]> Git Repo - linux.git/blame - kernel/auditsc.c
btrfs: zoned: count fresh BG region as zone unusable
[linux.git] / kernel / auditsc.c
CommitLineData
d680c6b4 1// SPDX-License-Identifier: GPL-2.0-or-later
85c8721f 2/* auditsc.c -- System-call auditing support
1da177e4
LT
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 7 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
8 * All Rights Reserved.
9 *
1da177e4
LT
10 * Written by Rickard E. (Rik) Faith <[email protected]>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * [email protected] and Copyright 2003 SuSE Linux AG.
18 *
20ca73bc
GW
19 * POSIX message queue support added by George Wilson <[email protected]>,
20 * 2006.
21 *
b63862f4
DK
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <[email protected]>, 2005.
24 *
73241ccc
AG
25 * Modified by Amy Griffis <[email protected]> to collect additional
26 * filesystem information.
8c8570fb
DK
27 *
28 * Subject and object context labeling support added by <[email protected]>
29 * and <[email protected]> for LSPP certification compliance.
1da177e4
LT
30 */
31
f952d10f
RGB
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#include <linux/init.h>
1da177e4 35#include <asm/types.h>
60063497 36#include <linux/atomic.h>
73241ccc
AG
37#include <linux/fs.h>
38#include <linux/namei.h>
1da177e4 39#include <linux/mm.h>
9984de1a 40#include <linux/export.h>
5a0e3ad6 41#include <linux/slab.h>
01116105 42#include <linux/mount.h>
3ec3b2fb 43#include <linux/socket.h>
20ca73bc 44#include <linux/mqueue.h>
1da177e4
LT
45#include <linux/audit.h>
46#include <linux/personality.h>
47#include <linux/time.h>
5bb289b5 48#include <linux/netlink.h>
f5561964 49#include <linux/compiler.h>
1da177e4 50#include <asm/unistd.h>
8c8570fb 51#include <linux/security.h>
fe7752ba 52#include <linux/list.h>
473ae30b 53#include <linux/binfmts.h>
a1f8e7f7 54#include <linux/highmem.h>
f46038ff 55#include <linux/syscalls.h>
84db564a 56#include <asm/syscall.h>
851f7ff5 57#include <linux/capability.h>
5ad4e53b 58#include <linux/fs_struct.h>
3dc1c1b2 59#include <linux/compat.h>
3f1c8250 60#include <linux/ctype.h>
fcf22d82 61#include <linux/string.h>
43761473 62#include <linux/uaccess.h>
9dd813c1 63#include <linux/fsnotify_backend.h>
fcf22d82 64#include <uapi/linux/limits.h>
8e6cf365 65#include <uapi/linux/netfilter/nf_tables.h>
571e5c0e 66#include <uapi/linux/openat2.h> // struct open_how
1da177e4 67
fe7752ba 68#include "audit.h"
1da177e4 69
d7e7528b
EP
70/* flags stating the success for a syscall */
71#define AUDITSC_INVALID 0
72#define AUDITSC_SUCCESS 1
73#define AUDITSC_FAILURE 2
74
43761473
PM
75/* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
77#define MAX_EXECVE_AUDIT_LEN 7500
78
3f1c8250
WR
79/* max length to print of cmdline/proctitle value during audit */
80#define MAX_PROCTITLE_AUDIT_LEN 128
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
1da177e4
LT
88struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91};
92
e54dc243
AG
93/* Number of target pids per aux struct. */
94#define AUDIT_AUX_PIDS 16
95
e54dc243
AG
96struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 99 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 100 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 102 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
104 int pid_count;
105};
106
3fc689e9
EP
107struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
113};
114
74c3cbe3
AV
115struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
118};
119
c4dad0aa
RGB
120struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
122 const char *s;
123};
124
db9ff6ec 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
8e6cf365
RGB
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
c4dad0aa
RGB
146};
147
55669bfa
AV
148static int audit_match_perm(struct audit_context *ctx, int mask)
149{
c4bacefb 150 unsigned n;
254c8b96 151
1a61c88d 152 if (unlikely(!ctx))
153 return 0;
c4bacefb 154 n = ctx->major;
dbda4c0b 155
55669bfa 156 switch (audit_classify_syscall(ctx->arch, n)) {
42f355ef 157 case AUDITSC_NATIVE:
55669bfa
AV
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
160 return 1;
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
163 return 1;
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
166 return 1;
167 return 0;
42f355ef 168 case AUDITSC_COMPAT: /* 32bit on biarch */
55669bfa
AV
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
177 return 1;
178 return 0;
42f355ef 179 case AUDITSC_OPEN:
55669bfa 180 return mask & ACC_MODE(ctx->argv[1]);
42f355ef 181 case AUDITSC_OPENAT:
55669bfa 182 return mask & ACC_MODE(ctx->argv[2]);
42f355ef 183 case AUDITSC_SOCKETCALL:
55669bfa 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
42f355ef 185 case AUDITSC_EXECVE:
55669bfa 186 return mask & AUDIT_PERM_EXEC;
1c30e3af 187 case AUDITSC_OPENAT2:
7a82f89d 188 return mask & ACC_MODE((u32)ctx->openat2.flags);
55669bfa
AV
189 default:
190 return 0;
191 }
192}
193
5ef30ee5 194static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 195{
5195d8e2 196 struct audit_names *n;
5ef30ee5 197 umode_t mode = (umode_t)val;
1a61c88d 198
199 if (unlikely(!ctx))
200 return 0;
201
5195d8e2 202 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 203 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 204 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
205 return 1;
206 }
5195d8e2 207
5ef30ee5 208 return 0;
8b67dca9
AV
209}
210
74c3cbe3
AV
211/*
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
219 */
220
679173b7
EP
221static void audit_set_auditable(struct audit_context *ctx)
222{
223 if (!ctx->prio) {
224 ctx->prio = 1;
619ed58a 225 ctx->current_state = AUDIT_STATE_RECORD;
679173b7
EP
226 }
227}
228
74c3cbe3
AV
229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
230{
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
254c8b96 233
74c3cbe3
AV
234 if (likely(left)) {
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
237 return 1;
238 }
239 if (!p)
240 return 0;
241 p = p->next;
242 if (p) {
243 p->c[30] = chunk;
244 ctx->trees = p;
245 ctx->tree_count = 30;
246 return 1;
247 }
248 return 0;
249}
250
251static int grow_tree_refs(struct audit_context *ctx)
252{
253 struct audit_tree_refs *p = ctx->trees;
254c8b96 254
74c3cbe3
AV
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
256 if (!ctx->trees) {
257 ctx->trees = p;
258 return 0;
259 }
260 if (p)
261 p->next = ctx->trees;
262 else
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
265 return 1;
266}
74c3cbe3
AV
267
268static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
270{
74c3cbe3
AV
271 struct audit_tree_refs *q;
272 int n;
254c8b96 273
74c3cbe3
AV
274 if (!p) {
275 /* we started with empty chain */
276 p = ctx->first_trees;
277 count = 31;
278 /* if the very first allocation has failed, nothing to do */
279 if (!p)
280 return;
281 }
282 n = count;
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
284 while (n--) {
285 audit_put_chunk(q->c[n]);
286 q->c[n] = NULL;
287 }
288 }
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
291 q->c[n] = NULL;
292 }
293 ctx->trees = p;
294 ctx->tree_count = count;
74c3cbe3
AV
295}
296
297static void free_tree_refs(struct audit_context *ctx)
298{
299 struct audit_tree_refs *p, *q;
254c8b96 300
74c3cbe3
AV
301 for (p = ctx->first_trees; p; p = q) {
302 q = p->next;
303 kfree(p);
304 }
305}
306
307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
308{
74c3cbe3
AV
309 struct audit_tree_refs *p;
310 int n;
254c8b96 311
74c3cbe3
AV
312 if (!tree)
313 return 0;
314 /* full ones */
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
318 return 1;
319 }
320 /* partial */
321 if (p) {
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
74c3cbe3
AV
326 return 0;
327}
328
ca57ec0f
EB
329static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
b34b0393
EP
333{
334 struct audit_names *n;
b34b0393 335 int rc;
6ddb5680 336
b34b0393 337 if (name) {
ca57ec0f 338 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
339 if (rc)
340 return rc;
341 }
6ddb5680 342
b34b0393
EP
343 if (ctx) {
344 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
345 rc = audit_uid_comparator(uid, f->op, n->uid);
346 if (rc)
347 return rc;
348 }
349 }
350 return 0;
351}
b34b0393 352
ca57ec0f
EB
353static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
357{
358 struct audit_names *n;
359 int rc;
6ddb5680 360
ca57ec0f
EB
361 if (name) {
362 rc = audit_gid_comparator(gid, f->op, name->gid);
363 if (rc)
364 return rc;
365 }
6ddb5680 366
ca57ec0f
EB
367 if (ctx) {
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
370 if (rc)
371 return rc;
372 }
373 }
374 return 0;
375}
376
02d86a56
EP
377static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
382{
02d86a56 383 switch (f->val) {
4a6633ed 384 /* process to file object comparisons */
02d86a56 385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 386 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 388 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 390 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 392 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 396 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 398 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 400 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 402 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
10d68360 407 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 409 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 411 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
416 cred->euid);
10d68360 417 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->suid);
10d68360 420 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->fsuid);
10d68360
PM
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 426 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 434 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 436 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 441 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
446 default:
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
448 return 0;
449 }
450 return 0;
451}
452
f368c07d 453/* Determine if any context name data matches a rule's watch data */
1da177e4 454/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
455 * otherwise.
