]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
0fe23479 | 2 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
22 | #include <linux/slab.h> | |
23 | #include <linux/init.h> | |
24 | #include <linux/kernel.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/mempool.h> | |
27 | #include <linux/workqueue.h> | |
f1970baf | 28 | #include <scsi/sg.h> /* for struct sg_iovec */ |
1da177e4 | 29 | |
55782138 | 30 | #include <trace/events/block.h> |
0bfc2455 | 31 | |
392ddc32 JA |
32 | /* |
33 | * Test patch to inline a certain number of bi_io_vec's inside the bio | |
34 | * itself, to shrink a bio data allocation from two mempool calls to one | |
35 | */ | |
36 | #define BIO_INLINE_VECS 4 | |
37 | ||
6feef531 | 38 | static mempool_t *bio_split_pool __read_mostly; |
1da177e4 | 39 | |
1da177e4 LT |
40 | /* |
41 | * if you change this list, also change bvec_alloc or things will | |
42 | * break badly! cannot be bigger than what you can fit into an | |
43 | * unsigned short | |
44 | */ | |
1da177e4 | 45 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } |
bb799ca0 | 46 | struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { |
1da177e4 LT |
47 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
48 | }; | |
49 | #undef BV | |
50 | ||
1da177e4 LT |
51 | /* |
52 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
53 | * IO code that does not need private memory pools. | |
54 | */ | |
51d654e1 | 55 | struct bio_set *fs_bio_set; |
1da177e4 | 56 | |
bb799ca0 JA |
57 | /* |
58 | * Our slab pool management | |
59 | */ | |
60 | struct bio_slab { | |
61 | struct kmem_cache *slab; | |
62 | unsigned int slab_ref; | |
63 | unsigned int slab_size; | |
64 | char name[8]; | |
65 | }; | |
66 | static DEFINE_MUTEX(bio_slab_lock); | |
67 | static struct bio_slab *bio_slabs; | |
68 | static unsigned int bio_slab_nr, bio_slab_max; | |
69 | ||
70 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | |
71 | { | |
72 | unsigned int sz = sizeof(struct bio) + extra_size; | |
73 | struct kmem_cache *slab = NULL; | |
74 | struct bio_slab *bslab; | |
75 | unsigned int i, entry = -1; | |
76 | ||
77 | mutex_lock(&bio_slab_lock); | |
78 | ||
79 | i = 0; | |
80 | while (i < bio_slab_nr) { | |
81 | struct bio_slab *bslab = &bio_slabs[i]; | |
82 | ||
83 | if (!bslab->slab && entry == -1) | |
84 | entry = i; | |
85 | else if (bslab->slab_size == sz) { | |
86 | slab = bslab->slab; | |
87 | bslab->slab_ref++; | |
88 | break; | |
89 | } | |
90 | i++; | |
91 | } | |
92 | ||
93 | if (slab) | |
94 | goto out_unlock; | |
95 | ||
96 | if (bio_slab_nr == bio_slab_max && entry == -1) { | |
97 | bio_slab_max <<= 1; | |
98 | bio_slabs = krealloc(bio_slabs, | |
99 | bio_slab_max * sizeof(struct bio_slab), | |
100 | GFP_KERNEL); | |
101 | if (!bio_slabs) | |
102 | goto out_unlock; | |
103 | } | |
104 | if (entry == -1) | |
105 | entry = bio_slab_nr++; | |
106 | ||
107 | bslab = &bio_slabs[entry]; | |
108 | ||
109 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | |
110 | slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); | |
111 | if (!slab) | |
112 | goto out_unlock; | |
113 | ||
114 | printk("bio: create slab <%s> at %d\n", bslab->name, entry); | |
115 | bslab->slab = slab; | |
116 | bslab->slab_ref = 1; | |
117 | bslab->slab_size = sz; | |
118 | out_unlock: | |
119 | mutex_unlock(&bio_slab_lock); | |
120 | return slab; | |
121 | } | |
122 | ||
123 | static void bio_put_slab(struct bio_set *bs) | |
124 | { | |
125 | struct bio_slab *bslab = NULL; | |
126 | unsigned int i; | |
127 | ||
128 | mutex_lock(&bio_slab_lock); | |
129 | ||
130 | for (i = 0; i < bio_slab_nr; i++) { | |
131 | if (bs->bio_slab == bio_slabs[i].slab) { | |
132 | bslab = &bio_slabs[i]; | |
133 | break; | |
134 | } | |
135 | } | |
136 | ||
137 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | |
138 | goto out; | |
139 | ||
140 | WARN_ON(!bslab->slab_ref); | |
141 | ||
142 | if (--bslab->slab_ref) | |
143 | goto out; | |
144 | ||
145 | kmem_cache_destroy(bslab->slab); | |
146 | bslab->slab = NULL; | |
147 | ||
148 | out: | |
149 | mutex_unlock(&bio_slab_lock); | |
150 | } | |
151 | ||
7ba1ba12 MP |
152 | unsigned int bvec_nr_vecs(unsigned short idx) |
153 | { | |
154 | return bvec_slabs[idx].nr_vecs; | |
155 | } | |
156 | ||
bb799ca0 JA |
157 | void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx) |
158 | { | |
159 | BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); | |
160 | ||
161 | if (idx == BIOVEC_MAX_IDX) | |
162 | mempool_free(bv, bs->bvec_pool); | |
163 | else { | |
164 | struct biovec_slab *bvs = bvec_slabs + idx; | |
165 | ||
166 | kmem_cache_free(bvs->slab, bv); | |
167 | } | |
168 | } | |
169 | ||
7ff9345f JA |
170 | struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, |
171 | struct bio_set *bs) | |
1da177e4 LT |
172 | { |
173 | struct bio_vec *bvl; | |
1da177e4 | 174 | |
7ff9345f JA |
175 | /* |
176 | * see comment near bvec_array define! | |
177 | */ | |
178 | switch (nr) { | |
179 | case 1: | |
180 | *idx = 0; | |
181 | break; | |
182 | case 2 ... 4: | |
183 | *idx = 1; | |
184 | break; | |
185 | case 5 ... 16: | |
186 | *idx = 2; | |
187 | break; | |
188 | case 17 ... 64: | |
189 | *idx = 3; | |
190 | break; | |
191 | case 65 ... 128: | |
192 | *idx = 4; | |
193 | break; | |
194 | case 129 ... BIO_MAX_PAGES: | |
195 | *idx = 5; | |
196 | break; | |
197 | default: | |
198 | return NULL; | |
199 | } | |
200 | ||
201 | /* | |
202 | * idx now points to the pool we want to allocate from. only the | |
203 | * 1-vec entry pool is mempool backed. | |
204 | */ | |
205 | if (*idx == BIOVEC_MAX_IDX) { | |
206 | fallback: | |
207 | bvl = mempool_alloc(bs->bvec_pool, gfp_mask); | |
208 | } else { | |
209 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
210 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); | |
211 | ||
0a0d96b0 | 212 | /* |
7ff9345f JA |
213 | * Make this allocation restricted and don't dump info on |
214 | * allocation failures, since we'll fallback to the mempool | |
215 | * in case of failure. | |
0a0d96b0 | 216 | */ |
7ff9345f | 217 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 218 | |
0a0d96b0 | 219 | /* |
7ff9345f JA |
220 | * Try a slab allocation. If this fails and __GFP_WAIT |
221 | * is set, retry with the 1-entry mempool | |
0a0d96b0 | 222 | */ |
7ff9345f JA |
223 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
224 | if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { | |
225 | *idx = BIOVEC_MAX_IDX; | |
226 | goto fallback; | |
227 | } | |
228 | } | |
229 | ||
1da177e4 LT |
230 | return bvl; |
231 | } | |
232 | ||
7ff9345f | 233 | void bio_free(struct bio *bio, struct bio_set *bs) |
1da177e4 | 234 | { |
bb799ca0 | 235 | void *p; |
1da177e4 | 236 | |
392ddc32 | 237 | if (bio_has_allocated_vec(bio)) |
bb799ca0 | 238 | bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio)); |
1da177e4 | 239 | |
7ba1ba12 | 240 | if (bio_integrity(bio)) |
7878cba9 | 241 | bio_integrity_free(bio, bs); |
7ba1ba12 | 242 | |
bb799ca0 JA |
243 | /* |
244 | * If we have front padding, adjust the bio pointer before freeing | |
245 | */ | |
246 | p = bio; | |
247 | if (bs->front_pad) | |
248 | p -= bs->front_pad; | |
249 | ||
