]>
Commit | Line | Data |
---|---|---|
c0a31329 TG |
1 | /* |
2 | * linux/kernel/hrtimer.c | |
3 | * | |
3c8aa39d | 4 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
7 | * |
8 | * High-resolution kernel timers | |
9 | * | |
10 | * In contrast to the low-resolution timeout API implemented in | |
11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy | |
12 | * depending on system configuration and capabilities. | |
13 | * | |
14 | * These timers are currently used for: | |
15 | * - itimers | |
16 | * - POSIX timers | |
17 | * - nanosleep | |
18 | * - precise in-kernel timing | |
19 | * | |
20 | * Started by: Thomas Gleixner and Ingo Molnar | |
21 | * | |
22 | * Credits: | |
23 | * based on kernel/timer.c | |
24 | * | |
66188fae TG |
25 | * Help, testing, suggestions, bugfixes, improvements were |
26 | * provided by: | |
27 | * | |
28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
29 | * et. al. | |
30 | * | |
c0a31329 TG |
31 | * For licencing details see kernel-base/COPYING |
32 | */ | |
33 | ||
34 | #include <linux/cpu.h> | |
54cdfdb4 | 35 | #include <linux/irq.h> |
c0a31329 TG |
36 | #include <linux/module.h> |
37 | #include <linux/percpu.h> | |
38 | #include <linux/hrtimer.h> | |
39 | #include <linux/notifier.h> | |
40 | #include <linux/syscalls.h> | |
54cdfdb4 | 41 | #include <linux/kallsyms.h> |
c0a31329 | 42 | #include <linux/interrupt.h> |
79bf2bb3 | 43 | #include <linux/tick.h> |
54cdfdb4 TG |
44 | #include <linux/seq_file.h> |
45 | #include <linux/err.h> | |
c0a31329 TG |
46 | |
47 | #include <asm/uaccess.h> | |
48 | ||
49 | /** | |
50 | * ktime_get - get the monotonic time in ktime_t format | |
51 | * | |
52 | * returns the time in ktime_t format | |
53 | */ | |
d316c57f | 54 | ktime_t ktime_get(void) |
c0a31329 TG |
55 | { |
56 | struct timespec now; | |
57 | ||
58 | ktime_get_ts(&now); | |
59 | ||
60 | return timespec_to_ktime(now); | |
61 | } | |
62 | ||
63 | /** | |
64 | * ktime_get_real - get the real (wall-) time in ktime_t format | |
65 | * | |
66 | * returns the time in ktime_t format | |
67 | */ | |
d316c57f | 68 | ktime_t ktime_get_real(void) |
c0a31329 TG |
69 | { |
70 | struct timespec now; | |
71 | ||
72 | getnstimeofday(&now); | |
73 | ||
74 | return timespec_to_ktime(now); | |
75 | } | |
76 | ||
77 | EXPORT_SYMBOL_GPL(ktime_get_real); | |
78 | ||
79 | /* | |
80 | * The timer bases: | |
7978672c GA |
81 | * |
82 | * Note: If we want to add new timer bases, we have to skip the two | |
83 | * clock ids captured by the cpu-timers. We do this by holding empty | |
84 | * entries rather than doing math adjustment of the clock ids. | |
85 | * This ensures that we capture erroneous accesses to these clock ids | |
86 | * rather than moving them into the range of valid clock id's. | |
c0a31329 | 87 | */ |
54cdfdb4 | 88 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 89 | { |
3c8aa39d TG |
90 | |
91 | .clock_base = | |
c0a31329 | 92 | { |
3c8aa39d TG |
93 | { |
94 | .index = CLOCK_REALTIME, | |
95 | .get_time = &ktime_get_real, | |
54cdfdb4 | 96 | .resolution = KTIME_LOW_RES, |
3c8aa39d TG |
97 | }, |
98 | { | |
99 | .index = CLOCK_MONOTONIC, | |
100 | .get_time = &ktime_get, | |
54cdfdb4 | 101 | .resolution = KTIME_LOW_RES, |
3c8aa39d TG |
102 | }, |
103 | } | |
c0a31329 TG |
104 | }; |
105 | ||
106 | /** | |
107 | * ktime_get_ts - get the monotonic clock in timespec format | |
c0a31329 TG |
108 | * @ts: pointer to timespec variable |
109 | * | |
110 | * The function calculates the monotonic clock from the realtime | |
111 | * clock and the wall_to_monotonic offset and stores the result | |
72fd4a35 | 112 | * in normalized timespec format in the variable pointed to by @ts. |
c0a31329 TG |
113 | */ |
114 | void ktime_get_ts(struct timespec *ts) | |
115 | { | |
116 | struct timespec tomono; | |
117 | unsigned long seq; | |
118 | ||
119 | do { | |
120 | seq = read_seqbegin(&xtime_lock); | |
121 | getnstimeofday(ts); | |
122 | tomono = wall_to_monotonic; | |
123 | ||
124 | } while (read_seqretry(&xtime_lock, seq)); | |
125 | ||
126 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | |
127 | ts->tv_nsec + tomono.tv_nsec); | |
128 | } | |
69778e32 | 129 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
c0a31329 | 130 | |
92127c7a TG |
131 | /* |
132 | * Get the coarse grained time at the softirq based on xtime and | |
133 | * wall_to_monotonic. | |
134 | */ | |
3c8aa39d | 135 | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) |
92127c7a TG |
136 | { |
137 | ktime_t xtim, tomono; | |
f4304ab2 | 138 | struct timespec xts; |
92127c7a TG |
139 | unsigned long seq; |
140 | ||
141 | do { | |
142 | seq = read_seqbegin(&xtime_lock); | |
f4304ab2 JS |
143 | #ifdef CONFIG_NO_HZ |
144 | getnstimeofday(&xts); | |
145 | #else | |
146 | xts = xtime; | |
147 | #endif | |
92127c7a TG |
148 | } while (read_seqretry(&xtime_lock, seq)); |
149 | ||
f4304ab2 JS |
150 | xtim = timespec_to_ktime(xts); |
151 | tomono = timespec_to_ktime(wall_to_monotonic); | |
3c8aa39d TG |
152 | base->clock_base[CLOCK_REALTIME].softirq_time = xtim; |
153 | base->clock_base[CLOCK_MONOTONIC].softirq_time = | |
154 | ktime_add(xtim, tomono); | |
92127c7a TG |
155 | } |
156 | ||
303e967f TG |
157 | /* |
158 | * Helper function to check, whether the timer is running the callback | |
159 | * function | |
160 | */ | |
161 | static inline int hrtimer_callback_running(struct hrtimer *timer) | |
162 | { | |
163 | return timer->state & HRTIMER_STATE_CALLBACK; | |
164 | } | |
165 | ||
c0a31329 TG |
166 | /* |
167 | * Functions and macros which are different for UP/SMP systems are kept in a | |
168 | * single place | |
169 | */ | |
170 | #ifdef CONFIG_SMP | |
171 | ||
c0a31329 TG |
172 | /* |
173 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
174 | * means that all timers which are tied to this base via timer->base are | |
175 | * locked, and the base itself is locked too. | |
176 | * | |
177 | * So __run_timers/migrate_timers can safely modify all timers which could | |
178 | * be found on the lists/queues. | |
179 | * | |
180 | * When the timer's base is locked, and the timer removed from list, it is | |
181 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
182 | * locked. | |
183 | */ | |
3c8aa39d TG |
