
133 | /* |
134 | * This routine is called to map an inode number within a file | |
135 | * system to the buffer containing the on-disk version of the | |
136 | * inode. It returns a pointer to the buffer containing the | |
137 | * on-disk inode in the bpp parameter, and in the dip parameter | |
138 | * it returns a pointer to the on-disk inode within that buffer. | |
139 | * | |
140 | * If a non-zero error is returned, then the contents of bpp and | |
141 | * dipp are undefined. | |
142 | * | |
143 | * Use xfs_imap() to determine the size and location of the | |
144 | * buffer to read from disk. | |
145 | */ | |
ba0f32d4 | 146 | STATIC int |
1da177e4 LT |
147 | xfs_inotobp( |
148 | xfs_mount_t *mp, | |
149 | xfs_trans_t *tp, | |
150 | xfs_ino_t ino, | |
151 | xfs_dinode_t **dipp, | |
152 | xfs_buf_t **bpp, | |
153 | int *offset) | |
154 | { | |
155 | int di_ok; | |
156 | xfs_imap_t imap; | |
157 | xfs_buf_t *bp; | |
158 | int error; | |
159 | xfs_dinode_t *dip; | |
160 | ||
161 | /* | |
162 | * Call the space managment code to find the location of the | |
163 | * inode on disk. | |
164 | */ | |
165 | imap.im_blkno = 0; | |
166 | error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); | |
167 | if (error != 0) { | |
168 | cmn_err(CE_WARN, | |
169 | "xfs_inotobp: xfs_imap() returned an " | |
170 | "error %d on %s. Returning error.", error, mp->m_fsname); | |
171 | return error; | |
172 | } | |
173 | ||
174 | /* | |
175 | * If the inode number maps to a block outside the bounds of the | |
176 | * file system then return NULL rather than calling read_buf | |
177 | * and panicing when we get an error from the driver. | |
178 | */ | |
179 | if ((imap.im_blkno + imap.im_len) > | |
180 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | |
181 | cmn_err(CE_WARN, | |
da1650a5 | 182 | "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " |
1da177e4 | 183 | "of the file system %s. Returning EINVAL.", |
da1650a5 CH |
184 | (unsigned long long)imap.im_blkno, |
185 | imap.im_len, mp->m_fsname); | |
1da177e4 LT |
186 | return XFS_ERROR(EINVAL); |
187 | } | |
188 | ||
189 | /* | |
190 | * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will | |
191 | * default to just a read_buf() call. | |
192 | */ | |
193 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | |
194 | (int)imap.im_len, XFS_BUF_LOCK, &bp); | |
195 | ||
196 | if (error) { | |
197 | cmn_err(CE_WARN, | |
198 | "xfs_inotobp: xfs_trans_read_buf() returned an " | |
199 | "error %d on %s. Returning error.", error, mp->m_fsname); | |
200 | return error; | |
201 | } | |
202 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); | |
203 | di_ok = | |
204 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | |
205 | XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | |
206 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | |
207 | XFS_RANDOM_ITOBP_INOTOBP))) { | |
208 | XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); | |
209 | xfs_trans_brelse(tp, bp); | |
210 | cmn_err(CE_WARN, | |
211 | "xfs_inotobp: XFS_TEST_ERROR() returned an " | |
212 | "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); | |
213 | return XFS_ERROR(EFSCORRUPTED); | |
214 | } | |
215 | ||
216 | xfs_inobp_check(mp, bp); | |
217 | ||
218 | /* | |
219 | * Set *dipp to point to the on-disk inode in the buffer. | |
220 | */ | |
221 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | |
222 | *bpp = bp; | |
223 | *offset = imap.im_boffset; | |
224 | return 0; | |
225 | } | |
226 | ||
227 | ||
228 | /* | |
229 | * This routine is called to map an inode to the buffer containing | |
230 | * the on-disk version of the inode. It returns a pointer to the | |
231 | * buffer containing the on-disk inode in the bpp parameter, and in | |
232 | * the dip parameter it returns a pointer to the on-disk inode within | |
233 | * that buffer. | |
234 | * | |
235 | * If a non-zero error is returned, then the contents of bpp and | |
236 | * dipp are undefined. | |
237 | * | |
238 | * If the inode is new and has not yet been initialized, use xfs_imap() | |
239 | * to determine the size and location of the buffer to read from disk. | |
240 | * If the inode has already been mapped to its buffer and read in once, | |
241 | * then use the mapping information stored in the inode rather than | |
242 | * calling xfs_imap(). This allows us to avoid the overhead of looking | |
243 | * at the inode btree for small block file systems (see xfs_dilocate()). | |
244 | * We can tell whether the inode has been mapped in before by comparing | |
245 | * its disk block address to 0. Only uninitialized inodes will have | |
246 | * 0 for the disk block address. | |
247 | */ | |
248 | int | |
249 | xfs_itobp( | |
250 | xfs_mount_t *mp, | |
251 | xfs_trans_t *tp, | |
252 | xfs_inode_t *ip, | |
253 | xfs_dinode_t **dipp, | |
254 | xfs_buf_t **bpp, | |
255 | xfs_daddr_t bno) | |
256 | { | |
257 | xfs_buf_t *bp; | |
258 | int error; | |
259 | xfs_imap_t imap; | |
260 | #ifdef __KERNEL__ | |
261 | int i; | |
262 | int ni; | |
263 | #endif | |
264 | ||
265 | if (ip->i_blkno == (xfs_daddr_t)0) { | |
266 | /* | |
267 | * Call the space management code to find the location of the | |
268 | * inode on disk. | |
269 | */ | |
270 | imap.im_blkno = bno; | |
271 | error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); | |
272 | if (error != 0) { | |
273 | return error; | |
274 | } | |
275 | ||
276 | /* | |
277 | * If the inode number maps to a block outside the bounds | |
278 | * of the file system then return NULL rather than calling | |
279 | * read_buf and panicing when we get an error from the | |
280 | * driver. | |
281 | */ | |
282 | if ((imap.im_blkno + imap.im_len) > | |
283 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | |
284 | #ifdef DEBUG | |
285 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | |
286 | "(imap.im_blkno (0x%llx) " | |
287 | "+ imap.im_len (0x%llx)) > " | |
288 | " XFS_FSB_TO_BB(mp, " | |
289 | "mp->m_sb.sb_dblocks) (0x%llx)", | |
290 | (unsigned long long) imap.im_blkno, | |
291 | (unsigned long long) imap.im_len, | |
292 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | |
293 | #endif /* DEBUG */ | |
294 | return XFS_ERROR(EINVAL); | |
295 | } | |
296 | ||
297 | /* | |
298 | * Fill in the fields in the inode that will be used to | |
299 | * map the inode to its buffer from now on. | |
300 | */ | |
301 | ip->i_blkno = imap.im_blkno; | |
302 | ip->i_len = imap.im_len; | |
303 | ip->i_boffset = imap.im_boffset; | |
304 | } else { | |
305 | /* | |
306 | * We've already mapped the inode once, so just use the | |
307 | * mapping that we saved the first time. | |
308 | */ | |
309 | imap.im_blkno = ip->i_blkno; | |
310 | imap.im_len = ip->i_len; | |
311 | imap.im_boffset = ip->i_boffset; | |
312 | } | |
313 | ASSERT(bno == 0 || bno == imap.im_blkno); | |
314 | ||
315 | /* | |
316 | * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will | |
317 | * default to just a read_buf() call. | |
318 | */ | |
319 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | |
320 | (int)imap.im_len, XFS_BUF_LOCK, &bp); | |
321 | ||
322 | if (error) { | |
323 | #ifdef DEBUG | |
324 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | |
325 | "xfs_trans_read_buf() returned error %d, " | |
326 | "imap.im_blkno 0x%llx, imap.im_len 0x%llx", | |
327 | error, (unsigned long long) imap.im_blkno, | |
328 | (unsigned long long) imap.im_len); | |
329 | #endif /* DEBUG */ | |
330 | return error; | |
331 | } | |
332 | #ifdef __KERNEL__ | |
333 | /* | |
334 | * Validate the magic number and version of every inode in the buffer | |
335 | * (if DEBUG kernel) or the first inode in the buffer, otherwise. | |
336 | */ | |
337 | #ifdef DEBUG | |
338 | ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; | |
339 | #else | |
340 | ni = 1; | |
341 | #endif | |
342 | for (i = 0; i < ni; i++) { | |
343 | int di_ok; | |
344 | xfs_dinode_t *dip; | |
345 | ||
346 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | |
347 | (i << mp->m_sb.sb_inodelog)); | |
348 | di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | |
349 | XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | |
350 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | |
351 | XFS_RANDOM_ITOBP_INOTOBP))) { | |
352 | #ifdef DEBUG | |
353 | prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", | |
354 | mp->m_ddev_targp, | |
355 | (unsigned long long)imap.im_blkno, i, | |
356 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); | |
357 | #endif | |
358 | XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, | |
359 | mp, dip); | |
360 | xfs_trans_brelse(tp, bp); | |
361 | return XFS_ERROR(EFSCORRUPTED); | |
362 | } | |
363 | } | |
364 | #endif /* __KERNEL__ */ | |
365 | ||
366 | xfs_inobp_check(mp, bp); | |
367 | ||
368 | /* | |
369 | * Mark the buffer as an inode buffer now that it looks good | |
370 | */ | |
371 | XFS_BUF_SET_VTYPE(bp, B_FS_INO); | |
372 | ||
373 | /* | |
374 | * Set *dipp to point to the on-disk inode in the buffer. | |
375 | */ | |
376 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | |
377 | *bpp = bp; | |
378 | return 0; | |
379 | } | |
380 | ||
381 | /* | |
382 | * Move inode type and inode format specific information from the | |
383 | * on-disk inode to the in-core inode. For fifos, devs, and sockets | |
384 | * this means set if_rdev to the proper value. For files, directories, | |
385 | * and symlinks this means to bring in the in-line data or extent | |
386 | * pointers. For a file in B-tree format, only the root is immediately | |
387 | * brought in-core. The rest will be in-lined in if_extents when it | |
388 | * is first referenced (see xfs_iread_extents()). | |
389 | */ | |
390 | STATIC int | |
391 | xfs_iformat( | |
392 | xfs_inode_t *ip, | |
393 | xfs_dinode_t *dip) | |
394 | { | |
395 | xfs_attr_shortform_t *atp; | |
396 | int size; | |
397 | int error; | |
398 | xfs_fsize_t di_size; | |
399 | ip->i_df.if_ext_max = | |
400 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
401 | error = 0; | |
402 | ||
403 | if (unlikely( | |
404 | INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + | |
405 | INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > | |
406 | INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { | |
407 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
408 | "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." | |
409 | " Unmount and run xfs_repair.", | |
410 | (unsigned long long)ip->i_ino, | |
411 | (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) | |
412 | + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), | |
413 | (unsigned long long) | |
414 | INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); | |
415 | XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, | |
416 | ip->i_mount, dip); | |
417 | return XFS_ERROR(EFSCORRUPTED); | |
418 | } | |
419 | ||
420 | if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { | |
421 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
422 | "corrupt dinode %Lu, forkoff = 0x%x." | |
423 | " Unmount and run xfs_repair.", | |
424 | (unsigned long long)ip->i_ino, | |
425 | (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); | |
426 | XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, | |
427 | ip->i_mount, dip); | |
428 | return XFS_ERROR(EFSCORRUPTED); | |
429 | } | |
430 | ||
431 | switch (ip->i_d.di_mode & S_IFMT) { | |
432 | case S_IFIFO: | |
433 | case S_IFCHR: | |
434 | case S_IFBLK: | |
435 | case S_IFSOCK: | |
436 | if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { | |
437 | XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, | |
438 | ip->i_mount, dip); | |
439 | return XFS_ERROR(EFSCORRUPTED); | |
440 | } | |
441 | ip->i_d.di_size = 0; | |
442 | ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); | |
443 | break; | |
444 | ||
445 | case S_IFREG: | |
446 | case S_IFLNK: | |
447 | case S_IFDIR: | |
448 | switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { | |
449 | case XFS_DINODE_FMT_LOCAL: | |
450 | /* | |
451 | * no local regular files yet | |
452 | */ | |
453 | if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { | |
454 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
455 | "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.", | |
456 | (unsigned long long) ip->i_ino); | |
457 | XFS_CORRUPTION_ERROR("xfs_iformat(4)", | |
458 | XFS_ERRLEVEL_LOW, | |
459 | ip->i_mount, dip); | |
460 | return XFS_ERROR(EFSCORRUPTED); | |
461 | } | |
462 | ||
463 | di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); | |
464 | if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { | |
465 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
466 | "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.", | |
467 | (unsigned long long) ip->i_ino, | |
468 | (long long) di_size); | |
469 | XFS_CORRUPTION_ERROR("xfs_iformat(5)", | |
470 | XFS_ERRLEVEL_LOW, | |
471 | ip->i_mount, dip); | |
472 | return XFS_ERROR(EFSCORRUPTED); | |
473 | } | |
474 | ||
475 | size = (int)di_size; | |
476 | error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | |
477 | break; | |
478 | case XFS_DINODE_FMT_EXTENTS: | |
479 | error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | |
480 | break; | |
481 | case XFS_DINODE_FMT_BTREE: | |
482 | error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | |
483 | break; | |
484 | default: | |
485 | XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | |
486 | ip->i_mount); | |
487 | return XFS_ERROR(EFSCORRUPTED); | |
488 | } | |
489 | break; | |
490 | ||
491 | default: | |
492 | XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | |
493 | return XFS_ERROR(EFSCORRUPTED); | |
494 | } | |
495 | if (error) { | |
496 | return error; | |
497 | } | |
498 | if (!XFS_DFORK_Q(dip)) | |
499 | return 0; | |
500 | ASSERT(ip->i_afp == NULL); | |
501 | ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); | |
502 | ip->i_afp->if_ext_max = | |
503 | XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
504 | switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { | |
505 | case XFS_DINODE_FMT_LOCAL: | |
506 | atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | |
507 | size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); | |
508 | error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); | |
509 | break; | |
510 | case XFS_DINODE_FMT_EXTENTS: | |
511 | error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | |
512 | break; | |
513 | case XFS_DINODE_FMT_BTREE: | |
514 | error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | |
515 | break; | |
516 | default: | |
517 | error = XFS_ERROR(EFSCORRUPTED); | |
518 | break; | |
519 | } | |
520 | if (error) { | |
521 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | |
522 | ip->i_afp = NULL; | |
523 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | |
524 | } | |
525 | return error; | |
526 | } | |
527 | ||
528 | /* | |
529 | * The file is in-lined in the on-disk inode. | |
530 | * If it fits into if_inline_data, then copy | |
531 | * it there, otherwise allocate a buffer for it | |
532 | * and copy the data there. Either way, set | |
533 | * if_data to point at the data. | |
534 | * If we allocate a buffer for the data, make | |
535 | * sure that its size is a multiple of 4 and | |
536 | * record the real size in i_real_bytes. | |
537 | */ | |
538 | STATIC int | |
539 | xfs_iformat_local( | |
540 | xfs_inode_t *ip, | |
541 | xfs_dinode_t *dip, | |
542 | int whichfork, | |
543 | int size) | |
544 | { | |
545 | xfs_ifork_t *ifp; | |
546 | int real_size; | |
547 | ||
548 | /* | |
549 | * If the size is unreasonable, then something | |
550 | * is wrong and we just bail out rather than crash in | |
551 | * kmem_alloc() or memcpy() below. | |
552 | */ | |
553 | if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | |
554 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
555 | "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.", | |
556 | (unsigned long long) ip->i_ino, size, | |
557 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | |
558 | XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | |
559 | ip->i_mount, dip); | |
560 | return XFS_ERROR(EFSCORRUPTED); | |
561 | } | |
562 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
563 | real_size = 0; | |
564 | if (size == 0) | |
565 | ifp->if_u1.if_data = NULL; | |
566 | else if (size <= sizeof(ifp->if_u2.if_inline_data)) | |
567 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
568 | else { | |
569 | real_size = roundup(size, 4); | |
570 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | |
571 | } | |
572 | ifp->if_bytes = size; | |
573 | ifp->if_real_bytes = real_size; | |
574 | if (size) | |
575 | memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | |
576 | ifp->if_flags &= ~XFS_IFEXTENTS; | |
577 | ifp->if_flags |= XFS_IFINLINE; | |
578 | return 0; | |
579 | } | |
580 | ||
581 | /* | |