456 *
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
460 */
1da177e4 461static int audit_filter_rules(struct task_struct *tsk,
93315ed6 462 struct audit_krule *rule,
1da177e4 463 struct audit_context *ctx,
f368c07d 464 struct audit_names *name,
f5629883
TJ
465 enum audit_state *state,
466 bool task_creation)
1da177e4 467{
f5629883 468 const struct cred *cred;
5195d8e2 469 int i, need_sid = 1;
3dc7e315 470 u32 sid;
8fae4770 471 unsigned int sessionid;
3dc7e315 472
d9516f34
GC
473 if (ctx && rule->prio <= ctx->prio)
474 return 0;
475
f5629883
TJ
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
477
1da177e4 478 for (i = 0; i < rule->field_count; i++) {
93315ed6 479 struct audit_field *f = &rule->fields[i];
5195d8e2 480 struct audit_names *n;
1da177e4 481 int result = 0;
f1dc4867 482 pid_t pid;
1da177e4 483
93315ed6 484 switch (f->type) {
1da177e4 485 case AUDIT_PID:
fa2bea2f 486 pid = task_tgid_nr(tsk);
f1dc4867 487 result = audit_comparator(pid, f->op, f->val);
1da177e4 488 break;
3c66251e 489 case AUDIT_PPID:
419c58f1
AV
490 if (ctx) {
491 if (!ctx->ppid)
c92cdeb4 492 ctx->ppid = task_ppid_nr(tsk);
3c66251e 493 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 494 }
3c66251e 495 break;
34d99af5
RGB
496 case AUDIT_EXE:
497 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
498 if (f->op == Audit_not_equal)
499 result = !result;
34d99af5 500 break;
1da177e4 501 case AUDIT_UID:
ca57ec0f 502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
503 break;
504 case AUDIT_EUID:
ca57ec0f 505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
506 break;
507 case AUDIT_SUID:
ca57ec0f 508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
509 break;
510 case AUDIT_FSUID:
ca57ec0f 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
512 break;
513 case AUDIT_GID:
ca57ec0f 514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
515 if (f->op == Audit_equal) {
516 if (!result)
af85d177 517 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
518 } else if (f->op == Audit_not_equal) {
519 if (result)
af85d177 520 result = !groups_search(cred->group_info, f->gid);
37eebe39 521 }
1da177e4
LT
522 break;
523 case AUDIT_EGID:
ca57ec0f 524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
525 if (f->op == Audit_equal) {
526 if (!result)
af85d177 527 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
528 } else if (f->op == Audit_not_equal) {
529 if (result)
af85d177 530 result = !groups_search(cred->group_info, f->gid);
37eebe39 531 }
1da177e4
LT
532 break;
533 case AUDIT_SGID:
ca57ec0f 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
535 break;
536 case AUDIT_FSGID:
ca57ec0f 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 538 break;
8fae4770 539 case AUDIT_SESSIONID:
5b713886 540 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
541 result = audit_comparator(sessionid, f->op, f->val);
542 break;
1da177e4 543 case AUDIT_PERS:
93315ed6 544 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 545 break;
2fd6f58b 546 case AUDIT_ARCH:
9f8dbe9c 547 if (ctx)
93315ed6 548 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 549 break;
1da177e4
LT
550
551 case AUDIT_EXIT:
ba59eae7 552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
93315ed6 553 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
554 break;
555 case AUDIT_SUCCESS:
ba59eae7 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
93315ed6
AG
557 if (f->val)
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 559 else
93315ed6 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 561 }
1da177e4
LT
562 break;
563 case AUDIT_DEVMAJOR:
16c174bd
EP
564 if (name) {
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
567 ++result;
568 } else if (ctx) {
5195d8e2 569 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_DEVMINOR:
16c174bd
EP
579 if (name) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
582 ++result;
583 } else if (ctx) {
5195d8e2 584 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_INODE:
f368c07d 594 if (name)
db510fc5 595 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 596 else if (ctx) {
5195d8e2
EP
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
efaffd6e
EP
605 case AUDIT_OBJ_UID:
606 if (name) {
ca57ec0f 607 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
608 } else if (ctx) {
609 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
611 ++result;
612 break;
613 }
614 }
615 }
616 break;
54d3218b
EP
617 case AUDIT_OBJ_GID:
618 if (name) {
ca57ec0f 619 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
620 } else if (ctx) {
621 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
623 ++result;
624 break;
625 }
626 }
627 }
628 break;
f368c07d 629 case AUDIT_WATCH:
0223fad3
RGB
630 if (name) {
631 result = audit_watch_compare(rule->watch,
632 name->ino,
633 name->dev);
634 if (f->op == Audit_not_equal)
635 result = !result;
636 }
f368c07d 637 break;
74c3cbe3 638 case AUDIT_DIR:
0223fad3 639 if (ctx) {
74c3cbe3 640 result = match_tree_refs(ctx, rule->tree);
0223fad3
RGB
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
74c3cbe3 644 break;
1da177e4 645 case AUDIT_LOGINUID:
38f80590
RGB
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
647 f->op, f->uid);
1da177e4 648 break;
780a7654
EB
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
651 break;
bf361231 652 case AUDIT_SADDR_FAM:
6e3ee990 653 if (ctx && ctx->sockaddr)
bf361231
RGB
654 result = audit_comparator(ctx->sockaddr->ss_family,
655 f->op, f->val);
656 break;
3a6b9f85
DG
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
660 case AUDIT_SUBJ_SEN:
661 case AUDIT_SUBJ_CLR:
3dc7e315
DG
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
666 logged upon error */
04305e4a 667 if (f->lsm_rule) {
2ad312d2 668 if (need_sid) {
6326948f
PM
669 /* @tsk should always be equal to
670 * @current with the exception of
671 * fork()/copy_process() in which case
672 * the new @tsk creds are still a dup
673 * of @current's creds so we can still
674 * use security_current_getsecid_subj()
675 * here even though it always refs
676 * @current's creds
677 */
678 security_current_getsecid_subj(&sid);
2ad312d2
SG
679 need_sid = 0;
680 }
d7a96f3a 681 result = security_audit_rule_match(sid, f->type,
90462a5b
RGB
682 f->op,
683 f->lsm_rule);
2ad312d2 684 }
3dc7e315 685 break;
6e5a2d1d
DG
686 case AUDIT_OBJ_USER:
687 case AUDIT_OBJ_ROLE:
688 case AUDIT_OBJ_TYPE:
689 case AUDIT_OBJ_LEV_LOW:
690 case AUDIT_OBJ_LEV_HIGH:
691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
692 also applies here */
04305e4a 693 if (f->lsm_rule) {
6e5a2d1d
DG
694 /* Find files that match */
695 if (name) {
d7a96f3a 696 result = security_audit_rule_match(
90462a5b
RGB
697 name->osid,
698 f->type,
699 f->op,
700 f->lsm_rule);
6e5a2d1d 701 } else if (ctx) {
5195d8e2 702 list_for_each_entry(n, &ctx->names_list, list) {
90462a5b
RGB
703 if (security_audit_rule_match(
704 n->osid,
705 f->type,
706 f->op,
707 f->lsm_rule)) {
6e5a2d1d
DG
708 ++result;
709 break;
710 }
711 }
712 }
713 /* Find ipc objects that match */
a33e6751
AV
714 if (!ctx || ctx->type != AUDIT_IPC)
715 break;
716 if (security_audit_rule_match(ctx->ipc.osid,
717 f->type, f->op,
90462a5b 718 f->lsm_rule))
a33e6751 719 ++result;
6e5a2d1d
DG
720 }
721 break;
1da177e4
LT
722 case AUDIT_ARG0:
723 case AUDIT_ARG1:
724 case AUDIT_ARG2:
725 case AUDIT_ARG3:
726 if (ctx)
93315ed6 727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 728 break;
5adc8a6a
AG
729 case AUDIT_FILTERKEY:
730 /* ignore this field for filtering */
731 result = 1;
732 break;
55669bfa
AV
733 case AUDIT_PERM:
734 result = audit_match_perm(ctx, f->val);
0223fad3
RGB
735 if (f->op == Audit_not_equal)
736 result = !result;
55669bfa 737 break;
8b67dca9
AV
738 case AUDIT_FILETYPE:
739 result = audit_match_filetype(ctx, f->val);
0223fad3
RGB
740 if (f->op == Audit_not_equal)
741 result = !result;
8b67dca9 742 break;
02d86a56
EP
743 case AUDIT_FIELD_COMPARE:
744 result = audit_field_compare(tsk, cred, f, ctx, name);
745 break;
1da177e4 746 }
f5629883 747 if (!result)
1da177e4
LT
748 return 0;
749 }
0590b933
AV
750
751 if (ctx) {
0590b933
AV
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
1da177e4 758 switch (rule->action) {
66b12abc 759 case AUDIT_NEVER:
619ed58a 760 *state = AUDIT_STATE_DISABLED;
66b12abc
PM
761 break;
762 case AUDIT_ALWAYS:
619ed58a 763 *state = AUDIT_STATE_RECORD;
66b12abc 764 break;
1da177e4
LT
765 }
766 return 1;
767}
768
769/* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
e048e02c 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
774{
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
0f45aa18 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
619ed58a 782 if (state == AUDIT_STATE_RECORD)
e048e02c 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
619ed58a 789 return AUDIT_STATE_BUILD;
1da177e4
LT
790}
791
a3c54931
AL
792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793{
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806}
807
67daf270 808/**
50979953 809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
67daf270
PM
810 * @tsk: associated task
811 * @ctx: audit context
50979953
AA
812 * @list: audit filter list
813 * @name: audit_name (can be NULL)
814 * @op: current syscall/uring_op
815 *
816 * Run the udit filters specified in @list against @tsk using @ctx,
817 * @name, and @op, as necessary; the caller is responsible for ensuring
818 * that the call is made while the RCU read lock is held. The @name
819 * parameter can be NULL, but all others must be specified.
820 * Returns 1/true if the filter finds a match, 0/false if none are found.
67daf270 821 */
50979953
AA
822static int __audit_filter_op(struct task_struct *tsk,
823 struct audit_context *ctx,
824 struct list_head *list,
825 struct audit_names *name,
826 unsigned long op)
67daf270
PM
827{
828 struct audit_entry *e;
829 enum audit_state state;
830
50979953
AA
831 list_for_each_entry_rcu(e, list, list) {
832 if (audit_in_mask(&e->rule, op) &&
833 audit_filter_rules(tsk, &e->rule, ctx, name,
834 &state, false)) {
835 ctx->current_state = state;
836 return 1;
837 }
838 }
839 return 0;
840}
841
842/**
843 * audit_filter_uring - apply filters to an io_uring operation
844 * @tsk: associated task
845 * @ctx: audit context
846 */
847static void audit_filter_uring(struct task_struct *tsk,
848 struct audit_context *ctx)
849{
67daf270
PM
850 if (auditd_test_task(tsk))
851 return;
852
853 rcu_read_lock();
50979953
AA
854 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
855 NULL, ctx->uring_op);
67daf270
PM
856 rcu_read_unlock();
857}
858
127c8c5f
YY
859/* At syscall exit time, this filter is called if the audit_state is
860 * not low enough that auditing cannot take place, but is also not
861 * high enough that we already know we have to write an audit record
619ed58a 862 * (i.e., the state is AUDIT_STATE_BUILD).
1da177e4 863 */
127c8c5f 864static void audit_filter_syscall(struct task_struct *tsk,
5504a69a 865 struct audit_context *ctx)
1da177e4 866{
5b52330b 867 if (auditd_test_task(tsk))
127c8c5f 868 return;
f7056d64 869
1da177e4 870 rcu_read_lock();
50979953
AA
871 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
872 NULL, ctx->major);
f368c07d 873 rcu_read_unlock();
f368c07d
AG
874}
875
5195d8e2
EP
876/*
877 * Given an audit_name check the inode hash table to see if they match.
