]>
Commit | Line | Data |
---|---|---|
17467f23 TT |
1 | /* |
2 | * Freescale DMA ALSA SoC PCM driver | |
3 | * | |
4 | * Author: Timur Tabi <[email protected]> | |
5 | * | |
f0fba2ad LG |
6 | * Copyright 2007-2010 Freescale Semiconductor, Inc. |
7 | * | |
8 | * This file is licensed under the terms of the GNU General Public License | |
9 | * version 2. This program is licensed "as is" without any warranty of any | |
10 | * kind, whether express or implied. | |
17467f23 TT |
11 | * |
12 | * This driver implements ASoC support for the Elo DMA controller, which is | |
13 | * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, | |
14 | * the PCM driver is what handles the DMA buffer. | |
15 | */ | |
16 | ||
17 | #include <linux/module.h> | |
18 | #include <linux/init.h> | |
19 | #include <linux/platform_device.h> | |
20 | #include <linux/dma-mapping.h> | |
21 | #include <linux/interrupt.h> | |
22 | #include <linux/delay.h> | |
5a0e3ad6 | 23 | #include <linux/gfp.h> |
f0fba2ad LG |
24 | #include <linux/of_platform.h> |
25 | #include <linux/list.h> | |
38fec727 | 26 | #include <linux/slab.h> |
17467f23 | 27 | |
17467f23 TT |
28 | #include <sound/core.h> |
29 | #include <sound/pcm.h> | |
30 | #include <sound/pcm_params.h> | |
31 | #include <sound/soc.h> | |
32 | ||
33 | #include <asm/io.h> | |
34 | ||
35 | #include "fsl_dma.h" | |
f0fba2ad | 36 | #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ |
17467f23 TT |
37 | |
38 | /* | |
39 | * The formats that the DMA controller supports, which is anything | |
40 | * that is 8, 16, or 32 bits. | |
41 | */ | |
42 | #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ | |
43 | SNDRV_PCM_FMTBIT_U8 | \ | |
44 | SNDRV_PCM_FMTBIT_S16_LE | \ | |
45 | SNDRV_PCM_FMTBIT_S16_BE | \ | |
46 | SNDRV_PCM_FMTBIT_U16_LE | \ | |
47 | SNDRV_PCM_FMTBIT_U16_BE | \ | |
48 | SNDRV_PCM_FMTBIT_S24_LE | \ | |
49 | SNDRV_PCM_FMTBIT_S24_BE | \ | |
50 | SNDRV_PCM_FMTBIT_U24_LE | \ | |
51 | SNDRV_PCM_FMTBIT_U24_BE | \ | |
52 | SNDRV_PCM_FMTBIT_S32_LE | \ | |
53 | SNDRV_PCM_FMTBIT_S32_BE | \ | |
54 | SNDRV_PCM_FMTBIT_U32_LE | \ | |
55 | SNDRV_PCM_FMTBIT_U32_BE) | |
56 | ||
57 | #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ | |
58 | SNDRV_PCM_RATE_CONTINUOUS) | |
59 | ||
f0fba2ad | 60 | struct dma_object { |
f0fba2ad | 61 | struct snd_soc_platform_driver dai; |
17467f23 TT |
62 | dma_addr_t ssi_stx_phys; |
63 | dma_addr_t ssi_srx_phys; | |
8e9d8690 | 64 | unsigned int ssi_fifo_depth; |
f0fba2ad LG |
65 | struct ccsr_dma_channel __iomem *channel; |
66 | unsigned int irq; | |
67 | bool assigned; | |
68 | char path[1]; | |
69 | }; | |
17467f23 TT |
70 | |
71 | /* | |
72 | * The number of DMA links to use. Two is the bare minimum, but if you | |
73 | * have really small links you might need more. | |
74 | */ | |
75 | #define NUM_DMA_LINKS 2 | |
76 | ||
77 | /** fsl_dma_private: p-substream DMA data | |
78 | * | |
79 | * Each substream has a 1-to-1 association with a DMA channel. | |
80 | * | |
81 | * The link[] array is first because it needs to be aligned on a 32-byte | |
82 | * boundary, so putting it first will ensure alignment without padding the | |
83 | * structure. | |
84 | * | |
85 | * @link[]: array of link descriptors | |
17467f23 TT |
86 | * @dma_channel: pointer to the DMA channel's registers |
87 | * @irq: IRQ for this DMA channel | |
88 | * @substream: pointer to the substream object, needed by the ISR | |
89 | * @ssi_sxx_phys: bus address of the STX or SRX register to use | |
90 | * @ld_buf_phys: physical address of the LD buffer | |
91 | * @current_link: index into link[] of the link currently being processed | |
92 | * @dma_buf_phys: physical address of the DMA buffer | |
93 | * @dma_buf_next: physical address of the next period to process | |
94 | * @dma_buf_end: physical address of the byte after the end of the DMA | |
95 | * @buffer period_size: the size of a single period | |
96 | * @num_periods: the number of periods in the DMA buffer | |
97 | */ | |
98 | struct fsl_dma_private { | |
99 | struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; | |
17467f23 TT |
100 | struct ccsr_dma_channel __iomem *dma_channel; |
101 | unsigned int irq; | |
102 | struct snd_pcm_substream *substream; | |
103 | dma_addr_t ssi_sxx_phys; | |
8e9d8690 | 104 | unsigned int ssi_fifo_depth; |
17467f23 TT |
105 | dma_addr_t ld_buf_phys; |
106 | unsigned int current_link; | |
107 | dma_addr_t dma_buf_phys; | |
108 | dma_addr_t dma_buf_next; | |
109 | dma_addr_t dma_buf_end; | |
110 | size_t period_size; | |
111 | unsigned int num_periods; | |
112 | }; | |
113 | ||
114 | /** | |
115 | * fsl_dma_hardare: define characteristics of the PCM hardware. | |
116 | * | |
117 | * The PCM hardware is the Freescale DMA controller. This structure defines | |
118 | * the capabilities of that hardware. | |
119 | * | |
120 | * Since the sampling rate and data format are not controlled by the DMA | |
121 | * controller, we specify no limits for those values. The only exception is | |
122 | * period_bytes_min, which is set to a reasonably low value to prevent the | |
123 | * DMA controller from generating too many interrupts per second. | |
124 | * | |
125 | * Since each link descriptor has a 32-bit byte count field, we set | |
