]>
Commit | Line | Data |
---|---|---|
19baf839 RO |
1 | /* |
2 | * This program is free software; you can redistribute it and/or | |
3 | * modify it under the terms of the GNU General Public License | |
4 | * as published by the Free Software Foundation; either version | |
5 | * 2 of the License, or (at your option) any later version. | |
6 | * | |
7 | * Robert Olsson <[email protected]> Uppsala Universitet | |
8 | * & Swedish University of Agricultural Sciences. | |
9 | * | |
10 | * Jens Laas <[email protected]> Swedish University of | |
11 | * Agricultural Sciences. | |
12 | * | |
13 | * Hans Liss <[email protected]> Uppsala Universitet | |
14 | * | |
15 | * This work is based on the LPC-trie which is originally descibed in: | |
16 | * | |
17 | * An experimental study of compression methods for dynamic tries | |
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | |
19 | * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ | |
20 | * | |
21 | * | |
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | |
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | |
24 | * | |
25 | * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $ | |
26 | * | |
27 | * | |
28 | * Code from fib_hash has been reused which includes the following header: | |
29 | * | |
30 | * | |
31 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
32 | * operating system. INET is implemented using the BSD Socket | |
33 | * interface as the means of communication with the user level. | |
34 | * | |
35 | * IPv4 FIB: lookup engine and maintenance routines. | |
36 | * | |
37 | * | |
38 | * Authors: Alexey Kuznetsov, <[email protected]> | |
39 | * | |
40 | * This program is free software; you can redistribute it and/or | |
41 | * modify it under the terms of the GNU General Public License | |
42 | * as published by the Free Software Foundation; either version | |
43 | * 2 of the License, or (at your option) any later version. | |
fd966255 RO |
44 | * |
45 | * Substantial contributions to this work comes from: | |
46 | * | |
47 | * David S. Miller, <[email protected]> | |
48 | * Stephen Hemminger <[email protected]> | |
49 | * Paul E. McKenney <[email protected]> | |
50 | * Patrick McHardy <[email protected]> | |
19baf839 RO |
51 | */ |
52 | ||
550e29bc | 53 | #define VERSION "0.407" |
19baf839 RO |
54 | |
55 | #include <linux/config.h> | |
56 | #include <asm/uaccess.h> | |
57 | #include <asm/system.h> | |
58 | #include <asm/bitops.h> | |
59 | #include <linux/types.h> | |
60 | #include <linux/kernel.h> | |
61 | #include <linux/sched.h> | |
62 | #include <linux/mm.h> | |
63 | #include <linux/string.h> | |
64 | #include <linux/socket.h> | |
65 | #include <linux/sockios.h> | |
66 | #include <linux/errno.h> | |
67 | #include <linux/in.h> | |
68 | #include <linux/inet.h> | |
cd8787ab | 69 | #include <linux/inetdevice.h> |
19baf839 RO |
70 | #include <linux/netdevice.h> |
71 | #include <linux/if_arp.h> | |
72 | #include <linux/proc_fs.h> | |
2373ce1c | 73 | #include <linux/rcupdate.h> |
19baf839 RO |
74 | #include <linux/skbuff.h> |
75 | #include <linux/netlink.h> | |
76 | #include <linux/init.h> | |
77 | #include <linux/list.h> | |
78 | #include <net/ip.h> | |
79 | #include <net/protocol.h> | |
80 | #include <net/route.h> | |
81 | #include <net/tcp.h> | |
82 | #include <net/sock.h> | |
83 | #include <net/ip_fib.h> | |
84 | #include "fib_lookup.h" | |
85 | ||
86 | #undef CONFIG_IP_FIB_TRIE_STATS | |
06ef921d | 87 | #define MAX_STAT_DEPTH 32 |
19baf839 | 88 | |
19baf839 RO |
89 | #define KEYLENGTH (8*sizeof(t_key)) |
90 | #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) | |
91 | #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) | |
92 | ||
19baf839 RO |
93 | typedef unsigned int t_key; |
94 | ||
95 | #define T_TNODE 0 | |
96 | #define T_LEAF 1 | |
97 | #define NODE_TYPE_MASK 0x1UL | |
91b9a277 | 98 | #define NODE_PARENT(node) \ |
2373ce1c RO |
99 | ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK))) |
100 | ||
101 | #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) | |
102 | ||
103 | #define NODE_SET_PARENT(node, ptr) \ | |
104 | rcu_assign_pointer((node)->parent, \ | |
105 | ((unsigned long)(ptr)) | NODE_TYPE(node)) | |
91b9a277 OJ |
106 | |
107 | #define IS_TNODE(n) (!(n->parent & T_LEAF)) | |
108 | #define IS_LEAF(n) (n->parent & T_LEAF) | |
19baf839 RO |
109 | |
110 | struct node { | |
91b9a277 OJ |
111 | t_key key; |
112 | unsigned long parent; | |
19baf839 RO |
113 | }; |
114 | ||
115 | struct leaf { | |
91b9a277 OJ |
116 | t_key key; |
117 | unsigned long parent; | |
19baf839 | 118 | struct hlist_head list; |
2373ce1c | 119 | struct rcu_head rcu; |
19baf839 RO |
120 | }; |
121 | ||
122 | struct leaf_info { | |
123 | struct hlist_node hlist; | |
2373ce1c | 124 | struct rcu_head rcu; |
19baf839 RO |
125 | int plen; |
126 | struct list_head falh; | |
127 | }; | |
128 | ||
129 | struct tnode { | |
91b9a277 OJ |
130 | t_key key; |
131 | unsigned long parent; | |
132 | unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ | |
133 | unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ | |
134 | unsigned short full_children; /* KEYLENGTH bits needed */ | |
135 | unsigned short empty_children; /* KEYLENGTH bits needed */ | |
2373ce1c | 136 | struct rcu_head rcu; |
91b9a277 | 137 | struct node *child[0]; |
19baf839 RO |
138 | }; |
139 | ||
140 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
141 | struct trie_use_stats { | |
142 | unsigned int gets; | |
143 | unsigned int backtrack; | |
144 | unsigned int semantic_match_passed; | |
145 | unsigned int semantic_match_miss; | |
146 | unsigned int null_node_hit; | |
2f36895a | 147 | unsigned int resize_node_skipped; |
19baf839 RO |
148 | }; |
149 | #endif | |
150 | ||
151 | struct trie_stat { | |
152 | unsigned int totdepth; | |
153 | unsigned int maxdepth; | |
154 | unsigned int tnodes; | |
155 | unsigned int leaves; | |
156 | unsigned int nullpointers; | |
06ef921d | 157 | unsigned int nodesizes[MAX_STAT_DEPTH]; |
c877efb2 | 158 | }; |
19baf839 RO |
159 | |
160 | struct trie { | |
91b9a277 | 161 | struct node *trie; |
19baf839 RO |
162 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
163 | struct trie_use_stats stats; | |
164 | #endif | |
91b9a277 | 165 | int size; |
19baf839 RO |
166 | unsigned int revision; |
167 | }; | |
168 | ||
19baf839 RO |
169 | static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); |
170 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); | |
19baf839 | 171 | static struct node *resize(struct trie *t, struct tnode *tn); |
2f80b3c8 RO |
172 | static struct tnode *inflate(struct trie *t, struct tnode *tn); |
173 | static struct tnode *halve(struct trie *t, struct tnode *tn); | |
19baf839 | 174 | static void tnode_free(struct tnode *tn); |
19baf839 | 175 | |
ba89966c | 176 | static kmem_cache_t *fn_alias_kmem __read_mostly; |
19baf839 RO |
177 | static struct trie *trie_local = NULL, *trie_main = NULL; |
178 | ||
2373ce1c RO |
179 | |
180 | /* rcu_read_lock needs to be hold by caller from readside */ | |
181 | ||
c877efb2 | 182 | static inline struct node *tnode_get_child(struct tnode *tn, int i) |
19baf839 | 183 | { |
91b9a277 | 184 | BUG_ON(i >= 1 << tn->bits); |
19baf839 | 185 | |
2373ce1c | 186 | return rcu_dereference(tn->child[i]); |
19baf839 RO |
187 | } |
188 | ||
bb435b8d | 189 | static inline int tnode_child_length(const struct tnode *tn) |
19baf839 | 190 | { |
91b9a277 | 191 | return 1 << tn->bits; |
19baf839 RO |
192 | } |
193 | ||
19baf839 RO |
194 | static inline t_key tkey_extract_bits(t_key a, int offset, int bits) |
195 | { | |
91b9a277 | 196 | if (offset < KEYLENGTH) |
19baf839 | 197 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); |
91b9a277 | 198 | else |
19baf839 RO |
199 | return 0; |
200 | } | |
201 | ||
202 | static inline int tkey_equals(t_key a, t_key b) | |
203 | { | |
c877efb2 | 204 | return a == b; |
19baf839 RO |
205 | } |
206 | ||
207 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | |
208 | { | |
c877efb2 SH |
209 | if (bits == 0 || offset >= KEYLENGTH) |
210 | return 1; | |
91b9a277 OJ |
211 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; |
212 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | |
c877efb2 | 213 | } |
19baf839 RO |
214 | |
215 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | |
216 | { | |
217 | t_key diff = a ^ b; | |
218 | int i = offset; | |
219 | ||
c877efb2 SH |
220 | if (!diff) |
221 | return 0; | |
222 | while ((diff << i) >> (KEYLENGTH-1) == 0) | |
19baf839 RO |
223 | i++; |
224 | return i; | |
225 | } | |
226 | ||
19baf839 RO |
227 | /* |
228 | To understand this stuff, an understanding of keys and all their bits is | |
229 | necessary. Every node in the trie has a key associated with it, but not | |
230 | all of the bits in that key are significant. | |
231 | ||
232 | Consider a node 'n' and its parent 'tp'. | |
233 | ||
234 | If n is a leaf, every bit in its key is significant. Its presence is | |
772cb712 | 235 | necessitated by path compression, since during a tree traversal (when |
19baf839 RO |
236 | searching for a leaf - unless we are doing an insertion) we will completely |
237 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | |
238 | a potentially successful search, that we have indeed been walking the | |
239 | correct key path. | |
240 | ||
241 | Note that we can never "miss" the correct key in the tree if present by | |
242 | following the wrong path. Path compression ensures that segments of the key | |
243 | that are the same for all keys with a given prefix are skipped, but the | |
244 | skipped part *is* identical for each node in the subtrie below the skipped | |
245 | bit! trie_insert() in this implementation takes care of that - note the | |
246 | call to tkey_sub_equals() in trie_insert(). | |
247 | ||
248 | if n is an internal node - a 'tnode' here, the various parts of its key | |
249 | have many different meanings. | |
250 | ||
251 | Example: | |
252 | _________________________________________________________________ | |
253 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | |
254 | ----------------------------------------------------------------- | |
255 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
256 | ||
257 | _________________________________________________________________ | |
258 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | |
259 | ----------------------------------------------------------------- | |
260 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
261 | ||
262 | tp->pos = 7 | |
263 | tp->bits = 3 | |
264 | n->pos = 15 | |
91b9a277 | 265 | n->bits = 4 |
19baf839 RO |
266 | |
267 | First, let's just ignore the bits that come before the parent tp, that is | |
268 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | |
269 | not use them for anything. | |
270 | ||
271 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | |
272 | index into the parent's child array. That is, they will be used to find | |
273 | 'n' among tp's children. | |
274 | ||
275 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | |
276 | for the node n. | |
277 | ||
278 | All the bits we have seen so far are significant to the node n. The rest | |
279 | of the bits are really not needed or indeed known in n->key. | |
280 | ||
281 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | |
