]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/drivers/block/as-iosched.c | |
3 | * | |
4 | * Anticipatory & deadline i/o scheduler. | |
5 | * | |
6 | * Copyright (C) 2002 Jens Axboe <[email protected]> | |
7 | * Nick Piggin <[email protected]> | |
8 | * | |
9 | */ | |
10 | #include <linux/kernel.h> | |
11 | #include <linux/fs.h> | |
12 | #include <linux/blkdev.h> | |
13 | #include <linux/elevator.h> | |
14 | #include <linux/bio.h> | |
15 | #include <linux/config.h> | |
16 | #include <linux/module.h> | |
17 | #include <linux/slab.h> | |
18 | #include <linux/init.h> | |
19 | #include <linux/compiler.h> | |
20 | #include <linux/hash.h> | |
21 | #include <linux/rbtree.h> | |
22 | #include <linux/interrupt.h> | |
23 | ||
24 | #define REQ_SYNC 1 | |
25 | #define REQ_ASYNC 0 | |
26 | ||
27 | /* | |
28 | * See Documentation/block/as-iosched.txt | |
29 | */ | |
30 | ||
31 | /* | |
32 | * max time before a read is submitted. | |
33 | */ | |
34 | #define default_read_expire (HZ / 8) | |
35 | ||
36 | /* | |
37 | * ditto for writes, these limits are not hard, even | |
38 | * if the disk is capable of satisfying them. | |
39 | */ | |
40 | #define default_write_expire (HZ / 4) | |
41 | ||
42 | /* | |
43 | * read_batch_expire describes how long we will allow a stream of reads to | |
44 | * persist before looking to see whether it is time to switch over to writes. | |
45 | */ | |
46 | #define default_read_batch_expire (HZ / 2) | |
47 | ||
48 | /* | |
49 | * write_batch_expire describes how long we want a stream of writes to run for. | |
50 | * This is not a hard limit, but a target we set for the auto-tuning thingy. | |
51 | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | |
52 | * a short amount of time... | |
53 | */ | |
54 | #define default_write_batch_expire (HZ / 8) | |
55 | ||
56 | /* | |
57 | * max time we may wait to anticipate a read (default around 6ms) | |
58 | */ | |
59 | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | |
60 | ||
61 | /* | |
62 | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | |
63 | * however huge values tend to interfere and not decay fast enough. A program | |
64 | * might be in a non-io phase of operation. Waiting on user input for example, | |
65 | * or doing a lengthy computation. A small penalty can be justified there, and | |
66 | * will still catch out those processes that constantly have large thinktimes. | |
67 | */ | |
68 | #define MAX_THINKTIME (HZ/50UL) | |
69 | ||
70 | /* Bits in as_io_context.state */ | |
71 | enum as_io_states { | |
72 | AS_TASK_RUNNING=0, /* Process has not exitted */ | |
73 | AS_TASK_IOSTARTED, /* Process has started some IO */ | |
74 | AS_TASK_IORUNNING, /* Process has completed some IO */ | |
75 | }; | |
76 | ||
77 | enum anticipation_status { | |
78 | ANTIC_OFF=0, /* Not anticipating (normal operation) */ | |
79 | ANTIC_WAIT_REQ, /* The last read has not yet completed */ | |
80 | ANTIC_WAIT_NEXT, /* Currently anticipating a request vs | |
81 | last read (which has completed) */ | |
82 | ANTIC_FINISHED, /* Anticipating but have found a candidate | |
83 | * or timed out */ | |
84 | }; | |
85 | ||
86 | struct as_data { | |
87 | /* | |
88 | * run time data | |
89 | */ | |
90 | ||
91 | struct request_queue *q; /* the "owner" queue */ | |
92 | ||
93 | /* | |
94 | * requests (as_rq s) are present on both sort_list and fifo_list | |
95 | */ | |
96 | struct rb_root sort_list[2]; | |
97 | struct list_head fifo_list[2]; | |
98 | ||
99 | struct as_rq *next_arq[2]; /* next in sort order */ | |
100 | sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ | |
101 | struct list_head *dispatch; /* driver dispatch queue */ | |
102 | struct list_head *hash; /* request hash */ | |
103 | ||
104 | unsigned long exit_prob; /* probability a task will exit while | |
105 | being waited on */ | |
106 | unsigned long new_ttime_total; /* mean thinktime on new proc */ | |
107 | unsigned long new_ttime_mean; | |
108 | u64 new_seek_total; /* mean seek on new proc */ | |
109 | sector_t new_seek_mean; | |
110 | ||
111 | unsigned long current_batch_expires; | |
112 | unsigned long last_check_fifo[2]; | |
113 | int changed_batch; /* 1: waiting for old batch to end */ | |
114 | int new_batch; /* 1: waiting on first read complete */ | |
115 | int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ | |
116 | int write_batch_count; /* max # of reqs in a write batch */ | |
117 | int current_write_count; /* how many requests left this batch */ | |
118 | int write_batch_idled; /* has the write batch gone idle? */ | |
119 | mempool_t *arq_pool; | |
120 | ||
121 | enum anticipation_status antic_status; | |
122 | unsigned long antic_start; /* jiffies: when it started */ | |
123 | struct timer_list antic_timer; /* anticipatory scheduling timer */ | |
124 | struct work_struct antic_work; /* Deferred unplugging */ | |
125 | struct io_context *io_context; /* Identify the expected process */ | |
126 | int ioc_finished; /* IO associated with io_context is finished */ | |
127 | int nr_dispatched; | |
128 | ||
129 | /* | |
130 | * settings that change how the i/o scheduler behaves | |
131 | */ | |
132 | unsigned long fifo_expire[2]; | |
133 | unsigned long batch_expire[2]; | |
134 | unsigned long antic_expire; | |
135 | }; | |
136 | ||
137 | #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo) | |
138 | ||
139 | /* | |
140 | * per-request data. | |
141 | */ | |
142 | enum arq_state { | |
143 | AS_RQ_NEW=0, /* New - not referenced and not on any lists */ | |
144 | AS_RQ_QUEUED, /* In the request queue. It belongs to the | |
145 | scheduler */ | |
146 | AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the | |
147 | driver now */ | |
148 | AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ | |
149 | AS_RQ_REMOVED, | |
150 | AS_RQ_MERGED, | |
151 | AS_RQ_POSTSCHED, /* when they shouldn't be */ | |
152 | }; | |
153 | ||
154 | struct as_rq { | |
155 | /* | |
156 | * rbtree index, key is the starting offset | |
157 | */ | |
158 | struct rb_node rb_node; | |
159 | sector_t rb_key; | |
160 | ||
161 | struct request *request; | |
162 | ||
163 | struct io_context *io_context; /* The submitting task */ | |
164 | ||
165 | /* | |
166 | * request hash, key is the ending offset (for back merge lookup) | |
167 | */ | |
168 | struct list_head hash; | |
