]>
Commit | Line | Data |
---|---|---|
b20a3503 CL |
1 | /* |
2 | * Memory Migration functionality - linux/mm/migration.c | |
3 | * | |
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | |
5 | * | |
6 | * Page migration was first developed in the context of the memory hotplug | |
7 | * project. The main authors of the migration code are: | |
8 | * | |
9 | * IWAMOTO Toshihiro <[email protected]> | |
10 | * Hirokazu Takahashi <[email protected]> | |
11 | * Dave Hansen <[email protected]> | |
cde53535 | 12 | * Christoph Lameter |
b20a3503 CL |
13 | */ |
14 | ||
15 | #include <linux/migrate.h> | |
b95f1b31 | 16 | #include <linux/export.h> |
b20a3503 | 17 | #include <linux/swap.h> |
0697212a | 18 | #include <linux/swapops.h> |
b20a3503 | 19 | #include <linux/pagemap.h> |
e23ca00b | 20 | #include <linux/buffer_head.h> |
b20a3503 | 21 | #include <linux/mm_inline.h> |
b488893a | 22 | #include <linux/nsproxy.h> |
b20a3503 | 23 | #include <linux/pagevec.h> |
e9995ef9 | 24 | #include <linux/ksm.h> |
b20a3503 CL |
25 | #include <linux/rmap.h> |
26 | #include <linux/topology.h> | |
27 | #include <linux/cpu.h> | |
28 | #include <linux/cpuset.h> | |
04e62a29 | 29 | #include <linux/writeback.h> |
742755a1 CL |
30 | #include <linux/mempolicy.h> |
31 | #include <linux/vmalloc.h> | |
86c3a764 | 32 | #include <linux/security.h> |
8a9f3ccd | 33 | #include <linux/memcontrol.h> |
4f5ca265 | 34 | #include <linux/syscalls.h> |
290408d4 | 35 | #include <linux/hugetlb.h> |
8e6ac7fa | 36 | #include <linux/hugetlb_cgroup.h> |
5a0e3ad6 | 37 | #include <linux/gfp.h> |
bf6bddf1 | 38 | #include <linux/balloon_compaction.h> |
f714f4f2 | 39 | #include <linux/mmu_notifier.h> |
b20a3503 | 40 | |
0d1836c3 MN |
41 | #include <asm/tlbflush.h> |
42 | ||
7b2a2d4a MG |
43 | #define CREATE_TRACE_POINTS |
44 | #include <trace/events/migrate.h> | |
45 | ||
b20a3503 CL |
46 | #include "internal.h" |
47 | ||
b20a3503 | 48 | /* |
742755a1 | 49 | * migrate_prep() needs to be called before we start compiling a list of pages |
748446bb MG |
50 | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is |
51 | * undesirable, use migrate_prep_local() | |
b20a3503 CL |
52 | */ |
53 | int migrate_prep(void) | |
54 | { | |
b20a3503 CL |
55 | /* |
56 | * Clear the LRU lists so pages can be isolated. | |
57 | * Note that pages may be moved off the LRU after we have | |
58 | * drained them. Those pages will fail to migrate like other | |
59 | * pages that may be busy. | |
60 | */ | |
61 | lru_add_drain_all(); | |
62 | ||
63 | return 0; | |
64 | } | |
65 | ||
748446bb MG |
66 | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ |
67 | int migrate_prep_local(void) | |
68 | { | |
69 | lru_add_drain(); | |
70 | ||
71 | return 0; | |
72 | } | |
73 | ||
5733c7d1 RA |
74 | /* |
75 | * Put previously isolated pages back onto the appropriate lists | |
76 | * from where they were once taken off for compaction/migration. | |
77 | * | |
59c82b70 JK |
78 | * This function shall be used whenever the isolated pageset has been |
79 | * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() | |
80 | * and isolate_huge_page(). | |
5733c7d1 RA |
81 | */ |
82 | void putback_movable_pages(struct list_head *l) | |
83 | { | |
84 | struct page *page; | |
85 | struct page *page2; | |
86 | ||
b20a3503 | 87 | list_for_each_entry_safe(page, page2, l, lru) { |
31caf665 NH |
88 | if (unlikely(PageHuge(page))) { |
89 | putback_active_hugepage(page); | |
90 | continue; | |
91 | } | |
e24f0b8f | 92 | list_del(&page->lru); |
a731286d | 93 | dec_zone_page_state(page, NR_ISOLATED_ANON + |
6c0b1351 | 94 | page_is_file_cache(page)); |
117aad1e | 95 | if (unlikely(isolated_balloon_page(page))) |
bf6bddf1 RA |
96 | balloon_page_putback(page); |
97 | else | |
98 | putback_lru_page(page); | |
b20a3503 | 99 | } |
b20a3503 CL |
100 | } |
101 | ||
0697212a CL |
102 | /* |
103 | * Restore a potential migration pte to a working pte entry | |
104 | */ | |
e9995ef9 HD |
105 | static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, |
106 | unsigned long addr, void *old) | |
0697212a CL |
107 | { |
108 | struct mm_struct *mm = vma->vm_mm; | |
109 | swp_entry_t entry; | |
0697212a CL |
110 | pmd_t *pmd; |
111 | pte_t *ptep, pte; | |
112 | spinlock_t *ptl; | |
113 | ||
290408d4 NH |
114 | if (unlikely(PageHuge(new))) { |
115 | ptep = huge_pte_offset(mm, addr); | |
116 | if (!ptep) | |
117 | goto out; | |
cb900f41 | 118 | ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); |
290408d4 | 119 | } else { |
6219049a BL |
120 | pmd = mm_find_pmd(mm, addr); |
121 | if (!pmd) | |
290408d4 | 122 | goto out; |
0697212a | 123 | |
290408d4 | 124 | ptep = pte_offset_map(pmd, addr); |
0697212a | 125 | |
486cf46f HD |
126 | /* |
127 | * Peek to check is_swap_pte() before taking ptlock? No, we | |
128 | * can race mremap's move_ptes(), which skips anon_vma lock. | |
129 | */ | |
290408d4 NH |
130 | |
131 | ptl = pte_lockptr(mm, pmd); | |
132 | } | |
0697212a | 133 | |
0697212a CL |
134 | spin_lock(ptl); |
135 | pte = *ptep; | |
136 | if (!is_swap_pte(pte)) | |
e9995ef9 | 137 | goto unlock; |
0697212a CL |
138 | |
139 | entry = pte_to_swp_entry(pte); | |
140 | ||
e9995ef9 HD |
141 | if (!is_migration_entry(entry) || |
142 | migration_entry_to_page(entry) != old) | |
143 | goto unlock; | |
0697212a | 144 | |
0697212a CL |
145 | get_page(new); |
146 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | |
c3d16e16 CG |
147 | if (pte_swp_soft_dirty(*ptep)) |
148 | pte = pte_mksoft_dirty(pte); | |
0697212a CL |
149 | if (is_write_migration_entry(entry)) |
150 | pte = pte_mkwrite(pte); | |
3ef8fd7f | 151 | #ifdef CONFIG_HUGETLB_PAGE |
be7517d6 | 152 | if (PageHuge(new)) { |
290408d4 | 153 | pte = pte_mkhuge(pte); |
be7517d6 TL |
154 | pte = arch_make_huge_pte(pte, vma, new, 0); |
155 | } | |
3ef8fd7f | 156 | #endif |
c2cc499c | 157 | flush_dcache_page(new); |
0697212a | 158 | set_pte_at(mm, addr, ptep, pte); |
04e62a29 | 159 | |
290408d4 NH |
160 | if (PageHuge(new)) { |
161 | if (PageAnon(new)) | |
162 | hugepage_add_anon_rmap(new, vma, addr); | |
163 | else | |
164 | page_dup_rmap(new); | |
165 | } else if (PageAnon(new)) | |
04e62a29 CL |
166 | page_add_anon_rmap(new, vma, addr); |
167 | else | |
168 | page_add_file_rmap(new); | |
169 | ||
170 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 171 | update_mmu_cache(vma, addr, ptep); |
e9995ef9 | 172 | unlock: |
0697212a | 173 | pte_unmap_unlock(ptep, ptl); |
e9995ef9 HD |
174 | out: |
175 | return SWAP_AGAIN; | |
0697212a CL |
176 | } |
177 | ||
7e09e738 HD |
178 | /* |
179 | * Congratulations to trinity for discovering this bug. | |
180 | * mm/fremap.c's remap_file_pages() accepts any range within a single vma to | |
181 | * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then | |
182 | * replace the specified range by file ptes throughout (maybe populated after). | |
183 | * If page migration finds a page within that range, while it's still located | |
184 | * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem: | |
185 | * zap_pte() clears the temporary migration entry before mmap_sem is dropped. | |
186 | * But if the migrating page is in a part of the vma outside the range to be | |
187 | * remapped, then it will not be cleared, and remove_migration_ptes() needs to | |
188 | * deal with it. Fortunately, this part of the vma is of course still linear, | |
189 | * so we just need to use linear location on the nonlinear list. | |
190 | */ | |
191 | static int remove_linear_migration_ptes_from_nonlinear(struct page *page, | |
192 | struct address_space *mapping, void *arg) | |
193 | { | |
194 | struct vm_area_struct *vma; | |
195 | /* hugetlbfs does not support remap_pages, so no huge pgoff worries */ | |
196 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
197 | unsigned long addr; | |
198 | ||
199 | list_for_each_entry(vma, | |
200 | &mapping->i_mmap_nonlinear, shared.nonlinear) { | |
201 | ||
202 | addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
203 | if (addr >= vma->vm_start && addr < vma->vm_end) | |
204 | remove_migration_pte(page, vma, addr, arg); | |
205 | } | |
206 | return SWAP_AGAIN; | |
207 | } | |
208 | ||
04e62a29 CL |
209 | /* |
210 | * Get rid of all migration entries and replace them by | |
211 | * references to the indicated page. | |
212 | */ | |
213 | static void remove_migration_ptes(struct page *old, struct page *new) | |
214 | { | |
051ac83a JK |
215 | struct rmap_walk_control rwc = { |
216 | .rmap_one = remove_migration_pte, | |
217 | .arg = old, | |
7e09e738 | 218 | .file_nonlinear = remove_linear_migration_ptes_from_nonlinear, |
051ac83a JK |
219 | }; |
220 | ||
221 | rmap_walk(new, &rwc); | |
04e62a29 CL |
222 | } |
223 | ||
0697212a CL |
224 | /* |
225 | * Something used the pte of a page under migration. We need to | |
226 | * get to the page and wait until migration is finished. | |
227 | * When we return from this function the fault will be retried. | |
0697212a | 228 | */ |
30dad309 NH |
229 | static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, |
230 | spinlock_t *ptl) | |
0697212a | 231 | { |
30dad309 | 232 | pte_t pte; |
0697212a CL |
233 | swp_entry_t entry; |
234 | struct page *page; | |
235 | ||
30dad309 | 236 | spin_lock(ptl); |
0697212a CL |
237 | pte = *ptep; |
238 | if (!is_swap_pte(pte)) | |
239 | goto out; | |
240 | ||
241 | entry = pte_to_swp_entry(pte); | |
