]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/ipc/sem.c | |
3 | * Copyright (C) 1992 Krishna Balasubramanian | |
4 | * Copyright (C) 1995 Eric Schenk, Bruno Haible | |
5 | * | |
1da177e4 LT |
6 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]> |
7 | * | |
8 | * SMP-threaded, sysctl's added | |
624dffcb | 9 | * (c) 1999 Manfred Spraul <[email protected]> |
1da177e4 | 10 | * Enforced range limit on SEM_UNDO |
046c6884 | 11 | * (c) 2001 Red Hat Inc |
1da177e4 LT |
12 | * Lockless wakeup |
13 | * (c) 2003 Manfred Spraul <[email protected]> | |
c5cf6359 MS |
14 | * Further wakeup optimizations, documentation |
15 | * (c) 2010 Manfred Spraul <[email protected]> | |
073115d6 SG |
16 | * |
17 | * support for audit of ipc object properties and permission changes | |
18 | * Dustin Kirkland <[email protected]> | |
e3893534 KK |
19 | * |
20 | * namespaces support | |
21 | * OpenVZ, SWsoft Inc. | |
22 | * Pavel Emelianov <[email protected]> | |
c5cf6359 MS |
23 | * |
24 | * Implementation notes: (May 2010) | |
25 | * This file implements System V semaphores. | |
26 | * | |
27 | * User space visible behavior: | |
28 | * - FIFO ordering for semop() operations (just FIFO, not starvation | |
29 | * protection) | |
30 | * - multiple semaphore operations that alter the same semaphore in | |
31 | * one semop() are handled. | |
32 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | |
33 | * SETALL calls. | |
34 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | |
35 | * - undo adjustments at process exit are limited to 0..SEMVMX. | |
36 | * - namespace are supported. | |
37 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | |
38 | * to /proc/sys/kernel/sem. | |
39 | * - statistics about the usage are reported in /proc/sysvipc/sem. | |
40 | * | |
41 | * Internals: | |
42 | * - scalability: | |
43 | * - all global variables are read-mostly. | |
44 | * - semop() calls and semctl(RMID) are synchronized by RCU. | |
45 | * - most operations do write operations (actually: spin_lock calls) to | |
46 | * the per-semaphore array structure. | |
47 | * Thus: Perfect SMP scaling between independent semaphore arrays. | |
48 | * If multiple semaphores in one array are used, then cache line | |
49 | * trashing on the semaphore array spinlock will limit the scaling. | |
2f2ed41d | 50 | * - semncnt and semzcnt are calculated on demand in count_semcnt() |
c5cf6359 MS |
51 | * - the task that performs a successful semop() scans the list of all |
52 | * sleeping tasks and completes any pending operations that can be fulfilled. | |
53 | * Semaphores are actively given to waiting tasks (necessary for FIFO). | |
54 | * (see update_queue()) | |
55 | * - To improve the scalability, the actual wake-up calls are performed after | |
56 | * dropping all locks. (see wake_up_sem_queue_prepare(), | |
57 | * wake_up_sem_queue_do()) | |
58 | * - All work is done by the waker, the woken up task does not have to do | |
59 | * anything - not even acquiring a lock or dropping a refcount. | |
60 | * - A woken up task may not even touch the semaphore array anymore, it may | |
61 | * have been destroyed already by a semctl(RMID). | |
62 | * - The synchronizations between wake-ups due to a timeout/signal and a | |
63 | * wake-up due to a completed semaphore operation is achieved by using an | |
64 | * intermediate state (IN_WAKEUP). | |
65 | * - UNDO values are stored in an array (one per process and per | |
66 | * semaphore array, lazily allocated). For backwards compatibility, multiple | |
67 | * modes for the UNDO variables are supported (per process, per thread) | |
68 | * (see copy_semundo, CLONE_SYSVSEM) | |
69 | * - There are two lists of the pending operations: a per-array list | |
70 | * and per-semaphore list (stored in the array). This allows to achieve FIFO | |
71 | * ordering without always scanning all pending operations. | |
72 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. | |
1da177e4 LT |
73 | */ |
74 | ||
1da177e4 LT |
75 | #include <linux/slab.h> |
76 | #include <linux/spinlock.h> | |
77 | #include <linux/init.h> | |
78 | #include <linux/proc_fs.h> | |
79 | #include <linux/time.h> | |
1da177e4 LT |
80 | #include <linux/security.h> |
81 | #include <linux/syscalls.h> | |
82 | #include <linux/audit.h> | |
c59ede7b | 83 | #include <linux/capability.h> |
19b4946c | 84 | #include <linux/seq_file.h> |
3e148c79 | 85 | #include <linux/rwsem.h> |
e3893534 | 86 | #include <linux/nsproxy.h> |
ae5e1b22 | 87 | #include <linux/ipc_namespace.h> |
5f921ae9 | 88 | |
7153e402 | 89 | #include <linux/uaccess.h> |
1da177e4 LT |
90 | #include "util.h" |
91 | ||
e57940d7 MS |
92 | /* One semaphore structure for each semaphore in the system. */ |
93 | struct sem { | |
94 | int semval; /* current value */ | |
a5f4db87 DB |
95 | /* |
96 | * PID of the process that last modified the semaphore. For | |
97 | * Linux, specifically these are: | |
98 | * - semop | |
99 | * - semctl, via SETVAL and SETALL. | |
100 | * - at task exit when performing undo adjustments (see exit_sem). | |
101 | */ | |
102 | int sempid; | |
6062a8dc | 103 | spinlock_t lock; /* spinlock for fine-grained semtimedop */ |
1a82e9e1 MS |
104 | struct list_head pending_alter; /* pending single-sop operations */ |
105 | /* that alter the semaphore */ | |
106 | struct list_head pending_const; /* pending single-sop operations */ | |
107 | /* that do not alter the semaphore*/ | |
d12e1e50 | 108 | time_t sem_otime; /* candidate for sem_otime */ |
f5c936c0 | 109 | } ____cacheline_aligned_in_smp; |
e57940d7 MS |
110 | |
111 | /* One queue for each sleeping process in the system. */ | |
112 | struct sem_queue { | |
e57940d7 MS |
113 | struct list_head list; /* queue of pending operations */ |
114 | struct task_struct *sleeper; /* this process */ | |
115 | struct sem_undo *undo; /* undo structure */ | |
116 | int pid; /* process id of requesting process */ | |
117 | int status; /* completion status of operation */ | |
118 | struct sembuf *sops; /* array of pending operations */ | |
ed247b7c | 119 | struct sembuf *blocking; /* the operation that blocked */ |
e57940d7 MS |
120 | int nsops; /* number of operations */ |
121 | int alter; /* does *sops alter the array? */ | |
122 | }; | |
123 | ||
124 | /* Each task has a list of undo requests. They are executed automatically | |
125 | * when the process exits. | |
126 | */ | |
127 | struct sem_undo { | |
128 | struct list_head list_proc; /* per-process list: * | |
129 | * all undos from one process | |
130 | * rcu protected */ | |
131 | struct rcu_head rcu; /* rcu struct for sem_undo */ | |
132 | struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ | |
133 | struct list_head list_id; /* per semaphore array list: | |
134 | * all undos for one array */ | |
135 | int semid; /* semaphore set identifier */ | |
136 | short *semadj; /* array of adjustments */ | |
137 | /* one per semaphore */ | |
138 | }; | |
139 | ||
140 | /* sem_undo_list controls shared access to the list of sem_undo structures | |
141 | * that may be shared among all a CLONE_SYSVSEM task group. | |
142 | */ | |
143 | struct sem_undo_list { | |
144 | atomic_t refcnt; | |
145 | spinlock_t lock; | |
146 | struct list_head list_proc; | |
147 | }; | |
148 | ||
149 | ||
ed2ddbf8 | 150 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
e3893534 | 151 | |
1b531f21 | 152 | #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) |
1da177e4 | 153 | |
7748dbfa | 154 | static int newary(struct ipc_namespace *, struct ipc_params *); |
01b8b07a | 155 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
1da177e4 | 156 | #ifdef CONFIG_PROC_FS |
19b4946c | 157 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
1da177e4 LT |
158 | #endif |
159 | ||
160 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ | |
161 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ | |
162 | ||
163 | /* | |
758a6ba3 | 164 | * Locking: |
1da177e4 | 165 | * sem_undo.id_next, |
758a6ba3 | 166 | * sem_array.complex_count, |
1a82e9e1 | 167 | * sem_array.pending{_alter,_cont}, |
758a6ba3 | 168 | * sem_array.sem_undo: global sem_lock() for read/write |
1da177e4 | 169 | * sem_undo.proc_next: only "current" is allowed to read/write that field. |
46c0a8ca | 170 | * |
758a6ba3 MS |
171 | * sem_array.sem_base[i].pending_{const,alter}: |
172 | * global or semaphore sem_lock() for read/write | |
1da177e4 LT |
173 | */ |
174 | ||
e3893534 KK |
175 | #define sc_semmsl sem_ctls[0] |
176 | #define sc_semmns sem_ctls[1] | |
177 | #define sc_semopm sem_ctls[2] | |
178 | #define sc_semmni sem_ctls[3] | |
179 | ||
ed2ddbf8 | 180 | void sem_init_ns(struct ipc_namespace *ns) |
e3893534 | 181 | { |
e3893534 KK |
182 | ns->sc_semmsl = SEMMSL; |
183 | ns->sc_semmns = SEMMNS; | |
184 | ns->sc_semopm = SEMOPM; | |
185 | ns->sc_semmni = SEMMNI; | |
186 | ns->used_sems = 0; | |
ed2ddbf8 | 187 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
e3893534 KK |
188 | } |
189 | ||
ae5e1b22 | 190 | #ifdef CONFIG_IPC_NS |
e3893534 KK |
191 | void sem_exit_ns(struct ipc_namespace *ns) |
192 | { | |
01b8b07a | 193 | free_ipcs(ns, &sem_ids(ns), freeary); |
7d6feeb2 | 194 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
e3893534 | 195 | } |
ae5e1b22 | 196 | #endif |
1da177e4 | 197 | |
239521f3 | 198 | void __init sem_init(void) |
1da177e4 | 199 | { |
ed2ddbf8 | 200 | sem_init_ns(&init_ipc_ns); |
19b4946c MW |
201 | ipc_init_proc_interface("sysvipc/sem", |
202 | " key semid perms nsems uid gid cuid cgid otime ctime\n", | |
e3893534 | 203 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
1da177e4 LT |
204 | } |
205 | ||
f269f40a MS |
206 | /** |
207 | * unmerge_queues - unmerge queues, if possible. | |
208 | * @sma: semaphore array | |
209 | * | |
210 | * The function unmerges the wait queues if complex_count is 0. | |
211 | * It must be called prior to dropping the global semaphore array lock. | |
212 | */ | |
213 | static void unmerge_queues(struct sem_array *sma) | |
214 | { | |
215 | struct sem_queue *q, *tq; | |
216 | ||
217 | /* complex operations still around? */ | |
218 | if (sma->complex_count) | |
219 | return; | |
220 | /* | |
221 | * We will switch back to simple mode. | |
222 | * Move all pending operation back into the per-semaphore | |
223 | * queues. | |
224 | */ | |
225 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
226 | struct sem *curr; | |
227 | curr = &sma->sem_base[q->sops[0].sem_num]; | |
228 | ||
229 | list_add_tail(&q->list, &curr->pending_alter); | |
230 | } | |
231 | INIT_LIST_HEAD(&sma->pending_alter); | |
232 | } | |
233 | ||
234 | /** | |
8001c858 | 235 | * merge_queues - merge single semop queues into global queue |
f269f40a MS |
236 | * @sma: semaphore array |
237 | * | |