250 | mempool_free(p, bs->bio_pool); | |
3676347a PO |
251 | } |
252 | ||
858119e1 | 253 | void bio_init(struct bio *bio) |
1da177e4 | 254 | { |
2b94de55 | 255 | memset(bio, 0, sizeof(*bio)); |
1da177e4 | 256 | bio->bi_flags = 1 << BIO_UPTODATE; |
c7c22e4d | 257 | bio->bi_comp_cpu = -1; |
1da177e4 | 258 | atomic_set(&bio->bi_cnt, 1); |
1da177e4 LT |
259 | } |
260 | ||
261 | /** | |
262 | * bio_alloc_bioset - allocate a bio for I/O | |
263 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
264 | * @nr_iovecs: number of iovecs to pre-allocate | |
0a0d96b0 | 265 | * @bs: the bio_set to allocate from. If %NULL, just use kmalloc |
1da177e4 LT |
266 | * |
267 | * Description: | |
0a0d96b0 | 268 | * bio_alloc_bioset will first try its own mempool to satisfy the allocation. |
1da177e4 | 269 | * If %__GFP_WAIT is set then we will block on the internal pool waiting |
0a0d96b0 JA |
270 | * for a &struct bio to become free. If a %NULL @bs is passed in, we will |
271 | * fall back to just using @kmalloc to allocate the required memory. | |
1da177e4 | 272 | * |
bb799ca0 JA |
273 | * Note that the caller must set ->bi_destructor on succesful return |
274 | * of a bio, to do the appropriate freeing of the bio once the reference | |
275 | * count drops to zero. | |
1da177e4 | 276 | **/ |
dd0fc66f | 277 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
1da177e4 | 278 | { |
451a9ebf | 279 | unsigned long idx = BIO_POOL_NONE; |
34053979 | 280 | struct bio_vec *bvl = NULL; |
451a9ebf TH |
281 | struct bio *bio; |
282 | void *p; | |
283 | ||
284 | p = mempool_alloc(bs->bio_pool, gfp_mask); | |
285 | if (unlikely(!p)) | |
286 | return NULL; | |
287 | bio = p + bs->front_pad; | |
1da177e4 | 288 | |
34053979 IM |
289 | bio_init(bio); |
290 | ||
291 | if (unlikely(!nr_iovecs)) | |
292 | goto out_set; | |
293 | ||
294 | if (nr_iovecs <= BIO_INLINE_VECS) { | |
295 | bvl = bio->bi_inline_vecs; | |
296 | nr_iovecs = BIO_INLINE_VECS; | |
297 | } else { | |
298 | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); | |
299 | if (unlikely(!bvl)) | |
300 | goto err_free; | |
301 | ||
302 | nr_iovecs = bvec_nr_vecs(idx); | |
1da177e4 | 303 | } |
451a9ebf | 304 | out_set: |
34053979 IM |
305 | bio->bi_flags |= idx << BIO_POOL_OFFSET; |
306 | bio->bi_max_vecs = nr_iovecs; | |
34053979 | 307 | bio->bi_io_vec = bvl; |
1da177e4 | 308 | return bio; |
34053979 IM |
309 | |
310 | err_free: | |
451a9ebf | 311 | mempool_free(p, bs->bio_pool); |
34053979 | 312 | return NULL; |
1da177e4 LT |
313 | } |
314 | ||
451a9ebf TH |
315 | static void bio_fs_destructor(struct bio *bio) |
316 | { | |
317 | bio_free(bio, fs_bio_set); | |
318 | } | |
319 | ||
320 | /** | |
321 | * bio_alloc - allocate a new bio, memory pool backed | |
322 | * @gfp_mask: allocation mask to use | |
323 | * @nr_iovecs: number of iovecs | |
324 | * | |
325 | * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask | |
326 | * contains __GFP_WAIT, the allocation is guaranteed to succeed. | |
327 | * | |
328 | * RETURNS: | |
329 | * Pointer to new bio on success, NULL on failure. | |
330 | */ | |
331 | struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) | |
332 | { | |
333 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); | |
334 | ||
335 | if (bio) | |
336 | bio->bi_destructor = bio_fs_destructor; | |
337 | ||
338 | return bio; | |
339 | } | |
340 | ||
341 | static void bio_kmalloc_destructor(struct bio *bio) | |
342 | { | |
343 | if (bio_integrity(bio)) | |
7878cba9 | 344 | bio_integrity_free(bio, fs_bio_set); |
451a9ebf TH |
345 | kfree(bio); |
346 | } | |
347 | ||
86c824b9 JA |
348 | /** |
349 | * bio_alloc - allocate a bio for I/O | |
350 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
351 | * @nr_iovecs: number of iovecs to pre-allocate | |
352 | * | |
353 | * Description: | |
354 | * bio_alloc will allocate a bio and associated bio_vec array that can hold | |
355 | * at least @nr_iovecs entries. Allocations will be done from the | |
356 | * fs_bio_set. Also see @bio_alloc_bioset. | |
357 | * | |
358 | * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate | |
359 | * a bio. This is due to the mempool guarantees. To make this work, callers | |
76d93ff3 | 360 | * must never allocate more than 1 bio at a time from this pool. Callers |
86c824b9 | 361 | * that need to allocate more than 1 bio must always submit the previously |
76d93ff3 | 362 | * allocated bio for IO before attempting to allocate a new one. Failure to |
86c824b9 JA |
363 | * do so can cause livelocks under memory pressure. |
364 | * | |
365 | **/ | |
0a0d96b0 JA |
366 | struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs) |
367 | { | |
451a9ebf | 368 | struct bio *bio; |
0a0d96b0 | 369 | |
451a9ebf TH |
370 | bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec), |
371 | gfp_mask); | |
372 | if (unlikely(!bio)) | |
373 | return NULL; | |
374 | ||
375 | bio_init(bio); | |
376 | bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET; | |
377 | bio->bi_max_vecs = nr_iovecs; | |
378 | bio->bi_io_vec = bio->bi_inline_vecs; | |
379 | bio->bi_destructor = bio_kmalloc_destructor; | |
0a0d96b0 JA |
380 | |
381 | return bio; | |
382 | } | |
383 | ||
1da177e4 LT |
384 | void zero_fill_bio(struct bio *bio) |
385 | { | |
386 | unsigned long flags; | |
387 | struct bio_vec *bv; | |
388 | int i; | |
389 | ||
390 | bio_for_each_segment(bv, bio, i) { | |
391 | char *data = bvec_kmap_irq(bv, &flags); | |
392 | memset(data, 0, bv->bv_len); | |
393 | flush_dcache_page(bv->bv_page); | |
394 | bvec_kunmap_irq(data, &flags); | |
395 | } | |
396 | } | |
397 | EXPORT_SYMBOL(zero_fill_bio); | |
398 | ||
399 | /** | |
400 | * bio_put - release a reference to a bio | |
401 | * @bio: bio to release reference to | |
402 | * | |
403 | * Description: | |
404 | * Put a reference to a &struct bio, either one you have gotten with | |
405 | * bio_alloc or bio_get. The last put of a bio will free it. | |
406 | **/ | |
407 | void bio_put(struct bio *bio) | |
408 | { | |
409 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | |
410 | ||
411 | /* | |
412 | * last put frees it | |
413 | */ | |
414 | if (atomic_dec_and_test(&bio->bi_cnt)) { | |
415 | bio->bi_next = NULL; | |
416 | bio->bi_destructor(bio); | |
417 | } | |
418 | } | |
419 | ||
165125e1 | 420 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
421 | { |
422 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
423 | blk_recount_segments(q, bio); | |
424 | ||
425 | return bio->bi_phys_segments; | |
426 | } | |
427 | ||
1da177e4 LT |
428 | /** |
429 | * __bio_clone - clone a bio | |
430 | * @bio: destination bio | |
431 | * @bio_src: bio to clone | |
432 | * | |
433 | * Clone a &bio. Caller will own the returned bio, but not | |
434 | * the actual data it points to. Reference count of returned | |
435 | * bio will be one. | |
436 | */ | |
858119e1 | 437 | void __bio_clone(struct bio *bio, struct bio *bio_src) |
1da177e4 | 438 | { |
e525e153 AM |
439 | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, |
440 | bio_src->bi_max_vecs * sizeof(struct bio_vec)); | |
1da177e4 | 441 | |
5d84070e JA |
442 | /* |
443 | * most users will be overriding ->bi_bdev with a new target, | |