242 | if (!is_migration_entry(entry)) | |
243 | goto out; | |
244 | ||
245 | page = migration_entry_to_page(entry); | |
246 | ||
e286781d NP |
247 | /* |
248 | * Once radix-tree replacement of page migration started, page_count | |
249 | * *must* be zero. And, we don't want to call wait_on_page_locked() | |
250 | * against a page without get_page(). | |
251 | * So, we use get_page_unless_zero(), here. Even failed, page fault | |
252 | * will occur again. | |
253 | */ | |
254 | if (!get_page_unless_zero(page)) | |
255 | goto out; | |
0697212a CL |
256 | pte_unmap_unlock(ptep, ptl); |
257 | wait_on_page_locked(page); | |
258 | put_page(page); | |
259 | return; | |
260 | out: | |
261 | pte_unmap_unlock(ptep, ptl); | |
262 | } | |
263 | ||
30dad309 NH |
264 | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, |
265 | unsigned long address) | |
266 | { | |
267 | spinlock_t *ptl = pte_lockptr(mm, pmd); | |
268 | pte_t *ptep = pte_offset_map(pmd, address); | |
269 | __migration_entry_wait(mm, ptep, ptl); | |
270 | } | |
271 | ||
cb900f41 KS |
272 | void migration_entry_wait_huge(struct vm_area_struct *vma, |
273 | struct mm_struct *mm, pte_t *pte) | |
30dad309 | 274 | { |
cb900f41 | 275 | spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); |
30dad309 NH |
276 | __migration_entry_wait(mm, pte, ptl); |
277 | } | |
278 | ||
b969c4ab MG |
279 | #ifdef CONFIG_BLOCK |
280 | /* Returns true if all buffers are successfully locked */ | |
a6bc32b8 MG |
281 | static bool buffer_migrate_lock_buffers(struct buffer_head *head, |
282 | enum migrate_mode mode) | |
b969c4ab MG |
283 | { |
284 | struct buffer_head *bh = head; | |
285 | ||
286 | /* Simple case, sync compaction */ | |
a6bc32b8 | 287 | if (mode != MIGRATE_ASYNC) { |
b969c4ab MG |
288 | do { |
289 | get_bh(bh); | |
290 | lock_buffer(bh); | |
291 | bh = bh->b_this_page; | |
292 | ||
293 | } while (bh != head); | |
294 | ||
295 | return true; | |
296 | } | |
297 | ||
298 | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | |
299 | do { | |
300 | get_bh(bh); | |
301 | if (!trylock_buffer(bh)) { | |
302 | /* | |
303 | * We failed to lock the buffer and cannot stall in | |
304 | * async migration. Release the taken locks | |
305 | */ | |
306 | struct buffer_head *failed_bh = bh; | |
307 | put_bh(failed_bh); | |
308 | bh = head; | |
309 | while (bh != failed_bh) { | |
310 | unlock_buffer(bh); | |
311 | put_bh(bh); | |
312 | bh = bh->b_this_page; | |
313 | } | |
314 | return false; | |
315 | } | |
316 | ||
317 | bh = bh->b_this_page; | |
318 | } while (bh != head); | |
319 | return true; | |
320 | } | |
321 | #else | |
322 | static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, | |
a6bc32b8 | 323 | enum migrate_mode mode) |
b969c4ab MG |
324 | { |
325 | return true; | |
326 | } | |
327 | #endif /* CONFIG_BLOCK */ | |
328 | ||
b20a3503 | 329 | /* |
c3fcf8a5 | 330 | * Replace the page in the mapping. |
5b5c7120 CL |
331 | * |
332 | * The number of remaining references must be: | |
333 | * 1 for anonymous pages without a mapping | |
334 | * 2 for pages with a mapping | |
266cf658 | 335 | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. |
b20a3503 | 336 | */ |
36bc08cc | 337 | int migrate_page_move_mapping(struct address_space *mapping, |
b969c4ab | 338 | struct page *newpage, struct page *page, |
8e321fef BL |
339 | struct buffer_head *head, enum migrate_mode mode, |
340 | int extra_count) | |
b20a3503 | 341 | { |
8e321fef | 342 | int expected_count = 1 + extra_count; |
7cf9c2c7 | 343 | void **pslot; |
b20a3503 | 344 | |
6c5240ae | 345 | if (!mapping) { |
0e8c7d0f | 346 | /* Anonymous page without mapping */ |
8e321fef | 347 | if (page_count(page) != expected_count) |
6c5240ae | 348 | return -EAGAIN; |
78bd5209 | 349 | return MIGRATEPAGE_SUCCESS; |
6c5240ae CL |
350 | } |
351 | ||
19fd6231 | 352 | spin_lock_irq(&mapping->tree_lock); |
b20a3503 | 353 | |
7cf9c2c7 NP |
354 | pslot = radix_tree_lookup_slot(&mapping->page_tree, |
355 | page_index(page)); | |
b20a3503 | 356 | |
8e321fef | 357 | expected_count += 1 + page_has_private(page); |
e286781d | 358 | if (page_count(page) != expected_count || |
29c1f677 | 359 | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { |
19fd6231 | 360 | spin_unlock_irq(&mapping->tree_lock); |
e23ca00b | 361 | return -EAGAIN; |
b20a3503 CL |
362 | } |
363 | ||
e286781d | 364 | if (!page_freeze_refs(page, expected_count)) { |
19fd6231 | 365 | spin_unlock_irq(&mapping->tree_lock); |
e286781d NP |
366 | return -EAGAIN; |
367 | } | |
368 | ||
b969c4ab MG |
369 | /* |
370 | * In the async migration case of moving a page with buffers, lock the | |
371 | * buffers using trylock before the mapping is moved. If the mapping | |
372 | * was moved, we later failed to lock the buffers and could not move | |
373 | * the mapping back due to an elevated page count, we would have to | |
374 | * block waiting on other references to be dropped. | |
375 | */ | |
a6bc32b8 MG |
376 | if (mode == MIGRATE_ASYNC && head && |
377 | !buffer_migrate_lock_buffers(head, mode)) { | |
b969c4ab MG |
378 | page_unfreeze_refs(page, expected_count); |
379 | spin_unlock_irq(&mapping->tree_lock); | |
380 | return -EAGAIN; | |
381 | } | |
382 | ||
b20a3503 CL |
383 | /* |
384 | * Now we know that no one else is looking at the page. | |
b20a3503 | 385 | */ |
7cf9c2c7 | 386 | get_page(newpage); /* add cache reference */ |
b20a3503 CL |
387 | if (PageSwapCache(page)) { |
388 | SetPageSwapCache(newpage); | |
389 | set_page_private(newpage, page_private(page)); | |
390 | } | |
391 | ||
7cf9c2c7 NP |
392 | radix_tree_replace_slot(pslot, newpage); |
393 | ||
394 | /* | |
937a94c9 JG |
395 | * Drop cache reference from old page by unfreezing |
396 | * to one less reference. | |
7cf9c2c7 NP |
397 | * We know this isn't the last reference. |
398 | */ | |
937a94c9 | 399 | page_unfreeze_refs(page, expected_count - 1); |
7cf9c2c7 | 400 | |
0e8c7d0f CL |
401 | /* |
402 | * If moved to a different zone then also account | |
403 | * the page for that zone. Other VM counters will be | |
404 | * taken care of when we establish references to the | |
405 | * new page and drop references to the old page. | |
406 | * | |
407 | * Note that anonymous pages are accounted for | |
408 | * via NR_FILE_PAGES and NR_ANON_PAGES if they | |
409 | * are mapped to swap space. | |
410 | */ | |
411 | __dec_zone_page_state(page, NR_FILE_PAGES); | |
412 | __inc_zone_page_state(newpage, NR_FILE_PAGES); | |
99a15e21 | 413 | if (!PageSwapCache(page) && PageSwapBacked(page)) { |
4b02108a KM |
414 | __dec_zone_page_state(page, NR_SHMEM); |
415 | __inc_zone_page_state(newpage, NR_SHMEM); | |
416 | } | |
19fd6231 | 417 | spin_unlock_irq(&mapping->tree_lock); |
b20a3503 | 418 | |
78bd5209 | 419 | return MIGRATEPAGE_SUCCESS; |
b20a3503 | 420 | } |
b20a3503 | 421 | |
290408d4 NH |
422 | /* |
423 | * The expected number of remaining references is the same as that | |
424 | * of migrate_page_move_mapping(). | |
425 | */ | |
426 | int migrate_huge_page_move_mapping(struct address_space *mapping, | |
427 | struct page *newpage, struct page *page) | |
428 | { | |
429 | int expected_count; | |
430 | void **pslot; | |
431 | ||
432 | if (!mapping) { | |
433 | if (page_count(page) != 1) | |
434 | return -EAGAIN; | |
78bd5209 | 435 | return MIGRATEPAGE_SUCCESS; |
290408d4 NH |
436 | } |
437 | ||
438 | spin_lock_irq(&mapping->tree_lock); | |
439 | ||
440 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | |
441 | page_index(page)); | |
442 | ||
443 | expected_count = 2 + page_has_private(page); | |
444 | if (page_count(page) != expected_count || | |
29c1f677 | 445 | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { |
290408d4 NH |
446 | spin_unlock_irq(&mapping->tree_lock); |
447 | return -EAGAIN; | |
448 | } | |
449 | ||
450 | if (!page_freeze_refs(page, expected_count)) { | |
451 | spin_unlock_irq(&mapping->tree_lock); | |
452 | return -EAGAIN; | |
453 | } | |
454 | ||
455 | get_page(newpage); | |
456 | ||
457 | radix_tree_replace_slot(pslot, newpage); | |
458 | ||
937a94c9 | 459 | page_unfreeze_refs(page, expected_count - 1); |
290408d4 NH |
460 | |
461 | spin_unlock_irq(&mapping->tree_lock); | |
78bd5209 | 462 | return MIGRATEPAGE_SUCCESS; |
290408d4 NH |
463 | } |
464 | ||
30b0a105 DH |
465 | /* |
466 | * Gigantic pages are so large that we do not guarantee that page++ pointer | |
467 | * arithmetic will work across the entire page. We need something more | |
468 | * specialized. | |
469 | */ | |
470 | static void __copy_gigantic_page(struct page *dst, struct page *src, | |
471 | int nr_pages) | |
472 | { | |
473 | int i; | |
474 | struct page *dst_base = dst; | |
475 | struct page *src_base = src; | |
476 | ||
477 | for (i = 0; i < nr_pages; ) { | |
478 | cond_resched(); | |
479 | copy_highpage(dst, src); | |
480 | ||
481 | i++; | |
482 | dst = mem_map_next(dst, dst_base, i); | |
483 | src = mem_map_next(src, src_base, i); | |
484 | } | |
485 | } | |
486 | ||
487 | static void copy_huge_page(struct page *dst, struct page *src) | |
488 | { | |
489 | int i; | |
490 | int nr_pages; | |
491 | ||
492 | if (PageHuge(src)) { | |
493 | /* hugetlbfs page */ | |
494 | struct hstate *h = page_hstate(src); | |
495 | nr_pages = pages_per_huge_page(h); | |
496 | ||
497 | if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { | |
498 | __copy_gigantic_page(dst, src, nr_pages); | |
499 | return; | |