238 | * This function merges all per-semaphore queues into the global queue. | |
239 | * It is necessary to achieve FIFO ordering for the pending single-sop | |
240 | * operations when a multi-semop operation must sleep. | |
241 | * Only the alter operations must be moved, the const operations can stay. | |
242 | */ | |
243 | static void merge_queues(struct sem_array *sma) | |
244 | { | |
245 | int i; | |
246 | for (i = 0; i < sma->sem_nsems; i++) { | |
247 | struct sem *sem = sma->sem_base + i; | |
248 | ||
249 | list_splice_init(&sem->pending_alter, &sma->pending_alter); | |
250 | } | |
251 | } | |
252 | ||
53dad6d3 DB |
253 | static void sem_rcu_free(struct rcu_head *head) |
254 | { | |
255 | struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); | |
256 | struct sem_array *sma = ipc_rcu_to_struct(p); | |
257 | ||
258 | security_sem_free(sma); | |
259 | ipc_rcu_free(head); | |
260 | } | |
261 | ||
3ed1f8a9 MS |
262 | /* |
263 | * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they | |
264 | * are only control barriers. | |
265 | * The code must pair with spin_unlock(&sem->lock) or | |
266 | * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient. | |
267 | * | |
268 | * smp_rmb() is sufficient, as writes cannot pass the control barrier. | |
269 | */ | |
270 | #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb() | |
271 | ||
5e9d5275 MS |
272 | /* |
273 | * Wait until all currently ongoing simple ops have completed. | |
274 | * Caller must own sem_perm.lock. | |
275 | * New simple ops cannot start, because simple ops first check | |
276 | * that sem_perm.lock is free. | |
6d07b68c | 277 | * that a) sem_perm.lock is free and b) complex_count is 0. |
5e9d5275 MS |
278 | */ |
279 | static void sem_wait_array(struct sem_array *sma) | |
280 | { | |
281 | int i; | |
282 | struct sem *sem; | |
283 | ||
6d07b68c MS |
284 | if (sma->complex_count) { |
285 | /* The thread that increased sma->complex_count waited on | |
286 | * all sem->lock locks. Thus we don't need to wait again. | |
287 | */ | |
288 | return; | |
289 | } | |
290 | ||
5e9d5275 MS |
291 | for (i = 0; i < sma->sem_nsems; i++) { |
292 | sem = sma->sem_base + i; | |
293 | spin_unlock_wait(&sem->lock); | |
294 | } | |
3ed1f8a9 | 295 | ipc_smp_acquire__after_spin_is_unlocked(); |
5e9d5275 MS |
296 | } |
297 | ||
6062a8dc RR |
298 | /* |
299 | * If the request contains only one semaphore operation, and there are | |
300 | * no complex transactions pending, lock only the semaphore involved. | |
301 | * Otherwise, lock the entire semaphore array, since we either have | |
302 | * multiple semaphores in our own semops, or we need to look at | |
303 | * semaphores from other pending complex operations. | |
6062a8dc RR |
304 | */ |
305 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | |
306 | int nsops) | |
307 | { | |
5e9d5275 | 308 | struct sem *sem; |
6062a8dc | 309 | |
5e9d5275 MS |
310 | if (nsops != 1) { |
311 | /* Complex operation - acquire a full lock */ | |
312 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 313 | |
5e9d5275 MS |
314 | /* And wait until all simple ops that are processed |
315 | * right now have dropped their locks. | |
6062a8dc | 316 | */ |
5e9d5275 MS |
317 | sem_wait_array(sma); |
318 | return -1; | |
319 | } | |
320 | ||
321 | /* | |
322 | * Only one semaphore affected - try to optimize locking. | |
323 | * The rules are: | |
324 | * - optimized locking is possible if no complex operation | |
325 | * is either enqueued or processed right now. | |
326 | * - The test for enqueued complex ops is simple: | |
327 | * sma->complex_count != 0 | |
328 | * - Testing for complex ops that are processed right now is | |
329 | * a bit more difficult. Complex ops acquire the full lock | |
330 | * and first wait that the running simple ops have completed. | |
331 | * (see above) | |
332 | * Thus: If we own a simple lock and the global lock is free | |
333 | * and complex_count is now 0, then it will stay 0 and | |
334 | * thus just locking sem->lock is sufficient. | |
335 | */ | |
336 | sem = sma->sem_base + sops->sem_num; | |
6062a8dc | 337 | |
5e9d5275 | 338 | if (sma->complex_count == 0) { |
6062a8dc | 339 | /* |
5e9d5275 MS |
340 | * It appears that no complex operation is around. |
341 | * Acquire the per-semaphore lock. | |
6062a8dc | 342 | */ |
5e9d5275 MS |
343 | spin_lock(&sem->lock); |
344 | ||
345 | /* Then check that the global lock is free */ | |
346 | if (!spin_is_locked(&sma->sem_perm.lock)) { | |
2e094abf | 347 | /* |
3ed1f8a9 MS |
348 | * We need a memory barrier with acquire semantics, |
349 | * otherwise we can race with another thread that does: | |
2e094abf MS |
350 | * complex_count++; |
351 | * spin_unlock(sem_perm.lock); | |
352 | */ | |
3ed1f8a9 | 353 | ipc_smp_acquire__after_spin_is_unlocked(); |
5e9d5275 | 354 | |
2e094abf MS |
355 | /* |
356 | * Now repeat the test of complex_count: | |
5e9d5275 MS |
357 | * It can't change anymore until we drop sem->lock. |
358 | * Thus: if is now 0, then it will stay 0. | |
359 | */ | |
360 | if (sma->complex_count == 0) { | |
361 | /* fast path successful! */ | |
362 | return sops->sem_num; | |
363 | } | |
6062a8dc | 364 | } |
5e9d5275 MS |
365 | spin_unlock(&sem->lock); |
366 | } | |
367 | ||
368 | /* slow path: acquire the full lock */ | |
369 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 370 | |
5e9d5275 MS |
371 | if (sma->complex_count == 0) { |
372 | /* False alarm: | |
373 | * There is no complex operation, thus we can switch | |
374 | * back to the fast path. | |
375 | */ | |
376 | spin_lock(&sem->lock); | |
377 | ipc_unlock_object(&sma->sem_perm); | |
378 | return sops->sem_num; | |
6062a8dc | 379 | } else { |
5e9d5275 MS |
380 | /* Not a false alarm, thus complete the sequence for a |
381 | * full lock. | |
6062a8dc | 382 | */ |
5e9d5275 MS |
383 | sem_wait_array(sma); |
384 | return -1; | |
6062a8dc | 385 | } |
6062a8dc RR |
386 | } |
387 | ||
388 | static inline void sem_unlock(struct sem_array *sma, int locknum) | |
389 | { | |
390 | if (locknum == -1) { | |
f269f40a | 391 | unmerge_queues(sma); |
cf9d5d78 | 392 | ipc_unlock_object(&sma->sem_perm); |
6062a8dc RR |
393 | } else { |
394 | struct sem *sem = sma->sem_base + locknum; | |
395 | spin_unlock(&sem->lock); | |
396 | } | |
6062a8dc RR |
397 | } |
398 | ||
3e148c79 | 399 | /* |
d9a605e4 | 400 | * sem_lock_(check_) routines are called in the paths where the rwsem |
3e148c79 | 401 | * is not held. |
321310ce LT |
402 | * |
403 | * The caller holds the RCU read lock. | |
3e148c79 | 404 | */ |
6062a8dc RR |
405 | static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, |
406 | int id, struct sembuf *sops, int nsops, int *locknum) | |
023a5355 | 407 | { |
c460b662 RR |
408 | struct kern_ipc_perm *ipcp; |
409 | struct sem_array *sma; | |
03f02c76 | 410 | |
55b7ae50 | 411 | ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
321310ce LT |
412 | if (IS_ERR(ipcp)) |
413 | return ERR_CAST(ipcp); | |
b1ed88b4 | 414 | |
6062a8dc RR |
415 | sma = container_of(ipcp, struct sem_array, sem_perm); |
416 | *locknum = sem_lock(sma, sops, nsops); | |
c460b662 RR |
417 | |
418 | /* ipc_rmid() may have already freed the ID while sem_lock | |
419 | * was spinning: verify that the structure is still valid | |
420 | */ | |
72a8ff2f | 421 | if (ipc_valid_object(ipcp)) |
c460b662 RR |
422 | return container_of(ipcp, struct sem_array, sem_perm); |
423 | ||
6062a8dc | 424 | sem_unlock(sma, *locknum); |
321310ce | 425 | return ERR_PTR(-EINVAL); |
023a5355 ND |
426 | } |
427 | ||
16df3674 DB |
428 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) |
429 | { | |
55b7ae50 | 430 | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
16df3674 DB |
431 | |
432 | if (IS_ERR(ipcp)) | |
433 | return ERR_CAST(ipcp); | |
434 | ||
435 | return container_of(ipcp, struct sem_array, sem_perm); | |
436 | } | |
437 | ||
16df3674 DB |
438 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, |
439 | int id) | |
440 | { | |
441 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | |
442 | ||
443 | if (IS_ERR(ipcp)) | |
444 | return ERR_CAST(ipcp); | |
b1ed88b4 | 445 | |
03f02c76 | 446 | return container_of(ipcp, struct sem_array, sem_perm); |
023a5355 ND |
447 | } |
448 | ||
6ff37972 PP |
449 | static inline void sem_lock_and_putref(struct sem_array *sma) |
450 | { | |
6062a8dc | 451 | sem_lock(sma, NULL, -1); |
53dad6d3 | 452 | ipc_rcu_putref(sma, ipc_rcu_free); |
6ff37972 PP |
453 | } |
454 | ||
7ca7e564 ND |
455 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
456 | { | |
457 | ipc_rmid(&sem_ids(ns), &s->sem_perm); | |
458 | } | |
459 | ||
1da177e4 LT |
460 | /* |
461 | * Lockless wakeup algorithm: | |
462 | * Without the check/retry algorithm a lockless wakeup is possible: | |
463 | * - queue.status is initialized to -EINTR before blocking. | |
464 | * - wakeup is performed by | |
1a82e9e1 | 465 | * * unlinking the queue entry from the pending list |
1da177e4 LT |
466 | * * setting queue.status to IN_WAKEUP |
467 | * This is the notification for the blocked thread that a | |
468 | * result value is imminent. | |
469 | * * call wake_up_process | |
470 | * * set queue.status to the final value. | |
471 | * - the previously blocked thread checks queue.status: | |
239521f3 MS |
472 | * * if it's IN_WAKEUP, then it must wait until the value changes |
473 | * * if it's not -EINTR, then the operation was completed by | |
474 | * update_queue. semtimedop can return queue.status without | |
475 | * performing any operation on the sem array. | |
476 | * * otherwise it must acquire the spinlock and check what's up. | |
1da177e4 LT |
477 | * |
478 | * The two-stage algorithm is necessary to protect against the following | |
479 | * races: | |
480 | * - if queue.status is set after wake_up_process, then the woken up idle | |
481 | * thread could race forward and try (and fail) to acquire sma->lock | |
482 | * before update_queue had a chance to set queue.status | |
483 | * - if queue.status is written before wake_up_process and if the | |
484 | * blocked process is woken up by a signal between writing | |
485 | * queue.status and the wake_up_process, then the woken up | |
486 | * process could return from semtimedop and die by calling | |
487 | * sys_exit before wake_up_process is called. Then wake_up_process | |
488 | * will oops, because the task structure is already invalid. | |
489 | * (yes, this happened on s390 with sysv msg). | |
490 | * | |
491 | */ | |
492 | #define IN_WAKEUP 1 | |
493 | ||
f4566f04 ND |
494 | /** |
495 | * newary - Create a new semaphore set | |
496 | * @ns: namespace | |
497 | * @params: ptr to the structure that contains key, semflg and nsems | |
498 | * | |
d9a605e4 | 499 | * Called with sem_ids.rwsem held (as a writer) |