582 | * The file consists of a set of extents all | |
583 | * of which fit into the on-disk inode. | |
584 | * If there are few enough extents to fit into | |
585 | * the if_inline_ext, then copy them there. | |
586 | * Otherwise allocate a buffer for them and copy | |
587 | * them into it. Either way, set if_extents | |
588 | * to point at the extents. | |
589 | */ | |
590 | STATIC int | |
591 | xfs_iformat_extents( | |
592 | xfs_inode_t *ip, | |
593 | xfs_dinode_t *dip, | |
594 | int whichfork) | |
595 | { | |
596 | xfs_bmbt_rec_t *ep, *dp; | |
597 | xfs_ifork_t *ifp; | |
598 | int nex; | |
599 | int real_size; | |
600 | int size; | |
601 | int i; | |
602 | ||
603 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
604 | nex = XFS_DFORK_NEXTENTS(dip, whichfork); | |
605 | size = nex * (uint)sizeof(xfs_bmbt_rec_t); | |
606 | ||
607 | /* | |
608 | * If the number of extents is unreasonable, then something | |
609 | * is wrong and we just bail out rather than crash in | |
610 | * kmem_alloc() or memcpy() below. | |
611 | */ | |
612 | if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | |
613 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
614 | "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.", | |
615 | (unsigned long long) ip->i_ino, nex); | |
616 | XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | |
617 | ip->i_mount, dip); | |
618 | return XFS_ERROR(EFSCORRUPTED); | |
619 | } | |
620 | ||
621 | real_size = 0; | |
622 | if (nex == 0) | |
623 | ifp->if_u1.if_extents = NULL; | |
624 | else if (nex <= XFS_INLINE_EXTS) | |
625 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | |
626 | else { | |
627 | ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | |
628 | ASSERT(ifp->if_u1.if_extents != NULL); | |
629 | real_size = size; | |
630 | } | |
631 | ifp->if_bytes = size; | |
632 | ifp->if_real_bytes = real_size; | |
633 | if (size) { | |
634 | dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | |
635 | xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); | |
636 | ep = ifp->if_u1.if_extents; | |
637 | for (i = 0; i < nex; i++, ep++, dp++) { | |
638 | ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), | |
639 | ARCH_CONVERT); | |
640 | ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), | |
641 | ARCH_CONVERT); | |
642 | } | |
643 | xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, | |
644 | whichfork); | |
645 | if (whichfork != XFS_DATA_FORK || | |
646 | XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | |
647 | if (unlikely(xfs_check_nostate_extents( | |
648 | ifp->if_u1.if_extents, nex))) { | |
649 | XFS_ERROR_REPORT("xfs_iformat_extents(2)", | |
650 | XFS_ERRLEVEL_LOW, | |
651 | ip->i_mount); | |
652 | return XFS_ERROR(EFSCORRUPTED); | |
653 | } | |
654 | } | |
655 | ifp->if_flags |= XFS_IFEXTENTS; | |
656 | return 0; | |
657 | } | |
658 | ||
659 | /* | |
660 | * The file has too many extents to fit into | |
661 | * the inode, so they are in B-tree format. | |
662 | * Allocate a buffer for the root of the B-tree | |
663 | * and copy the root into it. The i_extents | |
664 | * field will remain NULL until all of the | |
665 | * extents are read in (when they are needed). | |
666 | */ | |
667 | STATIC int | |
668 | xfs_iformat_btree( | |
669 | xfs_inode_t *ip, | |
670 | xfs_dinode_t *dip, | |
671 | int whichfork) | |
672 | { | |
673 | xfs_bmdr_block_t *dfp; | |
674 | xfs_ifork_t *ifp; | |
675 | /* REFERENCED */ | |
676 | int nrecs; | |
677 | int size; | |
678 | ||
679 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
680 | dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | |
681 | size = XFS_BMAP_BROOT_SPACE(dfp); | |
682 | nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); | |
683 | ||
684 | /* | |
685 | * blow out if -- fork has less extents than can fit in | |
686 | * fork (fork shouldn't be a btree format), root btree | |
687 | * block has more records than can fit into the fork, | |
688 | * or the number of extents is greater than the number of | |
689 | * blocks. | |
690 | */ | |
691 | if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max | |
692 | || XFS_BMDR_SPACE_CALC(nrecs) > | |
693 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) | |
694 | || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | |
695 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | |
696 | "corrupt inode %Lu (btree). Unmount and run xfs_repair.", | |
697 | (unsigned long long) ip->i_ino); | |
698 | XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, | |
699 | ip->i_mount); | |
700 | return XFS_ERROR(EFSCORRUPTED); | |
701 | } | |
702 | ||
703 | ifp->if_broot_bytes = size; | |
704 | ifp->if_broot = kmem_alloc(size, KM_SLEEP); | |
705 | ASSERT(ifp->if_broot != NULL); | |
706 | /* | |
707 | * Copy and convert from the on-disk structure | |
708 | * to the in-memory structure. | |
709 | */ | |
710 | xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | |
711 | ifp->if_broot, size); | |
712 | ifp->if_flags &= ~XFS_IFEXTENTS; | |
713 | ifp->if_flags |= XFS_IFBROOT; | |
714 | ||
715 | return 0; | |
716 | } | |
717 | ||
718 | /* | |
719 | * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk | |
720 | * and native format | |
721 | * | |
722 | * buf = on-disk representation | |
723 | * dip = native representation | |
724 | * dir = direction - +ve -> disk to native | |
725 | * -ve -> native to disk | |
726 | */ | |
727 | void | |
728 | xfs_xlate_dinode_core( | |
729 | xfs_caddr_t buf, | |
730 | xfs_dinode_core_t *dip, | |
731 | int dir) | |
732 | { | |
733 | xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; | |
734 | xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; | |
735 | xfs_arch_t arch = ARCH_CONVERT; | |
736 | ||
737 | ASSERT(dir); | |
738 | ||
739 | INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); | |
740 | INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); | |
741 | INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); | |
742 | INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); | |
743 | INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); | |
744 | INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); | |
745 | INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); | |
746 | INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); | |
747 | INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); | |
748 | ||
749 | if (dir > 0) { | |
750 | memcpy(mem_core->di_pad, buf_core->di_pad, | |
751 | sizeof(buf_core->di_pad)); | |
752 | } else { | |
753 | memcpy(buf_core->di_pad, mem_core->di_pad, | |
754 | sizeof(buf_core->di_pad)); | |
755 | } | |
756 | ||
757 | INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); | |
758 | ||
759 | INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, | |
760 | dir, arch); | |
761 | INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, | |
762 | dir, arch); | |
763 | INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, | |
764 | dir, arch); | |
765 | INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, | |
766 | dir, arch); | |
767 | INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, | |
768 | dir, arch); | |
769 | INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, | |
770 | dir, arch); | |
771 | INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); | |
772 | INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); | |
773 | INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); | |
774 | INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); | |
775 | INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); | |
776 | INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); | |
777 | INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); | |
778 | INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); | |
779 | INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); | |
780 | INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); | |
781 | INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); | |
782 | } | |
783 | ||
784 | STATIC uint | |
785 | _xfs_dic2xflags( | |
786 | xfs_dinode_core_t *dic, | |
787 | __uint16_t di_flags) | |
788 | { | |
789 | uint flags = 0; | |
790 | ||
791 | if (di_flags & XFS_DIFLAG_ANY) { | |
792 | if (di_flags & XFS_DIFLAG_REALTIME) | |
793 | flags |= XFS_XFLAG_REALTIME; | |
794 | if (di_flags & XFS_DIFLAG_PREALLOC) | |
795 | flags |= XFS_XFLAG_PREALLOC; | |
796 | if (di_flags & XFS_DIFLAG_IMMUTABLE) | |
797 | flags |= XFS_XFLAG_IMMUTABLE; | |
798 | if (di_flags & XFS_DIFLAG_APPEND) | |
799 | flags |= XFS_XFLAG_APPEND; | |
800 | if (di_flags & XFS_DIFLAG_SYNC) | |
801 | flags |= XFS_XFLAG_SYNC; | |
802 | if (di_flags & XFS_DIFLAG_NOATIME) | |
803 | flags |= XFS_XFLAG_NOATIME; | |
804 | if (di_flags & XFS_DIFLAG_NODUMP) | |
805 | flags |= XFS_XFLAG_NODUMP; | |
806 | if (di_flags & XFS_DIFLAG_RTINHERIT) | |
807 | flags |= XFS_XFLAG_RTINHERIT; | |
808 | if (di_flags & XFS_DIFLAG_PROJINHERIT) | |
809 | flags |= XFS_XFLAG_PROJINHERIT; | |
810 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) | |
811 | flags |= XFS_XFLAG_NOSYMLINKS; | |
812 | } | |
813 | ||
814 | return flags; | |
815 | } | |
816 | ||
817 | uint | |
818 | xfs_ip2xflags( | |
819 | xfs_inode_t *ip) | |
820 | { | |
821 | xfs_dinode_core_t *dic = &ip->i_d; | |
822 | ||
823 | return _xfs_dic2xflags(dic, dic->di_flags) | | |
824 | (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); | |
825 | } | |
826 | ||
827 | uint | |
828 | xfs_dic2xflags( | |
829 | xfs_dinode_core_t *dic) | |
830 | { | |
831 | return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | | |
832 | (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); | |
833 | } | |
834 | ||
835 | /* | |
836 | * Given a mount structure and an inode number, return a pointer | |
837 | * to a newly allocated in-core inode coresponding to the given | |
838 | * inode number. | |
839 | * | |
840 | * Initialize the inode's attributes and extent pointers if it | |
841 | * already has them (it will not if the inode has no links). | |
842 | */ | |
843 | int | |
844 | xfs_iread( | |
845 | xfs_mount_t *mp, | |
846 | xfs_trans_t *tp, | |
847 | xfs_ino_t ino, | |
848 | xfs_inode_t **ipp, | |
849 | xfs_daddr_t bno) | |
850 | { | |
851 | xfs_buf_t *bp; | |
852 | xfs_dinode_t *dip; | |
853 | xfs_inode_t *ip; | |
854 | int error; | |
855 | ||
856 | ASSERT(xfs_inode_zone != NULL); | |
857 | ||
858 | ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); | |
859 | ip->i_ino = ino; | |
860 | ip->i_mount = mp; | |
861 | ||
862 | /* | |
863 | * Get pointer's to the on-disk inode and the buffer containing it. | |
864 | * If the inode number refers to a block outside the file system | |
865 | * then xfs_itobp() will return NULL. In this case we should | |
866 | * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will | |
867 | * know that this is a new incore inode. | |
868 | */ | |
869 | error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); | |
870 | ||
871 | if (error != 0) { | |
872 | kmem_zone_free(xfs_inode_zone, ip); | |
873 | return error; | |
874 | } | |
875 | ||
876 | /* | |
877 | * Initialize inode's trace buffers. | |
878 | * Do this before xfs_iformat in case it adds entries. | |
879 | */ | |
880 | #ifdef XFS_BMAP_TRACE | |
881 | ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); | |
882 | #endif | |
883 | #ifdef XFS_BMBT_TRACE | |
884 | ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); | |
885 | #endif | |
886 | #ifdef XFS_RW_TRACE | |
887 | ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); | |
888 | #endif | |
889 | #ifdef XFS_ILOCK_TRACE | |
890 | ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); | |
891 | #endif | |
892 | #ifdef XFS_DIR2_TRACE | |
893 | ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); | |
894 | #endif | |
895 | ||
896 | /* | |
897 | * If we got something that isn't an inode it means someone | |
898 | * (nfs or dmi) has a stale handle. | |
899 | */ | |
900 | if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { | |
901 | kmem_zone_free(xfs_inode_zone, ip); | |
902 | xfs_trans_brelse(tp, bp); | |
903 | #ifdef DEBUG | |
904 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | |
905 | "dip->di_core.di_magic (0x%x) != " | |
906 | "XFS_DINODE_MAGIC (0x%x)", | |
907 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT), | |
908 | XFS_DINODE_MAGIC); | |
909 | #endif /* DEBUG */ | |
910 | return XFS_ERROR(EINVAL); | |
911 | } | |
912 | ||
913 | /* | |
914 | * If the on-disk inode is already linked to a directory | |
915 | * entry, copy all of the inode into the in-core inode. | |
916 | * xfs_iformat() handles copying in the inode format | |
917 | * specific information. | |
918 | * Otherwise, just get the truly permanent information. | |
919 | */ | |
920 | if (dip->di_core.di_mode) { | |
921 | xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, | |
922 | &(ip->i_d), 1); | |
923 | error = xfs_iformat(ip, dip); | |
924 | if (error) { | |
925 | kmem_zone_free(xfs_inode_zone, ip); | |
926 | xfs_trans_brelse(tp, bp); | |
927 | #ifdef DEBUG | |
928 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | |
929 | "xfs_iformat() returned error %d", | |
930 | error); | |
931 | #endif /* DEBUG */ | |
932 | return error; | |
933 | } | |
934 | } else { | |
935 | ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); | |
936 | ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); | |
937 | ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); | |
938 | ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); | |
939 | /* | |
940 | * Make sure to pull in the mode here as well in | |
941 | * case the inode is released without being used. | |
942 | * This ensures that xfs_inactive() will see that | |
943 | * the inode is already free and not try to mess | |
944 | * with the uninitialized part of it. | |
945 | */ | |
946 | ip->i_d.di_mode = 0; | |
947 | /* | |
948 | * Initialize the per-fork minima and maxima for a new | |
949 | * inode here. xfs_iformat will do it for old inodes. | |
950 | */ | |
951 | ip->i_df.if_ext_max = | |
952 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
953 | } | |
954 | ||
955 | INIT_LIST_HEAD(&ip->i_reclaim); | |
956 | ||
957 | /* | |
958 | * The inode format changed when we moved the link count and | |
959 | * made it 32 bits long. If this is an old format inode, | |
960 | * convert it in memory to look like a new one. If it gets | |
961 | * flushed to disk we will convert back before flushing or | |
962 | * logging it. We zero out the new projid field and the old link | |
963 | * count field. We'll handle clearing the pad field (the remains | |
964 | * of the old uuid field) when we actually convert the inode to | |
965 | * the new format. We don't change the version number so that we | |
966 | * can distinguish this from a real new format inode. | |
967 | */ | |
968 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | |
969 | ip->i_d.di_nlink = ip->i_d.di_onlink; | |
970 | ip->i_d.di_onlink = 0; | |
971 | ip->i_d.di_projid = 0; | |
972 | } | |
973 | ||
974 | ip->i_delayed_blks = 0; | |
975 | ||
976 | /* | |
977 | * Mark the buffer containing the inode as something to keep | |
978 | * around for a while. This helps to keep recently accessed | |
979 | * meta-data in-core longer. | |
980 | */ | |
981 | XFS_BUF_SET_REF(bp, XFS_INO_REF); | |
982 | ||
983 | /* | |
984 | * Use xfs_trans_brelse() to release the buffer containing the | |
985 | * on-disk inode, because it was acquired with xfs_trans_read_buf() | |
986 | * in xfs_itobp() above. If tp is NULL, this is just a normal | |
987 | * brelse(). If we're within a transaction, then xfs_trans_brelse() | |
988 | * will only release the buffer if it is not dirty within the | |
989 | * transaction. It will be OK to release the buffer in this case, | |
990 | * because inodes on disk are never destroyed and we will be | |
991 | * locking the new in-core inode before putting it in the hash | |
992 | * table where other processes can find it. Thus we don't have | |
993 | * to worry about the inode being changed just because we released | |
994 | * the buffer. | |
995 | */ | |
996 | xfs_trans_brelse(tp, bp); | |
997 | *ipp = ip; | |
998 | return 0; | |
999 | } | |
1000 | ||
1001 | /* | |
1002 | * Read in extents from a btree-format inode. | |
1003 | * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. | |
1004 | */ | |
1005 | int | |
1006 | xfs_iread_extents( | |
1007 | xfs_trans_t *tp, | |
1008 | xfs_inode_t *ip, | |
1009 | int whichfork) | |
1010 | { | |
1011 | int error; | |
1012 | xfs_ifork_t *ifp; | |
1013 | size_t size; | |
1014 | ||
1015 | if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | |
1016 | XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | |
1017 | ip->i_mount); | |
1018 | return XFS_ERROR(EFSCORRUPTED); | |
1019 | } | |
1020 | size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); | |
1021 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
1022 | /* | |
