]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
1da177e4 | 20 | #include "xfs_types.h" |
a844f451 | 21 | #include "xfs_bit.h" |
1da177e4 | 22 | #include "xfs_log.h" |
a844f451 | 23 | #include "xfs_inum.h" |
1da177e4 | 24 | #include "xfs_trans.h" |
1da177e4 LT |
25 | #include "xfs_sb.h" |
26 | #include "xfs_dir.h" | |
27 | #include "xfs_dmapi.h" | |
28 | #include "xfs_mount.h" | |
a844f451 | 29 | #include "xfs_buf_item.h" |
1da177e4 | 30 | #include "xfs_trans_priv.h" |
1da177e4 LT |
31 | #include "xfs_error.h" |
32 | ||
33 | ||
34 | kmem_zone_t *xfs_buf_item_zone; | |
35 | ||
36 | #ifdef XFS_TRANS_DEBUG | |
37 | /* | |
38 | * This function uses an alternate strategy for tracking the bytes | |
39 | * that the user requests to be logged. This can then be used | |
40 | * in conjunction with the bli_orig array in the buf log item to | |
41 | * catch bugs in our callers' code. | |
42 | * | |
43 | * We also double check the bits set in xfs_buf_item_log using a | |
44 | * simple algorithm to check that every byte is accounted for. | |
45 | */ | |
46 | STATIC void | |
47 | xfs_buf_item_log_debug( | |
48 | xfs_buf_log_item_t *bip, | |
49 | uint first, | |
50 | uint last) | |
51 | { | |
52 | uint x; | |
53 | uint byte; | |
54 | uint nbytes; | |
55 | uint chunk_num; | |
56 | uint word_num; | |
57 | uint bit_num; | |
58 | uint bit_set; | |
59 | uint *wordp; | |
60 | ||
61 | ASSERT(bip->bli_logged != NULL); | |
62 | byte = first; | |
63 | nbytes = last - first + 1; | |
64 | bfset(bip->bli_logged, first, nbytes); | |
65 | for (x = 0; x < nbytes; x++) { | |
66 | chunk_num = byte >> XFS_BLI_SHIFT; | |
67 | word_num = chunk_num >> BIT_TO_WORD_SHIFT; | |
68 | bit_num = chunk_num & (NBWORD - 1); | |
69 | wordp = &(bip->bli_format.blf_data_map[word_num]); | |
70 | bit_set = *wordp & (1 << bit_num); | |
71 | ASSERT(bit_set); | |
72 | byte++; | |
73 | } | |
74 | } | |
75 | ||
76 | /* | |
77 | * This function is called when we flush something into a buffer without | |
78 | * logging it. This happens for things like inodes which are logged | |
79 | * separately from the buffer. | |
80 | */ | |
81 | void | |
82 | xfs_buf_item_flush_log_debug( | |
83 | xfs_buf_t *bp, | |
84 | uint first, | |
85 | uint last) | |
86 | { | |
87 | xfs_buf_log_item_t *bip; | |
88 | uint nbytes; | |
89 | ||
90 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
91 | if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) { | |
92 | return; | |
93 | } | |
94 | ||
95 | ASSERT(bip->bli_logged != NULL); | |
96 | nbytes = last - first + 1; | |
97 | bfset(bip->bli_logged, first, nbytes); | |
98 | } | |
99 | ||
100 | /* | |
101 | * This function is called to verify that our caller's have logged | |
102 | * all the bytes that they changed. | |
103 | * | |
104 | * It does this by comparing the original copy of the buffer stored in | |
105 | * the buf log item's bli_orig array to the current copy of the buffer | |
106 | * and ensuring that all bytes which miscompare are set in the bli_logged | |
107 | * array of the buf log item. | |
108 | */ | |
109 | STATIC void | |
110 | xfs_buf_item_log_check( | |
111 | xfs_buf_log_item_t *bip) | |
112 | { | |
113 | char *orig; | |
114 | char *buffer; | |
115 | int x; | |
116 | xfs_buf_t *bp; | |
117 | ||
118 | ASSERT(bip->bli_orig != NULL); | |
119 | ASSERT(bip->bli_logged != NULL); | |
120 | ||
121 | bp = bip->bli_buf; | |
122 | ASSERT(XFS_BUF_COUNT(bp) > 0); | |
123 | ASSERT(XFS_BUF_PTR(bp) != NULL); | |
124 | orig = bip->bli_orig; | |
125 | buffer = XFS_BUF_PTR(bp); | |
126 | for (x = 0; x < XFS_BUF_COUNT(bp); x++) { | |
127 | if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) | |
128 | cmn_err(CE_PANIC, | |
129 | "xfs_buf_item_log_check bip %x buffer %x orig %x index %d", | |
130 | bip, bp, orig, x); | |
131 | } | |
132 | } | |
133 | #else | |
134 | #define xfs_buf_item_log_debug(x,y,z) | |
135 | #define xfs_buf_item_log_check(x) | |
136 | #endif | |
137 | ||
138 | STATIC void xfs_buf_error_relse(xfs_buf_t *bp); | |
139 | STATIC void xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip); | |
140 | ||
141 | /* | |
142 | * This returns the number of log iovecs needed to log the | |
143 | * given buf log item. | |
144 | * | |
145 | * It calculates this as 1 iovec for the buf log format structure | |
146 | * and 1 for each stretch of non-contiguous chunks to be logged. | |
147 | * Contiguous chunks are logged in a single iovec. | |
148 | * | |
149 | * If the XFS_BLI_STALE flag has been set, then log nothing. | |
150 | */ | |
ba0f32d4 | 151 | STATIC uint |
1da177e4 LT |
152 | xfs_buf_item_size( |
153 | xfs_buf_log_item_t *bip) | |
154 | { | |
155 | uint nvecs; | |
156 | int next_bit; | |
157 | int last_bit; | |
158 | xfs_buf_t *bp; | |
159 | ||
160 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
161 | if (bip->bli_flags & XFS_BLI_STALE) { | |
162 | /* | |
163 | * The buffer is stale, so all we need to log | |
164 | * is the buf log format structure with the | |
165 | * cancel flag in it. | |
166 | */ | |
167 | xfs_buf_item_trace("SIZE STALE", bip); | |
168 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
169 | return 1; | |
170 | } | |
171 | ||
172 | bp = bip->bli_buf; | |
173 | ASSERT(bip->bli_flags & XFS_BLI_LOGGED); | |
174 | nvecs = 1; | |
175 | last_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
176 | bip->bli_format.blf_map_size, 0); | |
177 | ASSERT(last_bit != -1); | |
178 | nvecs++; | |