126 | * period_bytes_max to the largest 32-bit number. We also have no maximum | |
127 | * number of periods. | |
be41e941 TT |
128 | * |
129 | * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a | |
130 | * limitation in the SSI driver requires the sample rates for playback and | |
131 | * capture to be the same. | |
17467f23 TT |
132 | */ |
133 | static const struct snd_pcm_hardware fsl_dma_hardware = { | |
134 | ||
4052ce4c TT |
135 | .info = SNDRV_PCM_INFO_INTERLEAVED | |
136 | SNDRV_PCM_INFO_MMAP | | |
be41e941 | 137 | SNDRV_PCM_INFO_MMAP_VALID | |
3a638ff2 TT |
138 | SNDRV_PCM_INFO_JOINT_DUPLEX | |
139 | SNDRV_PCM_INFO_PAUSE, | |
17467f23 TT |
140 | .formats = FSLDMA_PCM_FORMATS, |
141 | .rates = FSLDMA_PCM_RATES, | |
142 | .rate_min = 5512, | |
143 | .rate_max = 192000, | |
144 | .period_bytes_min = 512, /* A reasonable limit */ | |
145 | .period_bytes_max = (u32) -1, | |
146 | .periods_min = NUM_DMA_LINKS, | |
147 | .periods_max = (unsigned int) -1, | |
148 | .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ | |
149 | }; | |
150 | ||
151 | /** | |
152 | * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted | |
153 | * | |
154 | * This function should be called by the ISR whenever the DMA controller | |
155 | * halts data transfer. | |
156 | */ | |
157 | static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) | |
158 | { | |
159 | unsigned long flags; | |
160 | ||
161 | snd_pcm_stream_lock_irqsave(substream, flags); | |
162 | ||
163 | if (snd_pcm_running(substream)) | |
164 | snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); | |
165 | ||
166 | snd_pcm_stream_unlock_irqrestore(substream, flags); | |
167 | } | |
168 | ||
169 | /** | |
170 | * fsl_dma_update_pointers - update LD pointers to point to the next period | |
171 | * | |
172 | * As each period is completed, this function changes the the link | |
173 | * descriptor pointers for that period to point to the next period. | |
174 | */ | |
175 | static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) | |
176 | { | |
177 | struct fsl_dma_link_descriptor *link = | |
178 | &dma_private->link[dma_private->current_link]; | |
179 | ||
1a3c5a49 TT |
180 | /* Update our link descriptors to point to the next period. On a 36-bit |
181 | * system, we also need to update the ESAD bits. We also set (keep) the | |
182 | * snoop bits. See the comments in fsl_dma_hw_params() about snooping. | |
183 | */ | |
184 | if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | |
185 | link->source_addr = cpu_to_be32(dma_private->dma_buf_next); | |
186 | #ifdef CONFIG_PHYS_64BIT | |
187 | link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | | |
188 | upper_32_bits(dma_private->dma_buf_next)); | |
189 | #endif | |
190 | } else { | |
191 | link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); | |
192 | #ifdef CONFIG_PHYS_64BIT | |
193 | link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | | |
194 | upper_32_bits(dma_private->dma_buf_next)); | |
195 | #endif | |
196 | } | |
17467f23 TT |
197 | |
198 | /* Update our variables for next time */ | |
199 | dma_private->dma_buf_next += dma_private->period_size; | |
200 | ||
201 | if (dma_private->dma_buf_next >= dma_private->dma_buf_end) | |
202 | dma_private->dma_buf_next = dma_private->dma_buf_phys; | |
203 | ||
204 | if (++dma_private->current_link >= NUM_DMA_LINKS) | |
205 | dma_private->current_link = 0; | |
206 | } | |
207 | ||
208 | /** | |
209 | * fsl_dma_isr: interrupt handler for the DMA controller | |
210 | * | |
211 | * @irq: IRQ of the DMA channel | |
212 | * @dev_id: pointer to the dma_private structure for this DMA channel | |
213 | */ | |
214 | static irqreturn_t fsl_dma_isr(int irq, void *dev_id) | |
215 | { | |
216 | struct fsl_dma_private *dma_private = dev_id; | |
f0fba2ad LG |
217 | struct snd_pcm_substream *substream = dma_private->substream; |
218 | struct snd_soc_pcm_runtime *rtd = substream->private_data; | |
219 | struct device *dev = rtd->platform->dev; | |
17467f23 TT |
220 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; |
221 | irqreturn_t ret = IRQ_NONE; | |
222 | u32 sr, sr2 = 0; | |
223 | ||
224 | /* We got an interrupt, so read the status register to see what we | |
225 | were interrupted for. | |
226 | */ | |
227 | sr = in_be32(&dma_channel->sr); | |
228 | ||
229 | if (sr & CCSR_DMA_SR_TE) { | |
f0fba2ad LG |
230 | dev_err(dev, "dma transmit error\n"); |
231 | fsl_dma_abort_stream(substream); | |
17467f23 TT |
232 | sr2 |= CCSR_DMA_SR_TE; |
233 | ret = IRQ_HANDLED; | |
234 | } | |
235 | ||
236 | if (sr & CCSR_DMA_SR_CH) | |
237 | ret = IRQ_HANDLED; | |
238 | ||
239 | if (sr & CCSR_DMA_SR_PE) { | |
f0fba2ad LG |
240 | dev_err(dev, "dma programming error\n"); |
241 | fsl_dma_abort_stream(substream); | |
17467f23 TT |
242 | sr2 |= CCSR_DMA_SR_PE; |
243 | ret = IRQ_HANDLED; | |
244 | } | |
245 | ||
246 | if (sr & CCSR_DMA_SR_EOLNI) { | |
247 | sr2 |= CCSR_DMA_SR_EOLNI; | |
248 | ret = IRQ_HANDLED; | |
249 | } | |
250 | ||
251 | if (sr & CCSR_DMA_SR_CB) | |
252 | ret = IRQ_HANDLED; | |
253 | ||
254 | if (sr & CCSR_DMA_SR_EOSI) { | |
17467f23 TT |
255 | /* Tell ALSA we completed a period. */ |
256 | snd_pcm_period_elapsed(substream); | |
257 | ||
258 | /* | |
259 | * Update our link descriptors to point to the next period. We | |
