]>
Commit | Line | Data |
---|---|---|
bb44e5d1 IM |
1 | /* |
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | |
3 | * policies) | |
4 | */ | |
5 | ||
398a153b GH |
6 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
7 | { | |
8 | return container_of(rt_se, struct task_struct, rt); | |
9 | } | |
10 | ||
11 | #ifdef CONFIG_RT_GROUP_SCHED | |
12 | ||
a1ba4d8b PZ |
13 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) |
14 | ||
398a153b GH |
15 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
16 | { | |
17 | return rt_rq->rq; | |
18 | } | |
19 | ||
20 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
21 | { | |
22 | return rt_se->rt_rq; | |
23 | } | |
24 | ||
25 | #else /* CONFIG_RT_GROUP_SCHED */ | |
26 | ||
a1ba4d8b PZ |
27 | #define rt_entity_is_task(rt_se) (1) |
28 | ||
398a153b GH |
29 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
30 | { | |
31 | return container_of(rt_rq, struct rq, rt); | |
32 | } | |
33 | ||
34 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
35 | { | |
36 | struct task_struct *p = rt_task_of(rt_se); | |
37 | struct rq *rq = task_rq(p); | |
38 | ||
39 | return &rq->rt; | |
40 | } | |
41 | ||
42 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
43 | ||
4fd29176 | 44 | #ifdef CONFIG_SMP |
84de4274 | 45 | |
637f5085 | 46 | static inline int rt_overloaded(struct rq *rq) |
4fd29176 | 47 | { |
637f5085 | 48 | return atomic_read(&rq->rd->rto_count); |
4fd29176 | 49 | } |
84de4274 | 50 | |
4fd29176 SR |
51 | static inline void rt_set_overload(struct rq *rq) |
52 | { | |
1f11eb6a GH |
53 | if (!rq->online) |
54 | return; | |
55 | ||
c6c4927b | 56 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 SR |
57 | /* |
58 | * Make sure the mask is visible before we set | |
59 | * the overload count. That is checked to determine | |
60 | * if we should look at the mask. It would be a shame | |
61 | * if we looked at the mask, but the mask was not | |
62 | * updated yet. | |
63 | */ | |
64 | wmb(); | |
637f5085 | 65 | atomic_inc(&rq->rd->rto_count); |
4fd29176 | 66 | } |
84de4274 | 67 | |
4fd29176 SR |
68 | static inline void rt_clear_overload(struct rq *rq) |
69 | { | |
1f11eb6a GH |
70 | if (!rq->online) |
71 | return; | |
72 | ||
4fd29176 | 73 | /* the order here really doesn't matter */ |
637f5085 | 74 | atomic_dec(&rq->rd->rto_count); |
c6c4927b | 75 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 | 76 | } |
73fe6aae | 77 | |
398a153b | 78 | static void update_rt_migration(struct rt_rq *rt_rq) |
73fe6aae | 79 | { |
a1ba4d8b | 80 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { |
398a153b GH |
81 | if (!rt_rq->overloaded) { |
82 | rt_set_overload(rq_of_rt_rq(rt_rq)); | |
83 | rt_rq->overloaded = 1; | |
cdc8eb98 | 84 | } |
398a153b GH |
85 | } else if (rt_rq->overloaded) { |
86 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | |
87 | rt_rq->overloaded = 0; | |
637f5085 | 88 | } |
73fe6aae | 89 | } |
4fd29176 | 90 | |
398a153b GH |
91 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
92 | { | |
a1ba4d8b PZ |
93 | if (!rt_entity_is_task(rt_se)) |
94 | return; | |
95 | ||
96 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
97 | ||
98 | rt_rq->rt_nr_total++; | |
398a153b GH |
99 | if (rt_se->nr_cpus_allowed > 1) |
100 | rt_rq->rt_nr_migratory++; | |
101 | ||
102 | update_rt_migration(rt_rq); | |
103 | } | |
104 | ||
105 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
106 | { | |
a1ba4d8b PZ |
107 | if (!rt_entity_is_task(rt_se)) |
108 | return; | |
109 | ||
110 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
111 | ||
112 | rt_rq->rt_nr_total--; | |
398a153b GH |
113 | if (rt_se->nr_cpus_allowed > 1) |
114 | rt_rq->rt_nr_migratory--; | |
115 | ||
116 | update_rt_migration(rt_rq); | |
117 | } | |
118 | ||
917b627d GH |
119 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
120 | { | |
121 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
122 | plist_node_init(&p->pushable_tasks, p->prio); | |
123 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
124 | } | |
125 | ||
126 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
127 | { | |
128 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
129 | } | |
130 | ||
131 | #else | |
132 | ||
ceacc2c1 | 133 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
fa85ae24 | 134 | { |
6f505b16 PZ |
135 | } |
136 | ||
ceacc2c1 PZ |
137 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
138 | { | |
139 | } | |
140 | ||
b07430ac | 141 | static inline |
ceacc2c1 PZ |
142 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
143 | { | |
144 | } | |
145 | ||
398a153b | 146 | static inline |
ceacc2c1 PZ |
147 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
148 | { | |
149 | } | |
917b627d | 150 | |
4fd29176 SR |
151 | #endif /* CONFIG_SMP */ |
152 | ||
6f505b16 PZ |
153 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
154 | { | |
155 | return !list_empty(&rt_se->run_list); | |
156 | } | |
157 | ||
052f1dc7 | 158 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 159 | |
9f0c1e56 | 160 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
6f505b16 PZ |
161 | { |
162 | if (!rt_rq->tg) | |
9f0c1e56 | 163 | return RUNTIME_INF; |
6f505b16 | 164 | |
ac086bc2 PZ |
165 | return rt_rq->rt_runtime; |
166 | } | |
167 | ||
168 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
169 | { | |
170 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | |
6f505b16 PZ |
171 | } |
172 | ||
173 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | |
80f40ee4 | 174 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
6f505b16 | 175 | |
6f505b16 PZ |
176 | #define for_each_sched_rt_entity(rt_se) \ |
177 | for (; rt_se; rt_se = rt_se->parent) | |
178 | ||
179 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
180 | { | |
181 | return rt_se->my_q; | |
182 | } | |
183 | ||
184 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se); | |
185 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); | |
186 | ||
9f0c1e56 | 187 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 188 | { |
f6121f4f | 189 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; |
6f505b16 PZ |
190 | struct sched_rt_entity *rt_se = rt_rq->rt_se; |
191 | ||
f6121f4f DF |
192 | if (rt_rq->rt_nr_running) { |
193 | if (rt_se && !on_rt_rq(rt_se)) | |
194 | enqueue_rt_entity(rt_se); | |
e864c499 | 195 | if (rt_rq->highest_prio.curr < curr->prio) |
1020387f | 196 | resched_task(curr); |
6f505b16 PZ |
197 | } |
198 | } | |
199 | ||
9f0c1e56 | 200 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 PZ |
201 | { |
202 | struct sched_rt_entity *rt_se = rt_rq->rt_se; | |
203 | ||
204 | if (rt_se && on_rt_rq(rt_se)) | |
205 | dequeue_rt_entity(rt_se); | |
206 | } | |
207 | ||
23b0fdfc PZ |
208 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
209 | { | |
210 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | |
211 | } | |
212 | ||
213 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | |
214 | { | |
215 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
216 | struct task_struct *p; | |
217 | ||
218 | if (rt_rq) | |
219 | return !!rt_rq->rt_nr_boosted; | |
220 | ||
221 | p = rt_task_of(rt_se); | |
222 | return p->prio != p->normal_prio; | |
223 | } | |
224 | ||
d0b27fa7 | 225 | #ifdef CONFIG_SMP |
c6c4927b | 226 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 PZ |
227 | { |
228 | return cpu_rq(smp_processor_id())->rd->span; | |
229 | } | |
6f505b16 | 230 | #else |
c6c4927b | 231 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 232 | { |
c6c4927b | 233 | return cpu_online_mask; |
d0b27fa7 PZ |
234 | } |
235 | #endif | |
6f505b16 | 236 | |
d0b27fa7 PZ |
237 | static inline |
238 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
6f505b16 | 239 | { |
d0b27fa7 PZ |
240 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
241 | } | |
9f0c1e56 | 242 | |