282 | n's child array, and will of course be different for each child. | |
283 | ||
c877efb2 | 284 | |
19baf839 RO |
285 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown |
286 | at this point. | |
287 | ||
288 | */ | |
289 | ||
0c7770c7 | 290 | static inline void check_tnode(const struct tnode *tn) |
19baf839 | 291 | { |
0c7770c7 | 292 | WARN_ON(tn && tn->pos+tn->bits > 32); |
19baf839 RO |
293 | } |
294 | ||
295 | static int halve_threshold = 25; | |
296 | static int inflate_threshold = 50; | |
e6308be8 RO |
297 | static int halve_threshold_root = 15; |
298 | static int inflate_threshold_root = 25; | |
19baf839 | 299 | |
2373ce1c RO |
300 | |
301 | static void __alias_free_mem(struct rcu_head *head) | |
19baf839 | 302 | { |
2373ce1c RO |
303 | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); |
304 | kmem_cache_free(fn_alias_kmem, fa); | |
19baf839 RO |
305 | } |
306 | ||
2373ce1c | 307 | static inline void alias_free_mem_rcu(struct fib_alias *fa) |
19baf839 | 308 | { |
2373ce1c RO |
309 | call_rcu(&fa->rcu, __alias_free_mem); |
310 | } | |
91b9a277 | 311 | |
2373ce1c RO |
312 | static void __leaf_free_rcu(struct rcu_head *head) |
313 | { | |
314 | kfree(container_of(head, struct leaf, rcu)); | |
315 | } | |
91b9a277 | 316 | |
2373ce1c | 317 | static void __leaf_info_free_rcu(struct rcu_head *head) |
19baf839 | 318 | { |
2373ce1c | 319 | kfree(container_of(head, struct leaf_info, rcu)); |
19baf839 RO |
320 | } |
321 | ||
2373ce1c | 322 | static inline void free_leaf_info(struct leaf_info *leaf) |
19baf839 | 323 | { |
2373ce1c | 324 | call_rcu(&leaf->rcu, __leaf_info_free_rcu); |
19baf839 RO |
325 | } |
326 | ||
f0e36f8c PM |
327 | static struct tnode *tnode_alloc(unsigned int size) |
328 | { | |
2373ce1c RO |
329 | struct page *pages; |
330 | ||
331 | if (size <= PAGE_SIZE) | |
332 | return kcalloc(size, 1, GFP_KERNEL); | |
333 | ||
334 | pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size)); | |
335 | if (!pages) | |
336 | return NULL; | |
337 | ||
338 | return page_address(pages); | |
f0e36f8c PM |
339 | } |
340 | ||
2373ce1c | 341 | static void __tnode_free_rcu(struct rcu_head *head) |
f0e36f8c | 342 | { |
2373ce1c | 343 | struct tnode *tn = container_of(head, struct tnode, rcu); |
f0e36f8c | 344 | unsigned int size = sizeof(struct tnode) + |
2373ce1c | 345 | (1 << tn->bits) * sizeof(struct node *); |
f0e36f8c PM |
346 | |
347 | if (size <= PAGE_SIZE) | |
348 | kfree(tn); | |
349 | else | |
350 | free_pages((unsigned long)tn, get_order(size)); | |
351 | } | |
352 | ||
2373ce1c RO |
353 | static inline void tnode_free(struct tnode *tn) |
354 | { | |
550e29bc RO |
355 | if(IS_LEAF(tn)) { |
356 | struct leaf *l = (struct leaf *) tn; | |
357 | call_rcu_bh(&l->rcu, __leaf_free_rcu); | |
358 | } | |
359 | else | |
360 | call_rcu(&tn->rcu, __tnode_free_rcu); | |
2373ce1c RO |
361 | } |
362 | ||
363 | static struct leaf *leaf_new(void) | |
364 | { | |
365 | struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); | |
366 | if (l) { | |
367 | l->parent = T_LEAF; | |
368 | INIT_HLIST_HEAD(&l->list); | |
369 | } | |
370 | return l; | |
371 | } | |
372 | ||
373 | static struct leaf_info *leaf_info_new(int plen) | |
374 | { | |
375 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | |
376 | if (li) { | |
377 | li->plen = plen; | |
378 | INIT_LIST_HEAD(&li->falh); | |
379 | } | |
380 | return li; | |
381 | } | |
382 | ||
19baf839 RO |
383 | static struct tnode* tnode_new(t_key key, int pos, int bits) |
384 | { | |
385 | int nchildren = 1<<bits; | |
386 | int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); | |
f0e36f8c | 387 | struct tnode *tn = tnode_alloc(sz); |
19baf839 | 388 | |
91b9a277 | 389 | if (tn) { |
19baf839 | 390 | memset(tn, 0, sz); |
2373ce1c | 391 | tn->parent = T_TNODE; |
19baf839 RO |
392 | tn->pos = pos; |
393 | tn->bits = bits; | |
394 | tn->key = key; | |
395 | tn->full_children = 0; | |
396 | tn->empty_children = 1<<bits; | |
397 | } | |
c877efb2 | 398 | |
0c7770c7 SH |
399 | pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), |
400 | (unsigned int) (sizeof(struct node) * 1<<bits)); | |
19baf839 RO |
401 | return tn; |
402 | } | |
403 | ||
19baf839 RO |
404 | /* |
405 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | |
406 | * and no bits are skipped. See discussion in dyntree paper p. 6 | |
407 | */ | |
408 | ||
bb435b8d | 409 | static inline int tnode_full(const struct tnode *tn, const struct node *n) |
19baf839 | 410 | { |
c877efb2 | 411 | if (n == NULL || IS_LEAF(n)) |
19baf839 RO |
412 | return 0; |
413 | ||
414 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | |
415 | } | |
416 | ||
c877efb2 | 417 | static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) |
19baf839 RO |
418 | { |
419 | tnode_put_child_reorg(tn, i, n, -1); | |
420 | } | |
421 | ||
c877efb2 | 422 | /* |
19baf839 RO |
423 | * Add a child at position i overwriting the old value. |
424 | * Update the value of full_children and empty_children. | |
425 | */ | |
426 | ||
c877efb2 | 427 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) |
19baf839 | 428 | { |
2373ce1c | 429 | struct node *chi = tn->child[i]; |
19baf839 RO |
430 | int isfull; |
431 | ||
0c7770c7 SH |
432 | BUG_ON(i >= 1<<tn->bits); |
433 | ||
19baf839 RO |
434 | |
435 | /* update emptyChildren */ | |
436 | if (n == NULL && chi != NULL) | |
437 | tn->empty_children++; | |
438 | else if (n != NULL && chi == NULL) | |
439 | tn->empty_children--; | |
c877efb2 | 440 | |
19baf839 | 441 | /* update fullChildren */ |
91b9a277 | 442 | if (wasfull == -1) |
19baf839 RO |
443 | wasfull = tnode_full(tn, chi); |
444 | ||
445 | isfull = tnode_full(tn, n); | |
c877efb2 | 446 | if (wasfull && !isfull) |
19baf839 | 447 | tn->full_children--; |
c877efb2 | 448 | else if (!wasfull && isfull) |
19baf839 | 449 | tn->full_children++; |
91b9a277 | 450 | |
c877efb2 SH |
451 | if (n) |
452 | NODE_SET_PARENT(n, tn); | |
19baf839 | 453 | |
2373ce1c | 454 | rcu_assign_pointer(tn->child[i], n); |
19baf839 RO |
455 | } |
456 | ||
c877efb2 | 457 | static struct node *resize(struct trie *t, struct tnode *tn) |
19baf839 RO |
458 | { |
459 | int i; | |
2f36895a | 460 | int err = 0; |
2f80b3c8 | 461 | struct tnode *old_tn; |
e6308be8 RO |
462 | int inflate_threshold_use; |
463 | int halve_threshold_use; | |
19baf839 RO |
464 | |
465 | if (!tn) | |
466 | return NULL; | |
467 | ||
0c7770c7 SH |
468 | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", |
469 | tn, inflate_threshold, halve_threshold); | |
19baf839 RO |
470 | |
471 | /* No children */ | |
472 | if (tn->empty_children == tnode_child_length(tn)) { | |
473 | tnode_free(tn); | |
474 | return NULL; | |
475 | } | |
476 | /* One child */ | |
477 | if (tn->empty_children == tnode_child_length(tn) - 1) | |
478 | for (i = 0; i < tnode_child_length(tn); i++) { | |
91b9a277 | 479 | struct node *n; |
19baf839 | 480 | |
91b9a277 | 481 | n = tn->child[i]; |
2373ce1c | 482 | if (!n) |
91b9a277 | 483 | continue; |
91b9a277 OJ |
484 | |
485 | /* compress one level */ | |
2373ce1c | 486 | NODE_SET_PARENT(n, NULL); |
91b9a277 OJ |
487 | tnode_free(tn); |
488 | return n; | |
19baf839 | 489 | } |
c877efb2 | 490 | /* |
19baf839 RO |
491 | * Double as long as the resulting node has a number of |
492 | * nonempty nodes that are above the threshold. | |
493 | */ | |
494 | ||
495 | /* | |
c877efb2 SH |
496 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of |
497 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | |
19baf839 | 498 | * Telecommunications, page 6: |
c877efb2 | 499 | * "A node is doubled if the ratio of non-empty children to all |
19baf839 RO |
500 | * children in the *doubled* node is at least 'high'." |
501 | * | |
c877efb2 SH |
502 | * 'high' in this instance is the variable 'inflate_threshold'. It |
503 | * is expressed as a percentage, so we multiply it with | |
504 | * tnode_child_length() and instead of multiplying by 2 (since the | |
505 | * child array will be doubled by inflate()) and multiplying | |
506 | * the left-hand side by 100 (to handle the percentage thing) we | |
19baf839 | 507 | * multiply the left-hand side by 50. |
c877efb2 SH |
508 | * |
509 | * The left-hand side may look a bit weird: tnode_child_length(tn) | |
510 | * - tn->empty_children is of course the number of non-null children | |
511 | * in the current node. tn->full_children is the number of "full" | |
19baf839 | 512 | * children, that is non-null tnodes with a skip value of 0. |
c877efb2 | 513 | * All of those will be doubled in the resulting inflated tnode, so |
19baf839 | 514 | * we just count them one extra time here. |
c877efb2 | 515 | * |
19baf839 | 516 | * A clearer way to write this would be: |
c877efb2 | 517 | * |
19baf839 | 518 | * to_be_doubled = tn->full_children; |
c877efb2 | 519 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - |
19baf839 RO |
520 | * tn->full_children; |
521 | * | |
522 | * new_child_length = tnode_child_length(tn) * 2; | |
523 | * | |
c877efb2 | 524 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / |
19baf839 RO |
525 | * new_child_length; |
526 | * if (new_fill_factor >= inflate_threshold) | |
c877efb2 SH |
527 | * |
528 | * ...and so on, tho it would mess up the while () loop. | |
529 | * | |
19baf839 RO |
530 | * anyway, |
531 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | |
532 | * inflate_threshold | |
c877efb2 | 533 | * |
19baf839 RO |
534 | * avoid a division: |
535 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | |
536 | * inflate_threshold * new_child_length | |
c877efb2 | 537 | * |
19baf839 | 538 | * expand not_to_be_doubled and to_be_doubled, and shorten: |
c877efb2 | 539 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 540 | * tn->full_children) >= inflate_threshold * new_child_length |
c877efb2 | 541 | * |
19baf839 | 542 | * expand new_child_length: |
c877efb2 | 543 | * 100 * (tnode_child_length(tn) - tn->empty_children + |
91b9a277 | 544 | * tn->full_children) >= |
19baf839 | 545 | * inflate_threshold * tnode_child_length(tn) * 2 |
c877efb2 | 546 | * |
19baf839 | 547 | * shorten again: |
c877efb2 | 548 | * 50 * (tn->full_children + tnode_child_length(tn) - |
91b9a277 | 549 | * tn->empty_children) >= inflate_threshold * |
19baf839 | 550 | * tnode_child_length(tn) |
c877efb2 | 551 | * |
19baf839 RO |
552 | */ |
553 | ||
554 | check_tnode(tn); | |
c877efb2 | 555 | |
e6308be8 RO |
556 | /* Keep root node larger */ |
557 | ||
558 | if(!tn->parent) | |
559 | inflate_threshold_use = inflate_threshold_root; | |
560 | else | |
561 | inflate_threshold_use = inflate_threshold; | |
562 | ||
2f36895a | 563 | err = 0; |
19baf839 RO |
564 | while ((tn->full_children > 0 && |
565 | 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= | |
e6308be8 | 566 | inflate_threshold_use * tnode_child_length(tn))) { |
19baf839 | 567 | |
2f80b3c8 RO |
568 | old_tn = tn; |
569 | tn = inflate(t, tn); | |
570 | if (IS_ERR(tn)) { | |
571 | tn = old_tn; | |
2f36895a RO |
572 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
573 | t->stats.resize_node_skipped++; | |
574 | #endif | |
575 | break; | |
576 | } | |
19baf839 RO |
577 | } |
578 | ||
579 | check_tnode(tn); | |
580 | ||
581 | /* | |
582 | * Halve as long as the number of empty children in this | |
583 | * node is above threshold. | |
584 | */ | |
2f36895a | 585 | |
e6308be8 RO |
586 | |