184 | static |
185 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
186 | unsigned long *flags) | |
c0a31329 | 187 | { |
3c8aa39d | 188 | struct hrtimer_clock_base *base; |
c0a31329 TG |
189 | |
190 | for (;;) { | |
191 | base = timer->base; | |
192 | if (likely(base != NULL)) { | |
3c8aa39d | 193 | spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
194 | if (likely(base == timer->base)) |
195 | return base; | |
196 | /* The timer has migrated to another CPU: */ | |
3c8aa39d | 197 | spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
198 | } |
199 | cpu_relax(); | |
200 | } | |
201 | } | |
202 | ||
203 | /* | |
204 | * Switch the timer base to the current CPU when possible. | |
205 | */ | |
3c8aa39d TG |
206 | static inline struct hrtimer_clock_base * |
207 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) | |
c0a31329 | 208 | { |
3c8aa39d TG |
209 | struct hrtimer_clock_base *new_base; |
210 | struct hrtimer_cpu_base *new_cpu_base; | |
c0a31329 | 211 | |
3c8aa39d TG |
212 | new_cpu_base = &__get_cpu_var(hrtimer_bases); |
213 | new_base = &new_cpu_base->clock_base[base->index]; | |
c0a31329 TG |
214 | |
215 | if (base != new_base) { | |
216 | /* | |
217 | * We are trying to schedule the timer on the local CPU. | |
218 | * However we can't change timer's base while it is running, | |
219 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
220 | * the event source in the high resolution case. The softirq | |
221 | * code will take care of this when the timer function has | |
222 | * completed. There is no conflict as we hold the lock until | |
223 | * the timer is enqueued. | |
224 | */ | |
54cdfdb4 | 225 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
226 | return base; |
227 | ||
228 | /* See the comment in lock_timer_base() */ | |
229 | timer->base = NULL; | |
3c8aa39d TG |
230 | spin_unlock(&base->cpu_base->lock); |
231 | spin_lock(&new_base->cpu_base->lock); | |
c0a31329 TG |
232 | timer->base = new_base; |
233 | } | |
234 | return new_base; | |
235 | } | |
236 | ||
237 | #else /* CONFIG_SMP */ | |
238 | ||
3c8aa39d | 239 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
240 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
241 | { | |
3c8aa39d | 242 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 243 | |
3c8aa39d | 244 | spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
245 | |
246 | return base; | |
247 | } | |
248 | ||
54cdfdb4 | 249 | # define switch_hrtimer_base(t, b) (b) |
c0a31329 TG |
250 | |
251 | #endif /* !CONFIG_SMP */ | |
252 | ||
253 | /* | |
254 | * Functions for the union type storage format of ktime_t which are | |
255 | * too large for inlining: | |
256 | */ | |
257 | #if BITS_PER_LONG < 64 | |
258 | # ifndef CONFIG_KTIME_SCALAR | |
259 | /** | |
260 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | |
c0a31329 TG |
261 | * @kt: addend |
262 | * @nsec: the scalar nsec value to add | |
263 | * | |
264 | * Returns the sum of kt and nsec in ktime_t format | |
265 | */ | |
266 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | |
267 | { | |
268 | ktime_t tmp; | |
269 | ||
270 | if (likely(nsec < NSEC_PER_SEC)) { | |
271 | tmp.tv64 = nsec; | |
272 | } else { | |
273 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
274 | ||
275 | tmp = ktime_set((long)nsec, rem); | |
276 | } | |
277 | ||
278 | return ktime_add(kt, tmp); | |
279 | } | |
c0a31329 TG |
280 | # endif /* !CONFIG_KTIME_SCALAR */ |
281 | ||
282 | /* | |
283 | * Divide a ktime value by a nanosecond value | |
284 | */ | |
79bf2bb3 | 285 | unsigned long ktime_divns(const ktime_t kt, s64 div) |
c0a31329 TG |
286 | { |
287 | u64 dclc, inc, dns; | |
288 | int sft = 0; | |
289 | ||
290 | dclc = dns = ktime_to_ns(kt); | |
291 | inc = div; | |
292 | /* Make sure the divisor is less than 2^32: */ | |
293 | while (div >> 32) { | |
294 | sft++; | |
295 | div >>= 1; | |
296 | } | |
297 | dclc >>= sft; | |
298 | do_div(dclc, (unsigned long) div); | |
299 | ||
300 | return (unsigned long) dclc; | |
301 | } | |
c0a31329 TG |
302 | #endif /* BITS_PER_LONG >= 64 */ |
303 | ||
54cdfdb4 TG |
304 | /* High resolution timer related functions */ |
305 | #ifdef CONFIG_HIGH_RES_TIMERS | |
306 | ||
307 | /* | |
308 | * High resolution timer enabled ? | |
309 | */ | |
310 | static int hrtimer_hres_enabled __read_mostly = 1; | |
311 | ||
312 | /* | |
313 | * Enable / Disable high resolution mode | |
314 | */ | |
315 | static int __init setup_hrtimer_hres(char *str) | |
316 | { | |
317 | if (!strcmp(str, "off")) | |
318 | hrtimer_hres_enabled = 0; | |
319 | else if (!strcmp(str, "on")) | |
320 | hrtimer_hres_enabled = 1; | |
321 | else | |
322 | return 0; | |
323 | return 1; | |
324 | } | |
325 | ||
326 | __setup("highres=", setup_hrtimer_hres); | |
327 | ||
328 | /* | |
329 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
330 | */ | |
331 | static inline int hrtimer_is_hres_enabled(void) | |
332 | { | |
333 | return hrtimer_hres_enabled; | |
334 | } | |
335 | ||
336 | /* | |
337 | * Is the high resolution mode active ? | |
338 | */ | |
339 | static inline int hrtimer_hres_active(void) | |
340 | { | |
341 | return __get_cpu_var(hrtimer_bases).hres_active; | |
342 | } | |
343 | ||
344 | /* | |
345 | * Reprogram the event source with checking both queues for the | |
346 | * next event | |
347 | * Called with interrupts disabled and base->lock held | |
348 | */ | |
349 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | |
350 | { | |
351 | int i; | |
352 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
353 | ktime_t expires; | |
354 | ||
355 | cpu_base->expires_next.tv64 = KTIME_MAX; | |
356 | ||
357 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
358 | struct hrtimer *timer; | |
359 | ||
360 | if (!base->first) | |
361 | continue; | |
362 | timer = rb_entry(base->first, struct hrtimer, node); | |
363 | expires = ktime_sub(timer->expires, base->offset); | |
364 | if (expires.tv64 < cpu_base->expires_next.tv64) | |
365 | cpu_base->expires_next = expires; | |
366 | } | |
367 | ||
368 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | |
369 | tick_program_event(cpu_base->expires_next, 1); | |
370 | } | |
371 | ||
372 | /* | |
373 | * Shared reprogramming for clock_realtime and clock_monotonic | |
