]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
4fb6e8ad | 20 | #include "xfs_format.h" |
239880ef DC |
21 | #include "xfs_log_format.h" |
22 | #include "xfs_trans_resv.h" | |
1da177e4 | 23 | #include "xfs_mount.h" |
239880ef | 24 | #include "xfs_trans.h" |
1da177e4 | 25 | #include "xfs_trans_priv.h" |
239880ef | 26 | #include "xfs_buf_item.h" |
1da177e4 | 27 | #include "xfs_extfree_item.h" |
1234351c | 28 | #include "xfs_log.h" |
1da177e4 LT |
29 | |
30 | ||
31 | kmem_zone_t *xfs_efi_zone; | |
32 | kmem_zone_t *xfs_efd_zone; | |
33 | ||
7bfa31d8 CH |
34 | static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) |
35 | { | |
36 | return container_of(lip, struct xfs_efi_log_item, efi_item); | |
37 | } | |
1da177e4 | 38 | |
7d795ca3 | 39 | void |
7bfa31d8 CH |
40 | xfs_efi_item_free( |
41 | struct xfs_efi_log_item *efip) | |
7d795ca3 | 42 | { |
7bfa31d8 | 43 | if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) |
f0e2d93c | 44 | kmem_free(efip); |
7bfa31d8 | 45 | else |
7d795ca3 | 46 | kmem_zone_free(xfs_efi_zone, efip); |
7d795ca3 | 47 | } |
1da177e4 | 48 | |
b199c8a4 DC |
49 | /* |
50 | * Freeing the efi requires that we remove it from the AIL if it has already | |
51 | * been placed there. However, the EFI may not yet have been placed in the AIL | |
52 | * when called by xfs_efi_release() from EFD processing due to the ordering of | |
666d644c DC |
53 | * committed vs unpin operations in bulk insert operations. Hence the reference |
54 | * count to ensure only the last caller frees the EFI. | |
b199c8a4 DC |
55 | */ |
56 | STATIC void | |
57 | __xfs_efi_release( | |
58 | struct xfs_efi_log_item *efip) | |
59 | { | |
60 | struct xfs_ail *ailp = efip->efi_item.li_ailp; | |
61 | ||
666d644c | 62 | if (atomic_dec_and_test(&efip->efi_refcount)) { |
b199c8a4 DC |
63 | spin_lock(&ailp->xa_lock); |
64 | /* xfs_trans_ail_delete() drops the AIL lock. */ | |
04913fdd DC |
65 | xfs_trans_ail_delete(ailp, &efip->efi_item, |
66 | SHUTDOWN_LOG_IO_ERROR); | |
b199c8a4 DC |
67 | xfs_efi_item_free(efip); |
68 | } | |
69 | } | |
70 | ||
1da177e4 LT |
71 | /* |
72 | * This returns the number of iovecs needed to log the given efi item. | |
73 | * We only need 1 iovec for an efi item. It just logs the efi_log_format | |
74 | * structure. | |
75 | */ | |
166d1368 DC |
76 | static inline int |
77 | xfs_efi_item_sizeof( | |
78 | struct xfs_efi_log_item *efip) | |
79 | { | |
80 | return sizeof(struct xfs_efi_log_format) + | |
81 | (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); | |
82 | } | |
83 | ||
84 | STATIC void | |
7bfa31d8 | 85 | xfs_efi_item_size( |
166d1368 DC |
86 | struct xfs_log_item *lip, |
87 | int *nvecs, | |
88 | int *nbytes) | |
1da177e4 | 89 | { |
166d1368 DC |
90 | *nvecs += 1; |
91 | *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); | |
1da177e4 LT |
92 | } |
93 | ||
94 | /* | |
95 | * This is called to fill in the vector of log iovecs for the | |
96 | * given efi log item. We use only 1 iovec, and we point that | |
97 | * at the efi_log_format structure embedded in the efi item. | |
98 | * It is at this point that we assert that all of the extent | |
99 | * slots in the efi item have been filled. | |
100 | */ | |
101 | STATIC void | |
7bfa31d8 CH |