ac086bc2 PZ |
243 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
244 | { | |
245 | return &rt_rq->tg->rt_bandwidth; | |
246 | } | |
247 | ||
55e12e5e | 248 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
249 | |
250 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | |
251 | { | |
ac086bc2 PZ |
252 | return rt_rq->rt_runtime; |
253 | } | |
254 | ||
255 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
256 | { | |
257 | return ktime_to_ns(def_rt_bandwidth.rt_period); | |
6f505b16 PZ |
258 | } |
259 | ||
260 | #define for_each_leaf_rt_rq(rt_rq, rq) \ | |
261 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | |
262 | ||
6f505b16 PZ |
263 | #define for_each_sched_rt_entity(rt_se) \ |
264 | for (; rt_se; rt_se = NULL) | |
265 | ||
266 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
267 | { | |
268 | return NULL; | |
269 | } | |
270 | ||
9f0c1e56 | 271 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 272 | { |
f3ade837 JB |
273 | if (rt_rq->rt_nr_running) |
274 | resched_task(rq_of_rt_rq(rt_rq)->curr); | |
6f505b16 PZ |
275 | } |
276 | ||
9f0c1e56 | 277 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 PZ |
278 | { |
279 | } | |
280 | ||
23b0fdfc PZ |
281 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
282 | { | |
283 | return rt_rq->rt_throttled; | |
284 | } | |
d0b27fa7 | 285 | |
c6c4927b | 286 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 287 | { |
c6c4927b | 288 | return cpu_online_mask; |
d0b27fa7 PZ |
289 | } |
290 | ||
291 | static inline | |
292 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
293 | { | |
294 | return &cpu_rq(cpu)->rt; | |
295 | } | |
296 | ||
ac086bc2 PZ |
297 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
298 | { | |
299 | return &def_rt_bandwidth; | |
300 | } | |
301 | ||
55e12e5e | 302 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 | 303 | |
ac086bc2 | 304 | #ifdef CONFIG_SMP |
78333cdd PZ |
305 | /* |
306 | * We ran out of runtime, see if we can borrow some from our neighbours. | |
307 | */ | |
b79f3833 | 308 | static int do_balance_runtime(struct rt_rq *rt_rq) |
ac086bc2 PZ |
309 | { |
310 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
311 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | |
312 | int i, weight, more = 0; | |
313 | u64 rt_period; | |
314 | ||
c6c4927b | 315 | weight = cpumask_weight(rd->span); |
ac086bc2 PZ |
316 | |
317 | spin_lock(&rt_b->rt_runtime_lock); | |
318 | rt_period = ktime_to_ns(rt_b->rt_period); | |
c6c4927b | 319 | for_each_cpu(i, rd->span) { |
ac086bc2 PZ |
320 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
321 | s64 diff; | |
322 | ||
323 | if (iter == rt_rq) | |
324 | continue; | |
325 | ||
326 | spin_lock(&iter->rt_runtime_lock); | |
78333cdd PZ |
327 | /* |
328 | * Either all rqs have inf runtime and there's nothing to steal | |
329 | * or __disable_runtime() below sets a specific rq to inf to | |
330 | * indicate its been disabled and disalow stealing. | |
331 | */ | |
7def2be1 PZ |
332 | if (iter->rt_runtime == RUNTIME_INF) |
333 | goto next; | |
334 | ||
78333cdd PZ |
335 | /* |
336 | * From runqueues with spare time, take 1/n part of their | |
337 | * spare time, but no more than our period. | |
338 | */ | |
ac086bc2 PZ |
339 | diff = iter->rt_runtime - iter->rt_time; |
340 | if (diff > 0) { | |
58838cf3 | 341 | diff = div_u64((u64)diff, weight); |
ac086bc2 PZ |
342 | if (rt_rq->rt_runtime + diff > rt_period) |
343 | diff = rt_period - rt_rq->rt_runtime; | |
344 | iter->rt_runtime -= diff; | |
345 | rt_rq->rt_runtime += diff; | |
346 | more = 1; | |
347 | if (rt_rq->rt_runtime == rt_period) { | |
348 | spin_unlock(&iter->rt_runtime_lock); | |
349 | break; | |
350 | } | |
351 | } | |
7def2be1 | 352 | next: |
ac086bc2 PZ |
353 | spin_unlock(&iter->rt_runtime_lock); |
354 | } | |
355 | spin_unlock(&rt_b->rt_runtime_lock); | |
356 | ||
357 | return more; | |
358 | } | |
7def2be1 | 359 | |
78333cdd PZ |
360 | /* |
361 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | |
362 | */ | |
7def2be1 PZ |
363 | static void __disable_runtime(struct rq *rq) |
364 | { | |
365 | struct root_domain *rd = rq->rd; | |
366 | struct rt_rq *rt_rq; | |
367 | ||
368 | if (unlikely(!scheduler_running)) | |
369 | return; | |
370 | ||
371 | for_each_leaf_rt_rq(rt_rq, rq) { | |
372 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
373 | s64 want; | |
374 | int i; | |
375 | ||
376 | spin_lock(&rt_b->rt_runtime_lock); | |
377 | spin_lock(&rt_rq->rt_runtime_lock); | |
78333cdd PZ |
378 | /* |
379 | * Either we're all inf and nobody needs to borrow, or we're | |
380 | * already disabled and thus have nothing to do, or we have | |
381 | * exactly the right amount of runtime to take out. | |
382 | */ | |
7def2be1 PZ |
383 | if (rt_rq->rt_runtime == RUNTIME_INF || |
384 | rt_rq->rt_runtime == rt_b->rt_runtime) | |
385 | goto balanced; | |
386 | spin_unlock(&rt_rq->rt_runtime_lock); | |
387 | ||
78333cdd PZ |
388 | /* |
389 | * Calculate the difference between what we started out with | |
390 | * and what we current have, that's the amount of runtime | |
391 | * we lend and now have to reclaim. | |
392 | */ | |
7def2be1 PZ |
393 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
394 | ||
78333cdd PZ |
395 | /* |
396 | * Greedy reclaim, take back as much as we can. | |
397 | */ | |
c6c4927b | 398 | for_each_cpu(i, rd->span) { |
7def2be1 PZ |
399 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
400 | s64 diff; | |
401 | ||
78333cdd PZ |
402 | /* |
403 | * Can't reclaim from ourselves or disabled runqueues. | |
404 | */ | |
f1679d08 | 405 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
7def2be1 PZ |
406 | continue; |
407 | ||
408 | spin_lock(&iter->rt_runtime_lock); | |
409 | if (want > 0) { | |
410 | diff = min_t(s64, iter->rt_runtime, want); | |
411 | iter->rt_runtime -= diff; | |
412 | want -= diff; | |
413 | } else { | |
414 | iter->rt_runtime -= want; | |
415 | want -= want; | |
416 | } | |
417 | spin_unlock(&iter->rt_runtime_lock); | |
418 | ||
419 | if (!want) | |
420 | break; | |
421 | } | |
422 | ||
423 | spin_lock(&rt_rq->rt_runtime_lock); | |
78333cdd PZ |
424 | /* |
425 | * We cannot be left wanting - that would mean some runtime | |
426 | * leaked out of the system. | |
427 | */ | |
7def2be1 PZ |
428 | BUG_ON(want); |
429 | balanced: | |
78333cdd PZ |
430 | /* |
431 | * Disable all the borrow logic by pretending we have inf | |
432 | * runtime - in which case borrowing doesn't make sense. | |
433 | */ | |
7def2be1 PZ |
434 | rt_rq->rt_runtime = RUNTIME_INF; |
435 | spin_unlock(&rt_rq->rt_runtime_lock); | |
436 | spin_unlock(&rt_b->rt_runtime_lock); | |
437 | } | |
438 | } | |
439 | ||
440 | static void disable_runtime(struct rq *rq) | |
441 | { | |
442 | unsigned long flags; | |
443 | ||
444 | spin_lock_irqsave(&rq->lock, flags); | |
445 | __disable_runtime(rq); | |
446 | spin_unlock_irqrestore(&rq->lock, flags); | |
447 | } | |
448 | ||
449 | static void __enable_runtime(struct rq *rq) | |
450 | { | |
7def2be1 PZ |
451 | struct rt_rq *rt_rq; |
452 | ||
453 | if (unlikely(!scheduler_running)) | |
454 | return; | |
455 | ||
78333cdd PZ |
456 | /* |
457 | * Reset each runqueue's bandwidth settings | |
458 | */ | |
7def2be1 PZ |
459 | for_each_leaf_rt_rq(rt_rq, rq) { |
460 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
461 | ||
462 | spin_lock(&rt_b->rt_runtime_lock); | |
463 | spin_lock(&rt_rq->rt_runtime_lock); | |
464 | rt_rq->rt_runtime = rt_b->rt_runtime; | |
465 | rt_rq->rt_time = 0; | |
baf25731 | 466 | rt_rq->rt_throttled = 0; |
7def2be1 PZ |
467 | spin_unlock(&rt_rq->rt_runtime_lock); |
468 | spin_unlock(&rt_b->rt_runtime_lock); | |
469 | } | |
470 | } | |
471 | ||
472 | static void enable_runtime(struct rq *rq) | |
473 | { | |
474 | unsigned long flags; | |
475 | ||
476 | spin_lock_irqsave(&rq->lock, flags); | |
