]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | Madge Horizon ATM Adapter driver. | |
3 | Copyright (C) 1995-1999 Madge Networks Ltd. | |
4 | ||
5 | This program is free software; you can redistribute it and/or modify | |
6 | it under the terms of the GNU General Public License as published by | |
7 | the Free Software Foundation; either version 2 of the License, or | |
8 | (at your option) any later version. | |
9 | ||
10 | This program is distributed in the hope that it will be useful, | |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | GNU General Public License for more details. | |
14 | ||
15 | You should have received a copy of the GNU General Public License | |
16 | along with this program; if not, write to the Free Software | |
17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
18 | ||
19 | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian | |
20 | system and in the file COPYING in the Linux kernel source. | |
21 | */ | |
22 | ||
23 | /* | |
24 | IMPORTANT NOTE: Madge Networks no longer makes the adapters | |
25 | supported by this driver and makes no commitment to maintain it. | |
26 | */ | |
27 | ||
28 | #include <linux/module.h> | |
29 | #include <linux/kernel.h> | |
30 | #include <linux/mm.h> | |
31 | #include <linux/pci.h> | |
32 | #include <linux/errno.h> | |
33 | #include <linux/atm.h> | |
34 | #include <linux/atmdev.h> | |
35 | #include <linux/sonet.h> | |
36 | #include <linux/skbuff.h> | |
37 | #include <linux/time.h> | |
38 | #include <linux/delay.h> | |
39 | #include <linux/uio.h> | |
40 | #include <linux/init.h> | |
41 | #include <linux/ioport.h> | |
42 | #include <linux/wait.h> | |
5a0e3ad6 | 43 | #include <linux/slab.h> |
1da177e4 LT |
44 | |
45 | #include <asm/system.h> | |
46 | #include <asm/io.h> | |
47 | #include <asm/atomic.h> | |
48 | #include <asm/uaccess.h> | |
49 | #include <asm/string.h> | |
50 | #include <asm/byteorder.h> | |
51 | ||
52 | #include "horizon.h" | |
53 | ||
54 | #define maintainer_string "Giuliano Procida at Madge Networks <[email protected]>" | |
55 | #define description_string "Madge ATM Horizon [Ultra] driver" | |
56 | #define version_string "1.2.1" | |
57 | ||
58 | static inline void __init show_version (void) { | |
59 | printk ("%s version %s\n", description_string, version_string); | |
60 | } | |
61 | ||
62 | /* | |
63 | ||
64 | CREDITS | |
65 | ||
66 | Driver and documentation by: | |
67 | ||
68 | Chris Aston Madge Networks | |
69 | Giuliano Procida Madge Networks | |
70 | Simon Benham Madge Networks | |
71 | Simon Johnson Madge Networks | |
72 | Various Others Madge Networks | |
73 | ||
74 | Some inspiration taken from other drivers by: | |
75 | ||
76 | Alexandru Cucos UTBv | |
77 | Kari Mettinen University of Helsinki | |
78 | Werner Almesberger EPFL LRC | |
79 | ||
80 | Theory of Operation | |
81 | ||
82 | I Hardware, detection, initialisation and shutdown. | |
83 | ||
84 | 1. Supported Hardware | |
85 | ||
86 | This driver should handle all variants of the PCI Madge ATM adapters | |
87 | with the Horizon chipset. These are all PCI cards supporting PIO, BM | |
88 | DMA and a form of MMIO (registers only, not internal RAM). | |
89 | ||
90 | The driver is only known to work with SONET and UTP Horizon Ultra | |
91 | cards at 155Mb/s. However, code is in place to deal with both the | |
92 | original Horizon and 25Mb/s operation. | |
93 | ||
94 | There are two revisions of the Horizon ASIC: the original and the | |
95 | Ultra. Details of hardware bugs are in section III. | |
96 | ||
97 | The ASIC version can be distinguished by chip markings but is NOT | |
98 | indicated by the PCI revision (all adapters seem to have PCI rev 1). | |
99 | ||
100 | I believe that: | |
101 | ||
102 | Horizon => Collage 25 PCI Adapter (UTP and STP) | |
103 | Horizon Ultra => Collage 155 PCI Client (UTP or SONET) | |
104 | Ambassador x => Collage 155 PCI Server (completely different) | |
105 | ||
106 | Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to | |
107 | have a Madge B154 plus glue logic serializer. I have also found a | |
108 | really ancient version of this with slightly different glue. It | |
109 | comes with the revision 0 (140-025-01) ASIC. | |
110 | ||
111 | Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink | |
112 | output (UTP) or an HP HFBR 5205 output (SONET). It has either | |
113 | Madge's SAMBA framer or a SUNI-lite device (early versions). It | |
114 | comes with the revision 1 (140-027-01) ASIC. | |
115 | ||
116 | 2. Detection | |
117 | ||
118 | All Horizon-based cards present with the same PCI Vendor and Device | |
119 | IDs. The standard Linux 2.2 PCI API is used to locate any cards and | |
120 | to enable bus-mastering (with appropriate latency). | |
121 | ||
122 | ATM_LAYER_STATUS in the control register distinguishes between the | |
123 | two possible physical layers (25 and 155). It is not clear whether | |
124 | the 155 cards can also operate at 25Mbps. We rely on the fact that a | |
125 | card operates at 155 if and only if it has the newer Horizon Ultra | |
126 | ASIC. | |
127 | ||
128 | For 155 cards the two possible framers are probed for and then set | |
129 | up for loop-timing. | |
130 | ||
131 | 3. Initialisation | |
132 | ||
133 | The card is reset and then put into a known state. The physical | |
134 | layer is configured for normal operation at the appropriate speed; | |
135 | in the case of the 155 cards, the framer is initialised with | |
136 | line-based timing; the internal RAM is zeroed and the allocation of | |
137 | buffers for RX and TX is made; the Burnt In Address is read and | |
138 | copied to the ATM ESI; various policy settings for RX (VPI bits, | |
139 | unknown VCs, oam cells) are made. Ideally all policy items should be | |
140 | configurable at module load (if not actually on-demand), however, | |
141 | only the vpi vs vci bit allocation can be specified at insmod. | |
142 | ||
143 | 4. Shutdown | |
144 | ||
145 | This is in response to module_cleaup. No VCs are in use and the card | |
146 | should be idle; it is reset. | |
147 | ||
148 | II Driver software (as it should be) | |
149 | ||
150 | 0. Traffic Parameters | |
151 | ||
152 | The traffic classes (not an enumeration) are currently: ATM_NONE (no | |
153 | traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS | |
154 | (compatible with everything). Together with (perhaps only some of) | |
155 | the following items they make up the traffic specification. | |
156 | ||
157 | struct atm_trafprm { | |
158 | unsigned char traffic_class; traffic class (ATM_UBR, ...) | |
159 | int max_pcr; maximum PCR in cells per second | |
160 | int pcr; desired PCR in cells per second | |
161 | int min_pcr; minimum PCR in cells per second | |
162 | int max_cdv; maximum CDV in microseconds | |
163 | int max_sdu; maximum SDU in bytes | |
164 | }; | |
165 | ||
166 | Note that these denote bandwidth available not bandwidth used; the | |
167 | possibilities according to ATMF are: | |
168 | ||
169 | Real Time (cdv and max CDT given) | |
170 | ||
171 | CBR(pcr) pcr bandwidth always available | |
172 | rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too | |
173 | ||
174 | Non Real Time | |
175 | ||
176 | nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too | |
177 | UBR() | |
178 | ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too | |
179 | ||
180 | mbs is max burst size (bucket) | |
181 | pcr and scr have associated cdvt values | |
182 | mcr is like scr but has no cdtv | |
183 | cdtv may differ at each hop | |
184 | ||
185 | Some of the above items are qos items (as opposed to traffic | |
186 | parameters). We have nothing to do with qos. All except ABR can have | |
187 | their traffic parameters converted to GCRA parameters. The GCRA may | |
188 | be implemented as a (real-number) leaky bucket. The GCRA can be used | |
189 | in complicated ways by switches and in simpler ways by end-stations. | |
190 | It can be used both to filter incoming cells and shape out-going | |
191 | cells. | |
192 | ||
193 | ATM Linux actually supports: | |
194 | ||
195 | ATM_NONE() (no traffic in this direction) | |
196 | ATM_UBR(max_frame_size) | |
197 | ATM_CBR(max/min_pcr, max_cdv, max_frame_size) | |
198 | ||
199 | 0 or ATM_MAX_PCR are used to indicate maximum available PCR | |
200 | ||
201 | A traffic specification consists of the AAL type and separate | |
202 | traffic specifications for either direction. In ATM Linux it is: | |
203 | ||
204 | struct atm_qos { | |
205 | struct atm_trafprm txtp; | |
206 | struct atm_trafprm rxtp; | |
207 | unsigned char aal; | |
208 | }; | |
209 | ||
210 | AAL types are: | |
211 | ||
212 | ATM_NO_AAL AAL not specified | |
213 | ATM_AAL0 "raw" ATM cells | |
214 | ATM_AAL1 AAL1 (CBR) | |
215 | ATM_AAL2 AAL2 (VBR) | |
216 | ATM_AAL34 AAL3/4 (data) | |
217 | ATM_AAL5 AAL5 (data) | |
218 | ATM_SAAL signaling AAL | |
219 | ||
220 | The Horizon has support for AAL frame types: 0, 3/4 and 5. However, | |
221 | it does not implement AAL 3/4 SAR and it has a different notion of | |
222 | "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are | |
223 | supported by this driver. | |
224 | ||
225 | The Horizon has limited support for ABR (including UBR), VBR and | |
226 | CBR. Each TX channel has a bucket (containing up to 31 cell units) | |
227 | and two timers (PCR and SCR) associated with it that can be used to | |
228 | govern cell emissions and host notification (in the case of ABR this | |
229 | is presumably so that RM cells may be emitted at appropriate times). | |
230 | The timers may either be disabled or may be set to any of 240 values | |
231 | (determined by the clock crystal, a fixed (?) per-device divider, a | |
232 | configurable divider and a configurable timer preload value). | |
233 | ||
234 | At the moment only UBR and CBR are supported by the driver. VBR will | |
235 | be supported as soon as ATM for Linux supports it. ABR support is | |
236 | very unlikely as RM cell handling is completely up to the driver. | |
237 | ||
238 | 1. TX (TX channel setup and TX transfer) | |
239 | ||
240 | The TX half of the driver owns the TX Horizon registers. The TX | |
241 | component in the IRQ handler is the BM completion handler. This can | |
242 | only be entered when tx_busy is true (enforced by hardware). The | |
243 | other TX component can only be entered when tx_busy is false | |
244 | (enforced by driver). So TX is single-threaded. | |
245 | ||
246 | Apart from a minor optimisation to not re-select the last channel, | |
247 | the TX send component works as follows: | |
248 | ||
249 | Atomic test and set tx_busy until we succeed; we should implement | |
250 | some sort of timeout so that tx_busy will never be stuck at true. | |
251 | ||
252 | If no TX channel is set up for this VC we wait for an idle one (if | |
253 | necessary) and set it up. | |
254 | ||
255 | At this point we have a TX channel ready for use. We wait for enough | |
256 | buffers to become available then start a TX transmit (set the TX | |
257 | descriptor, schedule transfer, exit). | |
258 | ||
259 | The IRQ component handles TX completion (stats, free buffer, tx_busy | |
260 | unset, exit). We also re-schedule further transfers for the same | |
261 | frame if needed. | |
262 | ||
263 | TX setup in more detail: | |
264 | ||
265 | TX open is a nop, the relevant information is held in the hrz_vcc | |
266 | (vcc->dev_data) structure and is "cached" on the card. | |
267 | ||
268 | TX close gets the TX lock and clears the channel from the "cache". | |
269 | ||
270 | 2. RX (Data Available and RX transfer) | |
271 | ||
272 | The RX half of the driver owns the RX registers. There are two RX | |
273 | components in the IRQ handler: the data available handler deals with | |
274 | fresh data that has arrived on the card, the BM completion handler | |
275 | is very similar to the TX completion handler. The data available | |
276 | handler grabs the rx_lock and it is only released once the data has | |
277 | been discarded or completely transferred to the host. The BM | |
278 | completion handler only runs when the lock is held; the data | |
279 | available handler is locked out over the same period. | |
280 | ||
281 | Data available on the card triggers an interrupt. If the data is not | |
282 | suitable for our existing RX channels or we cannot allocate a buffer | |
283 | it is flushed. Otherwise an RX receive is scheduled. Multiple RX | |
284 | transfers may be scheduled for the same frame. | |
285 | ||
286 | RX setup in more detail: | |
287 | ||
288 | RX open... | |
289 | RX close... | |
290 | ||
291 | III Hardware Bugs | |
292 | ||
293 | 0. Byte vs Word addressing of adapter RAM. | |
294 | ||
295 | A design feature; see the .h file (especially the memory map). | |
296 | ||
297 | 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) | |
298 | ||
299 | The host must not start a transmit direction transfer at a | |
300 | non-four-byte boundary in host memory. Instead the host should | |
301 | perform a byte, or a two byte, or one byte followed by two byte | |
302 | transfer in order to start the rest of the transfer on a four byte | |
303 | boundary. RX is OK. | |
304 | ||
305 | Simultaneous transmit and receive direction bus master transfers are | |
306 | not allowed. | |
307 | ||
308 | The simplest solution to these two is to always do PIO (never DMA) | |
309 | in the TX direction on the original Horizon. More complicated | |
310 | solutions are likely to hurt my brain. | |
311 | ||
312 | 2. Loss of buffer on close VC | |
313 | ||