179 | while (last_bit != -1) { | |
180 | /* | |
181 | * This takes the bit number to start looking from and | |
182 | * returns the next set bit from there. It returns -1 | |
183 | * if there are no more bits set or the start bit is | |
184 | * beyond the end of the bitmap. | |
185 | */ | |
186 | next_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
187 | bip->bli_format.blf_map_size, | |
188 | last_bit + 1); | |
189 | /* | |
190 | * If we run out of bits, leave the loop, | |
191 | * else if we find a new set of bits bump the number of vecs, | |
192 | * else keep scanning the current set of bits. | |
193 | */ | |
194 | if (next_bit == -1) { | |
195 | last_bit = -1; | |
196 | } else if (next_bit != last_bit + 1) { | |
197 | last_bit = next_bit; | |
198 | nvecs++; | |
199 | } else if (xfs_buf_offset(bp, next_bit * XFS_BLI_CHUNK) != | |
200 | (xfs_buf_offset(bp, last_bit * XFS_BLI_CHUNK) + | |
201 | XFS_BLI_CHUNK)) { | |
202 | last_bit = next_bit; | |
203 | nvecs++; | |
204 | } else { | |
205 | last_bit++; | |
206 | } | |
207 | } | |
208 | ||
209 | xfs_buf_item_trace("SIZE NORM", bip); | |
210 | return nvecs; | |
211 | } | |
212 | ||
213 | /* | |
214 | * This is called to fill in the vector of log iovecs for the | |
215 | * given log buf item. It fills the first entry with a buf log | |
216 | * format structure, and the rest point to contiguous chunks | |
217 | * within the buffer. | |
218 | */ | |
ba0f32d4 | 219 | STATIC void |
1da177e4 LT |
220 | xfs_buf_item_format( |
221 | xfs_buf_log_item_t *bip, | |
222 | xfs_log_iovec_t *log_vector) | |
223 | { | |
224 | uint base_size; | |
225 | uint nvecs; | |
226 | xfs_log_iovec_t *vecp; | |
227 | xfs_buf_t *bp; | |
228 | int first_bit; | |
229 | int last_bit; | |
230 | int next_bit; | |
231 | uint nbits; | |
232 | uint buffer_offset; | |
233 | ||
234 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
235 | ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || | |
236 | (bip->bli_flags & XFS_BLI_STALE)); | |
237 | bp = bip->bli_buf; | |
238 | ASSERT(XFS_BUF_BP_ISMAPPED(bp)); | |
239 | vecp = log_vector; | |
240 | ||
241 | /* | |
242 | * The size of the base structure is the size of the | |
243 | * declared structure plus the space for the extra words | |
244 | * of the bitmap. We subtract one from the map size, because | |
245 | * the first element of the bitmap is accounted for in the | |
246 | * size of the base structure. | |
247 | */ | |
248 | base_size = | |
249 | (uint)(sizeof(xfs_buf_log_format_t) + | |
250 | ((bip->bli_format.blf_map_size - 1) * sizeof(uint))); | |
251 | vecp->i_addr = (xfs_caddr_t)&bip->bli_format; | |
252 | vecp->i_len = base_size; | |
7e9c6396 | 253 | XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_BFORMAT); |
1da177e4 LT |
254 | vecp++; |
255 | nvecs = 1; | |
256 | ||
257 | if (bip->bli_flags & XFS_BLI_STALE) { | |
258 | /* | |
259 | * The buffer is stale, so all we need to log | |
260 | * is the buf log format structure with the | |
261 | * cancel flag in it. | |
262 | */ | |
263 | xfs_buf_item_trace("FORMAT STALE", bip); | |
264 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
265 | bip->bli_format.blf_size = nvecs; | |
266 | return; | |
267 | } | |
268 | ||
269 | /* | |
270 | * Fill in an iovec for each set of contiguous chunks. | |
271 | */ | |
272 | first_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
273 | bip->bli_format.blf_map_size, 0); | |
274 | ASSERT(first_bit != -1); | |
275 | last_bit = first_bit; | |
276 | nbits = 1; | |
277 | for (;;) { | |
278 | /* | |
279 | * This takes the bit number to start looking from and | |
280 | * returns the next set bit from there. It returns -1 | |
281 | * if there are no more bits set or the start bit is | |
282 | * beyond the end of the bitmap. | |
283 | */ | |
284 | next_bit = xfs_next_bit(bip->bli_format.blf_data_map, | |
285 | bip->bli_format.blf_map_size, | |
286 | (uint)last_bit + 1); | |
287 | /* | |
288 | * If we run out of bits fill in the last iovec and get | |
289 | * out of the loop. | |
290 | * Else if we start a new set of bits then fill in the | |
291 | * iovec for the series we were looking at and start | |
292 | * counting the bits in the new one. | |
293 | * Else we're still in the same set of bits so just | |
294 | * keep counting and scanning. | |
295 | */ | |
296 | if (next_bit == -1) { | |
297 | buffer_offset = first_bit * XFS_BLI_CHUNK; | |
298 | vecp->i_addr = xfs_buf_offset(bp, buffer_offset); | |
299 | vecp->i_len = nbits * XFS_BLI_CHUNK; | |
7e9c6396 | 300 | XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_BCHUNK); |
1da177e4 LT |
301 | nvecs++; |
302 | break; | |
303 | } else if (next_bit != last_bit + 1) { | |
304 | buffer_offset = first_bit * XFS_BLI_CHUNK; | |
305 | vecp->i_addr = xfs_buf_offset(bp, buffer_offset); | |
306 | vecp->i_len = nbits * XFS_BLI_CHUNK; | |
7e9c6396 | 307 | XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_BCHUNK); |
1da177e4 LT |
308 | nvecs++; |
309 | vecp++; | |
310 | first_bit = next_bit; | |
311 | last_bit = next_bit; | |
312 | nbits = 1; | |
313 | } else if (xfs_buf_offset(bp, next_bit << XFS_BLI_SHIFT) != | |
314 | (xfs_buf_offset(bp, last_bit << XFS_BLI_SHIFT) + | |
315 | XFS_BLI_CHUNK)) { | |
316 | buffer_offset = first_bit * XFS_BLI_CHUNK; | |
317 | vecp->i_addr = xfs_buf_offset(bp, buffer_offset); | |
318 | vecp->i_len = nbits * XFS_BLI_CHUNK; | |
7e9c6396 | 319 | XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_BCHUNK); |