444 | * so we don't set nor calculate new physical/hw segment counts here | |
445 | */ | |
1da177e4 LT |
446 | bio->bi_sector = bio_src->bi_sector; |
447 | bio->bi_bdev = bio_src->bi_bdev; | |
448 | bio->bi_flags |= 1 << BIO_CLONED; | |
449 | bio->bi_rw = bio_src->bi_rw; | |
1da177e4 LT |
450 | bio->bi_vcnt = bio_src->bi_vcnt; |
451 | bio->bi_size = bio_src->bi_size; | |
a5453be4 | 452 | bio->bi_idx = bio_src->bi_idx; |
1da177e4 LT |
453 | } |
454 | ||
455 | /** | |
456 | * bio_clone - clone a bio | |
457 | * @bio: bio to clone | |
458 | * @gfp_mask: allocation priority | |
459 | * | |
460 | * Like __bio_clone, only also allocates the returned bio | |
461 | */ | |
dd0fc66f | 462 | struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) |
1da177e4 LT |
463 | { |
464 | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); | |
465 | ||
7ba1ba12 MP |
466 | if (!b) |
467 | return NULL; | |
468 | ||
469 | b->bi_destructor = bio_fs_destructor; | |
470 | __bio_clone(b, bio); | |
471 | ||
472 | if (bio_integrity(bio)) { | |
473 | int ret; | |
474 | ||
7878cba9 | 475 | ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set); |
7ba1ba12 | 476 | |
059ea331 LZ |
477 | if (ret < 0) { |
478 | bio_put(b); | |
7ba1ba12 | 479 | return NULL; |
059ea331 | 480 | } |
3676347a | 481 | } |
1da177e4 LT |
482 | |
483 | return b; | |
484 | } | |
485 | ||
486 | /** | |
487 | * bio_get_nr_vecs - return approx number of vecs | |
488 | * @bdev: I/O target | |
489 | * | |
490 | * Return the approximate number of pages we can send to this target. | |
491 | * There's no guarantee that you will be able to fit this number of pages | |
492 | * into a bio, it does not account for dynamic restrictions that vary | |
493 | * on offset. | |
494 | */ | |
495 | int bio_get_nr_vecs(struct block_device *bdev) | |
496 | { | |
165125e1 | 497 | struct request_queue *q = bdev_get_queue(bdev); |
1da177e4 LT |
498 | int nr_pages; |
499 | ||
ae03bf63 MP |
500 | nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
501 | if (nr_pages > queue_max_phys_segments(q)) | |
502 | nr_pages = queue_max_phys_segments(q); | |
503 | if (nr_pages > queue_max_hw_segments(q)) | |
504 | nr_pages = queue_max_hw_segments(q); | |
1da177e4 LT |
505 | |
506 | return nr_pages; | |
507 | } | |
508 | ||
165125e1 | 509 | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page |
defd94b7 MC |
510 | *page, unsigned int len, unsigned int offset, |
511 | unsigned short max_sectors) | |
1da177e4 LT |
512 | { |
513 | int retried_segments = 0; | |
514 | struct bio_vec *bvec; | |
515 | ||
516 | /* | |
517 | * cloned bio must not modify vec list | |
518 | */ | |
519 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
520 | return 0; | |
521 | ||
80cfd548 | 522 | if (((bio->bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
523 | return 0; |
524 | ||
80cfd548 JA |
525 | /* |
526 | * For filesystems with a blocksize smaller than the pagesize | |
527 | * we will often be called with the same page as last time and | |
528 | * a consecutive offset. Optimize this special case. | |
529 | */ | |
530 | if (bio->bi_vcnt > 0) { | |
531 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
532 | ||
533 | if (page == prev->bv_page && | |
534 | offset == prev->bv_offset + prev->bv_len) { | |
535 | prev->bv_len += len; | |
cc371e66 AK |
536 | |
537 | if (q->merge_bvec_fn) { | |
538 | struct bvec_merge_data bvm = { | |
539 | .bi_bdev = bio->bi_bdev, | |
540 | .bi_sector = bio->bi_sector, | |
541 | .bi_size = bio->bi_size, | |
542 | .bi_rw = bio->bi_rw, | |
543 | }; | |
544 | ||
545 | if (q->merge_bvec_fn(q, &bvm, prev) < len) { | |
546 | prev->bv_len -= len; | |
547 | return 0; | |
548 | } | |
80cfd548 JA |
549 | } |
550 | ||
551 | goto done; | |
552 | } | |
553 | } | |
554 | ||
555 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
1da177e4 LT |
556 | return 0; |
557 | ||
558 | /* | |
559 | * we might lose a segment or two here, but rather that than | |
560 | * make this too complex. | |
561 | */ | |
562 | ||
ae03bf63 MP |
563 | while (bio->bi_phys_segments >= queue_max_phys_segments(q) |
564 | || bio->bi_phys_segments >= queue_max_hw_segments(q)) { | |
1da177e4 LT |
565 | |
566 | if (retried_segments) | |
567 | return 0; | |
568 | ||
569 | retried_segments = 1; | |
570 | blk_recount_segments(q, bio); | |
571 | } | |
572 | ||
573 | /* | |
574 | * setup the new entry, we might clear it again later if we | |
575 | * cannot add the page | |
576 | */ | |
577 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
578 | bvec->bv_page = page; | |
579 | bvec->bv_len = len; | |
580 | bvec->bv_offset = offset; | |
581 | ||
582 | /* | |
583 | * if queue has other restrictions (eg varying max sector size | |
584 | * depending on offset), it can specify a merge_bvec_fn in the | |
585 | * queue to get further control | |
586 | */ | |
587 | if (q->merge_bvec_fn) { | |
cc371e66 AK |
588 | struct bvec_merge_data bvm = { |
589 | .bi_bdev = bio->bi_bdev, | |
590 | .bi_sector = bio->bi_sector, | |
591 | .bi_size = bio->bi_size, | |
592 | .bi_rw = bio->bi_rw, | |
593 | }; | |
594 | ||
1da177e4 LT |
595 | /* |
596 | * merge_bvec_fn() returns number of bytes it can accept | |
597 | * at this offset | |
598 | */ | |
cc371e66 | 599 | if (q->merge_bvec_fn(q, &bvm, bvec) < len) { |
1da177e4 LT |
600 | bvec->bv_page = NULL; |
601 | bvec->bv_len = 0; | |
602 | bvec->bv_offset = 0; | |
603 | return 0; | |
604 | } | |
605 | } | |
606 | ||
607 | /* If we may be able to merge these biovecs, force a recount */ | |
b8b3e16c | 608 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
1da177e4 LT |
609 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); |
610 | ||
611 | bio->bi_vcnt++; | |
612 | bio->bi_phys_segments++; | |
80cfd548 | 613 | done: |
1da177e4 LT |
614 | bio->bi_size += len; |
615 | return len; | |
616 | } | |
617 | ||
6e68af66 MC |
618 | /** |
619 | * bio_add_pc_page - attempt to add page to bio | |
fddfdeaf | 620 | * @q: the target queue |
6e68af66 MC |
621 | * @bio: destination bio |
622 | * @page: page to add | |
623 | * @len: vec entry length | |
624 | * @offset: vec entry offset | |
625 | * | |
626 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
627 | * number of reasons, such as the bio being full or target block | |
628 | * device limitations. The target block device must allow bio's | |
629 | * smaller than PAGE_SIZE, so it is always possible to add a single | |
630 | * page to an empty bio. This should only be used by REQ_PC bios. | |
631 | */ | |
165125e1 | 632 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, |
6e68af66 MC |
633 | unsigned int len, unsigned int offset) |
634 | { | |
ae03bf63 MP |
635 | return __bio_add_page(q, bio, page, len, offset, |
636 | queue_max_hw_sectors(q)); | |
6e68af66 MC |
637 | } |
638 | ||
1da177e4 LT |
639 | /** |
640 | * bio_add_page - attempt to add page to bio | |
641 | * @bio: destination bio | |
642 | * @page: page to add | |
643 | * @len: vec entry length | |
644 | * @offset: vec entry offset | |
645 | * | |
646 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
647 | * number of reasons, such as the bio being full or target block | |