477 | __enable_runtime(rq); | |
478 | spin_unlock_irqrestore(&rq->lock, flags); | |
479 | } | |
480 | ||
eff6549b PZ |
481 | static int balance_runtime(struct rt_rq *rt_rq) |
482 | { | |
483 | int more = 0; | |
484 | ||
485 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | |
486 | spin_unlock(&rt_rq->rt_runtime_lock); | |
487 | more = do_balance_runtime(rt_rq); | |
488 | spin_lock(&rt_rq->rt_runtime_lock); | |
489 | } | |
490 | ||
491 | return more; | |
492 | } | |
55e12e5e | 493 | #else /* !CONFIG_SMP */ |
eff6549b PZ |
494 | static inline int balance_runtime(struct rt_rq *rt_rq) |
495 | { | |
496 | return 0; | |
497 | } | |
55e12e5e | 498 | #endif /* CONFIG_SMP */ |
ac086bc2 | 499 | |
eff6549b PZ |
500 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
501 | { | |
502 | int i, idle = 1; | |
c6c4927b | 503 | const struct cpumask *span; |
eff6549b | 504 | |
0b148fa0 | 505 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
eff6549b PZ |
506 | return 1; |
507 | ||
508 | span = sched_rt_period_mask(); | |
c6c4927b | 509 | for_each_cpu(i, span) { |
eff6549b PZ |
510 | int enqueue = 0; |
511 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | |
512 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
513 | ||
514 | spin_lock(&rq->lock); | |
515 | if (rt_rq->rt_time) { | |
516 | u64 runtime; | |
517 | ||
518 | spin_lock(&rt_rq->rt_runtime_lock); | |
519 | if (rt_rq->rt_throttled) | |
520 | balance_runtime(rt_rq); | |
521 | runtime = rt_rq->rt_runtime; | |
522 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | |
523 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | |
524 | rt_rq->rt_throttled = 0; | |
525 | enqueue = 1; | |
526 | } | |
527 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | |
528 | idle = 0; | |
529 | spin_unlock(&rt_rq->rt_runtime_lock); | |
6c3df255 PZ |
530 | } else if (rt_rq->rt_nr_running) |
531 | idle = 0; | |
eff6549b PZ |
532 | |
533 | if (enqueue) | |
534 | sched_rt_rq_enqueue(rt_rq); | |
535 | spin_unlock(&rq->lock); | |
536 | } | |
537 | ||
538 | return idle; | |
539 | } | |
ac086bc2 | 540 | |
6f505b16 PZ |
541 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) |
542 | { | |
052f1dc7 | 543 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
544 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
545 | ||
546 | if (rt_rq) | |
e864c499 | 547 | return rt_rq->highest_prio.curr; |
6f505b16 PZ |
548 | #endif |
549 | ||
550 | return rt_task_of(rt_se)->prio; | |
551 | } | |
552 | ||
9f0c1e56 | 553 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
6f505b16 | 554 | { |
9f0c1e56 | 555 | u64 runtime = sched_rt_runtime(rt_rq); |
fa85ae24 | 556 | |
fa85ae24 | 557 | if (rt_rq->rt_throttled) |
23b0fdfc | 558 | return rt_rq_throttled(rt_rq); |
fa85ae24 | 559 | |
ac086bc2 PZ |
560 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) |
561 | return 0; | |
562 | ||
b79f3833 PZ |
563 | balance_runtime(rt_rq); |
564 | runtime = sched_rt_runtime(rt_rq); | |
565 | if (runtime == RUNTIME_INF) | |
566 | return 0; | |
ac086bc2 | 567 | |
9f0c1e56 | 568 | if (rt_rq->rt_time > runtime) { |
6f505b16 | 569 | rt_rq->rt_throttled = 1; |
23b0fdfc | 570 | if (rt_rq_throttled(rt_rq)) { |
9f0c1e56 | 571 | sched_rt_rq_dequeue(rt_rq); |
23b0fdfc PZ |
572 | return 1; |
573 | } | |
fa85ae24 PZ |
574 | } |
575 | ||
576 | return 0; | |
577 | } | |
578 | ||
bb44e5d1 IM |
579 | /* |
580 | * Update the current task's runtime statistics. Skip current tasks that | |
581 | * are not in our scheduling class. | |
582 | */ | |
a9957449 | 583 | static void update_curr_rt(struct rq *rq) |
bb44e5d1 IM |
584 | { |
585 | struct task_struct *curr = rq->curr; | |
6f505b16 PZ |
586 | struct sched_rt_entity *rt_se = &curr->rt; |
587 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
bb44e5d1 IM |
588 | u64 delta_exec; |
589 | ||
590 | if (!task_has_rt_policy(curr)) | |
591 | return; | |
592 | ||
d281918d | 593 | delta_exec = rq->clock - curr->se.exec_start; |
bb44e5d1 IM |
594 | if (unlikely((s64)delta_exec < 0)) |
595 | delta_exec = 0; | |
6cfb0d5d IM |
596 | |
597 | schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); | |
bb44e5d1 IM |
598 | |
599 | curr->se.sum_exec_runtime += delta_exec; | |
f06febc9 FM |
600 | account_group_exec_runtime(curr, delta_exec); |
601 | ||
d281918d | 602 | curr->se.exec_start = rq->clock; |
d842de87 | 603 | cpuacct_charge(curr, delta_exec); |
fa85ae24 | 604 | |
0b148fa0 PZ |
605 | if (!rt_bandwidth_enabled()) |
606 | return; | |
607 | ||
354d60c2 DG |
608 | for_each_sched_rt_entity(rt_se) { |
609 | rt_rq = rt_rq_of_se(rt_se); | |
610 | ||
cc2991cf | 611 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
e113a745 | 612 | spin_lock(&rt_rq->rt_runtime_lock); |
cc2991cf PZ |
613 | rt_rq->rt_time += delta_exec; |
614 | if (sched_rt_runtime_exceeded(rt_rq)) | |
615 | resched_task(curr); | |
e113a745 | 616 | spin_unlock(&rt_rq->rt_runtime_lock); |
cc2991cf | 617 | } |
354d60c2 | 618 | } |
bb44e5d1 IM |
619 | } |
620 | ||
398a153b | 621 | #if defined CONFIG_SMP |
e864c499 GH |
622 | |
623 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | |
624 | ||
625 | static inline int next_prio(struct rq *rq) | |
63489e45 | 626 | { |
e864c499 GH |
627 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
628 | ||
629 | if (next && rt_prio(next->prio)) | |
630 | return next->prio; | |
631 | else | |
632 | return MAX_RT_PRIO; | |
633 | } | |
e864c499 | 634 | |
398a153b GH |
635 | static void |
636 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
63489e45 | 637 | { |
4d984277 | 638 | struct rq *rq = rq_of_rt_rq(rt_rq); |
1f11eb6a | 639 | |
398a153b | 640 | if (prio < prev_prio) { |
4d984277 | 641 | |
e864c499 GH |
642 | /* |
643 | * If the new task is higher in priority than anything on the | |
398a153b GH |
644 | * run-queue, we know that the previous high becomes our |
645 | * next-highest. | |
e864c499 | 646 | */ |
398a153b | 647 | rt_rq->highest_prio.next = prev_prio; |
1f11eb6a GH |
648 | |
649 | if (rq->online) | |
4d984277 | 650 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
1100ac91 | 651 | |
e864c499 GH |
652 | } else if (prio == rt_rq->highest_prio.curr) |
653 | /* | |
654 | * If the next task is equal in priority to the highest on | |
655 | * the run-queue, then we implicitly know that the next highest | |
656 | * task cannot be any lower than current | |
657 | */ | |
658 | rt_rq->highest_prio.next = prio; | |
659 | else if (prio < rt_rq->highest_prio.next) | |
660 | /* | |
661 | * Otherwise, we need to recompute next-highest | |
662 | */ | |
663 | rt_rq->highest_prio.next = next_prio(rq); | |
398a153b | 664 | } |
73fe6aae | 665 | |
398a153b GH |
666 | static void |
667 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
668 | { | |
669 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
d0b27fa7 | 670 | |
398a153b GH |
671 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
672 | rt_rq->highest_prio.next = next_prio(rq); | |
673 | ||
674 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | |
675 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | |
63489e45 SR |
676 | } |
677 | ||
398a153b GH |
678 | #else /* CONFIG_SMP */ |
679 | ||
6f505b16 | 680 | static inline |
398a153b GH |
681 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
682 | static inline | |
683 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | |
684 | ||
685 | #endif /* CONFIG_SMP */ | |
6e0534f2 | 686 | |
052f1dc7 | 687 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
398a153b GH |
688 | static void |
689 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | |
690 | { | |
691 | int prev_prio = rt_rq->highest_prio.curr; | |
692 | ||
693 | if (prio < prev_prio) | |
694 | rt_rq->highest_prio.curr = prio; | |
695 | ||
696 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | |
697 | } | |
698 | ||
699 | static void | |