1da177e4 LT |
320 | /* You would think we need to bump the nvecs here too, but we do not |
321 | * this number is used by recovery, and it gets confused by the boundary | |
322 | * split here | |
323 | * nvecs++; | |
324 | */ | |
325 | vecp++; | |
326 | first_bit = next_bit; | |
327 | last_bit = next_bit; | |
328 | nbits = 1; | |
329 | } else { | |
330 | last_bit++; | |
331 | nbits++; | |
332 | } | |
333 | } | |
334 | bip->bli_format.blf_size = nvecs; | |
335 | ||
336 | /* | |
337 | * Check to make sure everything is consistent. | |
338 | */ | |
339 | xfs_buf_item_trace("FORMAT NORM", bip); | |
340 | xfs_buf_item_log_check(bip); | |
341 | } | |
342 | ||
343 | /* | |
344 | * This is called to pin the buffer associated with the buf log | |
345 | * item in memory so it cannot be written out. Simply call bpin() | |
346 | * on the buffer to do this. | |
347 | */ | |
ba0f32d4 | 348 | STATIC void |
1da177e4 LT |
349 | xfs_buf_item_pin( |
350 | xfs_buf_log_item_t *bip) | |
351 | { | |
352 | xfs_buf_t *bp; | |
353 | ||
354 | bp = bip->bli_buf; | |
355 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
356 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
357 | ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || | |
358 | (bip->bli_flags & XFS_BLI_STALE)); | |
359 | xfs_buf_item_trace("PIN", bip); | |
360 | xfs_buftrace("XFS_PIN", bp); | |
361 | xfs_bpin(bp); | |
362 | } | |
363 | ||
364 | ||
365 | /* | |
366 | * This is called to unpin the buffer associated with the buf log | |
367 | * item which was previously pinned with a call to xfs_buf_item_pin(). | |
368 | * Just call bunpin() on the buffer to do this. | |
369 | * | |
370 | * Also drop the reference to the buf item for the current transaction. | |
371 | * If the XFS_BLI_STALE flag is set and we are the last reference, | |
372 | * then free up the buf log item and unlock the buffer. | |
373 | */ | |
ba0f32d4 | 374 | STATIC void |
1da177e4 LT |
375 | xfs_buf_item_unpin( |
376 | xfs_buf_log_item_t *bip, | |
377 | int stale) | |
378 | { | |
379 | xfs_mount_t *mp; | |
380 | xfs_buf_t *bp; | |
381 | int freed; | |
382 | SPLDECL(s); | |
383 | ||
384 | bp = bip->bli_buf; | |
385 | ASSERT(bp != NULL); | |
386 | ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip); | |
387 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
388 | xfs_buf_item_trace("UNPIN", bip); | |
389 | xfs_buftrace("XFS_UNPIN", bp); | |
390 | ||
391 | freed = atomic_dec_and_test(&bip->bli_refcount); | |
392 | mp = bip->bli_item.li_mountp; | |
393 | xfs_bunpin(bp); | |
394 | if (freed && stale) { | |
395 | ASSERT(bip->bli_flags & XFS_BLI_STALE); | |
396 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
397 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | |
398 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
399 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
400 | xfs_buf_item_trace("UNPIN STALE", bip); | |
401 | xfs_buftrace("XFS_UNPIN STALE", bp); | |
402 | /* | |
403 | * If we get called here because of an IO error, we may | |
404 | * or may not have the item on the AIL. xfs_trans_delete_ail() | |
405 | * will take care of that situation. | |
406 | * xfs_trans_delete_ail() drops the AIL lock. | |
407 | */ | |
408 | if (bip->bli_flags & XFS_BLI_STALE_INODE) { | |
409 | xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip); | |
410 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
411 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
412 | } else { | |
413 | AIL_LOCK(mp,s); | |
414 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)bip, s); | |
415 | xfs_buf_item_relse(bp); | |
416 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL); | |
417 | } | |
418 | xfs_buf_relse(bp); | |
419 | } | |
420 | } | |
421 | ||
422 | /* | |
423 | * this is called from uncommit in the forced-shutdown path. | |
424 | * we need to check to see if the reference count on the log item | |
425 | * is going to drop to zero. If so, unpin will free the log item | |
426 | * so we need to free the item's descriptor (that points to the item) | |
427 | * in the transaction. | |
428 | */ | |
ba0f32d4 | 429 | STATIC void |
1da177e4 LT |
430 | xfs_buf_item_unpin_remove( |
431 | xfs_buf_log_item_t *bip, | |
432 | xfs_trans_t *tp) | |
433 | { | |
434 | xfs_buf_t *bp; | |
435 | xfs_log_item_desc_t *lidp; | |
436 | int stale = 0; | |
437 | ||
438 | bp = bip->bli_buf; | |
439 | /* | |
440 | * will xfs_buf_item_unpin() call xfs_buf_item_relse()? | |
441 | */ | |
442 | if ((atomic_read(&bip->bli_refcount) == 1) && | |
443 | (bip->bli_flags & XFS_BLI_STALE)) { | |
444 | ASSERT(XFS_BUF_VALUSEMA(bip->bli_buf) <= 0); | |
445 | xfs_buf_item_trace("UNPIN REMOVE", bip); | |
446 | xfs_buftrace("XFS_UNPIN_REMOVE", bp); | |
447 | /* | |
448 | * yes -- clear the xaction descriptor in-use flag | |
449 | * and free the chunk if required. We can safely | |
450 | * do some work here and then call buf_item_unpin | |
451 | * to do the rest because if the if is true, then | |
452 | * we are holding the buffer locked so no one else | |
453 | * will be able to bump up the refcount. | |
454 | */ | |
455 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) bip); | |
456 | stale = lidp->lid_flags & XFS_LID_BUF_STALE; | |
457 | xfs_trans_free_item(tp, lidp); | |
458 | /* | |
459 | * Since the transaction no longer refers to the buffer, | |
460 | * the buffer should no longer refer to the transaction. | |
461 | */ | |
