]> Git Repo - linux.git/blame - fs/xfs/xfs_reflink.c
xfs: set aside allocation btree blocks from block reservation
[linux.git] / fs / xfs / xfs_reflink.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0+
3993baeb
DW
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
3993baeb 4 * Author: Darrick J. Wong <[email protected]>
3993baeb
DW
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
3993baeb
DW
14#include "xfs_inode.h"
15#include "xfs_trans.h"
3993baeb
DW
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
3993baeb 18#include "xfs_trace.h"
3993baeb 19#include "xfs_icache.h"
174edb0e 20#include "xfs_btree.h"
3993baeb
DW
21#include "xfs_refcount_btree.h"
22#include "xfs_refcount.h"
23#include "xfs_bmap_btree.h"
24#include "xfs_trans_space.h"
25#include "xfs_bit.h"
26#include "xfs_alloc.h"
3993baeb 27#include "xfs_quota.h"
3993baeb 28#include "xfs_reflink.h"
2a06705c 29#include "xfs_iomap.h"
6fa164b8
DW
30#include "xfs_sb.h"
31#include "xfs_ag_resv.h"
3993baeb
DW
32
33/*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
5eda4300
DW
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
3993baeb 66 * When dirty pages are being written out (typically in writepage), the
5eda4300
DW
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
3993baeb
DW
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
5eda4300
DW
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
3993baeb
DW
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
5eda4300
DW
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
3993baeb
DW
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
2a06705c
DW
120
121/*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128int
129xfs_reflink_find_shared(
130 struct xfs_mount *mp,
92ff7285 131 struct xfs_trans *tp,
2a06705c
DW
132 xfs_agnumber_t agno,
133 xfs_agblock_t agbno,
134 xfs_extlen_t aglen,
135 xfs_agblock_t *fbno,
136 xfs_extlen_t *flen,
137 bool find_end_of_shared)
138{
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
141 int error;
142
92ff7285 143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
2a06705c
DW
144 if (error)
145 return error;
146
ed7ef8e5 147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
2a06705c
DW
148
149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 find_end_of_shared);
151
0b04b6b8 152 xfs_btree_del_cursor(cur, error);
2a06705c 153
92ff7285 154 xfs_trans_brelse(tp, agbp);
2a06705c
DW
155 return error;
156}
157
158/*
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
167 */
168int
169xfs_reflink_trim_around_shared(
170 struct xfs_inode *ip,
171 struct xfs_bmbt_irec *irec,
d392bc81 172 bool *shared)
2a06705c
DW
173{
174 xfs_agnumber_t agno;
175 xfs_agblock_t agbno;
176 xfs_extlen_t aglen;
177 xfs_agblock_t fbno;
178 xfs_extlen_t flen;
179 int error = 0;
180
181 /* Holes, unwritten, and delalloc extents cannot be shared */
877f58f5 182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
2a06705c
DW
183 *shared = false;
184 return 0;
185 }
186
187 trace_xfs_reflink_trim_around_shared(ip, irec);
188
189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 aglen = irec->br_blockcount;
192
92ff7285 193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
2a06705c
DW
194 aglen, &fbno, &flen, true);
195 if (error)
196 return error;
197
d392bc81 198 *shared = false;
2a06705c
DW
199 if (fbno == NULLAGBLOCK) {
200 /* No shared blocks at all. */
201 return 0;
202 } else if (fbno == agbno) {
203 /*
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
207 * unshared region.
208 */
209 irec->br_blockcount = flen;
210 *shared = true;
2a06705c
DW
211 return 0;
212 } else {
213 /*
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
218 */
219 irec->br_blockcount = fbno - agbno;
2a06705c
DW
220 return 0;
221 }
222}
223
aa124436 224int
225xfs_bmap_trim_cow(
66ae56a5
CH
226 struct xfs_inode *ip,
227 struct xfs_bmbt_irec *imap,
228 bool *shared)
229{
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip) &&
232 !isnullstartblock(imap->br_startblock)) {
233 *shared = true;
234 return 0;
235 }
236
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip, imap, shared);
239}
240
26b91c72
CH
241static int
242xfs_reflink_convert_cow_locked(
243 struct xfs_inode *ip,
244 xfs_fileoff_t offset_fsb,
245 xfs_filblks_t count_fsb)
5eda4300 246{
26b91c72
CH
247 struct xfs_iext_cursor icur;
248 struct xfs_bmbt_irec got;
249 struct xfs_btree_cur *dummy_cur = NULL;
250 int dummy_logflags;
c1a4447f 251 int error = 0;
5eda4300 252
26b91c72 253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
5eda4300
DW
254 return 0;
255
26b91c72
CH
256 do {
257 if (got.br_startoff >= offset_fsb + count_fsb)
258 break;
259 if (got.br_state == XFS_EXT_NORM)
260 continue;
261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 return -EIO;
263
264 xfs_trim_extent(&got, offset_fsb, count_fsb);
265 if (!got.br_blockcount)
266 continue;
267
268 got.br_state = XFS_EXT_NORM;
269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 XFS_COW_FORK, &icur, &dummy_cur, &got,
271 &dummy_logflags);
272 if (error)
273 return error;
274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275
276 return error;
5eda4300
DW
277}
278
279/* Convert all of the unwritten CoW extents in a file's range to real ones. */
280int
281xfs_reflink_convert_cow(
282 struct xfs_inode *ip,
283 xfs_off_t offset,
284 xfs_off_t count)
285{
5eda4300 286 struct xfs_mount *mp = ip->i_mount;
5eda4300
DW
287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
b121459c 289 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
26b91c72 290 int error;
5eda4300 291
b121459c 292 ASSERT(count != 0);
5eda4300 293
b121459c 294 xfs_ilock(ip, XFS_ILOCK_EXCL);
26b91c72 295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
5eda4300
DW
296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 return error;
298}
299
df307077
DC
300/*
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
304 */
305static int
306xfs_find_trim_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
ffb375a8 309 struct xfs_bmbt_irec *cmap,
df307077
DC
310 bool *shared,
311 bool *found)
312{
313 xfs_fileoff_t offset_fsb = imap->br_startoff;
314 xfs_filblks_t count_fsb = imap->br_blockcount;
315 struct xfs_iext_cursor icur;
df307077
DC
316
317 *found = false;
318
319 /*
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
322 */
ffb375a8
CH
323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 cmap->br_startoff = offset_fsb + count_fsb;
325 if (cmap->br_startoff > offset_fsb) {