700 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | |
701 | { | |
702 | int prev_prio = rt_rq->highest_prio.curr; | |
703 | ||
6f505b16 | 704 | if (rt_rq->rt_nr_running) { |
764a9d6f | 705 | |
398a153b | 706 | WARN_ON(prio < prev_prio); |
764a9d6f | 707 | |
e864c499 | 708 | /* |
398a153b GH |
709 | * This may have been our highest task, and therefore |
710 | * we may have some recomputation to do | |
e864c499 | 711 | */ |
398a153b | 712 | if (prio == prev_prio) { |
e864c499 GH |
713 | struct rt_prio_array *array = &rt_rq->active; |
714 | ||
715 | rt_rq->highest_prio.curr = | |
764a9d6f | 716 | sched_find_first_bit(array->bitmap); |
e864c499 GH |
717 | } |
718 | ||
764a9d6f | 719 | } else |
e864c499 | 720 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
73fe6aae | 721 | |
398a153b GH |
722 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
723 | } | |
1f11eb6a | 724 | |
398a153b GH |
725 | #else |
726 | ||
727 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
728 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
729 | ||
730 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | |
6e0534f2 | 731 | |
052f1dc7 | 732 | #ifdef CONFIG_RT_GROUP_SCHED |
398a153b GH |
733 | |
734 | static void | |
735 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
736 | { | |
737 | if (rt_se_boosted(rt_se)) | |
738 | rt_rq->rt_nr_boosted++; | |
739 | ||
740 | if (rt_rq->tg) | |
741 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | |
742 | } | |
743 | ||
744 | static void | |
745 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
746 | { | |
23b0fdfc PZ |
747 | if (rt_se_boosted(rt_se)) |
748 | rt_rq->rt_nr_boosted--; | |
749 | ||
750 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | |
398a153b GH |
751 | } |
752 | ||
753 | #else /* CONFIG_RT_GROUP_SCHED */ | |
754 | ||
755 | static void | |
756 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
757 | { | |
758 | start_rt_bandwidth(&def_rt_bandwidth); | |
759 | } | |
760 | ||
761 | static inline | |
762 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | |
763 | ||
764 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
765 | ||
766 | static inline | |
767 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
768 | { | |
769 | int prio = rt_se_prio(rt_se); | |
770 | ||
771 | WARN_ON(!rt_prio(prio)); | |
772 | rt_rq->rt_nr_running++; | |
773 | ||
774 | inc_rt_prio(rt_rq, prio); | |
775 | inc_rt_migration(rt_se, rt_rq); | |
776 | inc_rt_group(rt_se, rt_rq); | |
777 | } | |
778 | ||
779 | static inline | |
780 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
781 | { | |
782 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | |
783 | WARN_ON(!rt_rq->rt_nr_running); | |
784 | rt_rq->rt_nr_running--; | |
785 | ||
786 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | |
787 | dec_rt_migration(rt_se, rt_rq); | |
788 | dec_rt_group(rt_se, rt_rq); | |
63489e45 SR |
789 | } |
790 | ||
ad2a3f13 | 791 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) |
bb44e5d1 | 792 | { |
6f505b16 PZ |
793 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
794 | struct rt_prio_array *array = &rt_rq->active; | |
795 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
20b6331b | 796 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
bb44e5d1 | 797 | |
ad2a3f13 PZ |
798 | /* |
799 | * Don't enqueue the group if its throttled, or when empty. | |
800 | * The latter is a consequence of the former when a child group | |
801 | * get throttled and the current group doesn't have any other | |
802 | * active members. | |
803 | */ | |
804 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | |
6f505b16 | 805 | return; |
63489e45 | 806 | |
7ebefa8c | 807 | list_add_tail(&rt_se->run_list, queue); |
6f505b16 | 808 | __set_bit(rt_se_prio(rt_se), array->bitmap); |
78f2c7db | 809 | |
6f505b16 PZ |
810 | inc_rt_tasks(rt_se, rt_rq); |
811 | } | |
812 | ||
ad2a3f13 | 813 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) |
6f505b16 PZ |
814 | { |
815 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
816 | struct rt_prio_array *array = &rt_rq->active; | |
817 | ||
818 | list_del_init(&rt_se->run_list); | |
819 | if (list_empty(array->queue + rt_se_prio(rt_se))) | |
820 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | |
821 | ||
822 | dec_rt_tasks(rt_se, rt_rq); | |
823 | } | |
824 | ||
825 | /* | |
826 | * Because the prio of an upper entry depends on the lower | |
827 | * entries, we must remove entries top - down. | |
6f505b16 | 828 | */ |
ad2a3f13 | 829 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) |
6f505b16 | 830 | { |
ad2a3f13 | 831 | struct sched_rt_entity *back = NULL; |
6f505b16 | 832 | |
58d6c2d7 PZ |
833 | for_each_sched_rt_entity(rt_se) { |
834 | rt_se->back = back; | |
835 | back = rt_se; | |
836 | } | |
837 | ||
838 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | |
839 | if (on_rt_rq(rt_se)) | |
ad2a3f13 PZ |
840 | __dequeue_rt_entity(rt_se); |
841 | } | |
842 | } | |
843 | ||
844 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se) | |
845 | { | |
846 | dequeue_rt_stack(rt_se); | |
847 | for_each_sched_rt_entity(rt_se) | |
848 | __enqueue_rt_entity(rt_se); | |
849 | } | |
850 | ||
851 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |
852 | { | |
853 | dequeue_rt_stack(rt_se); | |
854 | ||
855 | for_each_sched_rt_entity(rt_se) { | |
856 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
857 | ||
858 | if (rt_rq && rt_rq->rt_nr_running) | |
859 | __enqueue_rt_entity(rt_se); | |
58d6c2d7 | 860 | } |
bb44e5d1 IM |
861 | } |
862 | ||
863 | /* | |
864 | * Adding/removing a task to/from a priority array: | |
865 | */ | |
6f505b16 PZ |
866 | static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) |
867 | { | |
868 | struct sched_rt_entity *rt_se = &p->rt; | |
869 | ||
870 | if (wakeup) | |
871 | rt_se->timeout = 0; | |
872 | ||
ad2a3f13 | 873 | enqueue_rt_entity(rt_se); |
c09595f6 | 874 | |
917b627d GH |
875 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
876 | enqueue_pushable_task(rq, p); | |
877 | ||
c09595f6 | 878 | inc_cpu_load(rq, p->se.load.weight); |
6f505b16 PZ |
879 | } |
880 | ||
f02231e5 | 881 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) |
bb44e5d1 | 882 | { |
6f505b16 | 883 | struct sched_rt_entity *rt_se = &p->rt; |
bb44e5d1 | 884 | |
f1e14ef6 | 885 | update_curr_rt(rq); |
ad2a3f13 | 886 | dequeue_rt_entity(rt_se); |
c09595f6 | 887 | |
917b627d GH |
888 | dequeue_pushable_task(rq, p); |
889 | ||
c09595f6 | 890 | dec_cpu_load(rq, p->se.load.weight); |
bb44e5d1 IM |
891 | } |
892 | ||
893 | /* | |
894 | * Put task to the end of the run list without the overhead of dequeue | |
895 | * followed by enqueue. | |
896 | */ | |
7ebefa8c DA |
897 | static void |
898 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | |
6f505b16 | 899 | { |
1cdad715 | 900 | if (on_rt_rq(rt_se)) { |
7ebefa8c DA |
901 | struct rt_prio_array *array = &rt_rq->active; |
902 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
903 | ||
904 | if (head) | |
905 | list_move(&rt_se->run_list, queue); | |
906 | else | |
907 | list_move_tail(&rt_se->run_list, queue); | |
1cdad715 | 908 | } |
6f505b16 PZ |
909 | } |
910 | ||
7ebefa8c | 911 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
bb44e5d1 | 912 | { |
6f505b16 PZ |
913 | struct sched_rt_entity *rt_se = &p->rt; |
914 | struct rt_rq *rt_rq; | |
bb44e5d1 | 915 | |
6f505b16 PZ |
916 | for_each_sched_rt_entity(rt_se) { |
917 | rt_rq = rt_rq_of_se(rt_se); | |
7ebefa8c | 918 | requeue_rt_entity(rt_rq, rt_se, head); |
6f505b16 | 919 | } |
bb44e5d1 IM |
920 | } |
921 | ||
6f505b16 | 922 | static void yield_task_rt(struct rq *rq) |
bb44e5d1 | 923 | { |
7ebefa8c | 924 | requeue_task_rt(rq, rq->curr, 0); |
bb44e5d1 IM |
925 | } |
926 | ||
e7693a36 | 927 | #ifdef CONFIG_SMP |
318e0893 GH |