462 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
463 | } | |
464 | ||
465 | xfs_buf_item_unpin(bip, stale); | |
466 | ||
467 | return; | |
468 | } | |
469 | ||
470 | /* | |
471 | * This is called to attempt to lock the buffer associated with this | |
472 | * buf log item. Don't sleep on the buffer lock. If we can't get | |
473 | * the lock right away, return 0. If we can get the lock, pull the | |
474 | * buffer from the free list, mark it busy, and return 1. | |
475 | */ | |
ba0f32d4 | 476 | STATIC uint |
1da177e4 LT |
477 | xfs_buf_item_trylock( |
478 | xfs_buf_log_item_t *bip) | |
479 | { | |
480 | xfs_buf_t *bp; | |
481 | ||
482 | bp = bip->bli_buf; | |
483 | ||
484 | if (XFS_BUF_ISPINNED(bp)) { | |
485 | return XFS_ITEM_PINNED; | |
486 | } | |
487 | ||
488 | if (!XFS_BUF_CPSEMA(bp)) { | |
489 | return XFS_ITEM_LOCKED; | |
490 | } | |
491 | ||
492 | /* | |
493 | * Remove the buffer from the free list. Only do this | |
494 | * if it's on the free list. Private buffers like the | |
495 | * superblock buffer are not. | |
496 | */ | |
497 | XFS_BUF_HOLD(bp); | |
498 | ||
499 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
500 | xfs_buf_item_trace("TRYLOCK SUCCESS", bip); | |
501 | return XFS_ITEM_SUCCESS; | |
502 | } | |
503 | ||
504 | /* | |
505 | * Release the buffer associated with the buf log item. | |
506 | * If there is no dirty logged data associated with the | |
507 | * buffer recorded in the buf log item, then free the | |
508 | * buf log item and remove the reference to it in the | |
509 | * buffer. | |
510 | * | |
511 | * This call ignores the recursion count. It is only called | |
512 | * when the buffer should REALLY be unlocked, regardless | |
513 | * of the recursion count. | |
514 | * | |
515 | * If the XFS_BLI_HOLD flag is set in the buf log item, then | |
516 | * free the log item if necessary but do not unlock the buffer. | |
517 | * This is for support of xfs_trans_bhold(). Make sure the | |
518 | * XFS_BLI_HOLD field is cleared if we don't free the item. | |
519 | */ | |
ba0f32d4 | 520 | STATIC void |
1da177e4 LT |
521 | xfs_buf_item_unlock( |
522 | xfs_buf_log_item_t *bip) | |
523 | { | |
524 | int aborted; | |
525 | xfs_buf_t *bp; | |
526 | uint hold; | |
527 | ||
528 | bp = bip->bli_buf; | |
529 | xfs_buftrace("XFS_UNLOCK", bp); | |
530 | ||
531 | /* | |
532 | * Clear the buffer's association with this transaction. | |
533 | */ | |
534 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
535 | ||
536 | /* | |
537 | * If this is a transaction abort, don't return early. | |
538 | * Instead, allow the brelse to happen. | |
539 | * Normally it would be done for stale (cancelled) buffers | |
540 | * at unpin time, but we'll never go through the pin/unpin | |
541 | * cycle if we abort inside commit. | |
542 | */ | |
543 | aborted = (bip->bli_item.li_flags & XFS_LI_ABORTED) != 0; | |
544 | ||
545 | /* | |
546 | * If the buf item is marked stale, then don't do anything. | |
547 | * We'll unlock the buffer and free the buf item when the | |
548 | * buffer is unpinned for the last time. | |
549 | */ | |
550 | if (bip->bli_flags & XFS_BLI_STALE) { | |
551 | bip->bli_flags &= ~XFS_BLI_LOGGED; | |
552 | xfs_buf_item_trace("UNLOCK STALE", bip); | |
553 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
554 | if (!aborted) | |
555 | return; | |
556 | } | |
557 | ||
558 | /* | |
559 | * Drop the transaction's reference to the log item if | |
560 | * it was not logged as part of the transaction. Otherwise | |
561 | * we'll drop the reference in xfs_buf_item_unpin() when | |
562 | * the transaction is really through with the buffer. | |
563 | */ | |
564 | if (!(bip->bli_flags & XFS_BLI_LOGGED)) { | |
565 | atomic_dec(&bip->bli_refcount); | |
566 | } else { | |
567 | /* | |
568 | * Clear the logged flag since this is per | |
569 | * transaction state. | |
570 | */ | |
571 | bip->bli_flags &= ~XFS_BLI_LOGGED; | |
572 | } | |
573 | ||
574 | /* | |
575 | * Before possibly freeing the buf item, determine if we should | |
576 | * release the buffer at the end of this routine. | |
577 | */ | |
578 | hold = bip->bli_flags & XFS_BLI_HOLD; | |
579 | xfs_buf_item_trace("UNLOCK", bip); | |
580 | ||
581 | /* | |
582 | * If the buf item isn't tracking any data, free it. | |
583 | * Otherwise, if XFS_BLI_HOLD is set clear it. | |
584 | */ | |
585 | if (xfs_count_bits(bip->bli_format.blf_data_map, | |
586 | bip->bli_format.blf_map_size, 0) == 0) { | |
587 | xfs_buf_item_relse(bp); | |
588 | } else if (hold) { | |
589 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
590 | } | |
591 | ||
592 | /* | |
593 | * Release the buffer if XFS_BLI_HOLD was not set. | |
594 | */ | |
595 | if (!hold) { | |
596 | xfs_buf_relse(bp); | |
597 | } | |
598 | } | |
599 | ||
600 | /* | |
601 | * This is called to find out where the oldest active copy of the | |
602 | * buf log item in the on disk log resides now that the last log | |
603 | * write of it completed at the given lsn. | |
604 | * We always re-log all the dirty data in a buffer, so usually the | |
605 | * latest copy in the on disk log is the only one that matters. For | |
606 | * those cases we simply return the given lsn. | |
607 | * | |
608 | * The one exception to this is for buffers full of newly allocated | |
609 | * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF | |
610 | * flag set, indicating that only the di_next_unlinked fields from the | |
