]>
Commit | Line | Data |
---|---|---|
535c6a53 JU |
1 | /* |
2 | * Intel 3000/3010 Memory Controller kernel module | |
3 | * Copyright (C) 2007 Akamai Technologies, Inc. | |
4 | * Shamelessly copied from: | |
5 | * Intel D82875P Memory Controller kernel module | |
6 | * (C) 2003 Linux Networx (http://lnxi.com) | |
7 | * | |
8 | * This file may be distributed under the terms of the | |
9 | * GNU General Public License. | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | #include <linux/init.h> | |
14 | #include <linux/pci.h> | |
15 | #include <linux/pci_ids.h> | |
16 | #include <linux/slab.h> | |
17 | #include "edac_core.h" | |
18 | ||
19 | #define I3000_REVISION "1.1" | |
20 | ||
21 | #define EDAC_MOD_STR "i3000_edac" | |
22 | ||
23 | #define I3000_RANKS 8 | |
24 | #define I3000_RANKS_PER_CHANNEL 4 | |
25 | #define I3000_CHANNELS 2 | |
26 | ||
27 | /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ | |
28 | ||
29 | #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ | |
30 | #define I3000_MCHBAR_MASK 0xffffc000 | |
31 | #define I3000_MMR_WINDOW_SIZE 16384 | |
32 | ||
33 | #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) | |
34 | * | |
35 | * 7:1 reserved | |
36 | * 0 bit 32 of address | |
37 | */ | |
38 | #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) | |
39 | * | |
40 | * 31:7 address | |
41 | * 6:1 reserved | |
42 | * 0 Error channel 0/1 | |
43 | */ | |
44 | #define I3000_DEAP_GRAIN (1 << 7) | |
45 | #define I3000_DEAP_PFN(edeap, deap) ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \ | |
46 | ((deap) >> PAGE_SHIFT)) | |
47 | #define I3000_DEAP_OFFSET(deap) ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK) | |
48 | #define I3000_DEAP_CHANNEL(deap) ((deap) & 1) | |
49 | ||
50 | #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) | |
51 | * | |
52 | * 7:0 DRAM ECC Syndrome | |
53 | */ | |
54 | ||
55 | #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) | |
56 | * | |
57 | * 15:12 reserved | |
58 | * 11 MCH Thermal Sensor Event for SMI/SCI/SERR | |
59 | * 10 reserved | |
60 | * 9 LOCK to non-DRAM Memory Flag (LCKF) | |
61 | * 8 Received Refresh Timeout Flag (RRTOF) | |
62 | * 7:2 reserved | |
63 | * 1 Multiple-bit DRAM ECC Error Flag (DMERR) | |
64 | * 0 Single-bit DRAM ECC Error Flag (DSERR) | |
65 | */ | |
66 | #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ | |
67 | #define I3000_ERRSTS_UE 0x0002 | |
68 | #define I3000_ERRSTS_CE 0x0001 | |
69 | ||
70 | #define I3000_ERRCMD 0xca /* Error Command (16b) | |
71 | * | |
72 | * 15:12 reserved | |
73 | * 11 SERR on MCH Thermal Sensor Event (TSESERR) | |
74 | * 10 reserved | |
75 | * 9 SERR on LOCK to non-DRAM Memory (LCKERR) | |
76 | * 8 SERR on DRAM Refresh Timeout (DRTOERR) | |
77 | * 7:2 reserved | |
78 | * 1 SERR Multiple-Bit DRAM ECC Error (DMERR) | |
79 | * 0 SERR on Single-Bit ECC Error (DSERR) | |
80 | */ | |
81 | ||
82 | /* Intel MMIO register space - device 0 function 0 - MMR space */ | |
83 | ||
84 | #define I3000_DRB_SHIFT 25 /* 32MiB grain */ | |
85 | ||
86 | #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) | |
87 | * | |
88 | * 7:0 Channel 0 DRAM Rank Boundary Address | |
89 | */ | |
90 | #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) | |
91 | * | |
92 | * 7:0 Channel 1 DRAM Rank Boundary Address | |
93 | */ | |
94 | ||
95 | #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) | |
96 | * | |
97 | * 7 reserved | |
98 | * 6:4 DRAM odd Rank Attribute | |
99 | * 3 reserved | |