928 | static int find_lowest_rq(struct task_struct *task); |
929 | ||
e7693a36 GH |
930 | static int select_task_rq_rt(struct task_struct *p, int sync) |
931 | { | |
318e0893 GH |
932 | struct rq *rq = task_rq(p); |
933 | ||
934 | /* | |
e1f47d89 SR |
935 | * If the current task is an RT task, then |
936 | * try to see if we can wake this RT task up on another | |
937 | * runqueue. Otherwise simply start this RT task | |
938 | * on its current runqueue. | |
939 | * | |
940 | * We want to avoid overloading runqueues. Even if | |
941 | * the RT task is of higher priority than the current RT task. | |
942 | * RT tasks behave differently than other tasks. If | |
943 | * one gets preempted, we try to push it off to another queue. | |
944 | * So trying to keep a preempting RT task on the same | |
945 | * cache hot CPU will force the running RT task to | |
946 | * a cold CPU. So we waste all the cache for the lower | |
947 | * RT task in hopes of saving some of a RT task | |
948 | * that is just being woken and probably will have | |
949 | * cold cache anyway. | |
318e0893 | 950 | */ |
17b3279b | 951 | if (unlikely(rt_task(rq->curr)) && |
6f505b16 | 952 | (p->rt.nr_cpus_allowed > 1)) { |
318e0893 GH |
953 | int cpu = find_lowest_rq(p); |
954 | ||
955 | return (cpu == -1) ? task_cpu(p) : cpu; | |
956 | } | |
957 | ||
958 | /* | |
959 | * Otherwise, just let it ride on the affined RQ and the | |
960 | * post-schedule router will push the preempted task away | |
961 | */ | |
e7693a36 GH |
962 | return task_cpu(p); |
963 | } | |
7ebefa8c DA |
964 | |
965 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |
966 | { | |
7ebefa8c DA |
967 | if (rq->curr->rt.nr_cpus_allowed == 1) |
968 | return; | |
969 | ||
24600ce8 | 970 | if (p->rt.nr_cpus_allowed != 1 |
13b8bd0a RR |
971 | && cpupri_find(&rq->rd->cpupri, p, NULL)) |
972 | return; | |
24600ce8 | 973 | |
13b8bd0a RR |
974 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) |
975 | return; | |
7ebefa8c DA |
976 | |
977 | /* | |
978 | * There appears to be other cpus that can accept | |
979 | * current and none to run 'p', so lets reschedule | |
980 | * to try and push current away: | |
981 | */ | |
982 | requeue_task_rt(rq, p, 1); | |
983 | resched_task(rq->curr); | |
984 | } | |
985 | ||
e7693a36 GH |
986 | #endif /* CONFIG_SMP */ |
987 | ||
bb44e5d1 IM |
988 | /* |
989 | * Preempt the current task with a newly woken task if needed: | |
990 | */ | |
15afe09b | 991 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) |
bb44e5d1 | 992 | { |
45c01e82 | 993 | if (p->prio < rq->curr->prio) { |
bb44e5d1 | 994 | resched_task(rq->curr); |
45c01e82 GH |
995 | return; |
996 | } | |
997 | ||
998 | #ifdef CONFIG_SMP | |
999 | /* | |
1000 | * If: | |
1001 | * | |
1002 | * - the newly woken task is of equal priority to the current task | |
1003 | * - the newly woken task is non-migratable while current is migratable | |
1004 | * - current will be preempted on the next reschedule | |
1005 | * | |
1006 | * we should check to see if current can readily move to a different | |
1007 | * cpu. If so, we will reschedule to allow the push logic to try | |
1008 | * to move current somewhere else, making room for our non-migratable | |
1009 | * task. | |
1010 | */ | |
7ebefa8c DA |
1011 | if (p->prio == rq->curr->prio && !need_resched()) |
1012 | check_preempt_equal_prio(rq, p); | |
45c01e82 | 1013 | #endif |
bb44e5d1 IM |
1014 | } |
1015 | ||
6f505b16 PZ |
1016 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
1017 | struct rt_rq *rt_rq) | |
bb44e5d1 | 1018 | { |
6f505b16 PZ |
1019 | struct rt_prio_array *array = &rt_rq->active; |
1020 | struct sched_rt_entity *next = NULL; | |
bb44e5d1 IM |
1021 | struct list_head *queue; |
1022 | int idx; | |
1023 | ||
1024 | idx = sched_find_first_bit(array->bitmap); | |
6f505b16 | 1025 | BUG_ON(idx >= MAX_RT_PRIO); |
bb44e5d1 IM |
1026 | |
1027 | queue = array->queue + idx; | |
6f505b16 | 1028 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
326587b8 | 1029 | |
6f505b16 PZ |
1030 | return next; |
1031 | } | |
bb44e5d1 | 1032 | |
917b627d | 1033 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
6f505b16 PZ |
1034 | { |
1035 | struct sched_rt_entity *rt_se; | |
1036 | struct task_struct *p; | |
1037 | struct rt_rq *rt_rq; | |
bb44e5d1 | 1038 | |
6f505b16 PZ |
1039 | rt_rq = &rq->rt; |
1040 | ||
1041 | if (unlikely(!rt_rq->rt_nr_running)) | |
1042 | return NULL; | |
1043 | ||
23b0fdfc | 1044 | if (rt_rq_throttled(rt_rq)) |
6f505b16 PZ |
1045 | return NULL; |
1046 | ||
1047 | do { | |
1048 | rt_se = pick_next_rt_entity(rq, rt_rq); | |
326587b8 | 1049 | BUG_ON(!rt_se); |
6f505b16 PZ |
1050 | rt_rq = group_rt_rq(rt_se); |
1051 | } while (rt_rq); | |
1052 | ||
1053 | p = rt_task_of(rt_se); | |
1054 | p->se.exec_start = rq->clock; | |
917b627d GH |
1055 | |
1056 | return p; | |
1057 | } | |
1058 | ||
1059 | static struct task_struct *pick_next_task_rt(struct rq *rq) | |
1060 | { | |
1061 | struct task_struct *p = _pick_next_task_rt(rq); | |
1062 | ||
1063 | /* The running task is never eligible for pushing */ | |
1064 | if (p) | |
1065 | dequeue_pushable_task(rq, p); | |
1066 | ||
6f505b16 | 1067 | return p; |
bb44e5d1 IM |
1068 | } |
1069 | ||
31ee529c | 1070 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
bb44e5d1 | 1071 | { |
f1e14ef6 | 1072 | update_curr_rt(rq); |
bb44e5d1 | 1073 | p->se.exec_start = 0; |
917b627d GH |
1074 | |
1075 | /* | |
1076 | * The previous task needs to be made eligible for pushing | |
1077 | * if it is still active | |
1078 | */ | |
1079 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | |
1080 | enqueue_pushable_task(rq, p); | |
bb44e5d1 IM |
1081 | } |
1082 | ||
681f3e68 | 1083 | #ifdef CONFIG_SMP |
6f505b16 | 1084 | |
e8fa1362 SR |
1085 | /* Only try algorithms three times */ |
1086 | #define RT_MAX_TRIES 3 | |
1087 | ||
e8fa1362 SR |
1088 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); |
1089 | ||
f65eda4f SR |
1090 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) |
1091 | { | |
1092 | if (!task_running(rq, p) && | |
96f874e2 | 1093 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && |
6f505b16 | 1094 | (p->rt.nr_cpus_allowed > 1)) |
f65eda4f SR |
1095 | return 1; |
1096 | return 0; | |
1097 | } | |
1098 | ||
e8fa1362 | 1099 | /* Return the second highest RT task, NULL otherwise */ |
79064fbf | 1100 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) |
e8fa1362 | 1101 | { |
6f505b16 PZ |
1102 | struct task_struct *next = NULL; |
1103 | struct sched_rt_entity *rt_se; | |
1104 | struct rt_prio_array *array; | |
1105 | struct rt_rq *rt_rq; | |
e8fa1362 SR |
1106 | int idx; |
1107 | ||
6f505b16 PZ |
1108 | for_each_leaf_rt_rq(rt_rq, rq) { |
1109 | array = &rt_rq->active; | |
1110 | idx = sched_find_first_bit(array->bitmap); | |
1111 | next_idx: | |
1112 | if (idx >= MAX_RT_PRIO) | |
1113 | continue; | |
1114 | if (next && next->prio < idx) | |
1115 | continue; | |
1116 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | |
1117 | struct task_struct *p = rt_task_of(rt_se); | |
1118 | if (pick_rt_task(rq, p, cpu)) { | |
1119 | next = p; | |
1120 | break; | |
1121 | } | |
1122 | } | |
1123 | if (!next) { | |
1124 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | |
1125 | goto next_idx; | |
1126 | } | |
f65eda4f SR |
1127 | } |
1128 | ||
e8fa1362 SR |
1129 | return next; |
1130 | } | |
1131 | ||
0e3900e6 | 1132 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
e8fa1362 | 1133 | |
d38b223c MT |
1134 | static inline int pick_optimal_cpu(int this_cpu, |
1135 | const struct cpumask *mask) | |
6e1254d2 GH |
1136 | { |
1137 | int first; | |
1138 | ||
1139 | /* "this_cpu" is cheaper to preempt than a remote processor */ | |
d38b223c | 1140 | if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask)) |
6e1254d2 GH |
1141 | return this_cpu; |
1142 | ||
3d398703 RR |