032dc923 326 xfs_trim_extent(imap, imap->br_startoff,
ffb375a8 327 cmap->br_startoff - imap->br_startoff);
aa124436 328 return xfs_bmap_trim_cow(ip, imap, shared);
032dc923 329 }
df307077
DC
330
331 *shared = true;
ffb375a8
CH
332 if (isnullstartblock(cmap->br_startblock)) {
333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
df307077
DC
334 return 0;
335 }
336
337 /* real extent found - no need to allocate */
ffb375a8 338 xfs_trim_extent(cmap, offset_fsb, count_fsb);
df307077
DC
339 *found = true;
340 return 0;
341}
342
0613f16c 343/* Allocate all CoW reservations covering a range of blocks in a file. */
3c68d44a
CH
344int
345xfs_reflink_allocate_cow(
0613f16c 346 struct xfs_inode *ip,
3c68d44a 347 struct xfs_bmbt_irec *imap,
ffb375a8 348 struct xfs_bmbt_irec *cmap,
3c68d44a 349 bool *shared,
78f0cc9d 350 uint *lockmode,
affe250a 351 bool convert_now)
0613f16c
DW
352{
353 struct xfs_mount *mp = ip->i_mount;
3c68d44a
CH
354 xfs_fileoff_t offset_fsb = imap->br_startoff;
355 xfs_filblks_t count_fsb = imap->br_blockcount;
df307077 356 struct xfs_trans *tp;
3c68d44a 357 int nimaps, error = 0;
df307077 358 bool found;
a14234c7 359 xfs_filblks_t resaligned;
3c68d44a 360 xfs_extlen_t resblks = 0;
0613f16c 361
c7dbe3f2 362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
66ae56a5
CH
363 if (!ip->i_cowfp) {
364 ASSERT(!xfs_is_reflink_inode(ip));
365 xfs_ifork_init_cow(ip);
366 }
0613f16c 367
ffb375a8 368 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
df307077
DC
369 if (error || !*shared)
370 return error;
371 if (found)
372 goto convert;
3c68d44a 373
df307077
DC
374 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
a14234c7 377
df307077 378 xfs_iunlock(ip, *lockmode);
f273387b 379 *lockmode = 0;
3ba020be 380
f273387b
DW
381 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
382 false, &tp);
df307077
DC
383 if (error)
384 return error;
a14234c7 385
f273387b 386 *lockmode = XFS_ILOCK_EXCL;
3c68d44a 387
df307077
DC
388 /*
389 * Check for an overlapping extent again now that we dropped the ilock.
390 */
ffb375a8 391 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
df307077
DC
392 if (error || !*shared)
393 goto out_trans_cancel;
394 if (found) {
395 xfs_trans_cancel(tp);
396 goto convert;
a14234c7
CH
397 }
398
5eda4300 399 /* Allocate the entire reservation as unwritten blocks. */
df307077 400 nimaps = 1;
3c68d44a 401 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
da781e64
BF
402 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
403 &nimaps);
0613f16c 404 if (error)
35b11010 405 goto out_trans_cancel;
0613f16c 406
86d692bf 407 xfs_inode_set_cowblocks_tag(ip);
0613f16c 408 error = xfs_trans_commit(tp);
a14234c7 409 if (error)
3c68d44a 410 return error;
9f37bd11
DW
411
412 /*
413 * Allocation succeeded but the requested range was not even partially
414 * satisfied? Bail out!
415 */
416 if (nimaps == 0)
417 return -ENOSPC;
3c68d44a 418convert:
ffb375a8 419 xfs_trim_extent(cmap, offset_fsb, count_fsb);
78f0cc9d
CH
420 /*
421 * COW fork extents are supposed to remain unwritten until we're ready
422 * to initiate a disk write. For direct I/O we are going to write the
423 * data and need the conversion, but for buffered writes we're done.
424 */
ffb375a8 425 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
78f0cc9d 426 return 0;
ffb375a8 427 trace_xfs_reflink_convert_cow(ip, cmap);
26b91c72 428 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
df307077 429
df307077
DC
430out_trans_cancel:
431 xfs_trans_cancel(tp);
3c68d44a 432 return error;
0613f16c
DW
433}
434
43caeb18 435/*
3802a345
CH
436 * Cancel CoW reservations for some block range of an inode.
437 *
438 * If cancel_real is true this function cancels all COW fork extents for the
439 * inode; if cancel_real is false, real extents are not cleared.
c5295c6a
DC
440 *
441 * Caller must have already joined the inode to the current transaction. The
442 * inode will be joined to the transaction returned to the caller.
43caeb18
DW
443 */
444int
445xfs_reflink_cancel_cow_blocks(
446 struct xfs_inode *ip,
447 struct xfs_trans **tpp,
448 xfs_fileoff_t offset_fsb,
3802a345
CH
449 xfs_fileoff_t end_fsb,
450 bool cancel_real)
43caeb18 451{
3e0ee78f 452 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
df5ab1b5 453 struct xfs_bmbt_irec got, del;
b2b1712a 454 struct xfs_iext_cursor icur;
df5ab1b5 455 int error = 0;
43caeb18 456
51d62690 457 if (!xfs_inode_has_cow_data(ip))
43caeb18 458 return 0;
41caabd0 459 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
3e0ee78f 460 return 0;
43caeb18 461
41caabd0
CH
462 /* Walk backwards until we're out of the I/O range... */
463 while (got.br_startoff + got.br_blockcount > offset_fsb) {
3e0ee78f
CH
464 del = got;
465 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
41caabd0
CH
466
467 /* Extent delete may have bumped ext forward */
468 if (!del.br_blockcount) {
469 xfs_iext_prev(ifp, &icur);
470 goto next_extent;
471 }
472
3e0ee78f 473 trace_xfs_reflink_cancel_cow(ip, &del);
43caeb18 474
3e0ee78f
CH
475 if (isnullstartblock(del.br_startblock)) {
476 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
b2b1712a 477 &icur, &got, &del);
43caeb18
DW
478 if (error)
479 break;
3802a345 480 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
1e5ae199 481 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
43caeb18 482
174edb0e 483 /* Free the CoW orphan record. */
74b4c5d4
DW
484 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
485 del.br_blockcount);
174edb0e 486
0f37d178
BF
487 xfs_bmap_add_free(*tpp, del.br_startblock,
488 del.br_blockcount, NULL);
43caeb18 489
43caeb18 490 /* Roll the transaction */
9e28a242 491 error = xfs_defer_finish(tpp);
9b1f4e98 492 if (error)
43caeb18 493 break;
43caeb18
DW
494
495 /* Remove the mapping from the CoW fork. */
b2b1712a 496 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
4b4c1326
DW
497
498 /* Remove the quota reservation */
85546500
DW
499 error = xfs_quota_unreserve_blkres(ip,
500 del.br_blockcount);
4b4c1326
DW
501 if (error)
502 break;
9d40fba8
DW
503 } else {
504 /* Didn't do anything, push cursor back. */
505 xfs_iext_prev(ifp, &icur);
43caeb18 506 }
41caabd0
CH
507next_extent:
508 if (!xfs_iext_get_extent(ifp, &icur, &got))
c17a8ef4 509 break;
43caeb18
DW
510 }
511
c17a8ef4
BF
512 /* clear tag if cow fork is emptied */
513 if (!ifp->if_bytes)
514 xfs_inode_clear_cowblocks_tag(ip);
43caeb18
DW
515 return error;
516}
517
518/*
3802a345
CH
519 * Cancel CoW reservations for some byte range of an inode.
