]>
Commit | Line | Data |
---|---|---|
3cb98950 DH |
1 | /* Generic associative array implementation. |
2 | * | |
48c40c26 | 3 | * See Documentation/core-api/assoc_array.rst for information. |
3cb98950 DH |
4 | * |
5 | * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. | |
6 | * Written by David Howells ([email protected]) | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU General Public Licence | |
10 | * as published by the Free Software Foundation; either version | |
11 | * 2 of the Licence, or (at your option) any later version. | |
12 | */ | |
13 | //#define DEBUG | |
990428b8 | 14 | #include <linux/rcupdate.h> |
3cb98950 | 15 | #include <linux/slab.h> |
b2a4df20 | 16 | #include <linux/err.h> |
3cb98950 DH |
17 | #include <linux/assoc_array_priv.h> |
18 | ||
19 | /* | |
20 | * Iterate over an associative array. The caller must hold the RCU read lock | |
21 | * or better. | |
22 | */ | |
23 | static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, | |
24 | const struct assoc_array_ptr *stop, | |
25 | int (*iterator)(const void *leaf, | |
26 | void *iterator_data), | |
27 | void *iterator_data) | |
28 | { | |
29 | const struct assoc_array_shortcut *shortcut; | |
30 | const struct assoc_array_node *node; | |
31 | const struct assoc_array_ptr *cursor, *ptr, *parent; | |
32 | unsigned long has_meta; | |
33 | int slot, ret; | |
34 | ||
35 | cursor = root; | |
36 | ||
37 | begin_node: | |
38 | if (assoc_array_ptr_is_shortcut(cursor)) { | |
39 | /* Descend through a shortcut */ | |
40 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
516df050 | 41 | cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ |
3cb98950 DH |
42 | } |
43 | ||
44 | node = assoc_array_ptr_to_node(cursor); | |
3cb98950 DH |
45 | slot = 0; |
46 | ||
47 | /* We perform two passes of each node. | |
48 | * | |
49 | * The first pass does all the leaves in this node. This means we | |
50 | * don't miss any leaves if the node is split up by insertion whilst | |
51 | * we're iterating over the branches rooted here (we may, however, see | |
52 | * some leaves twice). | |
53 | */ | |
54 | has_meta = 0; | |
55 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
516df050 | 56 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
57 | has_meta |= (unsigned long)ptr; |
58 | if (ptr && assoc_array_ptr_is_leaf(ptr)) { | |
516df050 PM |
59 | /* We need a barrier between the read of the pointer, |
60 | * which is supplied by the above READ_ONCE(). | |
3cb98950 | 61 | */ |
3cb98950 DH |
62 | /* Invoke the callback */ |
63 | ret = iterator(assoc_array_ptr_to_leaf(ptr), | |
64 | iterator_data); | |
65 | if (ret) | |
66 | return ret; | |
67 | } | |
68 | } | |
69 | ||
70 | /* The second pass attends to all the metadata pointers. If we follow | |
71 | * one of these we may find that we don't come back here, but rather go | |
72 | * back to a replacement node with the leaves in a different layout. | |
73 | * | |
74 | * We are guaranteed to make progress, however, as the slot number for | |
75 | * a particular portion of the key space cannot change - and we | |
76 | * continue at the back pointer + 1. | |
77 | */ | |
78 | if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) | |
79 | goto finished_node; | |
80 | slot = 0; | |
81 | ||
82 | continue_node: | |
83 | node = assoc_array_ptr_to_node(cursor); | |
3cb98950 | 84 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
516df050 | 85 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
86 | if (assoc_array_ptr_is_meta(ptr)) { |
87 | cursor = ptr; | |
88 | goto begin_node; | |
89 | } | |
90 | } | |
91 | ||
92 | finished_node: | |
93 | /* Move up to the parent (may need to skip back over a shortcut) */ | |
516df050 | 94 | parent = READ_ONCE(node->back_pointer); /* Address dependency. */ |
3cb98950 DH |
95 | slot = node->parent_slot; |
96 | if (parent == stop) | |
97 | return 0; | |
98 | ||
99 | if (assoc_array_ptr_is_shortcut(parent)) { | |
100 | shortcut = assoc_array_ptr_to_shortcut(parent); | |
3cb98950 | 101 | cursor = parent; |
516df050 | 102 | parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ |
3cb98950 DH |
103 | slot = shortcut->parent_slot; |
104 | if (parent == stop) | |
105 | return 0; | |
106 | } | |
107 | ||
108 | /* Ascend to next slot in parent node */ | |
109 | cursor = parent; | |
110 | slot++; | |
111 | goto continue_node; | |
112 | } | |
113 | ||
114 | /** | |
115 | * assoc_array_iterate - Pass all objects in the array to a callback | |
116 | * @array: The array to iterate over. | |
117 | * @iterator: The callback function. | |
118 | * @iterator_data: Private data for the callback function. | |
119 | * | |
120 | * Iterate over all the objects in an associative array. Each one will be | |
121 | * presented to the iterator function. | |
122 | * | |
123 | * If the array is being modified concurrently with the iteration then it is | |
124 | * possible that some objects in the array will be passed to the iterator | |
125 | * callback more than once - though every object should be passed at least | |
126 | * once. If this is undesirable then the caller must lock against modification | |
127 | * for the duration of this function. | |
128 | * | |
129 | * The function will return 0 if no objects were in the array or else it will | |
130 | * return the result of the last iterator function called. Iteration stops | |
131 | * immediately if any call to the iteration function results in a non-zero | |
132 | * return. | |
133 | * | |
134 | * The caller should hold the RCU read lock or better if concurrent | |
135 | * modification is possible. | |
136 | */ | |
137 | int assoc_array_iterate(const struct assoc_array *array, | |
138 | int (*iterator)(const void *object, | |
139 | void *iterator_data), | |
140 | void *iterator_data) | |
141 | { | |
516df050 | 142 | struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ |
3cb98950 DH |
143 | |
144 | if (!root) | |
145 | return 0; | |
146 | return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); | |
147 | } | |
148 | ||
149 | enum assoc_array_walk_status { | |
150 | assoc_array_walk_tree_empty, | |
151 | assoc_array_walk_found_terminal_node, | |
152 | assoc_array_walk_found_wrong_shortcut, | |
30b02c4b | 153 | }; |
3cb98950 DH |
154 | |
155 | struct assoc_array_walk_result { | |
156 | struct { | |
157 | struct assoc_array_node *node; /* Node in which leaf might be found */ | |
158 | int level; | |
159 | int slot; | |
160 | } terminal_node; | |
161 | struct { | |
162 | struct assoc_array_shortcut *shortcut; | |
163 | int level; | |
164 | int sc_level; | |
165 | unsigned long sc_segments; | |
166 | unsigned long dissimilarity; | |
167 | } wrong_shortcut; | |
168 | }; | |
169 | ||
170 | /* | |
171 | * Navigate through the internal tree looking for the closest node to the key. | |
172 | */ | |
173 | static enum assoc_array_walk_status | |
174 | assoc_array_walk(const struct assoc_array *array, | |
175 | const struct assoc_array_ops *ops, | |
176 | const void *index_key, | |
177 | struct assoc_array_walk_result *result) | |
178 | { | |
179 | struct assoc_array_shortcut *shortcut; | |
180 | struct assoc_array_node *node; | |
181 | struct assoc_array_ptr *cursor, *ptr; | |
182 | unsigned long sc_segments, dissimilarity; | |
183 | unsigned long segments; | |
184 | int level, sc_level, next_sc_level; | |
185 | int slot; | |
186 | ||
187 | pr_devel("-->%s()\n", __func__); | |
188 | ||
516df050 | 189 | cursor = READ_ONCE(array->root); /* Address dependency. */ |
3cb98950 DH |
190 | if (!cursor) |
191 | return assoc_array_walk_tree_empty; | |
192 | ||
193 | level = 0; | |
194 | ||
195 | /* Use segments from the key for the new leaf to navigate through the | |
196 | * internal tree, skipping through nodes and shortcuts that are on | |
197 | * route to the destination. Eventually we'll come to a slot that is | |
198 | * either empty or contains a leaf at which point we've found a node in | |
199 | * which the leaf we're looking for might be found or into which it | |
200 | * should be inserted. | |
201 | */ | |
202 | jumped: | |
203 | segments = ops->get_key_chunk(index_key, level); | |
204 | pr_devel("segments[%d]: %lx\n", level, segments); | |
205 | ||
206 | if (assoc_array_ptr_is_shortcut(cursor)) | |
207 | goto follow_shortcut; | |
208 | ||
209 | consider_node: | |
210 | node = assoc_array_ptr_to_node(cursor); | |
3cb98950 DH |
211 | slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); |
212 | slot &= ASSOC_ARRAY_FAN_MASK; | |