f4566f04 | 500 | */ |
7748dbfa | 501 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
1da177e4 LT |
502 | { |
503 | int id; | |
504 | int retval; | |
505 | struct sem_array *sma; | |
506 | int size; | |
7748dbfa ND |
507 | key_t key = params->key; |
508 | int nsems = params->u.nsems; | |
509 | int semflg = params->flg; | |
b97e820f | 510 | int i; |
1da177e4 LT |
511 | |
512 | if (!nsems) | |
513 | return -EINVAL; | |
e3893534 | 514 | if (ns->used_sems + nsems > ns->sc_semmns) |
1da177e4 LT |
515 | return -ENOSPC; |
516 | ||
239521f3 | 517 | size = sizeof(*sma) + nsems * sizeof(struct sem); |
1da177e4 | 518 | sma = ipc_rcu_alloc(size); |
3ab08fe2 | 519 | if (!sma) |
1da177e4 | 520 | return -ENOMEM; |
3ab08fe2 | 521 | |
239521f3 | 522 | memset(sma, 0, size); |
1da177e4 LT |
523 | |
524 | sma->sem_perm.mode = (semflg & S_IRWXUGO); | |
525 | sma->sem_perm.key = key; | |
526 | ||
527 | sma->sem_perm.security = NULL; | |
528 | retval = security_sem_alloc(sma); | |
529 | if (retval) { | |
53dad6d3 | 530 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
531 | return retval; |
532 | } | |
533 | ||
1da177e4 | 534 | sma->sem_base = (struct sem *) &sma[1]; |
b97e820f | 535 | |
6062a8dc | 536 | for (i = 0; i < nsems; i++) { |
1a82e9e1 MS |
537 | INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); |
538 | INIT_LIST_HEAD(&sma->sem_base[i].pending_const); | |
6062a8dc RR |
539 | spin_lock_init(&sma->sem_base[i].lock); |
540 | } | |
b97e820f MS |
541 | |
542 | sma->complex_count = 0; | |
1a82e9e1 MS |
543 | INIT_LIST_HEAD(&sma->pending_alter); |
544 | INIT_LIST_HEAD(&sma->pending_const); | |
4daa28f6 | 545 | INIT_LIST_HEAD(&sma->list_id); |
1da177e4 LT |
546 | sma->sem_nsems = nsems; |
547 | sma->sem_ctime = get_seconds(); | |
e8577d1f MS |
548 | |
549 | id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); | |
550 | if (id < 0) { | |
551 | ipc_rcu_putref(sma, sem_rcu_free); | |
552 | return id; | |
553 | } | |
554 | ns->used_sems += nsems; | |
555 | ||
6062a8dc | 556 | sem_unlock(sma, -1); |
6d49dab8 | 557 | rcu_read_unlock(); |
1da177e4 | 558 | |
7ca7e564 | 559 | return sma->sem_perm.id; |
1da177e4 LT |
560 | } |
561 | ||
7748dbfa | 562 | |
f4566f04 | 563 | /* |
d9a605e4 | 564 | * Called with sem_ids.rwsem and ipcp locked. |
f4566f04 | 565 | */ |
03f02c76 | 566 | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) |
7748dbfa | 567 | { |
03f02c76 ND |
568 | struct sem_array *sma; |
569 | ||
570 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
571 | return security_sem_associate(sma, semflg); | |
7748dbfa ND |
572 | } |
573 | ||
f4566f04 | 574 | /* |
d9a605e4 | 575 | * Called with sem_ids.rwsem and ipcp locked. |
f4566f04 | 576 | */ |
03f02c76 ND |
577 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
578 | struct ipc_params *params) | |
7748dbfa | 579 | { |
03f02c76 ND |
580 | struct sem_array *sma; |
581 | ||
582 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
583 | if (params->u.nsems > sma->sem_nsems) | |
7748dbfa ND |
584 | return -EINVAL; |
585 | ||
586 | return 0; | |
587 | } | |
588 | ||
d5460c99 | 589 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
1da177e4 | 590 | { |
e3893534 | 591 | struct ipc_namespace *ns; |
eb66ec44 MK |
592 | static const struct ipc_ops sem_ops = { |
593 | .getnew = newary, | |
594 | .associate = sem_security, | |
595 | .more_checks = sem_more_checks, | |
596 | }; | |
7748dbfa | 597 | struct ipc_params sem_params; |
e3893534 KK |
598 | |
599 | ns = current->nsproxy->ipc_ns; | |
1da177e4 | 600 | |
e3893534 | 601 | if (nsems < 0 || nsems > ns->sc_semmsl) |
1da177e4 | 602 | return -EINVAL; |
7ca7e564 | 603 | |
7748dbfa ND |
604 | sem_params.key = key; |
605 | sem_params.flg = semflg; | |
606 | sem_params.u.nsems = nsems; | |
1da177e4 | 607 | |
7748dbfa | 608 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
1da177e4 LT |
609 | } |
610 | ||
78f5009c PM |
611 | /** |
612 | * perform_atomic_semop - Perform (if possible) a semaphore operation | |
758a6ba3 | 613 | * @sma: semaphore array |
d198cd6d | 614 | * @q: struct sem_queue that describes the operation |
758a6ba3 MS |
615 | * |
616 | * Returns 0 if the operation was possible. | |
617 | * Returns 1 if the operation is impossible, the caller must sleep. | |
618 | * Negative values are error codes. | |
1da177e4 | 619 | */ |
d198cd6d | 620 | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) |
1da177e4 | 621 | { |
d198cd6d | 622 | int result, sem_op, nsops, pid; |
1da177e4 | 623 | struct sembuf *sop; |
239521f3 | 624 | struct sem *curr; |
d198cd6d MS |
625 | struct sembuf *sops; |
626 | struct sem_undo *un; | |
627 | ||
628 | sops = q->sops; | |
629 | nsops = q->nsops; | |
630 | un = q->undo; | |
1da177e4 LT |
631 | |
632 | for (sop = sops; sop < sops + nsops; sop++) { | |
633 | curr = sma->sem_base + sop->sem_num; | |
634 | sem_op = sop->sem_op; | |
635 | result = curr->semval; | |
78f5009c | 636 | |
1da177e4 LT |
637 | if (!sem_op && result) |
638 | goto would_block; | |
639 | ||
640 | result += sem_op; | |
641 | if (result < 0) | |
642 | goto would_block; | |
643 | if (result > SEMVMX) | |
644 | goto out_of_range; | |
78f5009c | 645 | |
1da177e4 LT |
646 | if (sop->sem_flg & SEM_UNDO) { |
647 | int undo = un->semadj[sop->sem_num] - sem_op; | |
78f5009c | 648 | /* Exceeding the undo range is an error. */ |
1da177e4 LT |
649 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
650 | goto out_of_range; | |
78f5009c | 651 | un->semadj[sop->sem_num] = undo; |
1da177e4 | 652 | } |
78f5009c | 653 | |
1da177e4 LT |
654 | curr->semval = result; |
655 | } | |
656 | ||
657 | sop--; | |
d198cd6d | 658 | pid = q->pid; |
1da177e4 LT |
659 | while (sop >= sops) { |
660 | sma->sem_base[sop->sem_num].sempid = pid; | |
1da177e4 LT |
661 | sop--; |
662 | } | |
78f5009c | 663 | |
1da177e4 LT |
664 | return 0; |
665 | ||
666 | out_of_range: | |
667 | result = -ERANGE; | |
668 | goto undo; | |
669 | ||
670 | would_block: | |
ed247b7c MS |
671 | q->blocking = sop; |
672 | ||
1da177e4 LT |
673 | if (sop->sem_flg & IPC_NOWAIT) |
674 | result = -EAGAIN; | |
675 | else | |
676 | result = 1; | |
677 | ||
678 | undo: | |
679 | sop--; | |
680 | while (sop >= sops) { | |
78f5009c PM |
681 | sem_op = sop->sem_op; |
682 | sma->sem_base[sop->sem_num].semval -= sem_op; | |
683 | if (sop->sem_flg & SEM_UNDO) | |
684 | un->semadj[sop->sem_num] += sem_op; | |
1da177e4 LT |
685 | sop--; |
686 | } | |
687 | ||
688 | return result; | |
689 | } | |
690 | ||
0a2b9d4c MS |
691 | /** wake_up_sem_queue_prepare(q, error): Prepare wake-up |
692 | * @q: queue entry that must be signaled | |
693 | * @error: Error value for the signal | |
694 | * | |
695 | * Prepare the wake-up of the queue entry q. | |
d4212093 | 696 | */ |
0a2b9d4c MS |
697 | static void wake_up_sem_queue_prepare(struct list_head *pt, |
698 | struct sem_queue *q, int error) | |
d4212093 | 699 | { |
0a2b9d4c MS |
700 | if (list_empty(pt)) { |
701 | /* | |
702 | * Hold preempt off so that we don't get preempted and have the | |
703 | * wakee busy-wait until we're scheduled back on. | |
704 | */ | |
705 | preempt_disable(); | |
706 | } | |
d4212093 | 707 | q->status = IN_WAKEUP; |
0a2b9d4c MS |
708 | q->pid = error; |
709 | ||
9f1bc2c9 | 710 | list_add_tail(&q->list, pt); |
0a2b9d4c MS |
711 | } |
712 | ||
713 | /** | |
8001c858 | 714 | * wake_up_sem_queue_do - do the actual wake-up |
0a2b9d4c MS |
715 | * @pt: list of tasks to be woken up |
716 | * | |
717 | * Do the actual wake-up. | |
718 | * The function is called without any locks held, thus the semaphore array | |
719 | * could be destroyed already and the tasks can disappear as soon as the | |
720 | * status is set to the actual return code. | |
721 | */ | |
722 | static void wake_up_sem_queue_do(struct list_head *pt) | |
723 | { | |
724 | struct sem_queue *q, *t; | |
725 | int did_something; | |
726 | ||
727 | did_something = !list_empty(pt); | |
9f1bc2c9 | 728 | list_for_each_entry_safe(q, t, pt, list) { |
0a2b9d4c MS |
729 | wake_up_process(q->sleeper); |
730 | /* q can disappear immediately after writing q->status. */ | |
731 | smp_wmb(); | |
732 | q->status = q->pid; | |
733 | } | |
734 | if (did_something) | |
735 | preempt_enable(); | |
d4212093 NP |
736 | } |
737 | ||
b97e820f MS |
738 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
739 | { | |
740 | list_del(&q->list); | |
9f1bc2c9 | 741 | if (q->nsops > 1) |
b97e820f MS |
742 | sma->complex_count--; |
743 | } | |
744 | ||
fd5db422 MS |
745 | /** check_restart(sma, q) |
746 | * @sma: semaphore array | |
747 | * @q: the operation that just completed | |
748 | * | |
749 | * update_queue is O(N^2) when it restarts scanning the whole queue of | |
750 | * waiting operations. Therefore this function checks if the restart is | |
751 | * really necessary. It is called after a previously waiting operation | |
1a82e9e1 MS |
752 | * modified the array. |
753 | * Note that wait-for-zero operations are handled without restart. | |
fd5db422 MS |
754 | */ |
755 | static int check_restart(struct sem_array *sma, struct sem_queue *q) | |
756 | { | |
1a82e9e1 MS |
757 | /* pending complex alter operations are too difficult to analyse */ |
758 | if (!list_empty(&sma->pending_alter)) | |
fd5db422 MS |
759 | return 1; |
760 | ||
761 | /* we were a sleeping complex operation. Too difficult */ | |
762 | if (q->nsops > 1) | |
763 | return 1; | |
764 | ||
1a82e9e1 MS |
765 | /* It is impossible that someone waits for the new value: |
766 | * - complex operations always restart. | |
767 | * - wait-for-zero are handled seperately. | |
768 | * - q is a previously sleeping simple operation that | |
769 | * altered the array. It must be a decrement, because | |
770 | * simple increments never sleep. | |
771 | * - If there are older (higher priority) decrements | |
772 | * in the queue, then they have observed the original | |
773 | * semval value and couldn't proceed. The operation | |
774 | * decremented to value - thus they won't proceed either. | |
775 | */ | |
776 | return 0; | |
777 | } | |
fd5db422 | 778 | |
1a82e9e1 | 779 | /** |
8001c858 | 780 | * wake_const_ops - wake up non-alter tasks |
1a82e9e1 MS |
781 | * @sma: semaphore array. |
782 | * @semnum: semaphore that was modified. | |
783 | * @pt: list head for the tasks that must be woken up. | |
784 | * | |
785 | * wake_const_ops must be called after a semaphore in a semaphore array | |
786 | * was set to 0. If complex const operations are pending, wake_const_ops must | |
787 | * be called with semnum = -1, as well as with the number of each modified | |
788 | * semaphore. | |
789 | * The tasks that must be woken up are added to @pt. The return code | |
790 | * is stored in q->pid. | |
791 | * The function returns 1 if at least one operation was completed successfully. | |