611 | * inodes in the buffers will be replayed during recovery. If the | |
612 | * original newly allocated inode images have not yet been flushed | |
613 | * when the buffer is so relogged, then we need to make sure that we | |
614 | * keep the old images in the 'active' portion of the log. We do this | |
615 | * by returning the original lsn of that transaction here rather than | |
616 | * the current one. | |
617 | */ | |
ba0f32d4 | 618 | STATIC xfs_lsn_t |
1da177e4 LT |
619 | xfs_buf_item_committed( |
620 | xfs_buf_log_item_t *bip, | |
621 | xfs_lsn_t lsn) | |
622 | { | |
623 | xfs_buf_item_trace("COMMITTED", bip); | |
624 | if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && | |
625 | (bip->bli_item.li_lsn != 0)) { | |
626 | return bip->bli_item.li_lsn; | |
627 | } | |
628 | return (lsn); | |
629 | } | |
630 | ||
631 | /* | |
632 | * This is called when the transaction holding the buffer is aborted. | |
633 | * Just behave as if the transaction had been cancelled. If we're shutting down | |
634 | * and have aborted this transaction, we'll trap this buffer when it tries to | |
635 | * get written out. | |
636 | */ | |
ba0f32d4 | 637 | STATIC void |
1da177e4 LT |
638 | xfs_buf_item_abort( |
639 | xfs_buf_log_item_t *bip) | |
640 | { | |
641 | xfs_buf_t *bp; | |
642 | ||
643 | bp = bip->bli_buf; | |
644 | xfs_buftrace("XFS_ABORT", bp); | |
645 | XFS_BUF_SUPER_STALE(bp); | |
646 | xfs_buf_item_unlock(bip); | |
647 | return; | |
648 | } | |
649 | ||
650 | /* | |
651 | * This is called to asynchronously write the buffer associated with this | |
652 | * buf log item out to disk. The buffer will already have been locked by | |
653 | * a successful call to xfs_buf_item_trylock(). If the buffer still has | |
654 | * B_DELWRI set, then get it going out to disk with a call to bawrite(). | |
655 | * If not, then just release the buffer. | |
656 | */ | |
ba0f32d4 | 657 | STATIC void |
1da177e4 LT |
658 | xfs_buf_item_push( |
659 | xfs_buf_log_item_t *bip) | |
660 | { | |
661 | xfs_buf_t *bp; | |
662 | ||
663 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
664 | xfs_buf_item_trace("PUSH", bip); | |
665 | ||
666 | bp = bip->bli_buf; | |
667 | ||
668 | if (XFS_BUF_ISDELAYWRITE(bp)) { | |
669 | xfs_bawrite(bip->bli_item.li_mountp, bp); | |
670 | } else { | |
671 | xfs_buf_relse(bp); | |
672 | } | |
673 | } | |
674 | ||
675 | /* ARGSUSED */ | |
ba0f32d4 | 676 | STATIC void |
1da177e4 LT |
677 | xfs_buf_item_committing(xfs_buf_log_item_t *bip, xfs_lsn_t commit_lsn) |
678 | { | |
679 | } | |
680 | ||
681 | /* | |
682 | * This is the ops vector shared by all buf log items. | |
683 | */ | |
ba0f32d4 | 684 | STATIC struct xfs_item_ops xfs_buf_item_ops = { |
1da177e4 LT |
685 | .iop_size = (uint(*)(xfs_log_item_t*))xfs_buf_item_size, |
686 | .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | |
687 | xfs_buf_item_format, | |
688 | .iop_pin = (void(*)(xfs_log_item_t*))xfs_buf_item_pin, | |
689 | .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_buf_item_unpin, | |
690 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) | |
691 | xfs_buf_item_unpin_remove, | |
692 | .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_buf_item_trylock, | |
693 | .iop_unlock = (void(*)(xfs_log_item_t*))xfs_buf_item_unlock, | |
694 | .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | |
695 | xfs_buf_item_committed, | |
696 | .iop_push = (void(*)(xfs_log_item_t*))xfs_buf_item_push, | |
697 | .iop_abort = (void(*)(xfs_log_item_t*))xfs_buf_item_abort, | |
698 | .iop_pushbuf = NULL, | |
699 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | |
700 | xfs_buf_item_committing | |
701 | }; | |
702 | ||
703 | ||
704 | /* | |
705 | * Allocate a new buf log item to go with the given buffer. | |
706 | * Set the buffer's b_fsprivate field to point to the new | |
707 | * buf log item. If there are other item's attached to the | |
708 | * buffer (see xfs_buf_attach_iodone() below), then put the | |
709 | * buf log item at the front. | |
710 | */ | |
711 | void | |
712 | xfs_buf_item_init( | |
713 | xfs_buf_t *bp, | |
714 | xfs_mount_t *mp) | |
715 | { | |
716 | xfs_log_item_t *lip; | |
717 | xfs_buf_log_item_t *bip; | |
718 | int chunks; | |
719 | int map_size; | |
720 | ||
721 | /* | |
722 | * Check to see if there is already a buf log item for | |
723 | * this buffer. If there is, it is guaranteed to be | |
724 | * the first. If we do already have one, there is | |
725 | * nothing to do here so return. | |
726 | */ | |
727 | if (XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *) != mp) | |
728 | XFS_BUF_SET_FSPRIVATE3(bp, mp); | |
729 | XFS_BUF_SET_BDSTRAT_FUNC(bp, xfs_bdstrat_cb); | |
730 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
731 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
732 | if (lip->li_type == XFS_LI_BUF) { | |
733 | return; | |
734 | } | |
735 | } | |
736 | ||
737 | /* | |
738 | * chunks is the number of XFS_BLI_CHUNK size pieces | |
739 | * the buffer can be divided into. Make sure not to | |
740 | * truncate any pieces. map_size is the size of the | |
741 | * bitmap needed to describe the chunks of the buffer. | |
742 | */ | |
743 | chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLI_CHUNK - 1)) >> XFS_BLI_SHIFT); | |
744 | map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT); | |
745 | ||
746 | bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone, | |
747 | KM_SLEEP); | |
748 | bip->bli_item.li_type = XFS_LI_BUF; | |