516df050 | 213 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
214 | |
215 | pr_devel("consider slot %x [ix=%d type=%lu]\n", | |
216 | slot, level, (unsigned long)ptr & 3); | |
217 | ||
218 | if (!assoc_array_ptr_is_meta(ptr)) { | |
219 | /* The node doesn't have a node/shortcut pointer in the slot | |
220 | * corresponding to the index key that we have to follow. | |
221 | */ | |
222 | result->terminal_node.node = node; | |
223 | result->terminal_node.level = level; | |
224 | result->terminal_node.slot = slot; | |
225 | pr_devel("<--%s() = terminal_node\n", __func__); | |
226 | return assoc_array_walk_found_terminal_node; | |
227 | } | |
228 | ||
229 | if (assoc_array_ptr_is_node(ptr)) { | |
230 | /* There is a pointer to a node in the slot corresponding to | |
231 | * this index key segment, so we need to follow it. | |
232 | */ | |
233 | cursor = ptr; | |
234 | level += ASSOC_ARRAY_LEVEL_STEP; | |
235 | if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) | |
236 | goto consider_node; | |
237 | goto jumped; | |
238 | } | |
239 | ||
240 | /* There is a shortcut in the slot corresponding to the index key | |
241 | * segment. We follow the shortcut if its partial index key matches | |
242 | * this leaf's. Otherwise we need to split the shortcut. | |
243 | */ | |
244 | cursor = ptr; | |
245 | follow_shortcut: | |
246 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
3cb98950 DH |
247 | pr_devel("shortcut to %d\n", shortcut->skip_to_level); |
248 | sc_level = level + ASSOC_ARRAY_LEVEL_STEP; | |
249 | BUG_ON(sc_level > shortcut->skip_to_level); | |
250 | ||
251 | do { | |
252 | /* Check the leaf against the shortcut's index key a word at a | |
253 | * time, trimming the final word (the shortcut stores the index | |
254 | * key completely from the root to the shortcut's target). | |
255 | */ | |
256 | if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) | |
257 | segments = ops->get_key_chunk(index_key, sc_level); | |
258 | ||
259 | sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; | |
260 | dissimilarity = segments ^ sc_segments; | |
261 | ||
262 | if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { | |
263 | /* Trim segments that are beyond the shortcut */ | |
264 | int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
265 | dissimilarity &= ~(ULONG_MAX << shift); | |
266 | next_sc_level = shortcut->skip_to_level; | |
267 | } else { | |
268 | next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; | |
269 | next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
270 | } | |
271 | ||
272 | if (dissimilarity != 0) { | |
273 | /* This shortcut points elsewhere */ | |
274 | result->wrong_shortcut.shortcut = shortcut; | |
275 | result->wrong_shortcut.level = level; | |
276 | result->wrong_shortcut.sc_level = sc_level; | |
277 | result->wrong_shortcut.sc_segments = sc_segments; | |
278 | result->wrong_shortcut.dissimilarity = dissimilarity; | |
279 | return assoc_array_walk_found_wrong_shortcut; | |
280 | } | |
281 | ||
282 | sc_level = next_sc_level; | |
283 | } while (sc_level < shortcut->skip_to_level); | |
284 | ||
285 | /* The shortcut matches the leaf's index to this point. */ | |
516df050 | 286 | cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ |
3cb98950 DH |
287 | if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { |
288 | level = sc_level; | |
289 | goto jumped; | |
290 | } else { | |
291 | level = sc_level; | |
292 | goto consider_node; | |
293 | } | |
294 | } | |
295 | ||
296 | /** | |
297 | * assoc_array_find - Find an object by index key | |
298 | * @array: The associative array to search. | |
299 | * @ops: The operations to use. | |
300 | * @index_key: The key to the object. | |
301 | * | |
302 | * Find an object in an associative array by walking through the internal tree | |
303 | * to the node that should contain the object and then searching the leaves | |
304 | * there. NULL is returned if the requested object was not found in the array. | |
305 | * | |
306 | * The caller must hold the RCU read lock or better. | |
307 | */ | |
308 | void *assoc_array_find(const struct assoc_array *array, | |
309 | const struct assoc_array_ops *ops, | |
310 | const void *index_key) | |
311 | { | |
312 | struct assoc_array_walk_result result; | |
313 | const struct assoc_array_node *node; | |
314 | const struct assoc_array_ptr *ptr; | |
315 | const void *leaf; | |
316 | int slot; | |
317 | ||
318 | if (assoc_array_walk(array, ops, index_key, &result) != | |
319 | assoc_array_walk_found_terminal_node) | |
320 | return NULL; | |
321 | ||
322 | node = result.terminal_node.node; | |
3cb98950 DH |
323 | |
324 | /* If the target key is available to us, it's has to be pointed to by | |
325 | * the terminal node. | |
326 | */ | |
327 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
516df050 | 328 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
329 | if (ptr && assoc_array_ptr_is_leaf(ptr)) { |
330 | /* We need a barrier between the read of the pointer | |
331 | * and dereferencing the pointer - but only if we are | |
332 | * actually going to dereference it. | |
333 | */ | |
334 | leaf = assoc_array_ptr_to_leaf(ptr); | |
3cb98950 DH |
335 | if (ops->compare_object(leaf, index_key)) |
336 | return (void *)leaf; | |
337 | } | |
338 | } | |
339 | ||
340 | return NULL; | |
341 | } | |
342 | ||
343 | /* | |
344 | * Destructively iterate over an associative array. The caller must prevent | |
345 | * other simultaneous accesses. | |
346 | */ | |
347 | static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, | |
348 | const struct assoc_array_ops *ops) | |
349 | { | |
350 | struct assoc_array_shortcut *shortcut; | |
351 | struct assoc_array_node *node; | |
352 | struct assoc_array_ptr *cursor, *parent = NULL; | |
353 | int slot = -1; | |
354 | ||
355 | pr_devel("-->%s()\n", __func__); | |
356 | ||
357 | cursor = root; | |
358 | if (!cursor) { | |
359 | pr_devel("empty\n"); | |
360 | return; | |
361 | } | |
362 | ||
363 | move_to_meta: | |
364 | if (assoc_array_ptr_is_shortcut(cursor)) { | |
365 | /* Descend through a shortcut */ | |
366 | pr_devel("[%d] shortcut\n", slot); | |
367 | BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); | |
368 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
369 | BUG_ON(shortcut->back_pointer != parent); | |
370 | BUG_ON(slot != -1 && shortcut->parent_slot != slot); | |
371 | parent = cursor; | |
372 | cursor = shortcut->next_node; | |
373 | slot = -1; | |
374 | BUG_ON(!assoc_array_ptr_is_node(cursor)); | |
375 | } | |
376 | ||
377 | pr_devel("[%d] node\n", slot); | |
378 | node = assoc_array_ptr_to_node(cursor); | |
379 | BUG_ON(node->back_pointer != parent); | |
380 | BUG_ON(slot != -1 && node->parent_slot != slot); | |
381 | slot = 0; | |
382 | ||
383 | continue_node: | |
384 | pr_devel("Node %p [back=%p]\n", node, node->back_pointer); | |
385 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
386 | struct assoc_array_ptr *ptr = node->slots[slot]; | |
387 | if (!ptr) | |
388 | continue; | |
389 | if (assoc_array_ptr_is_meta(ptr)) { | |
390 | parent = cursor; | |
391 | cursor = ptr; | |
392 | goto move_to_meta; | |
393 | } | |
394 | ||
395 | if (ops) { | |
396 | pr_devel("[%d] free leaf\n", slot); | |
397 | ops->free_object(assoc_array_ptr_to_leaf(ptr)); | |
398 | } | |
399 | } | |
400 | ||
401 | parent = node->back_pointer; | |
402 | slot = node->parent_slot; | |
403 | pr_devel("free node\n"); | |
404 | kfree(node); | |
405 | if (!parent) | |
406 | return; /* Done */ | |
407 | ||
408 | /* Move back up to the parent (may need to free a shortcut on | |
409 | * the way up) */ | |
410 | if (assoc_array_ptr_is_shortcut(parent)) { | |
411 | shortcut = assoc_array_ptr_to_shortcut(parent); | |
412 | BUG_ON(shortcut->next_node != cursor); | |
413 | cursor = parent; | |
414 | parent = shortcut->back_pointer; | |
415 | slot = shortcut->parent_slot; | |
416 | pr_devel("free shortcut\n"); | |
417 | kfree(shortcut); | |
418 | if (!parent) | |
419 | return; | |
420 | ||
421 | BUG_ON(!assoc_array_ptr_is_node(parent)); | |
422 | } | |
423 | ||
424 | /* Ascend to next slot in parent node */ | |
425 | pr_devel("ascend to %p[%d]\n", parent, slot); | |
426 | cursor = parent; | |
427 | node = assoc_array_ptr_to_node(cursor); | |
428 | slot++; | |
429 | goto continue_node; | |
430 | } | |
431 | ||
432 | /** | |
433 | * assoc_array_destroy - Destroy an associative array | |
434 | * @array: The array to destroy. | |
435 | * @ops: The operations to use. | |
436 | * | |