878 * Called holding the rcu read lock to protect the use of audit_inode_hash
879 */
880static int audit_filter_inode_name(struct task_struct *tsk,
881 struct audit_names *n,
882 struct audit_context *ctx) {
5195d8e2
EP
883 int h = audit_hash_ino((u32)n->ino);
884 struct list_head *list = &audit_inode_hash[h];
5195d8e2 885
50979953 886 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
5195d8e2
EP
887}
888
889/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 890 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 891 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
893 */
0590b933 894void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 895{
5195d8e2 896 struct audit_names *n;
f368c07d 897
5b52330b 898 if (auditd_test_task(tsk))
0590b933 899 return;
f368c07d
AG
900
901 rcu_read_lock();
f368c07d 902
5195d8e2
EP
903 list_for_each_entry(n, &ctx->names_list, list) {
904 if (audit_filter_inode_name(tsk, n, ctx))
905 break;
0f45aa18
DW
906 }
907 rcu_read_unlock();
0f45aa18
DW
908}
909
3f1c8250
WR
910static inline void audit_proctitle_free(struct audit_context *context)
911{
912 kfree(context->proctitle.value);
913 context->proctitle.value = NULL;
914 context->proctitle.len = 0;
915}
916
95e0b46f
LR
917static inline void audit_free_module(struct audit_context *context)
918{
919 if (context->type == AUDIT_KERN_MODULE) {
920 kfree(context->module.name);
921 context->module.name = NULL;
922 }
923}
1da177e4
LT
924static inline void audit_free_names(struct audit_context *context)
925{
5195d8e2 926 struct audit_names *n, *next;
1da177e4 927
5195d8e2
EP
928 list_for_each_entry_safe(n, next, &context->names_list, list) {
929 list_del(&n->list);
55422d0b
PM
930 if (n->name)
931 putname(n->name);
5195d8e2
EP
932 if (n->should_free)
933 kfree(n);
8c8570fb 934 }
1da177e4 935 context->name_count = 0;
44707fdf
JB
936 path_put(&context->pwd);
937 context->pwd.dentry = NULL;
938 context->pwd.mnt = NULL;
1da177e4
LT
939}
940
941static inline void audit_free_aux(struct audit_context *context)
942{
943 struct audit_aux_data *aux;
944
945 while ((aux = context->aux)) {
946 context->aux = aux->next;
947 kfree(aux);
948 }
12c5e81d 949 context->aux = NULL;
e54dc243
AG
950 while ((aux = context->aux_pids)) {
951 context->aux_pids = aux->next;
952 kfree(aux);
953 }
12c5e81d
PM
954 context->aux_pids = NULL;
955}
956
957/**
958 * audit_reset_context - reset a audit_context structure
959 * @ctx: the audit_context to reset
960 *
961 * All fields in the audit_context will be reset to an initial state, all
962 * references held by fields will be dropped, and private memory will be
963 * released. When this function returns the audit_context will be suitable
964 * for reuse, so long as the passed context is not NULL or a dummy context.
965 */
966static void audit_reset_context(struct audit_context *ctx)
967{
968 if (!ctx)
969 return;
970
e84d9f52 971 /* if ctx is non-null, reset the "ctx->context" regardless */
12c5e81d
PM
972 ctx->context = AUDIT_CTX_UNUSED;
973 if (ctx->dummy)
974 return;
975
976 /*
977 * NOTE: It shouldn't matter in what order we release the fields, so
978 * release them in the order in which they appear in the struct;
979 * this gives us some hope of quickly making sure we are
980 * resetting the audit_context properly.
981 *
982 * Other things worth mentioning:
983 * - we don't reset "dummy"
984 * - we don't reset "state", we do reset "current_state"
985 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
986 * - much of this is likely overkill, but play it safe for now
987 * - we really need to work on improving the audit_context struct
988 */
989
990 ctx->current_state = ctx->state;
991 ctx->serial = 0;
992 ctx->major = 0;
5bd2182d 993 ctx->uring_op = 0;
12c5e81d
PM
994 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
995 memset(ctx->argv, 0, sizeof(ctx->argv));
996 ctx->return_code = 0;
997 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
998 ctx->return_valid = AUDITSC_INVALID;
999 audit_free_names(ctx);
1000 if (ctx->state != AUDIT_STATE_RECORD) {
1001 kfree(ctx->filterkey);
1002 ctx->filterkey = NULL;
1003 }
1004 audit_free_aux(ctx);
1005 kfree(ctx->sockaddr);
1006 ctx->sockaddr = NULL;
1007 ctx->sockaddr_len = 0;
e84d9f52 1008 ctx->ppid = 0;
12c5e81d
PM
1009 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011 ctx->personality = 0;
1012 ctx->arch = 0;
1013 ctx->target_pid = 0;
1014 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015 ctx->target_sessionid = 0;
1016 ctx->target_sid = 0;
1017 ctx->target_comm[0] = '\0';
1018 unroll_tree_refs(ctx, NULL, 0);
1019 WARN_ON(!list_empty(&ctx->killed_trees));
12c5e81d
PM
1020 audit_free_module(ctx);
1021 ctx->fds[0] = -1;
ef79c396 1022 ctx->type = 0; /* reset last for audit_free_*() */
1da177e4
LT
1023}
1024
1da177e4
LT
1025static inline struct audit_context *audit_alloc_context(enum audit_state state)
1026{
1027 struct audit_context *context;
1028
17c6ee70
RM
1029 context = kzalloc(sizeof(*context), GFP_KERNEL);
1030 if (!context)
1da177e4 1031 return NULL;
12c5e81d 1032 context->context = AUDIT_CTX_UNUSED;
e2c5adc8 1033 context->state = state;
619ed58a 1034 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
916d7576 1035 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1036 INIT_LIST_HEAD(&context->names_list);
6d915476 1037 context->fds[0] = -1;
ba59eae7 1038 context->return_valid = AUDITSC_INVALID;
1da177e4
LT
1039 return context;
1040}
1041
b0dd25a8
RD
1042/**
1043 * audit_alloc - allocate an audit context block for a task
1044 * @tsk: task
1045 *
1046 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1047 * if necessary. Doing so turns on system call auditing for the
1048 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1049 * needed.
1050 */
1da177e4
LT
1051int audit_alloc(struct task_struct *tsk)
1052{
1053 struct audit_context *context;
1054 enum audit_state state;
e048e02c 1055 char *key = NULL;
1da177e4 1056
b593d384 1057 if (likely(!audit_ever_enabled))
12c5e81d 1058 return 0;
1da177e4 1059
e048e02c 1060 state = audit_filter_task(tsk, &key);
619ed58a 1061 if (state == AUDIT_STATE_DISABLED) {
785dc4eb 1062 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4 1063 return 0;
d48d8051 1064 }
1da177e4
LT
1065
1066 if (!(context = audit_alloc_context(state))) {
e048e02c 1067 kfree(key);
1da177e4
LT
1068 audit_log_lost("out of memory in audit_alloc");
1069 return -ENOMEM;
1070 }
e048e02c 1071 context->filterkey = key;
1da177e4 1072
c0b0ae8a 1073 audit_set_context(tsk, context);
785dc4eb 1074 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4
LT
1075 return 0;
1076}
1077
1078static inline void audit_free_context(struct audit_context *context)
1079{
12c5e81d
PM
1080 /* resetting is extra work, but it is likely just noise */
1081 audit_reset_context(context);
c3f3ea8a 1082 audit_proctitle_free(context);
c62d773a 1083 free_tree_refs(context);
c62d773a 1084 kfree(context->filterkey);
c62d773a 1085 kfree(context);
1da177e4
LT
1086}
1087
e54dc243 1088static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 1089 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 1090 u32 sid, char *comm)
e54dc243
AG
1091{
1092 struct audit_buffer *ab;
2a862b32 1093 char *ctx = NULL;
e54dc243
AG
1094 u32 len;
1095 int rc = 0;
1096
1097 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1098 if (!ab)
6246ccab 1099 return rc;
e54dc243 1100
e1760bd5
EB
1101 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102 from_kuid(&init_user_ns, auid),
cca080d9 1103 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
1104 if (sid) {
1105 if (security_secid_to_secctx(sid, &ctx, &len)) {
1106 audit_log_format(ab, " obj=(none)");
1107 rc = 1;
1108 } else {
1109 audit_log_format(ab, " obj=%s", ctx);
1110 security_release_secctx(ctx, len);
1111 }
2a862b32 1112 }
c2a7780e
EP
1113 audit_log_format(ab, " ocomm=");
1114 audit_log_untrustedstring(ab, comm);
e54dc243 1115 audit_log_end(ab);
e54dc243
AG
1116
1117 return rc;
1118}
1119
43761473
PM
1120static void audit_log_execve_info(struct audit_context *context,
1121 struct audit_buffer **ab)
bdf4c48a 1122{
43761473
PM
1123 long len_max;
1124 long len_rem;
1125 long len_full;
1126 long len_buf;
8443075e 1127 long len_abuf = 0;
43761473
PM
1128 long len_tmp;
1129 bool require_data;
1130 bool encode;
1131 unsigned int iter;
1132 unsigned int arg;
1133 char *buf_head;
1134 char *buf;
1135 const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1138 * data we put in the audit record for this argument (see the
1139 * code below) ... at this point in time 96 is plenty */
1140 char abuf[96];
1141
1142 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143 * current value of 7500 is not as important as the fact that it
1144 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1145 * room if we go over a little bit in the logging below */
1146 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147 len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149 /* scratch buffer to hold the userspace args */
1150 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151 if (!buf_head) {
1152 audit_panic("out of memory for argv string");
1153 return;
de6bbd1d 1154 }
43761473 1155 buf = buf_head;
040b3a2d 1156
43761473 1157 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1158
43761473
PM
1159 len_rem = len_max;
1160 len_buf = 0;
1161 len_full = 0;
1162 require_data = true;
1163 encode = false;
1164 iter = 0;
1165 arg = 0;
de6bbd1d 1166 do {
43761473
PM
1167 /* NOTE: we don't ever want to trust this value for anything
1168 * serious, but the audit record format insists we
1169 * provide an argument length for really long arguments,
1170 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171 * to use strncpy_from_user() to obtain this value for
1172 * recording in the log, although we don't use it
1173 * anywhere here to avoid a double-fetch problem */
1174 if (len_full == 0)
1175 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177 /* read more data from userspace */
1178 if (require_data) {
1179 /* can we make more room in the buffer? */
1180 if (buf != buf_head) {
1181 memmove(buf_head, buf, len_buf);
1182 buf = buf_head;
1183 }
1184
1185 /* fetch as much as we can of the argument */
1186 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187 len_max - len_buf);
1188 if (len_tmp == -EFAULT) {
1189 /* unable to copy from userspace */
1190 send_sig(SIGKILL, current, 0);
1191 goto out;
1192 } else if (len_tmp == (len_max - len_buf)) {
1193 /* buffer is not large enough */
1194 require_data = true;
1195 /* NOTE: if we are going to span multiple
1196 * buffers force the encoding so we stand
1197 * a chance at a sane len_full value and
1198 * consistent record encoding */
1199 encode = true;
1200 len_full = len_full * 2;
1201 p += len_tmp;
1202 } else {
1203 require_data = false;
1204 if (!encode)
1205 encode = audit_string_contains_control(
1206 buf, len_tmp);
1207 /* try to use a trusted value for len_full */
1208 if (len_full < len_max)
1209 len_full = (encode ?