520 *
521 * If cancel_real is true this function cancels all COW fork extents for the
522 * inode; if cancel_real is false, real extents are not cleared.
43caeb18
DW
523 */
524int
525xfs_reflink_cancel_cow_range(
526 struct xfs_inode *ip,
527 xfs_off_t offset,
3802a345
CH
528 xfs_off_t count,
529 bool cancel_real)
43caeb18
DW
530{
531 struct xfs_trans *tp;
532 xfs_fileoff_t offset_fsb;
533 xfs_fileoff_t end_fsb;
534 int error;
535
536 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
66ae56a5 537 ASSERT(ip->i_cowfp);
43caeb18
DW
538
539 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
540 if (count == NULLFILEOFF)
541 end_fsb = NULLFILEOFF;
542 else
543 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
544
545 /* Start a rolling transaction to remove the mappings */
546 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
73d30d48 547 0, 0, 0, &tp);
43caeb18
DW
548 if (error)
549 goto out;
550
551 xfs_ilock(ip, XFS_ILOCK_EXCL);
552 xfs_trans_ijoin(tp, ip, 0);
553
554 /* Scrape out the old CoW reservations */
3802a345
CH
555 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
556 cancel_real);
43caeb18
DW
557 if (error)
558 goto out_cancel;
559
560 error = xfs_trans_commit(tp);
561
562 xfs_iunlock(ip, XFS_ILOCK_EXCL);
563 return error;
564
565out_cancel:
566 xfs_trans_cancel(tp);
567 xfs_iunlock(ip, XFS_ILOCK_EXCL);
568out:
569 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
570 return error;
571}
572
573/*
d6f215f3
DW
574 * Remap part of the CoW fork into the data fork.
575 *
576 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
577 * into the data fork; this function will remap what it can (at the end of the
578 * range) and update @end_fsb appropriately. Each remap gets its own
579 * transaction because we can end up merging and splitting bmbt blocks for
580 * every remap operation and we'd like to keep the block reservation
581 * requirements as low as possible.
43caeb18 582 */
d6f215f3
DW
583STATIC int
584xfs_reflink_end_cow_extent(
585 struct xfs_inode *ip,
586 xfs_fileoff_t offset_fsb,
587 xfs_fileoff_t *end_fsb)
43caeb18 588{
d6f215f3
DW
589 struct xfs_bmbt_irec got, del;
590 struct xfs_iext_cursor icur;
591 struct xfs_mount *mp = ip->i_mount;
592 struct xfs_trans *tp;
593 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
594 xfs_filblks_t rlen;
595 unsigned int resblks;
596 int error;
43caeb18 597
c1112b6e 598 /* No COW extents? That's easy! */
d6f215f3
DW
599 if (ifp->if_bytes == 0) {
600 *end_fsb = offset_fsb;
c1112b6e 601 return 0;
d6f215f3 602 }
c1112b6e 603
d6f215f3
DW
604 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
605 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
73d30d48 606 XFS_TRANS_RESERVE, &tp);
d6f215f3
DW
607 if (error)
608 return error;
43caeb18 609
fe0be23e 610 /*
d6f215f3
DW
611 * Lock the inode. We have to ijoin without automatic unlock because
612 * the lead transaction is the refcountbt record deletion; the data
613 * fork update follows as a deferred log item.
fe0be23e 614 */
43caeb18
DW
615 xfs_ilock(ip, XFS_ILOCK_EXCL);
616 xfs_trans_ijoin(tp, ip, 0);
617
5f1d5bbf
CB
618 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
619 XFS_IEXT_REFLINK_END_COW_CNT);
620 if (error)
621 goto out_cancel;
622
dc56015f
CH
623 /*
624 * In case of racing, overlapping AIO writes no COW extents might be
625 * left by the time I/O completes for the loser of the race. In that
626 * case we are done.
627 */
d6f215f3
DW
628 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
629 got.br_startoff + got.br_blockcount <= offset_fsb) {
630 *end_fsb = offset_fsb;
dc56015f 631 goto out_cancel;
d6f215f3 632 }
43caeb18 633
d6f215f3
DW
634 /*
635 * Structure copy @got into @del, then trim @del to the range that we
636 * were asked to remap. We preserve @got for the eventual CoW fork
637 * deletion; from now on @del represents the mapping that we're
638 * actually remapping.
639 */
640 del = got;
641 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
c1112b6e 642
d6f215f3 643 ASSERT(del.br_blockcount > 0);
5eda4300 644
d6f215f3
DW
645 /*
646 * Only remap real extents that contain data. With AIO, speculative
647 * preallocations can leak into the range we are called upon, and we
648 * need to skip them.