169 | unsigned int on_hash; | |
170 | ||
171 | /* | |
172 | * expire fifo | |
173 | */ | |
174 | struct list_head fifo; | |
175 | unsigned long expires; | |
176 | ||
177 | unsigned int is_sync; | |
178 | enum arq_state state; | |
179 | }; | |
180 | ||
181 | #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private) | |
182 | ||
183 | static kmem_cache_t *arq_pool; | |
184 | ||
185 | /* | |
186 | * IO Context helper functions | |
187 | */ | |
188 | ||
189 | /* Called to deallocate the as_io_context */ | |
190 | static void free_as_io_context(struct as_io_context *aic) | |
191 | { | |
192 | kfree(aic); | |
193 | } | |
194 | ||
195 | /* Called when the task exits */ | |
196 | static void exit_as_io_context(struct as_io_context *aic) | |
197 | { | |
198 | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | |
199 | clear_bit(AS_TASK_RUNNING, &aic->state); | |
200 | } | |
201 | ||
202 | static struct as_io_context *alloc_as_io_context(void) | |
203 | { | |
204 | struct as_io_context *ret; | |
205 | ||
206 | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | |
207 | if (ret) { | |
208 | ret->dtor = free_as_io_context; | |
209 | ret->exit = exit_as_io_context; | |
210 | ret->state = 1 << AS_TASK_RUNNING; | |
211 | atomic_set(&ret->nr_queued, 0); | |
212 | atomic_set(&ret->nr_dispatched, 0); | |
213 | spin_lock_init(&ret->lock); | |
214 | ret->ttime_total = 0; | |
215 | ret->ttime_samples = 0; | |
216 | ret->ttime_mean = 0; | |
217 | ret->seek_total = 0; | |
218 | ret->seek_samples = 0; | |
219 | ret->seek_mean = 0; | |
220 | } | |
221 | ||
222 | return ret; | |
223 | } | |
224 | ||
225 | /* | |
226 | * If the current task has no AS IO context then create one and initialise it. | |
227 | * Then take a ref on the task's io context and return it. | |
228 | */ | |
229 | static struct io_context *as_get_io_context(void) | |
230 | { | |
231 | struct io_context *ioc = get_io_context(GFP_ATOMIC); | |
232 | if (ioc && !ioc->aic) { | |
233 | ioc->aic = alloc_as_io_context(); | |
234 | if (!ioc->aic) { | |
235 | put_io_context(ioc); | |
236 | ioc = NULL; | |
237 | } | |
238 | } | |
239 | return ioc; | |
240 | } | |
241 | ||
242 | /* | |
243 | * the back merge hash support functions | |
244 | */ | |
245 | static const int as_hash_shift = 6; | |
246 | #define AS_HASH_BLOCK(sec) ((sec) >> 3) | |
247 | #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift)) | |
248 | #define AS_HASH_ENTRIES (1 << as_hash_shift) | |
249 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | |
250 | #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash) | |
251 | ||
252 | static inline void __as_del_arq_hash(struct as_rq *arq) | |
253 | { | |
254 | arq->on_hash = 0; | |
255 | list_del_init(&arq->hash); | |
256 | } | |
257 | ||
258 | static inline void as_del_arq_hash(struct as_rq *arq) | |
259 | { | |
260 | if (arq->on_hash) | |
261 | __as_del_arq_hash(arq); | |
262 | } | |
263 | ||
264 | static void as_remove_merge_hints(request_queue_t *q, struct as_rq *arq) | |
265 | { | |
266 | as_del_arq_hash(arq); | |
267 | ||
268 | if (q->last_merge == arq->request) | |
269 | q->last_merge = NULL; | |
270 | } | |
271 | ||
272 | static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq) | |
273 | { | |
274 | struct request *rq = arq->request; | |
275 | ||
276 | BUG_ON(arq->on_hash); | |
277 | ||
278 | arq->on_hash = 1; | |
279 | list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]); | |
280 | } | |
281 | ||
282 | /* | |
283 | * move hot entry to front of chain | |
284 | */ | |
285 | static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq) | |
286 | { | |
287 | struct request *rq = arq->request; | |
288 | struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))]; | |
289 | ||
290 | if (!arq->on_hash) { | |
291 | WARN_ON(1); | |
292 | return; | |
293 | } | |
294 | ||
295 | if (arq->hash.prev != head) { | |
296 | list_del(&arq->hash); | |
297 | list_add(&arq->hash, head); | |
298 | } | |
299 | } | |
300 | ||
301 | static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset) | |
302 | { | |
303 | struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)]; | |
304 | struct list_head *entry, *next = hash_list->next; | |
305 | ||
306 | while ((entry = next) != hash_list) { | |
307 | struct as_rq *arq = list_entry_hash(entry); | |
308 | struct request *__rq = arq->request; | |
309 | ||
310 | next = entry->next; | |
311 | ||
312 | BUG_ON(!arq->on_hash); | |
313 | ||
314 | if (!rq_mergeable(__rq)) { | |
315 | as_remove_merge_hints(ad->q, arq); | |
316 | continue; | |
317 | } | |
318 | ||
319 | if (rq_hash_key(__rq) == offset) | |
320 | return __rq; | |
321 | } | |
322 | ||
323 | return NULL; | |
324 | } | |
325 | ||
326 | /* | |
327 | * rb tree support functions | |
328 | */ | |
329 | #define RB_NONE (2) | |
330 | #define RB_EMPTY(root) ((root)->rb_node == NULL) | |
331 | #define ON_RB(node) ((node)->rb_color != RB_NONE) | |
332 | #define RB_CLEAR(node) ((node)->rb_color = RB_NONE) | |
333 | #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node) | |
334 | #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync]) | |
335 | #define rq_rb_key(rq) (rq)->sector | |
336 | ||
337 | /* | |
338 | * as_find_first_arq finds the first (lowest sector numbered) request | |
339 | * for the specified data_dir. Used to sweep back to the start of the disk | |
340 | * (1-way elevator) after we process the last (highest sector) request. | |
341 | */ | |
342 | static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir) | |
343 | { | |
344 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | |
345 | ||
346 | if (n == NULL) | |
347 | return NULL; | |
348 | ||
349 | for (;;) { | |
350 | if (n->rb_left == NULL) | |
351 | return rb_entry_arq(n); | |
352 | ||
353 | n = n->rb_left; | |
354 | } | |
355 | } | |
356 | ||
357 | /* | |
358 | * Add the request to the rb tree if it is unique. If there is an alias (an | |
359 | * existing request against the same sector), which can happen when using | |
360 | * direct IO, then return the alias. | |
361 | */ | |
362 | static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq) | |
363 | { | |
364 | struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node; | |
365 | struct rb_node *parent = NULL; | |
366 | struct as_rq *__arq; | |
367 | struct request *rq = arq->request; | |