260 | * only need to do this if the number of periods is not equal to | |
261 | * the number of links. | |
262 | */ | |
263 | if (dma_private->num_periods != NUM_DMA_LINKS) | |
264 | fsl_dma_update_pointers(dma_private); | |
265 | ||
266 | sr2 |= CCSR_DMA_SR_EOSI; | |
267 | ret = IRQ_HANDLED; | |
268 | } | |
269 | ||
270 | if (sr & CCSR_DMA_SR_EOLSI) { | |
271 | sr2 |= CCSR_DMA_SR_EOLSI; | |
272 | ret = IRQ_HANDLED; | |
273 | } | |
274 | ||
275 | /* Clear the bits that we set */ | |
276 | if (sr2) | |
277 | out_be32(&dma_channel->sr, sr2); | |
278 | ||
279 | return ret; | |
280 | } | |
281 | ||
282 | /** | |
283 | * fsl_dma_new: initialize this PCM driver. | |
284 | * | |
285 | * This function is called when the codec driver calls snd_soc_new_pcms(), | |
87506549 | 286 | * once for each .dai_link in the machine driver's snd_soc_card |
17467f23 | 287 | * structure. |
1a3c5a49 TT |
288 | * |
289 | * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which | |
290 | * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM | |
291 | * is specified. Therefore, any DMA buffers we allocate will always be in low | |
292 | * memory, but we support for 36-bit physical addresses anyway. | |
293 | * | |
294 | * Regardless of where the memory is actually allocated, since the device can | |
295 | * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. | |
17467f23 | 296 | */ |
552d1ef6 | 297 | static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) |
17467f23 | 298 | { |
552d1ef6 | 299 | struct snd_card *card = rtd->card->snd_card; |
552d1ef6 | 300 | struct snd_pcm *pcm = rtd->pcm; |
1a3c5a49 | 301 | static u64 fsl_dma_dmamask = DMA_BIT_MASK(36); |
17467f23 TT |
302 | int ret; |
303 | ||
304 | if (!card->dev->dma_mask) | |
305 | card->dev->dma_mask = &fsl_dma_dmamask; | |
306 | ||
307 | if (!card->dev->coherent_dma_mask) | |
308 | card->dev->coherent_dma_mask = fsl_dma_dmamask; | |
309 | ||
c04019d4 TT |
310 | /* Some codecs have separate DAIs for playback and capture, so we |
311 | * should allocate a DMA buffer only for the streams that are valid. | |
312 | */ | |
313 | ||
6296914c | 314 | if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) { |
c04019d4 TT |
315 | ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, |
316 | fsl_dma_hardware.buffer_bytes_max, | |
6296914c | 317 | &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); |
c04019d4 TT |
318 | if (ret) { |
319 | dev_err(card->dev, "can't alloc playback dma buffer\n"); | |
320 | return ret; | |
321 | } | |
17467f23 TT |
322 | } |
323 | ||
6296914c | 324 | if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { |
c04019d4 TT |
325 | ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, |
326 | fsl_dma_hardware.buffer_bytes_max, | |
6296914c | 327 | &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer); |
c04019d4 | 328 | if (ret) { |
c04019d4 | 329 | dev_err(card->dev, "can't alloc capture dma buffer\n"); |
6296914c | 330 | snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); |
c04019d4 TT |
331 | return ret; |
332 | } | |
17467f23 TT |
333 | } |
334 | ||
335 | return 0; | |
336 | } | |
337 | ||
338 | /** | |
339 | * fsl_dma_open: open a new substream. | |
340 | * | |
341 | * Each substream has its own DMA buffer. | |
bf9c8c9d TT |
342 | * |
343 | * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link | |
344 | * descriptors that ping-pong from one period to the next. For example, if | |
345 | * there are six periods and two link descriptors, this is how they look | |
346 | * before playback starts: | |
347 | * | |
348 | * The last link descriptor | |
349 | * ____________ points back to the first | |
350 | * | | | |
351 | * V | | |
352 | * ___ ___ | | |
353 | * | |->| |->| | |
354 | * |___| |___| | |
355 | * | | | |
356 | * | | | |
357 | * V V | |
358 | * _________________________________________ | |
359 | * | | | | | | | The DMA buffer is | |
360 | * | | | | | | | divided into 6 parts | |
361 | * |______|______|______|______|______|______| | |
362 | * | |
363 | * and here's how they look after the first period is finished playing: | |
364 | * | |
365 | * ____________ | |
366 | * | | | |
367 | * V | | |
368 | * ___ ___ | | |
369 | * | |->| |->| | |
370 | * |___| |___| | |
371 | * | | | |
372 | * |______________ | |
373 | * | | | |
374 | * V V | |
375 | * _________________________________________ | |
376 | * | | | | | | | | |
377 | * | | | | | | | | |
378 | * |______|______|______|______|______|______| | |
379 | * | |
380 | * The first link descriptor now points to the third period. The DMA | |
381 | * controller is currently playing the second period. When it finishes, it | |
382 | * will jump back to the first descriptor and play the third period. | |
383 | * | |
384 | * There are four reasons we do this: | |
385 | * | |
386 | * 1. The only way to get the DMA controller to automatically restart the | |
387 | * transfer when it gets to the end of the buffer is to use chaining | |
388 | * mode. Basic direct mode doesn't offer that feature. | |
389 | * 2. We need to receive an interrupt at the end of every period. The DMA | |
390 | * controller can generate an interrupt at the end of every link transfer | |
391 | * (aka segment). Making each period into a DMA segment will give us the | |