587 | /* Keep root node larger */ | |
588 | ||
589 | if(!tn->parent) | |
590 | halve_threshold_use = halve_threshold_root; | |
591 | else | |
592 | halve_threshold_use = halve_threshold; | |
593 | ||
2f36895a | 594 | err = 0; |
19baf839 RO |
595 | while (tn->bits > 1 && |
596 | 100 * (tnode_child_length(tn) - tn->empty_children) < | |
e6308be8 | 597 | halve_threshold_use * tnode_child_length(tn)) { |
2f36895a | 598 | |
2f80b3c8 RO |
599 | old_tn = tn; |
600 | tn = halve(t, tn); | |
601 | if (IS_ERR(tn)) { | |
602 | tn = old_tn; | |
2f36895a RO |
603 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
604 | t->stats.resize_node_skipped++; | |
605 | #endif | |
606 | break; | |
607 | } | |
608 | } | |
19baf839 | 609 | |
c877efb2 | 610 | |
19baf839 | 611 | /* Only one child remains */ |
19baf839 RO |
612 | if (tn->empty_children == tnode_child_length(tn) - 1) |
613 | for (i = 0; i < tnode_child_length(tn); i++) { | |
91b9a277 | 614 | struct node *n; |
19baf839 | 615 | |
91b9a277 | 616 | n = tn->child[i]; |
2373ce1c | 617 | if (!n) |
91b9a277 | 618 | continue; |
91b9a277 OJ |
619 | |
620 | /* compress one level */ | |
621 | ||
2373ce1c | 622 | NODE_SET_PARENT(n, NULL); |
91b9a277 OJ |
623 | tnode_free(tn); |
624 | return n; | |
19baf839 RO |
625 | } |
626 | ||
627 | return (struct node *) tn; | |
628 | } | |
629 | ||
2f80b3c8 | 630 | static struct tnode *inflate(struct trie *t, struct tnode *tn) |
19baf839 RO |
631 | { |
632 | struct tnode *inode; | |
633 | struct tnode *oldtnode = tn; | |
634 | int olen = tnode_child_length(tn); | |
635 | int i; | |
636 | ||
0c7770c7 | 637 | pr_debug("In inflate\n"); |
19baf839 RO |
638 | |
639 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | |
640 | ||
0c7770c7 | 641 | if (!tn) |
2f80b3c8 | 642 | return ERR_PTR(-ENOMEM); |
2f36895a RO |
643 | |
644 | /* | |
c877efb2 SH |
645 | * Preallocate and store tnodes before the actual work so we |
646 | * don't get into an inconsistent state if memory allocation | |
647 | * fails. In case of failure we return the oldnode and inflate | |
2f36895a RO |
648 | * of tnode is ignored. |
649 | */ | |
91b9a277 OJ |
650 | |
651 | for (i = 0; i < olen; i++) { | |
2f36895a RO |
652 | struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i); |
653 | ||
654 | if (inode && | |
655 | IS_TNODE(inode) && | |
656 | inode->pos == oldtnode->pos + oldtnode->bits && | |
657 | inode->bits > 1) { | |
658 | struct tnode *left, *right; | |
2f36895a | 659 | t_key m = TKEY_GET_MASK(inode->pos, 1); |
c877efb2 | 660 | |
2f36895a RO |
661 | left = tnode_new(inode->key&(~m), inode->pos + 1, |
662 | inode->bits - 1); | |
2f80b3c8 RO |
663 | if (!left) |
664 | goto nomem; | |
91b9a277 | 665 | |
2f36895a RO |
666 | right = tnode_new(inode->key|m, inode->pos + 1, |
667 | inode->bits - 1); | |
668 | ||
2f80b3c8 RO |
669 | if (!right) { |
670 | tnode_free(left); | |
671 | goto nomem; | |
672 | } | |
2f36895a RO |
673 | |
674 | put_child(t, tn, 2*i, (struct node *) left); | |
675 | put_child(t, tn, 2*i+1, (struct node *) right); | |
676 | } | |
677 | } | |
678 | ||
91b9a277 | 679 | for (i = 0; i < olen; i++) { |
19baf839 | 680 | struct node *node = tnode_get_child(oldtnode, i); |
91b9a277 OJ |
681 | struct tnode *left, *right; |
682 | int size, j; | |
c877efb2 | 683 | |
19baf839 RO |
684 | /* An empty child */ |
685 | if (node == NULL) | |
686 | continue; | |
687 | ||
688 | /* A leaf or an internal node with skipped bits */ | |
689 | ||
c877efb2 | 690 | if (IS_LEAF(node) || ((struct tnode *) node)->pos > |
19baf839 | 691 | tn->pos + tn->bits - 1) { |
c877efb2 | 692 | if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits, |
19baf839 RO |
693 | 1) == 0) |
694 | put_child(t, tn, 2*i, node); | |
695 | else | |
696 | put_child(t, tn, 2*i+1, node); | |
697 | continue; | |
698 | } | |
699 | ||
700 | /* An internal node with two children */ | |
701 | inode = (struct tnode *) node; | |
702 | ||
703 | if (inode->bits == 1) { | |
704 | put_child(t, tn, 2*i, inode->child[0]); | |
705 | put_child(t, tn, 2*i+1, inode->child[1]); | |
706 | ||
707 | tnode_free(inode); | |
91b9a277 | 708 | continue; |
19baf839 RO |
709 | } |
710 | ||
91b9a277 OJ |
711 | /* An internal node with more than two children */ |
712 | ||
713 | /* We will replace this node 'inode' with two new | |
714 | * ones, 'left' and 'right', each with half of the | |
715 | * original children. The two new nodes will have | |
716 | * a position one bit further down the key and this | |
717 | * means that the "significant" part of their keys | |
718 | * (see the discussion near the top of this file) | |
719 | * will differ by one bit, which will be "0" in | |
720 | * left's key and "1" in right's key. Since we are | |
721 | * moving the key position by one step, the bit that | |
722 | * we are moving away from - the bit at position | |
723 | * (inode->pos) - is the one that will differ between | |
724 | * left and right. So... we synthesize that bit in the | |
725 | * two new keys. | |
726 | * The mask 'm' below will be a single "one" bit at | |
727 | * the position (inode->pos) | |
728 | */ | |
19baf839 | 729 | |
91b9a277 OJ |
730 | /* Use the old key, but set the new significant |
731 | * bit to zero. | |
732 | */ | |
2f36895a | 733 | |
91b9a277 OJ |
734 | left = (struct tnode *) tnode_get_child(tn, 2*i); |
735 | put_child(t, tn, 2*i, NULL); | |
2f36895a | 736 | |
91b9a277 | 737 | BUG_ON(!left); |
2f36895a | 738 | |
91b9a277 OJ |
739 | right = (struct tnode *) tnode_get_child(tn, 2*i+1); |
740 | put_child(t, tn, 2*i+1, NULL); | |
19baf839 | 741 | |
91b9a277 | 742 | BUG_ON(!right); |
19baf839 | 743 | |
91b9a277 OJ |
744 | size = tnode_child_length(left); |
745 | for (j = 0; j < size; j++) { | |
746 | put_child(t, left, j, inode->child[j]); | |
747 | put_child(t, right, j, inode->child[j + size]); | |
19baf839 | 748 | } |
91b9a277 OJ |
749 | put_child(t, tn, 2*i, resize(t, left)); |
750 | put_child(t, tn, 2*i+1, resize(t, right)); | |
751 | ||
752 | tnode_free(inode); | |
19baf839 RO |
753 | } |
754 | tnode_free(oldtnode); | |
755 | return tn; | |
2f80b3c8 RO |
756 | nomem: |
757 | { | |
758 | int size = tnode_child_length(tn); | |
759 | int j; | |
760 | ||
0c7770c7 | 761 | for (j = 0; j < size; j++) |
2f80b3c8 RO |
762 | if (tn->child[j]) |
763 | tnode_free((struct tnode *)tn->child[j]); | |
764 | ||
765 | tnode_free(tn); | |
0c7770c7 | 766 | |
2f80b3c8 RO |
767 | return ERR_PTR(-ENOMEM); |
768 | } | |
19baf839 RO |
769 | } |
770 | ||
2f80b3c8 | 771 | static struct tnode *halve(struct trie *t, struct tnode *tn) |
19baf839 RO |
772 | { |
773 | struct tnode *oldtnode = tn; | |
774 | struct node *left, *right; | |
775 | int i; | |
776 | int olen = tnode_child_length(tn); | |
777 | ||
0c7770c7 | 778 | pr_debug("In halve\n"); |
c877efb2 SH |
779 | |
780 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | |
19baf839 | 781 | |
2f80b3c8 RO |
782 | if (!tn) |
783 | return ERR_PTR(-ENOMEM); | |
2f36895a RO |
784 | |
785 | /* | |
c877efb2 SH |
786 | * Preallocate and store tnodes before the actual work so we |
787 | * don't get into an inconsistent state if memory allocation | |
788 | * fails. In case of failure we return the oldnode and halve | |
2f36895a RO |
789 | * of tnode is ignored. |
790 | */ | |
791 | ||
91b9a277 | 792 | for (i = 0; i < olen; i += 2) { |
2f36895a RO |
793 | left = tnode_get_child(oldtnode, i); |
794 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 795 | |
2f36895a | 796 | /* Two nonempty children */ |
0c7770c7 | 797 | if (left && right) { |
2f80b3c8 | 798 | struct tnode *newn; |
0c7770c7 | 799 | |
2f80b3c8 | 800 | newn = tnode_new(left->key, tn->pos + tn->bits, 1); |
0c7770c7 SH |
801 | |
802 | if (!newn) | |
2f80b3c8 | 803 | goto nomem; |
0c7770c7 | 804 | |
2f80b3c8 | 805 | put_child(t, tn, i/2, (struct node *)newn); |
2f36895a | 806 | } |
2f36895a | 807 | |
2f36895a | 808 | } |
19baf839 | 809 | |
91b9a277 OJ |
810 | for (i = 0; i < olen; i += 2) { |
811 | struct tnode *newBinNode; | |
812 | ||
19baf839 RO |
813 | left = tnode_get_child(oldtnode, i); |
814 | right = tnode_get_child(oldtnode, i+1); | |
c877efb2 | 815 | |
19baf839 RO |
816 | /* At least one of the children is empty */ |
817 | if (left == NULL) { | |
818 | if (right == NULL) /* Both are empty */ | |
819 | continue; | |
820 | put_child(t, tn, i/2, right); | |
91b9a277 | 821 | continue; |
0c7770c7 | 822 | } |
91b9a277 OJ |
823 | |
824 | if (right == NULL) { | |
19baf839 | 825 | put_child(t, tn, i/2, left); |
91b9a277 OJ |
826 | continue; |
827 | } | |
c877efb2 | 828 | |
19baf839 | 829 | /* Two nonempty children */ |
91b9a277 OJ |
830 | newBinNode = (struct tnode *) tnode_get_child(tn, i/2); |
831 | put_child(t, tn, i/2, NULL); | |
91b9a277 OJ |
832 | put_child(t, newBinNode, 0, left); |
833 | put_child(t, newBinNode, 1, right); | |
834 | put_child(t, tn, i/2, resize(t, newBinNode)); | |
19baf839 RO |
835 | } |
836 | tnode_free(oldtnode); | |
837 | return tn; | |
2f80b3c8 RO |
838 | nomem: |
839 | { | |
840 | int size = tnode_child_length(tn); | |
841 | int j; | |
842 | ||
0c7770c7 | 843 | for (j = 0; j < size; j++) |
2f80b3c8 RO |
844 | if (tn->child[j]) |
845 | tnode_free((struct tnode *)tn->child[j]); | |
846 | ||
847 | tnode_free(tn); | |
0c7770c7 | 848 | |
2f80b3c8 RO |
849 | return ERR_PTR(-ENOMEM); |
850 | } | |
19baf839 RO |
851 | } |
852 | ||
91b9a277 | 853 | static void trie_init(struct trie *t) |
19baf839 | 854 | { |
91b9a277 OJ |
855 | if (!t) |
856 | return; | |
857 | ||
858 | t->size = 0; | |
2373ce1c | 859 | rcu_assign_pointer(t->trie, NULL); |
91b9a277 | 860 | t->revision = 0; |
19baf839 | 861 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
91b9a277 | 862 | memset(&t->stats, 0, sizeof(struct trie_use_stats)); |
19baf839 | 863 | #endif |
19baf839 RO |
864 | } |
865 | ||
772cb712 | 866 | /* readside must use rcu_read_lock currently dump routines |
2373ce1c RO |
867 | via get_fa_head and dump */ |
868 | ||
772cb712 | 869 | static struct leaf_info *find_leaf_info(struct leaf *l, int plen) |
19baf839 | 870 | { |
772cb712 | 871 | struct hlist_head *head = &l->list; |
19baf839 RO |
872 | struct hlist_node *node; |
873 | struct leaf_info *li; | |
874 | ||
2373ce1c | 875 | hlist_for_each_entry_rcu(li, node, head, hlist) |
c877efb2 | 876 | if (li->plen == plen) |
19baf839 | 877 | return li; |
91b9a277 | 878 | |
19baf839 RO |
879 | return NULL; |
880 | } | |
881 | ||
882 | static inline struct list_head * get_fa_head(struct leaf *l, int plen) | |
883 | { | |
772cb712 | 884 | struct leaf_info *li = find_leaf_info(l, plen); |
c877efb2 | 885 | |
91b9a277 OJ |
886 | if (!li) |
887 | return NULL; | |
c877efb2 | 888 | |
91b9a277 | 889 | return &li->falh; |
19baf839 RO |
890 | } |
891 | ||
892 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | |
893 | { | |
2373ce1c RO |
894 | struct leaf_info *li = NULL, *last = NULL; |
895 | struct hlist_node *node; | |
896 | ||
897 | if (hlist_empty(head)) { | |
898 | hlist_add_head_rcu(&new->hlist, head); | |
899 | } else { | |
900 | hlist_for_each_entry(li, node, head, hlist) { | |
901 | if (new->plen > li->plen) | |
902 | break; | |
903 | ||
904 | last = li; | |
905 | } | |
906 | if (last) | |
907 | hlist_add_after_rcu(&last->hlist, &new->hlist); | |
908 | else | |
909 | hlist_add_before_rcu(&new->hlist, &li->hlist); | |
910 | } | |
19baf839 RO |
911 | } |
912 | ||
2373ce1c RO |