368 | ||
369 | arq->rb_key = rq_rb_key(rq); | |
370 | ||
371 | while (*p) { | |
372 | parent = *p; | |
373 | __arq = rb_entry_arq(parent); | |
374 | ||
375 | if (arq->rb_key < __arq->rb_key) | |
376 | p = &(*p)->rb_left; | |
377 | else if (arq->rb_key > __arq->rb_key) | |
378 | p = &(*p)->rb_right; | |
379 | else | |
380 | return __arq; | |
381 | } | |
382 | ||
383 | rb_link_node(&arq->rb_node, parent, p); | |
384 | rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | |
385 | ||
386 | return NULL; | |
387 | } | |
388 | ||
389 | static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq) | |
390 | { | |
391 | if (!ON_RB(&arq->rb_node)) { | |
392 | WARN_ON(1); | |
393 | return; | |
394 | } | |
395 | ||
396 | rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | |
397 | RB_CLEAR(&arq->rb_node); | |
398 | } | |
399 | ||
400 | static struct request * | |
401 | as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir) | |
402 | { | |
403 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | |
404 | struct as_rq *arq; | |
405 | ||
406 | while (n) { | |
407 | arq = rb_entry_arq(n); | |
408 | ||
409 | if (sector < arq->rb_key) | |
410 | n = n->rb_left; | |
411 | else if (sector > arq->rb_key) | |
412 | n = n->rb_right; | |
413 | else | |
414 | return arq->request; | |
415 | } | |
416 | ||
417 | return NULL; | |
418 | } | |
419 | ||
420 | /* | |
421 | * IO Scheduler proper | |
422 | */ | |
423 | ||
424 | #define MAXBACK (1024 * 1024) /* | |
425 | * Maximum distance the disk will go backward | |
426 | * for a request. | |
427 | */ | |
428 | ||
429 | #define BACK_PENALTY 2 | |
430 | ||
431 | /* | |
432 | * as_choose_req selects the preferred one of two requests of the same data_dir | |
433 | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | |
434 | */ | |
435 | static struct as_rq * | |
436 | as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2) | |
437 | { | |
438 | int data_dir; | |
439 | sector_t last, s1, s2, d1, d2; | |
440 | int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ | |
441 | const sector_t maxback = MAXBACK; | |
442 | ||
443 | if (arq1 == NULL || arq1 == arq2) | |
444 | return arq2; | |
445 | if (arq2 == NULL) | |
446 | return arq1; | |
447 | ||
448 | data_dir = arq1->is_sync; | |
449 | ||
450 | last = ad->last_sector[data_dir]; | |
451 | s1 = arq1->request->sector; | |
452 | s2 = arq2->request->sector; | |
453 | ||
454 | BUG_ON(data_dir != arq2->is_sync); | |
455 | ||
456 | /* | |
457 | * Strict one way elevator _except_ in the case where we allow | |
458 | * short backward seeks which are biased as twice the cost of a | |
459 | * similar forward seek. | |
460 | */ | |
461 | if (s1 >= last) | |
462 | d1 = s1 - last; | |
463 | else if (s1+maxback >= last) | |
464 | d1 = (last - s1)*BACK_PENALTY; | |
465 | else { | |
466 | r1_wrap = 1; | |
467 | d1 = 0; /* shut up, gcc */ | |
468 | } | |
469 | ||
470 | if (s2 >= last) | |
471 | d2 = s2 - last; | |
472 | else if (s2+maxback >= last) | |
473 | d2 = (last - s2)*BACK_PENALTY; | |
474 | else { | |
475 | r2_wrap = 1; | |
476 | d2 = 0; | |
477 | } | |
478 | ||
479 | /* Found required data */ | |
480 | if (!r1_wrap && r2_wrap) | |
481 | return arq1; | |
482 | else if (!r2_wrap && r1_wrap) | |
483 | return arq2; | |
484 | else if (r1_wrap && r2_wrap) { | |
485 | /* both behind the head */ | |
486 | if (s1 <= s2) | |
487 | return arq1; | |
488 | else | |
489 | return arq2; | |
490 | } | |
491 | ||
492 | /* Both requests in front of the head */ | |
493 | if (d1 < d2) | |
494 | return arq1; | |
495 | else if (d2 < d1) | |
496 | return arq2; | |
497 | else { | |
498 | if (s1 >= s2) | |
499 | return arq1; | |
500 | else | |
501 | return arq2; | |
502 | } | |
503 | } | |
504 | ||
505 | /* | |
506 | * as_find_next_arq finds the next request after @prev in elevator order. | |
507 | * this with as_choose_req form the basis for how the scheduler chooses | |
508 | * what request to process next. Anticipation works on top of this. | |
509 | */ | |
510 | static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last) | |
511 | { | |
512 | const int data_dir = last->is_sync; | |
513 | struct as_rq *ret; | |
514 | struct rb_node *rbnext = rb_next(&last->rb_node); | |
515 | struct rb_node *rbprev = rb_prev(&last->rb_node); | |
516 | struct as_rq *arq_next, *arq_prev; | |
517 | ||
518 | BUG_ON(!ON_RB(&last->rb_node)); | |
519 | ||
520 | if (rbprev) | |
521 | arq_prev = rb_entry_arq(rbprev); | |
522 | else | |
523 | arq_prev = NULL; | |
524 | ||
525 | if (rbnext) | |
526 | arq_next = rb_entry_arq(rbnext); | |
527 | else { | |
528 | arq_next = as_find_first_arq(ad, data_dir); | |
529 | if (arq_next == last) | |
530 | arq_next = NULL; | |
531 | } | |
532 | ||
533 | ret = as_choose_req(ad, arq_next, arq_prev); | |
534 | ||
535 | return ret; | |
536 | } | |
537 | ||
538 | /* | |
539 | * anticipatory scheduling functions follow | |
540 | */ | |
541 | ||
542 | /* | |
543 | * as_antic_expired tells us when we have anticipated too long. | |
544 | * The funny "absolute difference" math on the elapsed time is to handle | |
545 | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | |
546 | */ | |
547 | static int as_antic_expired(struct as_data *ad) | |
548 | { | |
549 | long delta_jif; | |
550 | ||
551 | delta_jif = jiffies - ad->antic_start; | |
552 | if (unlikely(delta_jif < 0)) | |
553 | delta_jif = -delta_jif; | |
554 | if (delta_jif < ad->antic_expire) | |
555 | return 0; | |
556 | ||
557 | return 1; | |
558 | } | |
559 | ||
560 | /* | |
561 | * as_antic_waitnext starts anticipating that a nice request will soon be | |
562 | * submitted. See also as_antic_waitreq | |
563 | */ | |
564 | static void as_antic_waitnext(struct as_data *ad) | |
565 | { | |
566 | unsigned long timeout; | |
567 | ||
568 | BUG_ON(ad->antic_status != ANTIC_OFF | |
569 | && ad->antic_status != ANTIC_WAIT_REQ); | |
570 | ||
571 | timeout = ad->antic_start + ad->antic_expire; | |
572 | ||
573 | mod_timer(&ad->antic_timer, timeout); | |
574 | ||
575 | ad->antic_status = ANTIC_WAIT_NEXT; | |
576 | } | |
577 | ||
578 | /* | |
579 | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | |
580 | * until the request that we're anticipating on has finished. This means we | |
581 | * are timing from when the candidate process wakes up hopefully. | |
582 | */ | |