1023 | * We know that the size is valid (it's checked in iformat_btree) | |
1024 | */ | |
1025 | ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | |
1026 | ASSERT(ifp->if_u1.if_extents != NULL); | |
1027 | ifp->if_lastex = NULLEXTNUM; | |
1028 | ifp->if_bytes = ifp->if_real_bytes = (int)size; | |
1029 | ifp->if_flags |= XFS_IFEXTENTS; | |
1030 | error = xfs_bmap_read_extents(tp, ip, whichfork); | |
1031 | if (error) { | |
1032 | kmem_free(ifp->if_u1.if_extents, size); | |
1033 | ifp->if_u1.if_extents = NULL; | |
1034 | ifp->if_bytes = ifp->if_real_bytes = 0; | |
1035 | ifp->if_flags &= ~XFS_IFEXTENTS; | |
1036 | return error; | |
1037 | } | |
1038 | xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, | |
1039 | XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); | |
1040 | return 0; | |
1041 | } | |
1042 | ||
1043 | /* | |
1044 | * Allocate an inode on disk and return a copy of its in-core version. | |
1045 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev | |
1046 | * appropriately within the inode. The uid and gid for the inode are | |
1047 | * set according to the contents of the given cred structure. | |
1048 | * | |
1049 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | |
1050 | * has a free inode available, call xfs_iget() | |
1051 | * to obtain the in-core version of the allocated inode. Finally, | |
1052 | * fill in the inode and log its initial contents. In this case, | |
1053 | * ialloc_context would be set to NULL and call_again set to false. | |
1054 | * | |
1055 | * If xfs_dialloc() does not have an available inode, | |
1056 | * it will replenish its supply by doing an allocation. Since we can | |
1057 | * only do one allocation within a transaction without deadlocks, we | |
1058 | * must commit the current transaction before returning the inode itself. | |
1059 | * In this case, therefore, we will set call_again to true and return. | |
1060 | * The caller should then commit the current transaction, start a new | |
1061 | * transaction, and call xfs_ialloc() again to actually get the inode. | |
1062 | * | |
1063 | * To ensure that some other process does not grab the inode that | |
1064 | * was allocated during the first call to xfs_ialloc(), this routine | |
1065 | * also returns the [locked] bp pointing to the head of the freelist | |
1066 | * as ialloc_context. The caller should hold this buffer across | |
1067 | * the commit and pass it back into this routine on the second call. | |
1068 | */ | |
1069 | int | |
1070 | xfs_ialloc( | |
1071 | xfs_trans_t *tp, | |
1072 | xfs_inode_t *pip, | |
1073 | mode_t mode, | |
31b084ae | 1074 | xfs_nlink_t nlink, |
1da177e4 LT |
1075 | xfs_dev_t rdev, |
1076 | cred_t *cr, | |
1077 | xfs_prid_t prid, | |
1078 | int okalloc, | |
1079 | xfs_buf_t **ialloc_context, | |
1080 | boolean_t *call_again, | |
1081 | xfs_inode_t **ipp) | |
1082 | { | |
1083 | xfs_ino_t ino; | |
1084 | xfs_inode_t *ip; | |
1085 | vnode_t *vp; | |
1086 | uint flags; | |
1087 | int error; | |
1088 | ||
1089 | /* | |
1090 | * Call the space management code to pick | |
1091 | * the on-disk inode to be allocated. | |
1092 | */ | |
1093 | error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, | |
1094 | ialloc_context, call_again, &ino); | |
1095 | if (error != 0) { | |
1096 | return error; | |
1097 | } | |
1098 | if (*call_again || ino == NULLFSINO) { | |
1099 | *ipp = NULL; | |
1100 | return 0; | |
1101 | } | |
1102 | ASSERT(*ialloc_context == NULL); | |
1103 | ||
1104 | /* | |
1105 | * Get the in-core inode with the lock held exclusively. | |
1106 | * This is because we're setting fields here we need | |
1107 | * to prevent others from looking at until we're done. | |
1108 | */ | |
1109 | error = xfs_trans_iget(tp->t_mountp, tp, ino, | |
1110 | IGET_CREATE, XFS_ILOCK_EXCL, &ip); | |
1111 | if (error != 0) { | |
1112 | return error; | |
1113 | } | |
1114 | ASSERT(ip != NULL); | |
1115 | ||
1116 | vp = XFS_ITOV(ip); | |
1da177e4 LT |
1117 | ip->i_d.di_mode = (__uint16_t)mode; |
1118 | ip->i_d.di_onlink = 0; | |
1119 | ip->i_d.di_nlink = nlink; | |
1120 | ASSERT(ip->i_d.di_nlink == nlink); | |
1121 | ip->i_d.di_uid = current_fsuid(cr); | |
1122 | ip->i_d.di_gid = current_fsgid(cr); | |
1123 | ip->i_d.di_projid = prid; | |
1124 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | |
1125 | ||
1126 | /* | |
1127 | * If the superblock version is up to where we support new format | |
1128 | * inodes and this is currently an old format inode, then change | |
1129 | * the inode version number now. This way we only do the conversion | |
1130 | * here rather than here and in the flush/logging code. | |
1131 | */ | |
1132 | if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && | |
1133 | ip->i_d.di_version == XFS_DINODE_VERSION_1) { | |
1134 | ip->i_d.di_version = XFS_DINODE_VERSION_2; | |
1135 | /* | |
1136 | * We've already zeroed the old link count, the projid field, | |
1137 | * and the pad field. | |
1138 | */ | |
1139 | } | |
1140 | ||
1141 | /* | |
1142 | * Project ids won't be stored on disk if we are using a version 1 inode. | |
1143 | */ | |
1144 | if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) | |
1145 | xfs_bump_ino_vers2(tp, ip); | |
1146 | ||
1147 | if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { | |
1148 | ip->i_d.di_gid = pip->i_d.di_gid; | |
1149 | if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { | |
1150 | ip->i_d.di_mode |= S_ISGID; | |
1151 | } | |
1152 | } | |
1153 | ||
1154 | /* | |
1155 | * If the group ID of the new file does not match the effective group | |
1156 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | |
1157 | * (and only if the irix_sgid_inherit compatibility variable is set). | |
1158 | */ | |
1159 | if ((irix_sgid_inherit) && | |
1160 | (ip->i_d.di_mode & S_ISGID) && | |
1161 | (!in_group_p((gid_t)ip->i_d.di_gid))) { | |
1162 | ip->i_d.di_mode &= ~S_ISGID; | |
1163 | } | |
1164 | ||
1165 | ip->i_d.di_size = 0; | |
1166 | ip->i_d.di_nextents = 0; | |
1167 | ASSERT(ip->i_d.di_nblocks == 0); | |
1168 | xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); | |
1169 | /* | |
1170 | * di_gen will have been taken care of in xfs_iread. | |
1171 | */ | |
1172 | ip->i_d.di_extsize = 0; | |
1173 | ip->i_d.di_dmevmask = 0; | |
1174 | ip->i_d.di_dmstate = 0; | |
1175 | ip->i_d.di_flags = 0; | |
1176 | flags = XFS_ILOG_CORE; | |
1177 | switch (mode & S_IFMT) { | |
1178 | case S_IFIFO: | |
1179 | case S_IFCHR: | |
1180 | case S_IFBLK: | |
1181 | case S_IFSOCK: | |
1182 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; | |
1183 | ip->i_df.if_u2.if_rdev = rdev; | |
1184 | ip->i_df.if_flags = 0; | |
1185 | flags |= XFS_ILOG_DEV; | |
1186 | break; | |
1187 | case S_IFREG: | |
1188 | case S_IFDIR: | |
1189 | if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { | |
365ca83d NS |
1190 | uint di_flags = 0; |
1191 | ||
1192 | if ((mode & S_IFMT) == S_IFDIR) { | |
1193 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | |
1194 | di_flags |= XFS_DIFLAG_RTINHERIT; | |
1195 | } else { | |
1196 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { | |
1197 | di_flags |= XFS_DIFLAG_REALTIME; | |
1da177e4 LT |
1198 | ip->i_iocore.io_flags |= XFS_IOCORE_RT; |
1199 | } | |
1200 | } | |
1201 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | |
1202 | xfs_inherit_noatime) | |
365ca83d | 1203 | di_flags |= XFS_DIFLAG_NOATIME; |
1da177e4 LT |
1204 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
1205 | xfs_inherit_nodump) | |
365ca83d | 1206 | di_flags |= XFS_DIFLAG_NODUMP; |
1da177e4 LT |
1207 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
1208 | xfs_inherit_sync) | |
365ca83d | 1209 | di_flags |= XFS_DIFLAG_SYNC; |
1da177e4 LT |
1210 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
1211 | xfs_inherit_nosymlinks) | |
365ca83d NS |
1212 | di_flags |= XFS_DIFLAG_NOSYMLINKS; |
1213 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | |
1214 | di_flags |= XFS_DIFLAG_PROJINHERIT; | |
1215 | ip->i_d.di_flags |= di_flags; | |
1da177e4 LT |
1216 | } |
1217 | /* FALLTHROUGH */ | |
1218 | case S_IFLNK: | |
1219 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | |
1220 | ip->i_df.if_flags = XFS_IFEXTENTS; | |
1221 | ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; | |
1222 | ip->i_df.if_u1.if_extents = NULL; | |
1223 | break; | |
1224 | default: | |
1225 | ASSERT(0); | |
1226 | } | |
1227 | /* | |
1228 | * Attribute fork settings for new inode. | |
1229 | */ | |
1230 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
1231 | ip->i_d.di_anextents = 0; | |
1232 | ||
1233 | /* | |
1234 | * Log the new values stuffed into the inode. | |
1235 | */ | |
1236 | xfs_trans_log_inode(tp, ip, flags); | |
1237 | ||
0432dab2 | 1238 | /* now that we have an i_mode we can set Linux inode ops (& unlock) */ |
1da177e4 LT |
1239 | VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); |
1240 | ||
1241 | *ipp = ip; | |
1242 | return 0; | |
1243 | } | |
1244 | ||
1245 | /* | |
1246 | * Check to make sure that there are no blocks allocated to the | |
1247 | * file beyond the size of the file. We don't check this for | |
1248 | * files with fixed size extents or real time extents, but we | |
1249 | * at least do it for regular files. | |
1250 | */ | |
1251 | #ifdef DEBUG | |
1252 | void | |
1253 | xfs_isize_check( | |
1254 | xfs_mount_t *mp, | |
1255 | xfs_inode_t *ip, | |
1256 | xfs_fsize_t isize) | |
1257 | { | |
1258 | xfs_fileoff_t map_first; | |
1259 | int nimaps; | |
1260 | xfs_bmbt_irec_t imaps[2]; | |
1261 | ||
1262 | if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) | |
1263 | return; | |
1264 | ||
1265 | if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) | |
1266 | return; | |
1267 | ||
1268 | nimaps = 2; | |
1269 | map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | |
1270 | /* | |
1271 | * The filesystem could be shutting down, so bmapi may return | |
1272 | * an error. | |
1273 | */ | |
1274 | if (xfs_bmapi(NULL, ip, map_first, | |
1275 | (XFS_B_TO_FSB(mp, | |
1276 | (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - | |
1277 | map_first), | |
1278 | XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, | |
1279 | NULL)) | |
1280 | return; | |
1281 | ASSERT(nimaps == 1); | |
1282 | ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); | |
1283 | } | |
1284 | #endif /* DEBUG */ | |
1285 | ||
1286 | /* | |
1287 | * Calculate the last possible buffered byte in a file. This must | |
1288 | * include data that was buffered beyond the EOF by the write code. | |
1289 | * This also needs to deal with overflowing the xfs_fsize_t type | |
1290 | * which can happen for sizes near the limit. | |
1291 | * | |
1292 | * We also need to take into account any blocks beyond the EOF. It | |
1293 | * may be the case that they were buffered by a write which failed. | |
1294 | * In that case the pages will still be in memory, but the inode size | |
1295 | * will never have been updated. | |
1296 | */ | |
1297 | xfs_fsize_t | |
1298 | xfs_file_last_byte( | |
1299 | xfs_inode_t *ip) | |
1300 | { | |
1301 | xfs_mount_t *mp; | |
1302 | xfs_fsize_t last_byte; | |
1303 | xfs_fileoff_t last_block; | |
1304 | xfs_fileoff_t size_last_block; | |
1305 | int error; | |
1306 | ||
1307 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); | |
1308 | ||
1309 | mp = ip->i_mount; | |
1310 | /* | |
1311 | * Only check for blocks beyond the EOF if the extents have | |
1312 | * been read in. This eliminates the need for the inode lock, | |
1313 | * and it also saves us from looking when it really isn't | |
1314 | * necessary. | |
1315 | */ | |
1316 | if (ip->i_df.if_flags & XFS_IFEXTENTS) { | |
1317 | error = xfs_bmap_last_offset(NULL, ip, &last_block, | |
1318 | XFS_DATA_FORK); | |
1319 | if (error) { | |
1320 | last_block = 0; | |
1321 | } | |
1322 | } else { | |
1323 | last_block = 0; | |
1324 | } | |
1325 | size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); | |
1326 | last_block = XFS_FILEOFF_MAX(last_block, size_last_block); | |
1327 | ||
1328 | last_byte = XFS_FSB_TO_B(mp, last_block); | |
1329 | if (last_byte < 0) { | |
1330 | return XFS_MAXIOFFSET(mp); | |
1331 | } | |
1332 | last_byte += (1 << mp->m_writeio_log); | |
1333 | if (last_byte < 0) { | |
1334 | return XFS_MAXIOFFSET(mp); | |
1335 | } | |
1336 | return last_byte; | |
1337 | } | |
1338 | ||
1339 | #if defined(XFS_RW_TRACE) | |
1340 | STATIC void | |
1341 | xfs_itrunc_trace( | |
1342 | int tag, | |
1343 | xfs_inode_t *ip, | |
1344 | int flag, | |
1345 | xfs_fsize_t new_size, | |
1346 | xfs_off_t toss_start, | |
1347 | xfs_off_t toss_finish) | |
1348 | { | |
1349 | if (ip->i_rwtrace == NULL) { | |
1350 | return; | |
1351 | } | |
1352 | ||
1353 | ktrace_enter(ip->i_rwtrace, | |
1354 | (void*)((long)tag), | |
1355 | (void*)ip, | |
1356 | (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), | |
1357 | (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), | |
1358 | (void*)((long)flag), | |
1359 | (void*)(unsigned long)((new_size >> 32) & 0xffffffff), | |
1360 | (void*)(unsigned long)(new_size & 0xffffffff), | |
1361 | (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), | |
1362 | (void*)(unsigned long)(toss_start & 0xffffffff), | |
1363 | (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), | |
1364 | (void*)(unsigned long)(toss_finish & 0xffffffff), | |
1365 | (void*)(unsigned long)current_cpu(), | |
1366 | (void*)0, | |
1367 | (void*)0, | |
1368 | (void*)0, | |
1369 | (void*)0); | |
1370 | } | |
1371 | #else | |
1372 | #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) | |
1373 | #endif | |
1374 | ||
1375 | /* | |
1376 | * Start the truncation of the file to new_size. The new size | |
1377 | * must be smaller than the current size. This routine will | |
1378 | * clear the buffer and page caches of file data in the removed | |
1379 | * range, and xfs_itruncate_finish() will remove the underlying | |
1380 | * disk blocks. | |
1381 | * | |
1382 | * The inode must have its I/O lock locked EXCLUSIVELY, and it | |
1383 | * must NOT have the inode lock held at all. This is because we're | |
1384 | * calling into the buffer/page cache code and we can't hold the | |
1385 | * inode lock when we do so. | |
1386 | * | |
1387 | * The flags parameter can have either the value XFS_ITRUNC_DEFINITE | |
1388 | * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used | |
1389 | * in the case that the caller is locking things out of order and | |
1390 | * may not be able to call xfs_itruncate_finish() with the inode lock | |
1391 | * held without dropping the I/O lock. If the caller must drop the | |
1392 | * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() | |
1393 | * must be called again with all the same restrictions as the initial | |
1394 | * call. | |
1395 | */ | |
1396 | void | |
1397 | xfs_itruncate_start( | |
1398 | xfs_inode_t *ip, | |
1399 | uint flags, | |
1400 | xfs_fsize_t new_size) | |
1401 | { | |
1402 | xfs_fsize_t last_byte; | |
1403 | xfs_off_t toss_start; | |
1404 | xfs_mount_t *mp; | |
1405 | vnode_t *vp; | |
1406 | ||
1407 | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | |
1408 | ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | |
1409 | ASSERT((flags == XFS_ITRUNC_DEFINITE) || | |
1410 | (flags == XFS_ITRUNC_MAYBE)); | |
1411 | ||
1412 | mp = ip->i_mount; | |
1413 | vp = XFS_ITOV(ip); | |
1414 | /* | |
1415 | * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers | |
1416 | * overlapping the region being removed. We have to use | |
1417 | * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the | |
1418 | * caller may not be able to finish the truncate without | |
1419 | * dropping the inode's I/O lock. Make sure | |
1420 | * to catch any pages brought in by buffers overlapping | |
1421 | * the EOF by searching out beyond the isize by our | |
1422 | * block size. We round new_size up to a block boundary | |
1423 | * so that we don't toss things on the same block as | |
1424 | * new_size but before it. | |
1425 | * | |
1426 | * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to | |
1427 | * call remapf() over the same region if the file is mapped. | |
1428 | * This frees up mapped file references to the pages in the | |
1429 | * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures | |
1430 | * that we get the latest mapped changes flushed out. | |
1431 | */ | |
1432 | toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | |
1433 | toss_start = XFS_FSB_TO_B(mp, toss_start); | |
1434 | if (toss_start < 0) { | |
1435 | /* | |
1436 | * The place to start tossing is beyond our maximum | |
1437 | * file size, so there is no way that the data extended | |
1438 | * out there. | |
1439 | */ | |
1440 | return; | |
1441 | } | |
1442 | last_byte = xfs_file_last_byte(ip); | |
1443 | xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, | |
1444 | last_byte); | |
1445 | if (last_byte > toss_start) { | |
1446 | if (flags & XFS_ITRUNC_DEFINITE) { | |