500 | } | |
501 | } else { | |
502 | /* thp page */ | |
503 | BUG_ON(!PageTransHuge(src)); | |
504 | nr_pages = hpage_nr_pages(src); | |
505 | } | |
506 | ||
507 | for (i = 0; i < nr_pages; i++) { | |
508 | cond_resched(); | |
509 | copy_highpage(dst + i, src + i); | |
510 | } | |
511 | } | |
512 | ||
b20a3503 CL |
513 | /* |
514 | * Copy the page to its new location | |
515 | */ | |
290408d4 | 516 | void migrate_page_copy(struct page *newpage, struct page *page) |
b20a3503 | 517 | { |
7851a45c RR |
518 | int cpupid; |
519 | ||
b32967ff | 520 | if (PageHuge(page) || PageTransHuge(page)) |
290408d4 NH |
521 | copy_huge_page(newpage, page); |
522 | else | |
523 | copy_highpage(newpage, page); | |
b20a3503 CL |
524 | |
525 | if (PageError(page)) | |
526 | SetPageError(newpage); | |
527 | if (PageReferenced(page)) | |
528 | SetPageReferenced(newpage); | |
529 | if (PageUptodate(page)) | |
530 | SetPageUptodate(newpage); | |
894bc310 | 531 | if (TestClearPageActive(page)) { |
309381fe | 532 | VM_BUG_ON_PAGE(PageUnevictable(page), page); |
b20a3503 | 533 | SetPageActive(newpage); |
418b27ef LS |
534 | } else if (TestClearPageUnevictable(page)) |
535 | SetPageUnevictable(newpage); | |
b20a3503 CL |
536 | if (PageChecked(page)) |
537 | SetPageChecked(newpage); | |
538 | if (PageMappedToDisk(page)) | |
539 | SetPageMappedToDisk(newpage); | |
540 | ||
541 | if (PageDirty(page)) { | |
542 | clear_page_dirty_for_io(page); | |
3a902c5f NP |
543 | /* |
544 | * Want to mark the page and the radix tree as dirty, and | |
545 | * redo the accounting that clear_page_dirty_for_io undid, | |
546 | * but we can't use set_page_dirty because that function | |
547 | * is actually a signal that all of the page has become dirty. | |
25985edc | 548 | * Whereas only part of our page may be dirty. |
3a902c5f | 549 | */ |
752dc185 HD |
550 | if (PageSwapBacked(page)) |
551 | SetPageDirty(newpage); | |
552 | else | |
553 | __set_page_dirty_nobuffers(newpage); | |
b20a3503 CL |
554 | } |
555 | ||
7851a45c RR |
556 | /* |
557 | * Copy NUMA information to the new page, to prevent over-eager | |
558 | * future migrations of this same page. | |
559 | */ | |
560 | cpupid = page_cpupid_xchg_last(page, -1); | |
561 | page_cpupid_xchg_last(newpage, cpupid); | |
562 | ||
b291f000 | 563 | mlock_migrate_page(newpage, page); |
e9995ef9 | 564 | ksm_migrate_page(newpage, page); |
c8d6553b HD |
565 | /* |
566 | * Please do not reorder this without considering how mm/ksm.c's | |
567 | * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). | |
568 | */ | |
b20a3503 | 569 | ClearPageSwapCache(page); |
b20a3503 CL |
570 | ClearPagePrivate(page); |
571 | set_page_private(page, 0); | |
b20a3503 CL |
572 | |
573 | /* | |
574 | * If any waiters have accumulated on the new page then | |
575 | * wake them up. | |
576 | */ | |
577 | if (PageWriteback(newpage)) | |
578 | end_page_writeback(newpage); | |
579 | } | |
b20a3503 | 580 | |
1d8b85cc CL |
581 | /************************************************************ |
582 | * Migration functions | |
583 | ***********************************************************/ | |
584 | ||
b20a3503 CL |
585 | /* |
586 | * Common logic to directly migrate a single page suitable for | |
266cf658 | 587 | * pages that do not use PagePrivate/PagePrivate2. |
b20a3503 CL |
588 | * |
589 | * Pages are locked upon entry and exit. | |
590 | */ | |
2d1db3b1 | 591 | int migrate_page(struct address_space *mapping, |
a6bc32b8 MG |
592 | struct page *newpage, struct page *page, |
593 | enum migrate_mode mode) | |
b20a3503 CL |
594 | { |
595 | int rc; | |
596 | ||
597 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | |
598 | ||
8e321fef | 599 | rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); |
b20a3503 | 600 | |
78bd5209 | 601 | if (rc != MIGRATEPAGE_SUCCESS) |
b20a3503 CL |
602 | return rc; |
603 | ||
604 | migrate_page_copy(newpage, page); | |
78bd5209 | 605 | return MIGRATEPAGE_SUCCESS; |
b20a3503 CL |
606 | } |
607 | EXPORT_SYMBOL(migrate_page); | |
608 | ||
9361401e | 609 | #ifdef CONFIG_BLOCK |
1d8b85cc CL |
610 | /* |
611 | * Migration function for pages with buffers. This function can only be used | |
612 | * if the underlying filesystem guarantees that no other references to "page" | |
613 | * exist. | |
614 | */ | |
2d1db3b1 | 615 | int buffer_migrate_page(struct address_space *mapping, |
a6bc32b8 | 616 | struct page *newpage, struct page *page, enum migrate_mode mode) |
1d8b85cc | 617 | { |
1d8b85cc CL |
618 | struct buffer_head *bh, *head; |
619 | int rc; | |
620 | ||
1d8b85cc | 621 | if (!page_has_buffers(page)) |
a6bc32b8 | 622 | return migrate_page(mapping, newpage, page, mode); |
1d8b85cc CL |
623 | |
624 | head = page_buffers(page); | |
625 | ||
8e321fef | 626 | rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); |
1d8b85cc | 627 | |
78bd5209 | 628 | if (rc != MIGRATEPAGE_SUCCESS) |
1d8b85cc CL |
629 | return rc; |
630 | ||
b969c4ab MG |
631 | /* |
632 | * In the async case, migrate_page_move_mapping locked the buffers | |
633 | * with an IRQ-safe spinlock held. In the sync case, the buffers | |
634 | * need to be locked now | |
635 | */ | |
a6bc32b8 MG |
636 | if (mode != MIGRATE_ASYNC) |
637 | BUG_ON(!buffer_migrate_lock_buffers(head, mode)); | |
1d8b85cc CL |
638 | |
639 | ClearPagePrivate(page); | |
640 | set_page_private(newpage, page_private(page)); | |
641 | set_page_private(page, 0); | |
642 | put_page(page); | |
643 | get_page(newpage); | |
644 | ||
645 | bh = head; | |
646 | do { | |
647 | set_bh_page(bh, newpage, bh_offset(bh)); | |
648 | bh = bh->b_this_page; | |
649 | ||
650 | } while (bh != head); | |
651 | ||
652 | SetPagePrivate(newpage); | |
653 | ||
654 | migrate_page_copy(newpage, page); | |
655 | ||
656 | bh = head; | |
657 | do { | |
658 | unlock_buffer(bh); | |
659 | put_bh(bh); | |
660 | bh = bh->b_this_page; | |
661 | ||
662 | } while (bh != head); | |
663 | ||
78bd5209 | 664 | return MIGRATEPAGE_SUCCESS; |
1d8b85cc CL |
665 | } |
666 | EXPORT_SYMBOL(buffer_migrate_page); | |
9361401e | 667 | #endif |
1d8b85cc | 668 | |
04e62a29 CL |
669 | /* |
670 | * Writeback a page to clean the dirty state | |
671 | */ | |
672 | static int writeout(struct address_space *mapping, struct page *page) | |
8351a6e4 | 673 | { |
04e62a29 CL |
674 | struct writeback_control wbc = { |
675 | .sync_mode = WB_SYNC_NONE, | |
676 | .nr_to_write = 1, | |
677 | .range_start = 0, | |
678 | .range_end = LLONG_MAX, | |
04e62a29 CL |
679 | .for_reclaim = 1 |
680 | }; | |
681 | int rc; | |
682 | ||
683 | if (!mapping->a_ops->writepage) | |
684 | /* No write method for the address space */ | |
685 | return -EINVAL; | |
686 | ||
687 | if (!clear_page_dirty_for_io(page)) | |
688 | /* Someone else already triggered a write */ | |
689 | return -EAGAIN; | |
690 | ||
8351a6e4 | 691 | /* |
04e62a29 CL |
692 | * A dirty page may imply that the underlying filesystem has |
693 | * the page on some queue. So the page must be clean for | |
694 | * migration. Writeout may mean we loose the lock and the | |
695 | * page state is no longer what we checked for earlier. | |
696 | * At this point we know that the migration attempt cannot | |
697 | * be successful. | |
8351a6e4 | 698 | */ |
04e62a29 | 699 | remove_migration_ptes(page, page); |
8351a6e4 | 700 | |
04e62a29 | 701 | rc = mapping->a_ops->writepage(page, &wbc); |
8351a6e4 | 702 | |
04e62a29 CL |
703 | if (rc != AOP_WRITEPAGE_ACTIVATE) |
704 | /* unlocked. Relock */ | |
705 | lock_page(page); | |
706 | ||
bda8550d | 707 | return (rc < 0) ? -EIO : -EAGAIN; |
04e62a29 CL |
708 | } |
709 | ||
710 | /* | |
711 | * Default handling if a filesystem does not provide a migration function. | |
712 | */ | |
713 | static int fallback_migrate_page(struct address_space *mapping, | |
a6bc32b8 | 714 | struct page *newpage, struct page *page, enum migrate_mode mode) |
04e62a29 | 715 | { |
b969c4ab | 716 | if (PageDirty(page)) { |
a6bc32b8 MG |
717 | /* Only writeback pages in full synchronous migration */ |
718 | if (mode != MIGRATE_SYNC) | |
b969c4ab | 719 | return -EBUSY; |
04e62a29 | 720 | return writeout(mapping, page); |
b969c4ab | 721 | } |
8351a6e4 CL |
722 | |
723 | /* | |
724 | * Buffers may be managed in a filesystem specific way. | |
725 | * We must have no buffers or drop them. | |
726 | */ | |
266cf658 | 727 | if (page_has_private(page) && |
8351a6e4 CL |
728 | !try_to_release_page(page, GFP_KERNEL)) |
729 | return -EAGAIN; | |
730 | ||
a6bc32b8 | 731 | return migrate_page(mapping, newpage, page, mode); |
8351a6e4 CL |
732 | } |
733 | ||
e24f0b8f CL |
734 | /* |
735 | * Move a page to a newly allocated page | |
736 | * The page is locked and all ptes have been successfully removed. | |
737 | * | |
738 | * The new page will have replaced the old page if this function | |
739 | * is successful. | |
894bc310 LS |
740 | * |
741 | * Return value: | |
742 | * < 0 - error code | |
78bd5209 | 743 | * MIGRATEPAGE_SUCCESS - success |
e24f0b8f | 744 | */ |
3fe2011f | 745 | static int move_to_new_page(struct page *newpage, struct page *page, |
a6bc32b8 | 746 | int remap_swapcache, enum migrate_mode mode) |
e24f0b8f CL |
747 | { |
748 | struct address_space *mapping; | |
749 | int rc; | |
750 | ||
751 | /* | |
752 | * Block others from accessing the page when we get around to | |
753 | * establishing additional references. We are the only one | |