392 | * interrupts we need. | |
393 | * 3. By creating only two link descriptors, regardless of the number of | |
394 | * periods, we do not need to reallocate the link descriptors if the | |
395 | * number of periods changes. | |
396 | * 4. All of the audio data is still stored in a single, contiguous DMA | |
397 | * buffer, which is what ALSA expects. We're just dividing it into | |
398 | * contiguous parts, and creating a link descriptor for each one. | |
17467f23 TT |
399 | */ |
400 | static int fsl_dma_open(struct snd_pcm_substream *substream) | |
401 | { | |
402 | struct snd_pcm_runtime *runtime = substream->runtime; | |
f0fba2ad LG |
403 | struct snd_soc_pcm_runtime *rtd = substream->private_data; |
404 | struct device *dev = rtd->platform->dev; | |
405 | struct dma_object *dma = | |
406 | container_of(rtd->platform->driver, struct dma_object, dai); | |
17467f23 | 407 | struct fsl_dma_private *dma_private; |
bf9c8c9d | 408 | struct ccsr_dma_channel __iomem *dma_channel; |
17467f23 | 409 | dma_addr_t ld_buf_phys; |
bf9c8c9d TT |
410 | u64 temp_link; /* Pointer to next link descriptor */ |
411 | u32 mr; | |
17467f23 TT |
412 | unsigned int channel; |
413 | int ret = 0; | |
bf9c8c9d | 414 | unsigned int i; |
17467f23 TT |
415 | |
416 | /* | |
417 | * Reject any DMA buffer whose size is not a multiple of the period | |
418 | * size. We need to make sure that the DMA buffer can be evenly divided | |
419 | * into periods. | |
420 | */ | |
421 | ret = snd_pcm_hw_constraint_integer(runtime, | |
422 | SNDRV_PCM_HW_PARAM_PERIODS); | |
423 | if (ret < 0) { | |
f0fba2ad | 424 | dev_err(dev, "invalid buffer size\n"); |
17467f23 TT |
425 | return ret; |
426 | } | |
427 | ||
428 | channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; | |
429 | ||
f0fba2ad LG |
430 | if (dma->assigned) { |
431 | dev_err(dev, "dma channel already assigned\n"); | |
17467f23 TT |
432 | return -EBUSY; |
433 | } | |
434 | ||
f0fba2ad LG |
435 | dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), |
436 | &ld_buf_phys, GFP_KERNEL); | |
17467f23 | 437 | if (!dma_private) { |
f0fba2ad | 438 | dev_err(dev, "can't allocate dma private data\n"); |
17467f23 TT |
439 | return -ENOMEM; |
440 | } | |
441 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) | |
f0fba2ad | 442 | dma_private->ssi_sxx_phys = dma->ssi_stx_phys; |
17467f23 | 443 | else |
f0fba2ad | 444 | dma_private->ssi_sxx_phys = dma->ssi_srx_phys; |
17467f23 | 445 | |
8e9d8690 | 446 | dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; |
f0fba2ad LG |
447 | dma_private->dma_channel = dma->channel; |
448 | dma_private->irq = dma->irq; | |
17467f23 TT |
449 | dma_private->substream = substream; |
450 | dma_private->ld_buf_phys = ld_buf_phys; | |
451 | dma_private->dma_buf_phys = substream->dma_buffer.addr; | |
452 | ||
0cd114ff TT |
453 | ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", |
454 | dma_private); | |
17467f23 | 455 | if (ret) { |
f0fba2ad | 456 | dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", |
17467f23 | 457 | dma_private->irq, ret); |
f0fba2ad | 458 | dma_free_coherent(dev, sizeof(struct fsl_dma_private), |
17467f23 TT |
459 | dma_private, dma_private->ld_buf_phys); |
460 | return ret; | |
461 | } | |
462 | ||
f0fba2ad | 463 | dma->assigned = 1; |
17467f23 TT |
464 | |
465 | snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); | |
466 | snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); | |
467 | runtime->private_data = dma_private; | |
468 | ||
bf9c8c9d TT |
469 | /* Program the fixed DMA controller parameters */ |
470 | ||
471 | dma_channel = dma_private->dma_channel; | |
472 | ||
473 | temp_link = dma_private->ld_buf_phys + | |
474 | sizeof(struct fsl_dma_link_descriptor); | |
475 | ||
476 | for (i = 0; i < NUM_DMA_LINKS; i++) { | |
85ef2375 | 477 | dma_private->link[i].next = cpu_to_be64(temp_link); |
bf9c8c9d TT |
478 | |
479 | temp_link += sizeof(struct fsl_dma_link_descriptor); | |
480 | } | |
481 | /* The last link descriptor points to the first */ | |
482 | dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); | |
483 | ||
484 | /* Tell the DMA controller where the first link descriptor is */ | |
485 | out_be32(&dma_channel->clndar, | |
486 | CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); | |
487 | out_be32(&dma_channel->eclndar, | |
488 | CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); | |
489 | ||
490 | /* The manual says the BCR must be clear before enabling EMP */ | |
491 | out_be32(&dma_channel->bcr, 0); | |
492 | ||
493 | /* | |
494 | * Program the mode register for interrupts, external master control, | |
495 | * and source/destination hold. Also clear the Channel Abort bit. | |
496 | */ | |
497 | mr = in_be32(&dma_channel->mr) & | |
498 | ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); | |
499 | ||
500 | /* | |
501 | * We want External Master Start and External Master Pause enabled, | |
502 | * because the SSI is controlling the DMA controller. We want the DMA | |
503 | * controller to be set up in advance, and then we signal only the SSI | |
504 | * to start transferring. | |
505 | * | |
506 | * We want End-Of-Segment Interrupts enabled, because this will generate | |
507 | * an interrupt at the end of each segment (each link descriptor | |