1447 | VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | |
1448 | } else { | |
1449 | VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | |
1450 | } | |
1451 | } | |
1452 | ||
1453 | #ifdef DEBUG | |
1454 | if (new_size == 0) { | |
1455 | ASSERT(VN_CACHED(vp) == 0); | |
1456 | } | |
1457 | #endif | |
1458 | } | |
1459 | ||
1460 | /* | |
1461 | * Shrink the file to the given new_size. The new | |
1462 | * size must be smaller than the current size. | |
1463 | * This will free up the underlying blocks | |
1464 | * in the removed range after a call to xfs_itruncate_start() | |
1465 | * or xfs_atruncate_start(). | |
1466 | * | |
1467 | * The transaction passed to this routine must have made | |
1468 | * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. | |
1469 | * This routine may commit the given transaction and | |
1470 | * start new ones, so make sure everything involved in | |
1471 | * the transaction is tidy before calling here. | |
1472 | * Some transaction will be returned to the caller to be | |
1473 | * committed. The incoming transaction must already include | |
1474 | * the inode, and both inode locks must be held exclusively. | |
1475 | * The inode must also be "held" within the transaction. On | |
1476 | * return the inode will be "held" within the returned transaction. | |
1477 | * This routine does NOT require any disk space to be reserved | |
1478 | * for it within the transaction. | |
1479 | * | |
1480 | * The fork parameter must be either xfs_attr_fork or xfs_data_fork, | |
1481 | * and it indicates the fork which is to be truncated. For the | |
1482 | * attribute fork we only support truncation to size 0. | |
1483 | * | |
1484 | * We use the sync parameter to indicate whether or not the first | |
1485 | * transaction we perform might have to be synchronous. For the attr fork, | |
1486 | * it needs to be so if the unlink of the inode is not yet known to be | |
1487 | * permanent in the log. This keeps us from freeing and reusing the | |
1488 | * blocks of the attribute fork before the unlink of the inode becomes | |
1489 | * permanent. | |
1490 | * | |
1491 | * For the data fork, we normally have to run synchronously if we're | |
1492 | * being called out of the inactive path or we're being called | |
1493 | * out of the create path where we're truncating an existing file. | |
1494 | * Either way, the truncate needs to be sync so blocks don't reappear | |
1495 | * in the file with altered data in case of a crash. wsync filesystems | |
1496 | * can run the first case async because anything that shrinks the inode | |
1497 | * has to run sync so by the time we're called here from inactive, the | |
1498 | * inode size is permanently set to 0. | |
1499 | * | |
1500 | * Calls from the truncate path always need to be sync unless we're | |
1501 | * in a wsync filesystem and the file has already been unlinked. | |
1502 | * | |
1503 | * The caller is responsible for correctly setting the sync parameter. | |
1504 | * It gets too hard for us to guess here which path we're being called | |
1505 | * out of just based on inode state. | |
1506 | */ | |
1507 | int | |
1508 | xfs_itruncate_finish( | |
1509 | xfs_trans_t **tp, | |
1510 | xfs_inode_t *ip, | |
1511 | xfs_fsize_t new_size, | |
1512 | int fork, | |
1513 | int sync) | |
1514 | { | |
1515 | xfs_fsblock_t first_block; | |
1516 | xfs_fileoff_t first_unmap_block; | |
1517 | xfs_fileoff_t last_block; | |
1518 | xfs_filblks_t unmap_len=0; | |
1519 | xfs_mount_t *mp; | |
1520 | xfs_trans_t *ntp; | |
1521 | int done; | |
1522 | int committed; | |
1523 | xfs_bmap_free_t free_list; | |
1524 | int error; | |
1525 | ||
1526 | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | |
1527 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); | |
1528 | ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | |
1529 | ASSERT(*tp != NULL); | |
1530 | ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); | |
1531 | ASSERT(ip->i_transp == *tp); | |
1532 | ASSERT(ip->i_itemp != NULL); | |
1533 | ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); | |
1534 | ||
1535 | ||
1536 | ntp = *tp; | |
1537 | mp = (ntp)->t_mountp; | |
1538 | ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); | |
1539 | ||
1540 | /* | |
1541 | * We only support truncating the entire attribute fork. | |
1542 | */ | |
1543 | if (fork == XFS_ATTR_FORK) { | |
1544 | new_size = 0LL; | |
1545 | } | |
1546 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | |
1547 | xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); | |
1548 | /* | |
1549 | * The first thing we do is set the size to new_size permanently | |
1550 | * on disk. This way we don't have to worry about anyone ever | |
1551 | * being able to look at the data being freed even in the face | |
1552 | * of a crash. What we're getting around here is the case where | |
1553 | * we free a block, it is allocated to another file, it is written | |
1554 | * to, and then we crash. If the new data gets written to the | |
1555 | * file but the log buffers containing the free and reallocation | |
1556 | * don't, then we'd end up with garbage in the blocks being freed. | |
1557 | * As long as we make the new_size permanent before actually | |
1558 | * freeing any blocks it doesn't matter if they get writtten to. | |
1559 | * | |
1560 | * The callers must signal into us whether or not the size | |
1561 | * setting here must be synchronous. There are a few cases | |
1562 | * where it doesn't have to be synchronous. Those cases | |
1563 | * occur if the file is unlinked and we know the unlink is | |
1564 | * permanent or if the blocks being truncated are guaranteed | |
1565 | * to be beyond the inode eof (regardless of the link count) | |
1566 | * and the eof value is permanent. Both of these cases occur | |
1567 | * only on wsync-mounted filesystems. In those cases, we're | |
1568 | * guaranteed that no user will ever see the data in the blocks | |
1569 | * that are being truncated so the truncate can run async. | |
1570 | * In the free beyond eof case, the file may wind up with | |
1571 | * more blocks allocated to it than it needs if we crash | |
1572 | * and that won't get fixed until the next time the file | |
1573 | * is re-opened and closed but that's ok as that shouldn't | |
1574 | * be too many blocks. | |
1575 | * | |
1576 | * However, we can't just make all wsync xactions run async | |
1577 | * because there's one call out of the create path that needs | |
1578 | * to run sync where it's truncating an existing file to size | |
1579 | * 0 whose size is > 0. | |
1580 | * | |
1581 | * It's probably possible to come up with a test in this | |
1582 | * routine that would correctly distinguish all the above | |
1583 | * cases from the values of the function parameters and the | |
1584 | * inode state but for sanity's sake, I've decided to let the | |
1585 | * layers above just tell us. It's simpler to correctly figure | |
1586 | * out in the layer above exactly under what conditions we | |
1587 | * can run async and I think it's easier for others read and | |
1588 | * follow the logic in case something has to be changed. | |
1589 | * cscope is your friend -- rcc. | |
1590 | * | |
1591 | * The attribute fork is much simpler. | |
1592 | * | |
1593 | * For the attribute fork we allow the caller to tell us whether | |
1594 | * the unlink of the inode that led to this call is yet permanent | |
1595 | * in the on disk log. If it is not and we will be freeing extents | |
1596 | * in this inode then we make the first transaction synchronous | |
1597 | * to make sure that the unlink is permanent by the time we free | |
1598 | * the blocks. | |
1599 | */ | |
1600 | if (fork == XFS_DATA_FORK) { | |
1601 | if (ip->i_d.di_nextents > 0) { | |
1602 | ip->i_d.di_size = new_size; | |
1603 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | |
1604 | } | |
1605 | } else if (sync) { | |
1606 | ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); | |
1607 | if (ip->i_d.di_anextents > 0) | |
1608 | xfs_trans_set_sync(ntp); | |
1609 | } | |
1610 | ASSERT(fork == XFS_DATA_FORK || | |
1611 | (fork == XFS_ATTR_FORK && | |
1612 | ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || | |
1613 | (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); | |
1614 | ||
1615 | /* | |
1616 | * Since it is possible for space to become allocated beyond | |
1617 | * the end of the file (in a crash where the space is allocated | |
1618 | * but the inode size is not yet updated), simply remove any | |
1619 | * blocks which show up between the new EOF and the maximum | |
1620 | * possible file size. If the first block to be removed is | |
1621 | * beyond the maximum file size (ie it is the same as last_block), | |
1622 | * then there is nothing to do. | |
1623 | */ | |
1624 | last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); | |
1625 | ASSERT(first_unmap_block <= last_block); | |
1626 | done = 0; | |
1627 | if (last_block == first_unmap_block) { | |
1628 | done = 1; | |
1629 | } else { | |
1630 | unmap_len = last_block - first_unmap_block + 1; | |
1631 | } | |
1632 | while (!done) { | |
1633 | /* | |
1634 | * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() | |
1635 | * will tell us whether it freed the entire range or | |
1636 | * not. If this is a synchronous mount (wsync), | |
1637 | * then we can tell bunmapi to keep all the | |
1638 | * transactions asynchronous since the unlink | |
1639 | * transaction that made this inode inactive has | |
1640 | * already hit the disk. There's no danger of | |
1641 | * the freed blocks being reused, there being a | |
1642 | * crash, and the reused blocks suddenly reappearing | |
1643 | * in this file with garbage in them once recovery | |
1644 | * runs. | |
1645 | */ | |
1646 | XFS_BMAP_INIT(&free_list, &first_block); | |
1647 | error = xfs_bunmapi(ntp, ip, first_unmap_block, | |
1648 | unmap_len, | |
1649 | XFS_BMAPI_AFLAG(fork) | | |
1650 | (sync ? 0 : XFS_BMAPI_ASYNC), | |
1651 | XFS_ITRUNC_MAX_EXTENTS, | |
1652 | &first_block, &free_list, &done); | |
1653 | if (error) { | |
1654 | /* | |
1655 | * If the bunmapi call encounters an error, | |
1656 | * return to the caller where the transaction | |
1657 | * can be properly aborted. We just need to | |
1658 | * make sure we're not holding any resources | |
1659 | * that we were not when we came in. | |
1660 | */ | |
1661 | xfs_bmap_cancel(&free_list); | |
1662 | return error; | |
1663 | } | |
1664 | ||
1665 | /* | |
1666 | * Duplicate the transaction that has the permanent | |
1667 | * reservation and commit the old transaction. | |
1668 | */ | |
1669 | error = xfs_bmap_finish(tp, &free_list, first_block, | |
1670 | &committed); | |
1671 | ntp = *tp; | |
1672 | if (error) { | |
1673 | /* | |
1674 | * If the bmap finish call encounters an error, | |
1675 | * return to the caller where the transaction | |
1676 | * can be properly aborted. We just need to | |
1677 | * make sure we're not holding any resources | |
1678 | * that we were not when we came in. | |
1679 | * | |
1680 | * Aborting from this point might lose some | |
1681 | * blocks in the file system, but oh well. | |
1682 | */ | |
1683 | xfs_bmap_cancel(&free_list); | |
1684 | if (committed) { | |
1685 | /* | |
1686 | * If the passed in transaction committed | |
1687 | * in xfs_bmap_finish(), then we want to | |
1688 | * add the inode to this one before returning. | |
1689 | * This keeps things simple for the higher | |
1690 | * level code, because it always knows that | |
1691 | * the inode is locked and held in the | |
1692 | * transaction that returns to it whether | |
1693 | * errors occur or not. We don't mark the | |
1694 | * inode dirty so that this transaction can | |
1695 | * be easily aborted if possible. | |
1696 | */ | |
1697 | xfs_trans_ijoin(ntp, ip, | |
1698 | XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | |
1699 | xfs_trans_ihold(ntp, ip); | |
1700 | } | |
1701 | return error; | |
1702 | } | |
1703 | ||
1704 | if (committed) { | |
1705 | /* | |
1706 | * The first xact was committed, | |
1707 | * so add the inode to the new one. | |
1708 | * Mark it dirty so it will be logged | |
1709 | * and moved forward in the log as | |
1710 | * part of every commit. | |
1711 | */ | |
1712 | xfs_trans_ijoin(ntp, ip, | |
1713 | XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | |
1714 | xfs_trans_ihold(ntp, ip); | |
1715 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | |
1716 | } | |
1717 | ntp = xfs_trans_dup(ntp); | |
1718 | (void) xfs_trans_commit(*tp, 0, NULL); | |
1719 | *tp = ntp; | |
1720 | error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, | |
1721 | XFS_TRANS_PERM_LOG_RES, | |
1722 | XFS_ITRUNCATE_LOG_COUNT); | |
1723 | /* | |
1724 | * Add the inode being truncated to the next chained | |
1725 | * transaction. | |
1726 | */ | |
1727 | xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | |
1728 | xfs_trans_ihold(ntp, ip); | |
1729 | if (error) | |
1730 | return (error); | |
1731 | } | |
1732 | /* | |
1733 | * Only update the size in the case of the data fork, but | |
1734 | * always re-log the inode so that our permanent transaction | |
1735 | * can keep on rolling it forward in the log. | |
1736 | */ | |
1737 | if (fork == XFS_DATA_FORK) { | |
1738 | xfs_isize_check(mp, ip, new_size); | |
1739 | ip->i_d.di_size = new_size; | |
1740 | } | |
1741 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | |
1742 | ASSERT((new_size != 0) || | |
1743 | (fork == XFS_ATTR_FORK) || | |
1744 | (ip->i_delayed_blks == 0)); | |
1745 | ASSERT((new_size != 0) || | |
1746 | (fork == XFS_ATTR_FORK) || | |
1747 | (ip->i_d.di_nextents == 0)); | |
1748 | xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); | |
1749 | return 0; | |
1750 | } | |
1751 | ||
1752 | ||
1753 | /* | |
1754 | * xfs_igrow_start | |
1755 | * | |
1756 | * Do the first part of growing a file: zero any data in the last | |
1757 | * block that is beyond the old EOF. We need to do this before | |
1758 | * the inode is joined to the transaction to modify the i_size. | |
1759 | * That way we can drop the inode lock and call into the buffer | |
1760 | * cache to get the buffer mapping the EOF. | |
1761 | */ | |
1762 | int | |
1763 | xfs_igrow_start( | |
1764 | xfs_inode_t *ip, | |
1765 | xfs_fsize_t new_size, | |
1766 | cred_t *credp) | |
1767 | { | |
1768 | xfs_fsize_t isize; | |
1769 | int error; | |
1770 | ||
1771 | ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | |
1772 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | |
1773 | ASSERT(new_size > ip->i_d.di_size); | |
1774 | ||
1775 | error = 0; | |
1776 | isize = ip->i_d.di_size; | |
1777 | /* | |
1778 | * Zero any pages that may have been created by | |
1779 | * xfs_write_file() beyond the end of the file | |
1780 | * and any blocks between the old and new file sizes. | |
1781 | */ | |
1782 | error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, | |
1783 | new_size); | |
1784 | return error; | |
1785 | } | |
1786 | ||
1787 | /* | |
1788 | * xfs_igrow_finish | |
1789 | * | |
1790 | * This routine is called to extend the size of a file. | |
1791 | * The inode must have both the iolock and the ilock locked | |
1792 | * for update and it must be a part of the current transaction. | |
1793 | * The xfs_igrow_start() function must have been called previously. | |
1794 | * If the change_flag is not zero, the inode change timestamp will | |
1795 | * be updated. | |
1796 | */ | |
1797 | void | |
1798 | xfs_igrow_finish( | |
1799 | xfs_trans_t *tp, | |
1800 | xfs_inode_t *ip, | |
1801 | xfs_fsize_t new_size, | |
1802 | int change_flag) | |
1803 | { | |
1804 | ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | |
1805 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | |
1806 | ASSERT(ip->i_transp == tp); | |
1807 | ASSERT(new_size > ip->i_d.di_size); | |
1808 | ||
1809 | /* | |
1810 | * Update the file size. Update the inode change timestamp | |
1811 | * if change_flag set. | |
1812 | */ | |
1813 | ip->i_d.di_size = new_size; | |
1814 | if (change_flag) | |
1815 | xfs_ichgtime(ip, XFS_ICHGTIME_CHG); | |
1816 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
1817 | ||
1818 | } | |
1819 | ||
1820 | ||
1821 | /* | |
1822 | * This is called when the inode's link count goes to 0. | |
1823 | * We place the on-disk inode on a list in the AGI. It | |
1824 | * will be pulled from this list when the inode is freed. | |
1825 | */ | |
1826 | int | |
1827 | xfs_iunlink( | |
1828 | xfs_trans_t *tp, | |
1829 | xfs_inode_t *ip) | |
1830 | { | |
1831 | xfs_mount_t *mp; | |
1832 | xfs_agi_t *agi; | |
1833 | xfs_dinode_t *dip; | |
1834 | xfs_buf_t *agibp; | |
1835 | xfs_buf_t *ibp; | |
1836 | xfs_agnumber_t agno; | |
1837 | xfs_daddr_t agdaddr; | |
1838 | xfs_agino_t agino; | |
1839 | short bucket_index; | |
1840 | int offset; | |
1841 | int error; | |
1842 | int agi_ok; | |