913 | /* rcu_read_lock needs to be hold by caller from readside */ |
914 | ||
19baf839 RO |
915 | static struct leaf * |
916 | fib_find_node(struct trie *t, u32 key) | |
917 | { | |
918 | int pos; | |
919 | struct tnode *tn; | |
920 | struct node *n; | |
921 | ||
922 | pos = 0; | |
2373ce1c | 923 | n = rcu_dereference(t->trie); |
19baf839 RO |
924 | |
925 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
926 | tn = (struct tnode *) n; | |
91b9a277 | 927 | |
19baf839 | 928 | check_tnode(tn); |
91b9a277 | 929 | |
c877efb2 | 930 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
91b9a277 | 931 | pos = tn->pos + tn->bits; |
19baf839 | 932 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); |
91b9a277 | 933 | } else |
19baf839 RO |
934 | break; |
935 | } | |
936 | /* Case we have found a leaf. Compare prefixes */ | |
937 | ||
91b9a277 OJ |
938 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) |
939 | return (struct leaf *)n; | |
940 | ||
19baf839 RO |
941 | return NULL; |
942 | } | |
943 | ||
944 | static struct node *trie_rebalance(struct trie *t, struct tnode *tn) | |
945 | { | |
19baf839 RO |
946 | int wasfull; |
947 | t_key cindex, key; | |
948 | struct tnode *tp = NULL; | |
949 | ||
19baf839 | 950 | key = tn->key; |
19baf839 RO |
951 | |
952 | while (tn != NULL && NODE_PARENT(tn) != NULL) { | |
19baf839 RO |
953 | |
954 | tp = NODE_PARENT(tn); | |
955 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | |
956 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | |
957 | tn = (struct tnode *) resize (t, (struct tnode *)tn); | |
958 | tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); | |
91b9a277 | 959 | |
c877efb2 | 960 | if (!NODE_PARENT(tn)) |
19baf839 RO |
961 | break; |
962 | ||
963 | tn = NODE_PARENT(tn); | |
964 | } | |
965 | /* Handle last (top) tnode */ | |
c877efb2 | 966 | if (IS_TNODE(tn)) |
19baf839 RO |
967 | tn = (struct tnode*) resize(t, (struct tnode *)tn); |
968 | ||
969 | return (struct node*) tn; | |
970 | } | |
971 | ||
2373ce1c RO |
972 | /* only used from updater-side */ |
973 | ||
f835e471 RO |
974 | static struct list_head * |
975 | fib_insert_node(struct trie *t, int *err, u32 key, int plen) | |
19baf839 RO |
976 | { |
977 | int pos, newpos; | |
978 | struct tnode *tp = NULL, *tn = NULL; | |
979 | struct node *n; | |
980 | struct leaf *l; | |
981 | int missbit; | |
c877efb2 | 982 | struct list_head *fa_head = NULL; |
19baf839 RO |
983 | struct leaf_info *li; |
984 | t_key cindex; | |
985 | ||
986 | pos = 0; | |
c877efb2 | 987 | n = t->trie; |
19baf839 | 988 | |
c877efb2 SH |
989 | /* If we point to NULL, stop. Either the tree is empty and we should |
990 | * just put a new leaf in if, or we have reached an empty child slot, | |
19baf839 | 991 | * and we should just put our new leaf in that. |
c877efb2 SH |
992 | * If we point to a T_TNODE, check if it matches our key. Note that |
993 | * a T_TNODE might be skipping any number of bits - its 'pos' need | |
19baf839 RO |
994 | * not be the parent's 'pos'+'bits'! |
995 | * | |
c877efb2 | 996 | * If it does match the current key, get pos/bits from it, extract |
19baf839 RO |
997 | * the index from our key, push the T_TNODE and walk the tree. |
998 | * | |
999 | * If it doesn't, we have to replace it with a new T_TNODE. | |
1000 | * | |
c877efb2 SH |
1001 | * If we point to a T_LEAF, it might or might not have the same key |
1002 | * as we do. If it does, just change the value, update the T_LEAF's | |
1003 | * value, and return it. | |
19baf839 RO |
1004 | * If it doesn't, we need to replace it with a T_TNODE. |
1005 | */ | |
1006 | ||
1007 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | |
1008 | tn = (struct tnode *) n; | |
91b9a277 | 1009 | |
c877efb2 | 1010 | check_tnode(tn); |
91b9a277 | 1011 | |
c877efb2 | 1012 | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { |
19baf839 | 1013 | tp = tn; |
91b9a277 | 1014 | pos = tn->pos + tn->bits; |
19baf839 RO |
1015 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); |
1016 | ||
0c7770c7 | 1017 | BUG_ON(n && NODE_PARENT(n) != tn); |
91b9a277 | 1018 | } else |
19baf839 RO |
1019 | break; |
1020 | } | |
1021 | ||
1022 | /* | |
1023 | * n ----> NULL, LEAF or TNODE | |
1024 | * | |
c877efb2 | 1025 | * tp is n's (parent) ----> NULL or TNODE |
19baf839 RO |
1026 | */ |
1027 | ||
91b9a277 | 1028 | BUG_ON(tp && IS_LEAF(tp)); |
19baf839 RO |
1029 | |
1030 | /* Case 1: n is a leaf. Compare prefixes */ | |
1031 | ||
c877efb2 | 1032 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { |
91b9a277 OJ |
1033 | struct leaf *l = (struct leaf *) n; |
1034 | ||
19baf839 | 1035 | li = leaf_info_new(plen); |
91b9a277 | 1036 | |
c877efb2 | 1037 | if (!li) { |
f835e471 RO |
1038 | *err = -ENOMEM; |
1039 | goto err; | |
1040 | } | |
19baf839 RO |
1041 | |
1042 | fa_head = &li->falh; | |
1043 | insert_leaf_info(&l->list, li); | |
1044 | goto done; | |
1045 | } | |
1046 | t->size++; | |
1047 | l = leaf_new(); | |
1048 | ||
c877efb2 | 1049 | if (!l) { |
f835e471 RO |
1050 | *err = -ENOMEM; |
1051 | goto err; | |
1052 | } | |
19baf839 RO |
1053 | |
1054 | l->key = key; | |
1055 | li = leaf_info_new(plen); | |
1056 | ||
c877efb2 | 1057 | if (!li) { |
f835e471 RO |
1058 | tnode_free((struct tnode *) l); |
1059 | *err = -ENOMEM; | |
1060 | goto err; | |
1061 | } | |
19baf839 RO |
1062 | |
1063 | fa_head = &li->falh; | |
1064 | insert_leaf_info(&l->list, li); | |
1065 | ||
19baf839 | 1066 | if (t->trie && n == NULL) { |
91b9a277 | 1067 | /* Case 2: n is NULL, and will just insert a new leaf */ |
19baf839 RO |
1068 | |
1069 | NODE_SET_PARENT(l, tp); | |
19baf839 | 1070 | |
91b9a277 OJ |
1071 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1072 | put_child(t, (struct tnode *)tp, cindex, (struct node *)l); | |
1073 | } else { | |
1074 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | |
c877efb2 SH |
1075 | /* |
1076 | * Add a new tnode here | |
19baf839 RO |
1077 | * first tnode need some special handling |
1078 | */ | |
1079 | ||
1080 | if (tp) | |
91b9a277 | 1081 | pos = tp->pos+tp->bits; |
19baf839 | 1082 | else |
91b9a277 OJ |
1083 | pos = 0; |
1084 | ||
c877efb2 | 1085 | if (n) { |
19baf839 RO |
1086 | newpos = tkey_mismatch(key, pos, n->key); |
1087 | tn = tnode_new(n->key, newpos, 1); | |
91b9a277 | 1088 | } else { |
19baf839 | 1089 | newpos = 0; |
c877efb2 | 1090 | tn = tnode_new(key, newpos, 1); /* First tnode */ |
19baf839 | 1091 | } |
19baf839 | 1092 | |
c877efb2 | 1093 | if (!tn) { |
f835e471 RO |
1094 | free_leaf_info(li); |
1095 | tnode_free((struct tnode *) l); | |
1096 | *err = -ENOMEM; | |
1097 | goto err; | |
91b9a277 OJ |
1098 | } |
1099 | ||
19baf839 RO |
1100 | NODE_SET_PARENT(tn, tp); |
1101 | ||
91b9a277 | 1102 | missbit = tkey_extract_bits(key, newpos, 1); |
19baf839 RO |
1103 | put_child(t, tn, missbit, (struct node *)l); |
1104 | put_child(t, tn, 1-missbit, n); | |
1105 | ||
c877efb2 | 1106 | if (tp) { |
19baf839 RO |
1107 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1108 | put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); | |
91b9a277 | 1109 | } else { |
2373ce1c | 1110 | rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */ |
19baf839 RO |
1111 | tp = tn; |
1112 | } | |
1113 | } | |
91b9a277 OJ |
1114 | |
1115 | if (tp && tp->pos + tp->bits > 32) | |
78c6671a | 1116 | printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", |
19baf839 | 1117 | tp, tp->pos, tp->bits, key, plen); |
91b9a277 | 1118 | |
19baf839 | 1119 | /* Rebalance the trie */ |
2373ce1c RO |
1120 | |
1121 | rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); | |
f835e471 RO |
1122 | done: |
1123 | t->revision++; | |
91b9a277 | 1124 | err: |
19baf839 RO |
1125 | return fa_head; |
1126 | } | |
1127 | ||
1128 | static int | |
1129 | fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | |
1130 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) | |
1131 | { | |
1132 | struct trie *t = (struct trie *) tb->tb_data; | |
1133 | struct fib_alias *fa, *new_fa; | |
c877efb2 | 1134 | struct list_head *fa_head = NULL; |
19baf839 RO |
1135 | struct fib_info *fi; |
1136 | int plen = r->rtm_dst_len; | |
1137 | int type = r->rtm_type; | |
1138 | u8 tos = r->rtm_tos; | |
1139 | u32 key, mask; | |
1140 | int err; | |
1141 | struct leaf *l; | |
1142 | ||
1143 | if (plen > 32) | |
1144 | return -EINVAL; | |
1145 | ||
1146 | key = 0; | |
c877efb2 | 1147 | if (rta->rta_dst) |
19baf839 RO |
1148 | memcpy(&key, rta->rta_dst, 4); |
1149 | ||
1150 | key = ntohl(key); | |
1151 | ||
0c7770c7 | 1152 | pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen); |
19baf839 | 1153 | |
91b9a277 | 1154 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1155 | |
c877efb2 | 1156 | if (key & ~mask) |
19baf839 RO |
1157 | return -EINVAL; |
1158 | ||
1159 | key = key & mask; | |
1160 | ||
91b9a277 OJ |
1161 | fi = fib_create_info(r, rta, nlhdr, &err); |
1162 | ||
1163 | if (!fi) | |
19baf839 RO |
1164 | goto err; |
1165 | ||
1166 | l = fib_find_node(t, key); | |
c877efb2 | 1167 | fa = NULL; |
19baf839 | 1168 | |
c877efb2 | 1169 | if (l) { |
19baf839 RO |
1170 | fa_head = get_fa_head(l, plen); |
1171 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | |
1172 | } | |
1173 | ||
1174 | /* Now fa, if non-NULL, points to the first fib alias | |
1175 | * with the same keys [prefix,tos,priority], if such key already | |
1176 | * exists or to the node before which we will insert new one. | |
1177 | * | |
1178 | * If fa is NULL, we will need to allocate a new one and | |
1179 | * insert to the head of f. | |
1180 | * | |
1181 | * If f is NULL, no fib node matched the destination key | |
1182 | * and we need to allocate a new one of those as well. | |
1183 | */ | |
1184 | ||
91b9a277 | 1185 | if (fa && fa->fa_info->fib_priority == fi->fib_priority) { |
19baf839 RO |
1186 | struct fib_alias *fa_orig; |
1187 | ||
1188 | err = -EEXIST; | |
1189 | if (nlhdr->nlmsg_flags & NLM_F_EXCL) | |
1190 | goto out; | |
1191 | ||
1192 | if (nlhdr->nlmsg_flags & NLM_F_REPLACE) { | |
1193 | struct fib_info *fi_drop; | |
1194 | u8 state; | |
1195 | ||
2373ce1c RO |
1196 | err = -ENOBUFS; |
1197 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); | |
1198 | if (new_fa == NULL) | |
1199 | goto out; | |
19baf839 RO |
1200 | |
1201 | fi_drop = fa->fa_info; | |
2373ce1c RO |
1202 | new_fa->fa_tos = fa->fa_tos; |
1203 | new_fa->fa_info = fi; | |
1204 | new_fa->fa_type = type; | |
1205 | new_fa->fa_scope = r->rtm_scope; | |
19baf839 | 1206 | state = fa->fa_state; |
2373ce1c | 1207 | new_fa->fa_state &= ~FA_S_ACCESSED; |
19baf839 | 1208 | |
2373ce1c RO |
1209 | list_replace_rcu(&fa->fa_list, &new_fa->fa_list); |
1210 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1211 | |
1212 | fib_release_info(fi_drop); | |
1213 | if (state & FA_S_ACCESSED) | |
91b9a277 | 1214 | rt_cache_flush(-1); |
19baf839 | 1215 | |
91b9a277 | 1216 | goto succeeded; |
19baf839 RO |
1217 | } |
1218 | /* Error if we find a perfect match which | |
1219 | * uses the same scope, type, and nexthop | |
1220 | * information. | |
1221 | */ | |
1222 | fa_orig = fa; | |
1223 | list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) { | |
1224 | if (fa->fa_tos != tos) | |
1225 | break; | |
1226 | if (fa->fa_info->fib_priority != fi->fib_priority) | |
1227 | break; | |
1228 | if (fa->fa_type == type && | |
1229 | fa->fa_scope == r->rtm_scope && | |