754 | * holding a reference to the new page at this point. | |
755 | */ | |
529ae9aa | 756 | if (!trylock_page(newpage)) |
e24f0b8f CL |
757 | BUG(); |
758 | ||
759 | /* Prepare mapping for the new page.*/ | |
760 | newpage->index = page->index; | |
761 | newpage->mapping = page->mapping; | |
b2e18538 RR |
762 | if (PageSwapBacked(page)) |
763 | SetPageSwapBacked(newpage); | |
e24f0b8f CL |
764 | |
765 | mapping = page_mapping(page); | |
766 | if (!mapping) | |
a6bc32b8 | 767 | rc = migrate_page(mapping, newpage, page, mode); |
b969c4ab | 768 | else if (mapping->a_ops->migratepage) |
e24f0b8f | 769 | /* |
b969c4ab MG |
770 | * Most pages have a mapping and most filesystems provide a |
771 | * migratepage callback. Anonymous pages are part of swap | |
772 | * space which also has its own migratepage callback. This | |
773 | * is the most common path for page migration. | |
e24f0b8f | 774 | */ |
b969c4ab | 775 | rc = mapping->a_ops->migratepage(mapping, |
a6bc32b8 | 776 | newpage, page, mode); |
b969c4ab | 777 | else |
a6bc32b8 | 778 | rc = fallback_migrate_page(mapping, newpage, page, mode); |
e24f0b8f | 779 | |
78bd5209 | 780 | if (rc != MIGRATEPAGE_SUCCESS) { |
e24f0b8f | 781 | newpage->mapping = NULL; |
3fe2011f MG |
782 | } else { |
783 | if (remap_swapcache) | |
784 | remove_migration_ptes(page, newpage); | |
35512eca | 785 | page->mapping = NULL; |
3fe2011f | 786 | } |
e24f0b8f CL |
787 | |
788 | unlock_page(newpage); | |
789 | ||
790 | return rc; | |
791 | } | |
792 | ||
0dabec93 | 793 | static int __unmap_and_move(struct page *page, struct page *newpage, |
9c620e2b | 794 | int force, enum migrate_mode mode) |
e24f0b8f | 795 | { |
0dabec93 | 796 | int rc = -EAGAIN; |
3fe2011f | 797 | int remap_swapcache = 1; |
56039efa | 798 | struct mem_cgroup *mem; |
3f6c8272 | 799 | struct anon_vma *anon_vma = NULL; |
95a402c3 | 800 | |
529ae9aa | 801 | if (!trylock_page(page)) { |
a6bc32b8 | 802 | if (!force || mode == MIGRATE_ASYNC) |
0dabec93 | 803 | goto out; |
3e7d3449 MG |
804 | |
805 | /* | |
806 | * It's not safe for direct compaction to call lock_page. | |
807 | * For example, during page readahead pages are added locked | |
808 | * to the LRU. Later, when the IO completes the pages are | |
809 | * marked uptodate and unlocked. However, the queueing | |
810 | * could be merging multiple pages for one bio (e.g. | |
811 | * mpage_readpages). If an allocation happens for the | |
812 | * second or third page, the process can end up locking | |
813 | * the same page twice and deadlocking. Rather than | |
814 | * trying to be clever about what pages can be locked, | |
815 | * avoid the use of lock_page for direct compaction | |
816 | * altogether. | |
817 | */ | |
818 | if (current->flags & PF_MEMALLOC) | |
0dabec93 | 819 | goto out; |
3e7d3449 | 820 | |
e24f0b8f CL |
821 | lock_page(page); |
822 | } | |
823 | ||
01b1ae63 | 824 | /* charge against new page */ |
0030f535 | 825 | mem_cgroup_prepare_migration(page, newpage, &mem); |
01b1ae63 | 826 | |
e24f0b8f | 827 | if (PageWriteback(page)) { |
11bc82d6 | 828 | /* |
fed5b64a | 829 | * Only in the case of a full synchronous migration is it |
a6bc32b8 MG |
830 | * necessary to wait for PageWriteback. In the async case, |
831 | * the retry loop is too short and in the sync-light case, | |
832 | * the overhead of stalling is too much | |
11bc82d6 | 833 | */ |
a6bc32b8 | 834 | if (mode != MIGRATE_SYNC) { |
11bc82d6 AA |
835 | rc = -EBUSY; |
836 | goto uncharge; | |
837 | } | |
838 | if (!force) | |
01b1ae63 | 839 | goto uncharge; |
e24f0b8f CL |
840 | wait_on_page_writeback(page); |
841 | } | |
e24f0b8f | 842 | /* |
dc386d4d KH |
843 | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, |
844 | * we cannot notice that anon_vma is freed while we migrates a page. | |
1ce82b69 | 845 | * This get_anon_vma() delays freeing anon_vma pointer until the end |
dc386d4d | 846 | * of migration. File cache pages are no problem because of page_lock() |
989f89c5 KH |
847 | * File Caches may use write_page() or lock_page() in migration, then, |
848 | * just care Anon page here. | |
dc386d4d | 849 | */ |
b79bc0a0 | 850 | if (PageAnon(page) && !PageKsm(page)) { |
1ce82b69 | 851 | /* |
4fc3f1d6 | 852 | * Only page_lock_anon_vma_read() understands the subtleties of |
1ce82b69 HD |
853 | * getting a hold on an anon_vma from outside one of its mms. |
854 | */ | |
746b18d4 | 855 | anon_vma = page_get_anon_vma(page); |
1ce82b69 HD |
856 | if (anon_vma) { |
857 | /* | |
746b18d4 | 858 | * Anon page |
1ce82b69 | 859 | */ |
1ce82b69 | 860 | } else if (PageSwapCache(page)) { |
3fe2011f MG |
861 | /* |
862 | * We cannot be sure that the anon_vma of an unmapped | |
863 | * swapcache page is safe to use because we don't | |
864 | * know in advance if the VMA that this page belonged | |
865 | * to still exists. If the VMA and others sharing the | |
866 | * data have been freed, then the anon_vma could | |
867 | * already be invalid. | |
868 | * | |
869 | * To avoid this possibility, swapcache pages get | |
870 | * migrated but are not remapped when migration | |
871 | * completes | |
872 | */ | |
873 | remap_swapcache = 0; | |
874 | } else { | |
1ce82b69 | 875 | goto uncharge; |
3fe2011f | 876 | } |
989f89c5 | 877 | } |
62e1c553 | 878 | |
bf6bddf1 RA |
879 | if (unlikely(balloon_page_movable(page))) { |
880 | /* | |
881 | * A ballooned page does not need any special attention from | |
882 | * physical to virtual reverse mapping procedures. | |
883 | * Skip any attempt to unmap PTEs or to remap swap cache, | |
884 | * in order to avoid burning cycles at rmap level, and perform | |
885 | * the page migration right away (proteced by page lock). | |
886 | */ | |
887 | rc = balloon_page_migrate(newpage, page, mode); | |
888 | goto uncharge; | |
889 | } | |
890 | ||
dc386d4d | 891 | /* |
62e1c553 SL |
892 | * Corner case handling: |
893 | * 1. When a new swap-cache page is read into, it is added to the LRU | |
894 | * and treated as swapcache but it has no rmap yet. | |
895 | * Calling try_to_unmap() against a page->mapping==NULL page will | |
896 | * trigger a BUG. So handle it here. | |
897 | * 2. An orphaned page (see truncate_complete_page) might have | |
898 | * fs-private metadata. The page can be picked up due to memory | |
899 | * offlining. Everywhere else except page reclaim, the page is | |
900 | * invisible to the vm, so the page can not be migrated. So try to | |
901 | * free the metadata, so the page can be freed. | |
e24f0b8f | 902 | */ |
62e1c553 | 903 | if (!page->mapping) { |
309381fe | 904 | VM_BUG_ON_PAGE(PageAnon(page), page); |
1ce82b69 | 905 | if (page_has_private(page)) { |
62e1c553 | 906 | try_to_free_buffers(page); |
1ce82b69 | 907 | goto uncharge; |
62e1c553 | 908 | } |
abfc3488 | 909 | goto skip_unmap; |
62e1c553 SL |
910 | } |
911 | ||
dc386d4d | 912 | /* Establish migration ptes or remove ptes */ |
14fa31b8 | 913 | try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); |
dc386d4d | 914 | |
abfc3488 | 915 | skip_unmap: |
e6a1530d | 916 | if (!page_mapped(page)) |
a6bc32b8 | 917 | rc = move_to_new_page(newpage, page, remap_swapcache, mode); |
e24f0b8f | 918 | |
3fe2011f | 919 | if (rc && remap_swapcache) |
e24f0b8f | 920 | remove_migration_ptes(page, page); |
3f6c8272 MG |
921 | |
922 | /* Drop an anon_vma reference if we took one */ | |
76545066 | 923 | if (anon_vma) |
9e60109f | 924 | put_anon_vma(anon_vma); |
3f6c8272 | 925 | |
01b1ae63 | 926 | uncharge: |
bf6bddf1 RA |
927 | mem_cgroup_end_migration(mem, page, newpage, |
928 | (rc == MIGRATEPAGE_SUCCESS || | |
929 | rc == MIGRATEPAGE_BALLOON_SUCCESS)); | |
e24f0b8f | 930 | unlock_page(page); |
0dabec93 MK |
931 | out: |
932 | return rc; | |
933 | } | |
95a402c3 | 934 | |
0dabec93 MK |
935 | /* |
936 | * Obtain the lock on page, remove all ptes and migrate the page | |
937 | * to the newly allocated page in newpage. | |
938 | */ | |
68711a74 DR |
939 | static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page, |
940 | unsigned long private, struct page *page, int force, | |
941 | enum migrate_mode mode) | |
0dabec93 MK |
942 | { |
943 | int rc = 0; | |
944 | int *result = NULL; | |
945 | struct page *newpage = get_new_page(page, private, &result); | |
946 | ||
947 | if (!newpage) | |
948 | return -ENOMEM; | |
949 | ||
950 | if (page_count(page) == 1) { | |
951 | /* page was freed from under us. So we are done. */ | |
952 | goto out; | |
953 | } | |
954 | ||
955 | if (unlikely(PageTransHuge(page))) | |
956 | if (unlikely(split_huge_page(page))) | |
957 | goto out; | |
958 | ||
9c620e2b | 959 | rc = __unmap_and_move(page, newpage, force, mode); |
bf6bddf1 RA |
960 | |
961 | if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) { | |
962 | /* | |
963 | * A ballooned page has been migrated already. | |
964 | * Now, it's the time to wrap-up counters, | |
965 | * handle the page back to Buddy and return. | |
966 | */ | |
967 | dec_zone_page_state(page, NR_ISOLATED_ANON + | |
968 | page_is_file_cache(page)); | |
969 | balloon_page_free(page); | |
970 | return MIGRATEPAGE_SUCCESS; | |
971 | } | |
0dabec93 | 972 | out: |
e24f0b8f | 973 | if (rc != -EAGAIN) { |
0dabec93 MK |
974 | /* |
975 | * A page that has been migrated has all references | |
976 | * removed and will be freed. A page that has not been | |
977 | * migrated will have kepts its references and be | |
978 | * restored. | |
979 | */ | |