437 | * Discard all metadata and free all objects in an associative array. The | |
438 | * array will be empty and ready to use again upon completion. This function | |
439 | * cannot fail. | |
440 | * | |
441 | * The caller must prevent all other accesses whilst this takes place as no | |
442 | * attempt is made to adjust pointers gracefully to permit RCU readlock-holding | |
443 | * accesses to continue. On the other hand, no memory allocation is required. | |
444 | */ | |
445 | void assoc_array_destroy(struct assoc_array *array, | |
446 | const struct assoc_array_ops *ops) | |
447 | { | |
448 | assoc_array_destroy_subtree(array->root, ops); | |
449 | array->root = NULL; | |
450 | } | |
451 | ||
452 | /* | |
453 | * Handle insertion into an empty tree. | |
454 | */ | |
455 | static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) | |
456 | { | |
457 | struct assoc_array_node *new_n0; | |
458 | ||
459 | pr_devel("-->%s()\n", __func__); | |
460 | ||
461 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
462 | if (!new_n0) | |
463 | return false; | |
464 | ||
465 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
466 | edit->leaf_p = &new_n0->slots[0]; | |
467 | edit->adjust_count_on = new_n0; | |
468 | edit->set[0].ptr = &edit->array->root; | |
469 | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | |
470 | ||
471 | pr_devel("<--%s() = ok [no root]\n", __func__); | |
472 | return true; | |
473 | } | |
474 | ||
475 | /* | |
476 | * Handle insertion into a terminal node. | |
477 | */ | |
478 | static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, | |
479 | const struct assoc_array_ops *ops, | |
480 | const void *index_key, | |
481 | struct assoc_array_walk_result *result) | |
482 | { | |
483 | struct assoc_array_shortcut *shortcut, *new_s0; | |
484 | struct assoc_array_node *node, *new_n0, *new_n1, *side; | |
485 | struct assoc_array_ptr *ptr; | |
486 | unsigned long dissimilarity, base_seg, blank; | |
487 | size_t keylen; | |
488 | bool have_meta; | |
489 | int level, diff; | |
490 | int slot, next_slot, free_slot, i, j; | |
491 | ||
492 | node = result->terminal_node.node; | |
493 | level = result->terminal_node.level; | |
494 | edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; | |
495 | ||
496 | pr_devel("-->%s()\n", __func__); | |
497 | ||
498 | /* We arrived at a node which doesn't have an onward node or shortcut | |
499 | * pointer that we have to follow. This means that (a) the leaf we | |
500 | * want must go here (either by insertion or replacement) or (b) we | |
501 | * need to split this node and insert in one of the fragments. | |
502 | */ | |
503 | free_slot = -1; | |
504 | ||
505 | /* Firstly, we have to check the leaves in this node to see if there's | |
506 | * a matching one we should replace in place. | |
507 | */ | |
508 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
509 | ptr = node->slots[i]; | |
510 | if (!ptr) { | |
511 | free_slot = i; | |
512 | continue; | |
513 | } | |
8d4a2ec1 JM |
514 | if (assoc_array_ptr_is_leaf(ptr) && |
515 | ops->compare_object(assoc_array_ptr_to_leaf(ptr), | |
516 | index_key)) { | |
3cb98950 DH |
517 | pr_devel("replace in slot %d\n", i); |
518 | edit->leaf_p = &node->slots[i]; | |
519 | edit->dead_leaf = node->slots[i]; | |
520 | pr_devel("<--%s() = ok [replace]\n", __func__); | |
521 | return true; | |
522 | } | |
523 | } | |
524 | ||
525 | /* If there is a free slot in this node then we can just insert the | |
526 | * leaf here. | |
527 | */ | |
528 | if (free_slot >= 0) { | |
529 | pr_devel("insert in free slot %d\n", free_slot); | |
530 | edit->leaf_p = &node->slots[free_slot]; | |
531 | edit->adjust_count_on = node; | |
532 | pr_devel("<--%s() = ok [insert]\n", __func__); | |
533 | return true; | |
534 | } | |
535 | ||
536 | /* The node has no spare slots - so we're either going to have to split | |
537 | * it or insert another node before it. | |
538 | * | |
539 | * Whatever, we're going to need at least two new nodes - so allocate | |
540 | * those now. We may also need a new shortcut, but we deal with that | |
541 | * when we need it. | |
542 | */ | |
543 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
544 | if (!new_n0) | |
545 | return false; | |
546 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
547 | new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
548 | if (!new_n1) | |
549 | return false; | |
550 | edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); | |
551 | ||
552 | /* We need to find out how similar the leaves are. */ | |
553 | pr_devel("no spare slots\n"); | |
554 | have_meta = false; | |
555 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
556 | ptr = node->slots[i]; | |
557 | if (assoc_array_ptr_is_meta(ptr)) { | |
558 | edit->segment_cache[i] = 0xff; | |
559 | have_meta = true; | |
560 | continue; | |
561 | } | |
562 | base_seg = ops->get_object_key_chunk( | |
563 | assoc_array_ptr_to_leaf(ptr), level); | |
564 | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
565 | edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | |
566 | } | |
567 | ||
568 | if (have_meta) { | |
569 | pr_devel("have meta\n"); | |
570 | goto split_node; | |
571 | } | |
572 | ||
573 | /* The node contains only leaves */ | |
574 | dissimilarity = 0; | |
575 | base_seg = edit->segment_cache[0]; | |
576 | for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) | |
577 | dissimilarity |= edit->segment_cache[i] ^ base_seg; | |
578 | ||
579 | pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); | |
580 | ||
581 | if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { | |
582 | /* The old leaves all cluster in the same slot. We will need | |
583 | * to insert a shortcut if the new node wants to cluster with them. | |
584 | */ | |
585 | if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) | |
586 | goto all_leaves_cluster_together; | |
587 | ||
ea678998 DH |
588 | /* Otherwise all the old leaves cluster in the same slot, but |
589 | * the new leaf wants to go into a different slot - so we | |
590 | * create a new node (n0) to hold the new leaf and a pointer to | |
591 | * a new node (n1) holding all the old leaves. | |
592 | * | |
593 | * This can be done by falling through to the node splitting | |
594 | * path. | |
3cb98950 | 595 | */ |
ea678998 | 596 | pr_devel("present leaves cluster but not new leaf\n"); |
3cb98950 DH |
597 | } |
598 | ||
599 | split_node: | |
600 | pr_devel("split node\n"); | |
601 | ||
ea678998 DH |
602 | /* We need to split the current node. The node must contain anything |
603 | * from a single leaf (in the one leaf case, this leaf will cluster | |
604 | * with the new leaf) and the rest meta-pointers, to all leaves, some | |
605 | * of which may cluster. | |
606 | * | |
607 | * It won't contain the case in which all the current leaves plus the | |
608 | * new leaves want to cluster in the same slot. | |
3cb98950 DH |
609 | * |
610 | * We need to expel at least two leaves out of a set consisting of the | |
ea678998 DH |
611 | * leaves in the node and the new leaf. The current meta pointers can |
612 | * just be copied as they shouldn't cluster with any of the leaves. | |
3cb98950 DH |
613 | * |
614 | * We need a new node (n0) to replace the current one and a new node to | |
615 | * take the expelled nodes (n1). | |
616 | */ | |
617 | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | |
618 | new_n0->back_pointer = node->back_pointer; | |
619 | new_n0->parent_slot = node->parent_slot; | |
620 | new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | |
621 | new_n1->parent_slot = -1; /* Need to calculate this */ | |
622 | ||
623 | do_split_node: | |
624 | pr_devel("do_split_node\n"); | |
625 | ||
626 | new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | |
627 | new_n1->nr_leaves_on_branch = 0; | |
628 | ||
629 | /* Begin by finding two matching leaves. There have to be at least two | |
630 | * that match - even if there are meta pointers - because any leaf that | |
631 | * would match a slot with a meta pointer in it must be somewhere | |
632 | * behind that meta pointer and cannot be here. Further, given N | |
633 | * remaining leaf slots, we now have N+1 leaves to go in them. | |
634 | */ | |
635 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
636 | slot = edit->segment_cache[i]; | |
637 | if (slot != 0xff) | |
638 | for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) | |
639 | if (edit->segment_cache[j] == slot) | |
640 | goto found_slot_for_multiple_occupancy; | |