648 | * device limitations. The target block device must allow bio's | |
649 | * smaller than PAGE_SIZE, so it is always possible to add a single | |
650 | * page to an empty bio. | |
651 | */ | |
652 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | |
653 | unsigned int offset) | |
654 | { | |
defd94b7 | 655 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
ae03bf63 | 656 | return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q)); |
1da177e4 LT |
657 | } |
658 | ||
659 | struct bio_map_data { | |
660 | struct bio_vec *iovecs; | |
c5dec1c3 | 661 | struct sg_iovec *sgvecs; |
152e283f FT |
662 | int nr_sgvecs; |
663 | int is_our_pages; | |
1da177e4 LT |
664 | }; |
665 | ||
c5dec1c3 | 666 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, |
152e283f FT |
667 | struct sg_iovec *iov, int iov_count, |
668 | int is_our_pages) | |
1da177e4 LT |
669 | { |
670 | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); | |
c5dec1c3 FT |
671 | memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); |
672 | bmd->nr_sgvecs = iov_count; | |
152e283f | 673 | bmd->is_our_pages = is_our_pages; |
1da177e4 LT |
674 | bio->bi_private = bmd; |
675 | } | |
676 | ||
677 | static void bio_free_map_data(struct bio_map_data *bmd) | |
678 | { | |
679 | kfree(bmd->iovecs); | |
c5dec1c3 | 680 | kfree(bmd->sgvecs); |
1da177e4 LT |
681 | kfree(bmd); |
682 | } | |
683 | ||
76029ff3 FT |
684 | static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count, |
685 | gfp_t gfp_mask) | |
1da177e4 | 686 | { |
76029ff3 | 687 | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask); |
1da177e4 LT |
688 | |
689 | if (!bmd) | |
690 | return NULL; | |
691 | ||
76029ff3 | 692 | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); |
c5dec1c3 FT |
693 | if (!bmd->iovecs) { |
694 | kfree(bmd); | |
695 | return NULL; | |
696 | } | |
697 | ||
76029ff3 | 698 | bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); |
c5dec1c3 | 699 | if (bmd->sgvecs) |
1da177e4 LT |
700 | return bmd; |
701 | ||
c5dec1c3 | 702 | kfree(bmd->iovecs); |
1da177e4 LT |
703 | kfree(bmd); |
704 | return NULL; | |
705 | } | |
706 | ||
aefcc28a | 707 | static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, |
ecb554a8 FT |
708 | struct sg_iovec *iov, int iov_count, |
709 | int to_user, int from_user, int do_free_page) | |
c5dec1c3 FT |
710 | { |
711 | int ret = 0, i; | |
712 | struct bio_vec *bvec; | |
713 | int iov_idx = 0; | |
714 | unsigned int iov_off = 0; | |
c5dec1c3 FT |
715 | |
716 | __bio_for_each_segment(bvec, bio, i, 0) { | |
717 | char *bv_addr = page_address(bvec->bv_page); | |
aefcc28a | 718 | unsigned int bv_len = iovecs[i].bv_len; |
c5dec1c3 FT |
719 | |
720 | while (bv_len && iov_idx < iov_count) { | |
721 | unsigned int bytes; | |
0e0c6212 | 722 | char __user *iov_addr; |
c5dec1c3 FT |
723 | |
724 | bytes = min_t(unsigned int, | |
725 | iov[iov_idx].iov_len - iov_off, bv_len); | |
726 | iov_addr = iov[iov_idx].iov_base + iov_off; | |
727 | ||
728 | if (!ret) { | |
ecb554a8 | 729 | if (to_user) |
c5dec1c3 FT |
730 | ret = copy_to_user(iov_addr, bv_addr, |
731 | bytes); | |
732 | ||
ecb554a8 FT |
733 | if (from_user) |
734 | ret = copy_from_user(bv_addr, iov_addr, | |
735 | bytes); | |
736 | ||
c5dec1c3 FT |
737 | if (ret) |
738 | ret = -EFAULT; | |
739 | } | |
740 | ||
741 | bv_len -= bytes; | |
742 | bv_addr += bytes; | |
743 | iov_addr += bytes; | |
744 | iov_off += bytes; | |
745 | ||
746 | if (iov[iov_idx].iov_len == iov_off) { | |
747 | iov_idx++; | |
748 | iov_off = 0; | |
749 | } | |
750 | } | |
751 | ||
152e283f | 752 | if (do_free_page) |
c5dec1c3 FT |
753 | __free_page(bvec->bv_page); |
754 | } | |
755 | ||
756 | return ret; | |
757 | } | |
758 | ||
1da177e4 LT |
759 | /** |
760 | * bio_uncopy_user - finish previously mapped bio | |
761 | * @bio: bio being terminated | |
762 | * | |
763 | * Free pages allocated from bio_copy_user() and write back data | |
764 | * to user space in case of a read. | |
765 | */ | |
766 | int bio_uncopy_user(struct bio *bio) | |
767 | { | |
768 | struct bio_map_data *bmd = bio->bi_private; | |
81882766 | 769 | int ret = 0; |
1da177e4 | 770 | |
81882766 FT |
771 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) |
772 | ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, | |
ecb554a8 FT |
773 | bmd->nr_sgvecs, bio_data_dir(bio) == READ, |
774 | 0, bmd->is_our_pages); | |
1da177e4 LT |
775 | bio_free_map_data(bmd); |
776 | bio_put(bio); | |
777 | return ret; | |
778 | } | |
779 | ||
780 | /** | |
c5dec1c3 | 781 | * bio_copy_user_iov - copy user data to bio |
1da177e4 | 782 | * @q: destination block queue |
152e283f | 783 | * @map_data: pointer to the rq_map_data holding pages (if necessary) |
c5dec1c3 FT |
784 | * @iov: the iovec. |
785 | * @iov_count: number of elements in the iovec | |
1da177e4 | 786 | * @write_to_vm: bool indicating writing to pages or not |
a3bce90e | 787 | * @gfp_mask: memory allocation flags |
1da177e4 LT |
788 | * |
789 | * Prepares and returns a bio for indirect user io, bouncing data | |
790 | * to/from kernel pages as necessary. Must be paired with | |
791 | * call bio_uncopy_user() on io completion. | |
792 | */ | |
152e283f FT |
793 | struct bio *bio_copy_user_iov(struct request_queue *q, |
794 | struct rq_map_data *map_data, | |
795 | struct sg_iovec *iov, int iov_count, | |
796 | int write_to_vm, gfp_t gfp_mask) | |
1da177e4 | 797 | { |
1da177e4 LT |
798 | struct bio_map_data *bmd; |
799 | struct bio_vec *bvec; | |
800 | struct page *page; | |
801 | struct bio *bio; | |
802 | int i, ret; | |
c5dec1c3 FT |
803 | int nr_pages = 0; |
804 | unsigned int len = 0; | |
56c451f4 | 805 | unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; |
1da177e4 | 806 | |
c5dec1c3 FT |
807 | for (i = 0; i < iov_count; i++) { |
808 | unsigned long uaddr; | |
809 | unsigned long end; | |
810 | unsigned long start; | |
811 | ||
812 | uaddr = (unsigned long)iov[i].iov_base; | |
813 | end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
814 | start = uaddr >> PAGE_SHIFT; | |
815 | ||
816 | nr_pages += end - start; | |
817 | len += iov[i].iov_len; | |
818 | } | |
819 | ||
69838727 FT |
820 | if (offset) |
821 | nr_pages++; | |
822 | ||
a3bce90e | 823 | bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); |
1da177e4 LT |
824 | if (!bmd) |
825 | return ERR_PTR(-ENOMEM); | |
826 | ||
1da177e4 | 827 | ret = -ENOMEM; |
a9e9dc24 | 828 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
829 | if (!bio) |
830 | goto out_bmd; | |
831 | ||
832 | bio->bi_rw |= (!write_to_vm << BIO_RW); | |
833 | ||
834 | ret = 0; | |
56c451f4 FT |
835 | |
836 | if (map_data) { | |
e623ddb4 | 837 | nr_pages = 1 << map_data->page_order; |
56c451f4 FT |
838 | i = map_data->offset / PAGE_SIZE; |
839 | } | |
1da177e4 | 840 | while (len) { |
e623ddb4 | 841 | unsigned int bytes = PAGE_SIZE; |
1da177e4 | 842 | |
56c451f4 FT |
843 | bytes -= offset; |
844 | ||
1da177e4 LT |
845 | if (bytes > len) |
846 | bytes = len; | |
847 | ||
152e283f | 848 | if (map_data) { |
e623ddb4 | 849 | if (i == map_data->nr_entries * nr_pages) { |
152e283f FT |
850 | ret = -ENOMEM; |
851 | break; | |
852 | } | |
e623ddb4 FT |
853 | |
854 | page = map_data->pages[i / nr_pages]; | |