1143 | first = cpumask_first(mask); |
1144 | if (first < nr_cpu_ids) | |
6e1254d2 GH |
1145 | return first; |
1146 | ||
1147 | return -1; | |
1148 | } | |
1149 | ||
1150 | static int find_lowest_rq(struct task_struct *task) | |
1151 | { | |
1152 | struct sched_domain *sd; | |
96f874e2 | 1153 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
6e1254d2 GH |
1154 | int this_cpu = smp_processor_id(); |
1155 | int cpu = task_cpu(task); | |
d38b223c | 1156 | cpumask_var_t domain_mask; |
06f90dbd | 1157 | |
6e0534f2 GH |
1158 | if (task->rt.nr_cpus_allowed == 1) |
1159 | return -1; /* No other targets possible */ | |
6e1254d2 | 1160 | |
6e0534f2 GH |
1161 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) |
1162 | return -1; /* No targets found */ | |
6e1254d2 | 1163 | |
e761b772 MK |
1164 | /* |
1165 | * Only consider CPUs that are usable for migration. | |
1166 | * I guess we might want to change cpupri_find() to ignore those | |
1167 | * in the first place. | |
1168 | */ | |
96f874e2 | 1169 | cpumask_and(lowest_mask, lowest_mask, cpu_active_mask); |
e761b772 | 1170 | |
6e1254d2 GH |
1171 | /* |
1172 | * At this point we have built a mask of cpus representing the | |
1173 | * lowest priority tasks in the system. Now we want to elect | |
1174 | * the best one based on our affinity and topology. | |
1175 | * | |
1176 | * We prioritize the last cpu that the task executed on since | |
1177 | * it is most likely cache-hot in that location. | |
1178 | */ | |
96f874e2 | 1179 | if (cpumask_test_cpu(cpu, lowest_mask)) |
6e1254d2 GH |
1180 | return cpu; |
1181 | ||
1182 | /* | |
1183 | * Otherwise, we consult the sched_domains span maps to figure | |
1184 | * out which cpu is logically closest to our hot cache data. | |
1185 | */ | |
1186 | if (this_cpu == cpu) | |
1187 | this_cpu = -1; /* Skip this_cpu opt if the same */ | |
1188 | ||
d38b223c MT |
1189 | if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) { |
1190 | for_each_domain(cpu, sd) { | |
1191 | if (sd->flags & SD_WAKE_AFFINE) { | |
1192 | int best_cpu; | |
6e1254d2 | 1193 | |
d38b223c MT |
1194 | cpumask_and(domain_mask, |
1195 | sched_domain_span(sd), | |
1196 | lowest_mask); | |
6e1254d2 | 1197 | |
d38b223c MT |
1198 | best_cpu = pick_optimal_cpu(this_cpu, |
1199 | domain_mask); | |
6e1254d2 | 1200 | |
d38b223c MT |
1201 | if (best_cpu != -1) { |
1202 | free_cpumask_var(domain_mask); | |
1203 | return best_cpu; | |
1204 | } | |
1205 | } | |
6e1254d2 | 1206 | } |
d38b223c | 1207 | free_cpumask_var(domain_mask); |
6e1254d2 GH |
1208 | } |
1209 | ||
1210 | /* | |
1211 | * And finally, if there were no matches within the domains | |
1212 | * just give the caller *something* to work with from the compatible | |
1213 | * locations. | |
1214 | */ | |
1215 | return pick_optimal_cpu(this_cpu, lowest_mask); | |
07b4032c GH |
1216 | } |
1217 | ||
1218 | /* Will lock the rq it finds */ | |
4df64c0b | 1219 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
07b4032c GH |
1220 | { |
1221 | struct rq *lowest_rq = NULL; | |
07b4032c | 1222 | int tries; |
4df64c0b | 1223 | int cpu; |
e8fa1362 | 1224 | |
07b4032c GH |
1225 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
1226 | cpu = find_lowest_rq(task); | |
1227 | ||
2de0b463 | 1228 | if ((cpu == -1) || (cpu == rq->cpu)) |
e8fa1362 SR |
1229 | break; |
1230 | ||
07b4032c GH |
1231 | lowest_rq = cpu_rq(cpu); |
1232 | ||
e8fa1362 | 1233 | /* if the prio of this runqueue changed, try again */ |
07b4032c | 1234 | if (double_lock_balance(rq, lowest_rq)) { |
e8fa1362 SR |
1235 | /* |
1236 | * We had to unlock the run queue. In | |
1237 | * the mean time, task could have | |
1238 | * migrated already or had its affinity changed. | |
1239 | * Also make sure that it wasn't scheduled on its rq. | |
1240 | */ | |
07b4032c | 1241 | if (unlikely(task_rq(task) != rq || |
96f874e2 RR |
1242 | !cpumask_test_cpu(lowest_rq->cpu, |
1243 | &task->cpus_allowed) || | |
07b4032c | 1244 | task_running(rq, task) || |
e8fa1362 | 1245 | !task->se.on_rq)) { |
4df64c0b | 1246 | |
e8fa1362 SR |
1247 | spin_unlock(&lowest_rq->lock); |
1248 | lowest_rq = NULL; | |
1249 | break; | |
1250 | } | |
1251 | } | |
1252 | ||
1253 | /* If this rq is still suitable use it. */ | |
e864c499 | 1254 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
e8fa1362 SR |
1255 | break; |
1256 | ||
1257 | /* try again */ | |
1b12bbc7 | 1258 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1259 | lowest_rq = NULL; |
1260 | } | |
1261 | ||
1262 | return lowest_rq; | |
1263 | } | |
1264 | ||
917b627d GH |
1265 | static inline int has_pushable_tasks(struct rq *rq) |
1266 | { | |
1267 | return !plist_head_empty(&rq->rt.pushable_tasks); | |
1268 | } | |
1269 | ||
1270 | static struct task_struct *pick_next_pushable_task(struct rq *rq) | |
1271 | { | |
1272 | struct task_struct *p; | |
1273 | ||
1274 | if (!has_pushable_tasks(rq)) | |
1275 | return NULL; | |
1276 | ||
1277 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
1278 | struct task_struct, pushable_tasks); | |
1279 | ||
1280 | BUG_ON(rq->cpu != task_cpu(p)); | |
1281 | BUG_ON(task_current(rq, p)); | |
1282 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | |
1283 | ||
1284 | BUG_ON(!p->se.on_rq); | |
1285 | BUG_ON(!rt_task(p)); | |
1286 | ||
1287 | return p; | |
1288 | } | |
1289 | ||
e8fa1362 SR |
1290 | /* |
1291 | * If the current CPU has more than one RT task, see if the non | |
1292 | * running task can migrate over to a CPU that is running a task | |
1293 | * of lesser priority. | |
1294 | */ | |
697f0a48 | 1295 | static int push_rt_task(struct rq *rq) |
e8fa1362 SR |
1296 | { |
1297 | struct task_struct *next_task; | |
1298 | struct rq *lowest_rq; | |
e8fa1362 | 1299 | |
a22d7fc1 GH |
1300 | if (!rq->rt.overloaded) |
1301 | return 0; | |
1302 | ||
917b627d | 1303 | next_task = pick_next_pushable_task(rq); |
e8fa1362 SR |
1304 | if (!next_task) |
1305 | return 0; | |
1306 | ||
1307 | retry: | |
697f0a48 | 1308 | if (unlikely(next_task == rq->curr)) { |
f65eda4f | 1309 | WARN_ON(1); |
e8fa1362 | 1310 | return 0; |
f65eda4f | 1311 | } |
e8fa1362 SR |
1312 | |
1313 | /* | |
1314 | * It's possible that the next_task slipped in of | |
1315 | * higher priority than current. If that's the case | |
1316 | * just reschedule current. | |
1317 | */ | |
697f0a48 GH |
1318 | if (unlikely(next_task->prio < rq->curr->prio)) { |
1319 | resched_task(rq->curr); | |
e8fa1362 SR |
1320 | return 0; |
1321 | } | |
1322 | ||
697f0a48 | 1323 | /* We might release rq lock */ |
e8fa1362 SR |
1324 | get_task_struct(next_task); |
1325 | ||
1326 | /* find_lock_lowest_rq locks the rq if found */ | |
697f0a48 | 1327 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
e8fa1362 SR |
1328 | if (!lowest_rq) { |
1329 | struct task_struct *task; | |
1330 | /* | |
697f0a48 | 1331 | * find lock_lowest_rq releases rq->lock |
1563513d GH |
1332 | * so it is possible that next_task has migrated. |
1333 | * | |
1334 | * We need to make sure that the task is still on the same | |
1335 | * run-queue and is also still the next task eligible for | |
1336 | * pushing. | |
e8fa1362 | 1337 | */ |
917b627d | 1338 | task = pick_next_pushable_task(rq); |
1563513d GH |
1339 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1340 | /* | |
1341 | * If we get here, the task hasnt moved at all, but | |
1342 | * it has failed to push. We will not try again, | |
1343 | * since the other cpus will pull from us when they | |
1344 | * are ready. | |
1345 | */ | |
1346 | dequeue_pushable_task(rq, next_task); | |
1347 | goto out; | |
e8fa1362 | 1348 | } |
917b627d | 1349 | |
1563513d GH |
1350 | if (!task) |
1351 | /* No more tasks, just exit */ | |
1352 | goto out; | |
1353 | ||
917b627d | 1354 | /* |
1563513d | 1355 | * Something has shifted, try again. |
917b627d | 1356 | */ |
1563513d GH |