100 | * 2:0 DRAM even Rank Attribute | |
101 | * | |
102 | * Each attribute defines the page | |
103 | * size of the corresponding rank: | |
104 | * 000: unpopulated | |
105 | * 001: reserved | |
106 | * 010: 4 KB | |
107 | * 011: 8 KB | |
108 | * 100: 16 KB | |
109 | * Others: reserved | |
110 | */ | |
111 | #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ | |
112 | #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4) | |
113 | #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07) | |
114 | ||
115 | #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) | |
116 | * | |
117 | * 31:30 reserved | |
118 | * 29 Initialization Complete (IC) | |
119 | * 28:11 reserved | |
120 | * 10:8 Refresh Mode Select (RMS) | |
121 | * 7 reserved | |
122 | * 6:4 Mode Select (SMS) | |
123 | * 3:2 reserved | |
124 | * 1:0 DRAM Type (DT) | |
125 | */ | |
126 | ||
127 | #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) | |
128 | * | |
129 | * 31 Enhanced Addressing Enable (ENHADE) | |
130 | * 30:0 reserved | |
131 | */ | |
132 | ||
535c6a53 JU |
133 | enum i3000p_chips { |
134 | I3000 = 0, | |
135 | }; | |
136 | ||
137 | struct i3000_dev_info { | |
138 | const char *ctl_name; | |
139 | }; | |
140 | ||
141 | struct i3000_error_info { | |
142 | u16 errsts; | |
143 | u8 derrsyn; | |
144 | u8 edeap; | |
145 | u32 deap; | |
146 | u16 errsts2; | |
147 | }; | |
148 | ||
149 | static const struct i3000_dev_info i3000_devs[] = { | |
150 | [I3000] = { | |
052dfb45 | 151 | .ctl_name = "i3000"}, |
535c6a53 JU |
152 | }; |
153 | ||
f044091c | 154 | static struct pci_dev *mci_pdev; |
535c6a53 | 155 | static int i3000_registered = 1; |
456a2f95 | 156 | static struct edac_pci_ctl_info *i3000_pci; |
535c6a53 JU |
157 | |
158 | static void i3000_get_error_info(struct mem_ctl_info *mci, | |
36b8289e | 159 | struct i3000_error_info *info) |
535c6a53 JU |
160 | { |
161 | struct pci_dev *pdev; | |
162 | ||
163 | pdev = to_pci_dev(mci->dev); | |
164 | ||
165 | /* | |
166 | * This is a mess because there is no atomic way to read all the | |
167 | * registers at once and the registers can transition from CE being | |
168 | * overwritten by UE. | |
169 | */ | |
170 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); | |
171 | if (!(info->errsts & I3000_ERRSTS_BITS)) | |
172 | return; | |
173 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); | |
174 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); | |
175 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); | |
176 | pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); | |
177 | ||
178 | /* | |
179 | * If the error is the same for both reads then the first set | |
180 | * of reads is valid. If there is a change then there is a CE | |
181 | * with no info and the second set of reads is valid and | |
182 | * should be UE info. | |
183 | */ | |
184 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { | |
36b8289e DJ |
185 | pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); |
186 | pci_read_config_dword(pdev, I3000_DEAP, &info->deap); | |
187 | pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); | |
535c6a53 JU |
188 | } |
189 | ||
190 | /* Clear any error bits. | |
191 | * (Yes, we really clear bits by writing 1 to them.) | |
192 | */ | |
36b8289e DJ |
193 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
194 | I3000_ERRSTS_BITS); | |
535c6a53 JU |
195 | } |
196 | ||
197 | static int i3000_process_error_info(struct mem_ctl_info *mci, | |
052dfb45 DT |
198 | struct i3000_error_info *info, |