641 | } | |
642 | found_slot_for_multiple_occupancy: | |
643 | pr_devel("same slot: %x %x [%02x]\n", i, j, slot); | |
644 | BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); | |
645 | BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); | |
646 | BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); | |
647 | ||
648 | new_n1->parent_slot = slot; | |
649 | ||
650 | /* Metadata pointers cannot change slot */ | |
651 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) | |
652 | if (assoc_array_ptr_is_meta(node->slots[i])) | |
653 | new_n0->slots[i] = node->slots[i]; | |
654 | else | |
655 | new_n0->slots[i] = NULL; | |
656 | BUG_ON(new_n0->slots[slot] != NULL); | |
657 | new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); | |
658 | ||
659 | /* Filter the leaf pointers between the new nodes */ | |
660 | free_slot = -1; | |
661 | next_slot = 0; | |
662 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
663 | if (assoc_array_ptr_is_meta(node->slots[i])) | |
664 | continue; | |
665 | if (edit->segment_cache[i] == slot) { | |
666 | new_n1->slots[next_slot++] = node->slots[i]; | |
667 | new_n1->nr_leaves_on_branch++; | |
668 | } else { | |
669 | do { | |
670 | free_slot++; | |
671 | } while (new_n0->slots[free_slot] != NULL); | |
672 | new_n0->slots[free_slot] = node->slots[i]; | |
673 | } | |
674 | } | |
675 | ||
676 | pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); | |
677 | ||
678 | if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { | |
679 | do { | |
680 | free_slot++; | |
681 | } while (new_n0->slots[free_slot] != NULL); | |
682 | edit->leaf_p = &new_n0->slots[free_slot]; | |
683 | edit->adjust_count_on = new_n0; | |
684 | } else { | |
685 | edit->leaf_p = &new_n1->slots[next_slot++]; | |
686 | edit->adjust_count_on = new_n1; | |
687 | } | |
688 | ||
689 | BUG_ON(next_slot <= 1); | |
690 | ||
691 | edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); | |
692 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
693 | if (edit->segment_cache[i] == 0xff) { | |
694 | ptr = node->slots[i]; | |
695 | BUG_ON(assoc_array_ptr_is_leaf(ptr)); | |
696 | if (assoc_array_ptr_is_node(ptr)) { | |
697 | side = assoc_array_ptr_to_node(ptr); | |
698 | edit->set_backpointers[i] = &side->back_pointer; | |
699 | } else { | |
700 | shortcut = assoc_array_ptr_to_shortcut(ptr); | |
701 | edit->set_backpointers[i] = &shortcut->back_pointer; | |
702 | } | |
703 | } | |
704 | } | |
705 | ||
706 | ptr = node->back_pointer; | |
707 | if (!ptr) | |
708 | edit->set[0].ptr = &edit->array->root; | |
709 | else if (assoc_array_ptr_is_node(ptr)) | |
710 | edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; | |
711 | else | |
712 | edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; | |
713 | edit->excised_meta[0] = assoc_array_node_to_ptr(node); | |
714 | pr_devel("<--%s() = ok [split node]\n", __func__); | |
715 | return true; | |
716 | ||
3cb98950 DH |
717 | all_leaves_cluster_together: |
718 | /* All the leaves, new and old, want to cluster together in this node | |
719 | * in the same slot, so we have to replace this node with a shortcut to | |
720 | * skip over the identical parts of the key and then place a pair of | |
721 | * nodes, one inside the other, at the end of the shortcut and | |
722 | * distribute the keys between them. | |
723 | * | |
724 | * Firstly we need to work out where the leaves start diverging as a | |
725 | * bit position into their keys so that we know how big the shortcut | |
726 | * needs to be. | |
727 | * | |
728 | * We only need to make a single pass of N of the N+1 leaves because if | |
729 | * any keys differ between themselves at bit X then at least one of | |
730 | * them must also differ with the base key at bit X or before. | |
731 | */ | |
732 | pr_devel("all leaves cluster together\n"); | |
733 | diff = INT_MAX; | |
734 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
23fd78d7 DH |
735 | int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), |
736 | index_key); | |
3cb98950 DH |
737 | if (x < diff) { |
738 | BUG_ON(x < 0); | |
739 | diff = x; | |
740 | } | |
741 | } | |
742 | BUG_ON(diff == INT_MAX); | |
743 | BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); | |
744 | ||
745 | keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
746 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
747 | ||
748 | new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + | |
749 | keylen * sizeof(unsigned long), GFP_KERNEL); | |
750 | if (!new_s0) | |
751 | return false; | |
752 | edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); | |
753 | ||
754 | edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | |
755 | new_s0->back_pointer = node->back_pointer; | |
756 | new_s0->parent_slot = node->parent_slot; | |
757 | new_s0->next_node = assoc_array_node_to_ptr(new_n0); | |
758 | new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | |
759 | new_n0->parent_slot = 0; | |
760 | new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | |
761 | new_n1->parent_slot = -1; /* Need to calculate this */ | |
762 | ||
763 | new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; | |
764 | pr_devel("skip_to_level = %d [diff %d]\n", level, diff); | |
765 | BUG_ON(level <= 0); | |
766 | ||
767 | for (i = 0; i < keylen; i++) | |
768 | new_s0->index_key[i] = | |
769 | ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
770 | ||
771 | blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); | |
772 | pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); | |
773 | new_s0->index_key[keylen - 1] &= ~blank; | |
774 | ||
775 | /* This now reduces to a node splitting exercise for which we'll need | |
776 | * to regenerate the disparity table. | |
777 | */ | |
778 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
779 | ptr = node->slots[i]; | |
780 | base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), | |
781 | level); | |
782 | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
783 | edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | |
784 | } | |
785 | ||
786 | base_seg = ops->get_key_chunk(index_key, level); | |
787 | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
788 | edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; | |
789 | goto do_split_node; | |
790 | } | |
791 | ||
792 | /* | |
793 | * Handle insertion into the middle of a shortcut. | |
794 | */ | |
795 | static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, | |
796 | const struct assoc_array_ops *ops, | |
797 | struct assoc_array_walk_result *result) | |
798 | { | |
799 | struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; | |
800 | struct assoc_array_node *node, *new_n0, *side; | |
801 | unsigned long sc_segments, dissimilarity, blank; | |
802 | size_t keylen; | |
803 | int level, sc_level, diff; | |
804 | int sc_slot; | |
805 | ||
806 | shortcut = result->wrong_shortcut.shortcut; | |
807 | level = result->wrong_shortcut.level; | |
808 | sc_level = result->wrong_shortcut.sc_level; | |
809 | sc_segments = result->wrong_shortcut.sc_segments; | |
810 | dissimilarity = result->wrong_shortcut.dissimilarity; | |
811 | ||
812 | pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", | |
813 | __func__, level, dissimilarity, sc_level); | |
814 | ||
815 | /* We need to split a shortcut and insert a node between the two | |
816 | * pieces. Zero-length pieces will be dispensed with entirely. | |
817 | * | |
818 | * First of all, we need to find out in which level the first | |
819 | * difference was. | |
820 | */ | |
821 | diff = __ffs(dissimilarity); | |
822 | diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; | |
823 | diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; | |
824 | pr_devel("diff=%d\n", diff); | |
825 | ||
826 | if (!shortcut->back_pointer) { | |
827 | edit->set[0].ptr = &edit->array->root; | |
828 | } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { | |
829 | node = assoc_array_ptr_to_node(shortcut->back_pointer); | |
830 | edit->set[0].ptr = &node->slots[shortcut->parent_slot]; | |
831 | } else { | |
832 | BUG(); | |
833 | } | |
834 | ||
835 | edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); | |
836 | ||
837 | /* Create a new node now since we're going to need it anyway */ | |
838 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
839 | if (!new_n0) | |
840 | return false; | |
841 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
842 | edit->adjust_count_on = new_n0; | |
843 | ||