980 | list_del(&page->lru); | |
a731286d | 981 | dec_zone_page_state(page, NR_ISOLATED_ANON + |
6c0b1351 | 982 | page_is_file_cache(page)); |
894bc310 | 983 | putback_lru_page(page); |
e24f0b8f | 984 | } |
68711a74 | 985 | |
95a402c3 | 986 | /* |
68711a74 DR |
987 | * If migration was not successful and there's a freeing callback, use |
988 | * it. Otherwise, putback_lru_page() will drop the reference grabbed | |
989 | * during isolation. | |
95a402c3 | 990 | */ |
68711a74 DR |
991 | if (rc != MIGRATEPAGE_SUCCESS && put_new_page) |
992 | put_new_page(newpage, private); | |
993 | else | |
994 | putback_lru_page(newpage); | |
995 | ||
742755a1 CL |
996 | if (result) { |
997 | if (rc) | |
998 | *result = rc; | |
999 | else | |
1000 | *result = page_to_nid(newpage); | |
1001 | } | |
e24f0b8f CL |
1002 | return rc; |
1003 | } | |
1004 | ||
290408d4 NH |
1005 | /* |
1006 | * Counterpart of unmap_and_move_page() for hugepage migration. | |
1007 | * | |
1008 | * This function doesn't wait the completion of hugepage I/O | |
1009 | * because there is no race between I/O and migration for hugepage. | |
1010 | * Note that currently hugepage I/O occurs only in direct I/O | |
1011 | * where no lock is held and PG_writeback is irrelevant, | |
1012 | * and writeback status of all subpages are counted in the reference | |
1013 | * count of the head page (i.e. if all subpages of a 2MB hugepage are | |
1014 | * under direct I/O, the reference of the head page is 512 and a bit more.) | |
1015 | * This means that when we try to migrate hugepage whose subpages are | |
1016 | * doing direct I/O, some references remain after try_to_unmap() and | |
1017 | * hugepage migration fails without data corruption. | |
1018 | * | |
1019 | * There is also no race when direct I/O is issued on the page under migration, | |
1020 | * because then pte is replaced with migration swap entry and direct I/O code | |
1021 | * will wait in the page fault for migration to complete. | |
1022 | */ | |
1023 | static int unmap_and_move_huge_page(new_page_t get_new_page, | |
68711a74 DR |
1024 | free_page_t put_new_page, unsigned long private, |
1025 | struct page *hpage, int force, | |
1026 | enum migrate_mode mode) | |
290408d4 NH |
1027 | { |
1028 | int rc = 0; | |
1029 | int *result = NULL; | |
32665f2b | 1030 | struct page *new_hpage; |
290408d4 NH |
1031 | struct anon_vma *anon_vma = NULL; |
1032 | ||
83467efb NH |
1033 | /* |
1034 | * Movability of hugepages depends on architectures and hugepage size. | |
1035 | * This check is necessary because some callers of hugepage migration | |
1036 | * like soft offline and memory hotremove don't walk through page | |
1037 | * tables or check whether the hugepage is pmd-based or not before | |
1038 | * kicking migration. | |
1039 | */ | |
100873d7 | 1040 | if (!hugepage_migration_supported(page_hstate(hpage))) { |
32665f2b | 1041 | putback_active_hugepage(hpage); |
83467efb | 1042 | return -ENOSYS; |
32665f2b | 1043 | } |
83467efb | 1044 | |
32665f2b | 1045 | new_hpage = get_new_page(hpage, private, &result); |
290408d4 NH |
1046 | if (!new_hpage) |
1047 | return -ENOMEM; | |
1048 | ||
1049 | rc = -EAGAIN; | |
1050 | ||
1051 | if (!trylock_page(hpage)) { | |
a6bc32b8 | 1052 | if (!force || mode != MIGRATE_SYNC) |
290408d4 NH |
1053 | goto out; |
1054 | lock_page(hpage); | |
1055 | } | |
1056 | ||
746b18d4 PZ |
1057 | if (PageAnon(hpage)) |
1058 | anon_vma = page_get_anon_vma(hpage); | |
290408d4 NH |
1059 | |
1060 | try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | |
1061 | ||
1062 | if (!page_mapped(hpage)) | |
a6bc32b8 | 1063 | rc = move_to_new_page(new_hpage, hpage, 1, mode); |
290408d4 | 1064 | |
68711a74 | 1065 | if (rc != MIGRATEPAGE_SUCCESS) |
290408d4 NH |
1066 | remove_migration_ptes(hpage, hpage); |
1067 | ||
fd4a4663 | 1068 | if (anon_vma) |
9e60109f | 1069 | put_anon_vma(anon_vma); |
8e6ac7fa | 1070 | |
68711a74 | 1071 | if (rc == MIGRATEPAGE_SUCCESS) |
8e6ac7fa AK |
1072 | hugetlb_cgroup_migrate(hpage, new_hpage); |
1073 | ||
290408d4 | 1074 | unlock_page(hpage); |
09761333 | 1075 | out: |
b8ec1cee NH |
1076 | if (rc != -EAGAIN) |
1077 | putback_active_hugepage(hpage); | |
68711a74 DR |
1078 | |
1079 | /* | |
1080 | * If migration was not successful and there's a freeing callback, use | |
1081 | * it. Otherwise, put_page() will drop the reference grabbed during | |
1082 | * isolation. | |
1083 | */ | |
1084 | if (rc != MIGRATEPAGE_SUCCESS && put_new_page) | |
1085 | put_new_page(new_hpage, private); | |
1086 | else | |
1087 | put_page(new_hpage); | |
1088 | ||
290408d4 NH |
1089 | if (result) { |
1090 | if (rc) | |
1091 | *result = rc; | |
1092 | else | |
1093 | *result = page_to_nid(new_hpage); | |
1094 | } | |
1095 | return rc; | |
1096 | } | |
1097 | ||
b20a3503 | 1098 | /* |
c73e5c9c SB |
1099 | * migrate_pages - migrate the pages specified in a list, to the free pages |
1100 | * supplied as the target for the page migration | |
b20a3503 | 1101 | * |
c73e5c9c SB |
1102 | * @from: The list of pages to be migrated. |
1103 | * @get_new_page: The function used to allocate free pages to be used | |
1104 | * as the target of the page migration. | |
68711a74 DR |
1105 | * @put_new_page: The function used to free target pages if migration |
1106 | * fails, or NULL if no special handling is necessary. | |
c73e5c9c SB |
1107 | * @private: Private data to be passed on to get_new_page() |
1108 | * @mode: The migration mode that specifies the constraints for | |
1109 | * page migration, if any. | |
1110 | * @reason: The reason for page migration. | |
b20a3503 | 1111 | * |
c73e5c9c SB |
1112 | * The function returns after 10 attempts or if no pages are movable any more |
1113 | * because the list has become empty or no retryable pages exist any more. | |
1114 | * The caller should call putback_lru_pages() to return pages to the LRU | |
28bd6578 | 1115 | * or free list only if ret != 0. |
b20a3503 | 1116 | * |
c73e5c9c | 1117 | * Returns the number of pages that were not migrated, or an error code. |
b20a3503 | 1118 | */ |
9c620e2b | 1119 | int migrate_pages(struct list_head *from, new_page_t get_new_page, |
68711a74 DR |
1120 | free_page_t put_new_page, unsigned long private, |
1121 | enum migrate_mode mode, int reason) | |
b20a3503 | 1122 | { |
e24f0b8f | 1123 | int retry = 1; |
b20a3503 | 1124 | int nr_failed = 0; |
5647bc29 | 1125 | int nr_succeeded = 0; |
b20a3503 CL |
1126 | int pass = 0; |
1127 | struct page *page; | |
1128 | struct page *page2; | |
1129 | int swapwrite = current->flags & PF_SWAPWRITE; | |
1130 | int rc; | |
1131 | ||
1132 | if (!swapwrite) | |
1133 | current->flags |= PF_SWAPWRITE; | |
1134 | ||
e24f0b8f CL |
1135 | for(pass = 0; pass < 10 && retry; pass++) { |
1136 | retry = 0; | |
b20a3503 | 1137 | |
e24f0b8f | 1138 | list_for_each_entry_safe(page, page2, from, lru) { |
e24f0b8f | 1139 | cond_resched(); |
2d1db3b1 | 1140 | |
31caf665 NH |
1141 | if (PageHuge(page)) |
1142 | rc = unmap_and_move_huge_page(get_new_page, | |
68711a74 DR |
1143 | put_new_page, private, page, |
1144 | pass > 2, mode); | |
31caf665 | 1145 | else |
68711a74 DR |
1146 | rc = unmap_and_move(get_new_page, put_new_page, |
1147 | private, page, pass > 2, mode); | |
2d1db3b1 | 1148 | |
e24f0b8f | 1149 | switch(rc) { |
95a402c3 CL |
1150 | case -ENOMEM: |
1151 | goto out; | |
e24f0b8f | 1152 | case -EAGAIN: |
2d1db3b1 | 1153 | retry++; |
e24f0b8f | 1154 | break; |
78bd5209 | 1155 | case MIGRATEPAGE_SUCCESS: |
5647bc29 | 1156 | nr_succeeded++; |
e24f0b8f CL |
1157 | break; |
1158 | default: | |
354a3363 NH |
1159 | /* |
1160 | * Permanent failure (-EBUSY, -ENOSYS, etc.): | |
1161 | * unlike -EAGAIN case, the failed page is | |
1162 | * removed from migration page list and not | |
1163 | * retried in the next outer loop. | |
1164 | */ | |
2d1db3b1 | 1165 | nr_failed++; |
e24f0b8f | 1166 | break; |
2d1db3b1 | 1167 | } |
b20a3503 CL |
1168 | } |
1169 | } | |
78bd5209 | 1170 | rc = nr_failed + retry; |
95a402c3 | 1171 | out: |
5647bc29 MG |
1172 | if (nr_succeeded) |
1173 | count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); | |
1174 | if (nr_failed) | |
1175 | count_vm_events(PGMIGRATE_FAIL, nr_failed); | |
7b2a2d4a MG |
1176 | trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); |
1177 | ||
b20a3503 CL |
1178 | if (!swapwrite) |
1179 | current->flags &= ~PF_SWAPWRITE; | |
1180 | ||
78bd5209 | 1181 | return rc; |
b20a3503 | 1182 | } |
95a402c3 | 1183 | |
742755a1 CL |
1184 | #ifdef CONFIG_NUMA |
1185 | /* | |
1186 | * Move a list of individual pages | |
1187 | */ | |
1188 | struct page_to_node { | |
1189 | unsigned long addr; | |
1190 | struct page *page; | |
1191 | int node; | |
1192 | int status; | |
1193 | }; | |
1194 | ||
1195 | static struct page *new_page_node(struct page *p, unsigned long private, | |
1196 | int **result) | |
1197 | { | |
1198 | struct page_to_node *pm = (struct page_to_node *)private; | |
1199 | ||
1200 | while (pm->node != MAX_NUMNODES && pm->page != p) | |
1201 | pm++; | |
1202 | ||
1203 | if (pm->node == MAX_NUMNODES) | |
1204 | return NULL; | |
1205 | ||
1206 | *result = &pm->status; | |
1207 | ||
e632a938 NH |
1208 | if (PageHuge(p)) |
1209 | return alloc_huge_page_node(page_hstate(compound_head(p)), | |
1210 | pm->node); | |
1211 | else | |
1212 | return alloc_pages_exact_node(pm->node, | |
e97ca8e5 | 1213 | GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); |