1210 len_tmp * 2 : len_tmp);
1211 p += len_tmp + 1;
1212 }
1213 len_buf += len_tmp;
1214 buf_head[len_buf] = '\0';
bdf4c48a 1215
43761473
PM
1216 /* length of the buffer in the audit record? */
1217 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1218 }
de6bbd1d 1219
43761473 1220 /* write as much as we can to the audit log */
ea956d8b 1221 if (len_buf >= 0) {
43761473
PM
1222 /* NOTE: some magic numbers here - basically if we
1223 * can't fit a reasonable amount of data into the
1224 * existing audit buffer, flush it and start with
1225 * a new buffer */
1226 if ((sizeof(abuf) + 8) > len_rem) {
1227 len_rem = len_max;
1228 audit_log_end(*ab);
1229 *ab = audit_log_start(context,
1230 GFP_KERNEL, AUDIT_EXECVE);
1231 if (!*ab)
1232 goto out;
1233 }
bdf4c48a 1234
43761473
PM
1235 /* create the non-arg portion of the arg record */
1236 len_tmp = 0;
1237 if (require_data || (iter > 0) ||
1238 ((len_abuf + sizeof(abuf)) > len_rem)) {
1239 if (iter == 0) {
1240 len_tmp += snprintf(&abuf[len_tmp],
1241 sizeof(abuf) - len_tmp,
1242 " a%d_len=%lu",
1243 arg, len_full);
1244 }
1245 len_tmp += snprintf(&abuf[len_tmp],
1246 sizeof(abuf) - len_tmp,
1247 " a%d[%d]=", arg, iter++);
1248 } else
1249 len_tmp += snprintf(&abuf[len_tmp],
1250 sizeof(abuf) - len_tmp,
1251 " a%d=", arg);
1252 WARN_ON(len_tmp >= sizeof(abuf));
1253 abuf[sizeof(abuf) - 1] = '\0';
1254
1255 /* log the arg in the audit record */
1256 audit_log_format(*ab, "%s", abuf);
1257 len_rem -= len_tmp;
1258 len_tmp = len_buf;
1259 if (encode) {
1260 if (len_abuf > len_rem)
1261 len_tmp = len_rem / 2; /* encoding */
1262 audit_log_n_hex(*ab, buf, len_tmp);
1263 len_rem -= len_tmp * 2;
1264 len_abuf -= len_tmp * 2;
1265 } else {
1266 if (len_abuf > len_rem)
1267 len_tmp = len_rem - 2; /* quotes */
1268 audit_log_n_string(*ab, buf, len_tmp);
1269 len_rem -= len_tmp + 2;
1270 /* don't subtract the "2" because we still need
1271 * to add quotes to the remaining string */
1272 len_abuf -= len_tmp;
1273 }
1274 len_buf -= len_tmp;
1275 buf += len_tmp;
1276 }
bdf4c48a 1277
43761473
PM
1278 /* ready to move to the next argument? */
1279 if ((len_buf == 0) && !require_data) {
1280 arg++;
1281 iter = 0;
1282 len_full = 0;
1283 require_data = true;
1284 encode = false;
1285 }
1286 } while (arg < context->execve.argc);
de6bbd1d 1287
43761473 1288 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1289
43761473
PM
1290out:
1291 kfree(buf_head);
bdf4c48a
PZ
1292}
1293
2efa48fe
Y
1294static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295 kernel_cap_t *cap)
5f3d544f
RGB
1296{
1297 int i;
1298
1299 if (cap_isclear(*cap)) {
1300 audit_log_format(ab, " %s=0", prefix);
1301 return;
1302 }
1303 audit_log_format(ab, " %s=", prefix);
1304 CAP_FOR_EACH_U32(i)
1305 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1306}
1307
1308static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309{
1310 if (name->fcap_ver == -1) {
1311 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1312 return;
1313 }
1314 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317 name->fcap.fE, name->fcap_ver,
1318 from_kuid(&init_user_ns, name->fcap.rootid));
1319}
1320
272ceeae
RGB
1321static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322{
1323 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324 const struct timespec64 *tk = &context->time.tk_injoffset;
1325 static const char * const ntp_name[] = {
1326 "offset",
1327 "freq",
1328 "status",
1329 "tai",
1330 "tick",
1331 "adjust",
1332 };
1333 int type;
1334
1335 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338 if (!*ab) {
1339 *ab = audit_log_start(context,
1340 GFP_KERNEL,
1341 AUDIT_TIME_ADJNTPVAL);
1342 if (!*ab)
1343 return;
1344 }
1345 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346 ntp_name[type],
1347 ntp->vals[type].oldval,
1348 ntp->vals[type].newval);
1349 audit_log_end(*ab);
1350 *ab = NULL;
1351 }
1352 }
1353 }
1354 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355 if (!*ab) {
1356 *ab = audit_log_start(context, GFP_KERNEL,
1357 AUDIT_TIME_INJOFFSET);
1358 if (!*ab)
1359 return;
1360 }
1361 audit_log_format(*ab, "sec=%lli nsec=%li",
1362 (long long)tk->tv_sec, tk->tv_nsec);
1363 audit_log_end(*ab);
1364 *ab = NULL;
1365 }
1366}
1367
a33e6751 1368static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1369{
1370 struct audit_buffer *ab;
1371 int i;
1372
1373 ab = audit_log_start(context, GFP_KERNEL, context->type);
1374 if (!ab)
1375 return;
1376
1377 switch (context->type) {
1378 case AUDIT_SOCKETCALL: {
1379 int nargs = context->socketcall.nargs;
254c8b96 1380
f3298dc4
AV
1381 audit_log_format(ab, "nargs=%d", nargs);
1382 for (i = 0; i < nargs; i++)
1383 audit_log_format(ab, " a%d=%lx", i,
1384 context->socketcall.args[i]);
1385 break; }
a33e6751
AV
1386 case AUDIT_IPC: {
1387 u32 osid = context->ipc.osid;
1388
2570ebbd 1389 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1390 from_kuid(&init_user_ns, context->ipc.uid),
1391 from_kgid(&init_user_ns, context->ipc.gid),
1392 context->ipc.mode);
a33e6751
AV
1393 if (osid) {
1394 char *ctx = NULL;
1395 u32 len;
254c8b96 1396
a33e6751
AV
1397 if (security_secid_to_secctx(osid, &ctx, &len)) {
1398 audit_log_format(ab, " osid=%u", osid);
1399 *call_panic = 1;
1400 } else {
1401 audit_log_format(ab, " obj=%s", ctx);
1402 security_release_secctx(ctx, len);
1403 }
1404 }
e816f370
AV
1405 if (context->ipc.has_perm) {
1406 audit_log_end(ab);
1407 ab = audit_log_start(context, GFP_KERNEL,
1408 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1409 if (unlikely(!ab))
1410 return;
e816f370 1411 audit_log_format(ab,
2570ebbd 1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1413 context->ipc.qbytes,
1414 context->ipc.perm_uid,
1415 context->ipc.perm_gid,
1416 context->ipc.perm_mode);
e816f370 1417 }
a33e6751 1418 break; }
fe8e52b9 1419 case AUDIT_MQ_OPEN:
564f6993 1420 audit_log_format(ab,
df0a4283 1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1422 "mq_msgsize=%ld mq_curmsgs=%ld",
1423 context->mq_open.oflag, context->mq_open.mode,
1424 context->mq_open.attr.mq_flags,
1425 context->mq_open.attr.mq_maxmsg,
1426 context->mq_open.attr.mq_msgsize,
1427 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1428 break;
1429 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1430 audit_log_format(ab,
1431 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1433 context->mq_sendrecv.mqdes,
1434 context->mq_sendrecv.msg_len,
1435 context->mq_sendrecv.msg_prio,
b9047726 1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1437 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1438 break;
1439 case AUDIT_MQ_NOTIFY:
20114f71
AV
1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441 context->mq_notify.mqdes,
1442 context->mq_notify.sigev_signo);
fe8e52b9 1443 break;
7392906e
AV
1444 case AUDIT_MQ_GETSETATTR: {
1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
254c8b96 1446
7392906e
AV
1447 audit_log_format(ab,
1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449 "mq_curmsgs=%ld ",
1450 context->mq_getsetattr.mqdes,
1451 attr->mq_flags, attr->mq_maxmsg,
1452 attr->mq_msgsize, attr->mq_curmsgs);
1453 break; }
fe8e52b9 1454 case AUDIT_CAPSET:
57f71a0a
AV
1455 audit_log_format(ab, "pid=%d", context->capset.pid);
1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1460 break;
1461 case AUDIT_MMAP:
120a795d
AV
1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463 context->mmap.flags);
fe8e52b9 1464 break;
571e5c0e
RGB
1465 case AUDIT_OPENAT2:
1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467 context->openat2.flags,
1468 context->openat2.mode,
1469 context->openat2.resolve);
1470 break;
fe8e52b9 1471 case AUDIT_EXECVE:
d9cfea91 1472 audit_log_execve_info(context, &ab);
fe8e52b9 1473 break;
ca86cad7
RGB
1474 case AUDIT_KERN_MODULE:
1475 audit_log_format(ab, "name=");
b305f7ed
YW
1476 if (context->module.name) {
1477 audit_log_untrustedstring(ab, context->module.name);
b305f7ed
YW
1478 } else
1479 audit_log_format(ab, "(null)");
1480
ca86cad7 1481 break;
272ceeae
RGB
1482 case AUDIT_TIME_ADJNTPVAL:
1483 case AUDIT_TIME_INJOFFSET:
1484 /* this call deviates from the rest, eating the buffer */
1485 audit_log_time(context, &ab);
1486 break;
f3298dc4
AV
1487 }
1488 audit_log_end(ab);
1489}
1490
3f1c8250
WR
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493 char *end = proctitle + len - 1;
254c8b96 1494
3f1c8250
WR
1495 while (end > proctitle && !isprint(*end))
1496 end--;
1497
1498 /* catch the case where proctitle is only 1 non-print character */
1499 len = end - proctitle + 1;
1500 len -= isprint(proctitle[len-1]) == 0;
1501 return len;
1502}
1503
5f3d544f
RGB
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513 const struct path *path, int record_num, int *call_panic)
1514{
1515 struct audit_buffer *ab;
1516
1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518 if (!ab)
1519 return;
1520
1521 audit_log_format(ab, "item=%d", record_num);
1522
1523 if (path)
1524 audit_log_d_path(ab, " name=", path);
1525 else if (n->name) {
1526 switch (n->name_len) {
1527 case AUDIT_NAME_FULL:
1528 /* log the full path */
1529 audit_log_format(ab, " name=");
1530 audit_log_untrustedstring(ab, n->name->name);
1531 break;
1532 case 0:
1533 /* name was specified as a relative path and the
1534 * directory component is the cwd
1535 */
6d915476
RGB
1536 if (context->pwd.dentry && context->pwd.mnt)
1537 audit_log_d_path(ab, " name=", &context->pwd);
1538 else
1539 audit_log_format(ab, " name=(null)");
5f3d544f
RGB
1540 break;
1541 default:
1542 /* log the name's directory component */
1543 audit_log_format(ab, " name=");
1544 audit_log_n_untrustedstring(ab, n->name->name,
1545 n->name_len);
1546 }
1547 } else
1548 audit_log_format(ab, " name=(null)");
1549
1550 if (n->ino != AUDIT_INO_UNSET)
1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552 n->ino,
1553 MAJOR(n->dev),
1554 MINOR(n->dev),
1555 n->mode,
1556 from_kuid(&init_user_ns, n->uid),
1557 from_kgid(&init_user_ns, n->gid),
1558 MAJOR(n->rdev),
1559 MINOR(n->rdev));
1560 if (n->osid != 0) {
1561 char *ctx = NULL;
1562 u32 len;
1563
1564 if (security_secid_to_secctx(
1565 n->osid, &ctx, &len)) {
1566 audit_log_format(ab, " osid=%u", n->osid);
1567 if (call_panic)
1568 *call_panic = 2;
1569 } else {
1570 audit_log_format(ab, " obj=%s", ctx);
1571 security_release_secctx(ctx, len);
1572 }
1573 }
1574
1575 /* log the audit_names record type */
1576 switch (n->type) {
1577 case AUDIT_TYPE_NORMAL:
1578 audit_log_format(ab, " nametype=NORMAL");
1579 break;
1580 case AUDIT_TYPE_PARENT:
1581 audit_log_format(ab, " nametype=PARENT");
1582 break;
1583 case AUDIT_TYPE_CHILD_DELETE:
1584 audit_log_format(ab, " nametype=DELETE");
1585 break;
1586 case AUDIT_TYPE_CHILD_CREATE:
1587 audit_log_format(ab, " nametype=CREATE");
1588 break;
1589 default:
1590 audit_log_format(ab, " nametype=UNKNOWN");
1591 break;
1592 }
1593
1594 audit_log_fcaps(ab, n);
1595 audit_log_end(ab);
1596}
1597
2a1fe215 1598static void audit_log_proctitle(void)
3f1c8250
WR
1599{
1600 int res;
1601 char *buf;
1602 char *msg = "(null)";
1603 int len = strlen(msg);
2a1fe215 1604 struct audit_context *context = audit_context();
3f1c8250
WR
1605 struct audit_buffer *ab;
1606
1607 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608 if (!ab)
1609 return; /* audit_panic or being filtered */
1610
1611 audit_log_format(ab, "proctitle=");
1612
1613 /* Not cached */
1614 if (!context->proctitle.value) {
1615 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616 if (!buf)
1617 goto out;
1618 /* Historically called this from procfs naming */
2a1fe215 1619 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
3f1c8250
WR
1620 if (res == 0) {
1621 kfree(buf);
1622 goto out;
1623 }
1624 res = audit_proctitle_rtrim(buf, res);
1625 if (res == 0) {
1626 kfree(buf);
1627 goto out;
1628 }
1629 context->proctitle.value = buf;
1630 context->proctitle.len = res;
1631 }
1632 msg = context->proctitle.value;
1633 len = context->proctitle.len;
1634out:
1635 audit_log_n_untrustedstring(ab, msg, len);
1636 audit_log_end(ab);
1637}
1638
5bd2182d
PM
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645 struct audit_buffer *ab;
1646 const struct cred *cred;
1647
1648 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649 if (!ab)
1650 return;
1651 cred = current_cred();
1652 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653 if (ctx->return_valid != AUDITSC_INVALID)
1654 audit_log_format(ab, " success=%s exit=%ld",
1655 (ctx->return_valid == AUDITSC_SUCCESS ?