844 | /* Insert a new shortcut before the new node if this segment isn't of | |
845 | * zero length - otherwise we just connect the new node directly to the | |
846 | * parent. | |
847 | */ | |
848 | level += ASSOC_ARRAY_LEVEL_STEP; | |
849 | if (diff > level) { | |
850 | pr_devel("pre-shortcut %d...%d\n", level, diff); | |
851 | keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
852 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
853 | ||
854 | new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + | |
855 | keylen * sizeof(unsigned long), GFP_KERNEL); | |
856 | if (!new_s0) | |
857 | return false; | |
858 | edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); | |
859 | edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | |
860 | new_s0->back_pointer = shortcut->back_pointer; | |
861 | new_s0->parent_slot = shortcut->parent_slot; | |
862 | new_s0->next_node = assoc_array_node_to_ptr(new_n0); | |
863 | new_s0->skip_to_level = diff; | |
864 | ||
865 | new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | |
866 | new_n0->parent_slot = 0; | |
867 | ||
868 | memcpy(new_s0->index_key, shortcut->index_key, | |
869 | keylen * sizeof(unsigned long)); | |
870 | ||
871 | blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | |
872 | pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); | |
873 | new_s0->index_key[keylen - 1] &= ~blank; | |
874 | } else { | |
875 | pr_devel("no pre-shortcut\n"); | |
876 | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | |
877 | new_n0->back_pointer = shortcut->back_pointer; | |
878 | new_n0->parent_slot = shortcut->parent_slot; | |
879 | } | |
880 | ||
881 | side = assoc_array_ptr_to_node(shortcut->next_node); | |
882 | new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; | |
883 | ||
884 | /* We need to know which slot in the new node is going to take a | |
885 | * metadata pointer. | |
886 | */ | |
887 | sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | |
888 | sc_slot &= ASSOC_ARRAY_FAN_MASK; | |
889 | ||
890 | pr_devel("new slot %lx >> %d -> %d\n", | |
891 | sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); | |
892 | ||
893 | /* Determine whether we need to follow the new node with a replacement | |
894 | * for the current shortcut. We could in theory reuse the current | |
895 | * shortcut if its parent slot number doesn't change - but that's a | |
896 | * 1-in-16 chance so not worth expending the code upon. | |
897 | */ | |
898 | level = diff + ASSOC_ARRAY_LEVEL_STEP; | |
899 | if (level < shortcut->skip_to_level) { | |
900 | pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); | |
901 | keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
902 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
903 | ||
904 | new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + | |
905 | keylen * sizeof(unsigned long), GFP_KERNEL); | |
906 | if (!new_s1) | |
907 | return false; | |
908 | edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); | |
909 | ||
910 | new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); | |
911 | new_s1->parent_slot = sc_slot; | |
912 | new_s1->next_node = shortcut->next_node; | |
913 | new_s1->skip_to_level = shortcut->skip_to_level; | |
914 | ||
915 | new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); | |
916 | ||
917 | memcpy(new_s1->index_key, shortcut->index_key, | |
918 | keylen * sizeof(unsigned long)); | |
919 | ||
920 | edit->set[1].ptr = &side->back_pointer; | |
921 | edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); | |
922 | } else { | |
923 | pr_devel("no post-shortcut\n"); | |
924 | ||
925 | /* We don't have to replace the pointed-to node as long as we | |
926 | * use memory barriers to make sure the parent slot number is | |
927 | * changed before the back pointer (the parent slot number is | |
928 | * irrelevant to the old parent shortcut). | |
929 | */ | |
930 | new_n0->slots[sc_slot] = shortcut->next_node; | |
931 | edit->set_parent_slot[0].p = &side->parent_slot; | |
932 | edit->set_parent_slot[0].to = sc_slot; | |
933 | edit->set[1].ptr = &side->back_pointer; | |
934 | edit->set[1].to = assoc_array_node_to_ptr(new_n0); | |
935 | } | |
936 | ||
937 | /* Install the new leaf in a spare slot in the new node. */ | |
938 | if (sc_slot == 0) | |
939 | edit->leaf_p = &new_n0->slots[1]; | |
940 | else | |
941 | edit->leaf_p = &new_n0->slots[0]; | |
942 | ||
943 | pr_devel("<--%s() = ok [split shortcut]\n", __func__); | |
944 | return edit; | |
945 | } | |
946 | ||
947 | /** | |
948 | * assoc_array_insert - Script insertion of an object into an associative array | |
949 | * @array: The array to insert into. | |
950 | * @ops: The operations to use. | |
951 | * @index_key: The key to insert at. | |
952 | * @object: The object to insert. | |
953 | * | |
954 | * Precalculate and preallocate a script for the insertion or replacement of an | |
955 | * object in an associative array. This results in an edit script that can | |
956 | * either be applied or cancelled. | |
957 | * | |
958 | * The function returns a pointer to an edit script or -ENOMEM. | |
959 | * | |
960 | * The caller should lock against other modifications and must continue to hold | |
961 | * the lock until assoc_array_apply_edit() has been called. | |
962 | * | |
963 | * Accesses to the tree may take place concurrently with this function, | |
964 | * provided they hold the RCU read lock. | |
965 | */ | |
966 | struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, | |
967 | const struct assoc_array_ops *ops, | |
968 | const void *index_key, | |
969 | void *object) | |
970 | { | |
971 | struct assoc_array_walk_result result; | |
972 | struct assoc_array_edit *edit; | |
973 | ||
974 | pr_devel("-->%s()\n", __func__); | |
975 | ||
976 | /* The leaf pointer we're given must not have the bottom bit set as we | |
977 | * use those for type-marking the pointer. NULL pointers are also not | |
978 | * allowed as they indicate an empty slot but we have to allow them | |
979 | * here as they can be updated later. | |
980 | */ | |
981 | BUG_ON(assoc_array_ptr_is_meta(object)); | |
982 | ||
983 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
984 | if (!edit) | |
985 | return ERR_PTR(-ENOMEM); | |
986 | edit->array = array; | |
987 | edit->ops = ops; | |
988 | edit->leaf = assoc_array_leaf_to_ptr(object); | |
989 | edit->adjust_count_by = 1; | |
990 | ||
991 | switch (assoc_array_walk(array, ops, index_key, &result)) { | |
992 | case assoc_array_walk_tree_empty: | |
993 | /* Allocate a root node if there isn't one yet */ | |
994 | if (!assoc_array_insert_in_empty_tree(edit)) | |
995 | goto enomem; | |
996 | return edit; | |
997 | ||
998 | case assoc_array_walk_found_terminal_node: | |
999 | /* We found a node that doesn't have a node/shortcut pointer in | |
1000 | * the slot corresponding to the index key that we have to | |
1001 | * follow. | |
1002 | */ | |
1003 | if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, | |
1004 | &result)) | |
1005 | goto enomem; | |
1006 | return edit; | |
1007 | ||
1008 | case assoc_array_walk_found_wrong_shortcut: | |
1009 | /* We found a shortcut that didn't match our key in a slot we | |
1010 | * needed to follow. | |
1011 | */ | |
1012 | if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) | |
1013 | goto enomem; | |
1014 | return edit; | |
1015 | } | |
1016 | ||
1017 | enomem: | |
1018 | /* Clean up after an out of memory error */ | |
1019 | pr_devel("enomem\n"); | |
1020 | assoc_array_cancel_edit(edit); | |
1021 | return ERR_PTR(-ENOMEM); | |
1022 | } | |
1023 | ||
1024 | /** | |
1025 | * assoc_array_insert_set_object - Set the new object pointer in an edit script | |
1026 | * @edit: The edit script to modify. | |
1027 | * @object: The object pointer to set. | |
1028 | * | |
1029 | * Change the object to be inserted in an edit script. The object pointed to | |
1030 | * by the old object is not freed. This must be done prior to applying the | |
1031 | * script. | |
1032 | */ | |
1033 | void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) | |
1034 | { | |
1035 | BUG_ON(!object); | |
1036 | edit->leaf = assoc_array_leaf_to_ptr(object); | |
1037 | } | |
1038 | ||
1039 | struct assoc_array_delete_collapse_context { | |
1040 | struct assoc_array_node *node; | |
1041 | const void *skip_leaf; | |
1042 | int slot; | |
1043 | }; | |
1044 | ||
1045 | /* | |
1046 | * Subtree collapse to node iterator. | |
1047 | */ | |
1048 | static int assoc_array_delete_collapse_iterator(const void *leaf, | |