742755a1 CL |
1214 | } |
1215 | ||
1216 | /* | |
1217 | * Move a set of pages as indicated in the pm array. The addr | |
1218 | * field must be set to the virtual address of the page to be moved | |
1219 | * and the node number must contain a valid target node. | |
5e9a0f02 | 1220 | * The pm array ends with node = MAX_NUMNODES. |
742755a1 | 1221 | */ |
5e9a0f02 BG |
1222 | static int do_move_page_to_node_array(struct mm_struct *mm, |
1223 | struct page_to_node *pm, | |
1224 | int migrate_all) | |
742755a1 CL |
1225 | { |
1226 | int err; | |
1227 | struct page_to_node *pp; | |
1228 | LIST_HEAD(pagelist); | |
1229 | ||
1230 | down_read(&mm->mmap_sem); | |
1231 | ||
1232 | /* | |
1233 | * Build a list of pages to migrate | |
1234 | */ | |
742755a1 CL |
1235 | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { |
1236 | struct vm_area_struct *vma; | |
1237 | struct page *page; | |
1238 | ||
742755a1 CL |
1239 | err = -EFAULT; |
1240 | vma = find_vma(mm, pp->addr); | |
70384dc6 | 1241 | if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) |
742755a1 CL |
1242 | goto set_status; |
1243 | ||
500d65d4 | 1244 | page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); |
89f5b7da LT |
1245 | |
1246 | err = PTR_ERR(page); | |
1247 | if (IS_ERR(page)) | |
1248 | goto set_status; | |
1249 | ||
742755a1 CL |
1250 | err = -ENOENT; |
1251 | if (!page) | |
1252 | goto set_status; | |
1253 | ||
62b61f61 | 1254 | /* Use PageReserved to check for zero page */ |
b79bc0a0 | 1255 | if (PageReserved(page)) |
742755a1 CL |
1256 | goto put_and_set; |
1257 | ||
1258 | pp->page = page; | |
1259 | err = page_to_nid(page); | |
1260 | ||
1261 | if (err == pp->node) | |
1262 | /* | |
1263 | * Node already in the right place | |
1264 | */ | |
1265 | goto put_and_set; | |
1266 | ||
1267 | err = -EACCES; | |
1268 | if (page_mapcount(page) > 1 && | |
1269 | !migrate_all) | |
1270 | goto put_and_set; | |
1271 | ||
e632a938 NH |
1272 | if (PageHuge(page)) { |
1273 | isolate_huge_page(page, &pagelist); | |
1274 | goto put_and_set; | |
1275 | } | |
1276 | ||
62695a84 | 1277 | err = isolate_lru_page(page); |
6d9c285a | 1278 | if (!err) { |
62695a84 | 1279 | list_add_tail(&page->lru, &pagelist); |
6d9c285a KM |
1280 | inc_zone_page_state(page, NR_ISOLATED_ANON + |
1281 | page_is_file_cache(page)); | |
1282 | } | |
742755a1 CL |
1283 | put_and_set: |
1284 | /* | |
1285 | * Either remove the duplicate refcount from | |
1286 | * isolate_lru_page() or drop the page ref if it was | |
1287 | * not isolated. | |
1288 | */ | |
1289 | put_page(page); | |
1290 | set_status: | |
1291 | pp->status = err; | |
1292 | } | |
1293 | ||
e78bbfa8 | 1294 | err = 0; |
cf608ac1 | 1295 | if (!list_empty(&pagelist)) { |
68711a74 | 1296 | err = migrate_pages(&pagelist, new_page_node, NULL, |
9c620e2b | 1297 | (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); |
cf608ac1 | 1298 | if (err) |
e632a938 | 1299 | putback_movable_pages(&pagelist); |
cf608ac1 | 1300 | } |
742755a1 CL |
1301 | |
1302 | up_read(&mm->mmap_sem); | |
1303 | return err; | |
1304 | } | |
1305 | ||
5e9a0f02 BG |
1306 | /* |
1307 | * Migrate an array of page address onto an array of nodes and fill | |
1308 | * the corresponding array of status. | |
1309 | */ | |
3268c63e | 1310 | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, |
5e9a0f02 BG |
1311 | unsigned long nr_pages, |
1312 | const void __user * __user *pages, | |
1313 | const int __user *nodes, | |
1314 | int __user *status, int flags) | |
1315 | { | |
3140a227 | 1316 | struct page_to_node *pm; |
3140a227 BG |
1317 | unsigned long chunk_nr_pages; |
1318 | unsigned long chunk_start; | |
1319 | int err; | |
5e9a0f02 | 1320 | |
3140a227 BG |
1321 | err = -ENOMEM; |
1322 | pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); | |
1323 | if (!pm) | |
5e9a0f02 | 1324 | goto out; |
35282a2d BG |
1325 | |
1326 | migrate_prep(); | |
1327 | ||
5e9a0f02 | 1328 | /* |
3140a227 BG |
1329 | * Store a chunk of page_to_node array in a page, |
1330 | * but keep the last one as a marker | |
5e9a0f02 | 1331 | */ |
3140a227 | 1332 | chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; |
5e9a0f02 | 1333 | |
3140a227 BG |
1334 | for (chunk_start = 0; |
1335 | chunk_start < nr_pages; | |
1336 | chunk_start += chunk_nr_pages) { | |
1337 | int j; | |
5e9a0f02 | 1338 | |
3140a227 BG |
1339 | if (chunk_start + chunk_nr_pages > nr_pages) |
1340 | chunk_nr_pages = nr_pages - chunk_start; | |
1341 | ||
1342 | /* fill the chunk pm with addrs and nodes from user-space */ | |
1343 | for (j = 0; j < chunk_nr_pages; j++) { | |
1344 | const void __user *p; | |
5e9a0f02 BG |
1345 | int node; |
1346 | ||
3140a227 BG |
1347 | err = -EFAULT; |
1348 | if (get_user(p, pages + j + chunk_start)) | |
1349 | goto out_pm; | |
1350 | pm[j].addr = (unsigned long) p; | |
1351 | ||
1352 | if (get_user(node, nodes + j + chunk_start)) | |
5e9a0f02 BG |
1353 | goto out_pm; |
1354 | ||
1355 | err = -ENODEV; | |
6f5a55f1 LT |
1356 | if (node < 0 || node >= MAX_NUMNODES) |
1357 | goto out_pm; | |
1358 | ||
389162c2 | 1359 | if (!node_state(node, N_MEMORY)) |
5e9a0f02 BG |
1360 | goto out_pm; |
1361 | ||
1362 | err = -EACCES; | |
1363 | if (!node_isset(node, task_nodes)) | |
1364 | goto out_pm; | |
1365 | ||
3140a227 BG |
1366 | pm[j].node = node; |
1367 | } | |
1368 | ||
1369 | /* End marker for this chunk */ | |
1370 | pm[chunk_nr_pages].node = MAX_NUMNODES; | |
1371 | ||
1372 | /* Migrate this chunk */ | |
1373 | err = do_move_page_to_node_array(mm, pm, | |
1374 | flags & MPOL_MF_MOVE_ALL); | |
1375 | if (err < 0) | |
1376 | goto out_pm; | |
5e9a0f02 | 1377 | |
5e9a0f02 | 1378 | /* Return status information */ |
3140a227 BG |
1379 | for (j = 0; j < chunk_nr_pages; j++) |
1380 | if (put_user(pm[j].status, status + j + chunk_start)) { | |
5e9a0f02 | 1381 | err = -EFAULT; |
3140a227 BG |
1382 | goto out_pm; |
1383 | } | |
1384 | } | |
1385 | err = 0; | |
5e9a0f02 BG |
1386 | |
1387 | out_pm: | |
3140a227 | 1388 | free_page((unsigned long)pm); |
5e9a0f02 BG |
1389 | out: |
1390 | return err; | |
1391 | } | |
1392 | ||
742755a1 | 1393 | /* |
2f007e74 | 1394 | * Determine the nodes of an array of pages and store it in an array of status. |
742755a1 | 1395 | */ |
80bba129 BG |
1396 | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, |
1397 | const void __user **pages, int *status) | |
742755a1 | 1398 | { |
2f007e74 | 1399 | unsigned long i; |
2f007e74 | 1400 | |
742755a1 CL |
1401 | down_read(&mm->mmap_sem); |
1402 | ||
2f007e74 | 1403 | for (i = 0; i < nr_pages; i++) { |
80bba129 | 1404 | unsigned long addr = (unsigned long)(*pages); |
742755a1 CL |
1405 | struct vm_area_struct *vma; |
1406 | struct page *page; | |
c095adbc | 1407 | int err = -EFAULT; |
2f007e74 BG |
1408 | |
1409 | vma = find_vma(mm, addr); | |
70384dc6 | 1410 | if (!vma || addr < vma->vm_start) |
742755a1 CL |
1411 | goto set_status; |
1412 | ||
2f007e74 | 1413 | page = follow_page(vma, addr, 0); |
89f5b7da LT |
1414 | |
1415 | err = PTR_ERR(page); | |
1416 | if (IS_ERR(page)) | |
1417 | goto set_status; | |
1418 | ||
742755a1 CL |
1419 | err = -ENOENT; |
1420 | /* Use PageReserved to check for zero page */ | |
b79bc0a0 | 1421 | if (!page || PageReserved(page)) |
742755a1 CL |
1422 | goto set_status; |
1423 | ||
1424 | err = page_to_nid(page); | |
1425 | set_status: | |
80bba129 BG |
1426 | *status = err; |
1427 | ||
1428 | pages++; | |
1429 | status++; | |
1430 | } | |
1431 | ||
1432 | up_read(&mm->mmap_sem); | |
1433 | } | |
1434 | ||
1435 | /* | |
1436 | * Determine the nodes of a user array of pages and store it in | |
1437 | * a user array of status. | |
1438 | */ | |
1439 | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | |
1440 | const void __user * __user *pages, | |
1441 | int __user *status) | |
1442 | { | |
1443 | #define DO_PAGES_STAT_CHUNK_NR 16 | |
1444 | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | |
1445 | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | |
80bba129 | 1446 | |
87b8d1ad PA |
1447 | while (nr_pages) { |
1448 | unsigned long chunk_nr; | |
80bba129 | 1449 | |
87b8d1ad PA |
1450 | chunk_nr = nr_pages; |
1451 | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | |
1452 | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | |
1453 | ||
1454 | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | |
1455 | break; | |
80bba129 BG |
1456 | |
1457 | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | |
1458 | ||
87b8d1ad PA |
1459 | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) |
1460 | break; | |
742755a1 | 1461 | |
87b8d1ad PA |
1462 | pages += chunk_nr; |
1463 | status += chunk_nr; | |
1464 | nr_pages -= chunk_nr; | |
1465 | } | |
1466 | return nr_pages ? -EFAULT : 0; | |
742755a1 CL |
1467 | } |
1468 | ||
1469 | /* | |
1470 | * Move a list of pages in the address space of the currently executing | |
1471 | * process. | |
1472 | */ | |
938bb9f5 HC |
1473 | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, |
1474 | const void __user * __user *, pages, | |
1475 | const int __user *, nodes, | |
1476 | int __user *, status, int, flags) | |
742755a1 | 1477 | { |
c69e8d9c | 1478 | const struct cred *cred = current_cred(), *tcred; |
742755a1 | 1479 | struct task_struct *task; |
742755a1 | 1480 | struct mm_struct *mm; |
5e9a0f02 | 1481 | int err; |
3268c63e | 1482 | nodemask_t task_nodes; |
742755a1 CL |
1483 | |