792 | */ | |
793 | static int wake_const_ops(struct sem_array *sma, int semnum, | |
794 | struct list_head *pt) | |
795 | { | |
796 | struct sem_queue *q; | |
797 | struct list_head *walk; | |
798 | struct list_head *pending_list; | |
799 | int semop_completed = 0; | |
800 | ||
801 | if (semnum == -1) | |
802 | pending_list = &sma->pending_const; | |
803 | else | |
804 | pending_list = &sma->sem_base[semnum].pending_const; | |
fd5db422 | 805 | |
1a82e9e1 MS |
806 | walk = pending_list->next; |
807 | while (walk != pending_list) { | |
808 | int error; | |
809 | ||
810 | q = container_of(walk, struct sem_queue, list); | |
811 | walk = walk->next; | |
812 | ||
d198cd6d | 813 | error = perform_atomic_semop(sma, q); |
1a82e9e1 MS |
814 | |
815 | if (error <= 0) { | |
816 | /* operation completed, remove from queue & wakeup */ | |
817 | ||
818 | unlink_queue(sma, q); | |
819 | ||
820 | wake_up_sem_queue_prepare(pt, q, error); | |
821 | if (error == 0) | |
822 | semop_completed = 1; | |
823 | } | |
824 | } | |
825 | return semop_completed; | |
826 | } | |
827 | ||
828 | /** | |
8001c858 | 829 | * do_smart_wakeup_zero - wakeup all wait for zero tasks |
1a82e9e1 MS |
830 | * @sma: semaphore array |
831 | * @sops: operations that were performed | |
832 | * @nsops: number of operations | |
833 | * @pt: list head of the tasks that must be woken up. | |
834 | * | |
8001c858 DB |
835 | * Checks all required queue for wait-for-zero operations, based |
836 | * on the actual changes that were performed on the semaphore array. | |
1a82e9e1 MS |
837 | * The function returns 1 if at least one operation was completed successfully. |
838 | */ | |
839 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | |
840 | int nsops, struct list_head *pt) | |
841 | { | |
842 | int i; | |
843 | int semop_completed = 0; | |
844 | int got_zero = 0; | |
845 | ||
846 | /* first: the per-semaphore queues, if known */ | |
847 | if (sops) { | |
848 | for (i = 0; i < nsops; i++) { | |
849 | int num = sops[i].sem_num; | |
850 | ||
851 | if (sma->sem_base[num].semval == 0) { | |
852 | got_zero = 1; | |
853 | semop_completed |= wake_const_ops(sma, num, pt); | |
854 | } | |
855 | } | |
856 | } else { | |
857 | /* | |
858 | * No sops means modified semaphores not known. | |
859 | * Assume all were changed. | |
fd5db422 | 860 | */ |
1a82e9e1 MS |
861 | for (i = 0; i < sma->sem_nsems; i++) { |
862 | if (sma->sem_base[i].semval == 0) { | |
863 | got_zero = 1; | |
864 | semop_completed |= wake_const_ops(sma, i, pt); | |
865 | } | |
866 | } | |
fd5db422 MS |
867 | } |
868 | /* | |
1a82e9e1 MS |
869 | * If one of the modified semaphores got 0, |
870 | * then check the global queue, too. | |
fd5db422 | 871 | */ |
1a82e9e1 MS |
872 | if (got_zero) |
873 | semop_completed |= wake_const_ops(sma, -1, pt); | |
fd5db422 | 874 | |
1a82e9e1 | 875 | return semop_completed; |
fd5db422 MS |
876 | } |
877 | ||
636c6be8 MS |
878 | |
879 | /** | |
8001c858 | 880 | * update_queue - look for tasks that can be completed. |
636c6be8 MS |
881 | * @sma: semaphore array. |
882 | * @semnum: semaphore that was modified. | |
0a2b9d4c | 883 | * @pt: list head for the tasks that must be woken up. |
636c6be8 MS |
884 | * |
885 | * update_queue must be called after a semaphore in a semaphore array | |
9f1bc2c9 RR |
886 | * was modified. If multiple semaphores were modified, update_queue must |
887 | * be called with semnum = -1, as well as with the number of each modified | |
888 | * semaphore. | |
0a2b9d4c MS |
889 | * The tasks that must be woken up are added to @pt. The return code |
890 | * is stored in q->pid. | |
1a82e9e1 MS |
891 | * The function internally checks if const operations can now succeed. |
892 | * | |
0a2b9d4c | 893 | * The function return 1 if at least one semop was completed successfully. |
1da177e4 | 894 | */ |
0a2b9d4c | 895 | static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) |
1da177e4 | 896 | { |
636c6be8 MS |
897 | struct sem_queue *q; |
898 | struct list_head *walk; | |
899 | struct list_head *pending_list; | |
0a2b9d4c | 900 | int semop_completed = 0; |
636c6be8 | 901 | |
9f1bc2c9 | 902 | if (semnum == -1) |
1a82e9e1 | 903 | pending_list = &sma->pending_alter; |
9f1bc2c9 | 904 | else |
1a82e9e1 | 905 | pending_list = &sma->sem_base[semnum].pending_alter; |
9cad200c NP |
906 | |
907 | again: | |
636c6be8 MS |
908 | walk = pending_list->next; |
909 | while (walk != pending_list) { | |
fd5db422 | 910 | int error, restart; |
636c6be8 | 911 | |
9f1bc2c9 | 912 | q = container_of(walk, struct sem_queue, list); |
636c6be8 | 913 | walk = walk->next; |
1da177e4 | 914 | |
d987f8b2 MS |
915 | /* If we are scanning the single sop, per-semaphore list of |
916 | * one semaphore and that semaphore is 0, then it is not | |
1a82e9e1 | 917 | * necessary to scan further: simple increments |
d987f8b2 MS |
918 | * that affect only one entry succeed immediately and cannot |
919 | * be in the per semaphore pending queue, and decrements | |
920 | * cannot be successful if the value is already 0. | |
921 | */ | |
1a82e9e1 | 922 | if (semnum != -1 && sma->sem_base[semnum].semval == 0) |
d987f8b2 MS |
923 | break; |
924 | ||
d198cd6d | 925 | error = perform_atomic_semop(sma, q); |
1da177e4 LT |
926 | |
927 | /* Does q->sleeper still need to sleep? */ | |
9cad200c NP |
928 | if (error > 0) |
929 | continue; | |
930 | ||
b97e820f | 931 | unlink_queue(sma, q); |
9cad200c | 932 | |
0a2b9d4c | 933 | if (error) { |
fd5db422 | 934 | restart = 0; |
0a2b9d4c MS |
935 | } else { |
936 | semop_completed = 1; | |
1a82e9e1 | 937 | do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); |
fd5db422 | 938 | restart = check_restart(sma, q); |
0a2b9d4c | 939 | } |
fd5db422 | 940 | |
0a2b9d4c | 941 | wake_up_sem_queue_prepare(pt, q, error); |
fd5db422 | 942 | if (restart) |
9cad200c | 943 | goto again; |
1da177e4 | 944 | } |
0a2b9d4c | 945 | return semop_completed; |
1da177e4 LT |
946 | } |
947 | ||
0e8c6656 | 948 | /** |
8001c858 | 949 | * set_semotime - set sem_otime |
0e8c6656 MS |
950 | * @sma: semaphore array |
951 | * @sops: operations that modified the array, may be NULL | |
952 | * | |
953 | * sem_otime is replicated to avoid cache line trashing. | |
954 | * This function sets one instance to the current time. | |
955 | */ | |
956 | static void set_semotime(struct sem_array *sma, struct sembuf *sops) | |
957 | { | |
958 | if (sops == NULL) { | |
959 | sma->sem_base[0].sem_otime = get_seconds(); | |
960 | } else { | |
961 | sma->sem_base[sops[0].sem_num].sem_otime = | |
962 | get_seconds(); | |
963 | } | |
964 | } | |
965 | ||
0a2b9d4c | 966 | /** |
8001c858 | 967 | * do_smart_update - optimized update_queue |
fd5db422 MS |
968 | * @sma: semaphore array |
969 | * @sops: operations that were performed | |
970 | * @nsops: number of operations | |
0a2b9d4c MS |
971 | * @otime: force setting otime |
972 | * @pt: list head of the tasks that must be woken up. | |
fd5db422 | 973 | * |
1a82e9e1 MS |
974 | * do_smart_update() does the required calls to update_queue and wakeup_zero, |
975 | * based on the actual changes that were performed on the semaphore array. | |
0a2b9d4c MS |
976 | * Note that the function does not do the actual wake-up: the caller is |
977 | * responsible for calling wake_up_sem_queue_do(@pt). | |
978 | * It is safe to perform this call after dropping all locks. | |
fd5db422 | 979 | */ |
0a2b9d4c MS |
980 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
981 | int otime, struct list_head *pt) | |
fd5db422 MS |
982 | { |
983 | int i; | |
984 | ||
1a82e9e1 MS |
985 | otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); |
986 | ||
f269f40a MS |
987 | if (!list_empty(&sma->pending_alter)) { |
988 | /* semaphore array uses the global queue - just process it. */ | |
989 | otime |= update_queue(sma, -1, pt); | |
990 | } else { | |
991 | if (!sops) { | |
992 | /* | |
993 | * No sops, thus the modified semaphores are not | |
994 | * known. Check all. | |
995 | */ | |
996 | for (i = 0; i < sma->sem_nsems; i++) | |
997 | otime |= update_queue(sma, i, pt); | |
998 | } else { | |
999 | /* | |
1000 | * Check the semaphores that were increased: | |
1001 | * - No complex ops, thus all sleeping ops are | |
1002 | * decrease. | |
1003 | * - if we decreased the value, then any sleeping | |
1004 | * semaphore ops wont be able to run: If the | |
1005 | * previous value was too small, then the new | |
1006 | * value will be too small, too. | |
1007 | */ | |
1008 | for (i = 0; i < nsops; i++) { | |
1009 | if (sops[i].sem_op > 0) { | |
1010 | otime |= update_queue(sma, | |
1011 | sops[i].sem_num, pt); | |
1012 | } | |
ab465df9 | 1013 | } |
9f1bc2c9 | 1014 | } |
fd5db422 | 1015 | } |
0e8c6656 MS |
1016 | if (otime) |
1017 | set_semotime(sma, sops); | |
fd5db422 MS |
1018 | } |
1019 | ||
2f2ed41d | 1020 | /* |
b220c57a | 1021 | * check_qop: Test if a queued operation sleeps on the semaphore semnum |
2f2ed41d MS |
1022 | */ |
1023 | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, | |
1024 | bool count_zero) | |
1025 | { | |
b220c57a | 1026 | struct sembuf *sop = q->blocking; |
2f2ed41d | 1027 | |
9b44ee2e MS |
1028 | /* |
1029 | * Linux always (since 0.99.10) reported a task as sleeping on all | |
1030 | * semaphores. This violates SUS, therefore it was changed to the | |
1031 | * standard compliant behavior. | |
1032 | * Give the administrators a chance to notice that an application | |
1033 | * might misbehave because it relies on the Linux behavior. | |
1034 | */ | |
1035 | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" | |
1036 | "The task %s (%d) triggered the difference, watch for misbehavior.\n", | |
1037 | current->comm, task_pid_nr(current)); | |
1038 | ||
b220c57a MS |
1039 | if (sop->sem_num != semnum) |
1040 | return 0; | |
2f2ed41d | 1041 | |
b220c57a MS |
1042 | if (count_zero && sop->sem_op == 0) |
1043 | return 1; | |
1044 | if (!count_zero && sop->sem_op < 0) | |
1045 | return 1; | |
1046 | ||
1047 | return 0; | |
2f2ed41d MS |
1048 | } |
1049 | ||
1da177e4 LT |
1050 | /* The following counts are associated to each semaphore: |
1051 | * semncnt number of tasks waiting on semval being nonzero | |
1052 | * semzcnt number of tasks waiting on semval being zero | |
b220c57a MS |
1053 | * |
1054 | * Per definition, a task waits only on the semaphore of the first semop | |
1055 | * that cannot proceed, even if additional operation would block, too. | |
1da177e4 | 1056 | */ |
2f2ed41d MS |
1057 | static int count_semcnt(struct sem_array *sma, ushort semnum, |
1058 | bool count_zero) | |
1da177e4 | 1059 | { |
2f2ed41d | 1060 | struct list_head *l; |
239521f3 | 1061 | struct sem_queue *q; |
2f2ed41d | 1062 | int semcnt; |
1da177e4 | 1063 | |