649 */
877f58f5 650 if (!xfs_bmap_is_written_extent(&got)) {
d6f215f3
DW
651 *end_fsb = del.br_startoff;
652 goto out_cancel;
653 }
43caeb18 654
d6f215f3
DW
655 /* Unmap the old blocks in the data fork. */
656 rlen = del.br_blockcount;
657 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
658 if (error)
659 goto out_cancel;
174edb0e 660
d6f215f3
DW
661 /* Trim the extent to whatever got unmapped. */
662 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
663 trace_xfs_reflink_cow_remap(ip, &del);
43caeb18 664
d6f215f3 665 /* Free the CoW orphan record. */
74b4c5d4 666 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
43caeb18 667
d6f215f3 668 /* Map the new blocks into the data fork. */
3e08f42a 669 xfs_bmap_map_extent(tp, ip, &del);
4b4c1326 670
d6f215f3
DW
671 /* Charge this new data fork mapping to the on-disk quota. */
672 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
673 (long)del.br_blockcount);
c1112b6e 674
d6f215f3
DW
675 /* Remove the mapping from the CoW fork. */
676 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
43caeb18
DW
677
678 error = xfs_trans_commit(tp);
679 xfs_iunlock(ip, XFS_ILOCK_EXCL);
680 if (error)
d6f215f3
DW
681 return error;
682
683 /* Update the caller about how much progress we made. */
684 *end_fsb = del.br_startoff;
43caeb18
DW
685 return 0;
686
e12199f8 687out_cancel:
43caeb18
DW
688 xfs_trans_cancel(tp);
689 xfs_iunlock(ip, XFS_ILOCK_EXCL);
d6f215f3
DW
690 return error;
691}
692
693/*
694 * Remap parts of a file's data fork after a successful CoW.
695 */
696int
697xfs_reflink_end_cow(
698 struct xfs_inode *ip,
699 xfs_off_t offset,
700 xfs_off_t count)
701{
702 xfs_fileoff_t offset_fsb;
703 xfs_fileoff_t end_fsb;
704 int error = 0;
705
706 trace_xfs_reflink_end_cow(ip, offset, count);
707
708 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
709 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
710
711 /*
712 * Walk backwards until we're out of the I/O range. The loop function
713 * repeatedly cycles the ILOCK to allocate one transaction per remapped
714 * extent.
715 *
b63da6c8 716 * If we're being called by writeback then the pages will still
d6f215f3
DW
717 * have PageWriteback set, which prevents races with reflink remapping
718 * and truncate. Reflink remapping prevents races with writeback by
719 * taking the iolock and mmaplock before flushing the pages and
720 * remapping, which means there won't be any further writeback or page
721 * cache dirtying until the reflink completes.
722 *
723 * We should never have two threads issuing writeback for the same file
724 * region. There are also have post-eof checks in the writeback
725 * preparation code so that we don't bother writing out pages that are
726 * about to be truncated.
727 *
728 * If we're being called as part of directio write completion, the dio
729 * count is still elevated, which reflink and truncate will wait for.
730 * Reflink remapping takes the iolock and mmaplock and waits for
731 * pending dio to finish, which should prevent any directio until the
732 * remap completes. Multiple concurrent directio writes to the same
733 * region are handled by end_cow processing only occurring for the
734 * threads which succeed; the outcome of multiple overlapping direct
735 * writes is not well defined anyway.
736 *
737 * It's possible that a buffered write and a direct write could collide
738 * here (the buffered write stumbles in after the dio flushes and
739 * invalidates the page cache and immediately queues writeback), but we
740 * have never supported this 100%. If either disk write succeeds the
741 * blocks will be remapped.
742 */
743 while (end_fsb > offset_fsb && !error)
744 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
745
746 if (error)
747 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
43caeb18
DW
748 return error;
749}
174edb0e
DW
750
751/*
752 * Free leftover CoW reservations that didn't get cleaned out.
753 */
754int
755xfs_reflink_recover_cow(
756 struct xfs_mount *mp)
757{
758 xfs_agnumber_t agno;
759 int error = 0;
760
761 if (!xfs_sb_version_hasreflink(&mp->m_sb))
762 return 0;
763
764 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
765 error = xfs_refcount_recover_cow_leftovers(mp, agno);
766 if (error)
767 break;
768 }
769
770 return error;
771}
862bb360
DW
772
773/*
774 * Reflinking (Block) Ranges of Two Files Together
775 *
776 * First, ensure that the reflink flag is set on both inodes. The flag is an
777 * optimization to avoid unnecessary refcount btree lookups in the write path.
778 *
779 * Now we can iteratively remap the range of extents (and holes) in src to the
780 * corresponding ranges in dest. Let drange and srange denote the ranges of
781 * logical blocks in dest and src touched by the reflink operation.
782 *
783 * While the length of drange is greater than zero,
784 * - Read src's bmbt at the start of srange ("imap")
785 * - If imap doesn't exist, make imap appear to start at the end of srange
786 * with zero length.
787 * - If imap starts before srange, advance imap to start at srange.
788 * - If imap goes beyond srange, truncate imap to end at the end of srange.
789 * - Punch (imap start - srange start + imap len) blocks from dest at
790 * offset (drange start).
791 * - If imap points to a real range of pblks,
792 * > Increase the refcount of the imap's pblks
793 * > Map imap's pblks into dest at the offset
794 * (drange start + imap start - srange start)
795 * - Advance drange and srange by (imap start - srange start + imap len)
796 *
797 * Finally, if the reflink made dest longer, update both the in-core and
798 * on-disk file sizes.
799 *
800 * ASCII Art Demonstration:
801 *
802 * Let's say we want to reflink this source file:
803 *
804 * ----SSSSSSS-SSSSS----SSSSSS (src file)
805 * <-------------------->
806 *
807 * into this destination file:
808 *
809 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
810 * <-------------------->
811 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
812 * Observe that the range has different logical offsets in either file.
813 *
814 * Consider that the first extent in the source file doesn't line up with our
815 * reflink range. Unmapping and remapping are separate operations, so we can
816 * unmap more blocks from the destination file than we remap.
817 *
818 * ----SSSSSSS-SSSSS----SSSSSS
819 * <------->
820 * --DDDDD---------DDDDD--DDD
821 * <------->
822 *
823 * Now remap the source extent into the destination file:
824 *
825 * ----SSSSSSS-SSSSS----SSSSSS
826 * <------->
827 * --DDDDD--SSSSSSSDDDDD--DDD
828 * <------->
829 *
830 * Do likewise with the second hole and extent in our range. Holes in the
831 * unmap range don't affect our operation.
832 *
833 * ----SSSSSSS-SSSSS----SSSSSS
834 * <---->
835 * --DDDDD--SSSSSSS-SSSSS-DDD
836 * <---->
837 *
838 * Finally, unmap and remap part of the third extent. This will increase the
839 * size of the destination file.
840 *
841 * ----SSSSSSS-SSSSS----SSSSSS
842 * <----->
843 * --DDDDD--SSSSSSS-SSSSS----SSS
844 * <----->
845 *
846 * Once we update the destination file's i_size, we're done.
847 */
848
849/*
850 * Ensure the reflink bit is set in both inodes.