1484 | /* Check flags */ | |
1485 | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | |
1486 | return -EINVAL; | |
1487 | ||
1488 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | |
1489 | return -EPERM; | |
1490 | ||
1491 | /* Find the mm_struct */ | |
a879bf58 | 1492 | rcu_read_lock(); |
228ebcbe | 1493 | task = pid ? find_task_by_vpid(pid) : current; |
742755a1 | 1494 | if (!task) { |
a879bf58 | 1495 | rcu_read_unlock(); |
742755a1 CL |
1496 | return -ESRCH; |
1497 | } | |
3268c63e | 1498 | get_task_struct(task); |
742755a1 CL |
1499 | |
1500 | /* | |
1501 | * Check if this process has the right to modify the specified | |
1502 | * process. The right exists if the process has administrative | |
1503 | * capabilities, superuser privileges or the same | |
1504 | * userid as the target process. | |
1505 | */ | |
c69e8d9c | 1506 | tcred = __task_cred(task); |
b38a86eb EB |
1507 | if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && |
1508 | !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && | |
742755a1 | 1509 | !capable(CAP_SYS_NICE)) { |
c69e8d9c | 1510 | rcu_read_unlock(); |
742755a1 | 1511 | err = -EPERM; |
5e9a0f02 | 1512 | goto out; |
742755a1 | 1513 | } |
c69e8d9c | 1514 | rcu_read_unlock(); |
742755a1 | 1515 | |
86c3a764 DQ |
1516 | err = security_task_movememory(task); |
1517 | if (err) | |
5e9a0f02 | 1518 | goto out; |
86c3a764 | 1519 | |
3268c63e CL |
1520 | task_nodes = cpuset_mems_allowed(task); |
1521 | mm = get_task_mm(task); | |
1522 | put_task_struct(task); | |
1523 | ||
6e8b09ea SL |
1524 | if (!mm) |
1525 | return -EINVAL; | |
1526 | ||
1527 | if (nodes) | |
1528 | err = do_pages_move(mm, task_nodes, nr_pages, pages, | |
1529 | nodes, status, flags); | |
1530 | else | |
1531 | err = do_pages_stat(mm, nr_pages, pages, status); | |
742755a1 | 1532 | |
742755a1 CL |
1533 | mmput(mm); |
1534 | return err; | |
3268c63e CL |
1535 | |
1536 | out: | |
1537 | put_task_struct(task); | |
1538 | return err; | |
742755a1 | 1539 | } |
742755a1 | 1540 | |
7b2259b3 CL |
1541 | /* |
1542 | * Call migration functions in the vma_ops that may prepare | |
1543 | * memory in a vm for migration. migration functions may perform | |
1544 | * the migration for vmas that do not have an underlying page struct. | |
1545 | */ | |
1546 | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | |
1547 | const nodemask_t *from, unsigned long flags) | |
1548 | { | |
1549 | struct vm_area_struct *vma; | |
1550 | int err = 0; | |
1551 | ||
1001c9fb | 1552 | for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { |
7b2259b3 CL |
1553 | if (vma->vm_ops && vma->vm_ops->migrate) { |
1554 | err = vma->vm_ops->migrate(vma, to, from, flags); | |
1555 | if (err) | |
1556 | break; | |
1557 | } | |
1558 | } | |
1559 | return err; | |
1560 | } | |
7039e1db PZ |
1561 | |
1562 | #ifdef CONFIG_NUMA_BALANCING | |
1563 | /* | |
1564 | * Returns true if this is a safe migration target node for misplaced NUMA | |
1565 | * pages. Currently it only checks the watermarks which crude | |
1566 | */ | |
1567 | static bool migrate_balanced_pgdat(struct pglist_data *pgdat, | |
3abef4e6 | 1568 | unsigned long nr_migrate_pages) |
7039e1db PZ |
1569 | { |
1570 | int z; | |
1571 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { | |
1572 | struct zone *zone = pgdat->node_zones + z; | |
1573 | ||
1574 | if (!populated_zone(zone)) | |
1575 | continue; | |
1576 | ||
6e543d57 | 1577 | if (!zone_reclaimable(zone)) |
7039e1db PZ |
1578 | continue; |
1579 | ||
1580 | /* Avoid waking kswapd by allocating pages_to_migrate pages. */ | |
1581 | if (!zone_watermark_ok(zone, 0, | |
1582 | high_wmark_pages(zone) + | |
1583 | nr_migrate_pages, | |
1584 | 0, 0)) | |
1585 | continue; | |
1586 | return true; | |
1587 | } | |
1588 | return false; | |
1589 | } | |
1590 | ||
1591 | static struct page *alloc_misplaced_dst_page(struct page *page, | |
1592 | unsigned long data, | |
1593 | int **result) | |
1594 | { | |
1595 | int nid = (int) data; | |
1596 | struct page *newpage; | |
1597 | ||
1598 | newpage = alloc_pages_exact_node(nid, | |
e97ca8e5 JW |
1599 | (GFP_HIGHUSER_MOVABLE | |
1600 | __GFP_THISNODE | __GFP_NOMEMALLOC | | |
1601 | __GFP_NORETRY | __GFP_NOWARN) & | |
7039e1db | 1602 | ~GFP_IOFS, 0); |
bac0382c | 1603 | |
7039e1db PZ |
1604 | return newpage; |
1605 | } | |
1606 | ||
a8f60772 MG |
1607 | /* |
1608 | * page migration rate limiting control. | |
1609 | * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs | |
1610 | * window of time. Default here says do not migrate more than 1280M per second. | |
e14808b4 MG |
1611 | * If a node is rate-limited then PTE NUMA updates are also rate-limited. However |
1612 | * as it is faults that reset the window, pte updates will happen unconditionally | |
1613 | * if there has not been a fault since @pteupdate_interval_millisecs after the | |
1614 | * throttle window closed. | |
a8f60772 MG |
1615 | */ |
1616 | static unsigned int migrate_interval_millisecs __read_mostly = 100; | |
e14808b4 | 1617 | static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; |
a8f60772 MG |
1618 | static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); |
1619 | ||
e14808b4 MG |
1620 | /* Returns true if NUMA migration is currently rate limited */ |
1621 | bool migrate_ratelimited(int node) | |
1622 | { | |
1623 | pg_data_t *pgdat = NODE_DATA(node); | |
1624 | ||
1625 | if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + | |
1626 | msecs_to_jiffies(pteupdate_interval_millisecs))) | |
1627 | return false; | |
1628 | ||
1629 | if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) | |
1630 | return false; | |
1631 | ||
1632 | return true; | |
1633 | } | |
1634 | ||
b32967ff | 1635 | /* Returns true if the node is migrate rate-limited after the update */ |
1c30e017 MG |
1636 | static bool numamigrate_update_ratelimit(pg_data_t *pgdat, |
1637 | unsigned long nr_pages) | |
7039e1db | 1638 | { |
a8f60772 MG |
1639 | /* |
1640 | * Rate-limit the amount of data that is being migrated to a node. | |
1641 | * Optimal placement is no good if the memory bus is saturated and | |
1642 | * all the time is being spent migrating! | |
1643 | */ | |
a8f60772 | 1644 | if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { |
1c5e9c27 | 1645 | spin_lock(&pgdat->numabalancing_migrate_lock); |
a8f60772 MG |
1646 | pgdat->numabalancing_migrate_nr_pages = 0; |
1647 | pgdat->numabalancing_migrate_next_window = jiffies + | |
1648 | msecs_to_jiffies(migrate_interval_millisecs); | |
1c5e9c27 | 1649 | spin_unlock(&pgdat->numabalancing_migrate_lock); |
a8f60772 | 1650 | } |
af1839d7 MG |
1651 | if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { |
1652 | trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, | |
1653 | nr_pages); | |
1c5e9c27 | 1654 | return true; |
af1839d7 | 1655 | } |
1c5e9c27 MG |
1656 | |
1657 | /* | |
1658 | * This is an unlocked non-atomic update so errors are possible. | |
1659 | * The consequences are failing to migrate when we potentiall should | |
1660 | * have which is not severe enough to warrant locking. If it is ever | |
1661 | * a problem, it can be converted to a per-cpu counter. | |
1662 | */ | |
1663 | pgdat->numabalancing_migrate_nr_pages += nr_pages; | |
1664 | return false; | |
b32967ff MG |
1665 | } |
1666 | ||
1c30e017 | 1667 | static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) |
b32967ff | 1668 | { |
340ef390 | 1669 | int page_lru; |
a8f60772 | 1670 | |
309381fe | 1671 | VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); |
3abef4e6 | 1672 | |
7039e1db | 1673 | /* Avoid migrating to a node that is nearly full */ |
340ef390 HD |
1674 | if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) |
1675 | return 0; | |
7039e1db | 1676 | |
340ef390 HD |
1677 | if (isolate_lru_page(page)) |
1678 | return 0; | |
7039e1db | 1679 | |
340ef390 HD |
1680 | /* |
1681 | * migrate_misplaced_transhuge_page() skips page migration's usual | |
1682 | * check on page_count(), so we must do it here, now that the page | |
1683 | * has been isolated: a GUP pin, or any other pin, prevents migration. | |
1684 | * The expected page count is 3: 1 for page's mapcount and 1 for the | |
1685 | * caller's pin and 1 for the reference taken by isolate_lru_page(). | |
1686 | */ | |
1687 | if (PageTransHuge(page) && page_count(page) != 3) { | |
1688 | putback_lru_page(page); | |
1689 | return 0; | |
7039e1db PZ |
1690 | } |
1691 | ||
340ef390 HD |
1692 | page_lru = page_is_file_cache(page); |
1693 | mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, | |
1694 | hpage_nr_pages(page)); | |
1695 | ||
149c33e1 | 1696 | /* |
340ef390 HD |
1697 | * Isolating the page has taken another reference, so the |
1698 | * caller's reference can be safely dropped without the page | |
1699 | * disappearing underneath us during migration. | |
149c33e1 MG |
1700 | */ |
1701 | put_page(page); | |
340ef390 | 1702 | return 1; |
b32967ff MG |
1703 | } |
1704 | ||
de466bd6 MG |
1705 | bool pmd_trans_migrating(pmd_t pmd) |
1706 | { | |
1707 | struct page *page = pmd_page(pmd); | |
1708 | return PageLocked(page); | |
1709 | } | |
1710 | ||
1711 | void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd) | |
1712 | { | |
1713 | struct page *page = pmd_page(*pmd); | |
1714 | wait_on_page_locked(page); | |
1715 | } | |
1716 | ||
b32967ff MG |
1717 | /* |
1718 | * Attempt to migrate a misplaced page to the specified destination | |