374 | * | |
375 | * When a timer is enqueued and expires earlier than the already enqueued | |
376 | * timers, we have to check, whether it expires earlier than the timer for | |
377 | * which the clock event device was armed. | |
378 | * | |
379 | * Called with interrupts disabled and base->cpu_base.lock held | |
380 | */ | |
381 | static int hrtimer_reprogram(struct hrtimer *timer, | |
382 | struct hrtimer_clock_base *base) | |
383 | { | |
384 | ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; | |
385 | ktime_t expires = ktime_sub(timer->expires, base->offset); | |
386 | int res; | |
387 | ||
388 | /* | |
389 | * When the callback is running, we do not reprogram the clock event | |
390 | * device. The timer callback is either running on a different CPU or | |
391 | * the callback is executed in the hrtimer_interupt context. The | |
392 | * reprogramming is handled either by the softirq, which called the | |
393 | * callback or at the end of the hrtimer_interrupt. | |
394 | */ | |
395 | if (hrtimer_callback_running(timer)) | |
396 | return 0; | |
397 | ||
398 | if (expires.tv64 >= expires_next->tv64) | |
399 | return 0; | |
400 | ||
401 | /* | |
402 | * Clockevents returns -ETIME, when the event was in the past. | |
403 | */ | |
404 | res = tick_program_event(expires, 0); | |
405 | if (!IS_ERR_VALUE(res)) | |
406 | *expires_next = expires; | |
407 | return res; | |
408 | } | |
409 | ||
410 | ||
411 | /* | |
412 | * Retrigger next event is called after clock was set | |
413 | * | |
414 | * Called with interrupts disabled via on_each_cpu() | |
415 | */ | |
416 | static void retrigger_next_event(void *arg) | |
417 | { | |
418 | struct hrtimer_cpu_base *base; | |
419 | struct timespec realtime_offset; | |
420 | unsigned long seq; | |
421 | ||
422 | if (!hrtimer_hres_active()) | |
423 | return; | |
424 | ||
425 | do { | |
426 | seq = read_seqbegin(&xtime_lock); | |
427 | set_normalized_timespec(&realtime_offset, | |
428 | -wall_to_monotonic.tv_sec, | |
429 | -wall_to_monotonic.tv_nsec); | |
430 | } while (read_seqretry(&xtime_lock, seq)); | |
431 | ||
432 | base = &__get_cpu_var(hrtimer_bases); | |
433 | ||
434 | /* Adjust CLOCK_REALTIME offset */ | |
435 | spin_lock(&base->lock); | |
436 | base->clock_base[CLOCK_REALTIME].offset = | |
437 | timespec_to_ktime(realtime_offset); | |
438 | ||
439 | hrtimer_force_reprogram(base); | |
440 | spin_unlock(&base->lock); | |
441 | } | |
442 | ||
443 | /* | |
444 | * Clock realtime was set | |
445 | * | |
446 | * Change the offset of the realtime clock vs. the monotonic | |
447 | * clock. | |
448 | * | |
449 | * We might have to reprogram the high resolution timer interrupt. On | |
450 | * SMP we call the architecture specific code to retrigger _all_ high | |
451 | * resolution timer interrupts. On UP we just disable interrupts and | |
452 | * call the high resolution interrupt code. | |
453 | */ | |
454 | void clock_was_set(void) | |
455 | { | |
456 | /* Retrigger the CPU local events everywhere */ | |
457 | on_each_cpu(retrigger_next_event, NULL, 0, 1); | |
458 | } | |
459 | ||
460 | /* | |
461 | * Check, whether the timer is on the callback pending list | |
462 | */ | |
463 | static inline int hrtimer_cb_pending(const struct hrtimer *timer) | |
464 | { | |
465 | return timer->state & HRTIMER_STATE_PENDING; | |
466 | } | |
467 | ||
468 | /* | |
469 | * Remove a timer from the callback pending list | |
470 | */ | |
471 | static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) | |
472 | { | |
473 | list_del_init(&timer->cb_entry); | |
474 | } | |
475 | ||
476 | /* | |
477 | * Initialize the high resolution related parts of cpu_base | |
478 | */ | |
479 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | |
480 | { | |
481 | base->expires_next.tv64 = KTIME_MAX; | |
482 | base->hres_active = 0; | |
483 | INIT_LIST_HEAD(&base->cb_pending); | |
484 | } | |
485 | ||
486 | /* | |
487 | * Initialize the high resolution related parts of a hrtimer | |
488 | */ | |
489 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) | |
490 | { | |
491 | INIT_LIST_HEAD(&timer->cb_entry); | |
492 | } | |
493 | ||
494 | /* | |
495 | * When High resolution timers are active, try to reprogram. Note, that in case | |
496 | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | |
497 | * check happens. The timer gets enqueued into the rbtree. The reprogramming | |
498 | * and expiry check is done in the hrtimer_interrupt or in the softirq. | |
499 | */ | |
500 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | |
501 | struct hrtimer_clock_base *base) | |
502 | { | |
503 | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | |
504 | ||
505 | /* Timer is expired, act upon the callback mode */ | |
506 | switch(timer->cb_mode) { | |
507 | case HRTIMER_CB_IRQSAFE_NO_RESTART: | |
508 | /* | |
509 | * We can call the callback from here. No restart | |
510 | * happens, so no danger of recursion | |
511 | */ | |
512 | BUG_ON(timer->function(timer) != HRTIMER_NORESTART); | |
513 | return 1; | |
514 | case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ: | |
515 | /* | |
516 | * This is solely for the sched tick emulation with | |
517 | * dynamic tick support to ensure that we do not | |
518 | * restart the tick right on the edge and end up with | |
519 | * the tick timer in the softirq ! The calling site | |
520 | * takes care of this. | |
521 | */ | |
522 | return 1; | |
523 | case HRTIMER_CB_IRQSAFE: | |
524 | case HRTIMER_CB_SOFTIRQ: | |
525 | /* | |
526 | * Move everything else into the softirq pending list ! | |
527 | */ | |
528 | list_add_tail(&timer->cb_entry, | |
529 | &base->cpu_base->cb_pending); | |
530 | timer->state = HRTIMER_STATE_PENDING; | |
531 | raise_softirq(HRTIMER_SOFTIRQ); | |
532 | return 1; | |
533 | default: | |
534 | BUG(); | |
535 | } | |
536 | } | |
537 | return 0; | |
538 | } | |
539 | ||
540 | /* | |
541 | * Switch to high resolution mode | |
542 | */ | |
543 | static void hrtimer_switch_to_hres(void) | |
544 | { | |
545 | struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); | |
546 | unsigned long flags; | |
547 | ||
548 | if (base->hres_active) | |
549 | return; | |
550 | ||
551 | local_irq_save(flags); | |
552 | ||
553 | if (tick_init_highres()) { | |