583 | static void as_antic_waitreq(struct as_data *ad) | |
584 | { | |
585 | BUG_ON(ad->antic_status == ANTIC_FINISHED); | |
586 | if (ad->antic_status == ANTIC_OFF) { | |
587 | if (!ad->io_context || ad->ioc_finished) | |
588 | as_antic_waitnext(ad); | |
589 | else | |
590 | ad->antic_status = ANTIC_WAIT_REQ; | |
591 | } | |
592 | } | |
593 | ||
594 | /* | |
595 | * This is called directly by the functions in this file to stop anticipation. | |
596 | * We kill the timer and schedule a call to the request_fn asap. | |
597 | */ | |
598 | static void as_antic_stop(struct as_data *ad) | |
599 | { | |
600 | int status = ad->antic_status; | |
601 | ||
602 | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | |
603 | if (status == ANTIC_WAIT_NEXT) | |
604 | del_timer(&ad->antic_timer); | |
605 | ad->antic_status = ANTIC_FINISHED; | |
606 | /* see as_work_handler */ | |
607 | kblockd_schedule_work(&ad->antic_work); | |
608 | } | |
609 | } | |
610 | ||
611 | /* | |
612 | * as_antic_timeout is the timer function set by as_antic_waitnext. | |
613 | */ | |
614 | static void as_antic_timeout(unsigned long data) | |
615 | { | |
616 | struct request_queue *q = (struct request_queue *)data; | |
617 | struct as_data *ad = q->elevator->elevator_data; | |
618 | unsigned long flags; | |
619 | ||
620 | spin_lock_irqsave(q->queue_lock, flags); | |
621 | if (ad->antic_status == ANTIC_WAIT_REQ | |
622 | || ad->antic_status == ANTIC_WAIT_NEXT) { | |
623 | struct as_io_context *aic = ad->io_context->aic; | |
624 | ||
625 | ad->antic_status = ANTIC_FINISHED; | |
626 | kblockd_schedule_work(&ad->antic_work); | |
627 | ||
628 | if (aic->ttime_samples == 0) { | |
629 | /* process anticipated on has exitted or timed out*/ | |
630 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | |
631 | } | |
632 | } | |
633 | spin_unlock_irqrestore(q->queue_lock, flags); | |
634 | } | |
635 | ||
636 | /* | |
637 | * as_close_req decides if one request is considered "close" to the | |
638 | * previous one issued. | |
639 | */ | |
640 | static int as_close_req(struct as_data *ad, struct as_rq *arq) | |
641 | { | |
642 | unsigned long delay; /* milliseconds */ | |
643 | sector_t last = ad->last_sector[ad->batch_data_dir]; | |
644 | sector_t next = arq->request->sector; | |
645 | sector_t delta; /* acceptable close offset (in sectors) */ | |
646 | ||
647 | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | |
648 | delay = 0; | |
649 | else | |
650 | delay = ((jiffies - ad->antic_start) * 1000) / HZ; | |
651 | ||
652 | if (delay <= 1) | |
653 | delta = 64; | |
654 | else if (delay <= 20 && delay <= ad->antic_expire) | |
655 | delta = 64 << (delay-1); | |
656 | else | |
657 | return 1; | |
658 | ||
659 | return (last - (delta>>1) <= next) && (next <= last + delta); | |
660 | } | |
661 | ||
662 | /* | |
663 | * as_can_break_anticipation returns true if we have been anticipating this | |
664 | * request. | |
665 | * | |
666 | * It also returns true if the process against which we are anticipating | |
667 | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | |
668 | * dispatch it ASAP, because we know that application will not be submitting | |
669 | * any new reads. | |
670 | * | |
671 | * If the task which has submitted the request has exitted, break anticipation. | |
672 | * | |
673 | * If this task has queued some other IO, do not enter enticipation. | |
674 | */ | |
675 | static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq) | |
676 | { | |
677 | struct io_context *ioc; | |
678 | struct as_io_context *aic; | |
679 | sector_t s; | |
680 | ||
681 | ioc = ad->io_context; | |
682 | BUG_ON(!ioc); | |
683 | ||
684 | if (arq && ioc == arq->io_context) { | |
685 | /* request from same process */ | |
686 | return 1; | |
687 | } | |
688 | ||
689 | if (ad->ioc_finished && as_antic_expired(ad)) { | |
690 | /* | |
691 | * In this situation status should really be FINISHED, | |
692 | * however the timer hasn't had the chance to run yet. | |
693 | */ | |
694 | return 1; | |
695 | } | |
696 | ||
697 | aic = ioc->aic; | |
698 | if (!aic) | |
699 | return 0; | |
700 | ||
701 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | |
702 | /* process anticipated on has exitted */ | |
703 | if (aic->ttime_samples == 0) | |
704 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | |
705 | return 1; | |
706 | } | |
707 | ||
708 | if (atomic_read(&aic->nr_queued) > 0) { | |
709 | /* process has more requests queued */ | |
710 | return 1; | |
711 | } | |
712 | ||
713 | if (atomic_read(&aic->nr_dispatched) > 0) { | |
714 | /* process has more requests dispatched */ | |
715 | return 1; | |
716 | } | |
717 | ||
718 | if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) { | |
719 | /* | |
720 | * Found a close request that is not one of ours. | |
721 | * | |
722 | * This makes close requests from another process reset | |
723 | * our thinktime delay. Is generally useful when there are | |
724 | * two or more cooperating processes working in the same | |
725 | * area. | |
726 | */ | |
727 | spin_lock(&aic->lock); | |
728 | aic->last_end_request = jiffies; | |
729 | spin_unlock(&aic->lock); | |
730 | return 1; | |
731 | } | |
732 | ||
733 | ||
734 | if (aic->ttime_samples == 0) { | |
735 | if (ad->new_ttime_mean > ad->antic_expire) | |
736 | return 1; | |
737 | if (ad->exit_prob > 128) | |
738 | return 1; | |
739 | } else if (aic->ttime_mean > ad->antic_expire) { | |
740 | /* the process thinks too much between requests */ | |
741 | return 1; | |
742 | } | |
743 | ||
744 | if (!arq) | |
745 | return 0; | |
746 | ||
747 | if (ad->last_sector[REQ_SYNC] < arq->request->sector) | |
748 | s = arq->request->sector - ad->last_sector[REQ_SYNC]; | |
749 | else | |
750 | s = ad->last_sector[REQ_SYNC] - arq->request->sector; | |
751 | ||
752 | if (aic->seek_samples == 0) { | |
753 | /* | |
754 | * Process has just started IO. Use past statistics to | |
755 | * guage success possibility | |
756 | */ | |
757 | if (ad->new_seek_mean > s) { | |
758 | /* this request is better than what we're expecting */ | |
759 | return 1; | |
760 | } | |
761 | ||
762 | } else { | |
763 | if (aic->seek_mean > s) { | |
764 | /* this request is better than what we're expecting */ | |
765 | return 1; | |
766 | } | |
767 | } | |
768 | ||
769 | return 0; | |
770 | } | |
771 | ||