102 | xfs_efi_item_format( |
103 | struct xfs_log_item *lip, | |
bde7cff6 | 104 | struct xfs_log_vec *lv) |
1da177e4 | 105 | { |
7bfa31d8 | 106 | struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
bde7cff6 | 107 | struct xfs_log_iovec *vecp = NULL; |
1da177e4 | 108 | |
b199c8a4 DC |
109 | ASSERT(atomic_read(&efip->efi_next_extent) == |
110 | efip->efi_format.efi_nextents); | |
1da177e4 LT |
111 | |
112 | efip->efi_format.efi_type = XFS_LI_EFI; | |
1da177e4 LT |
113 | efip->efi_format.efi_size = 1; |
114 | ||
bde7cff6 | 115 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, |
1234351c CH |
116 | &efip->efi_format, |
117 | xfs_efi_item_sizeof(efip)); | |
1da177e4 LT |
118 | } |
119 | ||
120 | ||
121 | /* | |
122 | * Pinning has no meaning for an efi item, so just return. | |
123 | */ | |
1da177e4 | 124 | STATIC void |
7bfa31d8 CH |
125 | xfs_efi_item_pin( |
126 | struct xfs_log_item *lip) | |
1da177e4 | 127 | { |
1da177e4 LT |
128 | } |
129 | ||
1da177e4 | 130 | /* |
9c5f8414 DC |
131 | * While EFIs cannot really be pinned, the unpin operation is the last place at |
132 | * which the EFI is manipulated during a transaction. If we are being asked to | |
133 | * remove the EFI it's because the transaction has been cancelled and by | |
134 | * definition that means the EFI cannot be in the AIL so remove it from the | |
666d644c DC |
135 | * transaction and free it. Otherwise coordinate with xfs_efi_release() |
136 | * to determine who gets to free the EFI. | |
1da177e4 | 137 | */ |
1da177e4 | 138 | STATIC void |
7bfa31d8 CH |
139 | xfs_efi_item_unpin( |
140 | struct xfs_log_item *lip, | |
141 | int remove) | |
1da177e4 | 142 | { |
7bfa31d8 | 143 | struct xfs_efi_log_item *efip = EFI_ITEM(lip); |
1da177e4 | 144 | |
9c5f8414 DC |
145 | if (remove) { |
146 | ASSERT(!(lip->li_flags & XFS_LI_IN_AIL)); | |
e34a314c DC |
147 | if (lip->li_desc) |
148 | xfs_trans_del_item(lip); | |
7d795ca3 | 149 | xfs_efi_item_free(efip); |
b199c8a4 | 150 | return; |
1da177e4 | 151 | } |
b199c8a4 | 152 | __xfs_efi_release(efip); |
1da177e4 LT |
153 | } |
154 | ||
155 | /* | |
43ff2122 CH |
156 | * Efi items have no locking or pushing. However, since EFIs are pulled from |
157 | * the AIL when their corresponding EFDs are committed to disk, their situation | |
158 | * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller | |
159 | * will eventually flush the log. This should help in getting the EFI out of | |
160 | * the AIL. | |
1da177e4 | 161 | */ |
1da177e4 | 162 | STATIC uint |
43ff2122 CH |
163 | xfs_efi_item_push( |
164 | struct xfs_log_item *lip, | |
165 | struct list_head *buffer_list) | |
1da177e4 LT |
166 | { |
167 | return XFS_ITEM_PINNED; | |
168 | } | |
169 | ||
1da177e4 | 170 | STATIC void |
7bfa31d8 CH |
171 | xfs_efi_item_unlock( |
172 | struct xfs_log_item *lip) | |
1da177e4 | 173 | { |
7bfa31d8 CH |
174 | if (lip->li_flags & XFS_LI_ABORTED) |
175 | xfs_efi_item_free(EFI_ITEM(lip)); | |
1da177e4 LT |
176 | } |
177 | ||
178 | /* | |
b199c8a4 | 179 | * The EFI is logged only once and cannot be moved in the log, so simply return |
666d644c | 180 | * the lsn at which it's been logged. |
1da177e4 | 181 | */ |
1da177e4 | 182 | STATIC xfs_lsn_t |
7bfa31d8 CH |
183 | xfs_efi_item_committed( |