2f2ed41d MS |
1064 | semcnt = 0; |
1065 | /* First: check the simple operations. They are easy to evaluate */ | |
1066 | if (count_zero) | |
1067 | l = &sma->sem_base[semnum].pending_const; | |
1068 | else | |
1069 | l = &sma->sem_base[semnum].pending_alter; | |
1da177e4 | 1070 | |
2f2ed41d MS |
1071 | list_for_each_entry(q, l, list) { |
1072 | /* all task on a per-semaphore list sleep on exactly | |
1073 | * that semaphore | |
1074 | */ | |
1075 | semcnt++; | |
ebc2e5e6 RR |
1076 | } |
1077 | ||
2f2ed41d | 1078 | /* Then: check the complex operations. */ |
1994862d | 1079 | list_for_each_entry(q, &sma->pending_alter, list) { |
2f2ed41d MS |
1080 | semcnt += check_qop(sma, semnum, q, count_zero); |
1081 | } | |
1082 | if (count_zero) { | |
1083 | list_for_each_entry(q, &sma->pending_const, list) { | |
1084 | semcnt += check_qop(sma, semnum, q, count_zero); | |
1085 | } | |
1994862d | 1086 | } |
2f2ed41d | 1087 | return semcnt; |
1da177e4 LT |
1088 | } |
1089 | ||
d9a605e4 DB |
1090 | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked |
1091 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem | |
3e148c79 | 1092 | * remains locked on exit. |
1da177e4 | 1093 | */ |
01b8b07a | 1094 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
1da177e4 | 1095 | { |
380af1b3 MS |
1096 | struct sem_undo *un, *tu; |
1097 | struct sem_queue *q, *tq; | |
01b8b07a | 1098 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
0a2b9d4c | 1099 | struct list_head tasks; |
9f1bc2c9 | 1100 | int i; |
1da177e4 | 1101 | |
380af1b3 | 1102 | /* Free the existing undo structures for this semaphore set. */ |
cf9d5d78 | 1103 | ipc_assert_locked_object(&sma->sem_perm); |
380af1b3 MS |
1104 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
1105 | list_del(&un->list_id); | |
1106 | spin_lock(&un->ulp->lock); | |
1da177e4 | 1107 | un->semid = -1; |
380af1b3 MS |
1108 | list_del_rcu(&un->list_proc); |
1109 | spin_unlock(&un->ulp->lock); | |
693a8b6e | 1110 | kfree_rcu(un, rcu); |
380af1b3 | 1111 | } |
1da177e4 LT |
1112 | |
1113 | /* Wake up all pending processes and let them fail with EIDRM. */ | |
0a2b9d4c | 1114 | INIT_LIST_HEAD(&tasks); |
1a82e9e1 MS |
1115 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { |
1116 | unlink_queue(sma, q); | |
1117 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1118 | } | |
1119 | ||
1120 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
b97e820f | 1121 | unlink_queue(sma, q); |
0a2b9d4c | 1122 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
1da177e4 | 1123 | } |
9f1bc2c9 RR |
1124 | for (i = 0; i < sma->sem_nsems; i++) { |
1125 | struct sem *sem = sma->sem_base + i; | |
1a82e9e1 MS |
1126 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { |
1127 | unlink_queue(sma, q); | |
1128 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1129 | } | |
1130 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | |
9f1bc2c9 RR |
1131 | unlink_queue(sma, q); |
1132 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1133 | } | |
1134 | } | |
1da177e4 | 1135 | |
7ca7e564 ND |
1136 | /* Remove the semaphore set from the IDR */ |
1137 | sem_rmid(ns, sma); | |
6062a8dc | 1138 | sem_unlock(sma, -1); |
6d49dab8 | 1139 | rcu_read_unlock(); |
1da177e4 | 1140 | |
0a2b9d4c | 1141 | wake_up_sem_queue_do(&tasks); |
e3893534 | 1142 | ns->used_sems -= sma->sem_nsems; |
53dad6d3 | 1143 | ipc_rcu_putref(sma, sem_rcu_free); |
1da177e4 LT |
1144 | } |
1145 | ||
1146 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | |
1147 | { | |
239521f3 | 1148 | switch (version) { |
1da177e4 LT |
1149 | case IPC_64: |
1150 | return copy_to_user(buf, in, sizeof(*in)); | |
1151 | case IPC_OLD: | |
1152 | { | |
1153 | struct semid_ds out; | |
1154 | ||
982f7c2b DR |
1155 | memset(&out, 0, sizeof(out)); |
1156 | ||
1da177e4 LT |
1157 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
1158 | ||
1159 | out.sem_otime = in->sem_otime; | |
1160 | out.sem_ctime = in->sem_ctime; | |
1161 | out.sem_nsems = in->sem_nsems; | |
1162 | ||
1163 | return copy_to_user(buf, &out, sizeof(out)); | |
1164 | } | |
1165 | default: | |
1166 | return -EINVAL; | |
1167 | } | |
1168 | } | |
1169 | ||
d12e1e50 MS |
1170 | static time_t get_semotime(struct sem_array *sma) |
1171 | { | |
1172 | int i; | |
1173 | time_t res; | |
1174 | ||
1175 | res = sma->sem_base[0].sem_otime; | |
1176 | for (i = 1; i < sma->sem_nsems; i++) { | |
1177 | time_t to = sma->sem_base[i].sem_otime; | |
1178 | ||
1179 | if (to > res) | |
1180 | res = to; | |
1181 | } | |
1182 | return res; | |
1183 | } | |
1184 | ||
4b9fcb0e | 1185 | static int semctl_nolock(struct ipc_namespace *ns, int semid, |
e1fd1f49 | 1186 | int cmd, int version, void __user *p) |
1da177e4 | 1187 | { |
e5cc9c7b | 1188 | int err; |
1da177e4 LT |
1189 | struct sem_array *sma; |
1190 | ||
239521f3 | 1191 | switch (cmd) { |
1da177e4 LT |
1192 | case IPC_INFO: |
1193 | case SEM_INFO: | |
1194 | { | |
1195 | struct seminfo seminfo; | |
1196 | int max_id; | |
1197 | ||
1198 | err = security_sem_semctl(NULL, cmd); | |
1199 | if (err) | |
1200 | return err; | |
46c0a8ca | 1201 | |
239521f3 | 1202 | memset(&seminfo, 0, sizeof(seminfo)); |
e3893534 KK |
1203 | seminfo.semmni = ns->sc_semmni; |
1204 | seminfo.semmns = ns->sc_semmns; | |
1205 | seminfo.semmsl = ns->sc_semmsl; | |
1206 | seminfo.semopm = ns->sc_semopm; | |
1da177e4 LT |
1207 | seminfo.semvmx = SEMVMX; |
1208 | seminfo.semmnu = SEMMNU; | |
1209 | seminfo.semmap = SEMMAP; | |
1210 | seminfo.semume = SEMUME; | |
d9a605e4 | 1211 | down_read(&sem_ids(ns).rwsem); |
1da177e4 | 1212 | if (cmd == SEM_INFO) { |
e3893534 KK |
1213 | seminfo.semusz = sem_ids(ns).in_use; |
1214 | seminfo.semaem = ns->used_sems; | |
1da177e4 LT |
1215 | } else { |
1216 | seminfo.semusz = SEMUSZ; | |
1217 | seminfo.semaem = SEMAEM; | |
1218 | } | |
7ca7e564 | 1219 | max_id = ipc_get_maxid(&sem_ids(ns)); |
d9a605e4 | 1220 | up_read(&sem_ids(ns).rwsem); |
46c0a8ca | 1221 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) |
1da177e4 | 1222 | return -EFAULT; |
239521f3 | 1223 | return (max_id < 0) ? 0 : max_id; |
1da177e4 | 1224 | } |
4b9fcb0e | 1225 | case IPC_STAT: |
1da177e4 LT |
1226 | case SEM_STAT: |
1227 | { | |
1228 | struct semid64_ds tbuf; | |
16df3674 DB |
1229 | int id = 0; |
1230 | ||
1231 | memset(&tbuf, 0, sizeof(tbuf)); | |
1da177e4 | 1232 | |
941b0304 | 1233 | rcu_read_lock(); |
4b9fcb0e | 1234 | if (cmd == SEM_STAT) { |
16df3674 DB |
1235 | sma = sem_obtain_object(ns, semid); |
1236 | if (IS_ERR(sma)) { | |
1237 | err = PTR_ERR(sma); | |
1238 | goto out_unlock; | |
1239 | } | |
4b9fcb0e PP |
1240 | id = sma->sem_perm.id; |
1241 | } else { | |
16df3674 DB |
1242 | sma = sem_obtain_object_check(ns, semid); |
1243 | if (IS_ERR(sma)) { | |
1244 | err = PTR_ERR(sma); | |
1245 | goto out_unlock; | |
1246 | } | |
4b9fcb0e | 1247 | } |
1da177e4 LT |
1248 | |
1249 | err = -EACCES; | |
b0e77598 | 1250 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) |
1da177e4 LT |
1251 | goto out_unlock; |
1252 | ||
1253 | err = security_sem_semctl(sma, cmd); | |
1254 | if (err) | |
1255 | goto out_unlock; | |
1256 | ||
1da177e4 | 1257 | kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); |
d12e1e50 MS |
1258 | tbuf.sem_otime = get_semotime(sma); |
1259 | tbuf.sem_ctime = sma->sem_ctime; | |
1260 | tbuf.sem_nsems = sma->sem_nsems; | |
16df3674 | 1261 | rcu_read_unlock(); |
e1fd1f49 | 1262 | if (copy_semid_to_user(p, &tbuf, version)) |
1da177e4 LT |
1263 | return -EFAULT; |
1264 | return id; | |
1265 | } | |
1266 | default: | |
1267 | return -EINVAL; | |
1268 | } | |
1da177e4 | 1269 | out_unlock: |
16df3674 | 1270 | rcu_read_unlock(); |
1da177e4 LT |
1271 | return err; |
1272 | } | |
1273 | ||
e1fd1f49 AV |
1274 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, |
1275 | unsigned long arg) | |
1276 | { | |
1277 | struct sem_undo *un; | |
1278 | struct sem_array *sma; | |
239521f3 | 1279 | struct sem *curr; |
e1fd1f49 | 1280 | int err; |
e1fd1f49 AV |
1281 | struct list_head tasks; |
1282 | int val; | |
1283 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | |
1284 | /* big-endian 64bit */ | |
1285 | val = arg >> 32; | |
1286 | #else | |
1287 | /* 32bit or little-endian 64bit */ | |
1288 | val = arg; | |
1289 | #endif | |
1290 | ||
6062a8dc RR |
1291 | if (val > SEMVMX || val < 0) |
1292 | return -ERANGE; | |
e1fd1f49 AV |
1293 | |
1294 | INIT_LIST_HEAD(&tasks); | |
e1fd1f49 | 1295 | |
6062a8dc RR |
1296 | rcu_read_lock(); |
1297 | sma = sem_obtain_object_check(ns, semid); | |
1298 | if (IS_ERR(sma)) { | |
1299 | rcu_read_unlock(); | |
1300 | return PTR_ERR(sma); | |
1301 | } | |
1302 | ||
1303 | if (semnum < 0 || semnum >= sma->sem_nsems) { | |
1304 | rcu_read_unlock(); | |
1305 | return -EINVAL; | |
1306 | } | |
1307 | ||
1308 | ||
1309 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | |
1310 | rcu_read_unlock(); | |
1311 | return -EACCES; | |
1312 | } | |
e1fd1f49 AV |
1313 | |
1314 | err = security_sem_semctl(sma, SETVAL); | |
6062a8dc RR |
1315 | if (err) { |
1316 | rcu_read_unlock(); | |
1317 | return -EACCES; | |
1318 | } | |
e1fd1f49 | 1319 | |
6062a8dc | 1320 | sem_lock(sma, NULL, -1); |
e1fd1f49 | 1321 | |
0f3d2b01 | 1322 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1323 | sem_unlock(sma, -1); |
1324 | rcu_read_unlock(); | |
1325 | return -EIDRM; | |
1326 | } | |
1327 | ||
e1fd1f49 AV |
1328 | curr = &sma->sem_base[semnum]; |
1329 | ||
cf9d5d78 | 1330 | ipc_assert_locked_object(&sma->sem_perm); |
e1fd1f49 AV |
1331 | list_for_each_entry(un, &sma->list_id, list_id) |
1332 | un->semadj[semnum] = 0; | |
1333 | ||
1334 | curr->semval = val; | |
1335 | curr->sempid = task_tgid_vnr(current); | |
1336 | sma->sem_ctime = get_seconds(); | |
1337 | /* maybe some queued-up processes were waiting for this */ | |
1338 | do_smart_update(sma, NULL, 0, 0, &tasks); | |
6062a8dc | 1339 | sem_unlock(sma, -1); |
6d49dab8 | 1340 | rcu_read_unlock(); |
e1fd1f49 | 1341 | wake_up_sem_queue_do(&tasks); |
6062a8dc | 1342 | return 0; |
e1fd1f49 AV |
1343 | } |
1344 | ||
e3893534 | 1345 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
e1fd1f49 | 1346 | int cmd, void __user *p) |
1da177e4 LT |
1347 | { |
1348 | struct sem_array *sma; | |
239521f3 | 1349 | struct sem *curr; |
16df3674 | 1350 | int err, nsems; |
1da177e4 | 1351 | ushort fast_sem_io[SEMMSL_FAST]; |
239521f3 | 1352 | ushort *sem_io = fast_sem_io; |
0a2b9d4c | 1353 | struct list_head tasks; |
1da177e4 | 1354 | |
16df3674 DB |
1355 | INIT_LIST_HEAD(&tasks); |
1356 | ||
1357 | rcu_read_lock(); | |
1358 | sma = sem_obtain_object_check(ns, semid); | |
1359 | if (IS_ERR(sma)) { | |
1360 | rcu_read_unlock(); | |
023a5355 | 1361 | return PTR_ERR(sma); |
16df3674 | 1362 | } |
1da177e4 LT |
1363 | |