1049 | void *iterator_data) | |
1050 | { | |
1051 | struct assoc_array_delete_collapse_context *collapse = iterator_data; | |
1052 | ||
1053 | if (leaf == collapse->skip_leaf) | |
1054 | return 0; | |
1055 | ||
1056 | BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); | |
1057 | ||
1058 | collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); | |
1059 | return 0; | |
1060 | } | |
1061 | ||
1062 | /** | |
1063 | * assoc_array_delete - Script deletion of an object from an associative array | |
1064 | * @array: The array to search. | |
1065 | * @ops: The operations to use. | |
1066 | * @index_key: The key to the object. | |
1067 | * | |
1068 | * Precalculate and preallocate a script for the deletion of an object from an | |
1069 | * associative array. This results in an edit script that can either be | |
1070 | * applied or cancelled. | |
1071 | * | |
1072 | * The function returns a pointer to an edit script if the object was found, | |
1073 | * NULL if the object was not found or -ENOMEM. | |
1074 | * | |
1075 | * The caller should lock against other modifications and must continue to hold | |
1076 | * the lock until assoc_array_apply_edit() has been called. | |
1077 | * | |
1078 | * Accesses to the tree may take place concurrently with this function, | |
1079 | * provided they hold the RCU read lock. | |
1080 | */ | |
1081 | struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, | |
1082 | const struct assoc_array_ops *ops, | |
1083 | const void *index_key) | |
1084 | { | |
1085 | struct assoc_array_delete_collapse_context collapse; | |
1086 | struct assoc_array_walk_result result; | |
1087 | struct assoc_array_node *node, *new_n0; | |
1088 | struct assoc_array_edit *edit; | |
1089 | struct assoc_array_ptr *ptr; | |
1090 | bool has_meta; | |
1091 | int slot, i; | |
1092 | ||
1093 | pr_devel("-->%s()\n", __func__); | |
1094 | ||
1095 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
1096 | if (!edit) | |
1097 | return ERR_PTR(-ENOMEM); | |
1098 | edit->array = array; | |
1099 | edit->ops = ops; | |
1100 | edit->adjust_count_by = -1; | |
1101 | ||
1102 | switch (assoc_array_walk(array, ops, index_key, &result)) { | |
1103 | case assoc_array_walk_found_terminal_node: | |
1104 | /* We found a node that should contain the leaf we've been | |
1105 | * asked to remove - *if* it's in the tree. | |
1106 | */ | |
1107 | pr_devel("terminal_node\n"); | |
1108 | node = result.terminal_node.node; | |
1109 | ||
1110 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1111 | ptr = node->slots[slot]; | |
1112 | if (ptr && | |
1113 | assoc_array_ptr_is_leaf(ptr) && | |
1114 | ops->compare_object(assoc_array_ptr_to_leaf(ptr), | |
1115 | index_key)) | |
1116 | goto found_leaf; | |
1117 | } | |
1118 | case assoc_array_walk_tree_empty: | |
1119 | case assoc_array_walk_found_wrong_shortcut: | |
1120 | default: | |
1121 | assoc_array_cancel_edit(edit); | |
1122 | pr_devel("not found\n"); | |
1123 | return NULL; | |
1124 | } | |
1125 | ||
1126 | found_leaf: | |
1127 | BUG_ON(array->nr_leaves_on_tree <= 0); | |
1128 | ||
1129 | /* In the simplest form of deletion we just clear the slot and release | |
1130 | * the leaf after a suitable interval. | |
1131 | */ | |
1132 | edit->dead_leaf = node->slots[slot]; | |
1133 | edit->set[0].ptr = &node->slots[slot]; | |
1134 | edit->set[0].to = NULL; | |
1135 | edit->adjust_count_on = node; | |
1136 | ||
1137 | /* If that concludes erasure of the last leaf, then delete the entire | |
1138 | * internal array. | |
1139 | */ | |
1140 | if (array->nr_leaves_on_tree == 1) { | |
1141 | edit->set[1].ptr = &array->root; | |
1142 | edit->set[1].to = NULL; | |
1143 | edit->adjust_count_on = NULL; | |
1144 | edit->excised_subtree = array->root; | |
1145 | pr_devel("all gone\n"); | |
1146 | return edit; | |
1147 | } | |
1148 | ||
1149 | /* However, we'd also like to clear up some metadata blocks if we | |
1150 | * possibly can. | |
1151 | * | |
1152 | * We go for a simple algorithm of: if this node has FAN_OUT or fewer | |
1153 | * leaves in it, then attempt to collapse it - and attempt to | |
1154 | * recursively collapse up the tree. | |
1155 | * | |
1156 | * We could also try and collapse in partially filled subtrees to take | |
1157 | * up space in this node. | |
1158 | */ | |
1159 | if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | |
1160 | struct assoc_array_node *parent, *grandparent; | |
1161 | struct assoc_array_ptr *ptr; | |
1162 | ||
1163 | /* First of all, we need to know if this node has metadata so | |
1164 | * that we don't try collapsing if all the leaves are already | |
1165 | * here. | |
1166 | */ | |
1167 | has_meta = false; | |
1168 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
1169 | ptr = node->slots[i]; | |
1170 | if (assoc_array_ptr_is_meta(ptr)) { | |
1171 | has_meta = true; | |
1172 | break; | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | pr_devel("leaves: %ld [m=%d]\n", | |
1177 | node->nr_leaves_on_branch - 1, has_meta); | |
1178 | ||
1179 | /* Look further up the tree to see if we can collapse this node | |
1180 | * into a more proximal node too. | |
1181 | */ | |
1182 | parent = node; | |
1183 | collapse_up: | |
1184 | pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); | |
1185 | ||
1186 | ptr = parent->back_pointer; | |
1187 | if (!ptr) | |
1188 | goto do_collapse; | |
1189 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1190 | struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); | |
1191 | ptr = s->back_pointer; | |
1192 | if (!ptr) | |
1193 | goto do_collapse; | |
1194 | } | |
1195 | ||
1196 | grandparent = assoc_array_ptr_to_node(ptr); | |
1197 | if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | |
1198 | parent = grandparent; | |
1199 | goto collapse_up; | |
1200 | } | |
1201 | ||
1202 | do_collapse: | |
1203 | /* There's no point collapsing if the original node has no meta | |
1204 | * pointers to discard and if we didn't merge into one of that | |
1205 | * node's ancestry. | |
1206 | */ | |
1207 | if (has_meta || parent != node) { | |
1208 | node = parent; | |
1209 | ||
1210 | /* Create a new node to collapse into */ | |
1211 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
1212 | if (!new_n0) | |
1213 | goto enomem; | |
1214 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
1215 | ||
1216 | new_n0->back_pointer = node->back_pointer; | |
1217 | new_n0->parent_slot = node->parent_slot; | |
1218 | new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | |
1219 | edit->adjust_count_on = new_n0; | |
1220 | ||
1221 | collapse.node = new_n0; | |
1222 | collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); | |
1223 | collapse.slot = 0; | |
1224 | assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), | |
1225 | node->back_pointer, | |
1226 | assoc_array_delete_collapse_iterator, | |
1227 | &collapse); | |
1228 | pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); | |
1229 | BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); | |
1230 | ||
1231 | if (!node->back_pointer) { | |
1232 | edit->set[1].ptr = &array->root; | |
1233 | } else if (assoc_array_ptr_is_leaf(node->back_pointer)) { | |
1234 | BUG(); | |
1235 | } else if (assoc_array_ptr_is_node(node->back_pointer)) { | |
1236 | struct assoc_array_node *p = | |
1237 | assoc_array_ptr_to_node(node->back_pointer); | |
1238 | edit->set[1].ptr = &p->slots[node->parent_slot]; | |
1239 | } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { | |
1240 | struct assoc_array_shortcut *s = | |
1241 | assoc_array_ptr_to_shortcut(node->back_pointer); | |
1242 | edit->set[1].ptr = &s->next_node; | |
1243 | } | |
1244 | edit->set[1].to = assoc_array_node_to_ptr(new_n0); | |
1245 | edit->excised_subtree = assoc_array_node_to_ptr(node); | |
1246 | } | |
1247 | } | |
1248 | ||
1249 | return edit; | |
1250 | ||
1251 | enomem: | |
1252 | /* Clean up after an out of memory error */ | |
1253 | pr_devel("enomem\n"); | |
1254 | assoc_array_cancel_edit(edit); | |
1255 | return ERR_PTR(-ENOMEM); | |
1256 | } | |
1257 | ||
1258 | /** | |
1259 | * assoc_array_clear - Script deletion of all objects from an associative array | |
1260 | * @array: The array to clear. | |
1261 | * @ops: The operations to use. | |
1262 | * | |
1263 | * Precalculate and preallocate a script for the deletion of all the objects | |
1264 | * from an associative array. This results in an edit script that can either | |
1265 | * be applied or cancelled. | |
1266 | * | |
1267 | * The function returns a pointer to an edit script if there are objects to be | |