184 | struct xfs_log_item *lip, | |
185 | xfs_lsn_t lsn) | |
1da177e4 LT |
186 | { |
187 | return lsn; | |
188 | } | |
189 | ||
1da177e4 LT |
190 | /* |
191 | * The EFI dependency tracking op doesn't do squat. It can't because | |
192 | * it doesn't know where the free extent is coming from. The dependency | |
193 | * tracking has to be handled by the "enclosing" metadata object. For | |
194 | * example, for inodes, the inode is locked throughout the extent freeing | |
195 | * so the dependency should be recorded there. | |
196 | */ | |
1da177e4 | 197 | STATIC void |
7bfa31d8 CH |
198 | xfs_efi_item_committing( |
199 | struct xfs_log_item *lip, | |
200 | xfs_lsn_t lsn) | |
1da177e4 | 201 | { |
1da177e4 LT |
202 | } |
203 | ||
204 | /* | |
205 | * This is the ops vector shared by all efi log items. | |
206 | */ | |
272e42b2 | 207 | static const struct xfs_item_ops xfs_efi_item_ops = { |
7bfa31d8 CH |
208 | .iop_size = xfs_efi_item_size, |
209 | .iop_format = xfs_efi_item_format, | |
210 | .iop_pin = xfs_efi_item_pin, | |
211 | .iop_unpin = xfs_efi_item_unpin, | |
7bfa31d8 CH |
212 | .iop_unlock = xfs_efi_item_unlock, |
213 | .iop_committed = xfs_efi_item_committed, | |
214 | .iop_push = xfs_efi_item_push, | |
215 | .iop_committing = xfs_efi_item_committing | |
1da177e4 LT |
216 | }; |
217 | ||
218 | ||
219 | /* | |
220 | * Allocate and initialize an efi item with the given number of extents. | |
221 | */ | |
7bfa31d8 CH |
222 | struct xfs_efi_log_item * |
223 | xfs_efi_init( | |
224 | struct xfs_mount *mp, | |
225 | uint nextents) | |
1da177e4 LT |
226 | |
227 | { | |
7bfa31d8 | 228 | struct xfs_efi_log_item *efip; |
1da177e4 LT |
229 | uint size; |
230 | ||
231 | ASSERT(nextents > 0); | |
232 | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | |
233 | size = (uint)(sizeof(xfs_efi_log_item_t) + | |
234 | ((nextents - 1) * sizeof(xfs_extent_t))); | |
7bfa31d8 | 235 | efip = kmem_zalloc(size, KM_SLEEP); |
1da177e4 | 236 | } else { |
7bfa31d8 | 237 | efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); |
1da177e4 LT |
238 | } |
239 | ||
43f5efc5 | 240 | xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); |
1da177e4 LT |
241 | efip->efi_format.efi_nextents = nextents; |
242 | efip->efi_format.efi_id = (__psint_t)(void*)efip; | |
b199c8a4 | 243 | atomic_set(&efip->efi_next_extent, 0); |
666d644c | 244 | atomic_set(&efip->efi_refcount, 2); |
1da177e4 | 245 | |
7bfa31d8 | 246 | return efip; |
1da177e4 LT |
247 | } |
248 | ||
6d192a9b TS |
249 | /* |
250 | * Copy an EFI format buffer from the given buf, and into the destination | |
251 | * EFI format structure. | |
252 | * The given buffer can be in 32 bit or 64 bit form (which has different padding), | |
253 | * one of which will be the native format for this kernel. | |
254 | * It will handle the conversion of formats if necessary. | |
255 | */ | |
256 | int | |
257 | xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) | |
258 | { | |
4e0d5f92 | 259 | xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; |
6d192a9b TS |
260 | uint i; |
261 | uint len = sizeof(xfs_efi_log_format_t) + | |
262 | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); | |
263 | uint len32 = sizeof(xfs_efi_log_format_32_t) + | |