554 | local_irq_restore(flags); | |
555 | return; | |
556 | } | |
557 | base->hres_active = 1; | |
558 | base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; | |
559 | base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; | |
560 | ||
561 | tick_setup_sched_timer(); | |
562 | ||
563 | /* "Retrigger" the interrupt to get things going */ | |
564 | retrigger_next_event(NULL); | |
565 | local_irq_restore(flags); | |
566 | printk(KERN_INFO "Switched to high resolution mode on CPU %d\n", | |
567 | smp_processor_id()); | |
568 | } | |
569 | ||
570 | #else | |
571 | ||
572 | static inline int hrtimer_hres_active(void) { return 0; } | |
573 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | |
574 | static inline void hrtimer_switch_to_hres(void) { } | |
575 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | |
576 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | |
577 | struct hrtimer_clock_base *base) | |
578 | { | |
579 | return 0; | |
580 | } | |
581 | static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; } | |
582 | static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { } | |
583 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } | |
584 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } | |
585 | ||
586 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
587 | ||
82f67cd9 IM |
588 | #ifdef CONFIG_TIMER_STATS |
589 | void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) | |
590 | { | |
591 | if (timer->start_site) | |
592 | return; | |
593 | ||
594 | timer->start_site = addr; | |
595 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
596 | timer->start_pid = current->pid; | |
597 | } | |
598 | #endif | |
599 | ||
c0a31329 TG |
600 | /* |
601 | * Counterpart to lock_timer_base above: | |
602 | */ | |
603 | static inline | |
604 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
605 | { | |
3c8aa39d | 606 | spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
607 | } |
608 | ||
609 | /** | |
610 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 611 | * @timer: hrtimer to forward |
44f21475 | 612 | * @now: forward past this time |
c0a31329 TG |
613 | * @interval: the interval to forward |
614 | * | |
615 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 616 | * Returns the number of overruns. |
c0a31329 TG |
617 | */ |
618 | unsigned long | |
44f21475 | 619 | hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 TG |
620 | { |
621 | unsigned long orun = 1; | |
44f21475 | 622 | ktime_t delta; |
c0a31329 TG |
623 | |
624 | delta = ktime_sub(now, timer->expires); | |
625 | ||
626 | if (delta.tv64 < 0) | |
627 | return 0; | |
628 | ||
c9db4fa1 TG |
629 | if (interval.tv64 < timer->base->resolution.tv64) |
630 | interval.tv64 = timer->base->resolution.tv64; | |
631 | ||
c0a31329 | 632 | if (unlikely(delta.tv64 >= interval.tv64)) { |
df869b63 | 633 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
634 | |
635 | orun = ktime_divns(delta, incr); | |
636 | timer->expires = ktime_add_ns(timer->expires, incr * orun); | |
637 | if (timer->expires.tv64 > now.tv64) | |
638 | return orun; | |
639 | /* | |
640 | * This (and the ktime_add() below) is the | |
641 | * correction for exact: | |
642 | */ | |
643 | orun++; | |
644 | } | |
645 | timer->expires = ktime_add(timer->expires, interval); | |
646 | ||
647 | return orun; | |
648 | } | |
649 | ||
650 | /* | |
651 | * enqueue_hrtimer - internal function to (re)start a timer | |
652 | * | |
653 | * The timer is inserted in expiry order. Insertion into the | |
654 | * red black tree is O(log(n)). Must hold the base lock. | |
655 | */ | |
3c8aa39d | 656 | static void enqueue_hrtimer(struct hrtimer *timer, |
54cdfdb4 | 657 | struct hrtimer_clock_base *base, int reprogram) |
c0a31329 TG |
658 | { |
659 | struct rb_node **link = &base->active.rb_node; | |
c0a31329 TG |
660 | struct rb_node *parent = NULL; |
661 | struct hrtimer *entry; | |
662 | ||
663 | /* | |
664 | * Find the right place in the rbtree: | |
665 | */ | |
666 | while (*link) { | |
667 | parent = *link; | |
668 | entry = rb_entry(parent, struct hrtimer, node); | |
669 | /* | |
670 | * We dont care about collisions. Nodes with | |
671 | * the same expiry time stay together. | |
672 | */ | |
673 | if (timer->expires.tv64 < entry->expires.tv64) | |
674 | link = &(*link)->rb_left; | |
288867ec | 675 | else |
c0a31329 | 676 | link = &(*link)->rb_right; |
c0a31329 TG |
677 | } |
678 | ||
679 | /* | |
288867ec TG |
680 | * Insert the timer to the rbtree and check whether it |
681 | * replaces the first pending timer | |
c0a31329 | 682 | */ |
54cdfdb4 TG |
683 | if (!base->first || timer->expires.tv64 < |
684 | rb_entry(base->first, struct hrtimer, node)->expires.tv64) { | |
685 | /* | |
686 | * Reprogram the clock event device. When the timer is already | |
687 | * expired hrtimer_enqueue_reprogram has either called the | |
688 | * callback or added it to the pending list and raised the | |
689 | * softirq. | |
690 | * | |
691 | * This is a NOP for !HIGHRES | |
692 | */ | |
693 | if (reprogram && hrtimer_enqueue_reprogram(timer, base)) | |
694 | return; | |
695 | ||
696 | base->first = &timer->node; | |
697 | } | |
698 | ||
c0a31329 TG |
699 | rb_link_node(&timer->node, parent, link); |
700 | rb_insert_color(&timer->node, &base->active); | |
303e967f TG |
701 | /* |
702 | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | |
703 | * state of a possibly running callback. | |
704 | */ | |
705 | timer->state |= HRTIMER_STATE_ENQUEUED; | |
288867ec | 706 | } |
c0a31329 TG |
707 | |
708 | /* | |
709 | * __remove_hrtimer - internal function to remove a timer | |
710 | * | |
711 | * Caller must hold the base lock. | |
54cdfdb4 TG |
712 | * |
713 | * High resolution timer mode reprograms the clock event device when the | |
714 | * timer is the one which expires next. The caller can disable this by setting | |
715 | * reprogram to zero. This is useful, when the context does a reprogramming | |
716 | * anyway (e.g. timer interrupt) | |
c0a31329 | 717 | */ |
3c8aa39d | 718 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 719 | struct hrtimer_clock_base *base, |
54cdfdb4 | 720 | unsigned long newstate, int reprogram) |
c0a31329 | 721 | { |