1230 | fa->fa_info == fi) { | |
1231 | goto out; | |
1232 | } | |
1233 | } | |
1234 | if (!(nlhdr->nlmsg_flags & NLM_F_APPEND)) | |
1235 | fa = fa_orig; | |
1236 | } | |
1237 | err = -ENOENT; | |
91b9a277 | 1238 | if (!(nlhdr->nlmsg_flags & NLM_F_CREATE)) |
19baf839 RO |
1239 | goto out; |
1240 | ||
1241 | err = -ENOBUFS; | |
1242 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); | |
1243 | if (new_fa == NULL) | |
1244 | goto out; | |
1245 | ||
1246 | new_fa->fa_info = fi; | |
1247 | new_fa->fa_tos = tos; | |
1248 | new_fa->fa_type = type; | |
1249 | new_fa->fa_scope = r->rtm_scope; | |
1250 | new_fa->fa_state = 0; | |
19baf839 RO |
1251 | /* |
1252 | * Insert new entry to the list. | |
1253 | */ | |
1254 | ||
c877efb2 | 1255 | if (!fa_head) { |
f835e471 RO |
1256 | fa_head = fib_insert_node(t, &err, key, plen); |
1257 | err = 0; | |
c877efb2 | 1258 | if (err) |
f835e471 RO |
1259 | goto out_free_new_fa; |
1260 | } | |
19baf839 | 1261 | |
2373ce1c RO |
1262 | list_add_tail_rcu(&new_fa->fa_list, |
1263 | (fa ? &fa->fa_list : fa_head)); | |
19baf839 RO |
1264 | |
1265 | rt_cache_flush(-1); | |
1266 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req); | |
1267 | succeeded: | |
1268 | return 0; | |
f835e471 RO |
1269 | |
1270 | out_free_new_fa: | |
1271 | kmem_cache_free(fn_alias_kmem, new_fa); | |
19baf839 RO |
1272 | out: |
1273 | fib_release_info(fi); | |
91b9a277 | 1274 | err: |
19baf839 RO |
1275 | return err; |
1276 | } | |
1277 | ||
2373ce1c | 1278 | |
772cb712 | 1279 | /* should be called with rcu_read_lock */ |
0c7770c7 SH |
1280 | static inline int check_leaf(struct trie *t, struct leaf *l, |
1281 | t_key key, int *plen, const struct flowi *flp, | |
06c74270 | 1282 | struct fib_result *res) |
19baf839 | 1283 | { |
06c74270 | 1284 | int err, i; |
19baf839 RO |
1285 | t_key mask; |
1286 | struct leaf_info *li; | |
1287 | struct hlist_head *hhead = &l->list; | |
1288 | struct hlist_node *node; | |
c877efb2 | 1289 | |
2373ce1c | 1290 | hlist_for_each_entry_rcu(li, node, hhead, hlist) { |
19baf839 RO |
1291 | i = li->plen; |
1292 | mask = ntohl(inet_make_mask(i)); | |
c877efb2 | 1293 | if (l->key != (key & mask)) |
19baf839 RO |
1294 | continue; |
1295 | ||
06c74270 | 1296 | if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) { |
19baf839 RO |
1297 | *plen = i; |
1298 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1299 | t->stats.semantic_match_passed++; | |
1300 | #endif | |
06c74270 | 1301 | return err; |
19baf839 RO |
1302 | } |
1303 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1304 | t->stats.semantic_match_miss++; | |
1305 | #endif | |
1306 | } | |
06c74270 | 1307 | return 1; |
19baf839 RO |
1308 | } |
1309 | ||
1310 | static int | |
1311 | fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | |
1312 | { | |
1313 | struct trie *t = (struct trie *) tb->tb_data; | |
1314 | int plen, ret = 0; | |
1315 | struct node *n; | |
1316 | struct tnode *pn; | |
1317 | int pos, bits; | |
91b9a277 | 1318 | t_key key = ntohl(flp->fl4_dst); |
19baf839 RO |
1319 | int chopped_off; |
1320 | t_key cindex = 0; | |
1321 | int current_prefix_length = KEYLENGTH; | |
91b9a277 OJ |
1322 | struct tnode *cn; |
1323 | t_key node_prefix, key_prefix, pref_mismatch; | |
1324 | int mp; | |
1325 | ||
2373ce1c | 1326 | rcu_read_lock(); |
91b9a277 | 1327 | |
2373ce1c | 1328 | n = rcu_dereference(t->trie); |
c877efb2 | 1329 | if (!n) |
19baf839 RO |
1330 | goto failed; |
1331 | ||
1332 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1333 | t->stats.gets++; | |
1334 | #endif | |
1335 | ||
1336 | /* Just a leaf? */ | |
1337 | if (IS_LEAF(n)) { | |
06c74270 | 1338 | if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0) |
19baf839 RO |
1339 | goto found; |
1340 | goto failed; | |
1341 | } | |
1342 | pn = (struct tnode *) n; | |
1343 | chopped_off = 0; | |
c877efb2 | 1344 | |
91b9a277 | 1345 | while (pn) { |
19baf839 RO |
1346 | pos = pn->pos; |
1347 | bits = pn->bits; | |
1348 | ||
c877efb2 | 1349 | if (!chopped_off) |
19baf839 RO |
1350 | cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits); |
1351 | ||
1352 | n = tnode_get_child(pn, cindex); | |
1353 | ||
1354 | if (n == NULL) { | |
1355 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1356 | t->stats.null_node_hit++; | |
1357 | #endif | |
1358 | goto backtrace; | |
1359 | } | |
1360 | ||
91b9a277 OJ |
1361 | if (IS_LEAF(n)) { |
1362 | if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0) | |
1363 | goto found; | |
1364 | else | |
1365 | goto backtrace; | |
1366 | } | |
1367 | ||
19baf839 RO |
1368 | #define HL_OPTIMIZE |
1369 | #ifdef HL_OPTIMIZE | |
91b9a277 | 1370 | cn = (struct tnode *)n; |
19baf839 | 1371 | |
91b9a277 OJ |
1372 | /* |
1373 | * It's a tnode, and we can do some extra checks here if we | |
1374 | * like, to avoid descending into a dead-end branch. | |
1375 | * This tnode is in the parent's child array at index | |
1376 | * key[p_pos..p_pos+p_bits] but potentially with some bits | |
1377 | * chopped off, so in reality the index may be just a | |
1378 | * subprefix, padded with zero at the end. | |
1379 | * We can also take a look at any skipped bits in this | |
1380 | * tnode - everything up to p_pos is supposed to be ok, | |
1381 | * and the non-chopped bits of the index (se previous | |
1382 | * paragraph) are also guaranteed ok, but the rest is | |
1383 | * considered unknown. | |
1384 | * | |
1385 | * The skipped bits are key[pos+bits..cn->pos]. | |
1386 | */ | |
19baf839 | 1387 | |
91b9a277 OJ |
1388 | /* If current_prefix_length < pos+bits, we are already doing |
1389 | * actual prefix matching, which means everything from | |
1390 | * pos+(bits-chopped_off) onward must be zero along some | |
1391 | * branch of this subtree - otherwise there is *no* valid | |
1392 | * prefix present. Here we can only check the skipped | |
1393 | * bits. Remember, since we have already indexed into the | |
1394 | * parent's child array, we know that the bits we chopped of | |
1395 | * *are* zero. | |
1396 | */ | |
19baf839 | 1397 | |
91b9a277 | 1398 | /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ |
19baf839 | 1399 | |
91b9a277 OJ |
1400 | if (current_prefix_length < pos+bits) { |
1401 | if (tkey_extract_bits(cn->key, current_prefix_length, | |
1402 | cn->pos - current_prefix_length) != 0 || | |
1403 | !(cn->child[0])) | |
1404 | goto backtrace; | |
1405 | } | |
19baf839 | 1406 | |
91b9a277 OJ |
1407 | /* |
1408 | * If chopped_off=0, the index is fully validated and we | |
1409 | * only need to look at the skipped bits for this, the new, | |
1410 | * tnode. What we actually want to do is to find out if | |
1411 | * these skipped bits match our key perfectly, or if we will | |
1412 | * have to count on finding a matching prefix further down, | |
1413 | * because if we do, we would like to have some way of | |
1414 | * verifying the existence of such a prefix at this point. | |
1415 | */ | |
19baf839 | 1416 | |
91b9a277 OJ |
1417 | /* The only thing we can do at this point is to verify that |
1418 | * any such matching prefix can indeed be a prefix to our | |
1419 | * key, and if the bits in the node we are inspecting that | |
1420 | * do not match our key are not ZERO, this cannot be true. | |
1421 | * Thus, find out where there is a mismatch (before cn->pos) | |
1422 | * and verify that all the mismatching bits are zero in the | |
1423 | * new tnode's key. | |
1424 | */ | |
19baf839 | 1425 | |
91b9a277 OJ |
1426 | /* Note: We aren't very concerned about the piece of the key |
1427 | * that precede pn->pos+pn->bits, since these have already been | |
1428 | * checked. The bits after cn->pos aren't checked since these are | |
1429 | * by definition "unknown" at this point. Thus, what we want to | |
1430 | * see is if we are about to enter the "prefix matching" state, | |
1431 | * and in that case verify that the skipped bits that will prevail | |
1432 | * throughout this subtree are zero, as they have to be if we are | |
1433 | * to find a matching prefix. | |
1434 | */ | |
1435 | ||
1436 | node_prefix = MASK_PFX(cn->key, cn->pos); | |
1437 | key_prefix = MASK_PFX(key, cn->pos); | |
1438 | pref_mismatch = key_prefix^node_prefix; | |
1439 | mp = 0; | |
1440 | ||
1441 | /* In short: If skipped bits in this node do not match the search | |
1442 | * key, enter the "prefix matching" state.directly. | |
1443 | */ | |
1444 | if (pref_mismatch) { | |
1445 | while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { | |
1446 | mp++; | |
1447 | pref_mismatch = pref_mismatch <<1; | |
1448 | } | |
1449 | key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); | |
1450 | ||
1451 | if (key_prefix != 0) | |
1452 | goto backtrace; | |
1453 | ||
1454 | if (current_prefix_length >= cn->pos) | |
1455 | current_prefix_length = mp; | |
c877efb2 | 1456 | } |
91b9a277 OJ |
1457 | #endif |
1458 | pn = (struct tnode *)n; /* Descend */ | |
1459 | chopped_off = 0; | |
1460 | continue; | |
1461 | ||
19baf839 RO |
1462 | backtrace: |
1463 | chopped_off++; | |
1464 | ||
1465 | /* As zero don't change the child key (cindex) */ | |
91b9a277 | 1466 | while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) |
19baf839 | 1467 | chopped_off++; |
19baf839 RO |
1468 | |
1469 | /* Decrease current_... with bits chopped off */ | |
1470 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | |
1471 | current_prefix_length = pn->pos + pn->bits - chopped_off; | |
91b9a277 | 1472 | |
19baf839 | 1473 | /* |
c877efb2 | 1474 | * Either we do the actual chop off according or if we have |
19baf839 RO |
1475 | * chopped off all bits in this tnode walk up to our parent. |
1476 | */ | |
1477 | ||
91b9a277 | 1478 | if (chopped_off <= pn->bits) { |
19baf839 | 1479 | cindex &= ~(1 << (chopped_off-1)); |
91b9a277 | 1480 | } else { |
c877efb2 | 1481 | if (NODE_PARENT(pn) == NULL) |
19baf839 | 1482 | goto failed; |
91b9a277 | 1483 | |
19baf839 RO |
1484 | /* Get Child's index */ |
1485 | cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); | |
1486 | pn = NODE_PARENT(pn); | |
1487 | chopped_off = 0; | |
1488 | ||
1489 | #ifdef CONFIG_IP_FIB_TRIE_STATS | |
1490 | t->stats.backtrack++; | |
1491 | #endif | |
1492 | goto backtrace; | |
c877efb2 | 1493 | } |
19baf839 RO |
1494 | } |
1495 | failed: | |
c877efb2 | 1496 | ret = 1; |
19baf839 | 1497 | found: |
2373ce1c | 1498 | rcu_read_unlock(); |
19baf839 RO |
1499 | return ret; |
1500 | } | |
1501 | ||
2373ce1c | 1502 | /* only called from updater side */ |
19baf839 RO |
1503 | static int trie_leaf_remove(struct trie *t, t_key key) |
1504 | { | |
1505 | t_key cindex; | |
1506 | struct tnode *tp = NULL; | |
1507 | struct node *n = t->trie; | |
1508 | struct leaf *l; | |
1509 | ||
0c7770c7 | 1510 | pr_debug("entering trie_leaf_remove(%p)\n", n); |
19baf839 RO |
1511 | |
1512 | /* Note that in the case skipped bits, those bits are *not* checked! | |
c877efb2 | 1513 | * When we finish this, we will have NULL or a T_LEAF, and the |
19baf839 RO |
1514 | * T_LEAF may or may not match our key. |
1515 | */ | |
1516 | ||
91b9a277 | 1517 | while (n != NULL && IS_TNODE(n)) { |
19baf839 RO |
1518 | struct tnode *tn = (struct tnode *) n; |
1519 | check_tnode(tn); | |
1520 | n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); | |
1521 | ||
0c7770c7 | 1522 | BUG_ON(n && NODE_PARENT(n) != tn); |
91b9a277 | 1523 | } |