1843 | ||
1844 | ASSERT(ip->i_d.di_nlink == 0); | |
1845 | ASSERT(ip->i_d.di_mode != 0); | |
1846 | ASSERT(ip->i_transp == tp); | |
1847 | ||
1848 | mp = tp->t_mountp; | |
1849 | ||
1850 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | |
1851 | agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | |
1852 | ||
1853 | /* | |
1854 | * Get the agi buffer first. It ensures lock ordering | |
1855 | * on the list. | |
1856 | */ | |
1857 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | |
1858 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); | |
1859 | if (error) { | |
1860 | return error; | |
1861 | } | |
1862 | /* | |
1863 | * Validate the magic number of the agi block. | |
1864 | */ | |
1865 | agi = XFS_BUF_TO_AGI(agibp); | |
1866 | agi_ok = | |
16259e7d CH |
1867 | be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && |
1868 | XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); | |
1da177e4 LT |
1869 | if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, |
1870 | XFS_RANDOM_IUNLINK))) { | |
1871 | XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); | |
1872 | xfs_trans_brelse(tp, agibp); | |
1873 | return XFS_ERROR(EFSCORRUPTED); | |
1874 | } | |
1875 | /* | |
1876 | * Get the index into the agi hash table for the | |
1877 | * list this inode will go on. | |
1878 | */ | |
1879 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
1880 | ASSERT(agino != 0); | |
1881 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
1882 | ASSERT(agi->agi_unlinked[bucket_index]); | |
16259e7d | 1883 | ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); |
1da177e4 | 1884 | |
16259e7d | 1885 | if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { |
1da177e4 LT |
1886 | /* |
1887 | * There is already another inode in the bucket we need | |
1888 | * to add ourselves to. Add us at the front of the list. | |
1889 | * Here we put the head pointer into our next pointer, | |
1890 | * and then we fall through to point the head at us. | |
1891 | */ | |
1892 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | |
1893 | if (error) { | |
1894 | return error; | |
1895 | } | |
1896 | ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); | |
1897 | ASSERT(dip->di_next_unlinked); | |
1898 | /* both on-disk, don't endian flip twice */ | |
1899 | dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; | |
1900 | offset = ip->i_boffset + | |
1901 | offsetof(xfs_dinode_t, di_next_unlinked); | |
1902 | xfs_trans_inode_buf(tp, ibp); | |
1903 | xfs_trans_log_buf(tp, ibp, offset, | |
1904 | (offset + sizeof(xfs_agino_t) - 1)); | |
1905 | xfs_inobp_check(mp, ibp); | |
1906 | } | |
1907 | ||
1908 | /* | |
1909 | * Point the bucket head pointer at the inode being inserted. | |
1910 | */ | |
1911 | ASSERT(agino != 0); | |
16259e7d | 1912 | agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); |
1da177e4 LT |
1913 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
1914 | (sizeof(xfs_agino_t) * bucket_index); | |
1915 | xfs_trans_log_buf(tp, agibp, offset, | |
1916 | (offset + sizeof(xfs_agino_t) - 1)); | |
1917 | return 0; | |
1918 | } | |
1919 | ||
1920 | /* | |
1921 | * Pull the on-disk inode from the AGI unlinked list. | |
1922 | */ | |
1923 | STATIC int | |
1924 | xfs_iunlink_remove( | |
1925 | xfs_trans_t *tp, | |
1926 | xfs_inode_t *ip) | |
1927 | { | |
1928 | xfs_ino_t next_ino; | |
1929 | xfs_mount_t *mp; | |
1930 | xfs_agi_t *agi; | |
1931 | xfs_dinode_t *dip; | |
1932 | xfs_buf_t *agibp; | |
1933 | xfs_buf_t *ibp; | |
1934 | xfs_agnumber_t agno; | |
1935 | xfs_daddr_t agdaddr; | |
1936 | xfs_agino_t agino; | |
1937 | xfs_agino_t next_agino; | |
1938 | xfs_buf_t *last_ibp; | |
1939 | xfs_dinode_t *last_dip; | |
1940 | short bucket_index; | |
1941 | int offset, last_offset; | |
1942 | int error; | |
1943 | int agi_ok; | |
1944 | ||
1945 | /* | |
1946 | * First pull the on-disk inode from the AGI unlinked list. | |
1947 | */ | |
1948 | mp = tp->t_mountp; | |
1949 | ||
1950 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | |
1951 | agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | |
1952 | ||
1953 | /* | |
1954 | * Get the agi buffer first. It ensures lock ordering | |
1955 | * on the list. | |
1956 | */ | |
1957 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | |
1958 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); | |
1959 | if (error) { | |
1960 | cmn_err(CE_WARN, | |
1961 | "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", | |
1962 | error, mp->m_fsname); | |
1963 | return error; | |
1964 | } | |
1965 | /* | |
1966 | * Validate the magic number of the agi block. | |
1967 | */ | |
1968 | agi = XFS_BUF_TO_AGI(agibp); | |
1969 | agi_ok = | |
16259e7d CH |
1970 | be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && |
1971 | XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); | |
1da177e4 LT |
1972 | if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, |
1973 | XFS_RANDOM_IUNLINK_REMOVE))) { | |
1974 | XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, | |
1975 | mp, agi); | |
1976 | xfs_trans_brelse(tp, agibp); | |
1977 | cmn_err(CE_WARN, | |
1978 | "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", | |
1979 | mp->m_fsname); | |
1980 | return XFS_ERROR(EFSCORRUPTED); | |
1981 | } | |
1982 | /* | |
1983 | * Get the index into the agi hash table for the | |
1984 | * list this inode will go on. | |
1985 | */ | |
1986 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | |
1987 | ASSERT(agino != 0); | |
1988 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | |
16259e7d | 1989 | ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); |
1da177e4 LT |
1990 | ASSERT(agi->agi_unlinked[bucket_index]); |
1991 | ||
16259e7d | 1992 | if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { |
1da177e4 LT |
1993 | /* |
1994 | * We're at the head of the list. Get the inode's | |
1995 | * on-disk buffer to see if there is anyone after us | |
1996 | * on the list. Only modify our next pointer if it | |
1997 | * is not already NULLAGINO. This saves us the overhead | |
1998 | * of dealing with the buffer when there is no need to | |
1999 | * change it. | |
2000 | */ | |
2001 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | |
2002 | if (error) { | |
2003 | cmn_err(CE_WARN, | |
2004 | "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", | |
2005 | error, mp->m_fsname); | |
2006 | return error; | |
2007 | } | |
2008 | next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | |
2009 | ASSERT(next_agino != 0); | |
2010 | if (next_agino != NULLAGINO) { | |
2011 | INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | |
2012 | offset = ip->i_boffset + | |
2013 | offsetof(xfs_dinode_t, di_next_unlinked); | |
2014 | xfs_trans_inode_buf(tp, ibp); | |
2015 | xfs_trans_log_buf(tp, ibp, offset, | |
2016 | (offset + sizeof(xfs_agino_t) - 1)); | |
2017 | xfs_inobp_check(mp, ibp); | |
2018 | } else { | |
2019 | xfs_trans_brelse(tp, ibp); | |
2020 | } | |
2021 | /* | |
2022 | * Point the bucket head pointer at the next inode. | |
2023 | */ | |
2024 | ASSERT(next_agino != 0); | |
2025 | ASSERT(next_agino != agino); | |
16259e7d | 2026 | agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); |
1da177e4 LT |
2027 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
2028 | (sizeof(xfs_agino_t) * bucket_index); | |
2029 | xfs_trans_log_buf(tp, agibp, offset, | |
2030 | (offset + sizeof(xfs_agino_t) - 1)); | |
2031 | } else { | |
2032 | /* | |
2033 | * We need to search the list for the inode being freed. | |
2034 | */ | |
16259e7d | 2035 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
1da177e4 LT |
2036 | last_ibp = NULL; |
2037 | while (next_agino != agino) { | |
2038 | /* | |
2039 | * If the last inode wasn't the one pointing to | |
2040 | * us, then release its buffer since we're not | |
2041 | * going to do anything with it. | |
2042 | */ | |
2043 | if (last_ibp != NULL) { | |
2044 | xfs_trans_brelse(tp, last_ibp); | |
2045 | } | |
2046 | next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); | |
2047 | error = xfs_inotobp(mp, tp, next_ino, &last_dip, | |
2048 | &last_ibp, &last_offset); | |
2049 | if (error) { | |
2050 | cmn_err(CE_WARN, | |
2051 | "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", | |
2052 | error, mp->m_fsname); | |
2053 | return error; | |
2054 | } | |
2055 | next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); | |
2056 | ASSERT(next_agino != NULLAGINO); | |
2057 | ASSERT(next_agino != 0); | |
2058 | } | |
2059 | /* | |
2060 | * Now last_ibp points to the buffer previous to us on | |
2061 | * the unlinked list. Pull us from the list. | |
2062 | */ | |
2063 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | |
2064 | if (error) { | |
2065 | cmn_err(CE_WARN, | |
2066 | "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", | |
2067 | error, mp->m_fsname); | |
2068 | return error; | |
2069 | } | |
2070 | next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | |
2071 | ASSERT(next_agino != 0); | |
2072 | ASSERT(next_agino != agino); | |
2073 | if (next_agino != NULLAGINO) { | |
2074 | INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | |
2075 | offset = ip->i_boffset + | |
2076 | offsetof(xfs_dinode_t, di_next_unlinked); | |
2077 | xfs_trans_inode_buf(tp, ibp); | |
2078 | xfs_trans_log_buf(tp, ibp, offset, | |
2079 | (offset + sizeof(xfs_agino_t) - 1)); | |
2080 | xfs_inobp_check(mp, ibp); | |
2081 | } else { | |
2082 | xfs_trans_brelse(tp, ibp); | |
2083 | } | |
2084 | /* | |
2085 | * Point the previous inode on the list to the next inode. | |
2086 | */ | |
2087 | INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); | |
2088 | ASSERT(next_agino != 0); | |
2089 | offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | |
2090 | xfs_trans_inode_buf(tp, last_ibp); | |
2091 | xfs_trans_log_buf(tp, last_ibp, offset, | |
2092 | (offset + sizeof(xfs_agino_t) - 1)); | |
2093 | xfs_inobp_check(mp, last_ibp); | |
2094 | } | |
2095 | return 0; | |
2096 | } | |
2097 | ||
2098 | static __inline__ int xfs_inode_clean(xfs_inode_t *ip) | |
2099 | { | |
2100 | return (((ip->i_itemp == NULL) || | |
2101 | !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && | |
2102 | (ip->i_update_core == 0)); | |
2103 | } | |
2104 | ||
ba0f32d4 | 2105 | STATIC void |
1da177e4 LT |
2106 | xfs_ifree_cluster( |
2107 | xfs_inode_t *free_ip, | |
2108 | xfs_trans_t *tp, | |
2109 | xfs_ino_t inum) | |
2110 | { | |
2111 | xfs_mount_t *mp = free_ip->i_mount; | |
2112 | int blks_per_cluster; | |
2113 | int nbufs; | |
2114 | int ninodes; | |
2115 | int i, j, found, pre_flushed; | |
2116 | xfs_daddr_t blkno; | |
2117 | xfs_buf_t *bp; | |
2118 | xfs_ihash_t *ih; | |
2119 | xfs_inode_t *ip, **ip_found; | |
2120 | xfs_inode_log_item_t *iip; | |
2121 | xfs_log_item_t *lip; | |
2122 | SPLDECL(s); | |
2123 | ||
2124 | if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { | |
2125 | blks_per_cluster = 1; | |
2126 | ninodes = mp->m_sb.sb_inopblock; | |
2127 | nbufs = XFS_IALLOC_BLOCKS(mp); | |
2128 | } else { | |
2129 | blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / | |
2130 | mp->m_sb.sb_blocksize; | |
2131 | ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; | |
2132 | nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; | |
2133 | } | |
2134 | ||
2135 | ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); | |
2136 | ||
2137 | for (j = 0; j < nbufs; j++, inum += ninodes) { | |
2138 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | |
2139 | XFS_INO_TO_AGBNO(mp, inum)); | |
2140 | ||
2141 | ||
2142 | /* | |
2143 | * Look for each inode in memory and attempt to lock it, | |
2144 | * we can be racing with flush and tail pushing here. | |
2145 | * any inode we get the locks on, add to an array of | |
2146 | * inode items to process later. | |
2147 | * | |
2148 | * The get the buffer lock, we could beat a flush | |
2149 | * or tail pushing thread to the lock here, in which | |
2150 | * case they will go looking for the inode buffer | |
2151 | * and fail, we need some other form of interlock | |
2152 | * here. | |
2153 | */ | |
2154 | found = 0; | |
2155 | for (i = 0; i < ninodes; i++) { | |
2156 | ih = XFS_IHASH(mp, inum + i); | |
2157 | read_lock(&ih->ih_lock); | |
2158 | for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { | |
2159 | if (ip->i_ino == inum + i) | |
2160 | break; | |
2161 | } | |
2162 | ||
2163 | /* Inode not in memory or we found it already, | |
2164 | * nothing to do | |
2165 | */ | |
2166 | if (!ip || (ip->i_flags & XFS_ISTALE)) { | |
2167 | read_unlock(&ih->ih_lock); | |
2168 | continue; | |
2169 | } | |
2170 | ||
2171 | if (xfs_inode_clean(ip)) { | |
2172 | read_unlock(&ih->ih_lock); | |
2173 | continue; | |
2174 | } | |
2175 | ||
2176 | /* If we can get the locks then add it to the | |
2177 | * list, otherwise by the time we get the bp lock | |
2178 | * below it will already be attached to the | |
2179 | * inode buffer. | |
2180 | */ | |
2181 | ||
2182 | /* This inode will already be locked - by us, lets | |
2183 | * keep it that way. | |
2184 | */ | |
2185 | ||
2186 | if (ip == free_ip) { | |
2187 | if (xfs_iflock_nowait(ip)) { | |
2188 | ip->i_flags |= XFS_ISTALE; | |
2189 | ||
2190 | if (xfs_inode_clean(ip)) { | |
2191 | xfs_ifunlock(ip); | |
2192 | } else { | |
2193 | ip_found[found++] = ip; | |
2194 | } | |
2195 | } | |
2196 | read_unlock(&ih->ih_lock); | |
2197 | continue; | |
2198 | } | |
2199 | ||
2200 | if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | |
2201 | if (xfs_iflock_nowait(ip)) { | |
2202 | ip->i_flags |= XFS_ISTALE; | |
2203 | ||
2204 | if (xfs_inode_clean(ip)) { | |
2205 | xfs_ifunlock(ip); | |
2206 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
2207 | } else { | |
2208 | ip_found[found++] = ip; | |
2209 | } | |
2210 | } else { | |
2211 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
2212 | } | |
2213 | } | |
2214 | ||
2215 | read_unlock(&ih->ih_lock); | |
2216 | } | |
2217 | ||
2218 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | |
2219 | mp->m_bsize * blks_per_cluster, | |
2220 | XFS_BUF_LOCK); | |
2221 | ||
2222 | pre_flushed = 0; | |
2223 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
2224 | while (lip) { | |
2225 | if (lip->li_type == XFS_LI_INODE) { | |
2226 | iip = (xfs_inode_log_item_t *)lip; | |
2227 | ASSERT(iip->ili_logged == 1); | |
2228 | lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; | |
2229 | AIL_LOCK(mp,s); | |
2230 | iip->ili_flush_lsn = iip->ili_item.li_lsn; | |
2231 | AIL_UNLOCK(mp, s); | |
2232 | iip->ili_inode->i_flags |= XFS_ISTALE; | |
2233 | pre_flushed++; | |
2234 | } | |
2235 | lip = lip->li_bio_list; | |
2236 | } | |
2237 | ||
2238 | for (i = 0; i < found; i++) { | |
2239 | ip = ip_found[i]; | |
2240 | iip = ip->i_itemp; | |
2241 | ||
2242 | if (!iip) { | |
2243 | ip->i_update_core = 0; | |
2244 | xfs_ifunlock(ip); | |
2245 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
2246 | continue; | |
2247 | } | |
2248 | ||
2249 | iip->ili_last_fields = iip->ili_format.ilf_fields; | |
2250 | iip->ili_format.ilf_fields = 0; | |
2251 | iip->ili_logged = 1; | |
2252 | AIL_LOCK(mp,s); | |
2253 | iip->ili_flush_lsn = iip->ili_item.li_lsn; | |
2254 | AIL_UNLOCK(mp, s); | |
2255 | ||
2256 | xfs_buf_attach_iodone(bp, | |
2257 | (void(*)(xfs_buf_t*,xfs_log_item_t*)) | |
2258 | xfs_istale_done, (xfs_log_item_t *)iip); | |
2259 | if (ip != free_ip) { | |
2260 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
2261 | } | |
2262 | } | |
2263 | ||
2264 | if (found || pre_flushed) | |
2265 | xfs_trans_stale_inode_buf(tp, bp); | |
2266 | xfs_trans_binval(tp, bp); | |
2267 | } | |
2268 | ||
2269 | kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); | |
2270 | } | |
2271 | ||
2272 | /* | |
2273 | * This is called to return an inode to the inode free list. | |
2274 | * The inode should already be truncated to 0 length and have | |
2275 | * no pages associated with it. This routine also assumes that | |
2276 | * the inode is already a part of the transaction. | |
2277 | * | |
2278 | * The on-disk copy of the inode will have been added to the list | |
2279 | * of unlinked inodes in the AGI. We need to remove the inode from | |
2280 | * that list atomically with respect to freeing it here. | |
2281 | */ | |
2282 | int | |
2283 | xfs_ifree( | |
2284 | xfs_trans_t *tp, | |
2285 | xfs_inode_t *ip, | |
2286 | xfs_bmap_free_t *flist) | |
2287 | { | |
2288 | int error; | |
2289 | int delete; | |
2290 | xfs_ino_t first_ino; | |
2291 | ||
2292 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | |
2293 | ASSERT(ip->i_transp == tp); | |
2294 | ASSERT(ip->i_d.di_nlink == 0); | |
2295 | ASSERT(ip->i_d.di_nextents == 0); | |
2296 | ASSERT(ip->i_d.di_anextents == 0); | |
2297 | ASSERT((ip->i_d.di_size == 0) || | |
2298 | ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); | |
2299 | ASSERT(ip->i_d.di_nblocks == 0); | |
2300 | ||
2301 | /* | |