199 | int handle_errors) | |
535c6a53 JU |
200 | { |
201 | int row, multi_chan; | |
202 | int pfn, offset, channel; | |
203 | ||
204 | multi_chan = mci->csrows[0].nr_channels - 1; | |
205 | ||
206 | if (!(info->errsts & I3000_ERRSTS_BITS)) | |
207 | return 0; | |
208 | ||
209 | if (!handle_errors) | |
210 | return 1; | |
211 | ||
212 | if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { | |
213 | edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); | |
214 | info->errsts = info->errsts2; | |
215 | } | |
216 | ||
217 | pfn = I3000_DEAP_PFN(info->edeap, info->deap); | |
218 | offset = I3000_DEAP_OFFSET(info->deap); | |
219 | channel = I3000_DEAP_CHANNEL(info->deap); | |
220 | ||
221 | row = edac_mc_find_csrow_by_page(mci, pfn); | |
222 | ||
223 | if (info->errsts & I3000_ERRSTS_UE) | |
224 | edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE"); | |
225 | else | |
226 | edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row, | |
052dfb45 | 227 | multi_chan ? channel : 0, "i3000 CE"); |
535c6a53 JU |
228 | |
229 | return 1; | |
230 | } | |
231 | ||
232 | static void i3000_check(struct mem_ctl_info *mci) | |
233 | { | |
234 | struct i3000_error_info info; | |
235 | ||
236 | debugf1("MC%d: %s()\n", mci->mc_idx, __func__); | |
237 | i3000_get_error_info(mci, &info); | |
238 | i3000_process_error_info(mci, &info, 1); | |
239 | } | |
240 | ||
241 | static int i3000_is_interleaved(const unsigned char *c0dra, | |
242 | const unsigned char *c1dra, | |
243 | const unsigned char *c0drb, | |
244 | const unsigned char *c1drb) | |
245 | { | |
246 | int i; | |
247 | ||
248 | /* If the channels aren't populated identically then | |
249 | * we're not interleaved. | |
250 | */ | |
251 | for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) | |
252 | if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) || | |
052dfb45 DT |
253 | EVEN_RANK_ATTRIB(c0dra[i]) != |
254 | EVEN_RANK_ATTRIB(c1dra[i])) | |
535c6a53 JU |
255 | return 0; |
256 | ||
257 | /* If the rank boundaries for the two channels are different | |
258 | * then we're not interleaved. | |
259 | */ | |
260 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) | |
261 | if (c0drb[i] != c1drb[i]) | |
262 | return 0; | |
263 | ||
264 | return 1; | |
265 | } | |
266 | ||
267 | static int i3000_probe1(struct pci_dev *pdev, int dev_idx) | |
268 | { | |
269 | int rc; | |
270 | int i; | |
271 | struct mem_ctl_info *mci = NULL; | |
272 | unsigned long last_cumul_size; | |
273 | int interleaved, nr_channels; | |
274 | unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; | |
275 | unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; | |
276 | unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; | |
277 | unsigned long mchbar; | |
278 | void *window; | |
279 | ||
280 | debugf0("MC: %s()\n", __func__); | |
281 | ||
36b8289e | 282 | pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); |
535c6a53 JU |
283 | mchbar &= I3000_MCHBAR_MASK; |
284 | window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); | |
285 | if (!window) { | |
36b8289e | 286 | printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", |
052dfb45 | 287 | mchbar); |
535c6a53 JU |
288 | return -ENODEV; |
289 | } | |
290 | ||
36b8289e DJ |
291 | c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ |
292 | c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ | |
293 | c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ | |
294 | c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ | |
535c6a53 JU |
295 | |
296 | for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { | |
297 | c0drb[i] = readb(window + I3000_C0DRB + i); | |
298 | c1drb[i] = readb(window + I3000_C1DRB + i); | |
299 | } | |
300 | ||
301 | iounmap(window); | |
302 | ||
303 | /* Figure out how many channels we have. | |
304 | * | |
305 | * If we have what the datasheet calls "asymmetric channels" | |
306 | * (essentially the same as what was called "virtual single | |
307 | * channel mode" in the i82875) then it's a single channel as | |
308 | * far as EDAC is concerned. | |
309 | */ | |
310 | interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); | |
311 | nr_channels = interleaved ? 2 : 1; | |
312 | mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels); | |
313 | if (!mci) | |
314 | return -ENOMEM; | |
315 | ||
316 | debugf3("MC: %s(): init mci\n", __func__); | |
317 | ||
318 | mci->dev = &pdev->dev; | |
319 | mci->mtype_cap = MEM_FLAG_DDR2; | |
320 | ||
321 | mci->edac_ctl_cap = EDAC_FLAG_SECDED; | |
322 | mci->edac_cap = EDAC_FLAG_SECDED; | |
323 | ||
324 | mci->mod_name = EDAC_MOD_STR; | |
325 | mci->mod_ver = I3000_REVISION; | |
326 | mci->ctl_name = i3000_devs[dev_idx].ctl_name; | |
327 | mci->dev_name = pci_name(pdev); | |
328 | mci->edac_check = i3000_check; | |
329 | mci->ctl_page_to_phys = NULL; | |
330 | ||
331 | /* | |
332 | * The dram rank boundary (DRB) reg values are boundary addresses | |
333 | * for each DRAM rank with a granularity of 32MB. DRB regs are | |
334 | * cumulative; the last one will contain the total memory | |
335 | * contained in all ranks. | |
336 | * | |
337 | * If we're in interleaved mode then we're only walking through | |
338 | * the ranks of controller 0, so we double all the values we see. | |
339 | */ | |
340 | for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { | |
341 | u8 value; | |
342 | u32 cumul_size; | |
343 | struct csrow_info *csrow = &mci->csrows[i]; | |
344 | ||
345 | value = drb[i]; | |
346 | cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); | |
347 | if (interleaved) | |
348 | cumul_size <<= 1; | |
349 | debugf3("MC: %s(): (%d) cumul_size 0x%x\n", | |
350 | __func__, i, cumul_size); | |
351 | if (cumul_size == last_cumul_size) { | |
352 | csrow->mtype = MEM_EMPTY; | |
353 | continue; | |
354 | } | |
355 | ||
356 | csrow->first_page = last_cumul_size; | |
357 | csrow->last_page = cumul_size - 1; | |
358 | csrow->nr_pages = cumul_size - last_cumul_size; | |
359 | last_cumul_size = cumul_size; | |
360 | csrow->grain = I3000_DEAP_GRAIN; | |
361 | csrow->mtype = MEM_DDR2; | |
362 | csrow->dtype = DEV_UNKNOWN; | |
363 | csrow->edac_mode = EDAC_UNKNOWN; | |
364 | } | |
365 | ||
366 | /* Clear any error bits. | |
367 | * (Yes, we really clear bits by writing 1 to them.) | |
368 | */ | |
36b8289e DJ |
369 | pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, |
370 | I3000_ERRSTS_BITS); | |
535c6a53 JU |
371 | |
372 | rc = -ENODEV; | |
373 | if (edac_mc_add_mc(mci, 0)) { | |
374 | debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__); | |
375 | goto fail; | |
376 | } | |
377 | ||
456a2f95 DJ |
378 | /* allocating generic PCI control info */ |
379 | i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); | |
380 | if (!i3000_pci) { | |
381 | printk(KERN_WARNING | |
382 | "%s(): Unable to create PCI control\n", | |
383 | __func__); | |
384 | printk(KERN_WARNING | |
385 | "%s(): PCI error report via EDAC not setup\n", | |