19baf839 RO |
1524 | l = (struct leaf *) n; |
1525 | ||
c877efb2 | 1526 | if (!n || !tkey_equals(l->key, key)) |
19baf839 | 1527 | return 0; |
c877efb2 SH |
1528 | |
1529 | /* | |
1530 | * Key found. | |
1531 | * Remove the leaf and rebalance the tree | |
19baf839 RO |
1532 | */ |
1533 | ||
1534 | t->revision++; | |
1535 | t->size--; | |
1536 | ||
2373ce1c | 1537 | preempt_disable(); |
19baf839 RO |
1538 | tp = NODE_PARENT(n); |
1539 | tnode_free((struct tnode *) n); | |
1540 | ||
c877efb2 | 1541 | if (tp) { |
19baf839 RO |
1542 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); |
1543 | put_child(t, (struct tnode *)tp, cindex, NULL); | |
2373ce1c | 1544 | rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); |
91b9a277 | 1545 | } else |
2373ce1c RO |
1546 | rcu_assign_pointer(t->trie, NULL); |
1547 | preempt_enable(); | |
19baf839 RO |
1548 | |
1549 | return 1; | |
1550 | } | |
1551 | ||
1552 | static int | |
1553 | fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | |
91b9a277 | 1554 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) |
19baf839 RO |
1555 | { |
1556 | struct trie *t = (struct trie *) tb->tb_data; | |
1557 | u32 key, mask; | |
1558 | int plen = r->rtm_dst_len; | |
1559 | u8 tos = r->rtm_tos; | |
1560 | struct fib_alias *fa, *fa_to_delete; | |
1561 | struct list_head *fa_head; | |
1562 | struct leaf *l; | |
91b9a277 OJ |
1563 | struct leaf_info *li; |
1564 | ||
19baf839 | 1565 | |
c877efb2 | 1566 | if (plen > 32) |
19baf839 RO |
1567 | return -EINVAL; |
1568 | ||
1569 | key = 0; | |
c877efb2 | 1570 | if (rta->rta_dst) |
19baf839 RO |
1571 | memcpy(&key, rta->rta_dst, 4); |
1572 | ||
1573 | key = ntohl(key); | |
91b9a277 | 1574 | mask = ntohl(inet_make_mask(plen)); |
19baf839 | 1575 | |
c877efb2 | 1576 | if (key & ~mask) |
19baf839 RO |
1577 | return -EINVAL; |
1578 | ||
1579 | key = key & mask; | |
1580 | l = fib_find_node(t, key); | |
1581 | ||
c877efb2 | 1582 | if (!l) |
19baf839 RO |
1583 | return -ESRCH; |
1584 | ||
1585 | fa_head = get_fa_head(l, plen); | |
1586 | fa = fib_find_alias(fa_head, tos, 0); | |
1587 | ||
1588 | if (!fa) | |
1589 | return -ESRCH; | |
1590 | ||
0c7770c7 | 1591 | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); |
19baf839 RO |
1592 | |
1593 | fa_to_delete = NULL; | |
1594 | fa_head = fa->fa_list.prev; | |
2373ce1c | 1595 | |
19baf839 RO |
1596 | list_for_each_entry(fa, fa_head, fa_list) { |
1597 | struct fib_info *fi = fa->fa_info; | |
1598 | ||
1599 | if (fa->fa_tos != tos) | |
1600 | break; | |
1601 | ||
1602 | if ((!r->rtm_type || | |
1603 | fa->fa_type == r->rtm_type) && | |
1604 | (r->rtm_scope == RT_SCOPE_NOWHERE || | |
1605 | fa->fa_scope == r->rtm_scope) && | |
1606 | (!r->rtm_protocol || | |
1607 | fi->fib_protocol == r->rtm_protocol) && | |
1608 | fib_nh_match(r, nlhdr, rta, fi) == 0) { | |
1609 | fa_to_delete = fa; | |
1610 | break; | |
1611 | } | |
1612 | } | |
1613 | ||
91b9a277 OJ |
1614 | if (!fa_to_delete) |
1615 | return -ESRCH; | |
19baf839 | 1616 | |
91b9a277 OJ |
1617 | fa = fa_to_delete; |
1618 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req); | |
1619 | ||
1620 | l = fib_find_node(t, key); | |
772cb712 | 1621 | li = find_leaf_info(l, plen); |
19baf839 | 1622 | |
2373ce1c | 1623 | list_del_rcu(&fa->fa_list); |
19baf839 | 1624 | |
91b9a277 | 1625 | if (list_empty(fa_head)) { |
2373ce1c | 1626 | hlist_del_rcu(&li->hlist); |
91b9a277 | 1627 | free_leaf_info(li); |
2373ce1c | 1628 | } |
19baf839 | 1629 | |
91b9a277 OJ |
1630 | if (hlist_empty(&l->list)) |
1631 | trie_leaf_remove(t, key); | |
19baf839 | 1632 | |
91b9a277 OJ |
1633 | if (fa->fa_state & FA_S_ACCESSED) |
1634 | rt_cache_flush(-1); | |
19baf839 | 1635 | |
2373ce1c RO |
1636 | fib_release_info(fa->fa_info); |
1637 | alias_free_mem_rcu(fa); | |
91b9a277 | 1638 | return 0; |
19baf839 RO |
1639 | } |
1640 | ||
1641 | static int trie_flush_list(struct trie *t, struct list_head *head) | |
1642 | { | |
1643 | struct fib_alias *fa, *fa_node; | |
1644 | int found = 0; | |
1645 | ||
1646 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | |
1647 | struct fib_info *fi = fa->fa_info; | |
19baf839 | 1648 | |
2373ce1c RO |
1649 | if (fi && (fi->fib_flags & RTNH_F_DEAD)) { |
1650 | list_del_rcu(&fa->fa_list); | |
1651 | fib_release_info(fa->fa_info); | |
1652 | alias_free_mem_rcu(fa); | |
19baf839 RO |
1653 | found++; |
1654 | } | |
1655 | } | |
1656 | return found; | |
1657 | } | |
1658 | ||
1659 | static int trie_flush_leaf(struct trie *t, struct leaf *l) | |
1660 | { | |
1661 | int found = 0; | |
1662 | struct hlist_head *lih = &l->list; | |
1663 | struct hlist_node *node, *tmp; | |
1664 | struct leaf_info *li = NULL; | |
1665 | ||
1666 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | |
19baf839 RO |
1667 | found += trie_flush_list(t, &li->falh); |
1668 | ||
1669 | if (list_empty(&li->falh)) { | |
2373ce1c | 1670 | hlist_del_rcu(&li->hlist); |
19baf839 RO |
1671 | free_leaf_info(li); |
1672 | } | |
1673 | } | |
1674 | return found; | |
1675 | } | |
1676 | ||
2373ce1c RO |
1677 | /* rcu_read_lock needs to be hold by caller from readside */ |
1678 | ||
19baf839 RO |
1679 | static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) |
1680 | { | |
1681 | struct node *c = (struct node *) thisleaf; | |
1682 | struct tnode *p; | |
1683 | int idx; | |
2373ce1c | 1684 | struct node *trie = rcu_dereference(t->trie); |
19baf839 | 1685 | |
c877efb2 | 1686 | if (c == NULL) { |
2373ce1c | 1687 | if (trie == NULL) |
19baf839 RO |
1688 | return NULL; |
1689 | ||
2373ce1c RO |
1690 | if (IS_LEAF(trie)) /* trie w. just a leaf */ |
1691 | return (struct leaf *) trie; | |
19baf839 | 1692 | |
2373ce1c | 1693 | p = (struct tnode*) trie; /* Start */ |
91b9a277 | 1694 | } else |
19baf839 | 1695 | p = (struct tnode *) NODE_PARENT(c); |
c877efb2 | 1696 | |
19baf839 RO |
1697 | while (p) { |
1698 | int pos, last; | |
1699 | ||
1700 | /* Find the next child of the parent */ | |
c877efb2 SH |
1701 | if (c) |
1702 | pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits); | |
1703 | else | |
19baf839 RO |
1704 | pos = 0; |
1705 | ||
1706 | last = 1 << p->bits; | |
91b9a277 | 1707 | for (idx = pos; idx < last ; idx++) { |
2373ce1c RO |
1708 | c = rcu_dereference(p->child[idx]); |
1709 | ||
1710 | if (!c) | |
91b9a277 OJ |
1711 | continue; |
1712 | ||
1713 | /* Decend if tnode */ | |
2373ce1c RO |
1714 | while (IS_TNODE(c)) { |
1715 | p = (struct tnode *) c; | |
1716 | idx = 0; | |
91b9a277 OJ |
1717 | |
1718 | /* Rightmost non-NULL branch */ | |
1719 | if (p && IS_TNODE(p)) | |
2373ce1c RO |
1720 | while (!(c = rcu_dereference(p->child[idx])) |
1721 | && idx < (1<<p->bits)) idx++; | |
91b9a277 OJ |
1722 | |
1723 | /* Done with this tnode? */ | |
2373ce1c | 1724 | if (idx >= (1 << p->bits) || !c) |
91b9a277 | 1725 | goto up; |
19baf839 | 1726 | } |
2373ce1c | 1727 | return (struct leaf *) c; |
19baf839 RO |
1728 | } |
1729 | up: | |
1730 | /* No more children go up one step */ | |
91b9a277 | 1731 | c = (struct node *) p; |
19baf839 RO |
1732 | p = (struct tnode *) NODE_PARENT(p); |
1733 | } | |
1734 | return NULL; /* Ready. Root of trie */ | |
1735 | } | |
1736 | ||
1737 | static int fn_trie_flush(struct fib_table *tb) | |
1738 | { | |
1739 | struct trie *t = (struct trie *) tb->tb_data; | |
1740 | struct leaf *ll = NULL, *l = NULL; | |
1741 | int found = 0, h; | |
1742 | ||
1743 | t->revision++; | |
1744 | ||
91b9a277 | 1745 | for (h = 0; (l = nextleaf(t, l)) != NULL; h++) { |
19baf839 RO |
1746 | found += trie_flush_leaf(t, l); |
1747 | ||
1748 | if (ll && hlist_empty(&ll->list)) | |
1749 | trie_leaf_remove(t, ll->key); | |
1750 | ll = l; | |
1751 | } | |
1752 | ||
1753 | if (ll && hlist_empty(&ll->list)) | |
1754 | trie_leaf_remove(t, ll->key); | |
1755 | ||
0c7770c7 | 1756 | pr_debug("trie_flush found=%d\n", found); |
19baf839 RO |
1757 | return found; |
1758 | } | |
1759 | ||
91b9a277 | 1760 | static int trie_last_dflt = -1; |
19baf839 RO |
1761 | |
1762 | static void | |
1763 | fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | |
1764 | { | |
1765 | struct trie *t = (struct trie *) tb->tb_data; | |
1766 | int order, last_idx; | |
1767 | struct fib_info *fi = NULL; | |
1768 | struct fib_info *last_resort; | |
1769 | struct fib_alias *fa = NULL; | |
1770 | struct list_head *fa_head; | |
1771 | struct leaf *l; | |
1772 | ||
1773 | last_idx = -1; | |
1774 | last_resort = NULL; | |
1775 | order = -1; | |
1776 | ||
2373ce1c | 1777 | rcu_read_lock(); |
c877efb2 | 1778 | |
19baf839 | 1779 | l = fib_find_node(t, 0); |
c877efb2 | 1780 | if (!l) |
19baf839 RO |
1781 | goto out; |
1782 | ||
1783 | fa_head = get_fa_head(l, 0); | |
c877efb2 | 1784 | if (!fa_head) |
19baf839 RO |
1785 | goto out; |
1786 | ||
c877efb2 | 1787 | if (list_empty(fa_head)) |
19baf839 RO |
1788 | goto out; |
1789 | ||
2373ce1c | 1790 | list_for_each_entry_rcu(fa, fa_head, fa_list) { |
19baf839 | 1791 | struct fib_info *next_fi = fa->fa_info; |
91b9a277 | 1792 | |
19baf839 RO |
1793 | if (fa->fa_scope != res->scope || |
1794 | fa->fa_type != RTN_UNICAST) | |
1795 | continue; | |
91b9a277 | 1796 | |
19baf839 RO |
1797 | if (next_fi->fib_priority > res->fi->fib_priority) |
1798 | break; | |
1799 | if (!next_fi->fib_nh[0].nh_gw || | |
1800 | next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) | |
1801 | continue; | |
1802 | fa->fa_state |= FA_S_ACCESSED; | |
91b9a277 | 1803 | |
19baf839 RO |
1804 | if (fi == NULL) { |
1805 | if (next_fi != res->fi) | |
1806 | break; | |
1807 | } else if (!fib_detect_death(fi, order, &last_resort, | |
1808 | &last_idx, &trie_last_dflt)) { | |
1809 | if (res->fi) | |
1810 | fib_info_put(res->fi); | |
1811 | res->fi = fi; | |
1812 | atomic_inc(&fi->fib_clntref); | |
1813 | trie_last_dflt = order; | |
1814 | goto out; | |
1815 | } | |
1816 | fi = next_fi; | |
1817 | order++; | |
1818 | } | |
1819 | if (order <= 0 || fi == NULL) { | |
1820 | trie_last_dflt = -1; | |
1821 | goto out; | |
1822 | } | |
1823 | ||
1824 | if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) { | |
1825 | if (res->fi) | |
1826 | fib_info_put(res->fi); | |
1827 | res->fi = fi; | |
1828 | atomic_inc(&fi->fib_clntref); | |
1829 | trie_last_dflt = order; | |
1830 | goto out; | |
1831 | } | |
1832 | if (last_idx >= 0) { | |
1833 | if (res->fi) | |
1834 | fib_info_put(res->fi); | |
1835 | res->fi = last_resort; | |
1836 | if (last_resort) | |
1837 | atomic_inc(&last_resort->fib_clntref); | |
1838 | } | |
1839 | trie_last_dflt = last_idx; | |
1840 | out:; | |
2373ce1c | 1841 | rcu_read_unlock(); |
19baf839 RO |
1842 | } |
1843 | ||
c877efb2 | 1844 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, |
19baf839 RO |
1845 | struct sk_buff *skb, struct netlink_callback *cb) |
1846 | { | |
1847 | int i, s_i; | |
1848 | struct fib_alias *fa; | |
1849 | ||
91b9a277 | 1850 | u32 xkey = htonl(key); |
19baf839 | 1851 | |
91b9a277 | 1852 | s_i = cb->args[3]; |
19baf839 RO |
1853 | i = 0; |
1854 | ||
2373ce1c RO |
1855 | /* rcu_read_lock is hold by caller */ |
1856 | ||
1857 | list_for_each_entry_rcu(fa, fah, fa_list) { | |
19baf839 RO |
1858 | if (i < s_i) { |
1859 | i++; | |
1860 | continue; | |
1861 | } | |
78c6671a | 1862 | BUG_ON(!fa->fa_info); |
19baf839 RO |
1863 | |
1864 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, | |
1865 | cb->nlh->nlmsg_seq, | |
1866 | RTM_NEWROUTE, | |