264 | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); | |
265 | uint len64 = sizeof(xfs_efi_log_format_64_t) + | |
266 | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); | |
267 | ||
268 | if (buf->i_len == len) { | |
269 | memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); | |
270 | return 0; | |
271 | } else if (buf->i_len == len32) { | |
4e0d5f92 | 272 | xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; |
6d192a9b TS |
273 | |
274 | dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; | |
275 | dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; | |
276 | dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; | |
277 | dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; | |
278 | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | |
279 | dst_efi_fmt->efi_extents[i].ext_start = | |
280 | src_efi_fmt_32->efi_extents[i].ext_start; | |
281 | dst_efi_fmt->efi_extents[i].ext_len = | |
282 | src_efi_fmt_32->efi_extents[i].ext_len; | |
283 | } | |
284 | return 0; | |
285 | } else if (buf->i_len == len64) { | |
4e0d5f92 | 286 | xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; |
6d192a9b TS |
287 | |
288 | dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; | |
289 | dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; | |
290 | dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; | |
291 | dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; | |
292 | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | |
293 | dst_efi_fmt->efi_extents[i].ext_start = | |
294 | src_efi_fmt_64->efi_extents[i].ext_start; | |
295 | dst_efi_fmt->efi_extents[i].ext_len = | |
296 | src_efi_fmt_64->efi_extents[i].ext_len; | |
297 | } | |
298 | return 0; | |
299 | } | |
2451337d | 300 | return -EFSCORRUPTED; |
6d192a9b TS |
301 | } |
302 | ||
1da177e4 | 303 | /* |
b199c8a4 DC |
304 | * This is called by the efd item code below to release references to the given |
305 | * efi item. Each efd calls this with the number of extents that it has | |
306 | * logged, and when the sum of these reaches the total number of extents logged | |
307 | * by this efi item we can free the efi item. | |
1da177e4 LT |
308 | */ |
309 | void | |
310 | xfs_efi_release(xfs_efi_log_item_t *efip, | |
311 | uint nextents) | |
312 | { | |
b199c8a4 | 313 | ASSERT(atomic_read(&efip->efi_next_extent) >= nextents); |
666d644c | 314 | if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) { |
666d644c DC |
315 | /* recovery needs us to drop the EFI reference, too */ |
316 | if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) | |
317 | __xfs_efi_release(efip); | |
509e708a DC |
318 | |
319 | __xfs_efi_release(efip); | |
320 | /* efip may now have been freed, do not reference it again. */ | |
666d644c | 321 | } |
1da177e4 LT |
322 | } |
323 | ||
7bfa31d8 | 324 | static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) |
7d795ca3 | 325 | { |
7bfa31d8 CH |
326 | return container_of(lip, struct xfs_efd_log_item, efd_item); |
327 | } | |
1da177e4 | 328 | |
7bfa31d8 CH |
329 | STATIC void |
330 | xfs_efd_item_free(struct xfs_efd_log_item *efdp) | |
331 | { | |
332 | if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) | |
f0e2d93c | 333 | kmem_free(efdp); |
7bfa31d8 | 334 | else |