386 | __func__); | |
387 | } | |
388 | ||
535c6a53 JU |
389 | /* get this far and it's successful */ |
390 | debugf3("MC: %s(): success\n", __func__); | |
391 | return 0; | |
392 | ||
393 | fail: | |
394 | if (mci) | |
395 | edac_mc_free(mci); | |
396 | ||
397 | return rc; | |
398 | } | |
399 | ||
400 | /* returns count (>= 0), or negative on error */ | |
401 | static int __devinit i3000_init_one(struct pci_dev *pdev, | |
052dfb45 | 402 | const struct pci_device_id *ent) |
535c6a53 JU |
403 | { |
404 | int rc; | |
405 | ||
406 | debugf0("MC: %s()\n", __func__); | |
407 | ||
408 | if (pci_enable_device(pdev) < 0) | |
409 | return -EIO; | |
410 | ||
411 | rc = i3000_probe1(pdev, ent->driver_data); | |
412 | if (mci_pdev == NULL) | |
413 | mci_pdev = pci_dev_get(pdev); | |
414 | ||
415 | return rc; | |
416 | } | |
417 | ||
418 | static void __devexit i3000_remove_one(struct pci_dev *pdev) | |
419 | { | |
420 | struct mem_ctl_info *mci; | |
421 | ||
422 | debugf0("%s()\n", __func__); | |
423 | ||
456a2f95 DJ |
424 | if (i3000_pci) |
425 | edac_pci_release_generic_ctl(i3000_pci); | |
426 | ||
535c6a53 JU |
427 | if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) |
428 | return; | |
429 | ||
430 | edac_mc_free(mci); | |
431 | } | |
432 | ||
433 | static const struct pci_device_id i3000_pci_tbl[] __devinitdata = { | |
434 | { | |
36b8289e DJ |
435 | PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
436 | I3000}, | |
535c6a53 | 437 | { |
36b8289e DJ |
438 | 0, |
439 | } /* 0 terminated list. */ | |
535c6a53 JU |
440 | }; |
441 | ||
442 | MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); | |
443 | ||
444 | static struct pci_driver i3000_driver = { | |
445 | .name = EDAC_MOD_STR, | |
446 | .probe = i3000_init_one, | |
447 | .remove = __devexit_p(i3000_remove_one), | |
448 | .id_table = i3000_pci_tbl, | |
449 | }; | |
450 | ||
451 | static int __init i3000_init(void) | |
452 | { | |
453 | int pci_rc; | |
454 | ||
455 | debugf3("MC: %s()\n", __func__); | |
456 | pci_rc = pci_register_driver(&i3000_driver); | |
457 | if (pci_rc < 0) | |
458 | goto fail0; | |
459 | ||
460 | if (mci_pdev == NULL) { | |
461 | i3000_registered = 0; | |
462 | mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | |
052dfb45 | 463 | PCI_DEVICE_ID_INTEL_3000_HB, NULL); |
535c6a53 JU |
464 | if (!mci_pdev) { |
465 | debugf0("i3000 pci_get_device fail\n"); | |
466 | pci_rc = -ENODEV; | |
467 | goto fail1; | |
468 | } | |
469 | ||
470 | pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); | |
471 | if (pci_rc < 0) { | |
472 | debugf0("i3000 init fail\n"); | |
473 | pci_rc = -ENODEV; | |
474 | goto fail1; | |
475 | } | |
476 | } | |
477 | ||
478 | return 0; | |
479 | ||
052dfb45 | 480 | fail1: |
535c6a53 JU |
481 | pci_unregister_driver(&i3000_driver); |
482 | ||
052dfb45 | 483 | fail0: |
535c6a53 JU |
484 | if (mci_pdev) |
485 | pci_dev_put(mci_pdev); | |
486 | ||
487 | return pci_rc; | |
488 | } | |
489 | ||
490 | static void __exit i3000_exit(void) | |
491 | { | |
492 | debugf3("MC: %s()\n", __func__); | |
493 | ||
494 | pci_unregister_driver(&i3000_driver); | |
495 | if (!i3000_registered) { | |
496 | i3000_remove_one(mci_pdev); | |
497 | pci_dev_put(mci_pdev); | |
498 | } | |
499 | } | |
500 | ||
501 | module_init(i3000_init); | |
502 | module_exit(i3000_exit); | |
503 | ||
504 | MODULE_LICENSE("GPL"); | |
505 | MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); | |
506 | MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); |