1268 | * deleted, NULL if there are no objects in the array or -ENOMEM. | |
1269 | * | |
1270 | * The caller should lock against other modifications and must continue to hold | |
1271 | * the lock until assoc_array_apply_edit() has been called. | |
1272 | * | |
1273 | * Accesses to the tree may take place concurrently with this function, | |
1274 | * provided they hold the RCU read lock. | |
1275 | */ | |
1276 | struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, | |
1277 | const struct assoc_array_ops *ops) | |
1278 | { | |
1279 | struct assoc_array_edit *edit; | |
1280 | ||
1281 | pr_devel("-->%s()\n", __func__); | |
1282 | ||
1283 | if (!array->root) | |
1284 | return NULL; | |
1285 | ||
1286 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
1287 | if (!edit) | |
1288 | return ERR_PTR(-ENOMEM); | |
1289 | edit->array = array; | |
1290 | edit->ops = ops; | |
1291 | edit->set[1].ptr = &array->root; | |
1292 | edit->set[1].to = NULL; | |
1293 | edit->excised_subtree = array->root; | |
1294 | edit->ops_for_excised_subtree = ops; | |
1295 | pr_devel("all gone\n"); | |
1296 | return edit; | |
1297 | } | |
1298 | ||
1299 | /* | |
1300 | * Handle the deferred destruction after an applied edit. | |
1301 | */ | |
1302 | static void assoc_array_rcu_cleanup(struct rcu_head *head) | |
1303 | { | |
1304 | struct assoc_array_edit *edit = | |
1305 | container_of(head, struct assoc_array_edit, rcu); | |
1306 | int i; | |
1307 | ||
1308 | pr_devel("-->%s()\n", __func__); | |
1309 | ||
1310 | if (edit->dead_leaf) | |
1311 | edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); | |
1312 | for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) | |
1313 | if (edit->excised_meta[i]) | |
1314 | kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); | |
1315 | ||
1316 | if (edit->excised_subtree) { | |
1317 | BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); | |
1318 | if (assoc_array_ptr_is_node(edit->excised_subtree)) { | |
1319 | struct assoc_array_node *n = | |
1320 | assoc_array_ptr_to_node(edit->excised_subtree); | |
1321 | n->back_pointer = NULL; | |
1322 | } else { | |
1323 | struct assoc_array_shortcut *s = | |
1324 | assoc_array_ptr_to_shortcut(edit->excised_subtree); | |
1325 | s->back_pointer = NULL; | |
1326 | } | |
1327 | assoc_array_destroy_subtree(edit->excised_subtree, | |
1328 | edit->ops_for_excised_subtree); | |
1329 | } | |
1330 | ||
1331 | kfree(edit); | |
1332 | } | |
1333 | ||
1334 | /** | |
1335 | * assoc_array_apply_edit - Apply an edit script to an associative array | |
1336 | * @edit: The script to apply. | |
1337 | * | |
1338 | * Apply an edit script to an associative array to effect an insertion, | |
1339 | * deletion or clearance. As the edit script includes preallocated memory, | |
1340 | * this is guaranteed not to fail. | |
1341 | * | |
1342 | * The edit script, dead objects and dead metadata will be scheduled for | |
1343 | * destruction after an RCU grace period to permit those doing read-only | |
1344 | * accesses on the array to continue to do so under the RCU read lock whilst | |
1345 | * the edit is taking place. | |
1346 | */ | |
1347 | void assoc_array_apply_edit(struct assoc_array_edit *edit) | |
1348 | { | |
1349 | struct assoc_array_shortcut *shortcut; | |
1350 | struct assoc_array_node *node; | |
1351 | struct assoc_array_ptr *ptr; | |
1352 | int i; | |
1353 | ||
1354 | pr_devel("-->%s()\n", __func__); | |
1355 | ||
1356 | smp_wmb(); | |
1357 | if (edit->leaf_p) | |
1358 | *edit->leaf_p = edit->leaf; | |
1359 | ||
1360 | smp_wmb(); | |
1361 | for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) | |
1362 | if (edit->set_parent_slot[i].p) | |
1363 | *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; | |
1364 | ||
1365 | smp_wmb(); | |
1366 | for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) | |
1367 | if (edit->set_backpointers[i]) | |
1368 | *edit->set_backpointers[i] = edit->set_backpointers_to; | |
1369 | ||
1370 | smp_wmb(); | |
1371 | for (i = 0; i < ARRAY_SIZE(edit->set); i++) | |
1372 | if (edit->set[i].ptr) | |
1373 | *edit->set[i].ptr = edit->set[i].to; | |
1374 | ||
1375 | if (edit->array->root == NULL) { | |
1376 | edit->array->nr_leaves_on_tree = 0; | |
1377 | } else if (edit->adjust_count_on) { | |
1378 | node = edit->adjust_count_on; | |
1379 | for (;;) { | |
1380 | node->nr_leaves_on_branch += edit->adjust_count_by; | |
1381 | ||
1382 | ptr = node->back_pointer; | |
1383 | if (!ptr) | |
1384 | break; | |
1385 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1386 | shortcut = assoc_array_ptr_to_shortcut(ptr); | |
1387 | ptr = shortcut->back_pointer; | |
1388 | if (!ptr) | |
1389 | break; | |
1390 | } | |
1391 | BUG_ON(!assoc_array_ptr_is_node(ptr)); | |
1392 | node = assoc_array_ptr_to_node(ptr); | |
1393 | } | |
1394 | ||
1395 | edit->array->nr_leaves_on_tree += edit->adjust_count_by; | |
1396 | } | |
1397 | ||
1398 | call_rcu(&edit->rcu, assoc_array_rcu_cleanup); | |
1399 | } | |
1400 | ||
1401 | /** | |
1402 | * assoc_array_cancel_edit - Discard an edit script. | |
1403 | * @edit: The script to discard. | |
1404 | * | |
1405 | * Free an edit script and all the preallocated data it holds without making | |
1406 | * any changes to the associative array it was intended for. | |
1407 | * | |
1408 | * NOTE! In the case of an insertion script, this does _not_ release the leaf | |
1409 | * that was to be inserted. That is left to the caller. | |
1410 | */ | |
1411 | void assoc_array_cancel_edit(struct assoc_array_edit *edit) | |
1412 | { | |
1413 | struct assoc_array_ptr *ptr; | |
1414 | int i; | |
1415 | ||
1416 | pr_devel("-->%s()\n", __func__); | |
1417 | ||
1418 | /* Clean up after an out of memory error */ | |
1419 | for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { | |
1420 | ptr = edit->new_meta[i]; | |
1421 | if (ptr) { | |
1422 | if (assoc_array_ptr_is_node(ptr)) | |
1423 | kfree(assoc_array_ptr_to_node(ptr)); | |
1424 | else | |
1425 | kfree(assoc_array_ptr_to_shortcut(ptr)); | |
1426 | } | |
1427 | } | |
1428 | kfree(edit); | |
1429 | } | |
1430 | ||
1431 | /** | |
1432 | * assoc_array_gc - Garbage collect an associative array. | |
1433 | * @array: The array to clean. | |
1434 | * @ops: The operations to use. | |
1435 | * @iterator: A callback function to pass judgement on each object. | |
1436 | * @iterator_data: Private data for the callback function. | |
1437 | * | |
1438 | * Collect garbage from an associative array and pack down the internal tree to | |
1439 | * save memory. | |
1440 | * | |
1441 | * The iterator function is asked to pass judgement upon each object in the | |
1442 | * array. If it returns false, the object is discard and if it returns true, | |
1443 | * the object is kept. If it returns true, it must increment the object's | |
1444 | * usage count (or whatever it needs to do to retain it) before returning. | |
1445 | * | |
1446 | * This function returns 0 if successful or -ENOMEM if out of memory. In the | |
1447 | * latter case, the array is not changed. | |
1448 | * | |
1449 | * The caller should lock against other modifications and must continue to hold | |
1450 | * the lock until assoc_array_apply_edit() has been called. | |
1451 | * | |
1452 | * Accesses to the tree may take place concurrently with this function, | |
1453 | * provided they hold the RCU read lock. | |
1454 | */ | |
1455 | int assoc_array_gc(struct assoc_array *array, | |
1456 | const struct assoc_array_ops *ops, | |
1457 | bool (*iterator)(void *object, void *iterator_data), | |
1458 | void *iterator_data) | |
1459 | { | |
1460 | struct assoc_array_shortcut *shortcut, *new_s; | |
1461 | struct assoc_array_node *node, *new_n; | |
1462 | struct assoc_array_edit *edit; | |
1463 | struct assoc_array_ptr *cursor, *ptr; | |
1464 | struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; | |
1465 | unsigned long nr_leaves_on_tree; | |
1466 | int keylen, slot, nr_free, next_slot, i; | |
1467 | ||
1468 | pr_devel("-->%s()\n", __func__); | |
1469 | ||
1470 | if (!array->root) | |
1471 | return 0; | |
1472 | ||
1473 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
1474 | if (!edit) | |
1475 | return -ENOMEM; | |
1476 | edit->array = array; | |
1477 | edit->ops = ops; | |
1478 | edit->ops_for_excised_subtree = ops; | |
1479 | edit->set[0].ptr = &array->root; | |
1480 | edit->excised_subtree = array->root; | |
1481 | ||
1482 | new_root = new_parent = NULL; | |
1483 | new_ptr_pp = &new_root; | |