314 | When a VC is being closed, the buffer associated with it is not | |
315 | returned to the pool. The host must store the reference to this | |
316 | buffer and when opening a new VC then give it to that new VC. | |
317 | ||
318 | The host intervention currently consists of stacking such a buffer | |
319 | pointer at VC close and checking the stack at VC open. | |
320 | ||
321 | 3. Failure to close a VC | |
322 | ||
323 | If a VC is currently receiving a frame then closing the VC may fail | |
324 | and the frame continues to be received. | |
325 | ||
326 | The solution is to make sure any received frames are flushed when | |
327 | ready. This is currently done just before the solution to 2. | |
328 | ||
329 | 4. PCI bus (original Horizon only, fixed in Ultra) | |
330 | ||
331 | Reading from the data port prior to initialisation will hang the PCI | |
332 | bus. Just don't do that then! We don't. | |
333 | ||
334 | IV To Do List | |
335 | ||
336 | . Timer code may be broken. | |
337 | ||
338 | . Allow users to specify buffer allocation split for TX and RX. | |
339 | ||
340 | . Deal once and for all with buggy VC close. | |
341 | ||
342 | . Handle interrupted and/or non-blocking operations. | |
343 | ||
344 | . Change some macros to functions and move from .h to .c. | |
345 | ||
346 | . Try to limit the number of TX frames each VC may have queued, in | |
347 | order to reduce the chances of TX buffer exhaustion. | |
348 | ||
349 | . Implement VBR (bucket and timers not understood) and ABR (need to | |
350 | do RM cells manually); also no Linux support for either. | |
351 | ||
352 | . Implement QoS changes on open VCs (involves extracting parts of VC open | |
353 | and close into separate functions and using them to make changes). | |
354 | ||
355 | */ | |
356 | ||
357 | /********** globals **********/ | |
358 | ||
359 | static void do_housekeeping (unsigned long arg); | |
360 | ||
361 | static unsigned short debug = 0; | |
362 | static unsigned short vpi_bits = 0; | |
363 | static int max_tx_size = 9000; | |
364 | static int max_rx_size = 9000; | |
365 | static unsigned char pci_lat = 0; | |
366 | ||
367 | /********** access functions **********/ | |
368 | ||
369 | /* Read / Write Horizon registers */ | |
370 | static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { | |
371 | outl (cpu_to_le32 (data), dev->iobase + reg); | |
372 | } | |
373 | ||
374 | static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { | |
375 | return le32_to_cpu (inl (dev->iobase + reg)); | |
376 | } | |
377 | ||
378 | static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { | |
379 | outw (cpu_to_le16 (data), dev->iobase + reg); | |
380 | } | |
381 | ||
382 | static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { | |
383 | return le16_to_cpu (inw (dev->iobase + reg)); | |
384 | } | |
385 | ||
386 | static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | |
387 | outsb (dev->iobase + reg, addr, len); | |
388 | } | |
389 | ||
390 | static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | |
391 | insb (dev->iobase + reg, addr, len); | |
392 | } | |
393 | ||
394 | /* Read / Write to a given address in Horizon buffer memory. | |
395 | Interrupts must be disabled between the address register and data | |
396 | port accesses as these must form an atomic operation. */ | |
397 | static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { | |
398 | // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); | |
399 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | |
400 | wr_regl (dev, MEMORY_PORT_OFF, data); | |
401 | } | |
402 | ||
403 | static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { | |
404 | // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); | |
405 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | |
406 | return rd_regl (dev, MEMORY_PORT_OFF); | |
407 | } | |
408 | ||
409 | static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { | |
410 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); | |
411 | wr_regl (dev, MEMORY_PORT_OFF, data); | |
412 | } | |
413 | ||
414 | static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { | |
415 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); | |
416 | return rd_regl (dev, MEMORY_PORT_OFF); | |
417 | } | |
418 | ||
419 | /********** specialised access functions **********/ | |
420 | ||
421 | /* RX */ | |
422 | ||
423 | static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { | |
424 | wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); | |
425 | return; | |
426 | } | |
427 | ||
2cf83afe | 428 | static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { |
1da177e4 LT |
429 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) |
430 | ; | |
431 | return; | |
432 | } | |
433 | ||
434 | static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { | |
435 | wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); | |
436 | return; | |
437 | } | |
438 | ||
2cf83afe | 439 | static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { |
1da177e4 LT |
440 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) |
441 | ; | |
442 | return; | |
443 | } | |
444 | ||
445 | /* TX */ | |
446 | ||
447 | static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { | |
448 | wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); | |
449 | return; | |
450 | } | |
451 | ||
452 | /* Update or query one configuration parameter of a particular channel. */ | |
453 | ||
454 | static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { | |
455 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | |
456 | chan * TX_CHANNEL_CONFIG_MULT | mode); | |
457 | wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); | |
458 | return; | |
459 | } | |
460 | ||
461 | static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { | |
462 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | |
463 | chan * TX_CHANNEL_CONFIG_MULT | mode); | |
464 | return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); | |
465 | } | |
466 | ||
467 | /********** dump functions **********/ | |
468 | ||
469 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { | |
470 | #ifdef DEBUG_HORIZON | |
471 | unsigned int i; | |
472 | unsigned char * data = skb->data; | |
473 | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); | |
474 | for (i=0; i<skb->len && i < 256;i++) | |
475 | PRINTDM (DBG_DATA, "%02x ", data[i]); | |
476 | PRINTDE (DBG_DATA,""); | |
477 | #else | |
478 | (void) prefix; | |
479 | (void) vc; | |
480 | (void) skb; | |
481 | #endif | |
482 | return; | |
483 | } | |
484 | ||
485 | static inline void dump_regs (hrz_dev * dev) { | |
486 | #ifdef DEBUG_HORIZON | |
487 | PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); | |
488 | PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); | |
489 | PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); | |
490 | PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); | |
491 | PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); | |
492 | PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); | |
493 | #else | |
494 | (void) dev; | |
495 | #endif | |
496 | return; | |
497 | } | |
498 | ||
499 | static inline void dump_framer (hrz_dev * dev) { | |
500 | #ifdef DEBUG_HORIZON | |
501 | unsigned int i; | |
502 | PRINTDB (DBG_REGS, "framer registers:"); | |
503 | for (i = 0; i < 0x10; ++i) | |
504 | PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); | |
505 | PRINTDE (DBG_REGS,""); | |
506 | #else | |
507 | (void) dev; | |
508 | #endif | |
509 | return; | |
510 | } | |
511 | ||
512 | /********** VPI/VCI <-> (RX) channel conversions **********/ | |
513 | ||
514 | /* RX channels are 10 bit integers, these fns are quite paranoid */ | |
515 | ||
516 | static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { | |
517 | unsigned short vci_bits = 10 - vpi_bits; | |
518 | if ((channel & RX_CHANNEL_MASK) == channel) { | |
519 | *vci = channel & ((~0)<<vci_bits); | |
520 | *vpi = channel >> vci_bits; | |
521 | return channel ? 0 : -EINVAL; | |
522 | } | |
523 | return -EINVAL; | |
524 | } | |
525 | ||
526 | static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { | |
527 | unsigned short vci_bits = 10 - vpi_bits; | |
528 | if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { | |
529 | *channel = vpi<<vci_bits | vci; | |
530 | return *channel ? 0 : -EINVAL; | |
531 | } | |
532 | return -EINVAL; | |
533 | } | |
534 | ||
535 | /********** decode RX queue entries **********/ | |
536 | ||
537 | static inline u16 rx_q_entry_to_length (u32 x) { | |
538 | return x & RX_Q_ENTRY_LENGTH_MASK; | |
539 | } | |
540 | ||
541 | static inline u16 rx_q_entry_to_rx_channel (u32 x) { | |
542 | return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; | |
543 | } | |
544 | ||
545 | /* Cell Transmit Rate Values | |
546 | * | |
547 | * the cell transmit rate (cells per sec) can be set to a variety of | |
548 | * different values by specifying two parameters: a timer preload from | |
549 | * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of | |
550 | * an exponent from 0 to 14; the special value 15 disables the timer). | |
551 | * | |
552 | * cellrate = baserate / (preload * 2^divider) | |
553 | * | |
554 | * The maximum cell rate that can be specified is therefore just the | |
555 | * base rate. Halving the preload is equivalent to adding 1 to the | |
556 | * divider and so values 1 to 8 of the preload are redundant except | |
557 | * in the case of a maximal divider (14). | |
558 | * | |
559 | * Given a desired cell rate, an algorithm to determine the preload | |
560 | * and divider is: | |
561 | * | |
562 | * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) | |
563 | * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done | |
564 | * if x <= 16 then set p = x, d = 0 (high rates), done | |
565 | * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to | |
566 | * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until | |
567 | * we find the range (n will be between 1 and 14), set d = n | |
568 | * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n | |
569 | * | |
570 | * The algorithm used below is a minor variant of the above. | |
571 | * | |
572 | * The base rate is derived from the oscillator frequency (Hz) using a | |
573 | * fixed divider: | |
574 | * | |
575 | * baserate = freq / 32 in the case of some Unknown Card | |
576 | * baserate = freq / 8 in the case of the Horizon 25 | |
577 | * baserate = freq / 8 in the case of the Horizon Ultra 155 | |
578 | * | |
579 | * The Horizon cards have oscillators and base rates as follows: | |
580 | * | |
581 | * Card Oscillator Base Rate | |
582 | * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq) | |
583 | * Horizon 25 32 MHz 4 MHz | |
584 | * Horizon Ultra 155 40 MHz 5 MHz | |
585 | * | |
586 | * The following defines give the base rates in Hz. These were | |
587 | * previously a factor of 100 larger, no doubt someone was using | |
588 | * cps*100. | |
589 | */ | |
590 | ||
591 | #define BR_UKN 1031250l | |
592 | #define BR_HRZ 4000000l | |
593 | #define BR_ULT 5000000l | |
594 | ||
595 | // d is an exponent | |
596 | #define CR_MIND 0 | |
597 | #define CR_MAXD 14 | |
598 | ||
599 | // p ranges from 1 to a power of 2 | |
600 | #define CR_MAXPEXP 4 | |
601 | ||
602 | static int make_rate (const hrz_dev * dev, u32 c, rounding r, | |
603 | u16 * bits, unsigned int * actual) | |
604 | { | |
605 | // note: rounding the rate down means rounding 'p' up | |
606 | const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; | |
607 | ||
608 | u32 div = CR_MIND; | |
609 | u32 pre; | |
610 | ||
611 | // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in | |
612 | // the tests below. We could think harder about exact possibilities | |
613 | // of failure... | |
614 | ||
615 | unsigned long br_man = br; | |
616 | unsigned int br_exp = 0; | |
617 | ||
618 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, | |
619 | r == round_up ? "up" : r == round_down ? "down" : "nearest"); | |
620 | ||
621 | // avoid div by zero | |
622 | if (!c) { | |
623 | PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); | |
624 | return -EINVAL; | |
625 | } | |
626 | ||
627 | while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { | |
628 | br_man = br_man >> 1; | |
629 | ++br_exp; | |
630 | } | |
631 | // (br >>br_exp) <<br_exp == br and | |
632 | // br_exp <= CR_MAXPEXP+CR_MIND | |
633 | ||
634 | if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { | |
635 | // Equivalent to: B <= (c << (MAXPEXP+MIND)) | |
636 | // take care of rounding | |
637 | switch (r) { | |
638 | case round_down: | |
6a19309d | 639 | pre = DIV_ROUND_UP(br, c<<div); |
1da177e4 LT |
640 | // but p must be non-zero |
641 | if (!pre) | |
642 | pre = 1; | |
643 | break; | |
644 | case round_nearest: | |
8b97c7c2 | 645 | pre = DIV_ROUND_CLOSEST(br, c<<div); |
1da177e4 LT |
646 | // but p must be non-zero |
647 | if (!pre) | |
648 | pre = 1; | |
649 | break; | |
650 | default: /* round_up */ | |
651 | pre = br/(c<<div); | |
652 | // but p must be non-zero | |
653 | if (!pre) | |
654 | return -EINVAL; | |
655 | } | |
656 | PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); | |
657 | goto got_it; | |
658 | } | |
659 | ||
660 | // at this point we have | |
661 | // d == MIND and (c << (MAXPEXP+MIND)) < B | |
662 | while (div < CR_MAXD) { | |
663 | div++; | |
664 | if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { | |
665 | // Equivalent to: B <= (c << (MAXPEXP+d)) | |
666 | // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) | |
667 | // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP | |
668 | // MAXP/2 < B/c2^d <= MAXP | |
669 | // take care of rounding | |
670 | switch (r) { | |
671 | case round_down: | |
6a19309d | 672 | pre = DIV_ROUND_UP(br, c<<div); |
1da177e4 LT |
673 | break; |
674 | case round_nearest: | |
8b97c7c2 | 675 | pre = DIV_ROUND_CLOSEST(br, c<<div); |
1da177e4 LT |
676 | break; |
677 | default: /* round_up */ | |
678 | pre = br/(c<<div); | |
679 | } | |
680 | PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); | |
681 | goto got_it; | |
682 | } | |
683 | } | |
684 | // at this point we have | |
685 | // d == MAXD and (c << (MAXPEXP+MAXD)) < B | |
686 | // but we cannot go any higher | |
687 | // take care of rounding | |
688 | if (r == round_down) | |
689 | return -EINVAL; | |
690 | pre = 1 << CR_MAXPEXP; | |
691 | PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); | |
692 | got_it: | |
693 | // paranoia | |
694 | if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { | |
695 | PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", | |
696 | div, pre); | |
697 | return -EINVAL; | |
698 | } else { | |
699 | if (bits) | |
700 | *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); | |
701 | if (actual) { | |
6a19309d | 702 | *actual = DIV_ROUND_UP(br, pre<<div); |
1da177e4 LT |
703 | PRINTD (DBG_QOS, "actual rate: %u", *actual); |
704 | } | |
705 | return 0; | |
706 | } | |
707 | } | |
708 | ||
709 | static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, | |
710 | u16 * bit_pattern, unsigned int * actual) { | |
711 | unsigned int my_actual; | |
712 | ||
713 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", | |
714 | c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); | |
715 | ||
716 | if (!actual) | |
717 | // actual rate is not returned | |
718 | actual = &my_actual; | |
719 | ||
720 | if (make_rate (dev, c, round_nearest, bit_pattern, actual)) | |
721 | // should never happen as round_nearest always succeeds | |
722 | return -1; | |
723 | ||
724 | if (c - tol <= *actual && *actual <= c + tol) | |
725 | // within tolerance | |
726 | return 0; | |
727 | else | |
728 | // intolerant, try rounding instead | |
729 | return make_rate (dev, c, r, bit_pattern, actual); | |
730 | } | |
731 | ||
732 | /********** Listen on a VC **********/ | |
733 | ||
734 | static int hrz_open_rx (hrz_dev * dev, u16 channel) { | |
735 | // is there any guarantee that we don't get two simulataneous | |
736 | // identical calls of this function from different processes? yes | |
737 | // rate_lock | |
738 | unsigned long flags; | |
739 | u32 channel_type; // u16? | |
740 | ||
741 | u16 buf_ptr = RX_CHANNEL_IDLE; | |
742 | ||
743 | rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; | |
744 | ||
745 | PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); | |
746 | ||
747 | spin_lock_irqsave (&dev->mem_lock, flags); | |
748 | channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | |
749 | spin_unlock_irqrestore (&dev->mem_lock, flags); | |
750 | ||
751 | // very serious error, should never occur | |
752 | if (channel_type != RX_CHANNEL_DISABLED) { | |
753 | PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); | |
754 | return -EBUSY; // clean up? | |
755 | } | |
756 | ||
757 | // Give back spare buffer | |
758 | if (dev->noof_spare_buffers) { | |
759 | buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; | |
760 | PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); | |
761 | // should never occur | |
762 | if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { | |
763 | // but easy to recover from | |
764 | PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); | |
765 | buf_ptr = RX_CHANNEL_IDLE; | |
766 | } | |
767 | } else { | |
768 | PRINTD (DBG_VCC, "using IDLE buffer pointer"); | |
769 | } | |
770 | ||
771 | // Channel is currently disabled so change its status to idle | |
772 | ||
773 | // do we really need to save the flags again? | |
774 | spin_lock_irqsave (&dev->mem_lock, flags); | |
775 | ||
776 | wr_mem (dev, &rx_desc->wr_buf_type, | |
777 | buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); | |
778 | if (buf_ptr != RX_CHANNEL_IDLE) | |
779 | wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); | |
780 | ||
781 | spin_unlock_irqrestore (&dev->mem_lock, flags); | |
782 | ||
783 | // rxer->rate = make_rate (qos->peak_cells); | |
784 | ||
785 | PRINTD (DBG_FLOW, "hrz_open_rx ok"); | |
786 | ||
787 | return 0; | |
788 | } | |
789 | ||
790 | #if 0 | |
791 | /********** change vc rate for a given vc **********/ | |
792 | ||
793 | static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { | |
794 | rxer->rate = make_rate (qos->peak_cells); | |
795 | } | |
796 | #endif | |
797 | ||
798 | /********** free an skb (as per ATM device driver documentation) **********/ | |
799 | ||
2cf83afe | 800 | static void hrz_kfree_skb (struct sk_buff * skb) { |
1da177e4 LT |
801 | if (ATM_SKB(skb)->vcc->pop) { |
802 | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); | |
803 | } else { | |
804 | dev_kfree_skb_any (skb); | |
805 | } | |
806 | } | |
807 | ||
808 | /********** cancel listen on a VC **********/ | |
809 | ||
810 | static void hrz_close_rx (hrz_dev * dev, u16 vc) { | |
811 | unsigned long flags; | |
812 | ||
813 | u32 value; | |
814 | ||
815 | u32 r1, r2; | |
816 | ||
817 | rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; | |
818 | ||
819 | int was_idle = 0; | |
820 | ||
821 | spin_lock_irqsave (&dev->mem_lock, flags); | |
822 | value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | |
823 | spin_unlock_irqrestore (&dev->mem_lock, flags); | |
824 | ||
825 | if (value == RX_CHANNEL_DISABLED) { | |
826 | // I suppose this could happen once we deal with _NONE traffic properly | |
827 | PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); | |
828 | return; | |
829 | } | |
830 | if (value == RX_CHANNEL_IDLE) | |
831 | was_idle = 1; | |
832 | ||
833 | spin_lock_irqsave (&dev->mem_lock, flags); | |
834 | ||
835 | for (;;) { | |
836 | wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); | |
837 | ||
838 | if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) | |
839 | break; | |
840 | ||
841 | was_idle = 0; | |
842 | } | |
843 | ||
844 | if (was_idle) { | |
845 | spin_unlock_irqrestore (&dev->mem_lock, flags); | |
846 | return; | |
847 | } | |
848 | ||
849 | WAIT_FLUSH_RX_COMPLETE(dev); | |
850 | ||
851 | // XXX Is this all really necessary? We can rely on the rx_data_av | |
852 | // handler to discard frames that remain queued for delivery. If the | |
853 | // worry is that immediately reopening the channel (perhaps by a | |
854 | // different process) may cause some data to be mis-delivered then | |
855 | // there may still be a simpler solution (such as busy-waiting on | |
856 | // rx_busy once the channel is disabled or before a new one is | |
857 | // opened - does this leave any holes?). Arguably setting up and | |
858 | // tearing down the TX and RX halves of each virtual circuit could | |
859 | // most safely be done within ?x_busy protected regions. | |
860 | ||
861 | // OK, current changes are that Simon's marker is disabled and we DO | |
862 | // look for NULL rxer elsewhere. The code here seems flush frames | |
863 | // and then remember the last dead cell belonging to the channel | |
864 | // just disabled - the cell gets relinked at the next vc_open. | |
865 | // However, when all VCs are closed or only a few opened there are a | |
866 | // handful of buffers that are unusable. | |
867 | ||
868 | // Does anyone feel like documenting spare_buffers properly? | |
869 | // Does anyone feel like fixing this in a nicer way? | |
870 | ||
871 | // Flush any data which is left in the channel | |
872 | for (;;) { | |
873 | // Change the rx channel port to something different to the RX | |
874 | // channel we are trying to close to force Horizon to flush the rx | |
875 | // channel read and write pointers. | |
876 | ||
877 | u16 other = vc^(RX_CHANS/2); | |
878 | ||
879 | SELECT_RX_CHANNEL (dev, other); | |
880 | WAIT_UPDATE_COMPLETE (dev); | |
881 | ||
882 | r1 = rd_mem (dev, &rx_desc->rd_buf_type); | |
883 | ||
884 | // Select this RX channel. Flush doesn't seem to work unless we | |
885 | // select an RX channel before hand | |
886 | ||
887 | SELECT_RX_CHANNEL (dev, vc); | |
888 | WAIT_UPDATE_COMPLETE (dev); | |
889 | ||
890 | // Attempt to flush a frame on this RX channel | |
891 | ||
892 | FLUSH_RX_CHANNEL (dev, vc); | |
893 | WAIT_FLUSH_RX_COMPLETE (dev); | |
894 | ||
895 | // Force Horizon to flush rx channel read and write pointers as before | |
896 | ||
897 | SELECT_RX_CHANNEL (dev, other); | |
898 | WAIT_UPDATE_COMPLETE (dev); | |
899 | ||
900 | r2 = rd_mem (dev, &rx_desc->rd_buf_type); | |
901 | ||
902 | PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); | |
903 | ||
904 | if (r1 == r2) { | |
905 | dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; | |
906 | break; | |
907 | } | |
908 | } | |
909 | ||
910 | #if 0 | |
911 | { | |
912 | rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; | |
913 | rx_q_entry * rd_ptr = dev->rx_q_entry; | |
914 | ||
915 | PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); | |
916 | ||
917 | while (rd_ptr != wr_ptr) { | |
918 | u32 x = rd_mem (dev, (HDW *) rd_ptr); | |
919 | ||
920 | if (vc == rx_q_entry_to_rx_channel (x)) { | |
921 | x |= SIMONS_DODGEY_MARKER; | |
922 | ||
923 | PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); | |
924 | ||
925 | wr_mem (dev, (HDW *) rd_ptr, x); | |
926 | } | |
927 | ||
928 | if (rd_ptr == dev->rx_q_wrap) | |
929 | rd_ptr = dev->rx_q_reset; | |
930 | else | |
931 | rd_ptr++; | |
932 | } | |
933 | } | |
934 | #endif | |
935 | ||
936 | spin_unlock_irqrestore (&dev->mem_lock, flags); | |
937 | ||
938 | return; | |
939 | } | |
940 | ||
941 | /********** schedule RX transfers **********/ | |
942 | ||
943 | // Note on tail recursion: a GCC developer said that it is not likely | |
944 | // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you | |
945 | // are sure it does as you may otherwise overflow the kernel stack. | |
946 | ||
947 | // giving this fn a return value would help GCC, alledgedly | |
948 | ||
949 | static void rx_schedule (hrz_dev * dev, int irq) { | |
950 | unsigned int rx_bytes; | |
951 | ||
952 | int pio_instead = 0; | |
953 | #ifndef TAILRECURSIONWORKS | |
954 | pio_instead = 1; | |
955 | while (pio_instead) { | |
956 | #endif | |
957 | // bytes waiting for RX transfer | |
958 | rx_bytes = dev->rx_bytes; | |
959 | ||
960 | #if 0 | |
961 | spin_count = 0; | |
962 | while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { | |
963 | PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); | |
964 | if (++spin_count > 10) { | |
965 | PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); | |
966 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | |
967 | clear_bit (rx_busy, &dev->flags); | |
968 | hrz_kfree_skb (dev->rx_skb); | |
969 | return; | |
970 | } | |
971 | } | |
972 | #endif | |
973 | ||
974 | // this code follows the TX code but (at the moment) there is only | |
975 | // one region - the skb itself. I don't know if this will change, | |
976 | // but it doesn't hurt to have the code here, disabled. | |
977 | ||
978 | if (rx_bytes) { | |
979 | // start next transfer within same region | |
980 | if (rx_bytes <= MAX_PIO_COUNT) { | |
981 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | |
982 | pio_instead = 1; | |
983 | } | |
984 | if (rx_bytes <= MAX_TRANSFER_COUNT) { | |
985 | PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); | |
986 | dev->rx_bytes = 0; | |
987 | } else { | |
988 | PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); | |
989 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | |
990 | rx_bytes = MAX_TRANSFER_COUNT; | |
991 | } | |
992 | } else { | |
993 | // rx_bytes == 0 -- we're between regions | |
994 | // regions remaining to transfer | |
995 | #if 0 | |
996 | unsigned int rx_regions = dev->rx_regions; | |
997 | #else | |
998 | unsigned int rx_regions = 0; | |
999 | #endif | |
1000 | ||
1001 | if (rx_regions) { | |
1002 | #if 0 | |
1003 | // start a new region | |
1004 | dev->rx_addr = dev->rx_iovec->iov_base; | |
1005 | rx_bytes = dev->rx_iovec->iov_len; | |
1006 | ++dev->rx_iovec; | |
1007 | dev->rx_regions = rx_regions - 1; | |
1008 | ||
1009 | if (rx_bytes <= MAX_PIO_COUNT) { | |
1010 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | |
1011 | pio_instead = 1; | |
1012 | } | |
1013 | if (rx_bytes <= MAX_TRANSFER_COUNT) { | |
1014 | PRINTD (DBG_RX|DBG_BUS, "(full region)"); | |
1015 | dev->rx_bytes = 0; | |
1016 | } else { | |
1017 | PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); | |
1018 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | |
1019 | rx_bytes = MAX_TRANSFER_COUNT; | |
1020 | } | |
1021 | #endif | |
1022 | } else { | |
1023 | // rx_regions == 0 | |
1024 | // that's all folks - end of frame | |
1025 | struct sk_buff * skb = dev->rx_skb; | |
1026 | // dev->rx_iovec = 0; | |
1027 | ||
1028 | FLUSH_RX_CHANNEL (dev, dev->rx_channel); | |
1029 | ||
1030 | dump_skb ("<<<", dev->rx_channel, skb); | |
1031 | ||
1032 | PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); | |
1033 | ||
1034 | { | |
1035 | struct atm_vcc * vcc = ATM_SKB(skb)->vcc; | |
1036 | // VC layer stats | |
1037 | atomic_inc(&vcc->stats->rx); | |
a61bbcf2 | 1038 | __net_timestamp(skb); |
1da177e4 LT |
1039 | // end of our responsability |
1040 | vcc->push (vcc, skb); | |
1041 | } | |
1042 | } | |
1043 | } | |
1044 | ||
1045 | // note: writing RX_COUNT clears any interrupt condition | |
1046 | if (rx_bytes) { | |