772 | /* | |
773 | * as_can_anticipate indicates weather we should either run arq | |
774 | * or keep anticipating a better request. | |
775 | */ | |
776 | static int as_can_anticipate(struct as_data *ad, struct as_rq *arq) | |
777 | { | |
778 | if (!ad->io_context) | |
779 | /* | |
780 | * Last request submitted was a write | |
781 | */ | |
782 | return 0; | |
783 | ||
784 | if (ad->antic_status == ANTIC_FINISHED) | |
785 | /* | |
786 | * Don't restart if we have just finished. Run the next request | |
787 | */ | |
788 | return 0; | |
789 | ||
790 | if (as_can_break_anticipation(ad, arq)) | |
791 | /* | |
792 | * This request is a good candidate. Don't keep anticipating, | |
793 | * run it. | |
794 | */ | |
795 | return 0; | |
796 | ||
797 | /* | |
798 | * OK from here, we haven't finished, and don't have a decent request! | |
799 | * Status is either ANTIC_OFF so start waiting, | |
800 | * ANTIC_WAIT_REQ so continue waiting for request to finish | |
801 | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | |
802 | * | |
803 | */ | |
804 | ||
805 | return 1; | |
806 | } | |
807 | ||
808 | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime) | |
809 | { | |
810 | /* fixed point: 1.0 == 1<<8 */ | |
811 | if (aic->ttime_samples == 0) { | |
812 | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | |
813 | ad->new_ttime_mean = ad->new_ttime_total / 256; | |
814 | ||
815 | ad->exit_prob = (7*ad->exit_prob)/8; | |
816 | } | |
817 | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | |
818 | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | |
819 | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | |
820 | } | |
821 | ||
822 | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist) | |
823 | { | |
824 | u64 total; | |
825 | ||
826 | if (aic->seek_samples == 0) { | |
827 | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | |
828 | ad->new_seek_mean = ad->new_seek_total / 256; | |
829 | } | |
830 | ||
831 | /* | |
832 | * Don't allow the seek distance to get too large from the | |
833 | * odd fragment, pagein, etc | |
834 | */ | |
835 | if (aic->seek_samples <= 60) /* second&third seek */ | |
836 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | |
837 | else | |
838 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); | |
839 | ||
840 | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | |
841 | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | |
842 | total = aic->seek_total + (aic->seek_samples/2); | |
843 | do_div(total, aic->seek_samples); | |
844 | aic->seek_mean = (sector_t)total; | |
845 | } | |
846 | ||
847 | /* | |
848 | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | |
849 | * updates @aic->ttime_mean based on that. It is called when a new | |
850 | * request is queued. | |
851 | */ | |
852 | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq) | |
853 | { | |
854 | struct as_rq *arq = RQ_DATA(rq); | |
855 | int data_dir = arq->is_sync; | |
856 | unsigned long thinktime; | |
857 | sector_t seek_dist; | |
858 | ||
859 | if (aic == NULL) | |
860 | return; | |
861 | ||
862 | if (data_dir == REQ_SYNC) { | |
863 | unsigned long in_flight = atomic_read(&aic->nr_queued) | |
864 | + atomic_read(&aic->nr_dispatched); | |
865 | spin_lock(&aic->lock); | |
866 | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | |
867 | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | |
868 | /* Calculate read -> read thinktime */ | |
869 | if (test_bit(AS_TASK_IORUNNING, &aic->state) | |
870 | && in_flight == 0) { | |
871 | thinktime = jiffies - aic->last_end_request; | |
872 | thinktime = min(thinktime, MAX_THINKTIME-1); | |
873 | } else | |
874 | thinktime = 0; | |
875 | as_update_thinktime(ad, aic, thinktime); | |
876 | ||
877 | /* Calculate read -> read seek distance */ | |
878 | if (aic->last_request_pos < rq->sector) | |
879 | seek_dist = rq->sector - aic->last_request_pos; | |
880 | else | |
881 | seek_dist = aic->last_request_pos - rq->sector; | |
882 | as_update_seekdist(ad, aic, seek_dist); | |
883 | } | |
884 | aic->last_request_pos = rq->sector + rq->nr_sectors; | |
885 | set_bit(AS_TASK_IOSTARTED, &aic->state); | |
886 | spin_unlock(&aic->lock); | |
887 | } | |
888 | } | |
889 | ||
890 | /* | |
891 | * as_update_arq must be called whenever a request (arq) is added to | |
892 | * the sort_list. This function keeps caches up to date, and checks if the | |
893 | * request might be one we are "anticipating" | |
894 | */ | |
895 | static void as_update_arq(struct as_data *ad, struct as_rq *arq) | |
896 | { | |
897 | const int data_dir = arq->is_sync; | |
898 | ||
899 | /* keep the next_arq cache up to date */ | |
900 | ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]); | |
901 | ||
902 | /* | |
903 | * have we been anticipating this request? | |
904 | * or does it come from the same process as the one we are anticipating | |
905 | * for? | |
906 | */ | |
907 | if (ad->antic_status == ANTIC_WAIT_REQ | |
908 | || ad->antic_status == ANTIC_WAIT_NEXT) { | |
909 | if (as_can_break_anticipation(ad, arq)) | |
910 | as_antic_stop(ad); | |
911 | } | |
912 | } | |
913 | ||
914 | /* | |
915 | * Gathers timings and resizes the write batch automatically | |
916 | */ | |
917 | static void update_write_batch(struct as_data *ad) | |
918 | { | |
919 | unsigned long batch = ad->batch_expire[REQ_ASYNC]; | |
920 | long write_time; | |
921 | ||
922 | write_time = (jiffies - ad->current_batch_expires) + batch; | |
923 | if (write_time < 0) | |
924 | write_time = 0; | |
925 | ||
926 | if (write_time > batch && !ad->write_batch_idled) { | |
927 | if (write_time > batch * 3) | |
928 | ad->write_batch_count /= 2; | |
929 | else | |
930 | ad->write_batch_count--; | |
931 | } else if (write_time < batch && ad->current_write_count == 0) { | |
932 | if (batch > write_time * 3) | |
933 | ad->write_batch_count *= 2; | |
934 | else | |
935 | ad->write_batch_count++; | |
936 | } | |
937 | ||
938 | if (ad->write_batch_count < 1) | |
939 | ad->write_batch_count = 1; | |
940 | } | |
941 | ||
942 | /* | |
943 | * as_completed_request is to be called when a request has completed and | |
944 | * returned something to the requesting process, be it an error or data. | |
945 | */ | |
946 | static void as_completed_request(request_queue_t *q, struct request *rq) | |
947 | { | |