2302 | * Pull the on-disk inode from the AGI unlinked list. | |
2303 | */ | |
2304 | error = xfs_iunlink_remove(tp, ip); | |
2305 | if (error != 0) { | |
2306 | return error; | |
2307 | } | |
2308 | ||
2309 | error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); | |
2310 | if (error != 0) { | |
2311 | return error; | |
2312 | } | |
2313 | ip->i_d.di_mode = 0; /* mark incore inode as free */ | |
2314 | ip->i_d.di_flags = 0; | |
2315 | ip->i_d.di_dmevmask = 0; | |
2316 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ | |
2317 | ip->i_df.if_ext_max = | |
2318 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | |
2319 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | |
2320 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | |
2321 | /* | |
2322 | * Bump the generation count so no one will be confused | |
2323 | * by reincarnations of this inode. | |
2324 | */ | |
2325 | ip->i_d.di_gen++; | |
2326 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | |
2327 | ||
2328 | if (delete) { | |
2329 | xfs_ifree_cluster(ip, tp, first_ino); | |
2330 | } | |
2331 | ||
2332 | return 0; | |
2333 | } | |
2334 | ||
2335 | /* | |
2336 | * Reallocate the space for if_broot based on the number of records | |
2337 | * being added or deleted as indicated in rec_diff. Move the records | |
2338 | * and pointers in if_broot to fit the new size. When shrinking this | |
2339 | * will eliminate holes between the records and pointers created by | |
2340 | * the caller. When growing this will create holes to be filled in | |
2341 | * by the caller. | |
2342 | * | |
2343 | * The caller must not request to add more records than would fit in | |
2344 | * the on-disk inode root. If the if_broot is currently NULL, then | |
2345 | * if we adding records one will be allocated. The caller must also | |
2346 | * not request that the number of records go below zero, although | |
2347 | * it can go to zero. | |
2348 | * | |
2349 | * ip -- the inode whose if_broot area is changing | |
2350 | * ext_diff -- the change in the number of records, positive or negative, | |
2351 | * requested for the if_broot array. | |
2352 | */ | |
2353 | void | |
2354 | xfs_iroot_realloc( | |
2355 | xfs_inode_t *ip, | |
2356 | int rec_diff, | |
2357 | int whichfork) | |
2358 | { | |
2359 | int cur_max; | |
2360 | xfs_ifork_t *ifp; | |
2361 | xfs_bmbt_block_t *new_broot; | |
2362 | int new_max; | |
2363 | size_t new_size; | |
2364 | char *np; | |
2365 | char *op; | |
2366 | ||
2367 | /* | |
2368 | * Handle the degenerate case quietly. | |
2369 | */ | |
2370 | if (rec_diff == 0) { | |
2371 | return; | |
2372 | } | |
2373 | ||
2374 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2375 | if (rec_diff > 0) { | |
2376 | /* | |
2377 | * If there wasn't any memory allocated before, just | |
2378 | * allocate it now and get out. | |
2379 | */ | |
2380 | if (ifp->if_broot_bytes == 0) { | |
2381 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); | |
2382 | ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, | |
2383 | KM_SLEEP); | |
2384 | ifp->if_broot_bytes = (int)new_size; | |
2385 | return; | |
2386 | } | |
2387 | ||
2388 | /* | |
2389 | * If there is already an existing if_broot, then we need | |
2390 | * to realloc() it and shift the pointers to their new | |
2391 | * location. The records don't change location because | |
2392 | * they are kept butted up against the btree block header. | |
2393 | */ | |
2394 | cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | |
2395 | new_max = cur_max + rec_diff; | |
2396 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | |
2397 | ifp->if_broot = (xfs_bmbt_block_t *) | |
2398 | kmem_realloc(ifp->if_broot, | |
2399 | new_size, | |
2400 | (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ | |
2401 | KM_SLEEP); | |
2402 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | |
2403 | ifp->if_broot_bytes); | |
2404 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | |
2405 | (int)new_size); | |
2406 | ifp->if_broot_bytes = (int)new_size; | |
2407 | ASSERT(ifp->if_broot_bytes <= | |
2408 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | |
2409 | memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | |
2410 | return; | |
2411 | } | |
2412 | ||
2413 | /* | |
2414 | * rec_diff is less than 0. In this case, we are shrinking the | |
2415 | * if_broot buffer. It must already exist. If we go to zero | |
2416 | * records, just get rid of the root and clear the status bit. | |
2417 | */ | |
2418 | ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | |
2419 | cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | |
2420 | new_max = cur_max + rec_diff; | |
2421 | ASSERT(new_max >= 0); | |
2422 | if (new_max > 0) | |
2423 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | |
2424 | else | |
2425 | new_size = 0; | |
2426 | if (new_size > 0) { | |
2427 | new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); | |
2428 | /* | |
2429 | * First copy over the btree block header. | |
2430 | */ | |
2431 | memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); | |
2432 | } else { | |
2433 | new_broot = NULL; | |
2434 | ifp->if_flags &= ~XFS_IFBROOT; | |
2435 | } | |
2436 | ||
2437 | /* | |
2438 | * Only copy the records and pointers if there are any. | |
2439 | */ | |
2440 | if (new_max > 0) { | |
2441 | /* | |
2442 | * First copy the records. | |
2443 | */ | |
2444 | op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, | |
2445 | ifp->if_broot_bytes); | |
2446 | np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, | |
2447 | (int)new_size); | |
2448 | memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); | |
2449 | ||
2450 | /* | |
2451 | * Then copy the pointers. | |
2452 | */ | |
2453 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | |
2454 | ifp->if_broot_bytes); | |
2455 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, | |
2456 | (int)new_size); | |
2457 | memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | |
2458 | } | |
2459 | kmem_free(ifp->if_broot, ifp->if_broot_bytes); | |
2460 | ifp->if_broot = new_broot; | |
2461 | ifp->if_broot_bytes = (int)new_size; | |
2462 | ASSERT(ifp->if_broot_bytes <= | |
2463 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | |
2464 | return; | |
2465 | } | |
2466 | ||
2467 | ||
2468 | /* | |
2469 | * This is called when the amount of space needed for if_extents | |
2470 | * is increased or decreased. The change in size is indicated by | |
2471 | * the number of extents that need to be added or deleted in the | |
2472 | * ext_diff parameter. | |
2473 | * | |
2474 | * If the amount of space needed has decreased below the size of the | |
2475 | * inline buffer, then switch to using the inline buffer. Otherwise, | |
2476 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | |
2477 | * to what is needed. | |
2478 | * | |
2479 | * ip -- the inode whose if_extents area is changing | |
2480 | * ext_diff -- the change in the number of extents, positive or negative, | |
2481 | * requested for the if_extents array. | |
2482 | */ | |
2483 | void | |
2484 | xfs_iext_realloc( | |
2485 | xfs_inode_t *ip, | |
2486 | int ext_diff, | |
2487 | int whichfork) | |
2488 | { | |
2489 | int byte_diff; | |
2490 | xfs_ifork_t *ifp; | |
2491 | int new_size; | |
2492 | uint rnew_size; | |
2493 | ||
2494 | if (ext_diff == 0) { | |
2495 | return; | |
2496 | } | |
2497 | ||
2498 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2499 | byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); | |
2500 | new_size = (int)ifp->if_bytes + byte_diff; | |
2501 | ASSERT(new_size >= 0); | |
2502 | ||
2503 | if (new_size == 0) { | |
2504 | if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | |
2505 | ASSERT(ifp->if_real_bytes != 0); | |
2506 | kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | |
2507 | } | |
2508 | ifp->if_u1.if_extents = NULL; | |
2509 | rnew_size = 0; | |
2510 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { | |
2511 | /* | |
2512 | * If the valid extents can fit in if_inline_ext, | |
2513 | * copy them from the malloc'd vector and free it. | |
2514 | */ | |
2515 | if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | |
2516 | /* | |
2517 | * For now, empty files are format EXTENTS, | |
2518 | * so the if_extents pointer is null. | |
2519 | */ | |
2520 | if (ifp->if_u1.if_extents) { | |
2521 | memcpy(ifp->if_u2.if_inline_ext, | |
2522 | ifp->if_u1.if_extents, new_size); | |
2523 | kmem_free(ifp->if_u1.if_extents, | |
2524 | ifp->if_real_bytes); | |
2525 | } | |
2526 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | |
2527 | } | |
2528 | rnew_size = 0; | |
2529 | } else { | |
2530 | rnew_size = new_size; | |
2531 | if ((rnew_size & (rnew_size - 1)) != 0) | |
2532 | rnew_size = xfs_iroundup(rnew_size); | |
2533 | /* | |
2534 | * Stuck with malloc/realloc. | |
2535 | */ | |
2536 | if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { | |
2537 | ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | |
2538 | kmem_alloc(rnew_size, KM_SLEEP); | |
2539 | memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | |
2540 | sizeof(ifp->if_u2.if_inline_ext)); | |
2541 | } else if (rnew_size != ifp->if_real_bytes) { | |
2542 | ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | |
2543 | kmem_realloc(ifp->if_u1.if_extents, | |
2544 | rnew_size, | |
2545 | ifp->if_real_bytes, | |
2546 | KM_NOFS); | |
2547 | } | |
2548 | } | |
2549 | ifp->if_real_bytes = rnew_size; | |
2550 | ifp->if_bytes = new_size; | |
2551 | } | |
2552 | ||
2553 | ||
2554 | /* | |
2555 | * This is called when the amount of space needed for if_data | |
2556 | * is increased or decreased. The change in size is indicated by | |
2557 | * the number of bytes that need to be added or deleted in the | |
2558 | * byte_diff parameter. | |
2559 | * | |
2560 | * If the amount of space needed has decreased below the size of the | |
2561 | * inline buffer, then switch to using the inline buffer. Otherwise, | |
2562 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | |
2563 | * to what is needed. | |
2564 | * | |
2565 | * ip -- the inode whose if_data area is changing | |
2566 | * byte_diff -- the change in the number of bytes, positive or negative, | |
2567 | * requested for the if_data array. | |
2568 | */ | |
2569 | void | |
2570 | xfs_idata_realloc( | |
2571 | xfs_inode_t *ip, | |
2572 | int byte_diff, | |
2573 | int whichfork) | |
2574 | { | |
2575 | xfs_ifork_t *ifp; | |
2576 | int new_size; | |
2577 | int real_size; | |
2578 | ||
2579 | if (byte_diff == 0) { | |
2580 | return; | |
2581 | } | |
2582 | ||
2583 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2584 | new_size = (int)ifp->if_bytes + byte_diff; | |
2585 | ASSERT(new_size >= 0); | |
2586 | ||
2587 | if (new_size == 0) { | |
2588 | if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
2589 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | |
2590 | } | |
2591 | ifp->if_u1.if_data = NULL; | |
2592 | real_size = 0; | |
2593 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | |
2594 | /* | |
2595 | * If the valid extents/data can fit in if_inline_ext/data, | |
2596 | * copy them from the malloc'd vector and free it. | |
2597 | */ | |
2598 | if (ifp->if_u1.if_data == NULL) { | |
2599 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
2600 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
2601 | ASSERT(ifp->if_real_bytes != 0); | |
2602 | memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | |
2603 | new_size); | |
2604 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | |
2605 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | |
2606 | } | |
2607 | real_size = 0; | |
2608 | } else { | |
2609 | /* | |
2610 | * Stuck with malloc/realloc. | |
2611 | * For inline data, the underlying buffer must be | |
2612 | * a multiple of 4 bytes in size so that it can be | |
2613 | * logged and stay on word boundaries. We enforce | |
2614 | * that here. | |
2615 | */ | |
2616 | real_size = roundup(new_size, 4); | |
2617 | if (ifp->if_u1.if_data == NULL) { | |
2618 | ASSERT(ifp->if_real_bytes == 0); | |
2619 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | |
2620 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | |
2621 | /* | |
2622 | * Only do the realloc if the underlying size | |
2623 | * is really changing. | |
2624 | */ | |
2625 | if (ifp->if_real_bytes != real_size) { | |
2626 | ifp->if_u1.if_data = | |
2627 | kmem_realloc(ifp->if_u1.if_data, | |
2628 | real_size, | |
2629 | ifp->if_real_bytes, | |
2630 | KM_SLEEP); | |
2631 | } | |
2632 | } else { | |
2633 | ASSERT(ifp->if_real_bytes == 0); | |
2634 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | |
2635 | memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, | |
2636 | ifp->if_bytes); | |
2637 | } | |
2638 | } | |
2639 | ifp->if_real_bytes = real_size; | |
2640 | ifp->if_bytes = new_size; | |
2641 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | |
2642 | } | |
2643 | ||
2644 | ||
2645 | ||
2646 | ||
2647 | /* | |
2648 | * Map inode to disk block and offset. | |
2649 | * | |
2650 | * mp -- the mount point structure for the current file system | |
2651 | * tp -- the current transaction | |
2652 | * ino -- the inode number of the inode to be located | |
2653 | * imap -- this structure is filled in with the information necessary | |
2654 | * to retrieve the given inode from disk | |
2655 | * flags -- flags to pass to xfs_dilocate indicating whether or not | |
2656 | * lookups in the inode btree were OK or not | |
2657 | */ | |
2658 | int | |
2659 | xfs_imap( | |
2660 | xfs_mount_t *mp, | |
2661 | xfs_trans_t *tp, | |
2662 | xfs_ino_t ino, | |
2663 | xfs_imap_t *imap, | |
2664 | uint flags) | |
2665 | { | |
2666 | xfs_fsblock_t fsbno; | |
2667 | int len; | |
2668 | int off; | |
2669 | int error; | |
2670 | ||
2671 | fsbno = imap->im_blkno ? | |
2672 | XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; | |
2673 | error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); | |
2674 | if (error != 0) { | |
2675 | return error; | |
2676 | } | |
2677 | imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); | |
2678 | imap->im_len = XFS_FSB_TO_BB(mp, len); | |
2679 | imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); | |
2680 | imap->im_ioffset = (ushort)off; | |
2681 | imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); | |
2682 | return 0; | |
2683 | } | |
2684 | ||
2685 | void | |
2686 | xfs_idestroy_fork( | |
2687 | xfs_inode_t *ip, | |
2688 | int whichfork) | |
2689 | { | |
2690 | xfs_ifork_t *ifp; | |
2691 | ||
2692 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2693 | if (ifp->if_broot != NULL) { | |
2694 | kmem_free(ifp->if_broot, ifp->if_broot_bytes); | |
2695 | ifp->if_broot = NULL; | |
2696 | } | |
2697 | ||
2698 | /* | |
2699 | * If the format is local, then we can't have an extents | |
2700 | * array so just look for an inline data array. If we're | |
2701 | * not local then we may or may not have an extents list, | |
2702 | * so check and free it up if we do. | |
2703 | */ | |
2704 | if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | |
2705 | if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | |
2706 | (ifp->if_u1.if_data != NULL)) { | |
2707 | ASSERT(ifp->if_real_bytes != 0); | |
2708 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | |
2709 | ifp->if_u1.if_data = NULL; | |
2710 | ifp->if_real_bytes = 0; | |
2711 | } | |
2712 | } else if ((ifp->if_flags & XFS_IFEXTENTS) && | |
2713 | (ifp->if_u1.if_extents != NULL) && | |
2714 | (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { | |
2715 | ASSERT(ifp->if_real_bytes != 0); | |
2716 | kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | |
2717 | ifp->if_u1.if_extents = NULL; | |
2718 | ifp->if_real_bytes = 0; | |
2719 | } | |
2720 | ASSERT(ifp->if_u1.if_extents == NULL || | |
2721 | ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | |
2722 | ASSERT(ifp->if_real_bytes == 0); | |
2723 | if (whichfork == XFS_ATTR_FORK) { | |
2724 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | |
2725 | ip->i_afp = NULL; | |
2726 | } | |
2727 | } | |
2728 | ||
2729 | /* | |
2730 | * This is called free all the memory associated with an inode. | |
2731 | * It must free the inode itself and any buffers allocated for | |
2732 | * if_extents/if_data and if_broot. It must also free the lock | |
2733 | * associated with the inode. | |
2734 | */ | |
2735 | void | |
2736 | xfs_idestroy( | |
2737 | xfs_inode_t *ip) | |
2738 | { | |
2739 | ||
2740 | switch (ip->i_d.di_mode & S_IFMT) { | |
2741 | case S_IFREG: | |
2742 | case S_IFDIR: | |
2743 | case S_IFLNK: | |
2744 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | |
2745 | break; | |
2746 | } | |
2747 | if (ip->i_afp) | |
2748 | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | |
2749 | mrfree(&ip->i_lock); | |
2750 | mrfree(&ip->i_iolock); | |
2751 | freesema(&ip->i_flock); | |
2752 | #ifdef XFS_BMAP_TRACE | |