1047 | if (pio_instead) { | |
1048 | if (irq) | |
1049 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | |
1050 | rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); | |
1051 | } else { | |
1052 | wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); | |
1053 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); | |
1054 | } | |
1055 | dev->rx_addr += rx_bytes; | |
1056 | } else { | |
1057 | if (irq) | |
1058 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | |
1059 | // allow another RX thread to start | |
1060 | YELLOW_LED_ON(dev); | |
1061 | clear_bit (rx_busy, &dev->flags); | |
1062 | PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); | |
1063 | } | |
1064 | ||
1065 | #ifdef TAILRECURSIONWORKS | |
1066 | // and we all bless optimised tail calls | |
1067 | if (pio_instead) | |
1068 | return rx_schedule (dev, 0); | |
1069 | return; | |
1070 | #else | |
1071 | // grrrrrrr! | |
1072 | irq = 0; | |
1073 | } | |
1074 | return; | |
1075 | #endif | |
1076 | } | |
1077 | ||
1078 | /********** handle RX bus master complete events **********/ | |
1079 | ||
2cf83afe | 1080 | static void rx_bus_master_complete_handler (hrz_dev * dev) { |
1da177e4 LT |
1081 | if (test_bit (rx_busy, &dev->flags)) { |
1082 | rx_schedule (dev, 1); | |
1083 | } else { | |
1084 | PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); | |
1085 | // clear interrupt condition on adapter | |
1086 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | |
1087 | } | |
1088 | return; | |
1089 | } | |
1090 | ||
1091 | /********** (queue to) become the next TX thread **********/ | |
1092 | ||
2cf83afe | 1093 | static int tx_hold (hrz_dev * dev) { |
1da177e4 LT |
1094 | PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); |
1095 | wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); | |
1096 | PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); | |
1097 | if (signal_pending (current)) | |
1098 | return -1; | |
1099 | PRINTD (DBG_TX, "set tx_busy for dev %p", dev); | |
1100 | return 0; | |
1101 | } | |
1102 | ||
1103 | /********** allow another TX thread to start **********/ | |
1104 | ||
1105 | static inline void tx_release (hrz_dev * dev) { | |
1106 | clear_bit (tx_busy, &dev->flags); | |
1107 | PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); | |
1108 | wake_up_interruptible (&dev->tx_queue); | |
1109 | } | |
1110 | ||
1111 | /********** schedule TX transfers **********/ | |
1112 | ||
1113 | static void tx_schedule (hrz_dev * const dev, int irq) { | |
1114 | unsigned int tx_bytes; | |
1115 | ||
1116 | int append_desc = 0; | |
1117 | ||
1118 | int pio_instead = 0; | |
1119 | #ifndef TAILRECURSIONWORKS | |
1120 | pio_instead = 1; | |
1121 | while (pio_instead) { | |
1122 | #endif | |
1123 | // bytes in current region waiting for TX transfer | |
1124 | tx_bytes = dev->tx_bytes; | |
1125 | ||
1126 | #if 0 | |
1127 | spin_count = 0; | |
1128 | while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { | |
1129 | PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); | |
1130 | if (++spin_count > 10) { | |
1131 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); | |
1132 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | |
1133 | tx_release (dev); | |
1134 | hrz_kfree_skb (dev->tx_skb); | |
1135 | return; | |
1136 | } | |
1137 | } | |
1138 | #endif | |
1139 | ||
1140 | if (tx_bytes) { | |
1141 | // start next transfer within same region | |
1142 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | |
1143 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | |
1144 | pio_instead = 1; | |
1145 | } | |
1146 | if (tx_bytes <= MAX_TRANSFER_COUNT) { | |
1147 | PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); | |
1148 | if (!dev->tx_iovec) { | |
1149 | // end of last region | |
1150 | append_desc = 1; | |
1151 | } | |
1152 | dev->tx_bytes = 0; | |
1153 | } else { | |
1154 | PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); | |
1155 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | |
1156 | tx_bytes = MAX_TRANSFER_COUNT; | |
1157 | } | |
1158 | } else { | |
1159 | // tx_bytes == 0 -- we're between regions | |
1160 | // regions remaining to transfer | |
1161 | unsigned int tx_regions = dev->tx_regions; | |
1162 | ||
1163 | if (tx_regions) { | |
1164 | // start a new region | |
1165 | dev->tx_addr = dev->tx_iovec->iov_base; | |
1166 | tx_bytes = dev->tx_iovec->iov_len; | |
1167 | ++dev->tx_iovec; | |
1168 | dev->tx_regions = tx_regions - 1; | |
1169 | ||
1170 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | |
1171 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | |
1172 | pio_instead = 1; | |
1173 | } | |
1174 | if (tx_bytes <= MAX_TRANSFER_COUNT) { | |
1175 | PRINTD (DBG_TX|DBG_BUS, "(full region)"); | |
1176 | dev->tx_bytes = 0; | |
1177 | } else { | |
1178 | PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); | |
1179 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | |
1180 | tx_bytes = MAX_TRANSFER_COUNT; | |
1181 | } | |
1182 | } else { | |
1183 | // tx_regions == 0 | |
1184 | // that's all folks - end of frame | |
1185 | struct sk_buff * skb = dev->tx_skb; | |
1186 | dev->tx_iovec = NULL; | |
1187 | ||
1188 | // VC layer stats | |
1189 | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); | |
1190 | ||
1191 | // free the skb | |
1192 | hrz_kfree_skb (skb); | |
1193 | } | |
1194 | } | |
1195 | ||
1196 | // note: writing TX_COUNT clears any interrupt condition | |
1197 | if (tx_bytes) { | |
1198 | if (pio_instead) { | |
1199 | if (irq) | |
1200 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | |
1201 | wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); | |
1202 | if (append_desc) | |
1203 | wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); | |
1204 | } else { | |
1205 | wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); | |
1206 | if (append_desc) | |
1207 | wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); | |
1208 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, | |
1209 | append_desc | |
1210 | ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC | |
1211 | : tx_bytes); | |
1212 | } | |
1213 | dev->tx_addr += tx_bytes; | |
1214 | } else { | |
1215 | if (irq) | |
1216 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | |
1217 | YELLOW_LED_ON(dev); | |
1218 | tx_release (dev); | |
1219 | } | |
1220 | ||
1221 | #ifdef TAILRECURSIONWORKS | |
1222 | // and we all bless optimised tail calls | |
1223 | if (pio_instead) | |
1224 | return tx_schedule (dev, 0); | |
1225 | return; | |
1226 | #else | |
1227 | // grrrrrrr! | |
1228 | irq = 0; | |
1229 | } | |
1230 | return; | |
1231 | #endif | |
1232 | } | |
1233 | ||
1234 | /********** handle TX bus master complete events **********/ | |
1235 | ||
2cf83afe | 1236 | static void tx_bus_master_complete_handler (hrz_dev * dev) { |
1da177e4 LT |
1237 | if (test_bit (tx_busy, &dev->flags)) { |
1238 | tx_schedule (dev, 1); | |
1239 | } else { | |
1240 | PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); | |
1241 | // clear interrupt condition on adapter | |
1242 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | |
1243 | } | |
1244 | return; | |
1245 | } | |
1246 | ||
1247 | /********** move RX Q pointer to next item in circular buffer **********/ | |
1248 | ||
1249 | // called only from IRQ sub-handler | |
2cf83afe | 1250 | static u32 rx_queue_entry_next (hrz_dev * dev) { |
1da177e4 LT |
1251 | u32 rx_queue_entry; |
1252 | spin_lock (&dev->mem_lock); | |
1253 | rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); | |
1254 | if (dev->rx_q_entry == dev->rx_q_wrap) | |
1255 | dev->rx_q_entry = dev->rx_q_reset; | |
1256 | else | |
1257 | dev->rx_q_entry++; | |
1258 | wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); | |
1259 | spin_unlock (&dev->mem_lock); | |
1260 | return rx_queue_entry; | |
1261 | } | |
1262 | ||
1263 | /********** handle RX disabled by device **********/ | |
1264 | ||
1265 | static inline void rx_disabled_handler (hrz_dev * dev) { | |
1266 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | |
1267 | // count me please | |
1268 | PRINTK (KERN_WARNING, "RX was disabled!"); | |
1269 | } | |
1270 | ||
1271 | /********** handle RX data received by device **********/ | |
1272 | ||
1273 | // called from IRQ handler | |
2cf83afe | 1274 | static void rx_data_av_handler (hrz_dev * dev) { |
1da177e4 LT |
1275 | u32 rx_queue_entry; |
1276 | u32 rx_queue_entry_flags; | |
1277 | u16 rx_len; | |
1278 | u16 rx_channel; | |
1279 | ||
1280 | PRINTD (DBG_FLOW, "hrz_data_av_handler"); | |
1281 | ||
1282 | // try to grab rx lock (not possible during RX bus mastering) | |
1283 | if (test_and_set_bit (rx_busy, &dev->flags)) { | |
1284 | PRINTD (DBG_RX, "locked out of rx lock"); | |
1285 | return; | |
1286 | } | |
1287 | PRINTD (DBG_RX, "set rx_busy for dev %p", dev); | |
1288 | // lock is cleared if we fail now, o/w after bus master completion | |
1289 | ||
1290 | YELLOW_LED_OFF(dev); | |
1291 | ||
1292 | rx_queue_entry = rx_queue_entry_next (dev); | |
1293 | ||
1294 | rx_len = rx_q_entry_to_length (rx_queue_entry); | |
1295 | rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); | |
1296 | ||
1297 | WAIT_FLUSH_RX_COMPLETE (dev); | |
1298 | ||
1299 | SELECT_RX_CHANNEL (dev, rx_channel); | |
1300 | ||
1301 | PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); | |
1302 | rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); | |
1303 | ||
1304 | if (!rx_len) { | |
1305 | // (at least) bus-mastering breaks if we try to handle a | |
1306 | // zero-length frame, besides AAL5 does not support them | |
1307 | PRINTK (KERN_ERR, "zero-length frame!"); | |
1308 | rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; | |
1309 | } | |
1310 | ||
1311 | if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { | |
1312 | PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); | |
1313 | } | |
1314 | if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { | |
1315 | struct atm_vcc * atm_vcc; | |
1316 | ||
1317 | PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); | |
1318 | ||
1319 | atm_vcc = dev->rxer[rx_channel]; | |
1320 | // if no vcc is assigned to this channel, we should drop the frame | |
1321 | // (is this what SIMONS etc. was trying to achieve?) | |
1322 | ||
1323 | if (atm_vcc) { | |
1324 | ||
1325 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | |
1326 | ||
1327 | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { | |
1328 | ||
1329 | struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); | |
1330 | if (skb) { | |
1331 | // remember this so we can push it later | |
1332 | dev->rx_skb = skb; | |
1333 | // remember this so we can flush it later | |
1334 | dev->rx_channel = rx_channel; | |
1335 | ||
1336 | // prepare socket buffer | |
1337 | skb_put (skb, rx_len); | |
1338 | ATM_SKB(skb)->vcc = atm_vcc; | |
1339 | ||
1340 | // simple transfer | |
1341 | // dev->rx_regions = 0; | |
1342 | // dev->rx_iovec = 0; | |
1343 | dev->rx_bytes = rx_len; | |
1344 | dev->rx_addr = skb->data; | |
1345 | PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", | |
1346 | skb->data, rx_len); | |
1347 | ||
1348 | // do the business | |
1349 | rx_schedule (dev, 0); | |
1350 | return; | |
1351 | ||
1352 | } else { | |
1353 | PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); | |
1354 | } | |
1355 | ||
1356 | } else { | |
1357 | PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); | |
1358 | // do we count this? | |
1359 | } | |
1360 | ||
1361 | } else { | |
1362 | PRINTK (KERN_WARNING, "dropped over-size frame"); | |
1363 | // do we count this? | |
1364 | } | |
1365 | ||
1366 | } else { | |
1367 | PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); | |
1368 | // do we count this? | |
1369 | } | |
1370 | ||
1371 | } else { | |
1372 | // Wait update complete ? SPONG | |
1373 | } | |
1374 | ||
1375 | // RX was aborted | |
1376 | YELLOW_LED_ON(dev); | |
1377 | ||
1378 | FLUSH_RX_CHANNEL (dev,rx_channel); | |
1379 | clear_bit (rx_busy, &dev->flags); | |
1380 | ||
1381 | return; | |
1382 | } | |
1383 | ||
1384 | /********** interrupt handler **********/ | |
1385 | ||
06efcad0 JG |
1386 | static irqreturn_t interrupt_handler(int irq, void *dev_id) |
1387 | { | |
1388 | hrz_dev *dev = dev_id; | |
1da177e4 LT |
1389 | u32 int_source; |
1390 | unsigned int irq_ok; | |
1da177e4 LT |
1391 | |
1392 | PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); | |
1393 | ||
1da177e4 LT |
1394 | // definitely for us |
1395 | irq_ok = 0; | |
1396 | while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) | |
1397 | & INTERESTING_INTERRUPTS)) { | |
2cf83afe | 1398 | // In the interests of fairness, the handlers below are |
1da177e4 LT |
1399 | // called in sequence and without immediate return to the head of |
1400 | // the while loop. This is only of issue for slow hosts (or when | |
1401 | // debugging messages are on). Really slow hosts may find a fast | |
1402 | // sender keeps them permanently in the IRQ handler. :( | |
1403 | ||
1404 | // (only an issue for slow hosts) RX completion goes before | |
1405 | // rx_data_av as the former implies rx_busy and so the latter | |
1406 | // would just abort. If it reschedules another transfer | |
1407 | // (continuing the same frame) then it will not clear rx_busy. | |
1408 | ||
1409 | // (only an issue for slow hosts) TX completion goes before RX | |
1410 | // data available as it is a much shorter routine - there is the | |
1411 | // chance that any further transfers it schedules will be complete | |
1412 | // by the time of the return to the head of the while loop | |
1413 | ||