1719 | * node. Caller is expected to have an elevated reference count on | |
1720 | * the page that will be dropped by this function before returning. | |
1721 | */ | |
1bc115d8 MG |
1722 | int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, |
1723 | int node) | |
b32967ff MG |
1724 | { |
1725 | pg_data_t *pgdat = NODE_DATA(node); | |
340ef390 | 1726 | int isolated; |
b32967ff MG |
1727 | int nr_remaining; |
1728 | LIST_HEAD(migratepages); | |
1729 | ||
1730 | /* | |
1bc115d8 MG |
1731 | * Don't migrate file pages that are mapped in multiple processes |
1732 | * with execute permissions as they are probably shared libraries. | |
b32967ff | 1733 | */ |
1bc115d8 MG |
1734 | if (page_mapcount(page) != 1 && page_is_file_cache(page) && |
1735 | (vma->vm_flags & VM_EXEC)) | |
b32967ff | 1736 | goto out; |
b32967ff MG |
1737 | |
1738 | /* | |
1739 | * Rate-limit the amount of data that is being migrated to a node. | |
1740 | * Optimal placement is no good if the memory bus is saturated and | |
1741 | * all the time is being spent migrating! | |
1742 | */ | |
340ef390 | 1743 | if (numamigrate_update_ratelimit(pgdat, 1)) |
b32967ff | 1744 | goto out; |
b32967ff MG |
1745 | |
1746 | isolated = numamigrate_isolate_page(pgdat, page); | |
1747 | if (!isolated) | |
1748 | goto out; | |
1749 | ||
1750 | list_add(&page->lru, &migratepages); | |
9c620e2b | 1751 | nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, |
68711a74 DR |
1752 | NULL, node, MIGRATE_ASYNC, |
1753 | MR_NUMA_MISPLACED); | |
b32967ff | 1754 | if (nr_remaining) { |
59c82b70 JK |
1755 | if (!list_empty(&migratepages)) { |
1756 | list_del(&page->lru); | |
1757 | dec_zone_page_state(page, NR_ISOLATED_ANON + | |
1758 | page_is_file_cache(page)); | |
1759 | putback_lru_page(page); | |
1760 | } | |
b32967ff MG |
1761 | isolated = 0; |
1762 | } else | |
1763 | count_vm_numa_event(NUMA_PAGE_MIGRATE); | |
7039e1db | 1764 | BUG_ON(!list_empty(&migratepages)); |
7039e1db | 1765 | return isolated; |
340ef390 HD |
1766 | |
1767 | out: | |
1768 | put_page(page); | |
1769 | return 0; | |
7039e1db | 1770 | } |
220018d3 | 1771 | #endif /* CONFIG_NUMA_BALANCING */ |
b32967ff | 1772 | |
220018d3 | 1773 | #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
340ef390 HD |
1774 | /* |
1775 | * Migrates a THP to a given target node. page must be locked and is unlocked | |
1776 | * before returning. | |
1777 | */ | |
b32967ff MG |
1778 | int migrate_misplaced_transhuge_page(struct mm_struct *mm, |
1779 | struct vm_area_struct *vma, | |
1780 | pmd_t *pmd, pmd_t entry, | |
1781 | unsigned long address, | |
1782 | struct page *page, int node) | |
1783 | { | |
c4088ebd | 1784 | spinlock_t *ptl; |
b32967ff MG |
1785 | pg_data_t *pgdat = NODE_DATA(node); |
1786 | int isolated = 0; | |
1787 | struct page *new_page = NULL; | |
1788 | struct mem_cgroup *memcg = NULL; | |
1789 | int page_lru = page_is_file_cache(page); | |
f714f4f2 MG |
1790 | unsigned long mmun_start = address & HPAGE_PMD_MASK; |
1791 | unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; | |
2b4847e7 | 1792 | pmd_t orig_entry; |
b32967ff | 1793 | |
b32967ff MG |
1794 | /* |
1795 | * Rate-limit the amount of data that is being migrated to a node. | |
1796 | * Optimal placement is no good if the memory bus is saturated and | |
1797 | * all the time is being spent migrating! | |
1798 | */ | |
d28d4335 | 1799 | if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) |
b32967ff MG |
1800 | goto out_dropref; |
1801 | ||
1802 | new_page = alloc_pages_node(node, | |
e97ca8e5 JW |
1803 | (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, |
1804 | HPAGE_PMD_ORDER); | |
340ef390 HD |
1805 | if (!new_page) |
1806 | goto out_fail; | |
1807 | ||
b32967ff | 1808 | isolated = numamigrate_isolate_page(pgdat, page); |
340ef390 | 1809 | if (!isolated) { |
b32967ff | 1810 | put_page(new_page); |
340ef390 | 1811 | goto out_fail; |
b32967ff MG |
1812 | } |
1813 | ||
b0943d61 MG |
1814 | if (mm_tlb_flush_pending(mm)) |
1815 | flush_tlb_range(vma, mmun_start, mmun_end); | |
1816 | ||
b32967ff MG |
1817 | /* Prepare a page as a migration target */ |
1818 | __set_page_locked(new_page); | |
1819 | SetPageSwapBacked(new_page); | |
1820 | ||
1821 | /* anon mapping, we can simply copy page->mapping to the new page: */ | |
1822 | new_page->mapping = page->mapping; | |
1823 | new_page->index = page->index; | |
1824 | migrate_page_copy(new_page, page); | |
1825 | WARN_ON(PageLRU(new_page)); | |
1826 | ||
1827 | /* Recheck the target PMD */ | |
f714f4f2 | 1828 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
c4088ebd | 1829 | ptl = pmd_lock(mm, pmd); |
2b4847e7 MG |
1830 | if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { |
1831 | fail_putback: | |
c4088ebd | 1832 | spin_unlock(ptl); |
f714f4f2 | 1833 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
b32967ff MG |
1834 | |
1835 | /* Reverse changes made by migrate_page_copy() */ | |
1836 | if (TestClearPageActive(new_page)) | |
1837 | SetPageActive(page); | |
1838 | if (TestClearPageUnevictable(new_page)) | |
1839 | SetPageUnevictable(page); | |
1840 | mlock_migrate_page(page, new_page); | |
1841 | ||
1842 | unlock_page(new_page); | |
1843 | put_page(new_page); /* Free it */ | |
1844 | ||
a54a407f MG |
1845 | /* Retake the callers reference and putback on LRU */ |
1846 | get_page(page); | |
b32967ff | 1847 | putback_lru_page(page); |
a54a407f MG |
1848 | mod_zone_page_state(page_zone(page), |
1849 | NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); | |
eb4489f6 MG |
1850 | |
1851 | goto out_unlock; | |
b32967ff MG |
1852 | } |
1853 | ||
1854 | /* | |
1855 | * Traditional migration needs to prepare the memcg charge | |
1856 | * transaction early to prevent the old page from being | |
1857 | * uncharged when installing migration entries. Here we can | |
1858 | * save the potential rollback and start the charge transfer | |
1859 | * only when migration is already known to end successfully. | |
1860 | */ | |
1861 | mem_cgroup_prepare_migration(page, new_page, &memcg); | |
1862 | ||
2b4847e7 | 1863 | orig_entry = *pmd; |
b32967ff | 1864 | entry = mk_pmd(new_page, vma->vm_page_prot); |
b32967ff | 1865 | entry = pmd_mkhuge(entry); |
2b4847e7 | 1866 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); |
b32967ff | 1867 | |
2b4847e7 MG |
1868 | /* |
1869 | * Clear the old entry under pagetable lock and establish the new PTE. | |
1870 | * Any parallel GUP will either observe the old page blocking on the | |
1871 | * page lock, block on the page table lock or observe the new page. | |
1872 | * The SetPageUptodate on the new page and page_add_new_anon_rmap | |
1873 | * guarantee the copy is visible before the pagetable update. | |
1874 | */ | |
f714f4f2 | 1875 | flush_cache_range(vma, mmun_start, mmun_end); |
11de9927 | 1876 | page_add_anon_rmap(new_page, vma, mmun_start); |
f714f4f2 MG |
1877 | pmdp_clear_flush(vma, mmun_start, pmd); |
1878 | set_pmd_at(mm, mmun_start, pmd, entry); | |
1879 | flush_tlb_range(vma, mmun_start, mmun_end); | |
ce4a9cc5 | 1880 | update_mmu_cache_pmd(vma, address, &entry); |
2b4847e7 MG |
1881 | |
1882 | if (page_count(page) != 2) { | |
f714f4f2 MG |
1883 | set_pmd_at(mm, mmun_start, pmd, orig_entry); |
1884 | flush_tlb_range(vma, mmun_start, mmun_end); | |
2b4847e7 MG |
1885 | update_mmu_cache_pmd(vma, address, &entry); |
1886 | page_remove_rmap(new_page); | |
1887 | goto fail_putback; | |
1888 | } | |
1889 | ||
b32967ff | 1890 | page_remove_rmap(page); |
2b4847e7 | 1891 | |
b32967ff MG |
1892 | /* |
1893 | * Finish the charge transaction under the page table lock to | |
1894 | * prevent split_huge_page() from dividing up the charge | |
1895 | * before it's fully transferred to the new page. | |
1896 | */ | |
1897 | mem_cgroup_end_migration(memcg, page, new_page, true); | |
c4088ebd | 1898 | spin_unlock(ptl); |
f714f4f2 | 1899 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
b32967ff | 1900 | |
11de9927 MG |
1901 | /* Take an "isolate" reference and put new page on the LRU. */ |
1902 | get_page(new_page); | |
1903 | putback_lru_page(new_page); | |
1904 | ||
b32967ff MG |
1905 | unlock_page(new_page); |
1906 | unlock_page(page); | |
1907 | put_page(page); /* Drop the rmap reference */ | |
1908 | put_page(page); /* Drop the LRU isolation reference */ | |
1909 | ||
1910 | count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); | |
1911 | count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); | |
1912 | ||
b32967ff MG |
1913 | mod_zone_page_state(page_zone(page), |
1914 | NR_ISOLATED_ANON + page_lru, | |
1915 | -HPAGE_PMD_NR); | |
1916 | return isolated; | |
1917 | ||
340ef390 HD |
1918 | out_fail: |
1919 | count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); | |
b32967ff | 1920 | out_dropref: |
2b4847e7 MG |
1921 | ptl = pmd_lock(mm, pmd); |
1922 | if (pmd_same(*pmd, entry)) { | |
1923 | entry = pmd_mknonnuma(entry); | |
f714f4f2 | 1924 | set_pmd_at(mm, mmun_start, pmd, entry); |
2b4847e7 MG |
1925 | update_mmu_cache_pmd(vma, address, &entry); |
1926 | } | |
1927 | spin_unlock(ptl); | |
a54a407f | 1928 | |
eb4489f6 | 1929 | out_unlock: |
340ef390 | 1930 | unlock_page(page); |
b32967ff | 1931 | put_page(page); |
b32967ff MG |
1932 | return 0; |
1933 | } | |
7039e1db PZ |
1934 | #endif /* CONFIG_NUMA_BALANCING */ |
1935 | ||
1936 | #endif /* CONFIG_NUMA */ |