851 */
852STATIC int
853xfs_reflink_set_inode_flag(
854 struct xfs_inode *src,
855 struct xfs_inode *dest)
856{
857 struct xfs_mount *mp = src->i_mount;
858 int error;
859 struct xfs_trans *tp;
860
861 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
862 return 0;
863
864 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
865 if (error)
866 goto out_error;
867
868 /* Lock both files against IO */
869 if (src->i_ino == dest->i_ino)
870 xfs_ilock(src, XFS_ILOCK_EXCL);
871 else
7c2d238a 872 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
862bb360
DW
873
874 if (!xfs_is_reflink_inode(src)) {
875 trace_xfs_reflink_set_inode_flag(src);
876 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
3e09ab8f 877 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
862bb360
DW
878 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
879 xfs_ifork_init_cow(src);
880 } else
881 xfs_iunlock(src, XFS_ILOCK_EXCL);
882
883 if (src->i_ino == dest->i_ino)
884 goto commit_flags;
885
886 if (!xfs_is_reflink_inode(dest)) {
887 trace_xfs_reflink_set_inode_flag(dest);
888 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
3e09ab8f 889 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
862bb360
DW
890 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
891 xfs_ifork_init_cow(dest);
892 } else
893 xfs_iunlock(dest, XFS_ILOCK_EXCL);
894
895commit_flags:
896 error = xfs_trans_commit(tp);
897 if (error)
898 goto out_error;
899 return error;
900
901out_error:
902 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
903 return error;
904}
905
906/*
f7ca3522 907 * Update destination inode size & cowextsize hint, if necessary.
862bb360 908 */
3fc9f5e4 909int
862bb360
DW
910xfs_reflink_update_dest(
911 struct xfs_inode *dest,
f7ca3522 912 xfs_off_t newlen,
c5ecb423 913 xfs_extlen_t cowextsize,
a91ae49b 914 unsigned int remap_flags)
862bb360
DW
915{
916 struct xfs_mount *mp = dest->i_mount;
917 struct xfs_trans *tp;
918 int error;
919
bf4a1fcf 920 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
862bb360
DW
921 return 0;
922
923 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
924 if (error)
925 goto out_error;
926
927 xfs_ilock(dest, XFS_ILOCK_EXCL);
928 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
929
f7ca3522
DW
930 if (newlen > i_size_read(VFS_I(dest))) {
931 trace_xfs_reflink_update_inode_size(dest, newlen);
932 i_size_write(VFS_I(dest), newlen);
13d2c10b 933 dest->i_disk_size = newlen;
f7ca3522
DW
934 }
935
936 if (cowextsize) {
b33ce57d 937 dest->i_cowextsize = cowextsize;
3e09ab8f 938 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
939 }
940
862bb360
DW
941 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
942
943 error = xfs_trans_commit(tp);
944 if (error)
945 goto out_error;
946 return error;
947
948out_error:
949 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
950 return error;
951}
952
6fa164b8
DW
953/*
954 * Do we have enough reserve in this AG to handle a reflink? The refcount
955 * btree already reserved all the space it needs, but the rmap btree can grow
956 * infinitely, so we won't allow more reflinks when the AG is down to the
957 * btree reserves.
958 */
959static int
960xfs_reflink_ag_has_free_space(
961 struct xfs_mount *mp,
962 xfs_agnumber_t agno)
963{
964 struct xfs_perag *pag;
965 int error = 0;
966
967 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
968 return 0;
969
970 pag = xfs_perag_get(mp, agno);
21592863 971 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
6fa164b8
DW
972 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
973 error = -ENOSPC;
974 xfs_perag_put(pag);
975 return error;
976}
977
862bb360 978/*
00fd1d56
DW
979 * Remap the given extent into the file. The dmap blockcount will be set to
980 * the number of blocks that were actually remapped.
862bb360
DW
981 */
982STATIC int
983xfs_reflink_remap_extent(
984 struct xfs_inode *ip,
00fd1d56 985 struct xfs_bmbt_irec *dmap,
862bb360
DW
986 xfs_off_t new_isize)
987{
00fd1d56 988 struct xfs_bmbt_irec smap;
862bb360
DW
989 struct xfs_mount *mp = ip->i_mount;
990 struct xfs_trans *tp;
862bb360 991 xfs_off_t newlen;
f273387b 992 int64_t qdelta = 0;
00fd1d56 993 unsigned int resblks;
4ca74205 994 bool quota_reserved = true;
00fd1d56
DW
995 bool smap_real;
996 bool dmap_written = xfs_bmap_is_written_extent(dmap);
ee898d78 997 int iext_delta = 0;
00fd1d56 998 int nimaps;
862bb360
DW
999 int error;
1000
f273387b
DW
1001 /*
1002 * Start a rolling transaction to switch the mappings.
1003 *
1004 * Adding a written extent to the extent map can cause a bmbt split,
1005 * and removing a mapped extent from the extent can cause a bmbt split.
1006 * The two operations cannot both cause a split since they operate on
1007 * the same index in the bmap btree, so we only need a reservation for
1008 * one bmbt split if either thing is happening. However, we haven't
1009 * locked the inode yet, so we reserve assuming this is the case.
4ca74205
DW
1010 *
1011 * The first allocation call tries to reserve enough space to handle
1012 * mapping dmap into a sparse part of the file plus the bmbt split. We
1013 * haven't locked the inode or read the existing mapping yet, so we do
1014 * not know for sure that we need the space. This should succeed most
1015 * of the time.
1016 *
1017 * If the first attempt fails, try again but reserving only enough
1018 * space to handle a bmbt split. This is the hard minimum requirement,
1019 * and we revisit quota reservations later when we know more about what
1020 * we're remapping.
f273387b 1021 */
00fd1d56 1022 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
4ca74205
DW
1023 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1024 resblks + dmap->br_blockcount, 0, false, &tp);
1025 if (error == -EDQUOT || error == -ENOSPC) {
1026 quota_reserved = false;
1027 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1028 resblks, 0, false, &tp);
1029 }
862bb360
DW
1030 if (error)
1031 goto out;
1032
83895227 1033 /*
00fd1d56
DW
1034 * Read what's currently mapped in the destination file into smap.
1035 * If smap isn't a hole, we will have to remove it before we can add
1036 * dmap to the destination file.