749 | bip->bli_item.li_ops = &xfs_buf_item_ops; | |
750 | bip->bli_item.li_mountp = mp; | |
751 | bip->bli_buf = bp; | |
752 | bip->bli_format.blf_type = XFS_LI_BUF; | |
753 | bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp); | |
754 | bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp)); | |
755 | bip->bli_format.blf_map_size = map_size; | |
756 | #ifdef XFS_BLI_TRACE | |
757 | bip->bli_trace = ktrace_alloc(XFS_BLI_TRACE_SIZE, KM_SLEEP); | |
758 | #endif | |
759 | ||
760 | #ifdef XFS_TRANS_DEBUG | |
761 | /* | |
762 | * Allocate the arrays for tracking what needs to be logged | |
763 | * and what our callers request to be logged. bli_orig | |
764 | * holds a copy of the original, clean buffer for comparison | |
765 | * against, and bli_logged keeps a 1 bit flag per byte in | |
766 | * the buffer to indicate which bytes the callers have asked | |
767 | * to have logged. | |
768 | */ | |
769 | bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP); | |
770 | memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp)); | |
771 | bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP); | |
772 | #endif | |
773 | ||
774 | /* | |
775 | * Put the buf item into the list of items attached to the | |
776 | * buffer at the front. | |
777 | */ | |
778 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
779 | bip->bli_item.li_bio_list = | |
780 | XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
781 | } | |
782 | XFS_BUF_SET_FSPRIVATE(bp, bip); | |
783 | } | |
784 | ||
785 | ||
786 | /* | |
787 | * Mark bytes first through last inclusive as dirty in the buf | |
788 | * item's bitmap. | |
789 | */ | |
790 | void | |
791 | xfs_buf_item_log( | |
792 | xfs_buf_log_item_t *bip, | |
793 | uint first, | |
794 | uint last) | |
795 | { | |
796 | uint first_bit; | |
797 | uint last_bit; | |
798 | uint bits_to_set; | |
799 | uint bits_set; | |
800 | uint word_num; | |
801 | uint *wordp; | |
802 | uint bit; | |
803 | uint end_bit; | |
804 | uint mask; | |
805 | ||
806 | /* | |
807 | * Mark the item as having some dirty data for | |
808 | * quick reference in xfs_buf_item_dirty. | |
809 | */ | |
810 | bip->bli_flags |= XFS_BLI_DIRTY; | |
811 | ||
812 | /* | |
813 | * Convert byte offsets to bit numbers. | |
814 | */ | |
815 | first_bit = first >> XFS_BLI_SHIFT; | |
816 | last_bit = last >> XFS_BLI_SHIFT; | |
817 | ||
818 | /* | |
819 | * Calculate the total number of bits to be set. | |
820 | */ | |
821 | bits_to_set = last_bit - first_bit + 1; | |
822 | ||
823 | /* | |
824 | * Get a pointer to the first word in the bitmap | |
825 | * to set a bit in. | |
826 | */ | |
827 | word_num = first_bit >> BIT_TO_WORD_SHIFT; | |
828 | wordp = &(bip->bli_format.blf_data_map[word_num]); | |
829 | ||
830 | /* | |
831 | * Calculate the starting bit in the first word. | |
832 | */ | |
833 | bit = first_bit & (uint)(NBWORD - 1); | |
834 | ||
835 | /* | |
836 | * First set any bits in the first word of our range. | |
837 | * If it starts at bit 0 of the word, it will be | |
838 | * set below rather than here. That is what the variable | |
839 | * bit tells us. The variable bits_set tracks the number | |
840 | * of bits that have been set so far. End_bit is the number | |
841 | * of the last bit to be set in this word plus one. | |
842 | */ | |
843 | if (bit) { | |
844 | end_bit = MIN(bit + bits_to_set, (uint)NBWORD); | |
845 | mask = ((1 << (end_bit - bit)) - 1) << bit; | |
846 | *wordp |= mask; | |
847 | wordp++; | |
848 | bits_set = end_bit - bit; | |
849 | } else { | |
850 | bits_set = 0; | |
851 | } | |
852 | ||
853 | /* | |
854 | * Now set bits a whole word at a time that are between | |
855 | * first_bit and last_bit. | |
856 | */ | |
857 | while ((bits_to_set - bits_set) >= NBWORD) { | |
858 | *wordp |= 0xffffffff; | |
859 | bits_set += NBWORD; | |
860 | wordp++; | |
861 | } | |
862 | ||
863 | /* | |
864 | * Finally, set any bits left to be set in one last partial word. | |
865 | */ | |
866 | end_bit = bits_to_set - bits_set; | |
867 | if (end_bit) { | |
868 | mask = (1 << end_bit) - 1; | |
869 | *wordp |= mask; | |
870 | } | |
871 | ||
872 | xfs_buf_item_log_debug(bip, first, last); | |
873 | } | |
874 | ||
875 | ||
876 | /* | |
877 | * Return 1 if the buffer has some data that has been logged (at any | |
878 | * point, not just the current transaction) and 0 if not. | |
879 | */ | |
880 | uint | |
881 | xfs_buf_item_dirty( | |
882 | xfs_buf_log_item_t *bip) | |
883 | { | |
884 | return (bip->bli_flags & XFS_BLI_DIRTY); | |
885 | } | |
886 | ||
887 | /* | |
888 | * This is called when the buf log item is no longer needed. It should | |
889 | * free the buf log item associated with the given buffer and clear | |
890 | * the buffer's pointer to the buf log item. If there are no more | |
891 | * items in the list, clear the b_iodone field of the buffer (see | |
892 | * xfs_buf_attach_iodone() below). | |
893 | */ | |
894 | void | |
895 | xfs_buf_item_relse( | |
896 | xfs_buf_t *bp) | |
897 | { | |
898 | xfs_buf_log_item_t *bip; | |
899 | ||
900 | xfs_buftrace("XFS_RELSE", bp); | |
901 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
902 | XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list); | |
903 | if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) && | |
904 | (XFS_BUF_IODONE_FUNC(bp) != NULL)) { | |
905 | ASSERT((XFS_BUF_ISUNINITIAL(bp)) == 0); | |
906 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