1357 | put_task_struct(next_task); |
1358 | next_task = task; | |
1359 | goto retry; | |
e8fa1362 SR |
1360 | } |
1361 | ||
697f0a48 | 1362 | deactivate_task(rq, next_task, 0); |
e8fa1362 SR |
1363 | set_task_cpu(next_task, lowest_rq->cpu); |
1364 | activate_task(lowest_rq, next_task, 0); | |
1365 | ||
1366 | resched_task(lowest_rq->curr); | |
1367 | ||
1b12bbc7 | 1368 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 | 1369 | |
e8fa1362 SR |
1370 | out: |
1371 | put_task_struct(next_task); | |
1372 | ||
917b627d | 1373 | return 1; |
e8fa1362 SR |
1374 | } |
1375 | ||
e8fa1362 SR |
1376 | static void push_rt_tasks(struct rq *rq) |
1377 | { | |
1378 | /* push_rt_task will return true if it moved an RT */ | |
1379 | while (push_rt_task(rq)) | |
1380 | ; | |
1381 | } | |
1382 | ||
f65eda4f SR |
1383 | static int pull_rt_task(struct rq *this_rq) |
1384 | { | |
80bf3171 | 1385 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
a8728944 | 1386 | struct task_struct *p; |
f65eda4f | 1387 | struct rq *src_rq; |
f65eda4f | 1388 | |
637f5085 | 1389 | if (likely(!rt_overloaded(this_rq))) |
f65eda4f SR |
1390 | return 0; |
1391 | ||
c6c4927b | 1392 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
f65eda4f SR |
1393 | if (this_cpu == cpu) |
1394 | continue; | |
1395 | ||
1396 | src_rq = cpu_rq(cpu); | |
74ab8e4f GH |
1397 | |
1398 | /* | |
1399 | * Don't bother taking the src_rq->lock if the next highest | |
1400 | * task is known to be lower-priority than our current task. | |
1401 | * This may look racy, but if this value is about to go | |
1402 | * logically higher, the src_rq will push this task away. | |
1403 | * And if its going logically lower, we do not care | |
1404 | */ | |
1405 | if (src_rq->rt.highest_prio.next >= | |
1406 | this_rq->rt.highest_prio.curr) | |
1407 | continue; | |
1408 | ||
f65eda4f SR |
1409 | /* |
1410 | * We can potentially drop this_rq's lock in | |
1411 | * double_lock_balance, and another CPU could | |
a8728944 | 1412 | * alter this_rq |
f65eda4f | 1413 | */ |
a8728944 | 1414 | double_lock_balance(this_rq, src_rq); |
f65eda4f SR |
1415 | |
1416 | /* | |
1417 | * Are there still pullable RT tasks? | |
1418 | */ | |
614ee1f6 MG |
1419 | if (src_rq->rt.rt_nr_running <= 1) |
1420 | goto skip; | |
f65eda4f | 1421 | |
f65eda4f SR |
1422 | p = pick_next_highest_task_rt(src_rq, this_cpu); |
1423 | ||
1424 | /* | |
1425 | * Do we have an RT task that preempts | |
1426 | * the to-be-scheduled task? | |
1427 | */ | |
a8728944 | 1428 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
f65eda4f SR |
1429 | WARN_ON(p == src_rq->curr); |
1430 | WARN_ON(!p->se.on_rq); | |
1431 | ||
1432 | /* | |
1433 | * There's a chance that p is higher in priority | |
1434 | * than what's currently running on its cpu. | |
1435 | * This is just that p is wakeing up and hasn't | |
1436 | * had a chance to schedule. We only pull | |
1437 | * p if it is lower in priority than the | |
a8728944 | 1438 | * current task on the run queue |
f65eda4f | 1439 | */ |
a8728944 | 1440 | if (p->prio < src_rq->curr->prio) |
614ee1f6 | 1441 | goto skip; |
f65eda4f SR |
1442 | |
1443 | ret = 1; | |
1444 | ||
1445 | deactivate_task(src_rq, p, 0); | |
1446 | set_task_cpu(p, this_cpu); | |
1447 | activate_task(this_rq, p, 0); | |
1448 | /* | |
1449 | * We continue with the search, just in | |
1450 | * case there's an even higher prio task | |
1451 | * in another runqueue. (low likelyhood | |
1452 | * but possible) | |
f65eda4f | 1453 | */ |
f65eda4f | 1454 | } |
614ee1f6 | 1455 | skip: |
1b12bbc7 | 1456 | double_unlock_balance(this_rq, src_rq); |
f65eda4f SR |
1457 | } |
1458 | ||
1459 | return ret; | |
1460 | } | |
1461 | ||
9a897c5a | 1462 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
f65eda4f SR |
1463 | { |
1464 | /* Try to pull RT tasks here if we lower this rq's prio */ | |
e864c499 | 1465 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
f65eda4f SR |
1466 | pull_rt_task(rq); |
1467 | } | |
1468 | ||
967fc046 GH |
1469 | /* |
1470 | * assumes rq->lock is held | |
1471 | */ | |
1472 | static int needs_post_schedule_rt(struct rq *rq) | |
1473 | { | |
917b627d | 1474 | return has_pushable_tasks(rq); |
967fc046 GH |
1475 | } |
1476 | ||
9a897c5a | 1477 | static void post_schedule_rt(struct rq *rq) |
e8fa1362 SR |
1478 | { |
1479 | /* | |
967fc046 GH |
1480 | * This is only called if needs_post_schedule_rt() indicates that |
1481 | * we need to push tasks away | |
e8fa1362 | 1482 | */ |
967fc046 GH |
1483 | spin_lock_irq(&rq->lock); |
1484 | push_rt_tasks(rq); | |
1485 | spin_unlock_irq(&rq->lock); | |
e8fa1362 SR |
1486 | } |
1487 | ||
8ae121ac GH |
1488 | /* |
1489 | * If we are not running and we are not going to reschedule soon, we should | |
1490 | * try to push tasks away now | |
1491 | */ | |
9a897c5a | 1492 | static void task_wake_up_rt(struct rq *rq, struct task_struct *p) |
4642dafd | 1493 | { |
9a897c5a | 1494 | if (!task_running(rq, p) && |
8ae121ac | 1495 | !test_tsk_need_resched(rq->curr) && |
917b627d | 1496 | has_pushable_tasks(rq) && |
777c2f38 | 1497 | p->rt.nr_cpus_allowed > 1) |
4642dafd SR |
1498 | push_rt_tasks(rq); |
1499 | } | |
1500 | ||
43010659 | 1501 | static unsigned long |
bb44e5d1 | 1502 | load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, |
e1d1484f PW |
1503 | unsigned long max_load_move, |
1504 | struct sched_domain *sd, enum cpu_idle_type idle, | |
1505 | int *all_pinned, int *this_best_prio) | |
bb44e5d1 | 1506 | { |
c7a1e46a SR |
1507 | /* don't touch RT tasks */ |
1508 | return 0; | |
e1d1484f PW |
1509 | } |
1510 | ||
1511 | static int | |
1512 | move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1513 | struct sched_domain *sd, enum cpu_idle_type idle) | |
1514 | { | |
c7a1e46a SR |
1515 | /* don't touch RT tasks */ |
1516 | return 0; | |
bb44e5d1 | 1517 | } |
deeeccd4 | 1518 | |
cd8ba7cd | 1519 | static void set_cpus_allowed_rt(struct task_struct *p, |
96f874e2 | 1520 | const struct cpumask *new_mask) |
73fe6aae | 1521 | { |
96f874e2 | 1522 | int weight = cpumask_weight(new_mask); |
73fe6aae GH |
1523 | |
1524 | BUG_ON(!rt_task(p)); | |
1525 | ||
1526 | /* | |
1527 | * Update the migration status of the RQ if we have an RT task | |
1528 | * which is running AND changing its weight value. | |
1529 | */ | |
6f505b16 | 1530 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
73fe6aae GH |
1531 | struct rq *rq = task_rq(p); |
1532 | ||
917b627d GH |
1533 | if (!task_current(rq, p)) { |
1534 | /* | |
1535 | * Make sure we dequeue this task from the pushable list | |
1536 | * before going further. It will either remain off of | |
1537 | * the list because we are no longer pushable, or it | |
1538 | * will be requeued. | |
1539 | */ | |
1540 | if (p->rt.nr_cpus_allowed > 1) | |
1541 | dequeue_pushable_task(rq, p); | |
1542 | ||
1543 | /* | |
1544 | * Requeue if our weight is changing and still > 1 | |
1545 | */ | |
1546 | if (weight > 1) | |
1547 | enqueue_pushable_task(rq, p); | |
1548 | ||
1549 | } | |
1550 | ||
6f505b16 | 1551 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
73fe6aae | 1552 | rq->rt.rt_nr_migratory++; |
6f505b16 | 1553 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
73fe6aae GH |
1554 | BUG_ON(!rq->rt.rt_nr_migratory); |
1555 | rq->rt.rt_nr_migratory--; | |
1556 | } | |
1557 | ||
398a153b | 1558 | update_rt_migration(&rq->rt); |
73fe6aae GH |
1559 | } |
1560 | ||
96f874e2 | 1561 | cpumask_copy(&p->cpus_allowed, new_mask); |
6f505b16 | 1562 | p->rt.nr_cpus_allowed = weight; |
73fe6aae | 1563 | } |
deeeccd4 | 1564 | |
bdd7c81b | 1565 | /* Assumes rq->lock is held */ |
1f11eb6a | 1566 | static void rq_online_rt(struct rq *rq) |
bdd7c81b IM |
1567 | { |
1568 | if (rq->rt.overloaded) | |
1569 | rt_set_overload(rq); | |
6e0534f2 | 1570 | |
7def2be1 PZ |
1571 | __enable_runtime(rq); |
1572 | ||