54cdfdb4 TG |
722 | /* High res. callback list. NOP for !HIGHRES */ |
723 | if (hrtimer_cb_pending(timer)) | |
724 | hrtimer_remove_cb_pending(timer); | |
725 | else { | |
726 | /* | |
727 | * Remove the timer from the rbtree and replace the | |
728 | * first entry pointer if necessary. | |
729 | */ | |
730 | if (base->first == &timer->node) { | |
731 | base->first = rb_next(&timer->node); | |
732 | /* Reprogram the clock event device. if enabled */ | |
733 | if (reprogram && hrtimer_hres_active()) | |
734 | hrtimer_force_reprogram(base->cpu_base); | |
735 | } | |
736 | rb_erase(&timer->node, &base->active); | |
737 | } | |
303e967f | 738 | timer->state = newstate; |
c0a31329 TG |
739 | } |
740 | ||
741 | /* | |
742 | * remove hrtimer, called with base lock held | |
743 | */ | |
744 | static inline int | |
3c8aa39d | 745 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
c0a31329 | 746 | { |
303e967f | 747 | if (hrtimer_is_queued(timer)) { |
54cdfdb4 TG |
748 | int reprogram; |
749 | ||
750 | /* | |
751 | * Remove the timer and force reprogramming when high | |
752 | * resolution mode is active and the timer is on the current | |
753 | * CPU. If we remove a timer on another CPU, reprogramming is | |
754 | * skipped. The interrupt event on this CPU is fired and | |
755 | * reprogramming happens in the interrupt handler. This is a | |
756 | * rare case and less expensive than a smp call. | |
757 | */ | |
82f67cd9 | 758 | timer_stats_hrtimer_clear_start_info(timer); |
54cdfdb4 TG |
759 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
760 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | |
761 | reprogram); | |
c0a31329 TG |
762 | return 1; |
763 | } | |
764 | return 0; | |
765 | } | |
766 | ||
767 | /** | |
768 | * hrtimer_start - (re)start an relative timer on the current CPU | |
c0a31329 TG |
769 | * @timer: the timer to be added |
770 | * @tim: expiry time | |
771 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | |
772 | * | |
773 | * Returns: | |
774 | * 0 on success | |
775 | * 1 when the timer was active | |
776 | */ | |
777 | int | |
778 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | |
779 | { | |
3c8aa39d | 780 | struct hrtimer_clock_base *base, *new_base; |
c0a31329 TG |
781 | unsigned long flags; |
782 | int ret; | |
783 | ||
784 | base = lock_hrtimer_base(timer, &flags); | |
785 | ||
786 | /* Remove an active timer from the queue: */ | |
787 | ret = remove_hrtimer(timer, base); | |
788 | ||
789 | /* Switch the timer base, if necessary: */ | |
790 | new_base = switch_hrtimer_base(timer, base); | |
791 | ||
c9cb2e3d | 792 | if (mode == HRTIMER_MODE_REL) { |
c0a31329 | 793 | tim = ktime_add(tim, new_base->get_time()); |
06027bdd IM |
794 | /* |
795 | * CONFIG_TIME_LOW_RES is a temporary way for architectures | |
796 | * to signal that they simply return xtime in | |
797 | * do_gettimeoffset(). In this case we want to round up by | |
798 | * resolution when starting a relative timer, to avoid short | |
799 | * timeouts. This will go away with the GTOD framework. | |
800 | */ | |
801 | #ifdef CONFIG_TIME_LOW_RES | |
802 | tim = ktime_add(tim, base->resolution); | |
803 | #endif | |
804 | } | |
c0a31329 TG |
805 | timer->expires = tim; |
806 | ||
82f67cd9 IM |
807 | timer_stats_hrtimer_set_start_info(timer); |
808 | ||
54cdfdb4 | 809 | enqueue_hrtimer(timer, new_base, base == new_base); |
c0a31329 TG |
810 | |
811 | unlock_hrtimer_base(timer, &flags); | |
812 | ||
813 | return ret; | |
814 | } | |
8d16b764 | 815 | EXPORT_SYMBOL_GPL(hrtimer_start); |
c0a31329 TG |
816 | |
817 | /** | |
818 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
819 | * @timer: hrtimer to stop |
820 | * | |
821 | * Returns: | |
822 | * 0 when the timer was not active | |
823 | * 1 when the timer was active | |
824 | * -1 when the timer is currently excuting the callback function and | |
fa9799e3 | 825 | * cannot be stopped |
c0a31329 TG |
826 | */ |
827 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
828 | { | |
3c8aa39d | 829 | struct hrtimer_clock_base *base; |
c0a31329 TG |
830 | unsigned long flags; |
831 | int ret = -1; | |
832 | ||
833 | base = lock_hrtimer_base(timer, &flags); | |
834 | ||
303e967f | 835 | if (!hrtimer_callback_running(timer)) |
c0a31329 TG |
836 | ret = remove_hrtimer(timer, base); |
837 | ||
838 | unlock_hrtimer_base(timer, &flags); | |
839 | ||
840 | return ret; | |
841 | ||
842 | } | |
8d16b764 | 843 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 TG |
844 | |
845 | /** | |
846 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
847 | * @timer: the timer to be cancelled |
848 | * | |
849 | * Returns: | |
850 | * 0 when the timer was not active | |
851 | * 1 when the timer was active | |
852 | */ | |
853 | int hrtimer_cancel(struct hrtimer *timer) | |
854 | { | |
855 | for (;;) { | |
856 | int ret = hrtimer_try_to_cancel(timer); | |
857 | ||
858 | if (ret >= 0) | |
859 | return ret; | |
5ef37b19 | 860 | cpu_relax(); |
c0a31329 TG |
861 | } |
862 | } | |
8d16b764 | 863 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
864 | |
865 | /** | |
866 | * hrtimer_get_remaining - get remaining time for the timer | |
c0a31329 TG |
867 | * @timer: the timer to read |
868 | */ | |
869 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | |
870 | { | |
3c8aa39d | 871 | struct hrtimer_clock_base *base; |
c0a31329 TG |
872 | unsigned long flags; |
873 | ktime_t rem; | |
874 | ||
875 | base = lock_hrtimer_base(timer, &flags); | |
3c8aa39d | 876 | rem = ktime_sub(timer->expires, base->get_time()); |
c0a31329 TG |
877 | unlock_hrtimer_base(timer, &flags); |
878 | ||
879 | return rem; | |
880 | } | |
8d16b764 | 881 | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); |
c0a31329 | 882 | |
fd064b9b | 883 | #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ) |
69239749 TL |
884 | /** |
885 | * hrtimer_get_next_event - get the time until next expiry event | |
886 | * | |
887 | * Returns the delta to the next expiry event or KTIME_MAX if no timer | |
888 | * is pending. | |
889 | */ | |
890 | ktime_t hrtimer_get_next_event(void) | |
891 | { | |
3c8aa39d TG |
892 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
893 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