1414 | if (int_source & RX_BUS_MASTER_COMPLETE) { | |
1415 | ++irq_ok; | |
1416 | PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); | |
1417 | rx_bus_master_complete_handler (dev); | |
1418 | } | |
1419 | if (int_source & TX_BUS_MASTER_COMPLETE) { | |
1420 | ++irq_ok; | |
1421 | PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); | |
1422 | tx_bus_master_complete_handler (dev); | |
1423 | } | |
1424 | if (int_source & RX_DATA_AV) { | |
1425 | ++irq_ok; | |
1426 | PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); | |
1427 | rx_data_av_handler (dev); | |
1428 | } | |
1429 | } | |
1430 | if (irq_ok) { | |
1431 | PRINTD (DBG_IRQ, "work done: %u", irq_ok); | |
1432 | } else { | |
1433 | PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); | |
1434 | } | |
1435 | ||
1436 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); | |
1437 | if (irq_ok) | |
1438 | return IRQ_HANDLED; | |
1439 | return IRQ_NONE; | |
1440 | } | |
1441 | ||
1442 | /********** housekeeping **********/ | |
1443 | ||
1444 | static void do_housekeeping (unsigned long arg) { | |
1445 | // just stats at the moment | |
1446 | hrz_dev * dev = (hrz_dev *) arg; | |
1447 | ||
1448 | // collect device-specific (not driver/atm-linux) stats here | |
1449 | dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); | |
1450 | dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); | |
1451 | dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); | |
1452 | dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); | |
1453 | ||
1454 | mod_timer (&dev->housekeeping, jiffies + HZ/10); | |
1455 | ||
1456 | return; | |
1457 | } | |
1458 | ||
1459 | /********** find an idle channel for TX and set it up **********/ | |
1460 | ||
1461 | // called with tx_busy set | |
2cf83afe | 1462 | static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { |
1da177e4 LT |
1463 | unsigned short idle_channels; |
1464 | short tx_channel = -1; | |
1465 | unsigned int spin_count; | |
1466 | PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); | |
1467 | ||
1468 | // better would be to fail immediately, the caller can then decide whether | |
1469 | // to wait or drop (depending on whether this is UBR etc.) | |
1470 | spin_count = 0; | |
1471 | while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { | |
1472 | PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); | |
1473 | // delay a bit here | |
1474 | if (++spin_count > 100) { | |
1475 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); | |
1476 | return -EBUSY; | |
1477 | } | |
1478 | } | |
1479 | ||
1480 | // got an idle channel | |
1481 | { | |
1482 | // tx_idle ensures we look for idle channels in RR order | |
1483 | int chan = dev->tx_idle; | |
1484 | ||
1485 | int keep_going = 1; | |
1486 | while (keep_going) { | |
1487 | if (idle_channels & (1<<chan)) { | |
1488 | tx_channel = chan; | |
1489 | keep_going = 0; | |
1490 | } | |
1491 | ++chan; | |
1492 | if (chan == TX_CHANS) | |
1493 | chan = 0; | |
1494 | } | |
1495 | ||
1496 | dev->tx_idle = chan; | |
1497 | } | |
1498 | ||
1499 | // set up the channel we found | |
1500 | { | |
1501 | // Initialise the cell header in the transmit channel descriptor | |
1502 | // a.k.a. prepare the channel and remember that we have done so. | |
1503 | ||
1504 | tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; | |
b925556c DJ |
1505 | u32 rd_ptr; |
1506 | u32 wr_ptr; | |
1da177e4 LT |
1507 | u16 channel = vcc->channel; |
1508 | ||
1509 | unsigned long flags; | |
1510 | spin_lock_irqsave (&dev->mem_lock, flags); | |
1511 | ||
1512 | // Update the transmit channel record. | |
1513 | dev->tx_channel_record[tx_channel] = channel; | |
1514 | ||
1515 | // xBR channel | |
1516 | update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, | |
1517 | vcc->tx_xbr_bits); | |
1518 | ||
1519 | // Update the PCR counter preload value etc. | |
1520 | update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, | |
1521 | vcc->tx_pcr_bits); | |
1522 | ||
1523 | #if 0 | |
1524 | if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { | |
1525 | // SCR timer | |
1526 | update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, | |
1527 | vcc->tx_scr_bits); | |
1528 | ||
1529 | // Bucket size... | |
1530 | update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, | |
1531 | vcc->tx_bucket_bits); | |
1532 | ||
1533 | // ... and fullness | |
1534 | update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, | |
1535 | vcc->tx_bucket_bits); | |
1536 | } | |
1537 | #endif | |
1538 | ||
1539 | // Initialise the read and write buffer pointers | |
1540 | rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; | |
1541 | wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; | |
1542 | ||
1543 | // idle TX channels should have identical pointers | |
1544 | if (rd_ptr != wr_ptr) { | |
1545 | PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); | |
1546 | // spin_unlock... return -E... | |
1547 | // I wonder if gcc would get rid of one of the pointer aliases | |
1548 | } | |
1549 | PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", | |
1550 | rd_ptr, wr_ptr); | |
1551 | ||
1552 | switch (vcc->aal) { | |
1553 | case aal0: | |
1554 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); | |
1555 | rd_ptr |= CHANNEL_TYPE_RAW_CELLS; | |
1556 | wr_ptr |= CHANNEL_TYPE_RAW_CELLS; | |
1557 | break; | |
1558 | case aal34: | |
1559 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); | |
1560 | rd_ptr |= CHANNEL_TYPE_AAL3_4; | |
1561 | wr_ptr |= CHANNEL_TYPE_AAL3_4; | |
1562 | break; | |
1563 | case aal5: | |
1564 | rd_ptr |= CHANNEL_TYPE_AAL5; | |
1565 | wr_ptr |= CHANNEL_TYPE_AAL5; | |
1566 | // Initialise the CRC | |
1567 | wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); | |
1568 | break; | |
1569 | } | |
1570 | ||
1571 | wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); | |
1572 | wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); | |
1573 | ||
1574 | // Write the Cell Header | |
1575 | // Payload Type, CLP and GFC would go here if non-zero | |
1576 | wr_mem (dev, &tx_desc->cell_header, channel); | |
1577 | ||
1578 | spin_unlock_irqrestore (&dev->mem_lock, flags); | |
1579 | } | |
1580 | ||
1581 | return tx_channel; | |
1582 | } | |
1583 | ||
1584 | /********** send a frame **********/ | |
1585 | ||
1586 | static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { | |
1587 | unsigned int spin_count; | |
1588 | int free_buffers; | |
1589 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | |
1590 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | |
1591 | u16 channel = vcc->channel; | |
1592 | ||
1593 | u32 buffers_required; | |
1594 | ||
1595 | /* signed for error return */ | |
1596 | short tx_channel; | |
1597 | ||
1598 | PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", | |
1599 | channel, skb->data, skb->len); | |
1600 | ||
1601 | dump_skb (">>>", channel, skb); | |
1602 | ||
1603 | if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { | |
1604 | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); | |
1605 | hrz_kfree_skb (skb); | |
1606 | return -EIO; | |
1607 | } | |
1608 | ||
1609 | // don't understand this | |
1610 | ATM_SKB(skb)->vcc = atm_vcc; | |
1611 | ||
1612 | if (skb->len > atm_vcc->qos.txtp.max_sdu) { | |
1613 | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); | |
1614 | hrz_kfree_skb (skb); | |
1615 | return -EIO; | |
1616 | } | |
1617 | ||
1618 | if (!channel) { | |
1619 | PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); | |
1620 | hrz_kfree_skb (skb); | |
1621 | return -EIO; | |
1622 | } | |
1623 | ||
1624 | #if 0 | |
1625 | { | |
1626 | // where would be a better place for this? housekeeping? | |
1627 | u16 status; | |
1628 | pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); | |
1629 | if (status & PCI_STATUS_REC_MASTER_ABORT) { | |
1630 | PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); | |
1631 | status &= ~PCI_STATUS_REC_MASTER_ABORT; | |
1632 | pci_write_config_word (dev->pci_dev, PCI_STATUS, status); | |
1633 | if (test_bit (tx_busy, &dev->flags)) { | |
1634 | hrz_kfree_skb (dev->tx_skb); | |
1635 | tx_release (dev); | |
1636 | } | |
1637 | } | |
1638 | } | |
1639 | #endif | |
1640 | ||
1641 | #ifdef DEBUG_HORIZON | |
1642 | /* wey-hey! */ | |
1643 | if (channel == 1023) { | |
1644 | unsigned int i; | |
1645 | unsigned short d = 0; | |
1646 | char * s = skb->data; | |
1647 | if (*s++ == 'D') { | |
1648 | for (i = 0; i < 4; ++i) { | |
1649 | d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); | |
1650 | ++s; | |
1651 | } | |
1652 | PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); | |
1653 | } | |
1654 | } | |
1655 | #endif | |
1656 | ||
1657 | // wait until TX is free and grab lock | |
1658 | if (tx_hold (dev)) { | |
1659 | hrz_kfree_skb (skb); | |
1660 | return -ERESTARTSYS; | |
1661 | } | |
1662 | ||
1663 | // Wait for enough space to be available in transmit buffer memory. | |
1664 | ||
1665 | // should be number of cells needed + 2 (according to hardware docs) | |
1666 | // = ((framelen+8)+47) / 48 + 2 | |
1667 | // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX | |
1668 | buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; | |
1669 | ||
1670 | // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) | |
1671 | spin_count = 0; | |
1672 | while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { | |
1673 | PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", | |
1674 | free_buffers, buffers_required); | |
1675 | // what is the appropriate delay? implement a timeout? (depending on line speed?) | |
1676 | // mdelay (1); | |
1677 | // what happens if we kill (current_pid, SIGKILL) ? | |
1678 | schedule(); | |
1679 | if (++spin_count > 1000) { | |
1680 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", | |
1681 | free_buffers, buffers_required); | |
1682 | tx_release (dev); | |
1683 | hrz_kfree_skb (skb); | |
1684 | return -ERESTARTSYS; | |
1685 | } | |
1686 | } | |
1687 | ||
1688 | // Select a channel to transmit the frame on. | |
1689 | if (channel == dev->last_vc) { | |
1690 | PRINTD (DBG_TX, "last vc hack: hit"); | |
1691 | tx_channel = dev->tx_last; | |
1692 | } else { | |
1693 | PRINTD (DBG_TX, "last vc hack: miss"); | |
1694 | // Are we currently transmitting this VC on one of the channels? | |
1695 | for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) | |
1696 | if (dev->tx_channel_record[tx_channel] == channel) { | |
1697 | PRINTD (DBG_TX, "vc already on channel: hit"); | |
1698 | break; | |
1699 | } | |
1700 | if (tx_channel == TX_CHANS) { | |
1701 | PRINTD (DBG_TX, "vc already on channel: miss"); | |
1702 | // Find and set up an idle channel. | |
1703 | tx_channel = setup_idle_tx_channel (dev, vcc); | |
1704 | if (tx_channel < 0) { | |
1705 | PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); | |
1706 | tx_release (dev); | |
1707 | return tx_channel; | |
1708 | } | |
1709 | } | |
1710 | ||
1711 | PRINTD (DBG_TX, "got channel"); | |
1712 | SELECT_TX_CHANNEL(dev, tx_channel); | |
1713 | ||
1714 | dev->last_vc = channel; | |
1715 | dev->tx_last = tx_channel; | |
1716 | } | |
1717 | ||
1718 | PRINTD (DBG_TX, "using channel %u", tx_channel); | |
1719 | ||
1720 | YELLOW_LED_OFF(dev); | |
1721 | ||
1722 | // TX start transfer | |
1723 | ||
1724 | { | |
1725 | unsigned int tx_len = skb->len; | |
1726 | unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; | |
1727 | // remember this so we can free it later | |
1728 | dev->tx_skb = skb; | |
1729 | ||
1730 | if (tx_iovcnt) { | |
1731 | // scatter gather transfer | |
1732 | dev->tx_regions = tx_iovcnt; | |
1733 | dev->tx_iovec = NULL; /* @@@ needs rewritten */ | |
1734 | dev->tx_bytes = 0; | |
1735 | PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", | |
1736 | skb->data, tx_len); | |
1737 | tx_release (dev); | |
1738 | hrz_kfree_skb (skb); | |
1739 | return -EIO; | |
1740 | } else { | |
1741 | // simple transfer | |
1742 | dev->tx_regions = 0; | |
1743 | dev->tx_iovec = NULL; | |
1744 | dev->tx_bytes = tx_len; | |
1745 | dev->tx_addr = skb->data; | |
1746 | PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", | |
1747 | skb->data, tx_len); | |
1748 | } | |
1749 | ||
1750 | // and do the business | |
1751 | tx_schedule (dev, 0); | |
1752 | ||
1753 | } | |
1754 | ||
1755 | return 0; | |
1756 | } | |
1757 | ||
1758 | /********** reset a card **********/ | |
1759 | ||
1760 | static void hrz_reset (const hrz_dev * dev) { | |
1761 | u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); | |
1762 | ||
1763 | // why not set RESET_HORIZON to one and wait for the card to | |
1764 | // reassert that bit as zero? Like so: | |
1765 | control_0_reg = control_0_reg & RESET_HORIZON; | |
1766 | wr_regl (dev, CONTROL_0_REG, control_0_reg); | |
1767 | while (control_0_reg & RESET_HORIZON) | |
1768 | control_0_reg = rd_regl (dev, CONTROL_0_REG); | |
1769 | ||
1770 | // old reset code retained: | |
1771 | wr_regl (dev, CONTROL_0_REG, control_0_reg | | |
1772 | RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); | |
1773 | // just guessing here | |
1774 | udelay (1000); | |
1775 | ||
1776 | wr_regl (dev, CONTROL_0_REG, control_0_reg); | |
1777 | } | |
1778 | ||
1779 | /********** read the burnt in address **********/ | |
1780 | ||
2cf83afe | 1781 | static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) |
1da177e4 LT |
1782 | { |
1783 | wr_regl (dev, CONTROL_0_REG, ctrl); | |
1784 | udelay (5); | |
1785 | } | |
1786 | ||
2cf83afe | 1787 | static void CLOCK_IT (const hrz_dev *dev, u32 ctrl) |
1da177e4 LT |
1788 | { |
1789 | // DI must be valid around rising SK edge | |