948 | struct as_data *ad = q->elevator->elevator_data; | |
949 | struct as_rq *arq = RQ_DATA(rq); | |
950 | ||
951 | WARN_ON(!list_empty(&rq->queuelist)); | |
952 | ||
953 | if (arq->state == AS_RQ_PRESCHED) { | |
954 | WARN_ON(arq->io_context); | |
955 | goto out; | |
956 | } | |
957 | ||
958 | if (arq->state == AS_RQ_MERGED) | |
959 | goto out_ioc; | |
960 | ||
961 | if (arq->state != AS_RQ_REMOVED) { | |
962 | printk("arq->state %d\n", arq->state); | |
963 | WARN_ON(1); | |
964 | goto out; | |
965 | } | |
966 | ||
967 | if (!blk_fs_request(rq)) | |
968 | goto out; | |
969 | ||
970 | if (ad->changed_batch && ad->nr_dispatched == 1) { | |
971 | kblockd_schedule_work(&ad->antic_work); | |
972 | ad->changed_batch = 0; | |
973 | ||
974 | if (ad->batch_data_dir == REQ_SYNC) | |
975 | ad->new_batch = 1; | |
976 | } | |
977 | WARN_ON(ad->nr_dispatched == 0); | |
978 | ad->nr_dispatched--; | |
979 | ||
980 | /* | |
981 | * Start counting the batch from when a request of that direction is | |
982 | * actually serviced. This should help devices with big TCQ windows | |
983 | * and writeback caches | |
984 | */ | |
985 | if (ad->new_batch && ad->batch_data_dir == arq->is_sync) { | |
986 | update_write_batch(ad); | |
987 | ad->current_batch_expires = jiffies + | |
988 | ad->batch_expire[REQ_SYNC]; | |
989 | ad->new_batch = 0; | |
990 | } | |
991 | ||
992 | if (ad->io_context == arq->io_context && ad->io_context) { | |
993 | ad->antic_start = jiffies; | |
994 | ad->ioc_finished = 1; | |
995 | if (ad->antic_status == ANTIC_WAIT_REQ) { | |
996 | /* | |
997 | * We were waiting on this request, now anticipate | |
998 | * the next one | |
999 | */ | |
1000 | as_antic_waitnext(ad); | |
1001 | } | |
1002 | } | |
1003 | ||
1004 | out_ioc: | |
1005 | if (!arq->io_context) | |
1006 | goto out; | |
1007 | ||
1008 | if (arq->is_sync == REQ_SYNC) { | |
1009 | struct as_io_context *aic = arq->io_context->aic; | |
1010 | if (aic) { | |
1011 | spin_lock(&aic->lock); | |
1012 | set_bit(AS_TASK_IORUNNING, &aic->state); | |
1013 | aic->last_end_request = jiffies; | |
1014 | spin_unlock(&aic->lock); | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | put_io_context(arq->io_context); | |
1019 | out: | |
1020 | arq->state = AS_RQ_POSTSCHED; | |
1021 | } | |
1022 | ||
1023 | /* | |
1024 | * as_remove_queued_request removes a request from the pre dispatch queue | |
1025 | * without updating refcounts. It is expected the caller will drop the | |
1026 | * reference unless it replaces the request at somepart of the elevator | |
1027 | * (ie. the dispatch queue) | |
1028 | */ | |
1029 | static void as_remove_queued_request(request_queue_t *q, struct request *rq) | |
1030 | { | |
1031 | struct as_rq *arq = RQ_DATA(rq); | |
1032 | const int data_dir = arq->is_sync; | |
1033 | struct as_data *ad = q->elevator->elevator_data; | |
1034 | ||
1035 | WARN_ON(arq->state != AS_RQ_QUEUED); | |
1036 | ||
1037 | if (arq->io_context && arq->io_context->aic) { | |
1038 | BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued)); | |
1039 | atomic_dec(&arq->io_context->aic->nr_queued); | |
1040 | } | |
1041 | ||
1042 | /* | |
1043 | * Update the "next_arq" cache if we are about to remove its | |
1044 | * entry | |
1045 | */ | |
1046 | if (ad->next_arq[data_dir] == arq) | |
1047 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | |
1048 | ||
1049 | list_del_init(&arq->fifo); | |
1050 | as_remove_merge_hints(q, arq); | |
1051 | as_del_arq_rb(ad, arq); | |
1052 | } | |
1053 | ||
1054 | /* | |
1055 | * as_remove_dispatched_request is called to remove a request which has gone | |
1056 | * to the dispatch list. | |
1057 | */ | |
1058 | static void as_remove_dispatched_request(request_queue_t *q, struct request *rq) | |
1059 | { | |
1060 | struct as_rq *arq = RQ_DATA(rq); | |
1061 | struct as_io_context *aic; | |
1062 | ||
1063 | if (!arq) { | |
1064 | WARN_ON(1); | |
1065 | return; | |
1066 | } | |
1067 | ||
1068 | WARN_ON(arq->state != AS_RQ_DISPATCHED); | |
1069 | WARN_ON(ON_RB(&arq->rb_node)); | |
1070 | if (arq->io_context && arq->io_context->aic) { | |
1071 | aic = arq->io_context->aic; | |
1072 | if (aic) { | |
1073 | WARN_ON(!atomic_read(&aic->nr_dispatched)); | |
1074 | atomic_dec(&aic->nr_dispatched); | |
1075 | } | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | /* | |
1080 | * as_remove_request is called when a driver has finished with a request. | |
1081 | * This should be only called for dispatched requests, but for some reason | |
1082 | * a POWER4 box running hwscan it does not. | |
1083 | */ | |
1084 | static void as_remove_request(request_queue_t *q, struct request *rq) | |
1085 | { | |
1086 | struct as_rq *arq = RQ_DATA(rq); | |
1087 | ||
1088 | if (unlikely(arq->state == AS_RQ_NEW)) | |
1089 | goto out; | |
1090 | ||
1091 | if (ON_RB(&arq->rb_node)) { | |
1092 | if (arq->state != AS_RQ_QUEUED) { | |
1093 | printk("arq->state %d\n", arq->state); | |
1094 | WARN_ON(1); | |
1095 | goto out; | |
1096 | } | |
1097 | /* | |
1098 | * We'll lose the aliased request(s) here. I don't think this | |
1099 | * will ever happen, but if it does, hopefully someone will | |
1100 | * report it. | |
1101 | */ | |
1102 | WARN_ON(!list_empty(&rq->queuelist)); | |
1103 | as_remove_queued_request(q, rq); | |
1104 | } else { | |
1105 | if (arq->state != AS_RQ_DISPATCHED) { | |
1106 | printk("arq->state %d\n", arq->state); | |
1107 | WARN_ON(1); | |
1108 | goto out; | |
1109 | } | |
1110 | as_remove_dispatched_request(q, rq); | |
1111 | } | |
1112 | out: | |
1113 | arq->state = AS_RQ_REMOVED; | |
1114 | } | |
1115 | ||
1116 | /* | |
1117 | * as_fifo_expired returns 0 if there are no expired reads on the fifo, | |
1118 | * 1 otherwise. It is ratelimited so that we only perform the check once per | |
1119 | * `fifo_expire' interval. Otherwise a large number of expired requests | |
1120 | * would create a hopeless seekstorm. | |
1121 | * | |
1122 | * See as_antic_expired comment. | |
1123 | */ | |
1124 | static int as_fifo_expired(struct as_data *ad, int adir) | |
1125 | { | |
1126 | struct as_rq *arq; | |
1127 | long delta_jif; | |
1128 | ||
1129 | delta_jif = jiffies - ad->last_check_fifo[adir]; | |
1130 | if (unlikely(delta_jif < 0)) | |
1131 | delta_jif = -delta_jif; | |
1132 | if (delta_jif < ad->fifo_expire[adir]) | |
1133 | return 0; | |