e864c499 | 1573 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
bdd7c81b IM |
1574 | } |
1575 | ||
1576 | /* Assumes rq->lock is held */ | |
1f11eb6a | 1577 | static void rq_offline_rt(struct rq *rq) |
bdd7c81b IM |
1578 | { |
1579 | if (rq->rt.overloaded) | |
1580 | rt_clear_overload(rq); | |
6e0534f2 | 1581 | |
7def2be1 PZ |
1582 | __disable_runtime(rq); |
1583 | ||
6e0534f2 | 1584 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
bdd7c81b | 1585 | } |
cb469845 SR |
1586 | |
1587 | /* | |
1588 | * When switch from the rt queue, we bring ourselves to a position | |
1589 | * that we might want to pull RT tasks from other runqueues. | |
1590 | */ | |
1591 | static void switched_from_rt(struct rq *rq, struct task_struct *p, | |
1592 | int running) | |
1593 | { | |
1594 | /* | |
1595 | * If there are other RT tasks then we will reschedule | |
1596 | * and the scheduling of the other RT tasks will handle | |
1597 | * the balancing. But if we are the last RT task | |
1598 | * we may need to handle the pulling of RT tasks | |
1599 | * now. | |
1600 | */ | |
1601 | if (!rq->rt.rt_nr_running) | |
1602 | pull_rt_task(rq); | |
1603 | } | |
3d8cbdf8 RR |
1604 | |
1605 | static inline void init_sched_rt_class(void) | |
1606 | { | |
1607 | unsigned int i; | |
1608 | ||
1609 | for_each_possible_cpu(i) | |
eaa95840 | 1610 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
6ca09dfc | 1611 | GFP_KERNEL, cpu_to_node(i)); |
3d8cbdf8 | 1612 | } |
cb469845 SR |
1613 | #endif /* CONFIG_SMP */ |
1614 | ||
1615 | /* | |
1616 | * When switching a task to RT, we may overload the runqueue | |
1617 | * with RT tasks. In this case we try to push them off to | |
1618 | * other runqueues. | |
1619 | */ | |
1620 | static void switched_to_rt(struct rq *rq, struct task_struct *p, | |
1621 | int running) | |
1622 | { | |
1623 | int check_resched = 1; | |
1624 | ||
1625 | /* | |
1626 | * If we are already running, then there's nothing | |
1627 | * that needs to be done. But if we are not running | |
1628 | * we may need to preempt the current running task. | |
1629 | * If that current running task is also an RT task | |
1630 | * then see if we can move to another run queue. | |
1631 | */ | |
1632 | if (!running) { | |
1633 | #ifdef CONFIG_SMP | |
1634 | if (rq->rt.overloaded && push_rt_task(rq) && | |
1635 | /* Don't resched if we changed runqueues */ | |
1636 | rq != task_rq(p)) | |
1637 | check_resched = 0; | |
1638 | #endif /* CONFIG_SMP */ | |
1639 | if (check_resched && p->prio < rq->curr->prio) | |
1640 | resched_task(rq->curr); | |
1641 | } | |
1642 | } | |
1643 | ||
1644 | /* | |
1645 | * Priority of the task has changed. This may cause | |
1646 | * us to initiate a push or pull. | |
1647 | */ | |
1648 | static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |
1649 | int oldprio, int running) | |
1650 | { | |
1651 | if (running) { | |
1652 | #ifdef CONFIG_SMP | |
1653 | /* | |
1654 | * If our priority decreases while running, we | |
1655 | * may need to pull tasks to this runqueue. | |
1656 | */ | |
1657 | if (oldprio < p->prio) | |
1658 | pull_rt_task(rq); | |
1659 | /* | |
1660 | * If there's a higher priority task waiting to run | |
6fa46fa5 SR |
1661 | * then reschedule. Note, the above pull_rt_task |
1662 | * can release the rq lock and p could migrate. | |
1663 | * Only reschedule if p is still on the same runqueue. | |
cb469845 | 1664 | */ |
e864c499 | 1665 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
cb469845 SR |
1666 | resched_task(p); |
1667 | #else | |
1668 | /* For UP simply resched on drop of prio */ | |
1669 | if (oldprio < p->prio) | |
1670 | resched_task(p); | |
e8fa1362 | 1671 | #endif /* CONFIG_SMP */ |
cb469845 SR |
1672 | } else { |
1673 | /* | |
1674 | * This task is not running, but if it is | |
1675 | * greater than the current running task | |
1676 | * then reschedule. | |
1677 | */ | |
1678 | if (p->prio < rq->curr->prio) | |
1679 | resched_task(rq->curr); | |
1680 | } | |
1681 | } | |
1682 | ||
78f2c7db PZ |
1683 | static void watchdog(struct rq *rq, struct task_struct *p) |
1684 | { | |
1685 | unsigned long soft, hard; | |
1686 | ||
1687 | if (!p->signal) | |
1688 | return; | |
1689 | ||
1690 | soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur; | |
1691 | hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max; | |
1692 | ||
1693 | if (soft != RLIM_INFINITY) { | |
1694 | unsigned long next; | |
1695 | ||
1696 | p->rt.timeout++; | |
1697 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | |
5a52dd50 | 1698 | if (p->rt.timeout > next) |
f06febc9 | 1699 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; |
78f2c7db PZ |
1700 | } |
1701 | } | |
bb44e5d1 | 1702 | |
8f4d37ec | 1703 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
bb44e5d1 | 1704 | { |
67e2be02 PZ |
1705 | update_curr_rt(rq); |
1706 | ||
78f2c7db PZ |
1707 | watchdog(rq, p); |
1708 | ||
bb44e5d1 IM |
1709 | /* |
1710 | * RR tasks need a special form of timeslice management. | |
1711 | * FIFO tasks have no timeslices. | |
1712 | */ | |
1713 | if (p->policy != SCHED_RR) | |
1714 | return; | |
1715 | ||
fa717060 | 1716 | if (--p->rt.time_slice) |
bb44e5d1 IM |
1717 | return; |
1718 | ||
fa717060 | 1719 | p->rt.time_slice = DEF_TIMESLICE; |
bb44e5d1 | 1720 | |
98fbc798 DA |
1721 | /* |
1722 | * Requeue to the end of queue if we are not the only element | |
1723 | * on the queue: | |
1724 | */ | |
fa717060 | 1725 | if (p->rt.run_list.prev != p->rt.run_list.next) { |
7ebefa8c | 1726 | requeue_task_rt(rq, p, 0); |
98fbc798 DA |
1727 | set_tsk_need_resched(p); |
1728 | } | |
bb44e5d1 IM |
1729 | } |
1730 | ||
83b699ed SV |
1731 | static void set_curr_task_rt(struct rq *rq) |
1732 | { | |
1733 | struct task_struct *p = rq->curr; | |
1734 | ||
1735 | p->se.exec_start = rq->clock; | |
917b627d GH |
1736 | |
1737 | /* The running task is never eligible for pushing */ | |
1738 | dequeue_pushable_task(rq, p); | |
83b699ed SV |
1739 | } |
1740 | ||
2abdad0a | 1741 | static const struct sched_class rt_sched_class = { |
5522d5d5 | 1742 | .next = &fair_sched_class, |
bb44e5d1 IM |
1743 | .enqueue_task = enqueue_task_rt, |
1744 | .dequeue_task = dequeue_task_rt, | |
1745 | .yield_task = yield_task_rt, | |
1746 | ||
1747 | .check_preempt_curr = check_preempt_curr_rt, | |
1748 | ||
1749 | .pick_next_task = pick_next_task_rt, | |
1750 | .put_prev_task = put_prev_task_rt, | |
1751 | ||
681f3e68 | 1752 | #ifdef CONFIG_SMP |
4ce72a2c LZ |
1753 | .select_task_rq = select_task_rq_rt, |
1754 | ||
bb44e5d1 | 1755 | .load_balance = load_balance_rt, |
e1d1484f | 1756 | .move_one_task = move_one_task_rt, |
73fe6aae | 1757 | .set_cpus_allowed = set_cpus_allowed_rt, |
1f11eb6a GH |
1758 | .rq_online = rq_online_rt, |
1759 | .rq_offline = rq_offline_rt, | |
9a897c5a | 1760 | .pre_schedule = pre_schedule_rt, |
967fc046 | 1761 | .needs_post_schedule = needs_post_schedule_rt, |
9a897c5a SR |
1762 | .post_schedule = post_schedule_rt, |
1763 | .task_wake_up = task_wake_up_rt, | |
cb469845 | 1764 | .switched_from = switched_from_rt, |
681f3e68 | 1765 | #endif |
bb44e5d1 | 1766 | |
83b699ed | 1767 | .set_curr_task = set_curr_task_rt, |
bb44e5d1 | 1768 | .task_tick = task_tick_rt, |
cb469845 SR |
1769 | |
1770 | .prio_changed = prio_changed_rt, | |
1771 | .switched_to = switched_to_rt, | |
bb44e5d1 | 1772 | }; |
ada18de2 PZ |
1773 | |
1774 | #ifdef CONFIG_SCHED_DEBUG | |
1775 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | |
1776 | ||
1777 | static void print_rt_stats(struct seq_file *m, int cpu) | |
1778 | { | |
1779 | struct rt_rq *rt_rq; | |
1780 | ||
1781 | rcu_read_lock(); | |
1782 | for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) | |
1783 | print_rt_rq(m, cpu, rt_rq); | |
1784 | rcu_read_unlock(); | |
1785 | } | |
55e12e5e | 1786 | #endif /* CONFIG_SCHED_DEBUG */ |
0e3900e6 | 1787 |