1364 | nsems = sma->sem_nsems; | |
1365 | ||
1da177e4 | 1366 | err = -EACCES; |
c728b9c8 LT |
1367 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) |
1368 | goto out_rcu_wakeup; | |
1da177e4 LT |
1369 | |
1370 | err = security_sem_semctl(sma, cmd); | |
c728b9c8 LT |
1371 | if (err) |
1372 | goto out_rcu_wakeup; | |
1da177e4 LT |
1373 | |
1374 | err = -EACCES; | |
1375 | switch (cmd) { | |
1376 | case GETALL: | |
1377 | { | |
e1fd1f49 | 1378 | ushort __user *array = p; |
1da177e4 LT |
1379 | int i; |
1380 | ||
ce857229 | 1381 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1382 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1383 | err = -EIDRM; |
1384 | goto out_unlock; | |
1385 | } | |
239521f3 | 1386 | if (nsems > SEMMSL_FAST) { |
ce857229 | 1387 | if (!ipc_rcu_getref(sma)) { |
ce857229 | 1388 | err = -EIDRM; |
6e224f94 | 1389 | goto out_unlock; |
ce857229 AV |
1390 | } |
1391 | sem_unlock(sma, -1); | |
6d49dab8 | 1392 | rcu_read_unlock(); |
1da177e4 | 1393 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
239521f3 | 1394 | if (sem_io == NULL) { |
53dad6d3 | 1395 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
1396 | return -ENOMEM; |
1397 | } | |
1398 | ||
4091fd94 | 1399 | rcu_read_lock(); |
6ff37972 | 1400 | sem_lock_and_putref(sma); |
0f3d2b01 | 1401 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1402 | err = -EIDRM; |
6e224f94 | 1403 | goto out_unlock; |
1da177e4 | 1404 | } |
ce857229 | 1405 | } |
1da177e4 LT |
1406 | for (i = 0; i < sma->sem_nsems; i++) |
1407 | sem_io[i] = sma->sem_base[i].semval; | |
6062a8dc | 1408 | sem_unlock(sma, -1); |
6d49dab8 | 1409 | rcu_read_unlock(); |
1da177e4 | 1410 | err = 0; |
239521f3 | 1411 | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
1da177e4 LT |
1412 | err = -EFAULT; |
1413 | goto out_free; | |
1414 | } | |
1415 | case SETALL: | |
1416 | { | |
1417 | int i; | |
1418 | struct sem_undo *un; | |
1419 | ||
6062a8dc | 1420 | if (!ipc_rcu_getref(sma)) { |
6e224f94 MS |
1421 | err = -EIDRM; |
1422 | goto out_rcu_wakeup; | |
6062a8dc | 1423 | } |
16df3674 | 1424 | rcu_read_unlock(); |
1da177e4 | 1425 | |
239521f3 | 1426 | if (nsems > SEMMSL_FAST) { |
1da177e4 | 1427 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
239521f3 | 1428 | if (sem_io == NULL) { |
53dad6d3 | 1429 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
1430 | return -ENOMEM; |
1431 | } | |
1432 | } | |
1433 | ||
239521f3 | 1434 | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { |
53dad6d3 | 1435 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
1436 | err = -EFAULT; |
1437 | goto out_free; | |
1438 | } | |
1439 | ||
1440 | for (i = 0; i < nsems; i++) { | |
1441 | if (sem_io[i] > SEMVMX) { | |
53dad6d3 | 1442 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
1443 | err = -ERANGE; |
1444 | goto out_free; | |
1445 | } | |
1446 | } | |
4091fd94 | 1447 | rcu_read_lock(); |
6ff37972 | 1448 | sem_lock_and_putref(sma); |
0f3d2b01 | 1449 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1450 | err = -EIDRM; |
6e224f94 | 1451 | goto out_unlock; |
1da177e4 LT |
1452 | } |
1453 | ||
a5f4db87 | 1454 | for (i = 0; i < nsems; i++) { |
1da177e4 | 1455 | sma->sem_base[i].semval = sem_io[i]; |
a5f4db87 DB |
1456 | sma->sem_base[i].sempid = task_tgid_vnr(current); |
1457 | } | |
4daa28f6 | 1458 | |
cf9d5d78 | 1459 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1460 | list_for_each_entry(un, &sma->list_id, list_id) { |
1da177e4 LT |
1461 | for (i = 0; i < nsems; i++) |
1462 | un->semadj[i] = 0; | |
4daa28f6 | 1463 | } |
1da177e4 LT |
1464 | sma->sem_ctime = get_seconds(); |
1465 | /* maybe some queued-up processes were waiting for this */ | |
0a2b9d4c | 1466 | do_smart_update(sma, NULL, 0, 0, &tasks); |
1da177e4 LT |
1467 | err = 0; |
1468 | goto out_unlock; | |
1469 | } | |
e1fd1f49 | 1470 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ |
1da177e4 LT |
1471 | } |
1472 | err = -EINVAL; | |
c728b9c8 LT |
1473 | if (semnum < 0 || semnum >= nsems) |
1474 | goto out_rcu_wakeup; | |
1da177e4 | 1475 | |
6062a8dc | 1476 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1477 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1478 | err = -EIDRM; |
1479 | goto out_unlock; | |
1480 | } | |
1da177e4 LT |
1481 | curr = &sma->sem_base[semnum]; |
1482 | ||
1483 | switch (cmd) { | |
1484 | case GETVAL: | |
1485 | err = curr->semval; | |
1486 | goto out_unlock; | |
1487 | case GETPID: | |
1488 | err = curr->sempid; | |
1489 | goto out_unlock; | |
1490 | case GETNCNT: | |
2f2ed41d | 1491 | err = count_semcnt(sma, semnum, 0); |
1da177e4 LT |
1492 | goto out_unlock; |
1493 | case GETZCNT: | |
2f2ed41d | 1494 | err = count_semcnt(sma, semnum, 1); |
1da177e4 | 1495 | goto out_unlock; |
1da177e4 | 1496 | } |
16df3674 | 1497 | |
1da177e4 | 1498 | out_unlock: |
6062a8dc | 1499 | sem_unlock(sma, -1); |
c728b9c8 | 1500 | out_rcu_wakeup: |
6d49dab8 | 1501 | rcu_read_unlock(); |
0a2b9d4c | 1502 | wake_up_sem_queue_do(&tasks); |
1da177e4 | 1503 | out_free: |
239521f3 | 1504 | if (sem_io != fast_sem_io) |
1d5cfdb0 | 1505 | ipc_free(sem_io); |
1da177e4 LT |
1506 | return err; |
1507 | } | |
1508 | ||
016d7132 PP |
1509 | static inline unsigned long |
1510 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | |
1da177e4 | 1511 | { |
239521f3 | 1512 | switch (version) { |
1da177e4 | 1513 | case IPC_64: |
016d7132 | 1514 | if (copy_from_user(out, buf, sizeof(*out))) |
1da177e4 | 1515 | return -EFAULT; |
1da177e4 | 1516 | return 0; |
1da177e4 LT |
1517 | case IPC_OLD: |
1518 | { | |
1519 | struct semid_ds tbuf_old; | |
1520 | ||
239521f3 | 1521 | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
1da177e4 LT |
1522 | return -EFAULT; |
1523 | ||
016d7132 PP |
1524 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
1525 | out->sem_perm.gid = tbuf_old.sem_perm.gid; | |
1526 | out->sem_perm.mode = tbuf_old.sem_perm.mode; | |
1da177e4 LT |
1527 | |
1528 | return 0; | |
1529 | } | |
1530 | default: | |
1531 | return -EINVAL; | |
1532 | } | |
1533 | } | |
1534 | ||
522bb2a2 | 1535 | /* |
d9a605e4 | 1536 | * This function handles some semctl commands which require the rwsem |
522bb2a2 | 1537 | * to be held in write mode. |
d9a605e4 | 1538 | * NOTE: no locks must be held, the rwsem is taken inside this function. |
522bb2a2 | 1539 | */ |
21a4826a | 1540 | static int semctl_down(struct ipc_namespace *ns, int semid, |
e1fd1f49 | 1541 | int cmd, int version, void __user *p) |
1da177e4 LT |
1542 | { |
1543 | struct sem_array *sma; | |
1544 | int err; | |
016d7132 | 1545 | struct semid64_ds semid64; |
1da177e4 LT |
1546 | struct kern_ipc_perm *ipcp; |
1547 | ||
239521f3 | 1548 | if (cmd == IPC_SET) { |
e1fd1f49 | 1549 | if (copy_semid_from_user(&semid64, p, version)) |
1da177e4 | 1550 | return -EFAULT; |
1da177e4 | 1551 | } |
073115d6 | 1552 | |
d9a605e4 | 1553 | down_write(&sem_ids(ns).rwsem); |
7b4cc5d8 DB |
1554 | rcu_read_lock(); |
1555 | ||
16df3674 DB |
1556 | ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, |
1557 | &semid64.sem_perm, 0); | |
7b4cc5d8 DB |
1558 | if (IS_ERR(ipcp)) { |
1559 | err = PTR_ERR(ipcp); | |
7b4cc5d8 DB |
1560 | goto out_unlock1; |
1561 | } | |
073115d6 | 1562 | |
a5f75e7f | 1563 | sma = container_of(ipcp, struct sem_array, sem_perm); |
1da177e4 LT |
1564 | |
1565 | err = security_sem_semctl(sma, cmd); | |
7b4cc5d8 DB |
1566 | if (err) |
1567 | goto out_unlock1; | |
1da177e4 | 1568 | |
7b4cc5d8 | 1569 | switch (cmd) { |
1da177e4 | 1570 | case IPC_RMID: |
6062a8dc | 1571 | sem_lock(sma, NULL, -1); |
7b4cc5d8 | 1572 | /* freeary unlocks the ipc object and rcu */ |
01b8b07a | 1573 | freeary(ns, ipcp); |
522bb2a2 | 1574 | goto out_up; |
1da177e4 | 1575 | case IPC_SET: |
6062a8dc | 1576 | sem_lock(sma, NULL, -1); |
1efdb69b EB |
1577 | err = ipc_update_perm(&semid64.sem_perm, ipcp); |
1578 | if (err) | |
7b4cc5d8 | 1579 | goto out_unlock0; |
1da177e4 | 1580 | sma->sem_ctime = get_seconds(); |
1da177e4 LT |
1581 | break; |
1582 | default: | |
1da177e4 | 1583 | err = -EINVAL; |
7b4cc5d8 | 1584 | goto out_unlock1; |
1da177e4 | 1585 | } |
1da177e4 | 1586 | |
7b4cc5d8 | 1587 | out_unlock0: |
6062a8dc | 1588 | sem_unlock(sma, -1); |
7b4cc5d8 | 1589 | out_unlock1: |
6d49dab8 | 1590 | rcu_read_unlock(); |
522bb2a2 | 1591 | out_up: |
d9a605e4 | 1592 | up_write(&sem_ids(ns).rwsem); |
1da177e4 LT |
1593 | return err; |
1594 | } | |
1595 | ||
e1fd1f49 | 1596 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) |
1da177e4 | 1597 | { |
1da177e4 | 1598 | int version; |
e3893534 | 1599 | struct ipc_namespace *ns; |
e1fd1f49 | 1600 | void __user *p = (void __user *)arg; |
1da177e4 LT |
1601 | |
1602 | if (semid < 0) | |
1603 | return -EINVAL; | |
1604 | ||
1605 | version = ipc_parse_version(&cmd); | |
e3893534 | 1606 | ns = current->nsproxy->ipc_ns; |
1da177e4 | 1607 | |
239521f3 | 1608 | switch (cmd) { |
1da177e4 LT |
1609 | case IPC_INFO: |
1610 | case SEM_INFO: | |
4b9fcb0e | 1611 | case IPC_STAT: |
1da177e4 | 1612 | case SEM_STAT: |
e1fd1f49 | 1613 | return semctl_nolock(ns, semid, cmd, version, p); |
1da177e4 LT |
1614 | case GETALL: |
1615 | case GETVAL: | |
1616 | case GETPID: | |
1617 | case GETNCNT: | |
1618 | case GETZCNT: | |
1da177e4 | 1619 | case SETALL: |
e1fd1f49 AV |
1620 | return semctl_main(ns, semid, semnum, cmd, p); |
1621 | case SETVAL: | |
1622 | return semctl_setval(ns, semid, semnum, arg); | |
1da177e4 LT |
1623 | case IPC_RMID: |
1624 | case IPC_SET: | |
e1fd1f49 | 1625 | return semctl_down(ns, semid, cmd, version, p); |
1da177e4 LT |
1626 | default: |
1627 | return -EINVAL; | |
1628 | } | |
1629 | } | |
1630 | ||
1da177e4 LT |
1631 | /* If the task doesn't already have a undo_list, then allocate one |
1632 | * here. We guarantee there is only one thread using this undo list, | |
1633 | * and current is THE ONE | |
1634 | * | |
1635 | * If this allocation and assignment succeeds, but later | |
1636 | * portions of this code fail, there is no need to free the sem_undo_list. | |
1637 | * Just let it stay associated with the task, and it'll be freed later | |
1638 | * at exit time. | |
1639 | * | |
1640 | * This can block, so callers must hold no locks. | |
1641 | */ | |
1642 | static inline int get_undo_list(struct sem_undo_list **undo_listp) | |
1643 | { | |
1644 | struct sem_undo_list *undo_list; | |
1da177e4 LT |
1645 | |
1646 | undo_list = current->sysvsem.undo_list; | |
1647 | if (!undo_list) { | |
2453a306 | 1648 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
1da177e4 LT |
1649 | if (undo_list == NULL) |
1650 | return -ENOMEM; | |
00a5dfdb | 1651 | spin_lock_init(&undo_list->lock); |
1da177e4 | 1652 | atomic_set(&undo_list->refcnt, 1); |
4daa28f6 MS |
1653 | INIT_LIST_HEAD(&undo_list->list_proc); |
1654 | ||
1da177e4 LT |
1655 | current->sysvsem.undo_list = undo_list; |