83895227 1037 */
00fd1d56
DW
1038 nimaps = 1;
1039 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1040 &smap, &nimaps, 0);
83895227
DW
1041 if (error)
1042 goto out_cancel;
00fd1d56
DW
1043 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1044 smap_real = xfs_bmap_is_real_extent(&smap);
862bb360 1045
00fd1d56
DW
1046 /*
1047 * We can only remap as many blocks as the smaller of the two extent
1048 * maps, because we can only remap one extent at a time.
1049 */
1050 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1051 ASSERT(dmap->br_blockcount == smap.br_blockcount);
862bb360 1052
00fd1d56
DW
1053 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1054
168eae80
DW
1055 /*
1056 * Two extents mapped to the same physical block must not have
1057 * different states; that's filesystem corruption. Move on to the next
1058 * extent if they're both holes or both the same physical extent.
1059 */
1060 if (dmap->br_startblock == smap.br_startblock) {
1061 if (dmap->br_state != smap.br_state)
1062 error = -EFSCORRUPTED;
1063 goto out_cancel;
1064 }
1065
1066 /* If both extents are unwritten, leave them alone. */
1067 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1068 smap.br_state == XFS_EXT_UNWRITTEN)
1069 goto out_cancel;
1070
00fd1d56
DW
1071 /* No reflinking if the AG of the dest mapping is low on space. */
1072 if (dmap_written) {
1073 error = xfs_reflink_ag_has_free_space(mp,
1074 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
862bb360 1075 if (error)
c8eac49e 1076 goto out_cancel;
00fd1d56 1077 }
862bb360 1078
00fd1d56 1079 /*
f273387b 1080 * Increase quota reservation if we think the quota block counter for
00fd1d56
DW
1081 * this file could increase.
1082 *
00fd1d56
DW
1083 * If we are mapping a written extent into the file, we need to have
1084 * enough quota block count reservation to handle the blocks in that
94b941fd
DW
1085 * extent. We log only the delta to the quota block counts, so if the
1086 * extent we're unmapping also has blocks allocated to it, we don't
1087 * need a quota reservation for the extent itself.
00fd1d56
DW
1088 *
1089 * Note that if we're replacing a delalloc reservation with a written
1090 * extent, we have to take the full quota reservation because removing
1091 * the delalloc reservation gives the block count back to the quota
1092 * count. This is suboptimal, but the VFS flushed the dest range
1093 * before we started. That should have removed all the delalloc
1094 * reservations, but we code defensively.
766aabd5
DW
1095 *
1096 * xfs_trans_alloc_inode above already tried to grab an even larger
1097 * quota reservation, and kicked off a blockgc scan if it couldn't.
1098 * If we can't get a potentially smaller quota reservation now, we're
1099 * done.
00fd1d56 1100 */
4ca74205 1101 if (!quota_reserved && !smap_real && dmap_written) {
f273387b
DW
1102 error = xfs_trans_reserve_quota_nblks(tp, ip,
1103 dmap->br_blockcount, 0, false);
aa5d0ba0
DW
1104 if (error)
1105 goto out_cancel;
1106 }
00fd1d56 1107
ee898d78
CB
1108 if (smap_real)
1109 ++iext_delta;
1110
1111 if (dmap_written)
1112 ++iext_delta;
1113
1114 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1115 if (error)
1116 goto out_cancel;
1117
00fd1d56 1118 if (smap_real) {
862bb360 1119 /*
00fd1d56
DW
1120 * If the extent we're unmapping is backed by storage (written
1121 * or not), unmap the extent and drop its refcount.
862bb360 1122 */
00fd1d56
DW
1123 xfs_bmap_unmap_extent(tp, ip, &smap);
1124 xfs_refcount_decrease_extent(tp, &smap);
1125 qdelta -= smap.br_blockcount;
1126 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1127 xfs_filblks_t len = smap.br_blockcount;
862bb360 1128
00fd1d56
DW
1129 /*
1130 * If the extent we're unmapping is a delalloc reservation,
1131 * we can use the regular bunmapi function to release the
1132 * incore state. Dropping the delalloc reservation takes care
1133 * of the quota reservation for us.
1134 */
1135 error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1136 if (error)
1137 goto out_cancel;
1138 ASSERT(len == 0);
1139 }
862bb360 1140
00fd1d56
DW
1141 /*
1142 * If the extent we're sharing is backed by written storage, increase
1143 * its refcount and map it into the file.
1144 */
1145 if (dmap_written) {
1146 xfs_refcount_increase_extent(tp, dmap);
1147 xfs_bmap_map_extent(tp, ip, dmap);
1148 qdelta += dmap->br_blockcount;
1149 }
862bb360 1150
00fd1d56 1151 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
862bb360 1152
00fd1d56
DW
1153 /* Update dest isize if needed. */
1154 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1155 newlen = min_t(xfs_off_t, newlen, new_isize);
1156 if (newlen > i_size_read(VFS_I(ip))) {
1157 trace_xfs_reflink_update_inode_size(ip, newlen);
1158 i_size_write(VFS_I(ip), newlen);
13d2c10b 1159 ip->i_disk_size = newlen;
00fd1d56 1160 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
862bb360
DW
1161 }
1162
00fd1d56 1163 /* Commit everything and unlock. */
862bb360 1164 error = xfs_trans_commit(tp);
00fd1d56 1165 goto out_unlock;
862bb360 1166
862bb360
DW
1167out_cancel:
1168 xfs_trans_cancel(tp);
00fd1d56 1169out_unlock:
862bb360
DW
1170 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1171out:
00fd1d56
DW
1172 if (error)
1173 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
862bb360
DW
1174 return error;
1175}
1176
00fd1d56 1177/* Remap a range of one file to the other. */
3fc9f5e4 1178int
862bb360
DW
1179xfs_reflink_remap_blocks(
1180 struct xfs_inode *src,
9f04aaff 1181 loff_t pos_in,
862bb360 1182 struct xfs_inode *dest,
9f04aaff 1183 loff_t pos_out,
3f68c1f5
DW
1184 loff_t remap_len,
1185 loff_t *remapped)
862bb360
DW
1186{
1187 struct xfs_bmbt_irec imap;
00fd1d56
DW
1188 struct xfs_mount *mp = src->i_mount;
1189 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1190 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
9f04aaff 1191 xfs_filblks_t len;
3f68c1f5 1192 xfs_filblks_t remapped_len = 0;
9f04aaff 1193 xfs_off_t new_isize = pos_out + remap_len;
862bb360
DW
1194 int nimaps;
1195 int error = 0;
9f04aaff 1196
00fd1d56
DW
1197 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1198 XFS_MAX_FILEOFF);
862bb360 1199
00fd1d56 1200 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
01c2e13d 1201
00fd1d56
DW
1202 while (len > 0) {
1203 unsigned int lock_mode;
01c2e13d 1204
862bb360
DW
1205 /* Read extent from the source file */
1206 nimaps = 1;
01c2e13d 1207 lock_mode = xfs_ilock_data_map_shared(src);
862bb360 1208 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
01c2e13d 1209 xfs_iunlock(src, lock_mode);
862bb360 1210 if (error)
9f04aaff 1211 break;
00fd1d56
DW
1212 /*
1213 * The caller supposedly flushed all dirty pages in the source
1214 * file range, which means that writeback should have allocated
1215 * or deleted all delalloc reservations in that range. If we
1216 * find one, that's a good sign that something is seriously
1217 * wrong here.