1790 | WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); | |
1791 | WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); | |
1792 | } | |
1793 | ||
977a415f | 1794 | static u16 __devinit read_bia (const hrz_dev * dev, u16 addr) |
1da177e4 LT |
1795 | { |
1796 | u32 ctrl = rd_regl (dev, CONTROL_0_REG); | |
1797 | ||
1798 | const unsigned int addr_bits = 6; | |
1799 | const unsigned int data_bits = 16; | |
1800 | ||
1801 | unsigned int i; | |
1802 | ||
1803 | u16 res; | |
1804 | ||
1805 | ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); | |
1806 | WRITE_IT_WAIT(dev, ctrl); | |
1807 | ||
1808 | // wake Serial EEPROM and send 110 (READ) command | |
1809 | ctrl |= (SEEPROM_CS | SEEPROM_DI); | |
1810 | CLOCK_IT(dev, ctrl); | |
1811 | ||
1812 | ctrl |= SEEPROM_DI; | |
1813 | CLOCK_IT(dev, ctrl); | |
1814 | ||
1815 | ctrl &= ~SEEPROM_DI; | |
1816 | CLOCK_IT(dev, ctrl); | |
1817 | ||
1818 | for (i=0; i<addr_bits; i++) { | |
1819 | if (addr & (1 << (addr_bits-1))) | |
1820 | ctrl |= SEEPROM_DI; | |
1821 | else | |
1822 | ctrl &= ~SEEPROM_DI; | |
1823 | ||
1824 | CLOCK_IT(dev, ctrl); | |
1825 | ||
1826 | addr = addr << 1; | |
1827 | } | |
1828 | ||
1829 | // we could check that we have DO = 0 here | |
1830 | ctrl &= ~SEEPROM_DI; | |
1831 | ||
1832 | res = 0; | |
1833 | for (i=0;i<data_bits;i++) { | |
1834 | res = res >> 1; | |
1835 | ||
1836 | CLOCK_IT(dev, ctrl); | |
1837 | ||
1838 | if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) | |
1839 | res |= (1 << (data_bits-1)); | |
1840 | } | |
1841 | ||
1842 | ctrl &= ~(SEEPROM_SK | SEEPROM_CS); | |
1843 | WRITE_IT_WAIT(dev, ctrl); | |
1844 | ||
1845 | return res; | |
1846 | } | |
1847 | ||
1848 | /********** initialise a card **********/ | |
1849 | ||
0a3c4bdc | 1850 | static int __devinit hrz_init (hrz_dev * dev) { |
1da177e4 LT |
1851 | int onefivefive; |
1852 | ||
1853 | u16 chan; | |
1854 | ||
1855 | int buff_count; | |
1856 | ||
1857 | HDW * mem; | |
1858 | ||
1859 | cell_buf * tx_desc; | |
1860 | cell_buf * rx_desc; | |
1861 | ||
1862 | u32 ctrl; | |
1863 | ||
1864 | ctrl = rd_regl (dev, CONTROL_0_REG); | |
1865 | PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); | |
1866 | onefivefive = ctrl & ATM_LAYER_STATUS; | |
1867 | ||
1868 | if (onefivefive) | |
1869 | printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); | |
1870 | else | |
1871 | printk (DEV_LABEL ": Horizon (at 25 MBps)"); | |
1872 | ||
1873 | printk (":"); | |
1874 | // Reset the card to get everything in a known state | |
1875 | ||
1876 | printk (" reset"); | |
1877 | hrz_reset (dev); | |
1878 | ||
1879 | // Clear all the buffer memory | |
1880 | ||
1881 | printk (" clearing memory"); | |
1882 | ||
1883 | for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) | |
1884 | wr_mem (dev, mem, 0); | |
1885 | ||
1886 | printk (" tx channels"); | |
1887 | ||
1888 | // All transmit eight channels are set up as AAL5 ABR channels with | |
1889 | // a 16us cell spacing. Why? | |
1890 | ||
1891 | // Channel 0 gets the free buffer at 100h, channel 1 gets the free | |
1892 | // buffer at 110h etc. | |
1893 | ||
1894 | for (chan = 0; chan < TX_CHANS; ++chan) { | |
1895 | tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; | |
1896 | cell_buf * buf = &memmap->inittxbufs[chan]; | |
1897 | ||
1898 | // initialise the read and write buffer pointers | |
1899 | wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); | |
1900 | wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); | |
1901 | ||
1902 | // set the status of the initial buffers to empty | |
1903 | wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); | |
1904 | } | |
1905 | ||
1906 | // Use space bufn3 at the moment for tx buffers | |
1907 | ||
1908 | printk (" tx buffers"); | |
1909 | ||
1910 | tx_desc = memmap->bufn3; | |
1911 | ||
1912 | wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); | |
1913 | ||
1914 | for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { | |
1915 | wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); | |
1916 | tx_desc++; | |
1917 | } | |
1918 | ||
1919 | wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); | |
1920 | ||
1921 | // Initialise the transmit free buffer count | |
1922 | wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); | |
1923 | ||
1924 | printk (" rx channels"); | |
1925 | ||
1926 | // Initialise all of the receive channels to be AAL5 disabled with | |
1927 | // an interrupt threshold of 0 | |
1928 | ||
1929 | for (chan = 0; chan < RX_CHANS; ++chan) { | |
1930 | rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; | |
1931 | ||
1932 | wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); | |
1933 | } | |
1934 | ||
1935 | printk (" rx buffers"); | |
1936 | ||
1937 | // Use space bufn4 at the moment for rx buffers | |
1938 | ||
1939 | rx_desc = memmap->bufn4; | |
1940 | ||
1941 | wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); | |
1942 | ||
1943 | for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { | |
1944 | wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); | |
1945 | ||
1946 | rx_desc++; | |
1947 | } | |
1948 | ||
1949 | wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); | |
1950 | ||
1951 | // Initialise the receive free buffer count | |
1952 | wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); | |
1953 | ||
1954 | // Initialize Horizons registers | |
1955 | ||
1956 | // TX config | |
1957 | wr_regw (dev, TX_CONFIG_OFF, | |
1958 | ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); | |
1959 | ||
1960 | // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. | |
1961 | wr_regw (dev, RX_CONFIG_OFF, | |
1962 | DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); | |
1963 | ||
1964 | // RX line config | |
1965 | wr_regw (dev, RX_LINE_CONFIG_OFF, | |
1966 | LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); | |
1967 | ||
1968 | // Set the max AAL5 cell count to be just enough to contain the | |
1969 | // largest AAL5 frame that the user wants to receive | |
1970 | wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, | |
6a19309d | 1971 | DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD)); |
1da177e4 LT |
1972 | |
1973 | // Enable receive | |
1974 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | |
1975 | ||
1976 | printk (" control"); | |
1977 | ||
1978 | // Drive the OE of the LEDs then turn the green LED on | |
1979 | ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; | |
1980 | wr_regl (dev, CONTROL_0_REG, ctrl); | |
1981 | ||
1982 | // Test for a 155-capable card | |
1983 | ||
1984 | if (onefivefive) { | |
1985 | // Select 155 mode... make this a choice (or: how do we detect | |
1986 | // external line speed and switch?) | |
1987 | ctrl |= ATM_LAYER_SELECT; | |
1988 | wr_regl (dev, CONTROL_0_REG, ctrl); | |
1989 | ||
1990 | // test SUNI-lite vs SAMBA | |
1991 | ||
1992 | // Register 0x00 in the SUNI will have some of bits 3-7 set, and | |
1993 | // they will always be zero for the SAMBA. Ha! Bloody hardware | |
1994 | // engineers. It'll never work. | |
1995 | ||
1996 | if (rd_framer (dev, 0) & 0x00f0) { | |
1997 | // SUNI | |
1998 | printk (" SUNI"); | |
1999 | ||
2000 | // Reset, just in case | |
2001 | wr_framer (dev, 0x00, 0x0080); | |
2002 | wr_framer (dev, 0x00, 0x0000); | |
2003 | ||
2004 | // Configure transmit FIFO | |
2005 | wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); | |
2006 | ||
2007 | // Set line timed mode | |
2008 | wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); | |
2009 | } else { | |
2010 | // SAMBA | |
2011 | printk (" SAMBA"); | |
2012 | ||
2013 | // Reset, just in case | |
2014 | wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); | |
2015 | wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); | |
2016 | ||
2017 | // Turn off diagnostic loopback and enable line-timed mode | |
2018 | wr_framer (dev, 0, 0x0002); | |
2019 | ||
2020 | // Turn on transmit outputs | |
2021 | wr_framer (dev, 2, 0x0B80); | |
2022 | } | |
2023 | } else { | |
2024 | // Select 25 mode | |
2025 | ctrl &= ~ATM_LAYER_SELECT; | |
2026 | ||
2027 | // Madge B154 setup | |
2028 | // none required? | |
2029 | } | |
2030 | ||
2031 | printk (" LEDs"); | |
2032 | ||
2033 | GREEN_LED_ON(dev); | |
2034 | YELLOW_LED_ON(dev); | |
2035 | ||
2036 | printk (" ESI="); | |
2037 | ||
2038 | { | |
2039 | u16 b = 0; | |
2040 | int i; | |
2041 | u8 * esi = dev->atm_dev->esi; | |
2042 | ||
2043 | // in the card I have, EEPROM | |
2044 | // addresses 0, 1, 2 contain 0 | |
2045 | // addresess 5, 6 etc. contain ffff | |
2046 | // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) | |
2047 | // the read_bia routine gets the BIA in Ethernet bit order | |
2048 | ||
2049 | for (i=0; i < ESI_LEN; ++i) { | |
2050 | if (i % 2 == 0) | |
2051 | b = read_bia (dev, i/2 + 2); | |
2052 | else | |
2053 | b = b >> 8; | |
2054 | esi[i] = b & 0xFF; | |
2055 | printk ("%02x", esi[i]); | |
2056 | } | |
2057 | } | |
2058 | ||
2059 | // Enable RX_Q and ?X_COMPLETE interrupts only | |
2060 | wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); | |
2061 | printk (" IRQ on"); | |
2062 | ||
2063 | printk (".\n"); | |
2064 | ||
2065 | return onefivefive; | |
2066 | } | |
2067 | ||
2068 | /********** check max_sdu **********/ | |
2069 | ||
2070 | static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { | |
2071 | PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); | |
2072 | ||
2073 | switch (aal) { | |
2074 | case aal0: | |
2075 | if (!(tp->max_sdu)) { | |
2076 | PRINTD (DBG_QOS, "defaulting max_sdu"); | |
2077 | tp->max_sdu = ATM_AAL0_SDU; | |
2078 | } else if (tp->max_sdu != ATM_AAL0_SDU) { | |
2079 | PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); | |
2080 | return -EINVAL; | |
2081 | } | |
2082 | break; | |
2083 | case aal34: | |
2084 | if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { | |
2085 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | |
2086 | tp->max_sdu = ATM_MAX_AAL34_PDU; | |
2087 | } | |
2088 | break; | |
2089 | case aal5: | |
2090 | if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { | |
2091 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | |
2092 | tp->max_sdu = max_frame_size; | |
2093 | } | |
2094 | break; | |
2095 | } | |
2096 | return 0; | |
2097 | } | |
2098 | ||
2099 | /********** check pcr **********/ | |
2100 | ||
2101 | // something like this should be part of ATM Linux | |
2102 | static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { | |
2103 | // we are assuming non-UBR, and non-special values of pcr | |
2104 | if (tp->min_pcr == ATM_MAX_PCR) | |
2105 | PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); | |
2106 | else if (tp->min_pcr < 0) | |
2107 | PRINTD (DBG_QOS, "luser gave negative min_pcr"); | |
2108 | else if (tp->min_pcr && tp->min_pcr > pcr) | |
2109 | PRINTD (DBG_QOS, "pcr less than min_pcr"); | |
2110 | else | |
2111 | // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) | |
2112 | // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? | |
2113 | // [this would get rid of next two conditionals] | |
2114 | if ((0) && tp->max_pcr == ATM_MAX_PCR) | |
2115 | PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); | |
2116 | else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) | |
2117 | PRINTD (DBG_QOS, "luser gave negative max_pcr"); | |
2118 | else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) | |
2119 | PRINTD (DBG_QOS, "pcr greater than max_pcr"); | |
2120 | else { | |
2121 | // each limit unspecified or not violated | |
2122 | PRINTD (DBG_QOS, "xBR(pcr) OK"); | |
2123 | return 0; | |
2124 | } | |
2125 | PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", | |
2126 | pcr, tp->min_pcr, tp->pcr, tp->max_pcr); | |
2127 | return -EINVAL; | |
2128 | } | |
2129 | ||
2130 | /********** open VC **********/ | |
2131 | ||
2132 | static int hrz_open (struct atm_vcc *atm_vcc) | |
2133 | { | |
2134 | int error; | |
2135 | u16 channel; | |
2136 | ||
2137 | struct atm_qos * qos; | |
2138 | struct atm_trafprm * txtp; | |
2139 | struct atm_trafprm * rxtp; | |
2140 | ||
2141 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | |
2142 | hrz_vcc vcc; | |
2143 | hrz_vcc * vccp; // allocated late | |
2144 | short vpi = atm_vcc->vpi; | |
2145 | int vci = atm_vcc->vci; | |
2146 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); | |
2147 | ||
2148 | #ifdef ATM_VPI_UNSPEC | |
2149 | // UNSPEC is deprecated, remove this code eventually | |
2150 | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { | |
2151 | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); | |
2152 | return -EINVAL; | |
2153 | } | |
2154 | #endif | |
2155 | ||
2156 | error = vpivci_to_channel (&channel, vpi, vci); | |
2157 | if (error) { | |
2158 | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); | |
2159 | return error; | |
2160 | } | |
2161 | ||
2162 | vcc.channel = channel; | |
2163 | // max speed for the moment | |
2164 | vcc.tx_rate = 0x0; | |
2165 | ||
2166 | qos = &atm_vcc->qos; | |
2167 | ||
2168 | // check AAL and remember it | |
2169 | switch (qos->aal) { | |
2170 | case ATM_AAL0: | |
2171 | // we would if it were 48 bytes and not 52! | |
2172 | PRINTD (DBG_QOS|DBG_VCC, "AAL0"); | |
2173 | vcc.aal = aal0; | |
2174 | break; | |
2175 | case ATM_AAL34: | |
2176 | // we would if I knew how do the SAR! | |
2177 | PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); | |
2178 | vcc.aal = aal34; | |
2179 | break; | |
2180 | case ATM_AAL5: | |
2181 | PRINTD (DBG_QOS|DBG_VCC, "AAL5"); | |
2182 | vcc.aal = aal5; | |
2183 | break; | |
2184 | default: | |
2185 | PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); | |