855 | page += (i % nr_pages); | |
856 | ||
857 | i++; | |
858 | } else { | |
152e283f | 859 | page = alloc_page(q->bounce_gfp | gfp_mask); |
e623ddb4 FT |
860 | if (!page) { |
861 | ret = -ENOMEM; | |
862 | break; | |
863 | } | |
1da177e4 LT |
864 | } |
865 | ||
56c451f4 | 866 | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) |
1da177e4 | 867 | break; |
1da177e4 LT |
868 | |
869 | len -= bytes; | |
56c451f4 | 870 | offset = 0; |
1da177e4 LT |
871 | } |
872 | ||
873 | if (ret) | |
874 | goto cleanup; | |
875 | ||
876 | /* | |
877 | * success | |
878 | */ | |
ecb554a8 FT |
879 | if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || |
880 | (map_data && map_data->from_user)) { | |
881 | ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0); | |
c5dec1c3 FT |
882 | if (ret) |
883 | goto cleanup; | |
1da177e4 LT |
884 | } |
885 | ||
152e283f | 886 | bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); |
1da177e4 LT |
887 | return bio; |
888 | cleanup: | |
152e283f FT |
889 | if (!map_data) |
890 | bio_for_each_segment(bvec, bio, i) | |
891 | __free_page(bvec->bv_page); | |
1da177e4 LT |
892 | |
893 | bio_put(bio); | |
894 | out_bmd: | |
895 | bio_free_map_data(bmd); | |
896 | return ERR_PTR(ret); | |
897 | } | |
898 | ||
c5dec1c3 FT |
899 | /** |
900 | * bio_copy_user - copy user data to bio | |
901 | * @q: destination block queue | |
152e283f | 902 | * @map_data: pointer to the rq_map_data holding pages (if necessary) |
c5dec1c3 FT |
903 | * @uaddr: start of user address |
904 | * @len: length in bytes | |
905 | * @write_to_vm: bool indicating writing to pages or not | |
a3bce90e | 906 | * @gfp_mask: memory allocation flags |
c5dec1c3 FT |
907 | * |
908 | * Prepares and returns a bio for indirect user io, bouncing data | |
909 | * to/from kernel pages as necessary. Must be paired with | |
910 | * call bio_uncopy_user() on io completion. | |
911 | */ | |
152e283f FT |
912 | struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, |
913 | unsigned long uaddr, unsigned int len, | |
914 | int write_to_vm, gfp_t gfp_mask) | |
c5dec1c3 FT |
915 | { |
916 | struct sg_iovec iov; | |
917 | ||
918 | iov.iov_base = (void __user *)uaddr; | |
919 | iov.iov_len = len; | |
920 | ||
152e283f | 921 | return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); |
c5dec1c3 FT |
922 | } |
923 | ||
165125e1 | 924 | static struct bio *__bio_map_user_iov(struct request_queue *q, |
f1970baf JB |
925 | struct block_device *bdev, |
926 | struct sg_iovec *iov, int iov_count, | |
a3bce90e | 927 | int write_to_vm, gfp_t gfp_mask) |
1da177e4 | 928 | { |
f1970baf JB |
929 | int i, j; |
930 | int nr_pages = 0; | |
1da177e4 LT |
931 | struct page **pages; |
932 | struct bio *bio; | |
f1970baf JB |
933 | int cur_page = 0; |
934 | int ret, offset; | |
1da177e4 | 935 | |
f1970baf JB |
936 | for (i = 0; i < iov_count; i++) { |
937 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | |
938 | unsigned long len = iov[i].iov_len; | |
939 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
940 | unsigned long start = uaddr >> PAGE_SHIFT; | |
941 | ||
942 | nr_pages += end - start; | |
943 | /* | |
ad2d7225 | 944 | * buffer must be aligned to at least hardsector size for now |
f1970baf | 945 | */ |
ad2d7225 | 946 | if (uaddr & queue_dma_alignment(q)) |
f1970baf JB |
947 | return ERR_PTR(-EINVAL); |
948 | } | |
949 | ||
950 | if (!nr_pages) | |
1da177e4 LT |
951 | return ERR_PTR(-EINVAL); |
952 | ||
a9e9dc24 | 953 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
954 | if (!bio) |
955 | return ERR_PTR(-ENOMEM); | |
956 | ||
957 | ret = -ENOMEM; | |
a3bce90e | 958 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); |
1da177e4 LT |
959 | if (!pages) |
960 | goto out; | |
961 | ||
f1970baf JB |
962 | for (i = 0; i < iov_count; i++) { |
963 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | |
964 | unsigned long len = iov[i].iov_len; | |
965 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
966 | unsigned long start = uaddr >> PAGE_SHIFT; | |
967 | const int local_nr_pages = end - start; | |
968 | const int page_limit = cur_page + local_nr_pages; | |
969 | ||
f5dd33c4 NP |
970 | ret = get_user_pages_fast(uaddr, local_nr_pages, |
971 | write_to_vm, &pages[cur_page]); | |
99172157 JA |
972 | if (ret < local_nr_pages) { |
973 | ret = -EFAULT; | |
f1970baf | 974 | goto out_unmap; |
99172157 | 975 | } |
f1970baf JB |
976 | |
977 | offset = uaddr & ~PAGE_MASK; | |
978 | for (j = cur_page; j < page_limit; j++) { | |
979 | unsigned int bytes = PAGE_SIZE - offset; | |
980 | ||
981 | if (len <= 0) | |
982 | break; | |
983 | ||
984 | if (bytes > len) | |
985 | bytes = len; | |
986 | ||
987 | /* | |
988 | * sorry... | |
989 | */ | |
defd94b7 MC |
990 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
991 | bytes) | |
f1970baf JB |
992 | break; |
993 | ||
994 | len -= bytes; | |
995 | offset = 0; | |
996 | } | |
1da177e4 | 997 | |
f1970baf | 998 | cur_page = j; |
1da177e4 | 999 | /* |
f1970baf | 1000 | * release the pages we didn't map into the bio, if any |
1da177e4 | 1001 | */ |
f1970baf JB |
1002 | while (j < page_limit) |
1003 | page_cache_release(pages[j++]); | |
1da177e4 LT |
1004 | } |
1005 | ||
1da177e4 LT |
1006 | kfree(pages); |
1007 | ||
1008 | /* | |
1009 | * set data direction, and check if mapped pages need bouncing | |
1010 | */ | |
1011 | if (!write_to_vm) | |
1012 | bio->bi_rw |= (1 << BIO_RW); | |
1013 | ||
f1970baf | 1014 | bio->bi_bdev = bdev; |
1da177e4 LT |
1015 | bio->bi_flags |= (1 << BIO_USER_MAPPED); |
1016 | return bio; | |
f1970baf JB |
1017 | |
1018 | out_unmap: | |
1019 | for (i = 0; i < nr_pages; i++) { | |
1020 | if(!pages[i]) | |
1021 | break; | |
1022 | page_cache_release(pages[i]); | |
1023 | } | |
1024 | out: | |
1da177e4 LT |
1025 | kfree(pages); |
1026 | bio_put(bio); | |
1027 | return ERR_PTR(ret); | |
1028 | } | |
1029 | ||
1030 | /** | |
1031 | * bio_map_user - map user address into bio | |
165125e1 | 1032 | * @q: the struct request_queue for the bio |
1da177e4 LT |
1033 | * @bdev: destination block device |
1034 | * @uaddr: start of user address | |
1035 | * @len: length in bytes | |
1036 | * @write_to_vm: bool indicating writing to pages or not | |
a3bce90e | 1037 | * @gfp_mask: memory allocation flags |
1da177e4 LT |
1038 | * |
1039 | * Map the user space address into a bio suitable for io to a block | |
1040 | * device. Returns an error pointer in case of error. | |
1041 | */ | |
165125e1 | 1042 | struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, |
a3bce90e FT |
1043 | unsigned long uaddr, unsigned int len, int write_to_vm, |
1044 | gfp_t gfp_mask) | |
f1970baf JB |
1045 | { |
1046 | struct sg_iovec iov; | |
1047 | ||
3f70353e | 1048 | iov.iov_base = (void __user *)uaddr; |
f1970baf JB |
1049 | iov.iov_len = len; |
1050 | ||
a3bce90e | 1051 | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); |
f1970baf JB |
1052 | } |
1053 | ||
1054 | /** | |
1055 | * bio_map_user_iov - map user sg_iovec table into bio | |
165125e1 | 1056 | * @q: the struct request_queue for the bio |
f1970baf JB |
1057 | * @bdev: destination block device |
1058 | * @iov: the iovec. | |