1656 "yes" : "no"),
1657 ctx->return_code);
1658 audit_log_format(ab,
1659 " items=%d"
1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662 ctx->name_count,
1663 task_ppid_nr(current), task_tgid_nr(current),
1664 from_kuid(&init_user_ns, cred->uid),
1665 from_kgid(&init_user_ns, cred->gid),
1666 from_kuid(&init_user_ns, cred->euid),
1667 from_kuid(&init_user_ns, cred->suid),
1668 from_kuid(&init_user_ns, cred->fsuid),
1669 from_kgid(&init_user_ns, cred->egid),
1670 from_kgid(&init_user_ns, cred->sgid),
1671 from_kgid(&init_user_ns, cred->fsgid));
1672 audit_log_task_context(ab);
1673 audit_log_key(ab, ctx->filterkey);
1674 audit_log_end(ab);
1675}
1676
2a1fe215 1677static void audit_log_exit(void)
1da177e4 1678{
9c7aa6aa 1679 int i, call_panic = 0;
2a1fe215 1680 struct audit_context *context = audit_context();
1da177e4 1681 struct audit_buffer *ab;
7551ced3 1682 struct audit_aux_data *aux;
5195d8e2 1683 struct audit_names *n;
1da177e4 1684
2a1fe215 1685 context->personality = current->personality;
e495149b 1686
12c5e81d
PM
1687 switch (context->context) {
1688 case AUDIT_CTX_SYSCALL:
1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690 if (!ab)
1691 return;
1692 audit_log_format(ab, "arch=%x syscall=%d",
1693 context->arch, context->major);
1694 if (context->personality != PER_LINUX)
1695 audit_log_format(ab, " per=%lx", context->personality);
1696 if (context->return_valid != AUDITSC_INVALID)
1697 audit_log_format(ab, " success=%s exit=%ld",
1698 (context->return_valid == AUDITSC_SUCCESS ?
1699 "yes" : "no"),
1700 context->return_code);
1701 audit_log_format(ab,
1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703 context->argv[0],
1704 context->argv[1],
1705 context->argv[2],
1706 context->argv[3],
1707 context->name_count);
1708 audit_log_task_info(ab);
1709 audit_log_key(ab, context->filterkey);
1710 audit_log_end(ab);
1711 break;
5bd2182d
PM
1712 case AUDIT_CTX_URING:
1713 audit_log_uring(context);
1714 break;
12c5e81d
PM
1715 default:
1716 BUG();
1717 break;
1718 }
1da177e4 1719
7551ced3 1720 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1721
e495149b 1722 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1723 if (!ab)
1724 continue; /* audit_panic has been called */
1725
1da177e4 1726 switch (aux->type) {
20ca73bc 1727
3fc689e9
EP
1728 case AUDIT_BPRM_FCAPS: {
1729 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
254c8b96 1730
3fc689e9
EP
1731 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1738 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
2fec30e2
RGB
1743 audit_log_format(ab, " frootid=%d",
1744 from_kuid(&init_user_ns,
1745 axs->fcap.rootid));
3fc689e9
EP
1746 break; }
1747
1da177e4
LT
1748 }
1749 audit_log_end(ab);
1da177e4
LT
1750 }
1751
f3298dc4 1752 if (context->type)
a33e6751 1753 show_special(context, &call_panic);
f3298dc4 1754
157cf649
AV
1755 if (context->fds[0] >= 0) {
1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757 if (ab) {
1758 audit_log_format(ab, "fd0=%d fd1=%d",
1759 context->fds[0], context->fds[1]);
1760 audit_log_end(ab);
1761 }
1762 }
1763
4f6b434f
AV
1764 if (context->sockaddr_len) {
1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766 if (ab) {
1767 audit_log_format(ab, "saddr=");
1768 audit_log_n_hex(ab, (void *)context->sockaddr,
1769 context->sockaddr_len);
1770 audit_log_end(ab);
1771 }
1772 }
1773
e54dc243
AG
1774 for (aux = context->aux_pids; aux; aux = aux->next) {
1775 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1776
1777 for (i = 0; i < axs->pid_count; i++)
1778 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1779 axs->target_auid[i],
1780 axs->target_uid[i],
4746ec5b 1781 axs->target_sessionid[i],
c2a7780e
EP
1782 axs->target_sid[i],
1783 axs->target_comm[i]))
e54dc243 1784 call_panic = 1;
a5cb013d
AV
1785 }
1786
e54dc243
AG
1787 if (context->target_pid &&
1788 audit_log_pid_context(context, context->target_pid,
c2a7780e 1789 context->target_auid, context->target_uid,
4746ec5b 1790 context->target_sessionid,
c2a7780e 1791 context->target_sid, context->target_comm))
e54dc243
AG
1792 call_panic = 1;
1793
44707fdf 1794 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1795 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1796 if (ab) {
0b7a0fdb 1797 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1798 audit_log_end(ab);
1799 }
1800 }
73241ccc 1801
5195d8e2 1802 i = 0;
79f6530c
JL
1803 list_for_each_entry(n, &context->names_list, list) {
1804 if (n->hidden)
1805 continue;
b24a30a7 1806 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1807 }
c0641f28 1808
12c5e81d
PM
1809 if (context->context == AUDIT_CTX_SYSCALL)
1810 audit_log_proctitle();
3f1c8250 1811
c0641f28
EP
1812 /* Send end of event record to help user space know we are finished */
1813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814 if (ab)
1815 audit_log_end(ab);
9c7aa6aa 1816 if (call_panic)
12c5e81d 1817 audit_panic("error in audit_log_exit()");
1da177e4
LT
1818}
1819
b0dd25a8 1820/**
196a5085 1821 * __audit_free - free a per-task audit context
b0dd25a8
RD
1822 * @tsk: task whose audit context block to free
1823 *
67daf270 1824 * Called from copy_process, do_exit, and the io_uring code
b0dd25a8 1825 */
a4ff8dba 1826void __audit_free(struct task_struct *tsk)
1da177e4 1827{
2a1fe215 1828 struct audit_context *context = tsk->audit_context;
1da177e4 1829
56179a6e 1830 if (!context)
1da177e4
LT
1831 return;
1832
12c5e81d 1833 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
1834 if (!list_empty(&context->killed_trees))
1835 audit_kill_trees(context);
1836
2a1fe215
PM
1837 /* We are called either by do_exit() or the fork() error handling code;
1838 * in the former case tsk == current and in the latter tsk is a
0351dc57 1839 * random task_struct that doesn't have any meaningful data we
2a1fe215
PM
1840 * need to log via audit_log_exit().
1841 */
67daf270 1842 if (tsk == current && !context->dummy) {
ba59eae7 1843 context->return_valid = AUDITSC_INVALID;
2a1fe215 1844 context->return_code = 0;
67daf270
PM
1845 if (context->context == AUDIT_CTX_SYSCALL) {
1846 audit_filter_syscall(tsk, context);
1847 audit_filter_inodes(tsk, context);
1848 if (context->current_state == AUDIT_STATE_RECORD)
1849 audit_log_exit();
1850 } else if (context->context == AUDIT_CTX_URING) {
1851 /* TODO: verify this case is real and valid */
1852 audit_filter_uring(tsk, context);
1853 audit_filter_inodes(tsk, context);
1854 if (context->current_state == AUDIT_STATE_RECORD)
1855 audit_log_uring(context);
1856 }
2a1fe215
PM
1857 }
1858
2a1fe215 1859 audit_set_context(tsk, NULL);
1da177e4
LT
1860 audit_free_context(context);
1861}
1862
12c5e81d
PM
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873 int success, long code)
1874{
1875 /*
1876 * This is actually a test for:
1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879 *
1880 * but is faster than a bunch of ||
1881 */
1882 if (unlikely(code <= -ERESTARTSYS) &&
1883 (code >= -ERESTART_RESTARTBLOCK) &&
1884 (code != -ENOIOCTLCMD))
1885 ctx->return_code = -EINTR;
1886 else
1887 ctx->return_code = code;
1888 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
5bd2182d
PM
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations. This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902 struct audit_context *ctx = audit_context();
1903
1904 if (ctx->state == AUDIT_STATE_DISABLED)
1905 return;
1906
1907 /*
1908 * NOTE: It's possible that we can be called from the process' context
1909 * before it returns to userspace, and before audit_syscall_exit()
1910 * is called. In this case there is not much to do, just record
1911 * the io_uring details and return.
1912 */
1913 ctx->uring_op = op;
1914 if (ctx->context == AUDIT_CTX_SYSCALL)
1915 return;
1916
1917 ctx->dummy = !audit_n_rules;
1918 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919 ctx->prio = 0;
1920
1921 ctx->context = AUDIT_CTX_URING;
1922 ctx->current_state = ctx->state;
1923 ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations. This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938 struct audit_context *ctx = audit_context();
1939
69e9cd66
JO
1940 if (ctx->dummy) {
1941 if (ctx->context != AUDIT_CTX_URING)
1942 return;
1943 goto out;
1944 }
1945
d4fefa48 1946 audit_return_fixup(ctx, success, code);
5bd2182d
PM
1947 if (ctx->context == AUDIT_CTX_SYSCALL) {
1948 /*
1949 * NOTE: See the note in __audit_uring_entry() about the case
1950 * where we may be called from process context before we
1951 * return to userspace via audit_syscall_exit(). In this
1952 * case we simply emit a URINGOP record and bail, the
1953 * normal syscall exit handling will take care of
1954 * everything else.