2753 | ktrace_free(ip->i_xtrace); | |
2754 | #endif | |
2755 | #ifdef XFS_BMBT_TRACE | |
2756 | ktrace_free(ip->i_btrace); | |
2757 | #endif | |
2758 | #ifdef XFS_RW_TRACE | |
2759 | ktrace_free(ip->i_rwtrace); | |
2760 | #endif | |
2761 | #ifdef XFS_ILOCK_TRACE | |
2762 | ktrace_free(ip->i_lock_trace); | |
2763 | #endif | |
2764 | #ifdef XFS_DIR2_TRACE | |
2765 | ktrace_free(ip->i_dir_trace); | |
2766 | #endif | |
2767 | if (ip->i_itemp) { | |
2768 | /* XXXdpd should be able to assert this but shutdown | |
2769 | * is leaving the AIL behind. */ | |
2770 | ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || | |
2771 | XFS_FORCED_SHUTDOWN(ip->i_mount)); | |
2772 | xfs_inode_item_destroy(ip); | |
2773 | } | |
2774 | kmem_zone_free(xfs_inode_zone, ip); | |
2775 | } | |
2776 | ||
2777 | ||
2778 | /* | |
2779 | * Increment the pin count of the given buffer. | |
2780 | * This value is protected by ipinlock spinlock in the mount structure. | |
2781 | */ | |
2782 | void | |
2783 | xfs_ipin( | |
2784 | xfs_inode_t *ip) | |
2785 | { | |
2786 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | |
2787 | ||
2788 | atomic_inc(&ip->i_pincount); | |
2789 | } | |
2790 | ||
2791 | /* | |
2792 | * Decrement the pin count of the given inode, and wake up | |
2793 | * anyone in xfs_iwait_unpin() if the count goes to 0. The | |
2794 | * inode must have been previoulsy pinned with a call to xfs_ipin(). | |
2795 | */ | |
2796 | void | |
2797 | xfs_iunpin( | |
2798 | xfs_inode_t *ip) | |
2799 | { | |
2800 | ASSERT(atomic_read(&ip->i_pincount) > 0); | |
2801 | ||
2802 | if (atomic_dec_and_test(&ip->i_pincount)) { | |
2803 | vnode_t *vp = XFS_ITOV_NULL(ip); | |
2804 | ||
2805 | /* make sync come back and flush this inode */ | |
2806 | if (vp) { | |
2807 | struct inode *inode = LINVFS_GET_IP(vp); | |
2808 | ||
2809 | if (!(inode->i_state & I_NEW)) | |
2810 | mark_inode_dirty_sync(inode); | |
2811 | } | |
2812 | ||
2813 | wake_up(&ip->i_ipin_wait); | |
2814 | } | |
2815 | } | |
2816 | ||
2817 | /* | |
2818 | * This is called to wait for the given inode to be unpinned. | |
2819 | * It will sleep until this happens. The caller must have the | |
2820 | * inode locked in at least shared mode so that the buffer cannot | |
2821 | * be subsequently pinned once someone is waiting for it to be | |
2822 | * unpinned. | |
2823 | */ | |
ba0f32d4 | 2824 | STATIC void |
1da177e4 LT |
2825 | xfs_iunpin_wait( |
2826 | xfs_inode_t *ip) | |
2827 | { | |
2828 | xfs_inode_log_item_t *iip; | |
2829 | xfs_lsn_t lsn; | |
2830 | ||
2831 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); | |
2832 | ||
2833 | if (atomic_read(&ip->i_pincount) == 0) { | |
2834 | return; | |
2835 | } | |
2836 | ||
2837 | iip = ip->i_itemp; | |
2838 | if (iip && iip->ili_last_lsn) { | |
2839 | lsn = iip->ili_last_lsn; | |
2840 | } else { | |
2841 | lsn = (xfs_lsn_t)0; | |
2842 | } | |
2843 | ||
2844 | /* | |
2845 | * Give the log a push so we don't wait here too long. | |
2846 | */ | |
2847 | xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); | |
2848 | ||
2849 | wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); | |
2850 | } | |
2851 | ||
2852 | ||
2853 | /* | |
2854 | * xfs_iextents_copy() | |
2855 | * | |
2856 | * This is called to copy the REAL extents (as opposed to the delayed | |
2857 | * allocation extents) from the inode into the given buffer. It | |
2858 | * returns the number of bytes copied into the buffer. | |
2859 | * | |
2860 | * If there are no delayed allocation extents, then we can just | |
2861 | * memcpy() the extents into the buffer. Otherwise, we need to | |
2862 | * examine each extent in turn and skip those which are delayed. | |
2863 | */ | |
2864 | int | |
2865 | xfs_iextents_copy( | |
2866 | xfs_inode_t *ip, | |
2867 | xfs_bmbt_rec_t *buffer, | |
2868 | int whichfork) | |
2869 | { | |
2870 | int copied; | |
2871 | xfs_bmbt_rec_t *dest_ep; | |
2872 | xfs_bmbt_rec_t *ep; | |
2873 | #ifdef XFS_BMAP_TRACE | |
2874 | static char fname[] = "xfs_iextents_copy"; | |
2875 | #endif | |
2876 | int i; | |
2877 | xfs_ifork_t *ifp; | |
2878 | int nrecs; | |
2879 | xfs_fsblock_t start_block; | |
2880 | ||
2881 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2882 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | |
2883 | ASSERT(ifp->if_bytes > 0); | |
2884 | ||
2885 | nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | |
2886 | xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); | |
2887 | ASSERT(nrecs > 0); | |
2888 | ||
2889 | /* | |
2890 | * There are some delayed allocation extents in the | |
2891 | * inode, so copy the extents one at a time and skip | |
2892 | * the delayed ones. There must be at least one | |
2893 | * non-delayed extent. | |
2894 | */ | |
2895 | ep = ifp->if_u1.if_extents; | |
2896 | dest_ep = buffer; | |
2897 | copied = 0; | |
2898 | for (i = 0; i < nrecs; i++) { | |
2899 | start_block = xfs_bmbt_get_startblock(ep); | |
2900 | if (ISNULLSTARTBLOCK(start_block)) { | |
2901 | /* | |
2902 | * It's a delayed allocation extent, so skip it. | |
2903 | */ | |
2904 | ep++; | |
2905 | continue; | |
2906 | } | |
2907 | ||
2908 | /* Translate to on disk format */ | |
2909 | put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), | |
2910 | (__uint64_t*)&dest_ep->l0); | |
2911 | put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), | |
2912 | (__uint64_t*)&dest_ep->l1); | |
2913 | dest_ep++; | |
2914 | ep++; | |
2915 | copied++; | |
2916 | } | |
2917 | ASSERT(copied != 0); | |
2918 | xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); | |
2919 | ||
2920 | return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | |
2921 | } | |
2922 | ||
2923 | /* | |
2924 | * Each of the following cases stores data into the same region | |
2925 | * of the on-disk inode, so only one of them can be valid at | |
2926 | * any given time. While it is possible to have conflicting formats | |
2927 | * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | |
2928 | * in EXTENTS format, this can only happen when the fork has | |
2929 | * changed formats after being modified but before being flushed. | |
2930 | * In these cases, the format always takes precedence, because the | |
2931 | * format indicates the current state of the fork. | |
2932 | */ | |
2933 | /*ARGSUSED*/ | |
2934 | STATIC int | |
2935 | xfs_iflush_fork( | |
2936 | xfs_inode_t *ip, | |
2937 | xfs_dinode_t *dip, | |
2938 | xfs_inode_log_item_t *iip, | |
2939 | int whichfork, | |
2940 | xfs_buf_t *bp) | |
2941 | { | |
2942 | char *cp; | |
2943 | xfs_ifork_t *ifp; | |
2944 | xfs_mount_t *mp; | |
2945 | #ifdef XFS_TRANS_DEBUG | |
2946 | int first; | |
2947 | #endif | |
2948 | static const short brootflag[2] = | |
2949 | { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | |
2950 | static const short dataflag[2] = | |
2951 | { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | |
2952 | static const short extflag[2] = | |
2953 | { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | |
2954 | ||
2955 | if (iip == NULL) | |
2956 | return 0; | |
2957 | ifp = XFS_IFORK_PTR(ip, whichfork); | |
2958 | /* | |
2959 | * This can happen if we gave up in iformat in an error path, | |
2960 | * for the attribute fork. | |
2961 | */ | |
2962 | if (ifp == NULL) { | |
2963 | ASSERT(whichfork == XFS_ATTR_FORK); | |
2964 | return 0; | |
2965 | } | |
2966 | cp = XFS_DFORK_PTR(dip, whichfork); | |
2967 | mp = ip->i_mount; | |
2968 | switch (XFS_IFORK_FORMAT(ip, whichfork)) { | |
2969 | case XFS_DINODE_FMT_LOCAL: | |
2970 | if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && | |
2971 | (ifp->if_bytes > 0)) { | |
2972 | ASSERT(ifp->if_u1.if_data != NULL); | |
2973 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | |
2974 | memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | |
2975 | } | |
2976 | if (whichfork == XFS_DATA_FORK) { | |
2977 | if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { | |
2978 | XFS_ERROR_REPORT("xfs_iflush_fork", | |
2979 | XFS_ERRLEVEL_LOW, mp); | |
2980 | return XFS_ERROR(EFSCORRUPTED); | |
2981 | } | |
2982 | } | |
2983 | break; | |
2984 | ||
2985 | case XFS_DINODE_FMT_EXTENTS: | |
2986 | ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | |
2987 | !(iip->ili_format.ilf_fields & extflag[whichfork])); | |
2988 | ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); | |
2989 | ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); | |
2990 | if ((iip->ili_format.ilf_fields & extflag[whichfork]) && | |
2991 | (ifp->if_bytes > 0)) { | |
2992 | ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); | |
2993 | (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | |
2994 | whichfork); | |
2995 | } | |
2996 | break; | |
2997 | ||
2998 | case XFS_DINODE_FMT_BTREE: | |
2999 | if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && | |
3000 | (ifp->if_broot_bytes > 0)) { | |
3001 | ASSERT(ifp->if_broot != NULL); | |
3002 | ASSERT(ifp->if_broot_bytes <= | |
3003 | (XFS_IFORK_SIZE(ip, whichfork) + | |
3004 | XFS_BROOT_SIZE_ADJ)); | |
3005 | xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, | |
3006 | (xfs_bmdr_block_t *)cp, | |
3007 | XFS_DFORK_SIZE(dip, mp, whichfork)); | |
3008 | } | |
3009 | break; | |
3010 | ||
3011 | case XFS_DINODE_FMT_DEV: | |
3012 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | |
3013 | ASSERT(whichfork == XFS_DATA_FORK); | |
3014 | INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); | |
3015 | } | |
3016 | break; | |
3017 | ||
3018 | case XFS_DINODE_FMT_UUID: | |
3019 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | |
3020 | ASSERT(whichfork == XFS_DATA_FORK); | |
3021 | memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, | |
3022 | sizeof(uuid_t)); | |
3023 | } | |
3024 | break; | |
3025 | ||
3026 | default: | |
3027 | ASSERT(0); | |
3028 | break; | |
3029 | } | |
3030 | ||
3031 | return 0; | |
3032 | } | |
3033 | ||
3034 | /* | |
3035 | * xfs_iflush() will write a modified inode's changes out to the | |
3036 | * inode's on disk home. The caller must have the inode lock held | |
3037 | * in at least shared mode and the inode flush semaphore must be | |
3038 | * held as well. The inode lock will still be held upon return from | |
3039 | * the call and the caller is free to unlock it. | |
3040 | * The inode flush lock will be unlocked when the inode reaches the disk. | |
3041 | * The flags indicate how the inode's buffer should be written out. | |
3042 | */ | |
3043 | int | |
3044 | xfs_iflush( | |
3045 | xfs_inode_t *ip, | |
3046 | uint flags) | |
3047 | { | |
3048 | xfs_inode_log_item_t *iip; | |
3049 | xfs_buf_t *bp; | |
3050 | xfs_dinode_t *dip; | |
3051 | xfs_mount_t *mp; | |
3052 | int error; | |
3053 | /* REFERENCED */ | |
3054 | xfs_chash_t *ch; | |
3055 | xfs_inode_t *iq; | |
3056 | int clcount; /* count of inodes clustered */ | |
3057 | int bufwasdelwri; | |
3058 | enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; | |
3059 | SPLDECL(s); | |
3060 | ||
3061 | XFS_STATS_INC(xs_iflush_count); | |
3062 | ||
3063 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | |
3064 | ASSERT(valusema(&ip->i_flock) <= 0); | |
3065 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | |
3066 | ip->i_d.di_nextents > ip->i_df.if_ext_max); | |
3067 | ||
3068 | iip = ip->i_itemp; | |
3069 | mp = ip->i_mount; | |
3070 | ||
3071 | /* | |
3072 | * If the inode isn't dirty, then just release the inode | |
3073 | * flush lock and do nothing. | |
3074 | */ | |
3075 | if ((ip->i_update_core == 0) && | |
3076 | ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | |
3077 | ASSERT((iip != NULL) ? | |
3078 | !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); | |
3079 | xfs_ifunlock(ip); | |
3080 | return 0; | |
3081 | } | |
3082 | ||
3083 | /* | |
3084 | * We can't flush the inode until it is unpinned, so | |
3085 | * wait for it. We know noone new can pin it, because | |
3086 | * we are holding the inode lock shared and you need | |
3087 | * to hold it exclusively to pin the inode. | |
3088 | */ | |
3089 | xfs_iunpin_wait(ip); | |
3090 | ||
3091 | /* | |
3092 | * This may have been unpinned because the filesystem is shutting | |
3093 | * down forcibly. If that's the case we must not write this inode | |
3094 | * to disk, because the log record didn't make it to disk! | |
3095 | */ | |
3096 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
3097 | ip->i_update_core = 0; | |
3098 | if (iip) | |
3099 | iip->ili_format.ilf_fields = 0; | |
3100 | xfs_ifunlock(ip); | |
3101 | return XFS_ERROR(EIO); | |
3102 | } | |
3103 | ||
3104 | /* | |
3105 | * Get the buffer containing the on-disk inode. | |
3106 | */ | |
3107 | error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); | |
3108 | if (error != 0) { | |
3109 | xfs_ifunlock(ip); | |
3110 | return error; | |
3111 | } | |
3112 | ||
3113 | /* | |
3114 | * Decide how buffer will be flushed out. This is done before | |
3115 | * the call to xfs_iflush_int because this field is zeroed by it. | |
3116 | */ | |
3117 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { | |
3118 | /* | |
3119 | * Flush out the inode buffer according to the directions | |
3120 | * of the caller. In the cases where the caller has given | |
3121 | * us a choice choose the non-delwri case. This is because | |
3122 | * the inode is in the AIL and we need to get it out soon. | |
3123 | */ | |
3124 | switch (flags) { | |
3125 | case XFS_IFLUSH_SYNC: | |
3126 | case XFS_IFLUSH_DELWRI_ELSE_SYNC: | |
3127 | flags = 0; | |
3128 | break; | |
3129 | case XFS_IFLUSH_ASYNC: | |
3130 | case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | |
3131 | flags = INT_ASYNC; | |
3132 | break; | |
3133 | case XFS_IFLUSH_DELWRI: | |
3134 | flags = INT_DELWRI; | |
3135 | break; | |
3136 | default: | |
3137 | ASSERT(0); | |
3138 | flags = 0; | |
3139 | break; | |
3140 | } | |
3141 | } else { | |
3142 | switch (flags) { | |
3143 | case XFS_IFLUSH_DELWRI_ELSE_SYNC: | |
3144 | case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | |
3145 | case XFS_IFLUSH_DELWRI: | |
3146 | flags = INT_DELWRI; | |
3147 | break; | |
3148 | case XFS_IFLUSH_ASYNC: | |
3149 | flags = INT_ASYNC; | |
3150 | break; | |
3151 | case XFS_IFLUSH_SYNC: | |
3152 | flags = 0; | |
3153 | break; | |
3154 | default: | |
3155 | ASSERT(0); | |
3156 | flags = 0; | |
3157 | break; | |
3158 | } | |
3159 | } | |
3160 | ||
3161 | /* | |
3162 | * First flush out the inode that xfs_iflush was called with. | |
3163 | */ | |
3164 | error = xfs_iflush_int(ip, bp); | |
3165 | if (error) { | |
3166 | goto corrupt_out; | |
3167 | } | |
3168 | ||
3169 | /* | |
3170 | * inode clustering: | |
3171 | * see if other inodes can be gathered into this write | |
3172 | */ | |
3173 | ||
3174 | ip->i_chash->chl_buf = bp; | |
3175 | ||
3176 | ch = XFS_CHASH(mp, ip->i_blkno); | |
3177 | s = mutex_spinlock(&ch->ch_lock); | |
3178 | ||
3179 | clcount = 0; | |
3180 | for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { | |
3181 | /* | |
3182 | * Do an un-protected check to see if the inode is dirty and | |
3183 | * is a candidate for flushing. These checks will be repeated | |
3184 | * later after the appropriate locks are acquired. | |
3185 | */ | |
3186 | iip = iq->i_itemp; | |
3187 | if ((iq->i_update_core == 0) && | |
3188 | ((iip == NULL) || | |
3189 | !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && | |
3190 | xfs_ipincount(iq) == 0) { | |
3191 | continue; | |
3192 | } | |
3193 | ||
3194 | /* | |
3195 | * Try to get locks. If any are unavailable, | |
3196 | * then this inode cannot be flushed and is skipped. | |
3197 | */ | |
3198 | ||
3199 | /* get inode locks (just i_lock) */ | |
3200 | if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { | |
3201 | /* get inode flush lock */ | |
3202 | if (xfs_iflock_nowait(iq)) { | |
3203 | /* check if pinned */ | |
3204 | if (xfs_ipincount(iq) == 0) { | |
3205 | /* arriving here means that | |
3206 | * this inode can be flushed. | |
3207 | * first re-check that it's | |
3208 | * dirty | |
3209 | */ | |
3210 | iip = iq->i_itemp; | |
3211 | if ((iq->i_update_core != 0)|| | |
3212 | ((iip != NULL) && | |
3213 | (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | |
3214 | clcount++; | |
3215 | error = xfs_iflush_int(iq, bp); | |
3216 | if (error) { | |
3217 | xfs_iunlock(iq, | |
3218 | XFS_ILOCK_SHARED); | |
3219 | goto cluster_corrupt_out; | |
3220 | } | |
3221 | } else { | |
3222 | xfs_ifunlock(iq); | |
3223 | } | |
3224 | } else { | |
3225 | xfs_ifunlock(iq); | |
3226 | } | |
3227 | } | |
3228 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | |
3229 | } | |
3230 | } | |
3231 | mutex_spinunlock(&ch->ch_lock, s); | |
3232 | ||
3233 | if (clcount) { | |
3234 | XFS_STATS_INC(xs_icluster_flushcnt); | |
3235 | XFS_STATS_ADD(xs_icluster_flushinode, clcount); | |
3236 | } | |
3237 | ||
3238 | /* | |
3239 | * If the buffer is pinned then push on the log so we won't | |
3240 | * get stuck waiting in the write for too long. | |