508 | * represents one segment). Each DMA segment is the same thing as an | |
509 | * ALSA period, so this is how we get an interrupt at the end of every | |
510 | * period. | |
511 | * | |
512 | * We want Error Interrupt enabled, so that we can get an error if | |
513 | * the DMA controller is mis-programmed somehow. | |
514 | */ | |
515 | mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | | |
516 | CCSR_DMA_MR_EMS_EN; | |
517 | ||
518 | /* For playback, we want the destination address to be held. For | |
519 | capture, set the source address to be held. */ | |
520 | mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? | |
521 | CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; | |
522 | ||
523 | out_be32(&dma_channel->mr, mr); | |
524 | ||
17467f23 TT |
525 | return 0; |
526 | } | |
527 | ||
528 | /** | |
bf9c8c9d | 529 | * fsl_dma_hw_params: continue initializing the DMA links |
17467f23 | 530 | * |
bf9c8c9d TT |
531 | * This function obtains hardware parameters about the opened stream and |
532 | * programs the DMA controller accordingly. | |
17467f23 | 533 | * |
85ef2375 TT |
534 | * One drawback of big-endian is that when copying integers of different |
535 | * sizes to a fixed-sized register, the address to which the integer must be | |
536 | * copied is dependent on the size of the integer. | |
17467f23 TT |
537 | * |
538 | * For example, if P is the address of a 32-bit register, and X is a 32-bit | |
539 | * integer, then X should be copied to address P. However, if X is a 16-bit | |
540 | * integer, then it should be copied to P+2. If X is an 8-bit register, | |
541 | * then it should be copied to P+3. | |
542 | * | |
543 | * So for playback of 8-bit samples, the DMA controller must transfer single | |
544 | * bytes from the DMA buffer to the last byte of the STX0 register, i.e. | |
545 | * offset by 3 bytes. For 16-bit samples, the offset is two bytes. | |
546 | * | |
547 | * For 24-bit samples, the offset is 1 byte. However, the DMA controller | |
548 | * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, | |
549 | * and 8 bytes at a time). So we do not support packed 24-bit samples. | |
550 | * 24-bit data must be padded to 32 bits. | |
551 | */ | |
85ef2375 TT |
552 | static int fsl_dma_hw_params(struct snd_pcm_substream *substream, |
553 | struct snd_pcm_hw_params *hw_params) | |
17467f23 TT |
554 | { |
555 | struct snd_pcm_runtime *runtime = substream->runtime; | |
556 | struct fsl_dma_private *dma_private = runtime->private_data; | |
f0fba2ad LG |
557 | struct snd_soc_pcm_runtime *rtd = substream->private_data; |
558 | struct device *dev = rtd->platform->dev; | |
85ef2375 TT |
559 | |
560 | /* Number of bits per sample */ | |
8e9d8690 | 561 | unsigned int sample_bits = |
85ef2375 TT |
562 | snd_pcm_format_physical_width(params_format(hw_params)); |
563 | ||
564 | /* Number of bytes per frame */ | |
8e9d8690 | 565 | unsigned int sample_bytes = sample_bits / 8; |
85ef2375 TT |
566 | |
567 | /* Bus address of SSI STX register */ | |
568 | dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; | |
569 | ||
570 | /* Size of the DMA buffer, in bytes */ | |
571 | size_t buffer_size = params_buffer_bytes(hw_params); | |
572 | ||
573 | /* Number of bytes per period */ | |
574 | size_t period_size = params_period_bytes(hw_params); | |
575 | ||
576 | /* Pointer to next period */ | |
577 | dma_addr_t temp_addr = substream->dma_buffer.addr; | |
578 | ||
579 | /* Pointer to DMA controller */ | |
17467f23 | 580 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; |
85ef2375 TT |
581 | |
582 | u32 mr; /* DMA Mode Register */ | |
583 | ||
17467f23 | 584 | unsigned int i; |
17467f23 | 585 | |
85ef2375 TT |
586 | /* Initialize our DMA tracking variables */ |
587 | dma_private->period_size = period_size; | |
588 | dma_private->num_periods = params_periods(hw_params); | |
589 | dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; | |
590 | dma_private->dma_buf_next = dma_private->dma_buf_phys + | |
591 | (NUM_DMA_LINKS * period_size); | |
592 | ||
593 | if (dma_private->dma_buf_next >= dma_private->dma_buf_end) | |
594 | /* This happens if the number of periods == NUM_DMA_LINKS */ | |
595 | dma_private->dma_buf_next = dma_private->dma_buf_phys; | |
17467f23 TT |
596 | |
597 | mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | | |
598 | CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); | |
599 | ||
85ef2375 TT |
600 | /* Due to a quirk of the SSI's STX register, the target address |
601 | * for the DMA operations depends on the sample size. So we calculate | |
602 | * that offset here. While we're at it, also tell the DMA controller | |
603 | * how much data to transfer per sample. | |
604 | */ | |
8e9d8690 | 605 | switch (sample_bits) { |
17467f23 TT |
606 | case 8: |
607 | mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; | |
608 | ssi_sxx_phys += 3; | |
609 | break; | |
610 | case 16: | |
611 | mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; | |
612 | ssi_sxx_phys += 2; | |
613 | break; | |
614 | case 32: | |
615 | mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; | |
616 | break; | |
617 | default: | |
85ef2375 | 618 | /* We should never get here */ |