2186 | return -EINVAL; | |
2187 | break; | |
2188 | } | |
2189 | ||
2190 | // TX traffic parameters | |
2191 | ||
2192 | // there are two, interrelated problems here: 1. the reservation of | |
2193 | // PCR is not a binary choice, we are given bounds and/or a | |
2194 | // desirable value; 2. the device is only capable of certain values, | |
2195 | // most of which are not integers. It is almost certainly acceptable | |
2196 | // to be off by a maximum of 1 to 10 cps. | |
2197 | ||
2198 | // Pragmatic choice: always store an integral PCR as that which has | |
2199 | // been allocated, even if we allocate a little (or a lot) less, | |
2200 | // after rounding. The actual allocation depends on what we can | |
2201 | // manage with our rate selection algorithm. The rate selection | |
2202 | // algorithm is given an integral PCR and a tolerance and told | |
2203 | // whether it should round the value up or down if the tolerance is | |
2204 | // exceeded; it returns: a) the actual rate selected (rounded up to | |
2205 | // the nearest integer), b) a bit pattern to feed to the timer | |
2206 | // register, and c) a failure value if no applicable rate exists. | |
2207 | ||
2208 | // Part of the job is done by atm_pcr_goal which gives us a PCR | |
2209 | // specification which says: EITHER grab the maximum available PCR | |
2210 | // (and perhaps a lower bound which we musn't pass), OR grab this | |
2211 | // amount, rounding down if you have to (and perhaps a lower bound | |
2212 | // which we musn't pass) OR grab this amount, rounding up if you | |
2213 | // have to (and perhaps an upper bound which we musn't pass). If any | |
2214 | // bounds ARE passed we fail. Note that rounding is only rounding to | |
2215 | // match device limitations, we do not round down to satisfy | |
2216 | // bandwidth availability even if this would not violate any given | |
2217 | // lower bound. | |
2218 | ||
2219 | // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s | |
2220 | // (say) so this is not even a binary fixpoint cell rate (but this | |
2221 | // device can do it). To avoid this sort of hassle we use a | |
2222 | // tolerance parameter (currently fixed at 10 cps). | |
2223 | ||
2224 | PRINTD (DBG_QOS, "TX:"); | |
2225 | ||
2226 | txtp = &qos->txtp; | |
2227 | ||
2228 | // set up defaults for no traffic | |
2229 | vcc.tx_rate = 0; | |
2230 | // who knows what would actually happen if you try and send on this? | |
2231 | vcc.tx_xbr_bits = IDLE_RATE_TYPE; | |
2232 | vcc.tx_pcr_bits = CLOCK_DISABLE; | |
2233 | #if 0 | |
2234 | vcc.tx_scr_bits = CLOCK_DISABLE; | |
2235 | vcc.tx_bucket_bits = 0; | |
2236 | #endif | |
2237 | ||
2238 | if (txtp->traffic_class != ATM_NONE) { | |
2239 | error = check_max_sdu (vcc.aal, txtp, max_tx_size); | |
2240 | if (error) { | |
2241 | PRINTD (DBG_QOS, "TX max_sdu check failed"); | |
2242 | return error; | |
2243 | } | |
2244 | ||
2245 | switch (txtp->traffic_class) { | |
2246 | case ATM_UBR: { | |
2247 | // we take "the PCR" as a rate-cap | |
2248 | // not reserved | |
2249 | vcc.tx_rate = 0; | |
2250 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); | |
2251 | vcc.tx_xbr_bits = ABR_RATE_TYPE; | |
2252 | break; | |
2253 | } | |
2254 | #if 0 | |
2255 | case ATM_ABR: { | |
2256 | // reserve min, allow up to max | |
2257 | vcc.tx_rate = 0; // ? | |
2258 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); | |
2259 | vcc.tx_xbr_bits = ABR_RATE_TYPE; | |
2260 | break; | |
2261 | } | |
2262 | #endif | |
2263 | case ATM_CBR: { | |
2264 | int pcr = atm_pcr_goal (txtp); | |
2265 | rounding r; | |
2266 | if (!pcr) { | |
2267 | // down vs. up, remaining bandwidth vs. unlimited bandwidth!! | |
2268 | // should really have: once someone gets unlimited bandwidth | |
2269 | // that no more non-UBR channels can be opened until the | |
2270 | // unlimited one closes?? For the moment, round_down means | |
2271 | // greedy people actually get something and not nothing | |
2272 | r = round_down; | |
2273 | // slight race (no locking) here so we may get -EAGAIN | |
2274 | // later; the greedy bastards would deserve it :) | |
2275 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | |
2276 | pcr = dev->tx_avail; | |
2277 | } else if (pcr < 0) { | |
2278 | r = round_down; | |
2279 | pcr = -pcr; | |
2280 | } else { | |
2281 | r = round_up; | |
2282 | } | |
2283 | error = make_rate_with_tolerance (dev, pcr, r, 10, | |
2284 | &vcc.tx_pcr_bits, &vcc.tx_rate); | |
2285 | if (error) { | |
2286 | PRINTD (DBG_QOS, "could not make rate from TX PCR"); | |
2287 | return error; | |
2288 | } | |
2289 | // not really clear what further checking is needed | |
2290 | error = atm_pcr_check (txtp, vcc.tx_rate); | |
2291 | if (error) { | |
2292 | PRINTD (DBG_QOS, "TX PCR failed consistency check"); | |
2293 | return error; | |
2294 | } | |
2295 | vcc.tx_xbr_bits = CBR_RATE_TYPE; | |
2296 | break; | |
2297 | } | |
2298 | #if 0 | |
2299 | case ATM_VBR: { | |
2300 | int pcr = atm_pcr_goal (txtp); | |
2301 | // int scr = atm_scr_goal (txtp); | |
2302 | int scr = pcr/2; // just for fun | |
2303 | unsigned int mbs = 60; // just for fun | |
2304 | rounding pr; | |
2305 | rounding sr; | |
2306 | unsigned int bucket; | |
2307 | if (!pcr) { | |
2308 | pr = round_nearest; | |
2309 | pcr = 1<<30; | |
2310 | } else if (pcr < 0) { | |
2311 | pr = round_down; | |
2312 | pcr = -pcr; | |
2313 | } else { | |
2314 | pr = round_up; | |
2315 | } | |
2316 | error = make_rate_with_tolerance (dev, pcr, pr, 10, | |
2317 | &vcc.tx_pcr_bits, 0); | |
2318 | if (!scr) { | |
2319 | // see comments for PCR with CBR above | |
2320 | sr = round_down; | |
2321 | // slight race (no locking) here so we may get -EAGAIN | |
2322 | // later; the greedy bastards would deserve it :) | |
2323 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | |
2324 | scr = dev->tx_avail; | |
2325 | } else if (scr < 0) { | |
2326 | sr = round_down; | |
2327 | scr = -scr; | |
2328 | } else { | |
2329 | sr = round_up; | |
2330 | } | |
2331 | error = make_rate_with_tolerance (dev, scr, sr, 10, | |
2332 | &vcc.tx_scr_bits, &vcc.tx_rate); | |
2333 | if (error) { | |
2334 | PRINTD (DBG_QOS, "could not make rate from TX SCR"); | |
2335 | return error; | |
2336 | } | |
2337 | // not really clear what further checking is needed | |
2338 | // error = atm_scr_check (txtp, vcc.tx_rate); | |
2339 | if (error) { | |
2340 | PRINTD (DBG_QOS, "TX SCR failed consistency check"); | |
2341 | return error; | |
2342 | } | |
2343 | // bucket calculations (from a piece of paper...) cell bucket | |
2344 | // capacity must be largest integer smaller than m(p-s)/p + 1 | |
2345 | // where m = max burst size, p = pcr, s = scr | |
2346 | bucket = mbs*(pcr-scr)/pcr; | |
2347 | if (bucket*pcr != mbs*(pcr-scr)) | |
2348 | bucket += 1; | |
2349 | if (bucket > BUCKET_MAX_SIZE) { | |
2350 | PRINTD (DBG_QOS, "shrinking bucket from %u to %u", | |
2351 | bucket, BUCKET_MAX_SIZE); | |
2352 | bucket = BUCKET_MAX_SIZE; | |
2353 | } | |
2354 | vcc.tx_xbr_bits = VBR_RATE_TYPE; | |
2355 | vcc.tx_bucket_bits = bucket; | |
2356 | break; | |
2357 | } | |
2358 | #endif | |
2359 | default: { | |
2360 | PRINTD (DBG_QOS, "unsupported TX traffic class"); | |
2361 | return -EINVAL; | |
2362 | break; | |
2363 | } | |
2364 | } | |
2365 | } | |
2366 | ||
2367 | // RX traffic parameters | |
2368 | ||
2369 | PRINTD (DBG_QOS, "RX:"); | |
2370 | ||
2371 | rxtp = &qos->rxtp; | |
2372 | ||
2373 | // set up defaults for no traffic | |
2374 | vcc.rx_rate = 0; | |
2375 | ||
2376 | if (rxtp->traffic_class != ATM_NONE) { | |
2377 | error = check_max_sdu (vcc.aal, rxtp, max_rx_size); | |
2378 | if (error) { | |
2379 | PRINTD (DBG_QOS, "RX max_sdu check failed"); | |
2380 | return error; | |
2381 | } | |
2382 | switch (rxtp->traffic_class) { | |
2383 | case ATM_UBR: { | |
2384 | // not reserved | |
2385 | break; | |
2386 | } | |
2387 | #if 0 | |
2388 | case ATM_ABR: { | |
2389 | // reserve min | |
2390 | vcc.rx_rate = 0; // ? | |
2391 | break; | |
2392 | } | |
2393 | #endif | |
2394 | case ATM_CBR: { | |
2395 | int pcr = atm_pcr_goal (rxtp); | |
2396 | if (!pcr) { | |
2397 | // slight race (no locking) here so we may get -EAGAIN | |
2398 | // later; the greedy bastards would deserve it :) | |
2399 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | |
2400 | pcr = dev->rx_avail; | |
2401 | } else if (pcr < 0) { | |
2402 | pcr = -pcr; | |
2403 | } | |
2404 | vcc.rx_rate = pcr; | |
2405 | // not really clear what further checking is needed | |
2406 | error = atm_pcr_check (rxtp, vcc.rx_rate); | |
2407 | if (error) { | |
2408 | PRINTD (DBG_QOS, "RX PCR failed consistency check"); | |
2409 | return error; | |
2410 | } | |
2411 | break; | |
2412 | } | |
2413 | #if 0 | |
2414 | case ATM_VBR: { | |
2415 | // int scr = atm_scr_goal (rxtp); | |
2416 | int scr = 1<<16; // just for fun | |
2417 | if (!scr) { | |
2418 | // slight race (no locking) here so we may get -EAGAIN | |
2419 | // later; the greedy bastards would deserve it :) | |
2420 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | |
2421 | scr = dev->rx_avail; | |
2422 | } else if (scr < 0) { | |
2423 | scr = -scr; | |
2424 | } | |
2425 | vcc.rx_rate = scr; | |
2426 | // not really clear what further checking is needed | |
2427 | // error = atm_scr_check (rxtp, vcc.rx_rate); | |
2428 | if (error) { | |
2429 | PRINTD (DBG_QOS, "RX SCR failed consistency check"); | |
2430 | return error; | |
2431 | } | |
2432 | break; | |
2433 | } | |
2434 | #endif | |
2435 | default: { | |
2436 | PRINTD (DBG_QOS, "unsupported RX traffic class"); | |
2437 | return -EINVAL; | |
2438 | break; | |
2439 | } | |
2440 | } | |
2441 | } | |
2442 | ||
2443 | ||
2444 | // late abort useful for diagnostics | |
2445 | if (vcc.aal != aal5) { | |
2446 | PRINTD (DBG_QOS, "AAL not supported"); | |
2447 | return -EINVAL; | |
2448 | } | |
2449 | ||
2450 | // get space for our vcc stuff and copy parameters into it | |
2451 | vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); | |
2452 | if (!vccp) { | |
2453 | PRINTK (KERN_ERR, "out of memory!"); | |
2454 | return -ENOMEM; | |
2455 | } | |
2456 | *vccp = vcc; | |
2457 | ||
2458 | // clear error and grab cell rate resource lock | |
2459 | error = 0; | |
2460 | spin_lock (&dev->rate_lock); | |
2461 | ||
2462 | if (vcc.tx_rate > dev->tx_avail) { | |
2463 | PRINTD (DBG_QOS, "not enough TX PCR left"); | |
2464 | error = -EAGAIN; | |
2465 | } | |
2466 | ||
2467 | if (vcc.rx_rate > dev->rx_avail) { | |
2468 | PRINTD (DBG_QOS, "not enough RX PCR left"); | |
2469 | error = -EAGAIN; | |
2470 | } | |
2471 | ||
2472 | if (!error) { | |
2473 | // really consume cell rates | |
2474 | dev->tx_avail -= vcc.tx_rate; | |
2475 | dev->rx_avail -= vcc.rx_rate; | |
2476 | PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", | |
2477 | vcc.tx_rate, vcc.rx_rate); | |
2478 | } | |
2479 | ||
2480 | // release lock and exit on error | |
2481 | spin_unlock (&dev->rate_lock); | |
2482 | if (error) { | |
2483 | PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); | |
2484 | kfree (vccp); | |
2485 | return error; | |
2486 | } | |
2487 | ||
2488 | // this is "immediately before allocating the connection identifier | |
2489 | // in hardware" - so long as the next call does not fail :) | |
2490 | set_bit(ATM_VF_ADDR,&atm_vcc->flags); | |
2491 | ||
2492 | // any errors here are very serious and should never occur | |
2493 | ||
2494 | if (rxtp->traffic_class != ATM_NONE) { | |
2495 | if (dev->rxer[channel]) { | |
2496 | PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); | |
2497 | error = -EBUSY; | |
2498 | } | |
2499 | if (!error) | |
2500 | error = hrz_open_rx (dev, channel); | |
2501 | if (error) { | |
2502 | kfree (vccp); | |
2503 | return error; | |
2504 | } | |
2505 | // this link allows RX frames through | |
2506 | dev->rxer[channel] = atm_vcc; | |
2507 | } | |
2508 | ||
2509 | // success, set elements of atm_vcc | |
2510 | atm_vcc->dev_data = (void *) vccp; | |
2511 | ||
2512 | // indicate readiness | |
2513 | set_bit(ATM_VF_READY,&atm_vcc->flags); | |
2514 | ||
2515 | return 0; | |
2516 | } | |
2517 | ||
2518 | /********** close VC **********/ | |
2519 | ||
2520 | static void hrz_close (struct atm_vcc * atm_vcc) { | |
2521 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | |
2522 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | |
2523 | u16 channel = vcc->channel; | |
2524 | PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); | |
2525 | ||
2526 | // indicate unreadiness | |
2527 | clear_bit(ATM_VF_READY,&atm_vcc->flags); | |
2528 | ||
2529 | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { | |
2530 | unsigned int i; | |
2531 | ||
2532 | // let any TX on this channel that has started complete | |
2533 | // no restart, just keep trying | |
2534 | while (tx_hold (dev)) | |
2535 | ; | |
2536 | // remove record of any tx_channel having been setup for this channel | |
2537 | for (i = 0; i < TX_CHANS; ++i) | |
2538 | if (dev->tx_channel_record[i] == channel) { | |
2539 | dev->tx_channel_record[i] = -1; | |
2540 | break; | |
2541 | } | |
2542 | if (dev->last_vc == channel) | |
2543 | dev->tx_last = -1; | |
2544 | tx_release (dev); | |
2545 | } | |
2546 | ||
2547 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | |
2548 | // disable RXing - it tries quite hard | |
2549 | hrz_close_rx (dev, channel); | |
2550 | // forget the vcc - no more skbs will be pushed | |
2551 | if (atm_vcc != dev->rxer[channel]) | |
2552 | PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", | |
2553 | "arghhh! we're going to die!", | |
2554 | atm_vcc, dev->rxer[channel]); | |