907 | } | |
908 | ||
909 | #ifdef XFS_TRANS_DEBUG | |
910 | kmem_free(bip->bli_orig, XFS_BUF_COUNT(bp)); | |
911 | bip->bli_orig = NULL; | |
912 | kmem_free(bip->bli_logged, XFS_BUF_COUNT(bp) / NBBY); | |
913 | bip->bli_logged = NULL; | |
914 | #endif /* XFS_TRANS_DEBUG */ | |
915 | ||
916 | #ifdef XFS_BLI_TRACE | |
917 | ktrace_free(bip->bli_trace); | |
918 | #endif | |
919 | kmem_zone_free(xfs_buf_item_zone, bip); | |
920 | } | |
921 | ||
922 | ||
923 | /* | |
924 | * Add the given log item with its callback to the list of callbacks | |
925 | * to be called when the buffer's I/O completes. If it is not set | |
926 | * already, set the buffer's b_iodone() routine to be | |
927 | * xfs_buf_iodone_callbacks() and link the log item into the list of | |
928 | * items rooted at b_fsprivate. Items are always added as the second | |
929 | * entry in the list if there is a first, because the buf item code | |
930 | * assumes that the buf log item is first. | |
931 | */ | |
932 | void | |
933 | xfs_buf_attach_iodone( | |
934 | xfs_buf_t *bp, | |
935 | void (*cb)(xfs_buf_t *, xfs_log_item_t *), | |
936 | xfs_log_item_t *lip) | |
937 | { | |
938 | xfs_log_item_t *head_lip; | |
939 | ||
940 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
941 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
942 | ||
943 | lip->li_cb = cb; | |
944 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
945 | head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
946 | lip->li_bio_list = head_lip->li_bio_list; | |
947 | head_lip->li_bio_list = lip; | |
948 | } else { | |
949 | XFS_BUF_SET_FSPRIVATE(bp, lip); | |
950 | } | |
951 | ||
952 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) || | |
953 | (XFS_BUF_IODONE_FUNC(bp) == NULL)); | |
954 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | |
955 | } | |
956 | ||
957 | STATIC void | |
958 | xfs_buf_do_callbacks( | |
959 | xfs_buf_t *bp, | |
960 | xfs_log_item_t *lip) | |
961 | { | |
962 | xfs_log_item_t *nlip; | |
963 | ||
964 | while (lip != NULL) { | |
965 | nlip = lip->li_bio_list; | |
966 | ASSERT(lip->li_cb != NULL); | |
967 | /* | |
968 | * Clear the next pointer so we don't have any | |
969 | * confusion if the item is added to another buf. | |
970 | * Don't touch the log item after calling its | |
971 | * callback, because it could have freed itself. | |
972 | */ | |
973 | lip->li_bio_list = NULL; | |
974 | lip->li_cb(bp, lip); | |
975 | lip = nlip; | |
976 | } | |
977 | } | |
978 | ||
979 | /* | |
980 | * This is the iodone() function for buffers which have had callbacks | |
981 | * attached to them by xfs_buf_attach_iodone(). It should remove each | |
982 | * log item from the buffer's list and call the callback of each in turn. | |
983 | * When done, the buffer's fsprivate field is set to NULL and the buffer | |
984 | * is unlocked with a call to iodone(). | |
985 | */ | |
986 | void | |
987 | xfs_buf_iodone_callbacks( | |
988 | xfs_buf_t *bp) | |
989 | { | |
990 | xfs_log_item_t *lip; | |
991 | static ulong lasttime; | |
992 | static xfs_buftarg_t *lasttarg; | |
993 | xfs_mount_t *mp; | |
994 | ||
995 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
996 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
997 | ||
998 | if (XFS_BUF_GETERROR(bp) != 0) { | |
999 | /* | |
1000 | * If we've already decided to shutdown the filesystem | |
1001 | * because of IO errors, there's no point in giving this | |
1002 | * a retry. | |
1003 | */ | |
1004 | mp = lip->li_mountp; | |
1005 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
1006 | ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp); | |
1007 | XFS_BUF_SUPER_STALE(bp); | |
1008 | xfs_buftrace("BUF_IODONE_CB", bp); | |
1009 | xfs_buf_do_callbacks(bp, lip); | |
1010 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
1011 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
1012 | ||
1013 | /* | |
1014 | * XFS_SHUT flag gets set when we go thru the | |
1015 | * entire buffer cache and deliberately start | |
1016 | * throwing away delayed write buffers. | |
1017 | * Since there's no biowait done on those, | |
1018 | * we should just brelse them. | |
1019 | */ | |
1020 | if (XFS_BUF_ISSHUT(bp)) { | |
1021 | XFS_BUF_UNSHUT(bp); | |
1022 | xfs_buf_relse(bp); | |
1023 | } else { | |
1024 | xfs_biodone(bp); | |
1025 | } | |
1026 | ||
1027 | return; | |
1028 | } | |
1029 | ||
1030 | if ((XFS_BUF_TARGET(bp) != lasttarg) || | |
1031 | (time_after(jiffies, (lasttime + 5*HZ)))) { | |
1032 | lasttime = jiffies; | |
1033 | prdev("XFS write error in file system meta-data " | |
1034 | "block 0x%llx in %s", | |
1035 | XFS_BUF_TARGET(bp), | |
1036 | (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname); | |
1037 | } | |
1038 | lasttarg = XFS_BUF_TARGET(bp); | |
1039 | ||
1040 | if (XFS_BUF_ISASYNC(bp)) { | |
1041 | /* | |
1042 | * If the write was asynchronous then noone will be | |
1043 | * looking for the error. Clear the error state | |
1044 | * and write the buffer out again delayed write. | |
1045 | * | |
1046 | * XXXsup This is OK, so long as we catch these | |
1047 | * before we start the umount; we don't want these | |
1048 | * DELWRI metadata bufs to be hanging around. | |
1049 | */ | |
1050 | XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */ | |
1051 | ||
1052 | if (!(XFS_BUF_ISSTALE(bp))) { | |
1053 | XFS_BUF_DELAYWRITE(bp); | |
1054 | XFS_BUF_DONE(bp); | |
1055 | XFS_BUF_SET_START(bp); | |
1056 | } | |