8e9d8690 | 619 | dev_err(dev, "unsupported sample size %u\n", sample_bits); |
17467f23 TT |
620 | return -EINVAL; |
621 | } | |
622 | ||
17467f23 | 623 | /* |
8e9d8690 TT |
624 | * BWC determines how many bytes are sent/received before the DMA |
625 | * controller checks the SSI to see if it needs to stop. BWC should | |
626 | * always be a multiple of the frame size, so that we always transmit | |
627 | * whole frames. Each frame occupies two slots in the FIFO. The | |
628 | * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two | |
629 | * (MR[BWC] can only represent even powers of two). | |
630 | * | |
631 | * To simplify the process, we set BWC to the largest value that is | |
632 | * less than or equal to the FIFO watermark. For playback, this ensures | |
633 | * that we transfer the maximum amount without overrunning the FIFO. | |
634 | * For capture, this ensures that we transfer the maximum amount without | |
635 | * underrunning the FIFO. | |
636 | * | |
637 | * f = SSI FIFO depth | |
638 | * w = SSI watermark value (which equals f - 2) | |
639 | * b = DMA bandwidth count (in bytes) | |
640 | * s = sample size (in bytes, which equals frame_size * 2) | |
641 | * | |
642 | * For playback, we never transmit more than the transmit FIFO | |
643 | * watermark, otherwise we might write more data than the FIFO can hold. | |
644 | * The watermark is equal to the FIFO depth minus two. | |
645 | * | |
646 | * For capture, two equations must hold: | |
647 | * w > f - (b / s) | |
648 | * w >= b / s | |
649 | * | |
650 | * So, b > 2 * s, but b must also be <= s * w. To simplify, we set | |
651 | * b = s * w, which is equal to | |
652 | * (dma_private->ssi_fifo_depth - 2) * sample_bytes. | |
17467f23 | 653 | */ |
8e9d8690 | 654 | mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); |
17467f23 TT |
655 | |
656 | out_be32(&dma_channel->mr, mr); | |
657 | ||
17467f23 TT |
658 | for (i = 0; i < NUM_DMA_LINKS; i++) { |
659 | struct fsl_dma_link_descriptor *link = &dma_private->link[i]; | |
660 | ||
85ef2375 TT |
661 | link->count = cpu_to_be32(period_size); |
662 | ||
1a3c5a49 | 663 | /* The snoop bit tells the DMA controller whether it should tell |
85ef2375 TT |
664 | * the ECM to snoop during a read or write to an address. For |
665 | * audio, we use DMA to transfer data between memory and an I/O | |
666 | * device (the SSI's STX0 or SRX0 register). Snooping is only | |
667 | * needed if there is a cache, so we need to snoop memory | |
668 | * addresses only. For playback, that means we snoop the source | |
669 | * but not the destination. For capture, we snoop the | |
670 | * destination but not the source. | |
671 | * | |
672 | * Note that failing to snoop properly is unlikely to cause | |
673 | * cache incoherency if the period size is larger than the | |
674 | * size of L1 cache. This is because filling in one period will | |
675 | * flush out the data for the previous period. So if you | |
676 | * increased period_bytes_min to a large enough size, you might | |
677 | * get more performance by not snooping, and you'll still be | |
1a3c5a49 | 678 | * okay. You'll need to update fsl_dma_update_pointers() also. |
85ef2375 TT |
679 | */ |
680 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | |
681 | link->source_addr = cpu_to_be32(temp_addr); | |
1a3c5a49 TT |
682 | link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | |
683 | upper_32_bits(temp_addr)); | |
85ef2375 | 684 | |
17467f23 | 685 | link->dest_addr = cpu_to_be32(ssi_sxx_phys); |
1a3c5a49 TT |
686 | link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | |
687 | upper_32_bits(ssi_sxx_phys)); | |
85ef2375 | 688 | } else { |
17467f23 | 689 | link->source_addr = cpu_to_be32(ssi_sxx_phys); |
1a3c5a49 TT |
690 | link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | |
691 | upper_32_bits(ssi_sxx_phys)); | |
85ef2375 TT |
692 | |
693 | link->dest_addr = cpu_to_be32(temp_addr); | |
1a3c5a49 TT |
694 | link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | |
695 | upper_32_bits(temp_addr)); | |
85ef2375 TT |
696 | } |
697 | ||
698 | temp_addr += period_size; | |
17467f23 TT |
699 | } |
700 | ||
701 | return 0; | |
702 | } | |
703 | ||
704 | /** | |
705 | * fsl_dma_pointer: determine the current position of the DMA transfer | |
706 | * | |
707 | * This function is called by ALSA when ALSA wants to know where in the | |
708 | * stream buffer the hardware currently is. | |
709 | * | |
710 | * For playback, the SAR register contains the physical address of the most | |
711 | * recent DMA transfer. For capture, the value is in the DAR register. | |
712 | * | |
713 | * The base address of the buffer is stored in the source_addr field of the | |
714 | * first link descriptor. | |
715 | */ | |
716 | static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) | |
717 | { | |
718 | struct snd_pcm_runtime *runtime = substream->runtime; | |
719 | struct fsl_dma_private *dma_private = runtime->private_data; | |
f0fba2ad LG |
720 | struct snd_soc_pcm_runtime *rtd = substream->private_data; |
721 | struct device *dev = rtd->platform->dev; | |
17467f23 TT |
722 | struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; |
723 | dma_addr_t position; | |
724 | snd_pcm_uframes_t frames; | |
725 | ||
1a3c5a49 TT |