2555 | dev->rxer[channel] = NULL; | |
2556 | } | |
2557 | ||
2558 | // atomically release our rate reservation | |
2559 | spin_lock (&dev->rate_lock); | |
2560 | PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", | |
2561 | vcc->tx_rate, vcc->rx_rate); | |
2562 | dev->tx_avail += vcc->tx_rate; | |
2563 | dev->rx_avail += vcc->rx_rate; | |
2564 | spin_unlock (&dev->rate_lock); | |
2565 | ||
2566 | // free our structure | |
2567 | kfree (vcc); | |
2568 | // say the VPI/VCI is free again | |
2569 | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); | |
2570 | } | |
2571 | ||
2572 | #if 0 | |
2573 | static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, | |
2574 | void *optval, int optlen) { | |
2575 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | |
2576 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); | |
2577 | switch (level) { | |
2578 | case SOL_SOCKET: | |
2579 | switch (optname) { | |
2580 | // case SO_BCTXOPT: | |
2581 | // break; | |
2582 | // case SO_BCRXOPT: | |
2583 | // break; | |
2584 | default: | |
2585 | return -ENOPROTOOPT; | |
2586 | break; | |
2587 | }; | |
2588 | break; | |
2589 | } | |
2590 | return -EINVAL; | |
2591 | } | |
2592 | ||
2593 | static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, | |
b7058842 | 2594 | void *optval, unsigned int optlen) { |
1da177e4 LT |
2595 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
2596 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); | |
2597 | switch (level) { | |
2598 | case SOL_SOCKET: | |
2599 | switch (optname) { | |
2600 | // case SO_BCTXOPT: | |
2601 | // break; | |
2602 | // case SO_BCRXOPT: | |
2603 | // break; | |
2604 | default: | |
2605 | return -ENOPROTOOPT; | |
2606 | break; | |
2607 | }; | |
2608 | break; | |
2609 | } | |
2610 | return -EINVAL; | |
2611 | } | |
2612 | #endif | |
2613 | ||
2614 | #if 0 | |
2615 | static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { | |
2616 | hrz_dev * dev = HRZ_DEV(atm_dev); | |
2617 | PRINTD (DBG_FLOW, "hrz_ioctl"); | |
2618 | return -1; | |
2619 | } | |
2620 | ||
2621 | unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { | |
2622 | hrz_dev * dev = HRZ_DEV(atm_dev); | |
2623 | PRINTD (DBG_FLOW, "hrz_phy_get"); | |
2624 | return 0; | |
2625 | } | |
2626 | ||
2627 | static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, | |
2628 | unsigned long addr) { | |
2629 | hrz_dev * dev = HRZ_DEV(atm_dev); | |
2630 | PRINTD (DBG_FLOW, "hrz_phy_put"); | |
2631 | } | |
2632 | ||
2633 | static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { | |
2634 | hrz_dev * dev = HRZ_DEV(vcc->dev); | |
2635 | PRINTD (DBG_FLOW, "hrz_change_qos"); | |
2636 | return -1; | |
2637 | } | |
2638 | #endif | |
2639 | ||
2640 | /********** proc file contents **********/ | |
2641 | ||
2642 | static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { | |
2643 | hrz_dev * dev = HRZ_DEV(atm_dev); | |
2644 | int left = *pos; | |
2645 | PRINTD (DBG_FLOW, "hrz_proc_read"); | |
2646 | ||
2647 | /* more diagnostics here? */ | |
2648 | ||
2649 | #if 0 | |
2650 | if (!left--) { | |
2651 | unsigned int count = sprintf (page, "vbr buckets:"); | |
2652 | unsigned int i; | |
2653 | for (i = 0; i < TX_CHANS; ++i) | |
2654 | count += sprintf (page, " %u/%u", | |
2655 | query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), | |
2656 | query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); | |
2657 | count += sprintf (page+count, ".\n"); | |
2658 | return count; | |
2659 | } | |
2660 | #endif | |
2661 | ||
2662 | if (!left--) | |
2663 | return sprintf (page, | |
2664 | "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", | |
2665 | dev->tx_cell_count, dev->rx_cell_count, | |
2666 | dev->hec_error_count, dev->unassigned_cell_count); | |
2667 | ||
2668 | if (!left--) | |
2669 | return sprintf (page, | |
2670 | "free cell buffers: TX %hu, RX %hu+%hu.\n", | |
2671 | rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), | |
2672 | rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), | |
2673 | dev->noof_spare_buffers); | |
2674 | ||
2675 | if (!left--) | |
2676 | return sprintf (page, | |
2677 | "cps remaining: TX %u, RX %u\n", | |
2678 | dev->tx_avail, dev->rx_avail); | |
2679 | ||
2680 | return 0; | |
2681 | } | |
2682 | ||
2683 | static const struct atmdev_ops hrz_ops = { | |
2684 | .open = hrz_open, | |
2685 | .close = hrz_close, | |
2686 | .send = hrz_send, | |
2687 | .proc_read = hrz_proc_read, | |
2688 | .owner = THIS_MODULE, | |
2689 | }; | |
2690 | ||
2691 | static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) | |
2692 | { | |
2693 | hrz_dev * dev; | |
2694 | int err = 0; | |
2695 | ||
2696 | // adapter slot free, read resources from PCI configuration space | |
2697 | u32 iobase = pci_resource_start (pci_dev, 0); | |
2698 | u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); | |
2699 | unsigned int irq; | |
2700 | unsigned char lat; | |
2701 | ||
2702 | PRINTD (DBG_FLOW, "hrz_probe"); | |
2703 | ||
2704 | if (pci_enable_device(pci_dev)) | |
2705 | return -EINVAL; | |
2706 | ||
2707 | /* XXX DEV_LABEL is a guess */ | |
2708 | if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { | |
aac725cf | 2709 | err = -EINVAL; |
1da177e4 LT |
2710 | goto out_disable; |
2711 | } | |
2712 | ||
0c1cca1d | 2713 | dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL); |
1da177e4 LT |
2714 | if (!dev) { |
2715 | // perhaps we should be nice: deregister all adapters and abort? | |
2716 | PRINTD(DBG_ERR, "out of memory"); | |
2717 | err = -ENOMEM; | |
2718 | goto out_release; | |
2719 | } | |
2720 | ||
1da177e4 LT |
2721 | pci_set_drvdata(pci_dev, dev); |
2722 | ||
2723 | // grab IRQ and install handler - move this someplace more sensible | |
2724 | irq = pci_dev->irq; | |
2725 | if (request_irq(irq, | |
2726 | interrupt_handler, | |
dace1453 | 2727 | IRQF_SHARED, /* irqflags guess */ |
1da177e4 LT |
2728 | DEV_LABEL, /* name guess */ |
2729 | dev)) { | |
2730 | PRINTD(DBG_WARN, "request IRQ failed!"); | |
2731 | err = -EINVAL; | |
2732 | goto out_free; | |
2733 | } | |
2734 | ||
2735 | PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", | |
2736 | iobase, irq, membase); | |
2737 | ||
2738 | dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); | |
2739 | if (!(dev->atm_dev)) { | |
2740 | PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); | |
2741 | err = -EINVAL; | |
2742 | goto out_free_irq; | |
2743 | } | |
2744 | ||
2745 | PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", | |
2746 | dev->atm_dev->number, dev, dev->atm_dev); | |
2747 | dev->atm_dev->dev_data = (void *) dev; | |
2748 | dev->pci_dev = pci_dev; | |
2749 | ||
2750 | // enable bus master accesses | |
2751 | pci_set_master(pci_dev); | |
2752 | ||
2753 | // frobnicate latency (upwards, usually) | |
2754 | pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); | |
2755 | if (pci_lat) { | |
2756 | PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", | |
2757 | "changing", lat, pci_lat); | |
2758 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); | |
2759 | } else if (lat < MIN_PCI_LATENCY) { | |
2760 | PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", | |
2761 | "increasing", lat, MIN_PCI_LATENCY); | |
2762 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); | |
2763 | } | |
2764 | ||
2765 | dev->iobase = iobase; | |
2766 | dev->irq = irq; | |
2767 | dev->membase = membase; | |
2768 | ||
2769 | dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; | |
2770 | dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1]; | |
2771 | ||
2772 | // these next three are performance hacks | |
2773 | dev->last_vc = -1; | |
2774 | dev->tx_last = -1; | |
2775 | dev->tx_idle = 0; | |
2776 | ||
2777 | dev->tx_regions = 0; | |
2778 | dev->tx_bytes = 0; | |
2779 | dev->tx_skb = NULL; | |
2780 | dev->tx_iovec = NULL; | |
2781 | ||
2782 | dev->tx_cell_count = 0; | |
2783 | dev->rx_cell_count = 0; | |
2784 | dev->hec_error_count = 0; | |
2785 | dev->unassigned_cell_count = 0; | |
2786 | ||
2787 | dev->noof_spare_buffers = 0; | |
2788 | ||
2789 | { | |
2790 | unsigned int i; | |
2791 | for (i = 0; i < TX_CHANS; ++i) | |
2792 | dev->tx_channel_record[i] = -1; | |
2793 | } | |
2794 | ||
2795 | dev->flags = 0; | |
2796 | ||
2797 | // Allocate cell rates and remember ASIC version | |
2798 | // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 | |
2799 | // Copper: (WRONG) we want 6 into the above, close to 25Mb/s | |
2800 | // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 | |
2801 | ||
2802 | if (hrz_init(dev)) { | |
2803 | // to be really pedantic, this should be ATM_OC3c_PCR | |
2804 | dev->tx_avail = ATM_OC3_PCR; | |
2805 | dev->rx_avail = ATM_OC3_PCR; | |
2806 | set_bit(ultra, &dev->flags); // NOT "|= ultra" ! | |
2807 | } else { | |
2808 | dev->tx_avail = ((25600000/8)*26)/(27*53); | |
2809 | dev->rx_avail = ((25600000/8)*26)/(27*53); | |
2810 | PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); | |
2811 | } | |
2812 | ||
2813 | // rate changes spinlock | |
2814 | spin_lock_init(&dev->rate_lock); | |
2815 | ||
2816 | // on-board memory access spinlock; we want atomic reads and | |
2817 | // writes to adapter memory (handles IRQ and SMP) | |
2818 | spin_lock_init(&dev->mem_lock); | |
2819 | ||
2820 | init_waitqueue_head(&dev->tx_queue); | |
2821 | ||
2822 | // vpi in 0..4, vci in 6..10 | |
2823 | dev->atm_dev->ci_range.vpi_bits = vpi_bits; | |
2824 | dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; | |
2825 | ||
2826 | init_timer(&dev->housekeeping); | |
2827 | dev->housekeeping.function = do_housekeeping; | |
2828 | dev->housekeeping.data = (unsigned long) dev; | |
2829 | mod_timer(&dev->housekeeping, jiffies); | |
2830 | ||
2831 | out: | |
2832 | return err; | |
2833 | ||
2834 | out_free_irq: | |
2835 | free_irq(dev->irq, dev); | |
2836 | out_free: | |
2837 | kfree(dev); | |
2838 | out_release: | |
2839 | release_region(iobase, HRZ_IO_EXTENT); | |
2840 | out_disable: | |
2841 | pci_disable_device(pci_dev); | |
2842 | goto out; | |
2843 | } | |
2844 | ||
2845 | static void __devexit hrz_remove_one(struct pci_dev *pci_dev) | |
2846 | { | |
2847 | hrz_dev *dev; | |
2848 | ||
2849 | dev = pci_get_drvdata(pci_dev); | |
2850 | ||
2851 | PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); | |
2852 | del_timer_sync(&dev->housekeeping); | |
2853 | hrz_reset(dev); | |
2854 | atm_dev_deregister(dev->atm_dev); | |
2855 | free_irq(dev->irq, dev); | |
2856 | release_region(dev->iobase, HRZ_IO_EXTENT); | |
2857 | kfree(dev); | |
2858 | ||
2859 | pci_disable_device(pci_dev); | |
2860 | } | |
2861 | ||
2862 | static void __init hrz_check_args (void) { | |
2863 | #ifdef DEBUG_HORIZON | |
2864 | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); | |
2865 | #else | |
2866 | if (debug) | |
2867 | PRINTK (KERN_NOTICE, "no debug support in this image"); | |
2868 | #endif | |
2869 | ||
2870 | if (vpi_bits > HRZ_MAX_VPI) | |
2871 | PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", | |
2872 | vpi_bits = HRZ_MAX_VPI); | |
2873 | ||
2874 | if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) | |
2875 | PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", | |
2876 | max_tx_size = TX_AAL5_LIMIT); | |
2877 | ||
2878 | if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) | |
2879 | PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", | |
2880 | max_rx_size = RX_AAL5_LIMIT); | |
2881 | ||
2882 | return; | |
2883 | } | |
2884 | ||
2885 | MODULE_AUTHOR(maintainer_string); | |
2886 | MODULE_DESCRIPTION(description_string); | |
2887 | MODULE_LICENSE("GPL"); | |
2888 | module_param(debug, ushort, 0644); | |
2889 | module_param(vpi_bits, ushort, 0); | |
2890 | module_param(max_tx_size, int, 0); | |
2891 | module_param(max_rx_size, int, 0); | |
2892 | module_param(pci_lat, byte, 0); | |
2893 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); | |
2894 | MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); | |
2895 | MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); | |
2896 | MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); | |
2897 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); | |
2898 | ||
2899 | static struct pci_device_id hrz_pci_tbl[] = { | |
2900 | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, | |
2901 | 0, 0, 0 }, | |
2902 | { 0, } | |
2903 | }; | |
2904 | ||
2905 | MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); | |
2906 | ||
2907 | static struct pci_driver hrz_driver = { | |
2908 | .name = "horizon", | |
2909 | .probe = hrz_probe, | |
2910 | .remove = __devexit_p(hrz_remove_one), | |
2911 | .id_table = hrz_pci_tbl, | |
2912 | }; | |
2913 | ||
2914 | /********** module entry **********/ | |
2915 | ||
2916 | static int __init hrz_module_init (void) { | |
2917 | // sanity check - cast is needed since printk does not support %Zu | |
2918 | if (sizeof(struct MEMMAP) != 128*1024/4) { | |
2919 | PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", | |
2920 | (unsigned long) sizeof(struct MEMMAP)); | |
2921 | return -ENOMEM; | |
2922 | } | |
2923 | ||
2924 | show_version(); | |
2925 | ||
2926 | // check arguments | |
2927 | hrz_check_args(); | |
2928 | ||
2929 | // get the juice | |
2930 | return pci_register_driver(&hrz_driver); | |
2931 | } | |
2932 | ||
2933 | /********** module exit **********/ | |
2934 | ||
2935 | static void __exit hrz_module_exit (void) { | |
2936 | PRINTD (DBG_FLOW, "cleanup_module"); | |
b45eccdb TK |
2937 | |
2938 | pci_unregister_driver(&hrz_driver); | |
1da177e4 LT |
2939 | } |
2940 | ||
2941 | module_init(hrz_module_init); | |
2942 | module_exit(hrz_module_exit); |