1656 | } | |
1657 | *undo_listp = undo_list; | |
1658 | return 0; | |
1659 | } | |
1660 | ||
bf17bb71 | 1661 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
1da177e4 | 1662 | { |
bf17bb71 | 1663 | struct sem_undo *un; |
4daa28f6 | 1664 | |
bf17bb71 NP |
1665 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { |
1666 | if (un->semid == semid) | |
1667 | return un; | |
1da177e4 | 1668 | } |
4daa28f6 | 1669 | return NULL; |
1da177e4 LT |
1670 | } |
1671 | ||
bf17bb71 NP |
1672 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
1673 | { | |
1674 | struct sem_undo *un; | |
1675 | ||
239521f3 | 1676 | assert_spin_locked(&ulp->lock); |
bf17bb71 NP |
1677 | |
1678 | un = __lookup_undo(ulp, semid); | |
1679 | if (un) { | |
1680 | list_del_rcu(&un->list_proc); | |
1681 | list_add_rcu(&un->list_proc, &ulp->list_proc); | |
1682 | } | |
1683 | return un; | |
1684 | } | |
1685 | ||
4daa28f6 | 1686 | /** |
8001c858 | 1687 | * find_alloc_undo - lookup (and if not present create) undo array |
4daa28f6 MS |
1688 | * @ns: namespace |
1689 | * @semid: semaphore array id | |
1690 | * | |
1691 | * The function looks up (and if not present creates) the undo structure. | |
1692 | * The size of the undo structure depends on the size of the semaphore | |
1693 | * array, thus the alloc path is not that straightforward. | |
380af1b3 MS |
1694 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
1695 | * performs a rcu_read_lock(). | |
4daa28f6 MS |
1696 | */ |
1697 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | |
1da177e4 LT |
1698 | { |
1699 | struct sem_array *sma; | |
1700 | struct sem_undo_list *ulp; | |
1701 | struct sem_undo *un, *new; | |
6062a8dc | 1702 | int nsems, error; |
1da177e4 LT |
1703 | |
1704 | error = get_undo_list(&ulp); | |
1705 | if (error) | |
1706 | return ERR_PTR(error); | |
1707 | ||
380af1b3 | 1708 | rcu_read_lock(); |
c530c6ac | 1709 | spin_lock(&ulp->lock); |
1da177e4 | 1710 | un = lookup_undo(ulp, semid); |
c530c6ac | 1711 | spin_unlock(&ulp->lock); |
239521f3 | 1712 | if (likely(un != NULL)) |
1da177e4 LT |
1713 | goto out; |
1714 | ||
1715 | /* no undo structure around - allocate one. */ | |
4daa28f6 | 1716 | /* step 1: figure out the size of the semaphore array */ |
16df3674 DB |
1717 | sma = sem_obtain_object_check(ns, semid); |
1718 | if (IS_ERR(sma)) { | |
1719 | rcu_read_unlock(); | |
4de85cd6 | 1720 | return ERR_CAST(sma); |
16df3674 | 1721 | } |
023a5355 | 1722 | |
1da177e4 | 1723 | nsems = sma->sem_nsems; |
6062a8dc RR |
1724 | if (!ipc_rcu_getref(sma)) { |
1725 | rcu_read_unlock(); | |
1726 | un = ERR_PTR(-EIDRM); | |
1727 | goto out; | |
1728 | } | |
16df3674 | 1729 | rcu_read_unlock(); |
1da177e4 | 1730 | |
4daa28f6 | 1731 | /* step 2: allocate new undo structure */ |
4668edc3 | 1732 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
1da177e4 | 1733 | if (!new) { |
53dad6d3 | 1734 | ipc_rcu_putref(sma, ipc_rcu_free); |
1da177e4 LT |
1735 | return ERR_PTR(-ENOMEM); |
1736 | } | |
1da177e4 | 1737 | |
380af1b3 | 1738 | /* step 3: Acquire the lock on semaphore array */ |
4091fd94 | 1739 | rcu_read_lock(); |
6ff37972 | 1740 | sem_lock_and_putref(sma); |
0f3d2b01 | 1741 | if (!ipc_valid_object(&sma->sem_perm)) { |
6062a8dc | 1742 | sem_unlock(sma, -1); |
6d49dab8 | 1743 | rcu_read_unlock(); |
1da177e4 LT |
1744 | kfree(new); |
1745 | un = ERR_PTR(-EIDRM); | |
1746 | goto out; | |
1747 | } | |
380af1b3 MS |
1748 | spin_lock(&ulp->lock); |
1749 | ||
1750 | /* | |
1751 | * step 4: check for races: did someone else allocate the undo struct? | |
1752 | */ | |
1753 | un = lookup_undo(ulp, semid); | |
1754 | if (un) { | |
1755 | kfree(new); | |
1756 | goto success; | |
1757 | } | |
4daa28f6 MS |
1758 | /* step 5: initialize & link new undo structure */ |
1759 | new->semadj = (short *) &new[1]; | |
380af1b3 | 1760 | new->ulp = ulp; |
4daa28f6 MS |
1761 | new->semid = semid; |
1762 | assert_spin_locked(&ulp->lock); | |
380af1b3 | 1763 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
cf9d5d78 | 1764 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1765 | list_add(&new->list_id, &sma->list_id); |
380af1b3 | 1766 | un = new; |
4daa28f6 | 1767 | |
380af1b3 | 1768 | success: |
c530c6ac | 1769 | spin_unlock(&ulp->lock); |
6062a8dc | 1770 | sem_unlock(sma, -1); |
1da177e4 LT |
1771 | out: |
1772 | return un; | |
1773 | } | |
1774 | ||
c61284e9 MS |
1775 | |
1776 | /** | |
8001c858 | 1777 | * get_queue_result - retrieve the result code from sem_queue |
c61284e9 MS |
1778 | * @q: Pointer to queue structure |
1779 | * | |
1780 | * Retrieve the return code from the pending queue. If IN_WAKEUP is found in | |
1781 | * q->status, then we must loop until the value is replaced with the final | |
1782 | * value: This may happen if a task is woken up by an unrelated event (e.g. | |
1783 | * signal) and in parallel the task is woken up by another task because it got | |
1784 | * the requested semaphores. | |
1785 | * | |
1786 | * The function can be called with or without holding the semaphore spinlock. | |
1787 | */ | |
1788 | static int get_queue_result(struct sem_queue *q) | |
1789 | { | |
1790 | int error; | |
1791 | ||
1792 | error = q->status; | |
1793 | while (unlikely(error == IN_WAKEUP)) { | |
1794 | cpu_relax(); | |
1795 | error = q->status; | |
1796 | } | |
1797 | ||
1798 | return error; | |
1799 | } | |
1800 | ||
d5460c99 HC |
1801 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
1802 | unsigned, nsops, const struct timespec __user *, timeout) | |
1da177e4 LT |
1803 | { |
1804 | int error = -EINVAL; | |
1805 | struct sem_array *sma; | |
1806 | struct sembuf fast_sops[SEMOPM_FAST]; | |
239521f3 | 1807 | struct sembuf *sops = fast_sops, *sop; |
1da177e4 | 1808 | struct sem_undo *un; |
6062a8dc | 1809 | int undos = 0, alter = 0, max, locknum; |
1da177e4 LT |
1810 | struct sem_queue queue; |
1811 | unsigned long jiffies_left = 0; | |
e3893534 | 1812 | struct ipc_namespace *ns; |
0a2b9d4c | 1813 | struct list_head tasks; |
e3893534 KK |
1814 | |
1815 | ns = current->nsproxy->ipc_ns; | |
1da177e4 LT |
1816 | |
1817 | if (nsops < 1 || semid < 0) | |
1818 | return -EINVAL; | |
e3893534 | 1819 | if (nsops > ns->sc_semopm) |
1da177e4 | 1820 | return -E2BIG; |
239521f3 MS |
1821 | if (nsops > SEMOPM_FAST) { |
1822 | sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); | |
1823 | if (sops == NULL) | |
1da177e4 LT |
1824 | return -ENOMEM; |
1825 | } | |
239521f3 MS |
1826 | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { |
1827 | error = -EFAULT; | |
1da177e4 LT |
1828 | goto out_free; |
1829 | } | |
1830 | if (timeout) { | |
1831 | struct timespec _timeout; | |
1832 | if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { | |
1833 | error = -EFAULT; | |
1834 | goto out_free; | |
1835 | } | |
1836 | if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || | |
1837 | _timeout.tv_nsec >= 1000000000L) { | |
1838 | error = -EINVAL; | |
1839 | goto out_free; | |
1840 | } | |
1841 | jiffies_left = timespec_to_jiffies(&_timeout); | |
1842 | } | |
1843 | max = 0; | |
1844 | for (sop = sops; sop < sops + nsops; sop++) { | |
1845 | if (sop->sem_num >= max) | |
1846 | max = sop->sem_num; | |
1847 | if (sop->sem_flg & SEM_UNDO) | |
b78755ab MS |
1848 | undos = 1; |
1849 | if (sop->sem_op != 0) | |
1da177e4 LT |
1850 | alter = 1; |
1851 | } | |
1da177e4 | 1852 | |
6062a8dc RR |
1853 | INIT_LIST_HEAD(&tasks); |
1854 | ||
1da177e4 | 1855 | if (undos) { |
6062a8dc | 1856 | /* On success, find_alloc_undo takes the rcu_read_lock */ |
4daa28f6 | 1857 | un = find_alloc_undo(ns, semid); |
1da177e4 LT |
1858 | if (IS_ERR(un)) { |
1859 | error = PTR_ERR(un); | |
1860 | goto out_free; | |
1861 | } | |
6062a8dc | 1862 | } else { |
1da177e4 | 1863 | un = NULL; |
6062a8dc RR |
1864 | rcu_read_lock(); |
1865 | } | |
1da177e4 | 1866 | |
16df3674 | 1867 | sma = sem_obtain_object_check(ns, semid); |
023a5355 | 1868 | if (IS_ERR(sma)) { |
6062a8dc | 1869 | rcu_read_unlock(); |
023a5355 | 1870 | error = PTR_ERR(sma); |
1da177e4 | 1871 | goto out_free; |
023a5355 ND |
1872 | } |
1873 | ||
16df3674 | 1874 | error = -EFBIG; |
c728b9c8 LT |
1875 | if (max >= sma->sem_nsems) |
1876 | goto out_rcu_wakeup; | |
16df3674 DB |
1877 | |
1878 | error = -EACCES; | |
c728b9c8 LT |
1879 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) |
1880 | goto out_rcu_wakeup; | |
16df3674 DB |
1881 | |
1882 | error = security_sem_semop(sma, sops, nsops, alter); | |
c728b9c8 LT |
1883 | if (error) |
1884 | goto out_rcu_wakeup; | |
16df3674 | 1885 | |
6e224f94 MS |
1886 | error = -EIDRM; |
1887 | locknum = sem_lock(sma, sops, nsops); | |
0f3d2b01 RA |
1888 | /* |
1889 | * We eventually might perform the following check in a lockless | |
1890 | * fashion, considering ipc_valid_object() locking constraints. | |
1891 | * If nsops == 1 and there is no contention for sem_perm.lock, then | |
1892 | * only a per-semaphore lock is held and it's OK to proceed with the | |
1893 | * check below. More details on the fine grained locking scheme | |
1894 | * entangled here and why it's RMID race safe on comments at sem_lock() | |
1895 | */ | |
1896 | if (!ipc_valid_object(&sma->sem_perm)) | |
6e224f94 | 1897 | goto out_unlock_free; |
1da177e4 | 1898 | /* |
4daa28f6 | 1899 | * semid identifiers are not unique - find_alloc_undo may have |
1da177e4 | 1900 | * allocated an undo structure, it was invalidated by an RMID |
4daa28f6 | 1901 | * and now a new array with received the same id. Check and fail. |
25985edc | 1902 | * This case can be detected checking un->semid. The existence of |
380af1b3 | 1903 | * "un" itself is guaranteed by rcu. |
1da177e4 | 1904 | */ |
6062a8dc RR |
1905 | if (un && un->semid == -1) |
1906 | goto out_unlock_free; | |
4daa28f6 | 1907 | |
d198cd6d MS |
1908 | queue.sops = sops; |
1909 | queue.nsops = nsops; | |
1910 | queue.undo = un; | |
1911 | queue.pid = task_tgid_vnr(current); | |
1912 | queue.alter = alter; | |
1913 | ||
1914 | error = perform_atomic_semop(sma, &queue); | |
0e8c6656 MS |
1915 | if (error == 0) { |
1916 | /* If the operation was successful, then do | |
1917 | * the required updates. | |
1918 | */ | |
1919 | if (alter) | |
0a2b9d4c | 1920 | do_smart_update(sma, sops, nsops, 1, &tasks); |
0e8c6656 MS |
1921 | else |
1922 | set_semotime(sma, sops); | |
1da177e4 | 1923 | } |
0e8c6656 MS |
1924 | if (error <= 0) |
1925 | goto out_unlock_free; | |
1da177e4 LT |
1926 | |
1927 | /* We need to sleep on this operation, so we put the current | |
1928 | * task into the pending queue and go to sleep. | |
1929 | */ | |
46c0a8ca | 1930 | |
b97e820f MS |
1931 | if (nsops == 1) { |
1932 | struct sem *curr; | |
1933 | curr = &sma->sem_base[sops->sem_num]; | |
1934 | ||
f269f40a MS |
1935 | if (alter) { |