1134 | ||
1135 | ad->last_check_fifo[adir] = jiffies; | |
1136 | ||
1137 | if (list_empty(&ad->fifo_list[adir])) | |
1138 | return 0; | |
1139 | ||
1140 | arq = list_entry_fifo(ad->fifo_list[adir].next); | |
1141 | ||
1142 | return time_after(jiffies, arq->expires); | |
1143 | } | |
1144 | ||
1145 | /* | |
1146 | * as_batch_expired returns true if the current batch has expired. A batch | |
1147 | * is a set of reads or a set of writes. | |
1148 | */ | |
1149 | static inline int as_batch_expired(struct as_data *ad) | |
1150 | { | |
1151 | if (ad->changed_batch || ad->new_batch) | |
1152 | return 0; | |
1153 | ||
1154 | if (ad->batch_data_dir == REQ_SYNC) | |
1155 | /* TODO! add a check so a complete fifo gets written? */ | |
1156 | return time_after(jiffies, ad->current_batch_expires); | |
1157 | ||
1158 | return time_after(jiffies, ad->current_batch_expires) | |
1159 | || ad->current_write_count == 0; | |
1160 | } | |
1161 | ||
1162 | /* | |
1163 | * move an entry to dispatch queue | |
1164 | */ | |
1165 | static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq) | |
1166 | { | |
1167 | struct request *rq = arq->request; | |
1168 | struct list_head *insert; | |
1169 | const int data_dir = arq->is_sync; | |
1170 | ||
1171 | BUG_ON(!ON_RB(&arq->rb_node)); | |
1172 | ||
1173 | as_antic_stop(ad); | |
1174 | ad->antic_status = ANTIC_OFF; | |
1175 | ||
1176 | /* | |
1177 | * This has to be set in order to be correctly updated by | |
1178 | * as_find_next_arq | |
1179 | */ | |
1180 | ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; | |
1181 | ||
1182 | if (data_dir == REQ_SYNC) { | |
1183 | /* In case we have to anticipate after this */ | |
1184 | copy_io_context(&ad->io_context, &arq->io_context); | |
1185 | } else { | |
1186 | if (ad->io_context) { | |
1187 | put_io_context(ad->io_context); | |
1188 | ad->io_context = NULL; | |
1189 | } | |
1190 | ||
1191 | if (ad->current_write_count != 0) | |
1192 | ad->current_write_count--; | |
1193 | } | |
1194 | ad->ioc_finished = 0; | |
1195 | ||
1196 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | |
1197 | ||
1198 | /* | |
1199 | * take it off the sort and fifo list, add to dispatch queue | |
1200 | */ | |
1201 | insert = ad->dispatch->prev; | |
1202 | ||
1203 | while (!list_empty(&rq->queuelist)) { | |
1204 | struct request *__rq = list_entry_rq(rq->queuelist.next); | |
1205 | struct as_rq *__arq = RQ_DATA(__rq); | |
1206 | ||
1207 | list_move_tail(&__rq->queuelist, ad->dispatch); | |
1208 | ||
1209 | if (__arq->io_context && __arq->io_context->aic) | |
1210 | atomic_inc(&__arq->io_context->aic->nr_dispatched); | |
1211 | ||
1212 | WARN_ON(__arq->state != AS_RQ_QUEUED); | |
1213 | __arq->state = AS_RQ_DISPATCHED; | |
1214 | ||
1215 | ad->nr_dispatched++; | |
1216 | } | |
1217 | ||
1218 | as_remove_queued_request(ad->q, rq); | |
1219 | WARN_ON(arq->state != AS_RQ_QUEUED); | |
1220 | ||
1221 | list_add(&rq->queuelist, insert); | |
1222 | arq->state = AS_RQ_DISPATCHED; | |
1223 | if (arq->io_context && arq->io_context->aic) | |
1224 | atomic_inc(&arq->io_context->aic->nr_dispatched); | |
1225 | ad->nr_dispatched++; | |
1226 | } | |
1227 | ||
1228 | /* | |
1229 | * as_dispatch_request selects the best request according to | |
1230 | * read/write expire, batch expire, etc, and moves it to the dispatch | |
1231 | * queue. Returns 1 if a request was found, 0 otherwise. | |
1232 | */ | |
1233 | static int as_dispatch_request(struct as_data *ad) | |
1234 | { | |
1235 | struct as_rq *arq; | |
1236 | const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); | |
1237 | const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); | |
1238 | ||
1239 | /* Signal that the write batch was uncontended, so we can't time it */ | |
1240 | if (ad->batch_data_dir == REQ_ASYNC && !reads) { | |
1241 | if (ad->current_write_count == 0 || !writes) | |
1242 | ad->write_batch_idled = 1; | |
1243 | } | |
1244 | ||
1245 | if (!(reads || writes) | |
1246 | || ad->antic_status == ANTIC_WAIT_REQ | |
1247 | || ad->antic_status == ANTIC_WAIT_NEXT | |
1248 | || ad->changed_batch) | |
1249 | return 0; | |
1250 | ||
1251 | if (!(reads && writes && as_batch_expired(ad)) ) { | |
1252 | /* | |
1253 | * batch is still running or no reads or no writes | |
1254 | */ | |
1255 | arq = ad->next_arq[ad->batch_data_dir]; | |
1256 | ||
1257 | if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { | |
1258 | if (as_fifo_expired(ad, REQ_SYNC)) | |
1259 | goto fifo_expired; | |
1260 | ||
1261 | if (as_can_anticipate(ad, arq)) { | |
1262 | as_antic_waitreq(ad); | |
1263 | return 0; | |
1264 | } | |
1265 | } | |
1266 | ||
1267 | if (arq) { | |
1268 | /* we have a "next request" */ | |
1269 | if (reads && !writes) | |
1270 | ad->current_batch_expires = | |
1271 | jiffies + ad->batch_expire[REQ_SYNC]; | |
1272 | goto dispatch_request; | |
1273 | } | |
1274 | } | |
1275 | ||
1276 | /* | |
1277 | * at this point we are not running a batch. select the appropriate | |
1278 | * data direction (read / write) | |
1279 | */ | |
1280 | ||
1281 | if (reads) { | |
1282 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC])); | |
1283 | ||
1284 | if (writes && ad->batch_data_dir == REQ_SYNC) | |
1285 | /* | |
1286 | * Last batch was a read, switch to writes | |
1287 | */ | |
1288 | goto dispatch_writes; | |
1289 | ||
1290 | if (ad->batch_data_dir == REQ_ASYNC) { | |
1291 | WARN_ON(ad->new_batch); | |
1292 | ad->changed_batch = 1; | |
1293 | } | |
1294 | ad->batch_data_dir = REQ_SYNC; | |
1295 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | |
1296 | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | |
1297 | goto dispatch_request; | |
1298 | } | |
1299 | ||
1300 | /* | |
1301 | * the last batch was a read | |
1302 | */ | |
1303 | ||
1304 | if (writes) { | |
1305 | dispatch_writes: | |
1306 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC])); | |
1307 | ||
1308 | if (ad->batch_data_dir == REQ_SYNC) { | |
1309 | ad->changed_batch = 1; | |
1310 | ||
1311 | /* | |
1312 | * new_batch might be 1 when the queue runs out of | |
1313 | * reads. A subsequent submission of a write might | |
1314 | * cause a change of batch before the read is finished. | |
1315 | */ | |
1316 | ad->new_batch = 0; | |
1317 | } | |
1318 | ad->batch_data_dir = REQ_ASYNC; | |