7d795ca3 | 335 | kmem_zone_free(xfs_efd_zone, efdp); |
7d795ca3 | 336 | } |
1da177e4 LT |
337 | |
338 | /* | |
339 | * This returns the number of iovecs needed to log the given efd item. | |
340 | * We only need 1 iovec for an efd item. It just logs the efd_log_format | |
341 | * structure. | |
342 | */ | |
166d1368 DC |
343 | static inline int |
344 | xfs_efd_item_sizeof( | |
345 | struct xfs_efd_log_item *efdp) | |
346 | { | |
347 | return sizeof(xfs_efd_log_format_t) + | |
348 | (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); | |
349 | } | |
350 | ||
351 | STATIC void | |
7bfa31d8 | 352 | xfs_efd_item_size( |
166d1368 DC |
353 | struct xfs_log_item *lip, |
354 | int *nvecs, | |
355 | int *nbytes) | |
1da177e4 | 356 | { |
166d1368 DC |
357 | *nvecs += 1; |
358 | *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); | |
1da177e4 LT |
359 | } |
360 | ||
361 | /* | |
362 | * This is called to fill in the vector of log iovecs for the | |
363 | * given efd log item. We use only 1 iovec, and we point that | |
364 | * at the efd_log_format structure embedded in the efd item. | |
365 | * It is at this point that we assert that all of the extent | |
366 | * slots in the efd item have been filled. | |
367 | */ | |
368 | STATIC void | |
7bfa31d8 CH |
369 | xfs_efd_item_format( |
370 | struct xfs_log_item *lip, | |
bde7cff6 | 371 | struct xfs_log_vec *lv) |
1da177e4 | 372 | { |
7bfa31d8 | 373 | struct xfs_efd_log_item *efdp = EFD_ITEM(lip); |
bde7cff6 | 374 | struct xfs_log_iovec *vecp = NULL; |
1da177e4 LT |
375 | |
376 | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | |
377 | ||
378 | efdp->efd_format.efd_type = XFS_LI_EFD; | |
1da177e4 LT |
379 | efdp->efd_format.efd_size = 1; |
380 | ||
bde7cff6 | 381 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, |
1234351c CH |
382 | &efdp->efd_format, |
383 | xfs_efd_item_sizeof(efdp)); | |
1da177e4 LT |
384 | } |
385 | ||
1da177e4 LT |
386 | /* |
387 | * Pinning has no meaning for an efd item, so just return. | |
388 | */ | |
1da177e4 | 389 | STATIC void |
7bfa31d8 CH |
390 | xfs_efd_item_pin( |
391 | struct xfs_log_item *lip) | |
1da177e4 | 392 | { |
1da177e4 LT |
393 | } |
394 | ||
1da177e4 LT |
395 | /* |
396 | * Since pinning has no meaning for an efd item, unpinning does | |
397 | * not either. | |
398 | */ | |
1da177e4 | 399 | STATIC void |
7bfa31d8 CH |
400 | xfs_efd_item_unpin( |
401 | struct xfs_log_item *lip, | |
402 | int remove) | |
1da177e4 | 403 | { |
1da177e4 LT |
404 | } |
405 | ||
406 | /* | |
43ff2122 CH |
407 | * There isn't much you can do to push on an efd item. It is simply stuck |
408 | * waiting for the log to be flushed to disk. | |
1da177e4 | 409 | */ |
1da177e4 | 410 | STATIC uint |
43ff2122 CH |
411 | xfs_efd_item_push( |
412 | struct xfs_log_item *lip, | |
413 | struct list_head *buffer_list) | |
1da177e4 | 414 | { |
43ff2122 | 415 | return XFS_ITEM_PINNED; |
1da177e4 LT |
416 | } |
417 | ||
1da177e4 | 418 | STATIC void |
7bfa31d8 CH |
419 | xfs_efd_item_unlock( |
420 | struct xfs_log_item *lip) | |
1da177e4 | 421 | { |
7bfa31d8 CH |
422 | if (lip->li_flags & XFS_LI_ABORTED) |
423 | xfs_efd_item_free(EFD_ITEM(lip)); | |
1da177e4 LT |
424 | } |
425 | ||
426 | /* | |
427 | * When the efd item is committed to disk, all we need to do | |