1059 | * @iov_count: number of elements in the iovec | |
1060 | * @write_to_vm: bool indicating writing to pages or not | |
a3bce90e | 1061 | * @gfp_mask: memory allocation flags |
f1970baf JB |
1062 | * |
1063 | * Map the user space address into a bio suitable for io to a block | |
1064 | * device. Returns an error pointer in case of error. | |
1065 | */ | |
165125e1 | 1066 | struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, |
f1970baf | 1067 | struct sg_iovec *iov, int iov_count, |
a3bce90e | 1068 | int write_to_vm, gfp_t gfp_mask) |
1da177e4 LT |
1069 | { |
1070 | struct bio *bio; | |
1071 | ||
a3bce90e FT |
1072 | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, |
1073 | gfp_mask); | |
1da177e4 LT |
1074 | if (IS_ERR(bio)) |
1075 | return bio; | |
1076 | ||
1077 | /* | |
1078 | * subtle -- if __bio_map_user() ended up bouncing a bio, | |
1079 | * it would normally disappear when its bi_end_io is run. | |
1080 | * however, we need it for the unmap, so grab an extra | |
1081 | * reference to it | |
1082 | */ | |
1083 | bio_get(bio); | |
1084 | ||
0e75f906 | 1085 | return bio; |
1da177e4 LT |
1086 | } |
1087 | ||
1088 | static void __bio_unmap_user(struct bio *bio) | |
1089 | { | |
1090 | struct bio_vec *bvec; | |
1091 | int i; | |
1092 | ||
1093 | /* | |
1094 | * make sure we dirty pages we wrote to | |
1095 | */ | |
1096 | __bio_for_each_segment(bvec, bio, i, 0) { | |
1097 | if (bio_data_dir(bio) == READ) | |
1098 | set_page_dirty_lock(bvec->bv_page); | |
1099 | ||
1100 | page_cache_release(bvec->bv_page); | |
1101 | } | |
1102 | ||
1103 | bio_put(bio); | |
1104 | } | |
1105 | ||
1106 | /** | |
1107 | * bio_unmap_user - unmap a bio | |
1108 | * @bio: the bio being unmapped | |
1109 | * | |
1110 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | |
1111 | * a process context. | |
1112 | * | |
1113 | * bio_unmap_user() may sleep. | |
1114 | */ | |
1115 | void bio_unmap_user(struct bio *bio) | |
1116 | { | |
1117 | __bio_unmap_user(bio); | |
1118 | bio_put(bio); | |
1119 | } | |
1120 | ||
6712ecf8 | 1121 | static void bio_map_kern_endio(struct bio *bio, int err) |
b823825e | 1122 | { |
b823825e | 1123 | bio_put(bio); |
b823825e JA |
1124 | } |
1125 | ||
1126 | ||
165125e1 | 1127 | static struct bio *__bio_map_kern(struct request_queue *q, void *data, |
27496a8c | 1128 | unsigned int len, gfp_t gfp_mask) |
df46b9a4 MC |
1129 | { |
1130 | unsigned long kaddr = (unsigned long)data; | |
1131 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1132 | unsigned long start = kaddr >> PAGE_SHIFT; | |
1133 | const int nr_pages = end - start; | |
1134 | int offset, i; | |
1135 | struct bio *bio; | |
1136 | ||
a9e9dc24 | 1137 | bio = bio_kmalloc(gfp_mask, nr_pages); |
df46b9a4 MC |
1138 | if (!bio) |
1139 | return ERR_PTR(-ENOMEM); | |
1140 | ||
1141 | offset = offset_in_page(kaddr); | |
1142 | for (i = 0; i < nr_pages; i++) { | |
1143 | unsigned int bytes = PAGE_SIZE - offset; | |
1144 | ||
1145 | if (len <= 0) | |
1146 | break; | |
1147 | ||
1148 | if (bytes > len) | |
1149 | bytes = len; | |
1150 | ||
defd94b7 MC |
1151 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
1152 | offset) < bytes) | |
df46b9a4 MC |
1153 | break; |
1154 | ||
1155 | data += bytes; | |
1156 | len -= bytes; | |
1157 | offset = 0; | |
1158 | } | |
1159 | ||
b823825e | 1160 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
1161 | return bio; |
1162 | } | |
1163 | ||
1164 | /** | |
1165 | * bio_map_kern - map kernel address into bio | |
165125e1 | 1166 | * @q: the struct request_queue for the bio |
df46b9a4 MC |
1167 | * @data: pointer to buffer to map |
1168 | * @len: length in bytes | |
1169 | * @gfp_mask: allocation flags for bio allocation | |
1170 | * | |
1171 | * Map the kernel address into a bio suitable for io to a block | |
1172 | * device. Returns an error pointer in case of error. | |
1173 | */ | |
165125e1 | 1174 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, |
27496a8c | 1175 | gfp_t gfp_mask) |
df46b9a4 MC |
1176 | { |
1177 | struct bio *bio; | |
1178 | ||
1179 | bio = __bio_map_kern(q, data, len, gfp_mask); | |
1180 | if (IS_ERR(bio)) | |
1181 | return bio; | |
1182 | ||
1183 | if (bio->bi_size == len) | |
1184 | return bio; | |
1185 | ||
1186 | /* | |
1187 | * Don't support partial mappings. | |
1188 | */ | |
1189 | bio_put(bio); | |
1190 | return ERR_PTR(-EINVAL); | |
1191 | } | |
1192 | ||
68154e90 FT |
1193 | static void bio_copy_kern_endio(struct bio *bio, int err) |
1194 | { | |
1195 | struct bio_vec *bvec; | |
1196 | const int read = bio_data_dir(bio) == READ; | |
76029ff3 | 1197 | struct bio_map_data *bmd = bio->bi_private; |
68154e90 | 1198 | int i; |
76029ff3 | 1199 | char *p = bmd->sgvecs[0].iov_base; |
68154e90 FT |
1200 | |
1201 | __bio_for_each_segment(bvec, bio, i, 0) { | |
1202 | char *addr = page_address(bvec->bv_page); | |
76029ff3 | 1203 | int len = bmd->iovecs[i].bv_len; |
68154e90 | 1204 | |
4fc981ef | 1205 | if (read) |
76029ff3 | 1206 | memcpy(p, addr, len); |
68154e90 FT |
1207 | |
1208 | __free_page(bvec->bv_page); | |
76029ff3 | 1209 | p += len; |
68154e90 FT |
1210 | } |
1211 | ||
76029ff3 | 1212 | bio_free_map_data(bmd); |
68154e90 FT |
1213 | bio_put(bio); |
1214 | } | |
1215 | ||
1216 | /** | |
1217 | * bio_copy_kern - copy kernel address into bio | |
1218 | * @q: the struct request_queue for the bio | |
1219 | * @data: pointer to buffer to copy | |
1220 | * @len: length in bytes | |
1221 | * @gfp_mask: allocation flags for bio and page allocation | |
ffee0259 | 1222 | * @reading: data direction is READ |
68154e90 FT |
1223 | * |
1224 | * copy the kernel address into a bio suitable for io to a block | |
1225 | * device. Returns an error pointer in case of error. | |
1226 | */ | |
1227 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | |
1228 | gfp_t gfp_mask, int reading) | |
1229 | { | |
68154e90 FT |
1230 | struct bio *bio; |
1231 | struct bio_vec *bvec; | |
4d8ab62e | 1232 | int i; |
68154e90 | 1233 | |
4d8ab62e FT |
1234 | bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); |
1235 | if (IS_ERR(bio)) | |
1236 | return bio; | |
68154e90 FT |
1237 | |
1238 | if (!reading) { | |
1239 | void *p = data; | |
1240 | ||
1241 | bio_for_each_segment(bvec, bio, i) { | |
1242 | char *addr = page_address(bvec->bv_page); | |
1243 | ||
1244 | memcpy(addr, p, bvec->bv_len); | |
1245 | p += bvec->bv_len; | |
1246 | } | |
1247 | } | |
1248 | ||
68154e90 | 1249 | bio->bi_end_io = bio_copy_kern_endio; |
76029ff3 | 1250 | |
68154e90 | 1251 | return bio; |
68154e90 FT |
1252 | } |
1253 | ||
1da177e4 LT |
1254 | /* |
1255 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1256 | * for performing direct-IO in BIOs. | |
1257 | * | |
1258 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1259 | * because the required locks are not interrupt-safe. So what we can do is to | |
1260 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1261 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1262 | * in process context. | |
1263 | * | |
1264 | * We special-case compound pages here: normally this means reads into hugetlb | |
1265 | * pages. The logic in here doesn't really work right for compound pages | |