1867 | tb->tb_id, | |
1868 | fa->fa_type, | |
1869 | fa->fa_scope, | |
1870 | &xkey, | |
1871 | plen, | |
1872 | fa->fa_tos, | |
90f66914 | 1873 | fa->fa_info, 0) < 0) { |
19baf839 RO |
1874 | cb->args[3] = i; |
1875 | return -1; | |
91b9a277 | 1876 | } |
19baf839 RO |
1877 | i++; |
1878 | } | |
91b9a277 | 1879 | cb->args[3] = i; |
19baf839 RO |
1880 | return skb->len; |
1881 | } | |
1882 | ||
c877efb2 | 1883 | static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, |
19baf839 RO |
1884 | struct netlink_callback *cb) |
1885 | { | |
1886 | int h, s_h; | |
1887 | struct list_head *fa_head; | |
1888 | struct leaf *l = NULL; | |
19baf839 | 1889 | |
91b9a277 | 1890 | s_h = cb->args[2]; |
19baf839 | 1891 | |
91b9a277 | 1892 | for (h = 0; (l = nextleaf(t, l)) != NULL; h++) { |
19baf839 RO |
1893 | if (h < s_h) |
1894 | continue; | |
1895 | if (h > s_h) | |
1896 | memset(&cb->args[3], 0, | |
1897 | sizeof(cb->args) - 3*sizeof(cb->args[0])); | |
1898 | ||
1899 | fa_head = get_fa_head(l, plen); | |
91b9a277 | 1900 | |
c877efb2 | 1901 | if (!fa_head) |
19baf839 RO |
1902 | continue; |
1903 | ||
c877efb2 | 1904 | if (list_empty(fa_head)) |
19baf839 RO |
1905 | continue; |
1906 | ||
1907 | if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { | |
91b9a277 | 1908 | cb->args[2] = h; |
19baf839 RO |
1909 | return -1; |
1910 | } | |
1911 | } | |
91b9a277 | 1912 | cb->args[2] = h; |
19baf839 RO |
1913 | return skb->len; |
1914 | } | |
1915 | ||
1916 | static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) | |
1917 | { | |
1918 | int m, s_m; | |
1919 | struct trie *t = (struct trie *) tb->tb_data; | |
1920 | ||
1921 | s_m = cb->args[1]; | |
1922 | ||
2373ce1c | 1923 | rcu_read_lock(); |
91b9a277 | 1924 | for (m = 0; m <= 32; m++) { |
19baf839 RO |
1925 | if (m < s_m) |
1926 | continue; | |
1927 | if (m > s_m) | |
1928 | memset(&cb->args[2], 0, | |
91b9a277 | 1929 | sizeof(cb->args) - 2*sizeof(cb->args[0])); |
19baf839 RO |
1930 | |
1931 | if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { | |
1932 | cb->args[1] = m; | |
1933 | goto out; | |
1934 | } | |
1935 | } | |
2373ce1c | 1936 | rcu_read_unlock(); |
19baf839 RO |
1937 | cb->args[1] = m; |
1938 | return skb->len; | |
91b9a277 | 1939 | out: |
2373ce1c | 1940 | rcu_read_unlock(); |
19baf839 RO |
1941 | return -1; |
1942 | } | |
1943 | ||
1944 | /* Fix more generic FIB names for init later */ | |
1945 | ||
1946 | #ifdef CONFIG_IP_MULTIPLE_TABLES | |
1947 | struct fib_table * fib_hash_init(int id) | |
1948 | #else | |
1949 | struct fib_table * __init fib_hash_init(int id) | |
1950 | #endif | |
1951 | { | |
1952 | struct fib_table *tb; | |
1953 | struct trie *t; | |
1954 | ||
1955 | if (fn_alias_kmem == NULL) | |
1956 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", | |
1957 | sizeof(struct fib_alias), | |
1958 | 0, SLAB_HWCACHE_ALIGN, | |
1959 | NULL, NULL); | |
1960 | ||
1961 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), | |
1962 | GFP_KERNEL); | |
1963 | if (tb == NULL) | |
1964 | return NULL; | |
1965 | ||
1966 | tb->tb_id = id; | |
1967 | tb->tb_lookup = fn_trie_lookup; | |
1968 | tb->tb_insert = fn_trie_insert; | |
1969 | tb->tb_delete = fn_trie_delete; | |
1970 | tb->tb_flush = fn_trie_flush; | |
1971 | tb->tb_select_default = fn_trie_select_default; | |
1972 | tb->tb_dump = fn_trie_dump; | |
1973 | memset(tb->tb_data, 0, sizeof(struct trie)); | |
1974 | ||
1975 | t = (struct trie *) tb->tb_data; | |
1976 | ||
1977 | trie_init(t); | |
1978 | ||
c877efb2 | 1979 | if (id == RT_TABLE_LOCAL) |
91b9a277 | 1980 | trie_local = t; |
c877efb2 | 1981 | else if (id == RT_TABLE_MAIN) |
91b9a277 | 1982 | trie_main = t; |
19baf839 RO |
1983 | |
1984 | if (id == RT_TABLE_LOCAL) | |
78c6671a | 1985 | printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION); |
19baf839 RO |
1986 | |
1987 | return tb; | |
1988 | } | |
1989 | ||
cb7b593c SH |
1990 | #ifdef CONFIG_PROC_FS |
1991 | /* Depth first Trie walk iterator */ | |
1992 | struct fib_trie_iter { | |
1993 | struct tnode *tnode; | |
1994 | struct trie *trie; | |
1995 | unsigned index; | |
1996 | unsigned depth; | |
1997 | }; | |
19baf839 | 1998 | |
cb7b593c | 1999 | static struct node *fib_trie_get_next(struct fib_trie_iter *iter) |
19baf839 | 2000 | { |
cb7b593c SH |
2001 | struct tnode *tn = iter->tnode; |
2002 | unsigned cindex = iter->index; | |
2003 | struct tnode *p; | |
19baf839 | 2004 | |
cb7b593c SH |
2005 | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", |
2006 | iter->tnode, iter->index, iter->depth); | |
2007 | rescan: | |
2008 | while (cindex < (1<<tn->bits)) { | |
2009 | struct node *n = tnode_get_child(tn, cindex); | |
19baf839 | 2010 | |
cb7b593c SH |
2011 | if (n) { |
2012 | if (IS_LEAF(n)) { | |
2013 | iter->tnode = tn; | |
2014 | iter->index = cindex + 1; | |
2015 | } else { | |
2016 | /* push down one level */ | |
2017 | iter->tnode = (struct tnode *) n; | |
2018 | iter->index = 0; | |
2019 | ++iter->depth; | |
2020 | } | |
2021 | return n; | |
2022 | } | |
19baf839 | 2023 | |
cb7b593c SH |
2024 | ++cindex; |
2025 | } | |
91b9a277 | 2026 | |
cb7b593c SH |
2027 | /* Current node exhausted, pop back up */ |
2028 | p = NODE_PARENT(tn); | |
2029 | if (p) { | |
2030 | cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; | |
2031 | tn = p; | |
2032 | --iter->depth; | |
2033 | goto rescan; | |
19baf839 | 2034 | } |
cb7b593c SH |
2035 | |
2036 | /* got root? */ | |
2037 | return NULL; | |
19baf839 RO |
2038 | } |
2039 | ||
cb7b593c SH |
2040 | static struct node *fib_trie_get_first(struct fib_trie_iter *iter, |
2041 | struct trie *t) | |
19baf839 | 2042 | { |
5ddf0eb2 RO |
2043 | struct node *n ; |
2044 | ||
2045 | if(!t) | |
2046 | return NULL; | |
2047 | ||
2048 | n = rcu_dereference(t->trie); | |
2049 | ||
2050 | if(!iter) | |
2051 | return NULL; | |
19baf839 | 2052 | |
cb7b593c SH |
2053 | if (n && IS_TNODE(n)) { |
2054 | iter->tnode = (struct tnode *) n; | |
2055 | iter->trie = t; | |
2056 | iter->index = 0; | |
1d25cd6c | 2057 | iter->depth = 1; |
cb7b593c | 2058 | return n; |
91b9a277 | 2059 | } |
cb7b593c SH |
2060 | return NULL; |
2061 | } | |
91b9a277 | 2062 | |
cb7b593c SH |
2063 | static void trie_collect_stats(struct trie *t, struct trie_stat *s) |
2064 | { | |
2065 | struct node *n; | |
2066 | struct fib_trie_iter iter; | |
91b9a277 | 2067 | |
cb7b593c | 2068 | memset(s, 0, sizeof(*s)); |
91b9a277 | 2069 | |
cb7b593c SH |
2070 | rcu_read_lock(); |
2071 | for (n = fib_trie_get_first(&iter, t); n; | |
2072 | n = fib_trie_get_next(&iter)) { | |
2073 | if (IS_LEAF(n)) { | |
2074 | s->leaves++; | |
2075 | s->totdepth += iter.depth; | |
2076 | if (iter.depth > s->maxdepth) | |
2077 | s->maxdepth = iter.depth; | |
2078 | } else { | |
2079 | const struct tnode *tn = (const struct tnode *) n; | |
2080 | int i; | |
2081 | ||
2082 | s->tnodes++; | |
06ef921d RO |
2083 | if(tn->bits < MAX_STAT_DEPTH) |
2084 | s->nodesizes[tn->bits]++; | |
2085 | ||
cb7b593c SH |
2086 | for (i = 0; i < (1<<tn->bits); i++) |
2087 | if (!tn->child[i]) | |
2088 | s->nullpointers++; | |
19baf839 | 2089 | } |
19baf839 | 2090 | } |
2373ce1c | 2091 | rcu_read_unlock(); |
19baf839 RO |
2092 | } |
2093 | ||
cb7b593c SH |
2094 | /* |
2095 | * This outputs /proc/net/fib_triestats | |
2096 | */ | |
2097 | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | |
19baf839 | 2098 | { |
cb7b593c | 2099 | unsigned i, max, pointers, bytes, avdepth; |
c877efb2 | 2100 | |
cb7b593c SH |
2101 | if (stat->leaves) |
2102 | avdepth = stat->totdepth*100 / stat->leaves; | |
2103 | else | |
2104 | avdepth = 0; | |
91b9a277 | 2105 | |
cb7b593c SH |
2106 | seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); |
2107 | seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); | |
91b9a277 | 2108 | |
cb7b593c | 2109 | seq_printf(seq, "\tLeaves: %u\n", stat->leaves); |
91b9a277 | 2110 | |
cb7b593c SH |
2111 | bytes = sizeof(struct leaf) * stat->leaves; |
2112 | seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes); | |
2113 | bytes += sizeof(struct tnode) * stat->tnodes; | |
19baf839 | 2114 | |
06ef921d RO |
2115 | max = MAX_STAT_DEPTH; |
2116 | while (max > 0 && stat->nodesizes[max-1] == 0) | |
cb7b593c | 2117 | max--; |
19baf839 | 2118 | |
cb7b593c SH |
2119 | pointers = 0; |
2120 | for (i = 1; i <= max; i++) | |
2121 | if (stat->nodesizes[i] != 0) { | |
2122 | seq_printf(seq, " %d: %d", i, stat->nodesizes[i]); | |
2123 | pointers += (1<<i) * stat->nodesizes[i]; | |
2124 | } | |
2125 | seq_putc(seq, '\n'); | |
2126 | seq_printf(seq, "\tPointers: %d\n", pointers); | |
2373ce1c | 2127 | |
cb7b593c SH |
2128 | bytes += sizeof(struct node *) * pointers; |
2129 | seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers); | |
2130 | seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024); | |
2373ce1c | 2131 | |
cb7b593c SH |
2132 | #ifdef CONFIG_IP_FIB_TRIE_STATS |
2133 | seq_printf(seq, "Counters:\n---------\n"); | |
2134 | seq_printf(seq,"gets = %d\n", t->stats.gets); | |
2135 | seq_printf(seq,"backtracks = %d\n", t->stats.backtrack); | |
2136 | seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); | |
2137 | seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); | |
2138 | seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); | |
2139 | seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped); | |
2140 | #ifdef CLEAR_STATS | |
2141 | memset(&(t->stats), 0, sizeof(t->stats)); | |
2142 | #endif | |
2143 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ | |
2144 | } | |
19baf839 | 2145 | |
cb7b593c SH |
2146 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) |
2147 | { | |
2148 | struct trie_stat *stat; | |
91b9a277 | 2149 | |
cb7b593c SH |
2150 | stat = kmalloc(sizeof(*stat), GFP_KERNEL); |
2151 | if (!stat) | |
2152 | return -ENOMEM; | |
91b9a277 | 2153 | |
cb7b593c SH |
2154 | seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", |
2155 | sizeof(struct leaf), sizeof(struct tnode)); | |
91b9a277 | 2156 | |
cb7b593c SH |
2157 | if (trie_local) { |
2158 | seq_printf(seq, "Local:\n"); | |
2159 | trie_collect_stats(trie_local, stat); | |
2160 | trie_show_stats(seq, stat); | |
2161 | } | |
91b9a277 | 2162 | |
cb7b593c SH |
2163 | if (trie_main) { |
2164 | seq_printf(seq, "Main:\n"); | |
2165 | trie_collect_stats(trie_main, stat); | |
2166 | trie_show_stats(seq, stat); | |
19baf839 | 2167 | } |
cb7b593c | 2168 | kfree(stat); |
19baf839 | 2169 | |
cb7b593c | 2170 | return 0; |
19baf839 RO |
2171 | } |
2172 | ||
cb7b593c | 2173 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) |
19baf839 | 2174 | { |
cb7b593c | 2175 | return single_open(file, fib_triestat_seq_show, NULL); |
19baf839 RO |
2176 | } |
2177 | ||
cb7b593c SH |
2178 | static struct file_operations fib_triestat_fops = { |
2179 | .owner = THIS_MODULE, | |
2180 | .open = fib_triestat_seq_open, | |
2181 | .read = seq_read, | |
2182 | .llseek = seq_lseek, | |
2183 | .release = single_release, | |
2184 | }; | |
2185 | ||
2186 | static struct node *fib_trie_get_idx(struct fib_trie_iter *iter, | |
2187 | loff_t pos) | |
19baf839 | 2188 | { |
cb7b593c SH |
2189 | loff_t idx = 0; |
2190 | struct node *n; | |
2191 | ||
2192 | for (n = fib_trie_get_first(iter, trie_local); | |
2193 | n; ++idx, n = fib_trie_get_next(iter)) { | |
2194 | if (pos == idx) | |
2195 | return n; | |
2196 | } | |
2197 | ||
2198 | for (n = fib_trie_get_first(iter, trie_main); | |