1218 */
1219 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1220 if (imap.br_startblock == DELAYSTARTBLOCK) {
1221 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1222 error = -EFSCORRUPTED;
1223 break;
1224 }
862bb360 1225
00fd1d56 1226 trace_xfs_reflink_remap_extent_src(src, &imap);
862bb360 1227
00fd1d56
DW
1228 /* Remap into the destination file at the given offset. */
1229 imap.br_startoff = destoff;
1230 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
862bb360 1231 if (error)
9f04aaff 1232 break;
862bb360
DW
1233
1234 if (fatal_signal_pending(current)) {
1235 error = -EINTR;
9f04aaff 1236 break;
862bb360
DW
1237 }
1238
1239 /* Advance drange/srange */
00fd1d56
DW
1240 srcoff += imap.br_blockcount;
1241 destoff += imap.br_blockcount;
1242 len -= imap.br_blockcount;
1243 remapped_len += imap.br_blockcount;
862bb360
DW
1244 }
1245
9f04aaff
DW
1246 if (error)
1247 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
3f68c1f5
DW
1248 *remapped = min_t(loff_t, remap_len,
1249 XFS_FSB_TO_B(src->i_mount, remapped_len));
862bb360
DW
1250 return error;
1251}
1252
410fdc72
DW
1253/*
1254 * If we're reflinking to a point past the destination file's EOF, we must
1255 * zero any speculative post-EOF preallocations that sit between the old EOF
1256 * and the destination file offset.
1257 */
1258static int
1259xfs_reflink_zero_posteof(
1260 struct xfs_inode *ip,
1261 loff_t pos)
1262{
1263 loff_t isize = i_size_read(VFS_I(ip));
1264
1265 if (pos <= isize)
1266 return 0;
1267
1268 trace_xfs_zero_eof(ip, isize, pos - isize);
1269 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
f150b423 1270 &xfs_buffered_write_iomap_ops);
410fdc72
DW
1271}
1272
862bb360 1273/*
0d41e1d2 1274 * Prepare two files for range cloning. Upon a successful return both inodes
b3998900
DC
1275 * will have the iolock and mmaplock held, the page cache of the out file will
1276 * be truncated, and any leases on the out file will have been broken. This
1277 * function borrows heavily from xfs_file_aio_write_checks.
dceeb47b
DC
1278 *
1279 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1280 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1281 * EOF block in the source dedupe range because it's not a complete block match,
b3998900 1282 * hence can introduce a corruption into the file that has it's block replaced.
dceeb47b 1283 *
b3998900
DC
1284 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1285 * "block aligned" for the purposes of cloning entire files. However, if the
1286 * source file range includes the EOF block and it lands within the existing EOF
1287 * of the destination file, then we can expose stale data from beyond the source
1288 * file EOF in the destination file.
1289 *
1290 * XFS doesn't support partial block sharing, so in both cases we have check
1291 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1292 * down to the previous whole block and ignore the partial EOF block. While this
1293 * means we can't dedupe the last block of a file, this is an acceptible
1294 * tradeoff for simplicity on implementation.
1295 *
1296 * For cloning, we want to share the partial EOF block if it is also the new EOF
1297 * block of the destination file. If the partial EOF block lies inside the
1298 * existing destination EOF, then we have to abort the clone to avoid exposing
1299 * stale data in the destination file. Hence we reject these clone attempts with
1300 * -EINVAL in this case.
862bb360 1301 */
3fc9f5e4 1302int
0d41e1d2 1303xfs_reflink_remap_prep(
5faaf4fa
CH
1304 struct file *file_in,
1305 loff_t pos_in,
1306 struct file *file_out,
1307 loff_t pos_out,
42ec3d4c 1308 loff_t *len,
a91ae49b 1309 unsigned int remap_flags)
862bb360 1310{
5faaf4fa
CH
1311 struct inode *inode_in = file_inode(file_in);
1312 struct xfs_inode *src = XFS_I(inode_in);
1313 struct inode *inode_out = file_inode(file_out);
1314 struct xfs_inode *dest = XFS_I(inode_out);
451d34ee 1315 int ret;
862bb360 1316
5faaf4fa 1317 /* Lock both files against IO */
e2aaee9c 1318 ret = xfs_ilock2_io_mmap(src, dest);
1364b1d4
DW
1319 if (ret)
1320 return ret;
5faaf4fa 1321
876bec6f 1322 /* Check file eligibility and prepare for block sharing. */
5faaf4fa 1323 ret = -EINVAL;
862bb360
DW
1324 /* Don't reflink realtime inodes */
1325 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
5faaf4fa
CH
1326 goto out_unlock;
1327
1328 /* Don't share DAX file data for now. */
1329 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1330 goto out_unlock;
1331
a83ab01a 1332 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
a91ae49b 1333 len, remap_flags);
451d34ee 1334 if (ret || *len == 0)
5faaf4fa
CH
1335 goto out_unlock;
1336
09ac8623 1337 /* Attach dquots to dest inode before changing block map */
c14cfcca 1338 ret = xfs_qm_dqattach(dest);
09ac8623
DW
1339 if (ret)
1340 goto out_unlock;
1341
5c989a0e 1342 /*
410fdc72
DW
1343 * Zero existing post-eof speculative preallocations in the destination
1344 * file.
5c989a0e 1345 */
410fdc72
DW
1346 ret = xfs_reflink_zero_posteof(dest, pos_out);
1347 if (ret)
1348 goto out_unlock;
5c989a0e 1349
876bec6f 1350 /* Set flags and remap blocks. */
5faaf4fa
CH
1351 ret = xfs_reflink_set_inode_flag(src, dest);
1352 if (ret)
1353 goto out_unlock;
862bb360 1354
2c307174
DC
1355 /*
1356 * If pos_out > EOF, we may have dirtied blocks between EOF and
1357 * pos_out. In that case, we need to extend the flush and unmap to cover
1358 * from EOF to the end of the copy length.