69239749 TL |
894 | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; |
895 | unsigned long flags; | |
896 | int i; | |
897 | ||
3c8aa39d TG |
898 | spin_lock_irqsave(&cpu_base->lock, flags); |
899 | ||
54cdfdb4 TG |
900 | if (!hrtimer_hres_active()) { |
901 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
902 | struct hrtimer *timer; | |
69239749 | 903 | |
54cdfdb4 TG |
904 | if (!base->first) |
905 | continue; | |
3c8aa39d | 906 | |
54cdfdb4 TG |
907 | timer = rb_entry(base->first, struct hrtimer, node); |
908 | delta.tv64 = timer->expires.tv64; | |
909 | delta = ktime_sub(delta, base->get_time()); | |
910 | if (delta.tv64 < mindelta.tv64) | |
911 | mindelta.tv64 = delta.tv64; | |
912 | } | |
69239749 | 913 | } |
3c8aa39d TG |
914 | |
915 | spin_unlock_irqrestore(&cpu_base->lock, flags); | |
916 | ||
69239749 TL |
917 | if (mindelta.tv64 < 0) |
918 | mindelta.tv64 = 0; | |
919 | return mindelta; | |
920 | } | |
921 | #endif | |
922 | ||
c0a31329 | 923 | /** |
7978672c | 924 | * hrtimer_init - initialize a timer to the given clock |
7978672c | 925 | * @timer: the timer to be initialized |
c0a31329 | 926 | * @clock_id: the clock to be used |
7978672c | 927 | * @mode: timer mode abs/rel |
c0a31329 | 928 | */ |
7978672c GA |
929 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
930 | enum hrtimer_mode mode) | |
c0a31329 | 931 | { |
3c8aa39d | 932 | struct hrtimer_cpu_base *cpu_base; |
c0a31329 | 933 | |
7978672c GA |
934 | memset(timer, 0, sizeof(struct hrtimer)); |
935 | ||
3c8aa39d | 936 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
c0a31329 | 937 | |
c9cb2e3d | 938 | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
7978672c GA |
939 | clock_id = CLOCK_MONOTONIC; |
940 | ||
3c8aa39d | 941 | timer->base = &cpu_base->clock_base[clock_id]; |
54cdfdb4 | 942 | hrtimer_init_timer_hres(timer); |
82f67cd9 IM |
943 | |
944 | #ifdef CONFIG_TIMER_STATS | |
945 | timer->start_site = NULL; | |
946 | timer->start_pid = -1; | |
947 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
948 | #endif | |
c0a31329 | 949 | } |
8d16b764 | 950 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 TG |
951 | |
952 | /** | |
953 | * hrtimer_get_res - get the timer resolution for a clock | |
c0a31329 TG |
954 | * @which_clock: which clock to query |
955 | * @tp: pointer to timespec variable to store the resolution | |
956 | * | |
72fd4a35 RD |
957 | * Store the resolution of the clock selected by @which_clock in the |
958 | * variable pointed to by @tp. | |
c0a31329 TG |
959 | */ |
960 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |
961 | { | |
3c8aa39d | 962 | struct hrtimer_cpu_base *cpu_base; |
c0a31329 | 963 | |
3c8aa39d TG |
964 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
965 | *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); | |
c0a31329 TG |
966 | |
967 | return 0; | |
968 | } | |
8d16b764 | 969 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
c0a31329 | 970 | |
54cdfdb4 TG |
971 | #ifdef CONFIG_HIGH_RES_TIMERS |
972 | ||
973 | /* | |
974 | * High resolution timer interrupt | |
975 | * Called with interrupts disabled | |
976 | */ | |
977 | void hrtimer_interrupt(struct clock_event_device *dev) | |
978 | { | |
979 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
980 | struct hrtimer_clock_base *base; | |
981 | ktime_t expires_next, now; | |
982 | int i, raise = 0; | |
983 | ||
984 | BUG_ON(!cpu_base->hres_active); | |
985 | cpu_base->nr_events++; | |
986 | dev->next_event.tv64 = KTIME_MAX; | |
987 | ||
988 | retry: | |
989 | now = ktime_get(); | |
990 | ||
991 | expires_next.tv64 = KTIME_MAX; | |
992 | ||
993 | base = cpu_base->clock_base; | |
994 | ||
995 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | |
996 | ktime_t basenow; | |
997 | struct rb_node *node; | |
998 | ||
999 | spin_lock(&cpu_base->lock); | |
1000 | ||
1001 | basenow = ktime_add(now, base->offset); | |
1002 | ||
1003 | while ((node = base->first)) { | |
1004 | struct hrtimer *timer; | |
1005 | ||
1006 | timer = rb_entry(node, struct hrtimer, node); | |
1007 | ||
1008 | if (basenow.tv64 < timer->expires.tv64) { | |
1009 | ktime_t expires; | |
1010 | ||
1011 | expires = ktime_sub(timer->expires, | |
1012 | base->offset); | |
1013 | if (expires.tv64 < expires_next.tv64) | |
1014 | expires_next = expires; | |
1015 | break; | |
1016 | } | |
1017 | ||
1018 | /* Move softirq callbacks to the pending list */ | |
1019 | if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { | |
1020 | __remove_hrtimer(timer, base, | |
1021 | HRTIMER_STATE_PENDING, 0); | |
1022 | list_add_tail(&timer->cb_entry, | |
1023 | &base->cpu_base->cb_pending); | |
1024 | raise = 1; | |
1025 | continue; | |
1026 | } | |
1027 | ||
1028 | __remove_hrtimer(timer, base, | |
1029 | HRTIMER_STATE_CALLBACK, 0); | |
82f67cd9 | 1030 | timer_stats_account_hrtimer(timer); |
54cdfdb4 TG |
1031 | |
1032 | /* | |
1033 | * Note: We clear the CALLBACK bit after | |
1034 | * enqueue_hrtimer to avoid reprogramming of | |
1035 | * the event hardware. This happens at the end | |
1036 | * of this function anyway. | |
1037 | */ | |
1038 | if (timer->function(timer) != HRTIMER_NORESTART) { | |
1039 | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | |
1040 | enqueue_hrtimer(timer, base, 0); | |
1041 | } | |
1042 | timer->state &= ~HRTIMER_STATE_CALLBACK; | |
1043 | } | |
1044 | spin_unlock(&cpu_base->lock); | |
1045 | base++; | |
1046 | } | |
1047 | ||
1048 | cpu_base->expires_next = expires_next; | |
1049 | ||
1050 | /* Reprogramming necessary ? */ | |
1051 | if (expires_next.tv64 != KTIME_MAX) { | |
1052 | if (tick_program_event(expires_next, 0)) | |
1053 | goto retry; | |
1054 | } | |
1055 | ||
1056 | /* Raise softirq ? */ | |
1057 | if (raise) | |
1058 | raise_softirq(HRTIMER_SOFTIRQ); | |
1059 | } | |
1060 | ||
1061 | static void run_hrtimer_softirq(struct softirq_action *h) | |
1062 | { | |
1063 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
1064 | ||
1065 | spin_lock_irq(&cpu_base->lock); | |
1066 | ||
1067 | while (!list_empty(&cpu_base->cb_pending)) { | |
1068 | enum hrtimer_restart (*fn)(struct hrtimer *); | |
1069 | struct hrtimer *timer; | |
1070 | int restart; | |
1071 | ||
1072 | timer = list_entry(cpu_base->cb_pending.next, | |