726 | /* Obtain the current DMA pointer, but don't read the ESAD bits if we |
727 | * only have 32-bit DMA addresses. This function is typically called | |
728 | * in interrupt context, so we need to optimize it. | |
729 | */ | |
730 | if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { | |
17467f23 | 731 | position = in_be32(&dma_channel->sar); |
1a3c5a49 TT |
732 | #ifdef CONFIG_PHYS_64BIT |
733 | position |= (u64)(in_be32(&dma_channel->satr) & | |
734 | CCSR_DMA_ATR_ESAD_MASK) << 32; | |
735 | #endif | |
736 | } else { | |
17467f23 | 737 | position = in_be32(&dma_channel->dar); |
1a3c5a49 TT |
738 | #ifdef CONFIG_PHYS_64BIT |
739 | position |= (u64)(in_be32(&dma_channel->datr) & | |
740 | CCSR_DMA_ATR_ESAD_MASK) << 32; | |
741 | #endif | |
742 | } | |
17467f23 | 743 | |
a4d11fe5 TT |
744 | /* |
745 | * When capture is started, the SSI immediately starts to fill its FIFO. | |
746 | * This means that the DMA controller is not started until the FIFO is | |
747 | * full. However, ALSA calls this function before that happens, when | |
748 | * MR.DAR is still zero. In this case, just return zero to indicate | |
749 | * that nothing has been received yet. | |
750 | */ | |
751 | if (!position) | |
752 | return 0; | |
753 | ||
754 | if ((position < dma_private->dma_buf_phys) || | |
755 | (position > dma_private->dma_buf_end)) { | |
f0fba2ad | 756 | dev_err(dev, "dma pointer is out of range, halting stream\n"); |
a4d11fe5 TT |
757 | return SNDRV_PCM_POS_XRUN; |
758 | } | |
759 | ||
17467f23 TT |
760 | frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); |
761 | ||
762 | /* | |
763 | * If the current address is just past the end of the buffer, wrap it | |
764 | * around. | |
765 | */ | |
766 | if (frames == runtime->buffer_size) | |
767 | frames = 0; | |
768 | ||
769 | return frames; | |
770 | } | |
771 | ||
772 | /** | |
773 | * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() | |
774 | * | |
775 | * Release the resources allocated in fsl_dma_hw_params() and de-program the | |
776 | * registers. | |
777 | * | |
778 | * This function can be called multiple times. | |
779 | */ | |
780 | static int fsl_dma_hw_free(struct snd_pcm_substream *substream) | |
781 | { | |
782 | struct snd_pcm_runtime *runtime = substream->runtime; | |
783 | struct fsl_dma_private *dma_private = runtime->private_data; | |
784 | ||
785 | if (dma_private) { | |
786 | struct ccsr_dma_channel __iomem *dma_channel; | |
787 | ||
788 | dma_channel = dma_private->dma_channel; | |
789 | ||
790 | /* Stop the DMA */ | |
791 | out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); | |
792 | out_be32(&dma_channel->mr, 0); | |
793 | ||
794 | /* Reset all the other registers */ | |
795 | out_be32(&dma_channel->sr, -1); | |
796 | out_be32(&dma_channel->clndar, 0); | |
797 | out_be32(&dma_channel->eclndar, 0); | |
798 | out_be32(&dma_channel->satr, 0); | |
799 | out_be32(&dma_channel->sar, 0); | |
800 | out_be32(&dma_channel->datr, 0); | |
801 | out_be32(&dma_channel->dar, 0); | |
802 | out_be32(&dma_channel->bcr, 0); | |
803 | out_be32(&dma_channel->nlndar, 0); | |
804 | out_be32(&dma_channel->enlndar, 0); | |
805 | } | |
806 | ||
807 | return 0; | |
808 | } | |
809 | ||
810 | /** | |
811 | * fsl_dma_close: close the stream. | |
812 | */ | |
813 | static int fsl_dma_close(struct snd_pcm_substream *substream) | |
814 | { | |
815 | struct snd_pcm_runtime *runtime = substream->runtime; | |
816 | struct fsl_dma_private *dma_private = runtime->private_data; | |
f0fba2ad LG |
817 | struct snd_soc_pcm_runtime *rtd = substream->private_data; |
818 | struct device *dev = rtd->platform->dev; | |
819 | struct dma_object *dma = | |
820 | container_of(rtd->platform->driver, struct dma_object, dai); | |
17467f23 TT |
821 | |
822 | if (dma_private) { | |
823 | if (dma_private->irq) | |
824 | free_irq(dma_private->irq, dma_private); | |
825 | ||
826 | if (dma_private->ld_buf_phys) { | |
f0fba2ad LG |
827 | dma_unmap_single(dev, dma_private->ld_buf_phys, |
828 | sizeof(dma_private->link), | |
829 | DMA_TO_DEVICE); | |
17467f23 TT |
830 | } |
831 | ||
832 | /* Deallocate the fsl_dma_private structure */ | |
f0fba2ad LG |
833 | dma_free_coherent(dev, sizeof(struct fsl_dma_private), |
834 | dma_private, dma_private->ld_buf_phys); | |
17467f23 TT |
835 | substream->runtime->private_data = NULL; |
836 | } | |
837 | ||
f0fba2ad | 838 | dma->assigned = 0; |
17467f23 TT |
839 | |
840 | return 0; | |
841 | } | |
842 | ||
843 | /* | |
844 | * Remove this PCM driver. | |
845 | */ | |
846 | static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) | |
847 | { | |
848 | struct snd_pcm_substream *substream; | |
849 | unsigned int i; | |
850 | ||
851 | for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { | |
852 | substream = pcm->streams[i].substream; | |
853 | if (substream) { | |
854 | snd_dma_free_pages(&substream->dma_buffer); | |
855 | substream->dma_buffer.area = NULL; | |
856 | substream->dma_buffer.addr = 0; | |
857 | } | |
858 | } | |
859 | } | |
860 | ||
f0fba2ad LG |
861 | /** |
862 | * find_ssi_node -- returns the SSI node that points to his DMA channel node | |
863 | * | |
864 | * Although this DMA driver attempts to operate independently of the other | |
865 | * devices, it still needs to determine some information about the SSI device | |