1266 | * because the VM does not uniformly chase down the head page in all cases. | |
1267 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1268 | * handle them at all. So we skip compound pages here at an early stage. | |
1269 | * | |
1270 | * Note that this code is very hard to test under normal circumstances because | |
1271 | * direct-io pins the pages with get_user_pages(). This makes | |
1272 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
1273 | * But other code (eg, pdflush) could clean the pages if they are mapped | |
1274 | * pagecache. | |
1275 | * | |
1276 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1277 | * deferred bio dirtying paths. | |
1278 | */ | |
1279 | ||
1280 | /* | |
1281 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1282 | */ | |
1283 | void bio_set_pages_dirty(struct bio *bio) | |
1284 | { | |
1285 | struct bio_vec *bvec = bio->bi_io_vec; | |
1286 | int i; | |
1287 | ||
1288 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1289 | struct page *page = bvec[i].bv_page; | |
1290 | ||
1291 | if (page && !PageCompound(page)) | |
1292 | set_page_dirty_lock(page); | |
1293 | } | |
1294 | } | |
1295 | ||
86b6c7a7 | 1296 | static void bio_release_pages(struct bio *bio) |
1da177e4 LT |
1297 | { |
1298 | struct bio_vec *bvec = bio->bi_io_vec; | |
1299 | int i; | |
1300 | ||
1301 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1302 | struct page *page = bvec[i].bv_page; | |
1303 | ||
1304 | if (page) | |
1305 | put_page(page); | |
1306 | } | |
1307 | } | |
1308 | ||
1309 | /* | |
1310 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1311 | * If they are, then fine. If, however, some pages are clean then they must | |
1312 | * have been written out during the direct-IO read. So we take another ref on | |
1313 | * the BIO and the offending pages and re-dirty the pages in process context. | |
1314 | * | |
1315 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
1316 | * here on. It will run one page_cache_release() against each page and will | |
1317 | * run one bio_put() against the BIO. | |
1318 | */ | |
1319 | ||
65f27f38 | 1320 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1321 | |
65f27f38 | 1322 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1323 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1324 | static struct bio *bio_dirty_list; | |
1325 | ||
1326 | /* | |
1327 | * This runs in process context | |
1328 | */ | |
65f27f38 | 1329 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 LT |
1330 | { |
1331 | unsigned long flags; | |
1332 | struct bio *bio; | |
1333 | ||
1334 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1335 | bio = bio_dirty_list; | |
1336 | bio_dirty_list = NULL; | |
1337 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1338 | ||
1339 | while (bio) { | |
1340 | struct bio *next = bio->bi_private; | |
1341 | ||
1342 | bio_set_pages_dirty(bio); | |
1343 | bio_release_pages(bio); | |
1344 | bio_put(bio); | |
1345 | bio = next; | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | void bio_check_pages_dirty(struct bio *bio) | |
1350 | { | |
1351 | struct bio_vec *bvec = bio->bi_io_vec; | |
1352 | int nr_clean_pages = 0; | |
1353 | int i; | |
1354 | ||
1355 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1356 | struct page *page = bvec[i].bv_page; | |
1357 | ||
1358 | if (PageDirty(page) || PageCompound(page)) { | |
1359 | page_cache_release(page); | |
1360 | bvec[i].bv_page = NULL; | |
1361 | } else { | |
1362 | nr_clean_pages++; | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | if (nr_clean_pages) { | |
1367 | unsigned long flags; | |
1368 | ||
1369 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1370 | bio->bi_private = bio_dirty_list; | |
1371 | bio_dirty_list = bio; | |
1372 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1373 | schedule_work(&bio_dirty_work); | |
1374 | } else { | |
1375 | bio_put(bio); | |
1376 | } | |
1377 | } | |
1378 | ||
1379 | /** | |
1380 | * bio_endio - end I/O on a bio | |
1381 | * @bio: bio | |
1da177e4 LT |
1382 | * @error: error, if any |
1383 | * | |
1384 | * Description: | |
6712ecf8 | 1385 | * bio_endio() will end I/O on the whole bio. bio_endio() is the |
5bb23a68 N |
1386 | * preferred way to end I/O on a bio, it takes care of clearing |
1387 | * BIO_UPTODATE on error. @error is 0 on success, and and one of the | |
1388 | * established -Exxxx (-EIO, for instance) error values in case | |
1389 | * something went wrong. Noone should call bi_end_io() directly on a | |
1390 | * bio unless they own it and thus know that it has an end_io | |
1391 | * function. | |
1da177e4 | 1392 | **/ |
6712ecf8 | 1393 | void bio_endio(struct bio *bio, int error) |
1da177e4 LT |
1394 | { |
1395 | if (error) | |
1396 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | |
9cc54d40 N |
1397 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
1398 | error = -EIO; | |
1da177e4 | 1399 | |
5bb23a68 | 1400 | if (bio->bi_end_io) |
6712ecf8 | 1401 | bio->bi_end_io(bio, error); |
1da177e4 LT |
1402 | } |
1403 | ||
1404 | void bio_pair_release(struct bio_pair *bp) | |
1405 | { | |
1406 | if (atomic_dec_and_test(&bp->cnt)) { | |
1407 | struct bio *master = bp->bio1.bi_private; | |
1408 | ||
6712ecf8 | 1409 | bio_endio(master, bp->error); |
1da177e4 LT |
1410 | mempool_free(bp, bp->bio2.bi_private); |
1411 | } | |
1412 | } | |
1413 | ||
6712ecf8 | 1414 | static void bio_pair_end_1(struct bio *bi, int err) |
1da177e4 LT |
1415 | { |
1416 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); | |
1417 | ||
1418 | if (err) | |
1419 | bp->error = err; | |
1420 | ||
1da177e4 | 1421 | bio_pair_release(bp); |
1da177e4 LT |
1422 | } |
1423 | ||
6712ecf8 | 1424 | static void bio_pair_end_2(struct bio *bi, int err) |
1da177e4 LT |
1425 | { |
1426 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); | |
1427 | ||
1428 | if (err) | |
1429 | bp->error = err; | |
1430 | ||
1da177e4 | 1431 | bio_pair_release(bp); |
1da177e4 LT |
1432 | } |
1433 | ||
1434 | /* | |
c7eee1b8 | 1435 | * split a bio - only worry about a bio with a single page in its iovec |
1da177e4 | 1436 | */ |
6feef531 | 1437 | struct bio_pair *bio_split(struct bio *bi, int first_sectors) |
1da177e4 | 1438 | { |
6feef531 | 1439 | struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO); |
1da177e4 LT |
1440 | |
1441 | if (!bp) | |
1442 | return bp; | |
1443 | ||
5f3ea37c | 1444 | trace_block_split(bdev_get_queue(bi->bi_bdev), bi, |
2056a782 JA |
1445 | bi->bi_sector + first_sectors); |
1446 | ||
1da177e4 LT |
1447 | BUG_ON(bi->bi_vcnt != 1); |
1448 | BUG_ON(bi->bi_idx != 0); | |
1449 | atomic_set(&bp->cnt, 3); | |
1450 | bp->error = 0; | |
1451 | bp->bio1 = *bi; | |
1452 | bp->bio2 = *bi; | |
1453 | bp->bio2.bi_sector += first_sectors; | |
1454 | bp->bio2.bi_size -= first_sectors << 9; | |
1455 | bp->bio1.bi_size = first_sectors << 9; | |
1456 | ||
1457 | bp->bv1 = bi->bi_io_vec[0]; | |
1458 | bp->bv2 = bi->bi_io_vec[0]; | |
1459 | bp->bv2.bv_offset += first_sectors << 9; | |
1460 | bp->bv2.bv_len -= first_sectors << 9; | |
1461 | bp->bv1.bv_len = first_sectors << 9; | |
1462 | ||
1463 | bp->bio1.bi_io_vec = &bp->bv1; | |
1464 | bp->bio2.bi_io_vec = &bp->bv2; | |