1057 | ASSERT(XFS_BUF_IODONE_FUNC(bp)); | |
1058 | xfs_buftrace("BUF_IODONE ASYNC", bp); | |
1059 | xfs_buf_relse(bp); | |
1060 | } else { | |
1061 | /* | |
1062 | * If the write of the buffer was not asynchronous, | |
1063 | * then we want to make sure to return the error | |
1064 | * to the caller of bwrite(). Because of this we | |
1065 | * cannot clear the B_ERROR state at this point. | |
1066 | * Instead we install a callback function that | |
1067 | * will be called when the buffer is released, and | |
1068 | * that routine will clear the error state and | |
1069 | * set the buffer to be written out again after | |
1070 | * some delay. | |
1071 | */ | |
1072 | /* We actually overwrite the existing b-relse | |
1073 | function at times, but we're gonna be shutting down | |
1074 | anyway. */ | |
1075 | XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse); | |
1076 | XFS_BUF_DONE(bp); | |
1077 | XFS_BUF_V_IODONESEMA(bp); | |
1078 | } | |
1079 | return; | |
1080 | } | |
1081 | #ifdef XFSERRORDEBUG | |
1082 | xfs_buftrace("XFS BUFCB NOERR", bp); | |
1083 | #endif | |
1084 | xfs_buf_do_callbacks(bp, lip); | |
1085 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
1086 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
1087 | xfs_biodone(bp); | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * This is a callback routine attached to a buffer which gets an error | |
1092 | * when being written out synchronously. | |
1093 | */ | |
1094 | STATIC void | |
1095 | xfs_buf_error_relse( | |
1096 | xfs_buf_t *bp) | |
1097 | { | |
1098 | xfs_log_item_t *lip; | |
1099 | xfs_mount_t *mp; | |
1100 | ||
1101 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
1102 | mp = (xfs_mount_t *)lip->li_mountp; | |
1103 | ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp); | |
1104 | ||
1105 | XFS_BUF_STALE(bp); | |
1106 | XFS_BUF_DONE(bp); | |
1107 | XFS_BUF_UNDELAYWRITE(bp); | |
1108 | XFS_BUF_ERROR(bp,0); | |
1109 | xfs_buftrace("BUF_ERROR_RELSE", bp); | |
1110 | if (! XFS_FORCED_SHUTDOWN(mp)) | |
1111 | xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR); | |
1112 | /* | |
1113 | * We have to unpin the pinned buffers so do the | |
1114 | * callbacks. | |
1115 | */ | |
1116 | xfs_buf_do_callbacks(bp, lip); | |
1117 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | |
1118 | XFS_BUF_CLR_IODONE_FUNC(bp); | |
1119 | XFS_BUF_SET_BRELSE_FUNC(bp,NULL); | |
1120 | xfs_buf_relse(bp); | |
1121 | } | |
1122 | ||
1123 | ||
1124 | /* | |
1125 | * This is the iodone() function for buffers which have been | |
1126 | * logged. It is called when they are eventually flushed out. | |
1127 | * It should remove the buf item from the AIL, and free the buf item. | |
1128 | * It is called by xfs_buf_iodone_callbacks() above which will take | |
1129 | * care of cleaning up the buffer itself. | |
1130 | */ | |
1131 | /* ARGSUSED */ | |
1132 | void | |
1133 | xfs_buf_iodone( | |
1134 | xfs_buf_t *bp, | |
1135 | xfs_buf_log_item_t *bip) | |
1136 | { | |
1137 | struct xfs_mount *mp; | |
1138 | SPLDECL(s); | |
1139 | ||
1140 | ASSERT(bip->bli_buf == bp); | |
1141 | ||
1142 | mp = bip->bli_item.li_mountp; | |
1143 | ||
1144 | /* | |
1145 | * If we are forcibly shutting down, this may well be | |
1146 | * off the AIL already. That's because we simulate the | |
1147 | * log-committed callbacks to unpin these buffers. Or we may never | |
1148 | * have put this item on AIL because of the transaction was | |
1149 | * aborted forcibly. xfs_trans_delete_ail() takes care of these. | |
1150 | * | |
1151 | * Either way, AIL is useless if we're forcing a shutdown. | |
1152 | */ | |
1153 | AIL_LOCK(mp,s); | |
1154 | /* | |
1155 | * xfs_trans_delete_ail() drops the AIL lock. | |
1156 | */ | |
1157 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)bip, s); | |
1158 | ||
1159 | #ifdef XFS_TRANS_DEBUG | |
1160 | kmem_free(bip->bli_orig, XFS_BUF_COUNT(bp)); | |
1161 | bip->bli_orig = NULL; | |
1162 | kmem_free(bip->bli_logged, XFS_BUF_COUNT(bp) / NBBY); | |
1163 | bip->bli_logged = NULL; | |
1164 | #endif /* XFS_TRANS_DEBUG */ | |
1165 | ||
1166 | #ifdef XFS_BLI_TRACE | |
1167 | ktrace_free(bip->bli_trace); | |
1168 | #endif | |
1169 | kmem_zone_free(xfs_buf_item_zone, bip); | |
1170 | } | |
1171 | ||
1172 | #if defined(XFS_BLI_TRACE) | |
1173 | void | |
1174 | xfs_buf_item_trace( | |
1175 | char *id, | |
1176 | xfs_buf_log_item_t *bip) | |
1177 | { | |
1178 | xfs_buf_t *bp; | |
1179 | ASSERT(bip->bli_trace != NULL); | |
1180 | ||
1181 | bp = bip->bli_buf; | |
1182 | ktrace_enter(bip->bli_trace, | |
1183 | (void *)id, | |
1184 | (void *)bip->bli_buf, | |
1185 | (void *)((unsigned long)bip->bli_flags), | |
1186 | (void *)((unsigned long)bip->bli_recur), | |
1187 | (void *)((unsigned long)atomic_read(&bip->bli_refcount)), | |
1188 | (void *)((unsigned long) | |
1189 | (0xFFFFFFFF & XFS_BUF_ADDR(bp) >> 32)), | |
1190 | (void *)((unsigned long)(0xFFFFFFFF & XFS_BUF_ADDR(bp))), | |
1191 | (void *)((unsigned long)XFS_BUF_COUNT(bp)), | |
1192 | (void *)((unsigned long)XFS_BUF_BFLAGS(bp)), | |
1193 | XFS_BUF_FSPRIVATE(bp, void *), | |
1194 | XFS_BUF_FSPRIVATE2(bp, void *), | |
1195 | (void *)(unsigned long)XFS_BUF_ISPINNED(bp), | |
1196 | (void *)XFS_BUF_IODONE_FUNC(bp), | |
1197 | (void *)((unsigned long)(XFS_BUF_VALUSEMA(bp))), | |
1198 | (void *)bip->bli_item.li_desc, | |
1199 | (void *)((unsigned long)bip->bli_item.li_flags)); | |
1200 | } | |
1201 | #endif /* XFS_BLI_TRACE */ |