1073 | struct hrtimer, cb_entry); | |
1074 | ||
82f67cd9 IM |
1075 | timer_stats_account_hrtimer(timer); |
1076 | ||
54cdfdb4 TG |
1077 | fn = timer->function; |
1078 | __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0); | |
1079 | spin_unlock_irq(&cpu_base->lock); | |
1080 | ||
1081 | restart = fn(timer); | |
1082 | ||
1083 | spin_lock_irq(&cpu_base->lock); | |
1084 | ||
1085 | timer->state &= ~HRTIMER_STATE_CALLBACK; | |
1086 | if (restart == HRTIMER_RESTART) { | |
1087 | BUG_ON(hrtimer_active(timer)); | |
1088 | /* | |
1089 | * Enqueue the timer, allow reprogramming of the event | |
1090 | * device | |
1091 | */ | |
1092 | enqueue_hrtimer(timer, timer->base, 1); | |
1093 | } else if (hrtimer_active(timer)) { | |
1094 | /* | |
1095 | * If the timer was rearmed on another CPU, reprogram | |
1096 | * the event device. | |
1097 | */ | |
1098 | if (timer->base->first == &timer->node) | |
1099 | hrtimer_reprogram(timer, timer->base); | |
1100 | } | |
1101 | } | |
1102 | spin_unlock_irq(&cpu_base->lock); | |
1103 | } | |
1104 | ||
1105 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
1106 | ||
c0a31329 TG |
1107 | /* |
1108 | * Expire the per base hrtimer-queue: | |
1109 | */ | |
3c8aa39d TG |
1110 | static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base, |
1111 | int index) | |
c0a31329 | 1112 | { |
288867ec | 1113 | struct rb_node *node; |
3c8aa39d | 1114 | struct hrtimer_clock_base *base = &cpu_base->clock_base[index]; |
c0a31329 | 1115 | |
3055adda DS |
1116 | if (!base->first) |
1117 | return; | |
1118 | ||
92127c7a TG |
1119 | if (base->get_softirq_time) |
1120 | base->softirq_time = base->get_softirq_time(); | |
1121 | ||
3c8aa39d | 1122 | spin_lock_irq(&cpu_base->lock); |
c0a31329 | 1123 | |
288867ec | 1124 | while ((node = base->first)) { |
c0a31329 | 1125 | struct hrtimer *timer; |
c9cb2e3d | 1126 | enum hrtimer_restart (*fn)(struct hrtimer *); |
c0a31329 | 1127 | int restart; |
c0a31329 | 1128 | |
288867ec | 1129 | timer = rb_entry(node, struct hrtimer, node); |
92127c7a | 1130 | if (base->softirq_time.tv64 <= timer->expires.tv64) |
c0a31329 TG |
1131 | break; |
1132 | ||
82f67cd9 IM |
1133 | timer_stats_account_hrtimer(timer); |
1134 | ||
c0a31329 | 1135 | fn = timer->function; |
54cdfdb4 | 1136 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
3c8aa39d | 1137 | spin_unlock_irq(&cpu_base->lock); |
c0a31329 | 1138 | |
05cfb614 | 1139 | restart = fn(timer); |
c0a31329 | 1140 | |
3c8aa39d | 1141 | spin_lock_irq(&cpu_base->lock); |
c0a31329 | 1142 | |
303e967f | 1143 | timer->state &= ~HRTIMER_STATE_CALLBACK; |
b75f7a51 RZ |
1144 | if (restart != HRTIMER_NORESTART) { |
1145 | BUG_ON(hrtimer_active(timer)); | |
54cdfdb4 | 1146 | enqueue_hrtimer(timer, base, 0); |
b75f7a51 | 1147 | } |
c0a31329 | 1148 | } |
3c8aa39d | 1149 | spin_unlock_irq(&cpu_base->lock); |
c0a31329 TG |
1150 | } |
1151 | ||
1152 | /* | |
1153 | * Called from timer softirq every jiffy, expire hrtimers: | |
54cdfdb4 TG |
1154 | * |
1155 | * For HRT its the fall back code to run the softirq in the timer | |
1156 | * softirq context in case the hrtimer initialization failed or has | |
1157 | * not been done yet. | |
c0a31329 TG |
1158 | */ |
1159 | void hrtimer_run_queues(void) | |
1160 | { | |
3c8aa39d | 1161 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
c0a31329 TG |
1162 | int i; |
1163 | ||
54cdfdb4 TG |
1164 | if (hrtimer_hres_active()) |
1165 | return; | |
1166 | ||
79bf2bb3 TG |
1167 | /* |
1168 | * This _is_ ugly: We have to check in the softirq context, | |
1169 | * whether we can switch to highres and / or nohz mode. The | |
1170 | * clocksource switch happens in the timer interrupt with | |
1171 | * xtime_lock held. Notification from there only sets the | |
1172 | * check bit in the tick_oneshot code, otherwise we might | |
1173 | * deadlock vs. xtime_lock. | |
1174 | */ | |
54cdfdb4 TG |
1175 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) |
1176 | hrtimer_switch_to_hres(); | |
79bf2bb3 | 1177 | |
3c8aa39d | 1178 | hrtimer_get_softirq_time(cpu_base); |
92127c7a | 1179 | |
3c8aa39d TG |
1180 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) |
1181 | run_hrtimer_queue(cpu_base, i); | |
c0a31329 TG |
1182 | } |
1183 | ||
10c94ec1 TG |
1184 | /* |
1185 | * Sleep related functions: | |
1186 | */ | |
c9cb2e3d | 1187 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1188 | { |
1189 | struct hrtimer_sleeper *t = | |
1190 | container_of(timer, struct hrtimer_sleeper, timer); | |
1191 | struct task_struct *task = t->task; | |
1192 | ||
1193 | t->task = NULL; | |
1194 | if (task) | |
1195 | wake_up_process(task); | |
1196 | ||
1197 | return HRTIMER_NORESTART; | |
1198 | } | |
1199 | ||
36c8b586 | 1200 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
00362e33 TG |
1201 | { |
1202 | sl->timer.function = hrtimer_wakeup; | |
1203 | sl->task = task; | |
54cdfdb4 TG |
1204 | #ifdef CONFIG_HIGH_RES_TIMERS |
1205 | sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART; | |
1206 | #endif | |
00362e33 TG |
1207 | } |
1208 | ||
669d7868 | 1209 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1210 | { |
669d7868 | 1211 | hrtimer_init_sleeper(t, current); |
10c94ec1 | 1212 | |
432569bb RZ |
1213 | do { |
1214 | set_current_state(TASK_INTERRUPTIBLE); | |
1215 | hrtimer_start(&t->timer, t->timer.expires, mode); | |
1216 | ||
54cdfdb4 TG |
1217 | if (likely(t->task)) |
1218 | schedule(); | |
432569bb | 1219 | |
669d7868 | 1220 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1221 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1222 | |
1223 | } while (t->task && !signal_pending(current)); | |
432569bb | 1224 | |
669d7868 | 1225 | return t->task == NULL; |
10c94ec1 TG |
1226 | } |
1227 | ||
1711ef38 | 1228 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1229 | { |
669d7868 | 1230 | struct hrtimer_sleeper t; |
ea13dbc8 IM |
1231 | struct timespec __user *rmtp; |
1232 | struct timespec tu; | |
432569bb | 1233 | ktime_t time; |
10c94ec1 TG |
1234 | |
1235 | restart->fn = do_no_restart_syscall; | |
1236 | ||
c9cb2e3d | 1237 | hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS); |
1711ef38 | 1238 | t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2; |
10c94ec1 | 1239 | |