1955 * It is also worth mentioning that when we are called,
1956 * the current process creds may differ from the creds
1957 * used during the normal syscall processing; keep that
1958 * in mind if/when we move the record generation code.
1959 */
1960
1961 /*
1962 * We need to filter on the syscall info here to decide if we
1963 * should emit a URINGOP record. I know it seems odd but this
1964 * solves the problem where users have a filter to block *all*
1965 * syscall records in the "exit" filter; we want to preserve
1966 * the behavior here.
1967 */
1968 audit_filter_syscall(current, ctx);
67daf270
PM
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 audit_filter_uring(current, ctx);
5bd2182d
PM
1971 audit_filter_inodes(current, ctx);
1972 if (ctx->current_state != AUDIT_STATE_RECORD)
1973 return;
1974
1975 audit_log_uring(ctx);
1976 return;
1977 }
1978
1979 /* this may generate CONFIG_CHANGE records */
1980 if (!list_empty(&ctx->killed_trees))
1981 audit_kill_trees(ctx);
1982
67daf270
PM
1983 /* run through both filters to ensure we set the filterkey properly */
1984 audit_filter_uring(current, ctx);
5bd2182d
PM
1985 audit_filter_inodes(current, ctx);
1986 if (ctx->current_state != AUDIT_STATE_RECORD)
1987 goto out;
5bd2182d
PM
1988 audit_log_exit();
1989
1990out:
1991 audit_reset_context(ctx);
1992}
1993
b0dd25a8 1994/**
196a5085 1995 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built. If the state from the
619ed58a 2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1da177e4
LT
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
2008 * be written).
2009 */
b4f0d375
RGB
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011 unsigned long a3, unsigned long a4)
1da177e4 2012{
cdfb6b34 2013 struct audit_context *context = audit_context();
1da177e4
LT
2014 enum audit_state state;
2015
94d14e3e 2016 if (!audit_enabled || !context)
86a1c34a 2017 return;
1da177e4 2018
12c5e81d
PM
2019 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020 WARN_ON(context->name_count);
2021 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022 audit_panic("unrecoverable error in audit_syscall_entry()");
2023 return;
2024 }
1da177e4 2025
1da177e4 2026 state = context->state;
619ed58a 2027 if (state == AUDIT_STATE_DISABLED)
5260ecc2
RGB
2028 return;
2029
d51374ad 2030 context->dummy = !audit_n_rules;
619ed58a 2031 if (!context->dummy && state == AUDIT_STATE_BUILD) {
0590b933 2032 context->prio = 0;
cdfb6b34 2033 if (auditd_test_task(current))
5260ecc2 2034 return;
0590b933 2035 }
1da177e4 2036
16add411 2037 context->arch = syscall_get_arch(current);
5260ecc2
RGB
2038 context->major = major;
2039 context->argv[0] = a1;
2040 context->argv[1] = a2;
2041 context->argv[2] = a3;
2042 context->argv[3] = a4;
12c5e81d 2043 context->context = AUDIT_CTX_SYSCALL;
0590b933 2044 context->current_state = state;
290e44b7 2045 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
2046}
2047
b0dd25a8 2048/**
196a5085 2049 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
b0dd25a8
RD
2052 *
2053 * Tear down after system call. If the audit context has been marked as
619ed58a 2054 * auditable (either because of the AUDIT_STATE_RECORD state from
42ae610c 2055 * filtering, or because some other part of the kernel wrote an audit
1da177e4 2056 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
2057 * free the names stored from getname().
2058 */
d7e7528b 2059void __audit_syscall_exit(int success, long return_code)
1da177e4 2060{
12c5e81d 2061 struct audit_context *context = audit_context();
1da177e4 2062
12c5e81d
PM
2063 if (!context || context->dummy ||
2064 context->context != AUDIT_CTX_SYSCALL)
2065 goto out;
1da177e4 2066
12c5e81d 2067 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
2068 if (!list_empty(&context->killed_trees))
2069 audit_kill_trees(context);
2070
d4fefa48 2071 audit_return_fixup(context, success, return_code);
12c5e81d
PM
2072 /* run through both filters to ensure we set the filterkey properly */
2073 audit_filter_syscall(current, context);
2074 audit_filter_inodes(current, context);
3ed66951 2075 if (context->current_state != AUDIT_STATE_RECORD)
12c5e81d 2076 goto out;
2a1fe215 2077
12c5e81d 2078 audit_log_exit();
2fd6f58b 2079
12c5e81d
PM
2080out:
2081 audit_reset_context(context);
1da177e4
LT
2082}
2083
74c3cbe3
AV
2084static inline void handle_one(const struct inode *inode)
2085{
74c3cbe3
AV
2086 struct audit_context *context;
2087 struct audit_tree_refs *p;
2088 struct audit_chunk *chunk;
2089 int count;
254c8b96 2090
08991e83 2091 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 2092 return;
cdfb6b34 2093 context = audit_context();
74c3cbe3
AV
2094 p = context->trees;
2095 count = context->tree_count;
2096 rcu_read_lock();
2097 chunk = audit_tree_lookup(inode);
2098 rcu_read_unlock();
2099 if (!chunk)
2100 return;
2101 if (likely(put_tree_ref(context, chunk)))
2102 return;
2103 if (unlikely(!grow_tree_refs(context))) {
f952d10f 2104 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2105 audit_set_auditable(context);
2106 audit_put_chunk(chunk);
2107 unroll_tree_refs(context, p, count);
2108 return;
2109 }
2110 put_tree_ref(context, chunk);
74c3cbe3
AV
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
74c3cbe3
AV
2115 struct audit_context *context;
2116 struct audit_tree_refs *p;
2117 const struct dentry *d, *parent;
2118 struct audit_chunk *drop;
2119 unsigned long seq;
2120 int count;
2121
cdfb6b34 2122 context = audit_context();
74c3cbe3
AV
2123 p = context->trees;
2124 count = context->tree_count;
2125retry:
2126 drop = NULL;
2127 d = dentry;
2128 rcu_read_lock();
2129 seq = read_seqbegin(&rename_lock);
2130 for(;;) {
3b362157 2131 struct inode *inode = d_backing_inode(d);
254c8b96 2132
08991e83 2133 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3 2134 struct audit_chunk *chunk;
254c8b96 2135
74c3cbe3
AV
2136 chunk = audit_tree_lookup(inode);
2137 if (chunk) {
2138 if (unlikely(!put_tree_ref(context, chunk))) {
2139 drop = chunk;
2140 break;
2141 }
2142 }
2143 }
2144 parent = d->d_parent;
2145 if (parent == d)
2146 break;
2147 d = parent;
2148 }
2149 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2150 rcu_read_unlock();
2151 if (!drop) {
2152 /* just a race with rename */
2153 unroll_tree_refs(context, p, count);
2154 goto retry;
2155 }
2156 audit_put_chunk(drop);
2157 if (grow_tree_refs(context)) {
2158 /* OK, got more space */
2159 unroll_tree_refs(context, p, count);
2160 goto retry;
2161 }
2162 /* too bad */
f952d10f 2163 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2164 unroll_tree_refs(context, p, count);
2165 audit_set_auditable(context);
2166 return;
2167 }
2168 rcu_read_unlock();
74c3cbe3
AV
2169}
2170
78e2e802
JL
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172 unsigned char type)
5195d8e2
EP
2173{
2174 struct audit_names *aname;
2175
2176 if (context->name_count < AUDIT_NAMES) {
2177 aname = &context->preallocated_names[context->name_count];
2178 memset(aname, 0, sizeof(*aname));
2179 } else {
2180 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181 if (!aname)
2182 return NULL;
2183 aname->should_free = true;
2184 }
2185
84cb777e 2186 aname->ino = AUDIT_INO_UNSET;
78e2e802 2187 aname->type = type;
5195d8e2
EP
2188 list_add_tail(&aname->list, &context->names_list);
2189
2190 context->name_count++;
6d915476
RGB
2191 if (!context->pwd.dentry)
2192 get_fs_pwd(current->fs, &context->pwd);
5195d8e2
EP
2193 return aname;
2194}
2195
7ac86265 2196/**
196a5085 2197 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
cdfb6b34 2207 struct audit_context *context = audit_context();
7ac86265
JL
2208 struct audit_names *n;
2209
2210 list_for_each_entry(n, &context->names_list, list) {
2211 if (!n->name)
2212 continue;
55422d0b
PM
2213 if (n->name->uptr == uptr) {
2214 n->name->refcnt++;
7ac86265 2215 return n->name;
55422d0b 2216 }
7ac86265
JL
2217 }
2218 return NULL;
2219}
2220
b0dd25a8 2221/**
196a5085 2222 * __audit_getname - add a name to the list
b0dd25a8
RD
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
91a27b2a 2228void __audit_getname(struct filename *name)
1da177e4 2229{
cdfb6b34 2230 struct audit_context *context = audit_context();
5195d8e2 2231 struct audit_names *n;
1da177e4 2232
12c5e81d 2233 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2234 return;
91a27b2a 2235
78e2e802 2236 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2237 if (!n)
2238 return;
2239
2240 n->name = name;
2241 n->name_len = AUDIT_NAME_FULL;
adb5c247 2242 name->aname = n;
55422d0b 2243 name->refcnt++;
1da177e4
LT
2244}
2245
5f3d544f
RGB
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247 const struct dentry *dentry)
2248{
2249 struct cpu_vfs_cap_data caps;
2250 int rc;
2251
2252 if (!dentry)
2253 return 0;
2254
71bc356f 2255 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
5f3d544f
RGB
2256 if (rc)
2257 return rc;
2258
2259 name->fcap.permitted = caps.permitted;
2260 name->fcap.inheritable = caps.inheritable;
2261 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262 name->fcap.rootid = caps.rootid;
2263 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264 VFS_CAP_REVISION_SHIFT;
2265
2266 return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2efa48fe
Y
2270static void audit_copy_inode(struct audit_names *name,
2271 const struct dentry *dentry,
2272 struct inode *inode, unsigned int flags)
5f3d544f
RGB
2273{
2274 name->ino = inode->i_ino;
2275 name->dev = inode->i_sb->s_dev;
2276 name->mode = inode->i_mode;
2277 name->uid = inode->i_uid;
2278 name->gid = inode->i_gid;
2279 name->rdev = inode->i_rdev;
2280 security_inode_getsecid(inode, &name->osid);
2281 if (flags & AUDIT_INODE_NOEVAL) {
2282 name->fcap_ver = -1;
2283 return;
2284 }
2285 audit_copy_fcaps(name, dentry);
2286}
2287
b0dd25a8 2288/**
bfcec708 2289 * __audit_inode - store the inode and device from a lookup
b0dd25a8 2290 * @name: name being audited
481968f4 2291 * @dentry: dentry being audited
79f6530c 2292 * @flags: attributes for this particular entry
b0dd25a8 2293 */
adb5c247 2294void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 2295 unsigned int flags)
1da177e4 2296{
cdfb6b34 2297 struct audit_context *context = audit_context();
d6335d77 2298 struct inode *inode = d_backing_inode(dentry);
5195d8e2 2299 struct audit_names *n;
79f6530c 2300 bool parent = flags & AUDIT_INODE_PARENT;
a252f56a
RGB
2301 struct audit_entry *e;
2302 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303 int i;
1da177e4 2304
12c5e81d 2305 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2306 return;
5195d8e2 2307
a252f56a 2308 rcu_read_lock();
699c1868
RGB
2309 list_for_each_entry_rcu(e, list, list) {
2310 for (i = 0; i < e->rule.field_count; i++) {
2311 struct audit_field *f = &e->rule.fields[i];
2312
2313 if (f->type == AUDIT_FSTYPE
2314 && audit_comparator(inode->i_sb->s_magic,
2315 f->op, f->val)
2316 && e->rule.action == AUDIT_NEVER) {
2317 rcu_read_unlock();
2318 return;
a252f56a
RGB
2319 }
2320 }
2321 }
2322 rcu_read_unlock();
2323
9cec9d68
JL
2324 if (!name)
2325 goto out_alloc;
2326
adb5c247
JL
2327 /*
2328 * If we have a pointer to an audit_names entry already, then we can
2329 * just use it directly if the type is correct.