1484 | cursor = array->root; | |
1485 | ||
1486 | descend: | |
1487 | /* If this point is a shortcut, then we need to duplicate it and | |
1488 | * advance the target cursor. | |
1489 | */ | |
1490 | if (assoc_array_ptr_is_shortcut(cursor)) { | |
1491 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
1492 | keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
1493 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
1494 | new_s = kmalloc(sizeof(struct assoc_array_shortcut) + | |
1495 | keylen * sizeof(unsigned long), GFP_KERNEL); | |
1496 | if (!new_s) | |
1497 | goto enomem; | |
1498 | pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); | |
1499 | memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + | |
1500 | keylen * sizeof(unsigned long))); | |
1501 | new_s->back_pointer = new_parent; | |
1502 | new_s->parent_slot = shortcut->parent_slot; | |
1503 | *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); | |
1504 | new_ptr_pp = &new_s->next_node; | |
1505 | cursor = shortcut->next_node; | |
1506 | } | |
1507 | ||
1508 | /* Duplicate the node at this position */ | |
1509 | node = assoc_array_ptr_to_node(cursor); | |
1510 | new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
1511 | if (!new_n) | |
1512 | goto enomem; | |
1513 | pr_devel("dup node %p -> %p\n", node, new_n); | |
1514 | new_n->back_pointer = new_parent; | |
1515 | new_n->parent_slot = node->parent_slot; | |
1516 | *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); | |
1517 | new_ptr_pp = NULL; | |
1518 | slot = 0; | |
1519 | ||
1520 | continue_node: | |
1521 | /* Filter across any leaves and gc any subtrees */ | |
1522 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1523 | ptr = node->slots[slot]; | |
1524 | if (!ptr) | |
1525 | continue; | |
1526 | ||
1527 | if (assoc_array_ptr_is_leaf(ptr)) { | |
1528 | if (iterator(assoc_array_ptr_to_leaf(ptr), | |
1529 | iterator_data)) | |
1530 | /* The iterator will have done any reference | |
1531 | * counting on the object for us. | |
1532 | */ | |
1533 | new_n->slots[slot] = ptr; | |
1534 | continue; | |
1535 | } | |
1536 | ||
1537 | new_ptr_pp = &new_n->slots[slot]; | |
1538 | cursor = ptr; | |
1539 | goto descend; | |
1540 | } | |
1541 | ||
1542 | pr_devel("-- compress node %p --\n", new_n); | |
1543 | ||
1544 | /* Count up the number of empty slots in this node and work out the | |
1545 | * subtree leaf count. | |
1546 | */ | |
1547 | new_n->nr_leaves_on_branch = 0; | |
1548 | nr_free = 0; | |
1549 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1550 | ptr = new_n->slots[slot]; | |
1551 | if (!ptr) | |
1552 | nr_free++; | |
1553 | else if (assoc_array_ptr_is_leaf(ptr)) | |
1554 | new_n->nr_leaves_on_branch++; | |
1555 | } | |
1556 | pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); | |
1557 | ||
1558 | /* See what we can fold in */ | |
1559 | next_slot = 0; | |
1560 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1561 | struct assoc_array_shortcut *s; | |
1562 | struct assoc_array_node *child; | |
1563 | ||
1564 | ptr = new_n->slots[slot]; | |
1565 | if (!ptr || assoc_array_ptr_is_leaf(ptr)) | |
1566 | continue; | |
1567 | ||
1568 | s = NULL; | |
1569 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1570 | s = assoc_array_ptr_to_shortcut(ptr); | |
1571 | ptr = s->next_node; | |
1572 | } | |
1573 | ||
1574 | child = assoc_array_ptr_to_node(ptr); | |
1575 | new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; | |
1576 | ||
1577 | if (child->nr_leaves_on_branch <= nr_free + 1) { | |
1578 | /* Fold the child node into this one */ | |
1579 | pr_devel("[%d] fold node %lu/%d [nx %d]\n", | |
1580 | slot, child->nr_leaves_on_branch, nr_free + 1, | |
1581 | next_slot); | |
1582 | ||
1583 | /* We would already have reaped an intervening shortcut | |
1584 | * on the way back up the tree. | |
1585 | */ | |
1586 | BUG_ON(s); | |
1587 | ||
1588 | new_n->slots[slot] = NULL; | |
1589 | nr_free++; | |
1590 | if (slot < next_slot) | |
1591 | next_slot = slot; | |
1592 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
1593 | struct assoc_array_ptr *p = child->slots[i]; | |
1594 | if (!p) | |
1595 | continue; | |
1596 | BUG_ON(assoc_array_ptr_is_meta(p)); | |
1597 | while (new_n->slots[next_slot]) | |
1598 | next_slot++; | |
1599 | BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); | |
1600 | new_n->slots[next_slot++] = p; | |
1601 | nr_free--; | |
1602 | } | |
1603 | kfree(child); | |
1604 | } else { | |
1605 | pr_devel("[%d] retain node %lu/%d [nx %d]\n", | |
1606 | slot, child->nr_leaves_on_branch, nr_free + 1, | |
1607 | next_slot); | |
1608 | } | |
1609 | } | |
1610 | ||
1611 | pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); | |
1612 | ||
1613 | nr_leaves_on_tree = new_n->nr_leaves_on_branch; | |
1614 | ||
1615 | /* Excise this node if it is singly occupied by a shortcut */ | |
1616 | if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { | |
1617 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) | |
1618 | if ((ptr = new_n->slots[slot])) | |
1619 | break; | |
1620 | ||
1621 | if (assoc_array_ptr_is_meta(ptr) && | |
1622 | assoc_array_ptr_is_shortcut(ptr)) { | |
1623 | pr_devel("excise node %p with 1 shortcut\n", new_n); | |
1624 | new_s = assoc_array_ptr_to_shortcut(ptr); | |
1625 | new_parent = new_n->back_pointer; | |
1626 | slot = new_n->parent_slot; | |
1627 | kfree(new_n); | |
1628 | if (!new_parent) { | |
1629 | new_s->back_pointer = NULL; | |
1630 | new_s->parent_slot = 0; | |
1631 | new_root = ptr; | |
1632 | goto gc_complete; | |
1633 | } | |
1634 | ||
1635 | if (assoc_array_ptr_is_shortcut(new_parent)) { | |
1636 | /* We can discard any preceding shortcut also */ | |
1637 | struct assoc_array_shortcut *s = | |
1638 | assoc_array_ptr_to_shortcut(new_parent); | |
1639 | ||
1640 | pr_devel("excise preceding shortcut\n"); | |
1641 | ||
1642 | new_parent = new_s->back_pointer = s->back_pointer; | |
1643 | slot = new_s->parent_slot = s->parent_slot; | |
1644 | kfree(s); | |
1645 | if (!new_parent) { | |
1646 | new_s->back_pointer = NULL; | |
1647 | new_s->parent_slot = 0; | |
1648 | new_root = ptr; | |
1649 | goto gc_complete; | |
1650 | } | |
1651 | } | |
1652 | ||
1653 | new_s->back_pointer = new_parent; | |
1654 | new_s->parent_slot = slot; | |
1655 | new_n = assoc_array_ptr_to_node(new_parent); | |
1656 | new_n->slots[slot] = ptr; | |
1657 | goto ascend_old_tree; | |
1658 | } | |
1659 | } | |
1660 | ||
1661 | /* Excise any shortcuts we might encounter that point to nodes that | |
1662 | * only contain leaves. | |
1663 | */ | |
1664 | ptr = new_n->back_pointer; | |
1665 | if (!ptr) | |
1666 | goto gc_complete; | |
1667 | ||
1668 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1669 | new_s = assoc_array_ptr_to_shortcut(ptr); | |
1670 | new_parent = new_s->back_pointer; | |
1671 | slot = new_s->parent_slot; | |
1672 | ||
1673 | if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { | |
1674 | struct assoc_array_node *n; | |
1675 | ||
1676 | pr_devel("excise shortcut\n"); | |
1677 | new_n->back_pointer = new_parent; | |
1678 | new_n->parent_slot = slot; | |
1679 | kfree(new_s); | |
1680 | if (!new_parent) { | |
1681 | new_root = assoc_array_node_to_ptr(new_n); | |
1682 | goto gc_complete; | |
1683 | } | |
1684 | ||
1685 | n = assoc_array_ptr_to_node(new_parent); | |
1686 | n->slots[slot] = assoc_array_node_to_ptr(new_n); | |
1687 | } | |
1688 | } else { | |
1689 | new_parent = ptr; | |
1690 | } | |
1691 | new_n = assoc_array_ptr_to_node(new_parent); | |
1692 | ||
1693 | ascend_old_tree: | |
1694 | ptr = node->back_pointer; | |
1695 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1696 | shortcut = assoc_array_ptr_to_shortcut(ptr); | |
1697 | slot = shortcut->parent_slot; | |
1698 | cursor = shortcut->back_pointer; | |
95389b08 DH |
1699 | if (!cursor) |
1700 | goto gc_complete; | |
3cb98950 DH |
1701 | } else { |
1702 | slot = node->parent_slot; | |
1703 | cursor = ptr; | |
1704 | } | |
95389b08 | 1705 | BUG_ON(!cursor); |
3cb98950 DH |
1706 | node = assoc_array_ptr_to_node(cursor); |
1707 | slot++; | |
1708 | goto continue_node; | |
1709 | ||
1710 | gc_complete: | |
1711 | edit->set[0].to = new_root; | |
1712 | assoc_array_apply_edit(edit); | |
27419604 | 1713 | array->nr_leaves_on_tree = nr_leaves_on_tree; |
3cb98950 DH |
1714 | return 0; |
1715 | ||
1716 | enomem: | |
1717 | pr_devel("enomem\n"); | |
1718 | assoc_array_destroy_subtree(new_root, edit->ops); | |
1719 | kfree(edit); | |
1720 | return -ENOMEM; | |
1721 | } |