866 | * that it's working with. Unfortunately, the device tree does not contain | |
867 | * a pointer from the DMA channel node to the SSI node -- the pointer goes the | |
868 | * other way. So we need to scan the device tree for SSI nodes until we find | |
869 | * the one that points to the given DMA channel node. It's ugly, but at least | |
870 | * it's contained in this one function. | |
871 | */ | |
872 | static struct device_node *find_ssi_node(struct device_node *dma_channel_np) | |
873 | { | |
874 | struct device_node *ssi_np, *np; | |
875 | ||
876 | for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { | |
877 | /* Check each DMA phandle to see if it points to us. We | |
878 | * assume that device_node pointers are a valid comparison. | |
879 | */ | |
880 | np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); | |
81a081ff | 881 | of_node_put(np); |
f0fba2ad LG |
882 | if (np == dma_channel_np) |
883 | return ssi_np; | |
884 | ||
885 | np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); | |
81a081ff | 886 | of_node_put(np); |
f0fba2ad LG |
887 | if (np == dma_channel_np) |
888 | return ssi_np; | |
889 | } | |
890 | ||
891 | return NULL; | |
892 | } | |
893 | ||
17467f23 TT |
894 | static struct snd_pcm_ops fsl_dma_ops = { |
895 | .open = fsl_dma_open, | |
896 | .close = fsl_dma_close, | |
897 | .ioctl = snd_pcm_lib_ioctl, | |
898 | .hw_params = fsl_dma_hw_params, | |
899 | .hw_free = fsl_dma_hw_free, | |
17467f23 TT |
900 | .pointer = fsl_dma_pointer, |
901 | }; | |
902 | ||
f07eb223 | 903 | static int __devinit fsl_soc_dma_probe(struct platform_device *pdev) |
f0fba2ad LG |
904 | { |
905 | struct dma_object *dma; | |
38fec727 | 906 | struct device_node *np = pdev->dev.of_node; |
f0fba2ad LG |
907 | struct device_node *ssi_np; |
908 | struct resource res; | |
8e9d8690 | 909 | const uint32_t *iprop; |
f0fba2ad | 910 | int ret; |
17467f23 | 911 | |
f0fba2ad LG |
912 | /* Find the SSI node that points to us. */ |
913 | ssi_np = find_ssi_node(np); | |
914 | if (!ssi_np) { | |
38fec727 | 915 | dev_err(&pdev->dev, "cannot find parent SSI node\n"); |
f0fba2ad LG |
916 | return -ENODEV; |
917 | } | |
918 | ||
919 | ret = of_address_to_resource(ssi_np, 0, &res); | |
f0fba2ad | 920 | if (ret) { |
38fec727 | 921 | dev_err(&pdev->dev, "could not determine resources for %s\n", |
8e9d8690 TT |
922 | ssi_np->full_name); |
923 | of_node_put(ssi_np); | |
f0fba2ad LG |
924 | return ret; |
925 | } | |
926 | ||
927 | dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); | |
928 | if (!dma) { | |
38fec727 | 929 | dev_err(&pdev->dev, "could not allocate dma object\n"); |
8e9d8690 | 930 | of_node_put(ssi_np); |
f0fba2ad LG |
931 | return -ENOMEM; |
932 | } | |
933 | ||
934 | strcpy(dma->path, np->full_name); | |
935 | dma->dai.ops = &fsl_dma_ops; | |
936 | dma->dai.pcm_new = fsl_dma_new; | |
937 | dma->dai.pcm_free = fsl_dma_free_dma_buffers; | |
938 | ||
939 | /* Store the SSI-specific information that we need */ | |
940 | dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0); | |
941 | dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0); | |
942 | ||
8e9d8690 TT |
943 | iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); |
944 | if (iprop) | |
147dfe90 | 945 | dma->ssi_fifo_depth = be32_to_cpup(iprop); |
8e9d8690 TT |
946 | else |
947 | /* Older 8610 DTs didn't have the fifo-depth property */ | |
948 | dma->ssi_fifo_depth = 8; | |
949 | ||
950 | of_node_put(ssi_np); | |
951 | ||
38fec727 | 952 | ret = snd_soc_register_platform(&pdev->dev, &dma->dai); |
f0fba2ad | 953 | if (ret) { |
38fec727 | 954 | dev_err(&pdev->dev, "could not register platform\n"); |
f0fba2ad LG |
955 | kfree(dma); |
956 | return ret; | |
957 | } | |
958 | ||
959 | dma->channel = of_iomap(np, 0); | |
960 | dma->irq = irq_of_parse_and_map(np, 0); | |
87a0632b | 961 | |
38fec727 | 962 | dev_set_drvdata(&pdev->dev, dma); |
f0fba2ad LG |
963 | |
964 | return 0; | |
965 | } | |
966 | ||
38fec727 | 967 | static int __devexit fsl_soc_dma_remove(struct platform_device *pdev) |
17467f23 | 968 | { |
38fec727 | 969 | struct dma_object *dma = dev_get_drvdata(&pdev->dev); |
17467f23 | 970 | |
38fec727 | 971 | snd_soc_unregister_platform(&pdev->dev); |
87a0632b TT |
972 | iounmap(dma->channel); |
973 | irq_dispose_mapping(dma->irq); | |
974 | kfree(dma); | |
17467f23 | 975 | |
f0fba2ad | 976 | return 0; |
17467f23 | 977 | } |
17467f23 | 978 | |
f0fba2ad LG |
979 | static const struct of_device_id fsl_soc_dma_ids[] = { |
980 | { .compatible = "fsl,ssi-dma-channel", }, | |
981 | {} | |
982 | }; | |
983 | MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); | |
984 | ||
f07eb223 | 985 | static struct platform_driver fsl_soc_dma_driver = { |
f0fba2ad LG |
986 | .driver = { |
987 | .name = "fsl-pcm-audio", | |
988 | .owner = THIS_MODULE, | |
989 | .of_match_table = fsl_soc_dma_ids, | |
990 | }, | |
991 | .probe = fsl_soc_dma_probe, | |
992 | .remove = __devexit_p(fsl_soc_dma_remove), | |
993 | }; | |
994 | ||
ba0a7e02 | 995 | module_platform_driver(fsl_soc_dma_driver); |
958e792c | 996 | |
17467f23 | 997 | MODULE_AUTHOR("Timur Tabi <[email protected]>"); |
f0fba2ad LG |
998 | MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); |
999 | MODULE_LICENSE("GPL v2"); |