c9cb2e3d | 1240 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
10c94ec1 TG |
1241 | return 0; |
1242 | ||
1711ef38 | 1243 | rmtp = (struct timespec __user *) restart->arg1; |
432569bb RZ |
1244 | if (rmtp) { |
1245 | time = ktime_sub(t.timer.expires, t.timer.base->get_time()); | |
1246 | if (time.tv64 <= 0) | |
1247 | return 0; | |
1248 | tu = ktime_to_timespec(time); | |
1249 | if (copy_to_user(rmtp, &tu, sizeof(tu))) | |
1250 | return -EFAULT; | |
1251 | } | |
10c94ec1 | 1252 | |
1711ef38 | 1253 | restart->fn = hrtimer_nanosleep_restart; |
10c94ec1 TG |
1254 | |
1255 | /* The other values in restart are already filled in */ | |
1256 | return -ERESTART_RESTARTBLOCK; | |
1257 | } | |
1258 | ||
10c94ec1 TG |
1259 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
1260 | const enum hrtimer_mode mode, const clockid_t clockid) | |
1261 | { | |
1262 | struct restart_block *restart; | |
669d7868 | 1263 | struct hrtimer_sleeper t; |
10c94ec1 TG |
1264 | struct timespec tu; |
1265 | ktime_t rem; | |
1266 | ||
432569bb RZ |
1267 | hrtimer_init(&t.timer, clockid, mode); |
1268 | t.timer.expires = timespec_to_ktime(*rqtp); | |
1269 | if (do_nanosleep(&t, mode)) | |
10c94ec1 TG |
1270 | return 0; |
1271 | ||
7978672c | 1272 | /* Absolute timers do not update the rmtp value and restart: */ |
c9cb2e3d | 1273 | if (mode == HRTIMER_MODE_ABS) |
10c94ec1 TG |
1274 | return -ERESTARTNOHAND; |
1275 | ||
432569bb RZ |
1276 | if (rmtp) { |
1277 | rem = ktime_sub(t.timer.expires, t.timer.base->get_time()); | |
1278 | if (rem.tv64 <= 0) | |
1279 | return 0; | |
1280 | tu = ktime_to_timespec(rem); | |
1281 | if (copy_to_user(rmtp, &tu, sizeof(tu))) | |
1282 | return -EFAULT; | |
1283 | } | |
10c94ec1 TG |
1284 | |
1285 | restart = ¤t_thread_info()->restart_block; | |
1711ef38 TA |
1286 | restart->fn = hrtimer_nanosleep_restart; |
1287 | restart->arg0 = (unsigned long) t.timer.base->index; | |
1288 | restart->arg1 = (unsigned long) rmtp; | |
1289 | restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF; | |
1290 | restart->arg3 = t.timer.expires.tv64 >> 32; | |
10c94ec1 TG |
1291 | |
1292 | return -ERESTART_RESTARTBLOCK; | |
1293 | } | |
1294 | ||
6ba1b912 TG |
1295 | asmlinkage long |
1296 | sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | |
1297 | { | |
1298 | struct timespec tu; | |
1299 | ||
1300 | if (copy_from_user(&tu, rqtp, sizeof(tu))) | |
1301 | return -EFAULT; | |
1302 | ||
1303 | if (!timespec_valid(&tu)) | |
1304 | return -EINVAL; | |
1305 | ||
c9cb2e3d | 1306 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
6ba1b912 TG |
1307 | } |
1308 | ||
c0a31329 TG |
1309 | /* |
1310 | * Functions related to boot-time initialization: | |
1311 | */ | |
1312 | static void __devinit init_hrtimers_cpu(int cpu) | |
1313 | { | |
3c8aa39d | 1314 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1315 | int i; |
1316 | ||
3c8aa39d TG |
1317 | spin_lock_init(&cpu_base->lock); |
1318 | lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key); | |
1319 | ||
1320 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | |
1321 | cpu_base->clock_base[i].cpu_base = cpu_base; | |
1322 | ||
54cdfdb4 | 1323 | hrtimer_init_hres(cpu_base); |
c0a31329 TG |
1324 | } |
1325 | ||
1326 | #ifdef CONFIG_HOTPLUG_CPU | |
1327 | ||
3c8aa39d TG |
1328 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
1329 | struct hrtimer_clock_base *new_base) | |
c0a31329 TG |
1330 | { |
1331 | struct hrtimer *timer; | |
1332 | struct rb_node *node; | |
1333 | ||
1334 | while ((node = rb_first(&old_base->active))) { | |
1335 | timer = rb_entry(node, struct hrtimer, node); | |
54cdfdb4 TG |
1336 | BUG_ON(hrtimer_callback_running(timer)); |
1337 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0); | |
c0a31329 | 1338 | timer->base = new_base; |
54cdfdb4 TG |
1339 | /* |
1340 | * Enqueue the timer. Allow reprogramming of the event device | |
1341 | */ | |
1342 | enqueue_hrtimer(timer, new_base, 1); | |
c0a31329 TG |
1343 | } |
1344 | } | |
1345 | ||
1346 | static void migrate_hrtimers(int cpu) | |
1347 | { | |
3c8aa39d | 1348 | struct hrtimer_cpu_base *old_base, *new_base; |
c0a31329 TG |
1349 | int i; |
1350 | ||
1351 | BUG_ON(cpu_online(cpu)); | |
3c8aa39d TG |
1352 | old_base = &per_cpu(hrtimer_bases, cpu); |
1353 | new_base = &get_cpu_var(hrtimer_bases); | |
c0a31329 | 1354 | |
54cdfdb4 TG |
1355 | tick_cancel_sched_timer(cpu); |
1356 | ||
c0a31329 TG |
1357 | local_irq_disable(); |
1358 | ||
3c8aa39d TG |
1359 | spin_lock(&new_base->lock); |
1360 | spin_lock(&old_base->lock); | |
c0a31329 | 1361 | |
3c8aa39d | 1362 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d TG |
1363 | migrate_hrtimer_list(&old_base->clock_base[i], |
1364 | &new_base->clock_base[i]); | |
c0a31329 | 1365 | } |
3c8aa39d TG |
1366 | spin_unlock(&old_base->lock); |
1367 | spin_unlock(&new_base->lock); | |
c0a31329 TG |
1368 | |
1369 | local_irq_enable(); | |
1370 | put_cpu_var(hrtimer_bases); | |
1371 | } | |
1372 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1373 | ||
8c78f307 | 1374 | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, |
c0a31329 TG |
1375 | unsigned long action, void *hcpu) |
1376 | { | |
1377 | long cpu = (long)hcpu; | |
1378 | ||
1379 | switch (action) { | |
1380 | ||
1381 | case CPU_UP_PREPARE: | |
1382 | init_hrtimers_cpu(cpu); | |
1383 | break; | |
1384 | ||
1385 | #ifdef CONFIG_HOTPLUG_CPU | |
1386 | case CPU_DEAD: | |
d316c57f | 1387 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu); |
c0a31329 TG |
1388 | migrate_hrtimers(cpu); |
1389 | break; | |
1390 | #endif | |
1391 | ||
1392 | default: | |
1393 | break; | |
1394 | } | |
1395 | ||
1396 | return NOTIFY_OK; | |
1397 | } | |
1398 | ||
8c78f307 | 1399 | static struct notifier_block __cpuinitdata hrtimers_nb = { |
c0a31329 TG |
1400 | .notifier_call = hrtimer_cpu_notify, |
1401 | }; | |
1402 | ||
1403 | void __init hrtimers_init(void) | |
1404 | { | |
1405 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | |
1406 | (void *)(long)smp_processor_id()); | |
1407 | register_cpu_notifier(&hrtimers_nb); | |
54cdfdb4 TG |
1408 | #ifdef CONFIG_HIGH_RES_TIMERS |
1409 | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL); | |
1410 | #endif | |
c0a31329 TG |
1411 | } |
1412 |