2199 | n; ++idx, n = fib_trie_get_next(iter)) { | |
2200 | if (pos == idx) | |
2201 | return n; | |
2202 | } | |
19baf839 RO |
2203 | return NULL; |
2204 | } | |
2205 | ||
cb7b593c | 2206 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) |
19baf839 | 2207 | { |
cb7b593c SH |
2208 | rcu_read_lock(); |
2209 | if (*pos == 0) | |
91b9a277 | 2210 | return SEQ_START_TOKEN; |
cb7b593c | 2211 | return fib_trie_get_idx(seq->private, *pos - 1); |
19baf839 RO |
2212 | } |
2213 | ||
cb7b593c | 2214 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
19baf839 | 2215 | { |
cb7b593c SH |
2216 | struct fib_trie_iter *iter = seq->private; |
2217 | void *l = v; | |
2218 | ||
19baf839 | 2219 | ++*pos; |
91b9a277 | 2220 | if (v == SEQ_START_TOKEN) |
cb7b593c | 2221 | return fib_trie_get_idx(iter, 0); |
19baf839 | 2222 | |
cb7b593c SH |
2223 | v = fib_trie_get_next(iter); |
2224 | BUG_ON(v == l); | |
2225 | if (v) | |
2226 | return v; | |
19baf839 | 2227 | |
cb7b593c SH |
2228 | /* continue scan in next trie */ |
2229 | if (iter->trie == trie_local) | |
2230 | return fib_trie_get_first(iter, trie_main); | |
19baf839 | 2231 | |
cb7b593c SH |
2232 | return NULL; |
2233 | } | |
19baf839 | 2234 | |
cb7b593c | 2235 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) |
19baf839 | 2236 | { |
cb7b593c SH |
2237 | rcu_read_unlock(); |
2238 | } | |
91b9a277 | 2239 | |
cb7b593c SH |
2240 | static void seq_indent(struct seq_file *seq, int n) |
2241 | { | |
2242 | while (n-- > 0) seq_puts(seq, " "); | |
2243 | } | |
19baf839 | 2244 | |
cb7b593c SH |
2245 | static inline const char *rtn_scope(enum rt_scope_t s) |
2246 | { | |
2247 | static char buf[32]; | |
19baf839 | 2248 | |
cb7b593c SH |
2249 | switch(s) { |
2250 | case RT_SCOPE_UNIVERSE: return "universe"; | |
2251 | case RT_SCOPE_SITE: return "site"; | |
2252 | case RT_SCOPE_LINK: return "link"; | |
2253 | case RT_SCOPE_HOST: return "host"; | |
2254 | case RT_SCOPE_NOWHERE: return "nowhere"; | |
2255 | default: | |
2256 | snprintf(buf, sizeof(buf), "scope=%d", s); | |
2257 | return buf; | |
2258 | } | |
2259 | } | |
19baf839 | 2260 | |
cb7b593c SH |
2261 | static const char *rtn_type_names[__RTN_MAX] = { |
2262 | [RTN_UNSPEC] = "UNSPEC", | |
2263 | [RTN_UNICAST] = "UNICAST", | |
2264 | [RTN_LOCAL] = "LOCAL", | |
2265 | [RTN_BROADCAST] = "BROADCAST", | |
2266 | [RTN_ANYCAST] = "ANYCAST", | |
2267 | [RTN_MULTICAST] = "MULTICAST", | |
2268 | [RTN_BLACKHOLE] = "BLACKHOLE", | |
2269 | [RTN_UNREACHABLE] = "UNREACHABLE", | |
2270 | [RTN_PROHIBIT] = "PROHIBIT", | |
2271 | [RTN_THROW] = "THROW", | |
2272 | [RTN_NAT] = "NAT", | |
2273 | [RTN_XRESOLVE] = "XRESOLVE", | |
2274 | }; | |
19baf839 | 2275 | |
cb7b593c SH |
2276 | static inline const char *rtn_type(unsigned t) |
2277 | { | |
2278 | static char buf[32]; | |
19baf839 | 2279 | |
cb7b593c SH |
2280 | if (t < __RTN_MAX && rtn_type_names[t]) |
2281 | return rtn_type_names[t]; | |
2282 | snprintf(buf, sizeof(buf), "type %d", t); | |
2283 | return buf; | |
19baf839 RO |
2284 | } |
2285 | ||
cb7b593c SH |
2286 | /* Pretty print the trie */ |
2287 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2288 | { |
cb7b593c SH |
2289 | const struct fib_trie_iter *iter = seq->private; |
2290 | struct node *n = v; | |
c877efb2 | 2291 | |
cb7b593c SH |
2292 | if (v == SEQ_START_TOKEN) |
2293 | return 0; | |
19baf839 | 2294 | |
cb7b593c SH |
2295 | if (IS_TNODE(n)) { |
2296 | struct tnode *tn = (struct tnode *) n; | |
2297 | t_key prf = ntohl(MASK_PFX(tn->key, tn->pos)); | |
91b9a277 | 2298 | |
cb7b593c SH |
2299 | if (!NODE_PARENT(n)) { |
2300 | if (iter->trie == trie_local) | |
2301 | seq_puts(seq, "<local>:\n"); | |
2302 | else | |
2303 | seq_puts(seq, "<main>:\n"); | |
1d25cd6c RO |
2304 | } |
2305 | seq_indent(seq, iter->depth-1); | |
2306 | seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n", | |
2307 | NIPQUAD(prf), tn->pos, tn->bits, tn->full_children, | |
2308 | tn->empty_children); | |
2309 | ||
cb7b593c SH |
2310 | } else { |
2311 | struct leaf *l = (struct leaf *) n; | |
2312 | int i; | |
2313 | u32 val = ntohl(l->key); | |
2314 | ||
2315 | seq_indent(seq, iter->depth); | |
2316 | seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val)); | |
2317 | for (i = 32; i >= 0; i--) { | |
772cb712 | 2318 | struct leaf_info *li = find_leaf_info(l, i); |
cb7b593c SH |
2319 | if (li) { |
2320 | struct fib_alias *fa; | |
2321 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | |
2322 | seq_indent(seq, iter->depth+1); | |
2323 | seq_printf(seq, " /%d %s %s", i, | |
2324 | rtn_scope(fa->fa_scope), | |
2325 | rtn_type(fa->fa_type)); | |
2326 | if (fa->fa_tos) | |
2327 | seq_printf(seq, "tos =%d\n", | |
2328 | fa->fa_tos); | |
2329 | seq_putc(seq, '\n'); | |
2330 | } | |
2331 | } | |
2332 | } | |
19baf839 | 2333 | } |
cb7b593c | 2334 | |
19baf839 RO |
2335 | return 0; |
2336 | } | |
2337 | ||
cb7b593c SH |
2338 | static struct seq_operations fib_trie_seq_ops = { |
2339 | .start = fib_trie_seq_start, | |
2340 | .next = fib_trie_seq_next, | |
2341 | .stop = fib_trie_seq_stop, | |
2342 | .show = fib_trie_seq_show, | |
19baf839 RO |
2343 | }; |
2344 | ||
cb7b593c | 2345 | static int fib_trie_seq_open(struct inode *inode, struct file *file) |
19baf839 RO |
2346 | { |
2347 | struct seq_file *seq; | |
2348 | int rc = -ENOMEM; | |
cb7b593c | 2349 | struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL); |
19baf839 | 2350 | |
cb7b593c SH |
2351 | if (!s) |
2352 | goto out; | |
2353 | ||
2354 | rc = seq_open(file, &fib_trie_seq_ops); | |
19baf839 RO |
2355 | if (rc) |
2356 | goto out_kfree; | |
2357 | ||
cb7b593c SH |
2358 | seq = file->private_data; |
2359 | seq->private = s; | |
2360 | memset(s, 0, sizeof(*s)); | |
19baf839 RO |
2361 | out: |
2362 | return rc; | |
2363 | out_kfree: | |
cb7b593c | 2364 | kfree(s); |
19baf839 RO |
2365 | goto out; |
2366 | } | |
2367 | ||
cb7b593c SH |
2368 | static struct file_operations fib_trie_fops = { |
2369 | .owner = THIS_MODULE, | |
2370 | .open = fib_trie_seq_open, | |
2371 | .read = seq_read, | |
2372 | .llseek = seq_lseek, | |
c877efb2 | 2373 | .release = seq_release_private, |
19baf839 RO |
2374 | }; |
2375 | ||
cb7b593c | 2376 | static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi) |
19baf839 | 2377 | { |
cb7b593c SH |
2378 | static unsigned type2flags[RTN_MAX + 1] = { |
2379 | [7] = RTF_REJECT, [8] = RTF_REJECT, | |
2380 | }; | |
2381 | unsigned flags = type2flags[type]; | |
19baf839 | 2382 | |
cb7b593c SH |
2383 | if (fi && fi->fib_nh->nh_gw) |
2384 | flags |= RTF_GATEWAY; | |
2385 | if (mask == 0xFFFFFFFF) | |
2386 | flags |= RTF_HOST; | |
2387 | flags |= RTF_UP; | |
2388 | return flags; | |
19baf839 RO |
2389 | } |
2390 | ||
cb7b593c SH |
2391 | /* |
2392 | * This outputs /proc/net/route. | |
2393 | * The format of the file is not supposed to be changed | |
2394 | * and needs to be same as fib_hash output to avoid breaking | |
2395 | * legacy utilities | |
2396 | */ | |
2397 | static int fib_route_seq_show(struct seq_file *seq, void *v) | |
19baf839 | 2398 | { |
c9e53cbe | 2399 | const struct fib_trie_iter *iter = seq->private; |
cb7b593c SH |
2400 | struct leaf *l = v; |
2401 | int i; | |
2402 | char bf[128]; | |
19baf839 | 2403 | |
cb7b593c SH |
2404 | if (v == SEQ_START_TOKEN) { |
2405 | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | |
2406 | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | |
2407 | "\tWindow\tIRTT"); | |
2408 | return 0; | |
2409 | } | |
19baf839 | 2410 | |
c9e53cbe PM |
2411 | if (iter->trie == trie_local) |
2412 | return 0; | |
cb7b593c SH |
2413 | if (IS_TNODE(l)) |
2414 | return 0; | |
19baf839 | 2415 | |
cb7b593c | 2416 | for (i=32; i>=0; i--) { |
772cb712 | 2417 | struct leaf_info *li = find_leaf_info(l, i); |
cb7b593c SH |
2418 | struct fib_alias *fa; |
2419 | u32 mask, prefix; | |
91b9a277 | 2420 | |
cb7b593c SH |
2421 | if (!li) |
2422 | continue; | |
19baf839 | 2423 | |
cb7b593c SH |
2424 | mask = inet_make_mask(li->plen); |
2425 | prefix = htonl(l->key); | |
19baf839 | 2426 | |
cb7b593c | 2427 | list_for_each_entry_rcu(fa, &li->falh, fa_list) { |
1371e37d | 2428 | const struct fib_info *fi = fa->fa_info; |
cb7b593c | 2429 | unsigned flags = fib_flag_trans(fa->fa_type, mask, fi); |
19baf839 | 2430 | |
cb7b593c SH |
2431 | if (fa->fa_type == RTN_BROADCAST |
2432 | || fa->fa_type == RTN_MULTICAST) | |
2433 | continue; | |
19baf839 | 2434 | |
cb7b593c SH |
2435 | if (fi) |
2436 | snprintf(bf, sizeof(bf), | |
2437 | "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u", | |
2438 | fi->fib_dev ? fi->fib_dev->name : "*", | |
2439 | prefix, | |
2440 | fi->fib_nh->nh_gw, flags, 0, 0, | |
2441 | fi->fib_priority, | |
2442 | mask, | |
2443 | (fi->fib_advmss ? fi->fib_advmss + 40 : 0), | |
2444 | fi->fib_window, | |
2445 | fi->fib_rtt >> 3); | |
2446 | else | |
2447 | snprintf(bf, sizeof(bf), | |
2448 | "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u", | |
2449 | prefix, 0, flags, 0, 0, 0, | |
2450 | mask, 0, 0, 0); | |
19baf839 | 2451 | |
cb7b593c SH |
2452 | seq_printf(seq, "%-127s\n", bf); |
2453 | } | |
19baf839 RO |
2454 | } |
2455 | ||
2456 | return 0; | |
2457 | } | |
2458 | ||
cb7b593c SH |
2459 | static struct seq_operations fib_route_seq_ops = { |
2460 | .start = fib_trie_seq_start, | |
2461 | .next = fib_trie_seq_next, | |
2462 | .stop = fib_trie_seq_stop, | |
2463 | .show = fib_route_seq_show, | |
19baf839 RO |
2464 | }; |
2465 | ||
cb7b593c | 2466 | static int fib_route_seq_open(struct inode *inode, struct file *file) |
19baf839 RO |
2467 | { |
2468 | struct seq_file *seq; | |
2469 | int rc = -ENOMEM; | |
cb7b593c | 2470 | struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL); |
19baf839 | 2471 | |
cb7b593c SH |
2472 | if (!s) |
2473 | goto out; | |
2474 | ||
2475 | rc = seq_open(file, &fib_route_seq_ops); | |
19baf839 RO |
2476 | if (rc) |
2477 | goto out_kfree; | |
2478 | ||
cb7b593c SH |
2479 | seq = file->private_data; |
2480 | seq->private = s; | |
2481 | memset(s, 0, sizeof(*s)); | |
19baf839 RO |
2482 | out: |
2483 | return rc; | |
2484 | out_kfree: | |
cb7b593c | 2485 | kfree(s); |
19baf839 RO |
2486 | goto out; |
2487 | } | |
2488 | ||
cb7b593c SH |
2489 | static struct file_operations fib_route_fops = { |
2490 | .owner = THIS_MODULE, | |
2491 | .open = fib_route_seq_open, | |
2492 | .read = seq_read, | |
2493 | .llseek = seq_lseek, | |
2494 | .release = seq_release_private, | |
19baf839 RO |
2495 | }; |
2496 | ||
2497 | int __init fib_proc_init(void) | |
2498 | { | |
cb7b593c SH |
2499 | if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops)) |
2500 | goto out1; | |
2501 | ||
2502 | if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops)) | |
2503 | goto out2; | |
2504 | ||
2505 | if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops)) | |
2506 | goto out3; | |
2507 | ||
19baf839 | 2508 | return 0; |
cb7b593c SH |
2509 | |
2510 | out3: | |
2511 | proc_net_remove("fib_triestat"); | |
2512 | out2: | |
2513 | proc_net_remove("fib_trie"); | |
2514 | out1: | |
2515 | return -ENOMEM; | |
19baf839 RO |
2516 | } |
2517 | ||
2518 | void __init fib_proc_exit(void) | |
2519 | { | |
2520 | proc_net_remove("fib_trie"); | |
cb7b593c SH |
2521 | proc_net_remove("fib_triestat"); |
2522 | proc_net_remove("route"); | |
19baf839 RO |
2523 | } |
2524 | ||
2525 | #endif /* CONFIG_PROC_FS */ |