1936 | if (sma->complex_count) { | |
1937 | list_add_tail(&queue.list, | |
1938 | &sma->pending_alter); | |
1939 | } else { | |
1940 | ||
1941 | list_add_tail(&queue.list, | |
1942 | &curr->pending_alter); | |
1943 | } | |
1944 | } else { | |
1a82e9e1 | 1945 | list_add_tail(&queue.list, &curr->pending_const); |
f269f40a | 1946 | } |
b97e820f | 1947 | } else { |
f269f40a MS |
1948 | if (!sma->complex_count) |
1949 | merge_queues(sma); | |
1950 | ||
9f1bc2c9 | 1951 | if (alter) |
1a82e9e1 | 1952 | list_add_tail(&queue.list, &sma->pending_alter); |
9f1bc2c9 | 1953 | else |
1a82e9e1 MS |
1954 | list_add_tail(&queue.list, &sma->pending_const); |
1955 | ||
b97e820f MS |
1956 | sma->complex_count++; |
1957 | } | |
1958 | ||
1da177e4 LT |
1959 | queue.status = -EINTR; |
1960 | queue.sleeper = current; | |
0b0577f6 MS |
1961 | |
1962 | sleep_again: | |
52644c9a | 1963 | __set_current_state(TASK_INTERRUPTIBLE); |
6062a8dc | 1964 | sem_unlock(sma, locknum); |
6d49dab8 | 1965 | rcu_read_unlock(); |
1da177e4 LT |
1966 | |
1967 | if (timeout) | |
1968 | jiffies_left = schedule_timeout(jiffies_left); | |
1969 | else | |
1970 | schedule(); | |
1971 | ||
c61284e9 | 1972 | error = get_queue_result(&queue); |
1da177e4 LT |
1973 | |
1974 | if (error != -EINTR) { | |
1975 | /* fast path: update_queue already obtained all requested | |
c61284e9 MS |
1976 | * resources. |
1977 | * Perform a smp_mb(): User space could assume that semop() | |
1978 | * is a memory barrier: Without the mb(), the cpu could | |
1979 | * speculatively read in user space stale data that was | |
1980 | * overwritten by the previous owner of the semaphore. | |
1981 | */ | |
1982 | smp_mb(); | |
1983 | ||
1da177e4 LT |
1984 | goto out_free; |
1985 | } | |
1986 | ||
321310ce | 1987 | rcu_read_lock(); |
6062a8dc | 1988 | sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); |
d694ad62 MS |
1989 | |
1990 | /* | |
1991 | * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. | |
1992 | */ | |
1993 | error = get_queue_result(&queue); | |
1994 | ||
1995 | /* | |
1996 | * Array removed? If yes, leave without sem_unlock(). | |
1997 | */ | |
023a5355 | 1998 | if (IS_ERR(sma)) { |
321310ce | 1999 | rcu_read_unlock(); |
1da177e4 LT |
2000 | goto out_free; |
2001 | } | |
2002 | ||
c61284e9 | 2003 | |
1da177e4 | 2004 | /* |
d694ad62 MS |
2005 | * If queue.status != -EINTR we are woken up by another process. |
2006 | * Leave without unlink_queue(), but with sem_unlock(). | |
1da177e4 | 2007 | */ |
3ab08fe2 | 2008 | if (error != -EINTR) |
1da177e4 | 2009 | goto out_unlock_free; |
1da177e4 LT |
2010 | |
2011 | /* | |
2012 | * If an interrupt occurred we have to clean up the queue | |
2013 | */ | |
2014 | if (timeout && jiffies_left == 0) | |
2015 | error = -EAGAIN; | |
0b0577f6 MS |
2016 | |
2017 | /* | |
2018 | * If the wakeup was spurious, just retry | |
2019 | */ | |
2020 | if (error == -EINTR && !signal_pending(current)) | |
2021 | goto sleep_again; | |
2022 | ||
b97e820f | 2023 | unlink_queue(sma, &queue); |
1da177e4 LT |
2024 | |
2025 | out_unlock_free: | |
6062a8dc | 2026 | sem_unlock(sma, locknum); |
c728b9c8 | 2027 | out_rcu_wakeup: |
6d49dab8 | 2028 | rcu_read_unlock(); |
0a2b9d4c | 2029 | wake_up_sem_queue_do(&tasks); |
1da177e4 | 2030 | out_free: |
239521f3 | 2031 | if (sops != fast_sops) |
1da177e4 LT |
2032 | kfree(sops); |
2033 | return error; | |
2034 | } | |
2035 | ||
d5460c99 HC |
2036 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
2037 | unsigned, nsops) | |
1da177e4 LT |
2038 | { |
2039 | return sys_semtimedop(semid, tsops, nsops, NULL); | |
2040 | } | |
2041 | ||
2042 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | |
2043 | * parent and child tasks. | |
1da177e4 LT |
2044 | */ |
2045 | ||
2046 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | |
2047 | { | |
2048 | struct sem_undo_list *undo_list; | |
2049 | int error; | |
2050 | ||
2051 | if (clone_flags & CLONE_SYSVSEM) { | |
2052 | error = get_undo_list(&undo_list); | |
2053 | if (error) | |
2054 | return error; | |
1da177e4 LT |
2055 | atomic_inc(&undo_list->refcnt); |
2056 | tsk->sysvsem.undo_list = undo_list; | |
46c0a8ca | 2057 | } else |
1da177e4 LT |
2058 | tsk->sysvsem.undo_list = NULL; |
2059 | ||
2060 | return 0; | |
2061 | } | |
2062 | ||
2063 | /* | |
2064 | * add semadj values to semaphores, free undo structures. | |
2065 | * undo structures are not freed when semaphore arrays are destroyed | |
2066 | * so some of them may be out of date. | |
2067 | * IMPLEMENTATION NOTE: There is some confusion over whether the | |
2068 | * set of adjustments that needs to be done should be done in an atomic | |
2069 | * manner or not. That is, if we are attempting to decrement the semval | |
2070 | * should we queue up and wait until we can do so legally? | |
2071 | * The original implementation attempted to do this (queue and wait). | |
2072 | * The current implementation does not do so. The POSIX standard | |
2073 | * and SVID should be consulted to determine what behavior is mandated. | |
2074 | */ | |
2075 | void exit_sem(struct task_struct *tsk) | |
2076 | { | |
4daa28f6 | 2077 | struct sem_undo_list *ulp; |
1da177e4 | 2078 | |
4daa28f6 MS |
2079 | ulp = tsk->sysvsem.undo_list; |
2080 | if (!ulp) | |
1da177e4 | 2081 | return; |
9edff4ab | 2082 | tsk->sysvsem.undo_list = NULL; |
1da177e4 | 2083 | |
4daa28f6 | 2084 | if (!atomic_dec_and_test(&ulp->refcnt)) |
1da177e4 LT |
2085 | return; |
2086 | ||
380af1b3 | 2087 | for (;;) { |
1da177e4 | 2088 | struct sem_array *sma; |
380af1b3 | 2089 | struct sem_undo *un; |
0a2b9d4c | 2090 | struct list_head tasks; |
6062a8dc | 2091 | int semid, i; |
4daa28f6 | 2092 | |
380af1b3 | 2093 | rcu_read_lock(); |
05725f7e JP |
2094 | un = list_entry_rcu(ulp->list_proc.next, |
2095 | struct sem_undo, list_proc); | |
602b8593 HK |
2096 | if (&un->list_proc == &ulp->list_proc) { |
2097 | /* | |
2098 | * We must wait for freeary() before freeing this ulp, | |
2099 | * in case we raced with last sem_undo. There is a small | |
2100 | * possibility where we exit while freeary() didn't | |
2101 | * finish unlocking sem_undo_list. | |
2102 | */ | |
2103 | spin_unlock_wait(&ulp->lock); | |
2104 | rcu_read_unlock(); | |
2105 | break; | |
2106 | } | |
2107 | spin_lock(&ulp->lock); | |
2108 | semid = un->semid; | |
2109 | spin_unlock(&ulp->lock); | |
4daa28f6 | 2110 | |
602b8593 | 2111 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2112 | if (semid == -1) { |
2113 | rcu_read_unlock(); | |
602b8593 | 2114 | continue; |
6062a8dc | 2115 | } |
1da177e4 | 2116 | |
602b8593 | 2117 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); |
380af1b3 | 2118 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2119 | if (IS_ERR(sma)) { |
2120 | rcu_read_unlock(); | |
380af1b3 | 2121 | continue; |
6062a8dc | 2122 | } |
1da177e4 | 2123 | |
6062a8dc | 2124 | sem_lock(sma, NULL, -1); |
6e224f94 | 2125 | /* exit_sem raced with IPC_RMID, nothing to do */ |
0f3d2b01 | 2126 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
2127 | sem_unlock(sma, -1); |
2128 | rcu_read_unlock(); | |
2129 | continue; | |
2130 | } | |
bf17bb71 | 2131 | un = __lookup_undo(ulp, semid); |
380af1b3 MS |
2132 | if (un == NULL) { |
2133 | /* exit_sem raced with IPC_RMID+semget() that created | |
2134 | * exactly the same semid. Nothing to do. | |
2135 | */ | |
6062a8dc | 2136 | sem_unlock(sma, -1); |
6d49dab8 | 2137 | rcu_read_unlock(); |
380af1b3 MS |
2138 | continue; |
2139 | } | |
2140 | ||
2141 | /* remove un from the linked lists */ | |
cf9d5d78 | 2142 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 MS |
2143 | list_del(&un->list_id); |
2144 | ||
a9795584 HK |
2145 | /* we are the last process using this ulp, acquiring ulp->lock |
2146 | * isn't required. Besides that, we are also protected against | |
2147 | * IPC_RMID as we hold sma->sem_perm lock now | |
2148 | */ | |
380af1b3 | 2149 | list_del_rcu(&un->list_proc); |
380af1b3 | 2150 | |
4daa28f6 MS |
2151 | /* perform adjustments registered in un */ |
2152 | for (i = 0; i < sma->sem_nsems; i++) { | |
239521f3 | 2153 | struct sem *semaphore = &sma->sem_base[i]; |
4daa28f6 MS |
2154 | if (un->semadj[i]) { |
2155 | semaphore->semval += un->semadj[i]; | |
1da177e4 LT |
2156 | /* |
2157 | * Range checks of the new semaphore value, | |
2158 | * not defined by sus: | |
2159 | * - Some unices ignore the undo entirely | |
2160 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) | |
2161 | * - some cap the value (e.g. FreeBSD caps | |
2162 | * at 0, but doesn't enforce SEMVMX) | |
2163 | * | |
2164 | * Linux caps the semaphore value, both at 0 | |
2165 | * and at SEMVMX. | |
2166 | * | |
239521f3 | 2167 | * Manfred <[email protected]> |
1da177e4 | 2168 | */ |
5f921ae9 IM |
2169 | if (semaphore->semval < 0) |
2170 | semaphore->semval = 0; | |
2171 | if (semaphore->semval > SEMVMX) | |
2172 | semaphore->semval = SEMVMX; | |
b488893a | 2173 | semaphore->sempid = task_tgid_vnr(current); |
1da177e4 LT |
2174 | } |
2175 | } | |
1da177e4 | 2176 | /* maybe some queued-up processes were waiting for this */ |
0a2b9d4c MS |
2177 | INIT_LIST_HEAD(&tasks); |
2178 | do_smart_update(sma, NULL, 0, 1, &tasks); | |
6062a8dc | 2179 | sem_unlock(sma, -1); |
6d49dab8 | 2180 | rcu_read_unlock(); |
0a2b9d4c | 2181 | wake_up_sem_queue_do(&tasks); |
380af1b3 | 2182 | |
693a8b6e | 2183 | kfree_rcu(un, rcu); |
1da177e4 | 2184 | } |
4daa28f6 | 2185 | kfree(ulp); |
1da177e4 LT |
2186 | } |
2187 | ||
2188 | #ifdef CONFIG_PROC_FS | |
19b4946c | 2189 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
1da177e4 | 2190 | { |
1efdb69b | 2191 | struct user_namespace *user_ns = seq_user_ns(s); |
19b4946c | 2192 | struct sem_array *sma = it; |
d12e1e50 MS |
2193 | time_t sem_otime; |
2194 | ||
d8c63376 MS |
2195 | /* |
2196 | * The proc interface isn't aware of sem_lock(), it calls | |
2197 | * ipc_lock_object() directly (in sysvipc_find_ipc). | |
2198 | * In order to stay compatible with sem_lock(), we must wait until | |
2199 | * all simple semop() calls have left their critical regions. | |
2200 | */ | |
2201 | sem_wait_array(sma); | |
2202 | ||
d12e1e50 | 2203 | sem_otime = get_semotime(sma); |
19b4946c | 2204 | |
7f032d6e JP |
2205 | seq_printf(s, |
2206 | "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", | |
2207 | sma->sem_perm.key, | |
2208 | sma->sem_perm.id, | |
2209 | sma->sem_perm.mode, | |
2210 | sma->sem_nsems, | |
2211 | from_kuid_munged(user_ns, sma->sem_perm.uid), | |
2212 | from_kgid_munged(user_ns, sma->sem_perm.gid), | |
2213 | from_kuid_munged(user_ns, sma->sem_perm.cuid), | |
2214 | from_kgid_munged(user_ns, sma->sem_perm.cgid), | |
2215 | sem_otime, | |
2216 | sma->sem_ctime); | |
2217 | ||
2218 | return 0; | |
1da177e4 LT |
2219 | } |
2220 | #endif |