3241 | */ | |
3242 | if (XFS_BUF_ISPINNED(bp)){ | |
3243 | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); | |
3244 | } | |
3245 | ||
3246 | if (flags & INT_DELWRI) { | |
3247 | xfs_bdwrite(mp, bp); | |
3248 | } else if (flags & INT_ASYNC) { | |
3249 | xfs_bawrite(mp, bp); | |
3250 | } else { | |
3251 | error = xfs_bwrite(mp, bp); | |
3252 | } | |
3253 | return error; | |
3254 | ||
3255 | corrupt_out: | |
3256 | xfs_buf_relse(bp); | |
3257 | xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | |
3258 | xfs_iflush_abort(ip); | |
3259 | /* | |
3260 | * Unlocks the flush lock | |
3261 | */ | |
3262 | return XFS_ERROR(EFSCORRUPTED); | |
3263 | ||
3264 | cluster_corrupt_out: | |
3265 | /* Corruption detected in the clustering loop. Invalidate the | |
3266 | * inode buffer and shut down the filesystem. | |
3267 | */ | |
3268 | mutex_spinunlock(&ch->ch_lock, s); | |
3269 | ||
3270 | /* | |
3271 | * Clean up the buffer. If it was B_DELWRI, just release it -- | |
3272 | * brelse can handle it with no problems. If not, shut down the | |
3273 | * filesystem before releasing the buffer. | |
3274 | */ | |
3275 | if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { | |
3276 | xfs_buf_relse(bp); | |
3277 | } | |
3278 | ||
3279 | xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | |
3280 | ||
3281 | if(!bufwasdelwri) { | |
3282 | /* | |
3283 | * Just like incore_relse: if we have b_iodone functions, | |
3284 | * mark the buffer as an error and call them. Otherwise | |
3285 | * mark it as stale and brelse. | |
3286 | */ | |
3287 | if (XFS_BUF_IODONE_FUNC(bp)) { | |
3288 | XFS_BUF_CLR_BDSTRAT_FUNC(bp); | |
3289 | XFS_BUF_UNDONE(bp); | |
3290 | XFS_BUF_STALE(bp); | |
3291 | XFS_BUF_SHUT(bp); | |
3292 | XFS_BUF_ERROR(bp,EIO); | |
3293 | xfs_biodone(bp); | |
3294 | } else { | |
3295 | XFS_BUF_STALE(bp); | |
3296 | xfs_buf_relse(bp); | |
3297 | } | |
3298 | } | |
3299 | ||
3300 | xfs_iflush_abort(iq); | |
3301 | /* | |
3302 | * Unlocks the flush lock | |
3303 | */ | |
3304 | return XFS_ERROR(EFSCORRUPTED); | |
3305 | } | |
3306 | ||
3307 | ||
3308 | STATIC int | |
3309 | xfs_iflush_int( | |
3310 | xfs_inode_t *ip, | |
3311 | xfs_buf_t *bp) | |
3312 | { | |
3313 | xfs_inode_log_item_t *iip; | |
3314 | xfs_dinode_t *dip; | |
3315 | xfs_mount_t *mp; | |
3316 | #ifdef XFS_TRANS_DEBUG | |
3317 | int first; | |
3318 | #endif | |
3319 | SPLDECL(s); | |
3320 | ||
3321 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | |
3322 | ASSERT(valusema(&ip->i_flock) <= 0); | |
3323 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | |
3324 | ip->i_d.di_nextents > ip->i_df.if_ext_max); | |
3325 | ||
3326 | iip = ip->i_itemp; | |
3327 | mp = ip->i_mount; | |
3328 | ||
3329 | ||
3330 | /* | |
3331 | * If the inode isn't dirty, then just release the inode | |
3332 | * flush lock and do nothing. | |
3333 | */ | |
3334 | if ((ip->i_update_core == 0) && | |
3335 | ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | |
3336 | xfs_ifunlock(ip); | |
3337 | return 0; | |
3338 | } | |
3339 | ||
3340 | /* set *dip = inode's place in the buffer */ | |
3341 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); | |
3342 | ||
3343 | /* | |
3344 | * Clear i_update_core before copying out the data. | |
3345 | * This is for coordination with our timestamp updates | |
3346 | * that don't hold the inode lock. They will always | |
3347 | * update the timestamps BEFORE setting i_update_core, | |
3348 | * so if we clear i_update_core after they set it we | |
3349 | * are guaranteed to see their updates to the timestamps. | |
3350 | * I believe that this depends on strongly ordered memory | |
3351 | * semantics, but we have that. We use the SYNCHRONIZE | |
3352 | * macro to make sure that the compiler does not reorder | |
3353 | * the i_update_core access below the data copy below. | |
3354 | */ | |
3355 | ip->i_update_core = 0; | |
3356 | SYNCHRONIZE(); | |
3357 | ||
3358 | if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, | |
3359 | mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { | |
3360 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
3361 | "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", | |
3362 | ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); | |
3363 | goto corrupt_out; | |
3364 | } | |
3365 | if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, | |
3366 | mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { | |
3367 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
3368 | "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", | |
3369 | ip->i_ino, ip, ip->i_d.di_magic); | |
3370 | goto corrupt_out; | |
3371 | } | |
3372 | if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { | |
3373 | if (XFS_TEST_ERROR( | |
3374 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
3375 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | |
3376 | mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { | |
3377 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
3378 | "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", | |
3379 | ip->i_ino, ip); | |
3380 | goto corrupt_out; | |
3381 | } | |
3382 | } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { | |
3383 | if (XFS_TEST_ERROR( | |
3384 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | |
3385 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | |
3386 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | |
3387 | mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { | |
3388 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
3389 | "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", | |
3390 | ip->i_ino, ip); | |
3391 | goto corrupt_out; | |
3392 | } | |
3393 | } | |
3394 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | |
3395 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, | |
3396 | XFS_RANDOM_IFLUSH_5)) { | |
3397 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
3398 | "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", | |
3399 | ip->i_ino, | |
3400 | ip->i_d.di_nextents + ip->i_d.di_anextents, | |
3401 | ip->i_d.di_nblocks, | |
3402 | ip); | |
3403 | goto corrupt_out; | |
3404 | } | |
3405 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | |
3406 | mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { | |
3407 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | |
3408 | "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", | |
3409 | ip->i_ino, ip->i_d.di_forkoff, ip); | |
3410 | goto corrupt_out; | |
3411 | } | |
3412 | /* | |
3413 | * bump the flush iteration count, used to detect flushes which | |
3414 | * postdate a log record during recovery. | |
3415 | */ | |
3416 | ||
3417 | ip->i_d.di_flushiter++; | |
3418 | ||
3419 | /* | |
3420 | * Copy the dirty parts of the inode into the on-disk | |
3421 | * inode. We always copy out the core of the inode, | |
3422 | * because if the inode is dirty at all the core must | |
3423 | * be. | |
3424 | */ | |
3425 | xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); | |
3426 | ||
3427 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | |
3428 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | |
3429 | ip->i_d.di_flushiter = 0; | |
3430 | ||
3431 | /* | |
3432 | * If this is really an old format inode and the superblock version | |
3433 | * has not been updated to support only new format inodes, then | |
3434 | * convert back to the old inode format. If the superblock version | |
3435 | * has been updated, then make the conversion permanent. | |
3436 | */ | |
3437 | ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || | |
3438 | XFS_SB_VERSION_HASNLINK(&mp->m_sb)); | |
3439 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | |
3440 | if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { | |
3441 | /* | |
3442 | * Convert it back. | |
3443 | */ | |
3444 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | |
3445 | INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); | |
3446 | } else { | |
3447 | /* | |
3448 | * The superblock version has already been bumped, | |
3449 | * so just make the conversion to the new inode | |
3450 | * format permanent. | |
3451 | */ | |
3452 | ip->i_d.di_version = XFS_DINODE_VERSION_2; | |
3453 | INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); | |
3454 | ip->i_d.di_onlink = 0; | |
3455 | dip->di_core.di_onlink = 0; | |
3456 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | |
3457 | memset(&(dip->di_core.di_pad[0]), 0, | |
3458 | sizeof(dip->di_core.di_pad)); | |
3459 | ASSERT(ip->i_d.di_projid == 0); | |
3460 | } | |
3461 | } | |
3462 | ||
3463 | if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { | |
3464 | goto corrupt_out; | |
3465 | } | |
3466 | ||
3467 | if (XFS_IFORK_Q(ip)) { | |
3468 | /* | |
3469 | * The only error from xfs_iflush_fork is on the data fork. | |
3470 | */ | |
3471 | (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); | |
3472 | } | |
3473 | xfs_inobp_check(mp, bp); | |
3474 | ||
3475 | /* | |
3476 | * We've recorded everything logged in the inode, so we'd | |
3477 | * like to clear the ilf_fields bits so we don't log and | |
3478 | * flush things unnecessarily. However, we can't stop | |
3479 | * logging all this information until the data we've copied | |
3480 | * into the disk buffer is written to disk. If we did we might | |
3481 | * overwrite the copy of the inode in the log with all the | |
3482 | * data after re-logging only part of it, and in the face of | |
3483 | * a crash we wouldn't have all the data we need to recover. | |
3484 | * | |
3485 | * What we do is move the bits to the ili_last_fields field. | |
3486 | * When logging the inode, these bits are moved back to the | |
3487 | * ilf_fields field. In the xfs_iflush_done() routine we | |
3488 | * clear ili_last_fields, since we know that the information | |
3489 | * those bits represent is permanently on disk. As long as | |
3490 | * the flush completes before the inode is logged again, then | |
3491 | * both ilf_fields and ili_last_fields will be cleared. | |
3492 | * | |
3493 | * We can play with the ilf_fields bits here, because the inode | |
3494 | * lock must be held exclusively in order to set bits there | |
3495 | * and the flush lock protects the ili_last_fields bits. | |
3496 | * Set ili_logged so the flush done | |
3497 | * routine can tell whether or not to look in the AIL. | |
3498 | * Also, store the current LSN of the inode so that we can tell | |
3499 | * whether the item has moved in the AIL from xfs_iflush_done(). | |
3500 | * In order to read the lsn we need the AIL lock, because | |
3501 | * it is a 64 bit value that cannot be read atomically. | |
3502 | */ | |
3503 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { | |
3504 | iip->ili_last_fields = iip->ili_format.ilf_fields; | |
3505 | iip->ili_format.ilf_fields = 0; | |
3506 | iip->ili_logged = 1; | |
3507 | ||
3508 | ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ | |
3509 | AIL_LOCK(mp,s); | |
3510 | iip->ili_flush_lsn = iip->ili_item.li_lsn; | |
3511 | AIL_UNLOCK(mp, s); | |
3512 | ||
3513 | /* | |
3514 | * Attach the function xfs_iflush_done to the inode's | |
3515 | * buffer. This will remove the inode from the AIL | |
3516 | * and unlock the inode's flush lock when the inode is | |
3517 | * completely written to disk. | |
3518 | */ | |
3519 | xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) | |
3520 | xfs_iflush_done, (xfs_log_item_t *)iip); | |
3521 | ||
3522 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
3523 | ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); | |
3524 | } else { | |
3525 | /* | |
3526 | * We're flushing an inode which is not in the AIL and has | |
3527 | * not been logged but has i_update_core set. For this | |
3528 | * case we can use a B_DELWRI flush and immediately drop | |
3529 | * the inode flush lock because we can avoid the whole | |
3530 | * AIL state thing. It's OK to drop the flush lock now, | |
3531 | * because we've already locked the buffer and to do anything | |
3532 | * you really need both. | |
3533 | */ | |
3534 | if (iip != NULL) { | |
3535 | ASSERT(iip->ili_logged == 0); | |
3536 | ASSERT(iip->ili_last_fields == 0); | |
3537 | ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); | |
3538 | } | |
3539 | xfs_ifunlock(ip); | |
3540 | } | |
3541 | ||
3542 | return 0; | |
3543 | ||
3544 | corrupt_out: | |
3545 | return XFS_ERROR(EFSCORRUPTED); | |
3546 | } | |
3547 | ||
3548 | ||
3549 | /* | |
efa80278 | 3550 | * Flush all inactive inodes in mp. |
1da177e4 | 3551 | */ |
efa80278 | 3552 | void |
1da177e4 | 3553 | xfs_iflush_all( |
efa80278 | 3554 | xfs_mount_t *mp) |
1da177e4 | 3555 | { |
1da177e4 | 3556 | xfs_inode_t *ip; |
1da177e4 LT |
3557 | vnode_t *vp; |
3558 | ||
efa80278 CH |
3559 | again: |
3560 | XFS_MOUNT_ILOCK(mp); | |
3561 | ip = mp->m_inodes; | |
3562 | if (ip == NULL) | |
3563 | goto out; | |
1da177e4 | 3564 | |
efa80278 CH |
3565 | do { |
3566 | /* Make sure we skip markers inserted by sync */ | |
3567 | if (ip->i_mount == NULL) { | |
3568 | ip = ip->i_mnext; | |
3569 | continue; | |
3570 | } | |
1da177e4 | 3571 | |
efa80278 CH |
3572 | vp = XFS_ITOV_NULL(ip); |
3573 | if (!vp) { | |
1da177e4 | 3574 | XFS_MOUNT_IUNLOCK(mp); |
efa80278 CH |
3575 | xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); |
3576 | goto again; | |
3577 | } | |
1da177e4 | 3578 | |
efa80278 | 3579 | ASSERT(vn_count(vp) == 0); |
1da177e4 | 3580 | |
efa80278 CH |
3581 | ip = ip->i_mnext; |
3582 | } while (ip != mp->m_inodes); | |
3583 | out: | |
1da177e4 | 3584 | XFS_MOUNT_IUNLOCK(mp); |
1da177e4 LT |
3585 | } |
3586 | ||
1da177e4 LT |
3587 | /* |
3588 | * xfs_iaccess: check accessibility of inode for mode. | |
3589 | */ | |
3590 | int | |
3591 | xfs_iaccess( | |
3592 | xfs_inode_t *ip, | |
3593 | mode_t mode, | |
3594 | cred_t *cr) | |
3595 | { | |
3596 | int error; | |
3597 | mode_t orgmode = mode; | |
3598 | struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); | |
3599 | ||
3600 | if (mode & S_IWUSR) { | |
3601 | umode_t imode = inode->i_mode; | |
3602 | ||
3603 | if (IS_RDONLY(inode) && | |
3604 | (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) | |
3605 | return XFS_ERROR(EROFS); | |
3606 | ||
3607 | if (IS_IMMUTABLE(inode)) | |
3608 | return XFS_ERROR(EACCES); | |
3609 | } | |
3610 | ||
3611 | /* | |
3612 | * If there's an Access Control List it's used instead of | |
3613 | * the mode bits. | |
3614 | */ | |
3615 | if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) | |
3616 | return error ? XFS_ERROR(error) : 0; | |
3617 | ||
3618 | if (current_fsuid(cr) != ip->i_d.di_uid) { | |
3619 | mode >>= 3; | |
3620 | if (!in_group_p((gid_t)ip->i_d.di_gid)) | |
3621 | mode >>= 3; | |
3622 | } | |
3623 | ||
3624 | /* | |
3625 | * If the DACs are ok we don't need any capability check. | |
3626 | */ | |
3627 | if ((ip->i_d.di_mode & mode) == mode) | |
3628 | return 0; | |
3629 | /* | |
3630 | * Read/write DACs are always overridable. | |
3631 | * Executable DACs are overridable if at least one exec bit is set. | |
3632 | */ | |
3633 | if (!(orgmode & S_IXUSR) || | |
3634 | (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) | |
3635 | if (capable_cred(cr, CAP_DAC_OVERRIDE)) | |
3636 | return 0; | |
3637 | ||
3638 | if ((orgmode == S_IRUSR) || | |
3639 | (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { | |
3640 | if (capable_cred(cr, CAP_DAC_READ_SEARCH)) | |
3641 | return 0; | |
3642 | #ifdef NOISE | |
3643 | cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); | |
3644 | #endif /* NOISE */ | |
3645 | return XFS_ERROR(EACCES); | |
3646 | } | |
3647 | return XFS_ERROR(EACCES); | |
3648 | } | |
3649 | ||
3650 | /* | |
3651 | * xfs_iroundup: round up argument to next power of two | |
3652 | */ | |
3653 | uint | |
3654 | xfs_iroundup( | |
3655 | uint v) | |
3656 | { | |
3657 | int i; | |
3658 | uint m; | |
3659 | ||
3660 | if ((v & (v - 1)) == 0) | |
3661 | return v; | |
3662 | ASSERT((v & 0x80000000) == 0); | |
3663 | if ((v & (v + 1)) == 0) | |
3664 | return v + 1; | |
3665 | for (i = 0, m = 1; i < 31; i++, m <<= 1) { | |
3666 | if (v & m) | |
3667 | continue; | |
3668 | v |= m; | |
3669 | if ((v & (v + 1)) == 0) | |
3670 | return v + 1; | |
3671 | } | |
3672 | ASSERT(0); | |
3673 | return( 0 ); | |
3674 | } | |
3675 | ||
1da177e4 LT |
3676 | #ifdef XFS_ILOCK_TRACE |
3677 | ktrace_t *xfs_ilock_trace_buf; | |
3678 | ||
3679 | void | |
3680 | xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) | |
3681 | { | |
3682 | ktrace_enter(ip->i_lock_trace, | |
3683 | (void *)ip, | |
3684 | (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ | |
3685 | (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ | |
3686 | (void *)ra, /* caller of ilock */ | |
3687 | (void *)(unsigned long)current_cpu(), | |
3688 | (void *)(unsigned long)current_pid(), | |
3689 | NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); | |
3690 | } | |
3691 | #endif |