1465 | ||
a2eb0c10 N |
1466 | bp->bio1.bi_max_vecs = 1; |
1467 | bp->bio2.bi_max_vecs = 1; | |
1468 | ||
1da177e4 LT |
1469 | bp->bio1.bi_end_io = bio_pair_end_1; |
1470 | bp->bio2.bi_end_io = bio_pair_end_2; | |
1471 | ||
1472 | bp->bio1.bi_private = bi; | |
6feef531 | 1473 | bp->bio2.bi_private = bio_split_pool; |
1da177e4 | 1474 | |
7ba1ba12 MP |
1475 | if (bio_integrity(bi)) |
1476 | bio_integrity_split(bi, bp, first_sectors); | |
1477 | ||
1da177e4 LT |
1478 | return bp; |
1479 | } | |
1480 | ||
ad3316bf MP |
1481 | /** |
1482 | * bio_sector_offset - Find hardware sector offset in bio | |
1483 | * @bio: bio to inspect | |
1484 | * @index: bio_vec index | |
1485 | * @offset: offset in bv_page | |
1486 | * | |
1487 | * Return the number of hardware sectors between beginning of bio | |
1488 | * and an end point indicated by a bio_vec index and an offset | |
1489 | * within that vector's page. | |
1490 | */ | |
1491 | sector_t bio_sector_offset(struct bio *bio, unsigned short index, | |
1492 | unsigned int offset) | |
1493 | { | |
e1defc4f | 1494 | unsigned int sector_sz; |
ad3316bf MP |
1495 | struct bio_vec *bv; |
1496 | sector_t sectors; | |
1497 | int i; | |
1498 | ||
e1defc4f | 1499 | sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue); |
ad3316bf MP |
1500 | sectors = 0; |
1501 | ||
1502 | if (index >= bio->bi_idx) | |
1503 | index = bio->bi_vcnt - 1; | |
1504 | ||
1505 | __bio_for_each_segment(bv, bio, i, 0) { | |
1506 | if (i == index) { | |
1507 | if (offset > bv->bv_offset) | |
1508 | sectors += (offset - bv->bv_offset) / sector_sz; | |
1509 | break; | |
1510 | } | |
1511 | ||
1512 | sectors += bv->bv_len / sector_sz; | |
1513 | } | |
1514 | ||
1515 | return sectors; | |
1516 | } | |
1517 | EXPORT_SYMBOL(bio_sector_offset); | |
1da177e4 LT |
1518 | |
1519 | /* | |
1520 | * create memory pools for biovec's in a bio_set. | |
1521 | * use the global biovec slabs created for general use. | |
1522 | */ | |
5972511b | 1523 | static int biovec_create_pools(struct bio_set *bs, int pool_entries) |
1da177e4 | 1524 | { |
7ff9345f | 1525 | struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; |
1da177e4 | 1526 | |
7ff9345f JA |
1527 | bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab); |
1528 | if (!bs->bvec_pool) | |
1529 | return -ENOMEM; | |
1da177e4 | 1530 | |
1da177e4 LT |
1531 | return 0; |
1532 | } | |
1533 | ||
1534 | static void biovec_free_pools(struct bio_set *bs) | |
1535 | { | |
7ff9345f | 1536 | mempool_destroy(bs->bvec_pool); |
1da177e4 LT |
1537 | } |
1538 | ||
1539 | void bioset_free(struct bio_set *bs) | |
1540 | { | |
1541 | if (bs->bio_pool) | |
1542 | mempool_destroy(bs->bio_pool); | |
1543 | ||
7878cba9 | 1544 | bioset_integrity_free(bs); |
1da177e4 | 1545 | biovec_free_pools(bs); |
bb799ca0 | 1546 | bio_put_slab(bs); |
1da177e4 LT |
1547 | |
1548 | kfree(bs); | |
1549 | } | |
1550 | ||
bb799ca0 JA |
1551 | /** |
1552 | * bioset_create - Create a bio_set | |
1553 | * @pool_size: Number of bio and bio_vecs to cache in the mempool | |
1554 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1555 | * | |
1556 | * Description: | |
1557 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1558 | * to ask for a number of bytes to be allocated in front of the bio. | |
1559 | * Front pad allocation is useful for embedding the bio inside | |
1560 | * another structure, to avoid allocating extra data to go with the bio. | |
1561 | * Note that the bio must be embedded at the END of that structure always, | |
1562 | * or things will break badly. | |
1563 | */ | |
1564 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | |
1da177e4 | 1565 | { |
392ddc32 | 1566 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
1b434498 | 1567 | struct bio_set *bs; |
1da177e4 | 1568 | |
1b434498 | 1569 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
1da177e4 LT |
1570 | if (!bs) |
1571 | return NULL; | |
1572 | ||
bb799ca0 | 1573 | bs->front_pad = front_pad; |
1b434498 | 1574 | |
392ddc32 | 1575 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
bb799ca0 JA |
1576 | if (!bs->bio_slab) { |
1577 | kfree(bs); | |
1578 | return NULL; | |
1579 | } | |
1580 | ||
1581 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | |
1da177e4 LT |
1582 | if (!bs->bio_pool) |
1583 | goto bad; | |
1584 | ||
7878cba9 MP |
1585 | if (bioset_integrity_create(bs, pool_size)) |
1586 | goto bad; | |
1587 | ||
bb799ca0 | 1588 | if (!biovec_create_pools(bs, pool_size)) |
1da177e4 LT |
1589 | return bs; |
1590 | ||
1591 | bad: | |
1592 | bioset_free(bs); | |
1593 | return NULL; | |
1594 | } | |
1595 | ||
1596 | static void __init biovec_init_slabs(void) | |
1597 | { | |
1598 | int i; | |
1599 | ||
1600 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1601 | int size; | |
1602 | struct biovec_slab *bvs = bvec_slabs + i; | |
1603 | ||
a7fcd37c JA |
1604 | #ifndef CONFIG_BLK_DEV_INTEGRITY |
1605 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { | |
1606 | bvs->slab = NULL; | |
1607 | continue; | |
1608 | } | |
1609 | #endif | |
1610 | ||
1da177e4 LT |
1611 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
1612 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 1613 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
1614 | } |
1615 | } | |
1616 | ||
1617 | static int __init init_bio(void) | |
1618 | { | |
bb799ca0 JA |
1619 | bio_slab_max = 2; |
1620 | bio_slab_nr = 0; | |
1621 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | |
1622 | if (!bio_slabs) | |
1623 | panic("bio: can't allocate bios\n"); | |
1da177e4 | 1624 | |
7878cba9 | 1625 | bio_integrity_init(); |
1da177e4 LT |
1626 | biovec_init_slabs(); |
1627 | ||
bb799ca0 | 1628 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); |
1da177e4 LT |
1629 | if (!fs_bio_set) |
1630 | panic("bio: can't allocate bios\n"); | |
1631 | ||
0eaae62a MD |
1632 | bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, |
1633 | sizeof(struct bio_pair)); | |
1da177e4 LT |
1634 | if (!bio_split_pool) |
1635 | panic("bio: can't create split pool\n"); | |
1636 | ||
1637 | return 0; | |
1638 | } | |
1639 | ||
1640 | subsys_initcall(init_bio); | |
1641 | ||
1642 | EXPORT_SYMBOL(bio_alloc); | |
0a0d96b0 | 1643 | EXPORT_SYMBOL(bio_kmalloc); |
1da177e4 | 1644 | EXPORT_SYMBOL(bio_put); |
3676347a | 1645 | EXPORT_SYMBOL(bio_free); |
1da177e4 LT |
1646 | EXPORT_SYMBOL(bio_endio); |
1647 | EXPORT_SYMBOL(bio_init); | |
1648 | EXPORT_SYMBOL(__bio_clone); | |
1649 | EXPORT_SYMBOL(bio_clone); | |
1650 | EXPORT_SYMBOL(bio_phys_segments); | |
1da177e4 | 1651 | EXPORT_SYMBOL(bio_add_page); |
6e68af66 | 1652 | EXPORT_SYMBOL(bio_add_pc_page); |
1da177e4 | 1653 | EXPORT_SYMBOL(bio_get_nr_vecs); |
40044ce0 JA |
1654 | EXPORT_SYMBOL(bio_map_user); |
1655 | EXPORT_SYMBOL(bio_unmap_user); | |
df46b9a4 | 1656 | EXPORT_SYMBOL(bio_map_kern); |
68154e90 | 1657 | EXPORT_SYMBOL(bio_copy_kern); |
1da177e4 LT |
1658 | EXPORT_SYMBOL(bio_pair_release); |
1659 | EXPORT_SYMBOL(bio_split); | |
1da177e4 LT |
1660 | EXPORT_SYMBOL(bio_copy_user); |
1661 | EXPORT_SYMBOL(bio_uncopy_user); | |
1662 | EXPORT_SYMBOL(bioset_create); | |
1663 | EXPORT_SYMBOL(bioset_free); | |
1664 | EXPORT_SYMBOL(bio_alloc_bioset); |