2330 */
2331 n = name->aname;
2332 if (n) {
2333 if (parent) {
2334 if (n->type == AUDIT_TYPE_PARENT ||
2335 n->type == AUDIT_TYPE_UNKNOWN)
2336 goto out;
2337 } else {
2338 if (n->type != AUDIT_TYPE_PARENT)
2339 goto out;
2340 }
2341 }
2342
5195d8e2 2343 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
2344 if (n->ino) {
2345 /* valid inode number, use that for the comparison */
2346 if (n->ino != inode->i_ino ||
2347 n->dev != inode->i_sb->s_dev)
2348 continue;
2349 } else if (n->name) {
2350 /* inode number has not been set, check the name */
2351 if (strcmp(n->name->name, name->name))
2352 continue;
2353 } else
2354 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
2355 continue;
2356
2357 /* match the correct record type */
2358 if (parent) {
2359 if (n->type == AUDIT_TYPE_PARENT ||
2360 n->type == AUDIT_TYPE_UNKNOWN)
2361 goto out;
2362 } else {
2363 if (n->type != AUDIT_TYPE_PARENT)
2364 goto out;
2365 }
1da177e4 2366 }
5195d8e2 2367
9cec9d68 2368out_alloc:
4a928436
PM
2369 /* unable to find an entry with both a matching name and type */
2370 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2371 if (!n)
2372 return;
fcf22d82 2373 if (name) {
fd3522fd 2374 n->name = name;
55422d0b 2375 name->refcnt++;
fcf22d82 2376 }
4a928436 2377
5195d8e2 2378out:
bfcec708 2379 if (parent) {
91a27b2a 2380 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 2381 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
2382 if (flags & AUDIT_INODE_HIDDEN)
2383 n->hidden = true;
bfcec708
JL
2384 } else {
2385 n->name_len = AUDIT_NAME_FULL;
2386 n->type = AUDIT_TYPE_NORMAL;
2387 }
74c3cbe3 2388 handle_path(dentry);
57d46577 2389 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
73241ccc
AG
2390}
2391
9f45f5bf
AV
2392void __audit_file(const struct file *file)
2393{
2394 __audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
73241ccc 2397/**
c43a25ab 2398 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2399 * @parent: inode of dentry parent
c43a25ab 2400 * @dentry: dentry being audited
4fa6b5ec 2401 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created. Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
d6335d77 2411void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
2412 const struct dentry *dentry,
2413 const unsigned char type)
73241ccc 2414{
cdfb6b34 2415 struct audit_context *context = audit_context();
d6335d77 2416 struct inode *inode = d_backing_inode(dentry);
795d673a 2417 const struct qstr *dname = &dentry->d_name;
4fa6b5ec 2418 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
2419 struct audit_entry *e;
2420 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421 int i;
73241ccc 2422
12c5e81d 2423 if (context->context == AUDIT_CTX_UNUSED)
73241ccc
AG
2424 return;
2425
42d5e376 2426 rcu_read_lock();
699c1868
RGB
2427 list_for_each_entry_rcu(e, list, list) {
2428 for (i = 0; i < e->rule.field_count; i++) {
2429 struct audit_field *f = &e->rule.fields[i];
2430
2431 if (f->type == AUDIT_FSTYPE
2432 && audit_comparator(parent->i_sb->s_magic,
2433 f->op, f->val)
2434 && e->rule.action == AUDIT_NEVER) {
2435 rcu_read_unlock();
2436 return;
42d5e376
RGB
2437 }
2438 }
2439 }
2440 rcu_read_unlock();
2441
74c3cbe3
AV
2442 if (inode)
2443 handle_one(inode);
73241ccc 2444
4fa6b5ec 2445 /* look for a parent entry first */
5195d8e2 2446 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
2447 if (!n->name ||
2448 (n->type != AUDIT_TYPE_PARENT &&
2449 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2450 continue;
2451
57c59f58
PM
2452 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453 !audit_compare_dname_path(dname,
2454 n->name->name, n->name_len)) {
2455 if (n->type == AUDIT_TYPE_UNKNOWN)
2456 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
2457 found_parent = n;
2458 break;
f368c07d 2459 }
5712e88f 2460 }
73241ccc 2461
4fa6b5ec 2462 /* is there a matching child entry? */
5195d8e2 2463 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 2464 /* can only match entries that have a name */
57c59f58
PM
2465 if (!n->name ||
2466 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2467 continue;
2468
795d673a 2469 if (!strcmp(dname->name, n->name->name) ||
91a27b2a 2470 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
2471 found_parent ?
2472 found_parent->name_len :
e3d6b07b 2473 AUDIT_NAME_FULL)) {
57c59f58
PM
2474 if (n->type == AUDIT_TYPE_UNKNOWN)
2475 n->type = type;
4fa6b5ec
JL
2476 found_child = n;
2477 break;
5712e88f 2478 }
ac9910ce 2479 }
5712e88f 2480
5712e88f 2481 if (!found_parent) {
4fa6b5ec
JL
2482 /* create a new, "anonymous" parent record */
2483 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2484 if (!n)
ac9910ce 2485 return;
57d46577 2486 audit_copy_inode(n, NULL, parent, 0);
73d3ec5a 2487 }
5712e88f
AG
2488
2489 if (!found_child) {
4fa6b5ec
JL
2490 found_child = audit_alloc_name(context, type);
2491 if (!found_child)
5712e88f 2492 return;
5712e88f
AG
2493
2494 /* Re-use the name belonging to the slot for a matching parent
2495 * directory. All names for this context are relinquished in
2496 * audit_free_names() */
2497 if (found_parent) {
4fa6b5ec
JL
2498 found_child->name = found_parent->name;
2499 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 2500 found_child->name->refcnt++;
5712e88f 2501 }
5712e88f 2502 }
57c59f58 2503
4fa6b5ec 2504 if (inode)
57d46577 2505 audit_copy_inode(found_child, dentry, inode, 0);
4fa6b5ec 2506 else
84cb777e 2507 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 2508}
50e437d5 2509EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2510
b0dd25a8
RD
2511/**
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2115bb25 2514 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
2515 * @serial: serial value that is recorded in the audit_context
2516 *
2517 * Also sets the context as auditable.
2518 */
48887e63 2519int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 2520 struct timespec64 *t, unsigned int *serial)
1da177e4 2521{
12c5e81d 2522 if (ctx->context == AUDIT_CTX_UNUSED)
48887e63 2523 return 0;
ce625a80
DW
2524 if (!ctx->serial)
2525 ctx->serial = audit_serial();
bfb4496e
DW
2526 t->tv_sec = ctx->ctime.tv_sec;
2527 t->tv_nsec = ctx->ctime.tv_nsec;
2528 *serial = ctx->serial;
0590b933
AV
2529 if (!ctx->prio) {
2530 ctx->prio = 1;
619ed58a 2531 ctx->current_state = AUDIT_STATE_RECORD;
0590b933 2532 }
48887e63 2533 return 1;
1da177e4
LT
2534}
2535
20ca73bc
GW
2536/**
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2538 * @oflag: open flag
2539 * @mode: mode bits
6b962559 2540 * @attr: queue attributes
20ca73bc 2541 *
20ca73bc 2542 */
df0a4283 2543void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2544{
cdfb6b34 2545 struct audit_context *context = audit_context();
20ca73bc 2546
564f6993
AV
2547 if (attr)
2548 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2549 else
2550 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2551
564f6993
AV
2552 context->mq_open.oflag = oflag;
2553 context->mq_open.mode = mode;
20ca73bc 2554
564f6993 2555 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2556}
2557
2558/**
c32c8af4 2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
c32c8af4 2563 * @abs_timeout: Message timeout in absolute time
20ca73bc 2564 *
20ca73bc 2565 */
c32c8af4 2566void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2567 const struct timespec64 *abs_timeout)
20ca73bc 2568{
cdfb6b34 2569 struct audit_context *context = audit_context();
b9047726 2570 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2571
c32c8af4 2572 if (abs_timeout)
b9047726 2573 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2574 else
b9047726 2575 memset(p, 0, sizeof(*p));
20ca73bc 2576
c32c8af4
AV
2577 context->mq_sendrecv.mqdes = mqdes;
2578 context->mq_sendrecv.msg_len = msg_len;
2579 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2580
c32c8af4 2581 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2582}
2583
2584/**
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
6b962559 2587 * @notification: Notification event
20ca73bc 2588 *
20ca73bc
GW
2589 */
2590
20114f71 2591void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2592{
cdfb6b34 2593 struct audit_context *context = audit_context();
20ca73bc 2594
20114f71
AV
2595 if (notification)
2596 context->mq_notify.sigev_signo = notification->sigev_signo;
2597 else
2598 context->mq_notify.sigev_signo = 0;
20ca73bc 2599
20114f71
AV
2600 context->mq_notify.mqdes = mqdes;
2601 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2602}
2603
2604/**
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2607 * @mqstat: MQ flags
2608 *
20ca73bc 2609 */
7392906e 2610void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2611{
cdfb6b34 2612 struct audit_context *context = audit_context();
254c8b96 2613
7392906e
AV
2614 context->mq_getsetattr.mqdes = mqdes;
2615 context->mq_getsetattr.mqstat = *mqstat;
2616 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2617}
2618
b0dd25a8 2619/**
196a5085 2620 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2621 * @ipcp: ipc permissions
2622 *
073115d6 2623 */
a33e6751 2624void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2625{
cdfb6b34 2626 struct audit_context *context = audit_context();
254c8b96 2627
a33e6751
AV
2628 context->ipc.uid = ipcp->uid;
2629 context->ipc.gid = ipcp->gid;
2630 context->ipc.mode = ipcp->mode;
e816f370 2631 context->ipc.has_perm = 0;
a33e6751
AV
2632 security_ipc_getsecid(ipcp, &context->ipc.osid);
2633 context->type = AUDIT_IPC;
073115d6
SG
2634}
2635
2636/**
196a5085 2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2642 *
e816f370 2643 * Called only after audit_ipc_obj().
b0dd25a8 2644 */
2570ebbd 2645void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2646{
cdfb6b34 2647 struct audit_context *context = audit_context();
1da177e4 2648
e816f370
AV
2649 context->ipc.qbytes = qbytes;
2650 context->ipc.perm_uid = uid;
2651 context->ipc.perm_gid = gid;
2652 context->ipc.perm_mode = mode;
2653 context->ipc.has_perm = 1;
1da177e4 2654}
c2f0c7c3 2655
d9cfea91 2656void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2657{
cdfb6b34 2658 struct audit_context *context = audit_context();
473ae30b 2659
d9cfea91
RGB
2660 context->type = AUDIT_EXECVE;
2661 context->execve.argc = bprm->argc;
473ae30b
AV
2662}
2663
2664
b0dd25a8 2665/**
196a5085 2666 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2668 * @args: args array
2669 *
b0dd25a8 2670 */
2950fa9d 2671int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2672{
cdfb6b34 2673 struct audit_context *context = audit_context();
3ec3b2fb 2674
2950fa9d
CG
2675 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2676 return -EINVAL;
f3298dc4
AV
2677 context->type = AUDIT_SOCKETCALL;
2678 context->socketcall.nargs = nargs;
2679 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2680 return 0;
3ec3b2fb
DW
2681}
2682
db349509
AV
2683/**
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2687 *
db349509 2688 */
157cf649 2689void __audit_fd_pair(int fd1, int fd2)
db349509 2690{
cdfb6b34 2691 struct audit_context *context = audit_context();
254c8b96 2692
157cf649
AV
2693 context->fds[0] = fd1;
2694 context->fds[1] = fd2;
db349509
AV
2695}
2696
b0dd25a8 2697/**
196a5085 2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2701 *
2702 * Returns 0 for success or NULL context or < 0 on error.