1359 */
1360 if (pos_out > XFS_ISIZE(dest)) {
1361 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1362 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1363 } else {
1364 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1365 }
1366 if (ret)
1367 goto out_unlock;
7debbf01 1368
451d34ee 1369 return 0;
0d41e1d2 1370out_unlock:
e2aaee9c 1371 xfs_iunlock2_io_mmap(src, dest);
0d41e1d2
DW
1372 return ret;
1373}
1374
ea7cdd7b 1375/* Does this inode need the reflink flag? */
98cc2db5 1376int
ea7cdd7b
DW
1377xfs_reflink_inode_has_shared_extents(
1378 struct xfs_trans *tp,
1379 struct xfs_inode *ip,
1380 bool *has_shared)
98cc2db5 1381{
ea7cdd7b
DW
1382 struct xfs_bmbt_irec got;
1383 struct xfs_mount *mp = ip->i_mount;
1384 struct xfs_ifork *ifp;
1385 xfs_agnumber_t agno;
1386 xfs_agblock_t agbno;
1387 xfs_extlen_t aglen;
1388 xfs_agblock_t rbno;
1389 xfs_extlen_t rlen;
b2b1712a 1390 struct xfs_iext_cursor icur;
ea7cdd7b
DW
1391 bool found;
1392 int error;
98cc2db5 1393
ea7cdd7b 1394 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
862a804a
CH
1395 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1396 if (error)
1397 return error;
98cc2db5 1398
ea7cdd7b 1399 *has_shared = false;
b2b1712a 1400 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
ea7cdd7b
DW
1401 while (found) {
1402 if (isnullstartblock(got.br_startblock) ||
1403 got.br_state != XFS_EXT_NORM)
1404 goto next;
1405 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1406 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1407 aglen = got.br_blockcount;
98cc2db5 1408
ea7cdd7b 1409 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
024adf48
DW
1410 &rbno, &rlen, false);
1411 if (error)
1412 return error;
1413 /* Is there still a shared block here? */
ea7cdd7b
DW
1414 if (rbno != NULLAGBLOCK) {
1415 *has_shared = true;
024adf48 1416 return 0;
ea7cdd7b 1417 }
98cc2db5 1418next:
b2b1712a 1419 found = xfs_iext_next_extent(ifp, &icur, &got);
98cc2db5
DW
1420 }
1421
ea7cdd7b
DW
1422 return 0;
1423}
1424
844e5e74
DC
1425/*
1426 * Clear the inode reflink flag if there are no shared extents.
1427 *
1428 * The caller is responsible for joining the inode to the transaction passed in.
1429 * The inode will be joined to the transaction that is returned to the caller.
1430 */
ea7cdd7b
DW
1431int
1432xfs_reflink_clear_inode_flag(
1433 struct xfs_inode *ip,
1434 struct xfs_trans **tpp)
1435{
1436 bool needs_flag;
1437 int error = 0;
1438
1439 ASSERT(xfs_is_reflink_inode(ip));
1440
1441 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1442 if (error || needs_flag)
1443 return error;
1444
98cc2db5
DW
1445 /*
1446 * We didn't find any shared blocks so turn off the reflink flag.
1447 * First, get rid of any leftover CoW mappings.
1448 */
a5084865
DW
1449 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1450 true);
98cc2db5
DW
1451 if (error)
1452 return error;
1453
1454 /* Clear the inode flag. */
1455 trace_xfs_reflink_unset_inode_flag(ip);
3e09ab8f 1456 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
83104d44 1457 xfs_inode_clear_cowblocks_tag(ip);
98cc2db5
DW
1458 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1459
1460 return error;
1461}
1462
1463/*
1464 * Clear the inode reflink flag if there are no shared extents and the size
1465 * hasn't changed.
1466 */
1467STATIC int
1468xfs_reflink_try_clear_inode_flag(
97a1b87e 1469 struct xfs_inode *ip)
98cc2db5
DW
1470{
1471 struct xfs_mount *mp = ip->i_mount;
1472 struct xfs_trans *tp;
1473 int error = 0;
1474
1475 /* Start a rolling transaction to remove the mappings */
1476 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1477 if (error)
1478 return error;
1479
1480 xfs_ilock(ip, XFS_ILOCK_EXCL);
1481 xfs_trans_ijoin(tp, ip, 0);
1482
98cc2db5
DW
1483 error = xfs_reflink_clear_inode_flag(ip, &tp);
1484 if (error)
1485 goto cancel;
1486
1487 error = xfs_trans_commit(tp);
1488 if (error)
1489 goto out;
1490
1491 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1492 return 0;
1493cancel:
1494 xfs_trans_cancel(tp);
1495out:
1496 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1497 return error;
1498}
1499
1500/*
1501 * Pre-COW all shared blocks within a given byte range of a file and turn off
1502 * the reflink flag if we unshare all of the file's blocks.
1503 */
1504int
1505xfs_reflink_unshare(
1506 struct xfs_inode *ip,
1507 xfs_off_t offset,
1508 xfs_off_t len)
1509{
dd26b846 1510 struct inode *inode = VFS_I(ip);
98cc2db5
DW
1511 int error;
1512
1513 if (!xfs_is_reflink_inode(ip))
1514 return 0;
1515
1516 trace_xfs_reflink_unshare(ip, offset, len);
1517
dd26b846 1518 inode_dio_wait(inode);
98cc2db5 1519
f150b423
CH
1520 error = iomap_file_unshare(inode, offset, len,
1521 &xfs_buffered_write_iomap_ops);
98cc2db5 1522 if (error)
dd26b846 1523 goto out;
46afb062
DW
1524
1525 error = filemap_write_and_wait_range(inode->i_mapping, offset, len);
98cc2db5
DW
1526 if (error)
1527 goto out;
1528
97a1b87e
DW
1529 /* Turn off the reflink flag if possible. */
1530 error = xfs_reflink_try_clear_inode_flag(ip);
1531 if (error)
1532 goto out;
98cc2db5
DW
1533 return 0;
1534
98cc2db5
DW
1535out:
1536 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1537 return error;
1538}
This page took 0.601328 seconds and 4 git commands to generate.