428 | * is delete our reference to our partner efi item and then | |
429 | * free ourselves. Since we're freeing ourselves we must | |
430 | * return -1 to keep the transaction code from further referencing | |
431 | * this item. | |
432 | */ | |
1da177e4 | 433 | STATIC xfs_lsn_t |
7bfa31d8 CH |
434 | xfs_efd_item_committed( |
435 | struct xfs_log_item *lip, | |
436 | xfs_lsn_t lsn) | |
1da177e4 | 437 | { |
7bfa31d8 CH |
438 | struct xfs_efd_log_item *efdp = EFD_ITEM(lip); |
439 | ||
1da177e4 LT |
440 | /* |
441 | * If we got a log I/O error, it's always the case that the LR with the | |
442 | * EFI got unpinned and freed before the EFD got aborted. | |
443 | */ | |
7bfa31d8 | 444 | if (!(lip->li_flags & XFS_LI_ABORTED)) |
1da177e4 LT |
445 | xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); |
446 | ||
7d795ca3 | 447 | xfs_efd_item_free(efdp); |
1da177e4 LT |
448 | return (xfs_lsn_t)-1; |
449 | } | |
450 | ||
1da177e4 LT |
451 | /* |
452 | * The EFD dependency tracking op doesn't do squat. It can't because | |
453 | * it doesn't know where the free extent is coming from. The dependency | |
454 | * tracking has to be handled by the "enclosing" metadata object. For | |
455 | * example, for inodes, the inode is locked throughout the extent freeing | |
456 | * so the dependency should be recorded there. | |
457 | */ | |
1da177e4 | 458 | STATIC void |
7bfa31d8 CH |
459 | xfs_efd_item_committing( |
460 | struct xfs_log_item *lip, | |
461 | xfs_lsn_t lsn) | |
1da177e4 | 462 | { |
1da177e4 LT |
463 | } |
464 | ||
465 | /* | |
466 | * This is the ops vector shared by all efd log items. | |
467 | */ | |
272e42b2 | 468 | static const struct xfs_item_ops xfs_efd_item_ops = { |
7bfa31d8 CH |
469 | .iop_size = xfs_efd_item_size, |
470 | .iop_format = xfs_efd_item_format, | |
471 | .iop_pin = xfs_efd_item_pin, | |
472 | .iop_unpin = xfs_efd_item_unpin, | |
7bfa31d8 CH |
473 | .iop_unlock = xfs_efd_item_unlock, |
474 | .iop_committed = xfs_efd_item_committed, | |
475 | .iop_push = xfs_efd_item_push, | |
476 | .iop_committing = xfs_efd_item_committing | |
1da177e4 LT |
477 | }; |
478 | ||
1da177e4 LT |
479 | /* |
480 | * Allocate and initialize an efd item with the given number of extents. | |
481 | */ | |
7bfa31d8 CH |
482 | struct xfs_efd_log_item * |
483 | xfs_efd_init( | |
484 | struct xfs_mount *mp, | |
485 | struct xfs_efi_log_item *efip, | |
486 | uint nextents) | |
1da177e4 LT |
487 | |
488 | { | |
7bfa31d8 | 489 | struct xfs_efd_log_item *efdp; |
1da177e4 LT |
490 | uint size; |
491 | ||
492 | ASSERT(nextents > 0); | |
493 | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { | |
494 | size = (uint)(sizeof(xfs_efd_log_item_t) + | |
495 | ((nextents - 1) * sizeof(xfs_extent_t))); | |
7bfa31d8 | 496 | efdp = kmem_zalloc(size, KM_SLEEP); |
1da177e4 | 497 | } else { |
7bfa31d8 | 498 | efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); |
1da177e4 LT |
499 | } |
500 | ||
43f5efc5 | 501 | xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); |
1da177e4 LT |
502 | efdp->efd_efip = efip; |
503 | efdp->efd_format.efd_nextents = nextents; | |
504 | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | |
505 | ||
7bfa31d8 | 506 | return efdp; |
1da177e4 | 507 | } |