2703 */
07c49417 2704int __audit_sockaddr(int len, void *a)
3ec3b2fb 2705{
cdfb6b34 2706 struct audit_context *context = audit_context();
3ec3b2fb 2707
4f6b434f
AV
2708 if (!context->sockaddr) {
2709 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
254c8b96 2710
4f6b434f
AV
2711 if (!p)
2712 return -ENOMEM;
2713 context->sockaddr = p;
2714 }
3ec3b2fb 2715
4f6b434f
AV
2716 context->sockaddr_len = len;
2717 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2718 return 0;
2719}
2720
a5cb013d
AV
2721void __audit_ptrace(struct task_struct *t)
2722{
cdfb6b34 2723 struct audit_context *context = audit_context();
a5cb013d 2724
fa2bea2f 2725 context->target_pid = task_tgid_nr(t);
c2a7780e 2726 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2727 context->target_uid = task_uid(t);
4746ec5b 2728 context->target_sessionid = audit_get_sessionid(t);
4ebd7651 2729 security_task_getsecid_obj(t, &context->target_sid);
c2a7780e 2730 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2731}
2732
b0dd25a8 2733/**
b48345aa 2734 * audit_signal_info_syscall - record signal info for syscalls
b0dd25a8
RD
2735 * @t: task being signaled
2736 *
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2739 */
b48345aa 2740int audit_signal_info_syscall(struct task_struct *t)
c2f0c7c3 2741{
e54dc243 2742 struct audit_aux_data_pids *axp;
cdfb6b34 2743 struct audit_context *ctx = audit_context();
b48345aa 2744 kuid_t t_uid = task_uid(t);
e54dc243 2745
ab6434a1
PM
2746 if (!audit_signals || audit_dummy_context())
2747 return 0;
2748
e54dc243
AG
2749 /* optimize the common case by putting first signal recipient directly
2750 * in audit_context */
2751 if (!ctx->target_pid) {
f1dc4867 2752 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2753 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2754 ctx->target_uid = t_uid;
4746ec5b 2755 ctx->target_sessionid = audit_get_sessionid(t);
4ebd7651 2756 security_task_getsecid_obj(t, &ctx->target_sid);
c2a7780e 2757 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2758 return 0;
2759 }
2760
2761 axp = (void *)ctx->aux_pids;
2762 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764 if (!axp)
2765 return -ENOMEM;
2766
2767 axp->d.type = AUDIT_OBJ_PID;
2768 axp->d.next = ctx->aux_pids;
2769 ctx->aux_pids = (void *)axp;
2770 }
88ae704c 2771 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2772
f1dc4867 2773 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2774 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2775 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2776 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
4ebd7651 2777 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2778 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2779 axp->pid_count++;
2780
2781 return 0;
c2f0c7c3 2782}
0a4ff8c2 2783
3fc689e9
EP
2784/**
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
3fc689e9
EP
2789 *
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2792 *
3fc689e9
EP
2793 * -Eric
2794 */
d84f4f99
DH
2795int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796 const struct cred *new, const struct cred *old)
3fc689e9
EP
2797{
2798 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2799 struct audit_context *context = audit_context();
3fc689e9 2800 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2801
2802 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803 if (!ax)
d84f4f99 2804 return -ENOMEM;
3fc689e9
EP
2805
2806 ax->d.type = AUDIT_BPRM_FCAPS;
2807 ax->d.next = context->aux;
2808 context->aux = (void *)ax;
2809
71bc356f
CB
2810 get_vfs_caps_from_disk(&init_user_ns,
2811 bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2812
2813 ax->fcap.permitted = vcaps.permitted;
2814 ax->fcap.inheritable = vcaps.inheritable;
2815 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2fec30e2 2816 ax->fcap.rootid = vcaps.rootid;
3fc689e9
EP
2817 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2818
d84f4f99
DH
2819 ax->old_pcap.permitted = old->cap_permitted;
2820 ax->old_pcap.inheritable = old->cap_inheritable;
2821 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2822 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2823
d84f4f99
DH
2824 ax->new_pcap.permitted = new->cap_permitted;
2825 ax->new_pcap.inheritable = new->cap_inheritable;
2826 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2827 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2828 return 0;
3fc689e9
EP
2829}
2830
e68b75a0
EP
2831/**
2832 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
e68b75a0 2835 *
da3dae54 2836 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2837 * audit system if applicable
2838 */
ca24a23e 2839void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2840{
cdfb6b34 2841 struct audit_context *context = audit_context();
254c8b96 2842
fa2bea2f 2843 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2844 context->capset.cap.effective = new->cap_effective;
2845 context->capset.cap.inheritable = new->cap_effective;
2846 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2847 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2848 context->type = AUDIT_CAPSET;
e68b75a0
EP
2849}
2850
120a795d
AV
2851void __audit_mmap_fd(int fd, int flags)
2852{
cdfb6b34 2853 struct audit_context *context = audit_context();
254c8b96 2854
120a795d
AV
2855 context->mmap.fd = fd;
2856 context->mmap.flags = flags;
2857 context->type = AUDIT_MMAP;
2858}
2859
571e5c0e
RGB
2860void __audit_openat2_how(struct open_how *how)
2861{
2862 struct audit_context *context = audit_context();
2863
2864 context->openat2.flags = how->flags;
2865 context->openat2.mode = how->mode;
2866 context->openat2.resolve = how->resolve;
2867 context->type = AUDIT_OPENAT2;
2868}
2869
ca86cad7
RGB
2870void __audit_log_kern_module(char *name)
2871{
cdfb6b34 2872 struct audit_context *context = audit_context();
ca86cad7 2873
b305f7ed
YW
2874 context->module.name = kstrdup(name, GFP_KERNEL);
2875 if (!context->module.name)
2876 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2877 context->type = AUDIT_KERN_MODULE;
2878}
2879
de8cd83e
SG
2880void __audit_fanotify(unsigned int response)
2881{
cdfb6b34 2882 audit_log(audit_context(), GFP_KERNEL,
de8cd83e
SG
2883 AUDIT_FANOTIFY, "resp=%u", response);
2884}
2885
2d87a067
OM
2886void __audit_tk_injoffset(struct timespec64 offset)
2887{
272ceeae 2888 struct audit_context *context = audit_context();
7e8eda73 2889
272ceeae
RGB
2890 /* only set type if not already set by NTP */
2891 if (!context->type)
2892 context->type = AUDIT_TIME_INJOFFSET;
2893 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
7e8eda73
OM
2894}
2895
2896void __audit_ntp_log(const struct audit_ntp_data *ad)
2897{
272ceeae
RGB
2898 struct audit_context *context = audit_context();
2899 int type;
2900
2901 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902 if (ad->vals[type].newval != ad->vals[type].oldval) {
2903 /* unconditionally set type, overwriting TK */
2904 context->type = AUDIT_TIME_ADJNTPVAL;
2905 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2906 break;
2907 }
7e8eda73
OM
2908}
2909
c4dad0aa 2910void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
14224039 2911 enum audit_nfcfgop op, gfp_t gfp)
c4dad0aa
RGB
2912{
2913 struct audit_buffer *ab;
9d44a121 2914 char comm[sizeof(current->comm)];
c4dad0aa 2915
14224039 2916 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
c4dad0aa
RGB
2917 if (!ab)
2918 return;
2919 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920 name, af, nentries, audit_nfcfgs[op].s);
9d44a121
RGB
2921
2922 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923 audit_log_task_context(ab); /* subj= */
2924 audit_log_format(ab, " comm=");
2925 audit_log_untrustedstring(ab, get_task_comm(comm, current));
c4dad0aa
RGB
2926 audit_log_end(ab);
2927}
2928EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2929
7b9205bd 2930static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2931{
cca080d9
EB
2932 kuid_t auid, uid;
2933 kgid_t gid;
85e7bac3 2934 unsigned int sessionid;
9eab339b 2935 char comm[sizeof(current->comm)];
85e7bac3
EP
2936
2937 auid = audit_get_loginuid(current);
2938 sessionid = audit_get_sessionid(current);
2939 current_uid_gid(&uid, &gid);
2940
2941 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2942 from_kuid(&init_user_ns, auid),
2943 from_kuid(&init_user_ns, uid),
2944 from_kgid(&init_user_ns, gid),
2945 sessionid);
85e7bac3 2946 audit_log_task_context(ab);
fa2bea2f 2947 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2948 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2949 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2950}
2951
0a4ff8c2
SG
2952/**
2953 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2954 * @signr: signal value
0a4ff8c2
SG
2955 *
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2958 */
2959void audit_core_dumps(long signr)
2960{
2961 struct audit_buffer *ab;
0a4ff8c2
SG
2962
2963 if (!audit_enabled)
2964 return;
2965
2966 if (signr == SIGQUIT) /* don't care for those */
2967 return;
2968
d87de4a8 2969 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2970 if (unlikely(!ab))
2971 return;
61c0ee87 2972 audit_log_task(ab);
89670aff 2973 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2974 audit_log_end(ab);
2975}
0a4ff8c2 2976
326bee02
TH
2977/**
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2982 *
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2988 */
2989void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2990{
2991 struct audit_buffer *ab;
2992
9b8753ff 2993 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
2994 if (unlikely(!ab))
2995 return;
2996 audit_log_task(ab);
84db564a 2997 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
16add411 2998 signr, syscall_get_arch(current), syscall,
efbc0fbf 2999 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
3000 audit_log_end(ab);
3001}
916d7576 3002
ea6eca77
TH
3003void audit_seccomp_actions_logged(const char *names, const char *old_names,
3004 int res)
3005{
3006 struct audit_buffer *ab;
3007
3008 if (!audit_enabled)
3009 return;
3010
8982a1fb 3011 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
3012 AUDIT_CONFIG_CHANGE);
3013 if (unlikely(!ab))
3014 return;
3015
d0a3f18a
PM
3016 audit_log_format(ab,
3017 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018 names, old_names, res);
ea6eca77
TH
3019 audit_log_end(ab);
3020}
3021
916d7576
AV
3022struct list_head *audit_killed_trees(void)
3023{
cdfb6b34 3024 struct audit_context *ctx = audit_context();
12c5e81d 3025 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
916d7576
AV
3026 return NULL;
3027 return &ctx->killed_trees;
3028}
This page took 1.544041 seconds and 4 git commands to generate.