1319 | ad->current_write_count = ad->write_batch_count; | |
1320 | ad->write_batch_idled = 0; | |
1321 | arq = ad->next_arq[ad->batch_data_dir]; | |
1322 | goto dispatch_request; | |
1323 | } | |
1324 | ||
1325 | BUG(); | |
1326 | return 0; | |
1327 | ||
1328 | dispatch_request: | |
1329 | /* | |
1330 | * If a request has expired, service it. | |
1331 | */ | |
1332 | ||
1333 | if (as_fifo_expired(ad, ad->batch_data_dir)) { | |
1334 | fifo_expired: | |
1335 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | |
1336 | BUG_ON(arq == NULL); | |
1337 | } | |
1338 | ||
1339 | if (ad->changed_batch) { | |
1340 | WARN_ON(ad->new_batch); | |
1341 | ||
1342 | if (ad->nr_dispatched) | |
1343 | return 0; | |
1344 | ||
1345 | if (ad->batch_data_dir == REQ_ASYNC) | |
1346 | ad->current_batch_expires = jiffies + | |
1347 | ad->batch_expire[REQ_ASYNC]; | |
1348 | else | |
1349 | ad->new_batch = 1; | |
1350 | ||
1351 | ad->changed_batch = 0; | |
1352 | } | |
1353 | ||
1354 | /* | |
1355 | * arq is the selected appropriate request. | |
1356 | */ | |
1357 | as_move_to_dispatch(ad, arq); | |
1358 | ||
1359 | return 1; | |
1360 | } | |
1361 | ||
1362 | static struct request *as_next_request(request_queue_t *q) | |
1363 | { | |
1364 | struct as_data *ad = q->elevator->elevator_data; | |
1365 | struct request *rq = NULL; | |
1366 | ||
1367 | /* | |
1368 | * if there are still requests on the dispatch queue, grab the first | |
1369 | */ | |
1370 | if (!list_empty(ad->dispatch) || as_dispatch_request(ad)) | |
1371 | rq = list_entry_rq(ad->dispatch->next); | |
1372 | ||
1373 | return rq; | |
1374 | } | |
1375 | ||
1376 | /* | |
1377 | * Add arq to a list behind alias | |
1378 | */ | |
1379 | static inline void | |
1380 | as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias) | |
1381 | { | |
1382 | struct request *req = arq->request; | |
1383 | struct list_head *insert = alias->request->queuelist.prev; | |
1384 | ||
1385 | /* | |
1386 | * Transfer list of aliases | |
1387 | */ | |
1388 | while (!list_empty(&req->queuelist)) { | |
1389 | struct request *__rq = list_entry_rq(req->queuelist.next); | |
1390 | struct as_rq *__arq = RQ_DATA(__rq); | |
1391 | ||
1392 | list_move_tail(&__rq->queuelist, &alias->request->queuelist); | |
1393 | ||
1394 | WARN_ON(__arq->state != AS_RQ_QUEUED); | |
1395 | } | |
1396 | ||
1397 | /* | |
1398 | * Another request with the same start sector on the rbtree. | |
1399 | * Link this request to that sector. They are untangled in | |
1400 | * as_move_to_dispatch | |
1401 | */ | |
1402 | list_add(&arq->request->queuelist, insert); | |
1403 | ||
1404 | /* | |
1405 | * Don't want to have to handle merges. | |
1406 | */ | |
1407 | as_remove_merge_hints(ad->q, arq); | |
1408 | } | |
1409 | ||
1410 | /* | |
1411 | * add arq to rbtree and fifo | |
1412 | */ | |
1413 | static void as_add_request(struct as_data *ad, struct as_rq *arq) | |
1414 | { | |
1415 | struct as_rq *alias; | |
1416 | int data_dir; | |
1417 | ||
1418 | if (rq_data_dir(arq->request) == READ | |
1419 | || current->flags&PF_SYNCWRITE) | |
1420 | arq->is_sync = 1; | |
1421 | else | |
1422 | arq->is_sync = 0; | |
1423 | data_dir = arq->is_sync; | |
1424 | ||
1425 | arq->io_context = as_get_io_context(); | |
1426 | ||
1427 | if (arq->io_context) { | |
1428 | as_update_iohist(ad, arq->io_context->aic, arq->request); | |
1429 | atomic_inc(&arq->io_context->aic->nr_queued); | |
1430 | } | |
1431 | ||
1432 | alias = as_add_arq_rb(ad, arq); | |
1433 | if (!alias) { | |
1434 | /* | |
1435 | * set expire time (only used for reads) and add to fifo list | |
1436 | */ | |
1437 | arq->expires = jiffies + ad->fifo_expire[data_dir]; | |
1438 | list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]); | |
1439 | ||
1440 | if (rq_mergeable(arq->request)) { | |
1441 | as_add_arq_hash(ad, arq); | |
1442 | ||
1443 | if (!ad->q->last_merge) | |
1444 | ad->q->last_merge = arq->request; | |
1445 | } | |
1446 | as_update_arq(ad, arq); /* keep state machine up to date */ | |
1447 | ||
1448 | } else { | |
1449 | as_add_aliased_request(ad, arq, alias); | |
1450 | ||
1451 | /* | |
1452 | * have we been anticipating this request? | |
1453 | * or does it come from the same process as the one we are | |
1454 | * anticipating for? | |
1455 | */ | |
1456 | if (ad->antic_status == ANTIC_WAIT_REQ | |
1457 | || ad->antic_status == ANTIC_WAIT_NEXT) { | |
1458 | if (as_can_break_anticipation(ad, arq)) | |
1459 | as_antic_stop(ad); | |
1460 | } | |
1461 | } | |
1462 | ||
1463 | arq->state = AS_RQ_QUEUED; | |
1464 | } | |
1465 | ||
1466 | static void as_deactivate_request(request_queue_t *q, struct request *rq) | |
1467 | { | |
1468 | struct as_data *ad = q->elevator->elevator_data; | |
1469 | struct as_rq *arq = RQ_DATA(rq); | |
1470 | ||
1471 | if (arq) { | |
1472 | if (arq->state == AS_RQ_REMOVED) { | |
1473 | arq->state = AS_RQ_DISPATCHED; | |
1474 | if (arq->io_context && arq->io_context->aic) | |
1475 | atomic_inc(&arq->io_context->aic->nr_dispatched); | |
1476 | } | |
1477 | } else | |
1478 | WARN_ON(blk_fs_request(rq) | |
1479 | && (!(rq->flags & (REQ_HARDBARRIER|REQ_SOFTBARRIER))) ); | |
1480 | ||
1481 | /* Stop anticipating - let this request get through */ | |
1482 | as_antic_stop(ad); | |
1483 | } | |
1484 | ||
1485 | /* | |
1486 | * requeue the request. The request has not been completed, nor is it a | |
1487 | * new request, so don't touch accounting. | |
1488 | */ | |
1489 | static void as_requeue_request(request_queue_t *q, struct request *rq) | |
1490 | { | |
1491 | as_deactivate_request(q, rq); | |
1492 | list_add(&rq->queuelist, &q->queue_head); | |
1493 | } | |
1494 | ||
1495 | /* | |
1496 | * Account a request that is inserted directly onto the dispatch queue. | |
1497 | * arq->io_context->aic->nr_dispatched should not need to be incremented | |
1498 | * because only new requests should come through here: requeues go through | |
1499 | * our explicit requeue handler. | |
1500 | */ | |
1501 | static void as_account_queued_request(struct as_data *ad, struct request *rq) | |
1502 | { | |
1503 | if (blk_fs_request(rq)) { | |
1504 | struct as_rq *arq = RQ_DATA(rq); | |
1505 | arq->state = AS_RQ_DISPATCHED; | |
1506 | ad->nr_dispatched++; | |
1507 | } | |
1508 | } | |
1509 | ||
1510 | static void | |
1511 | as_insert_request(request_queue_t *q, struct request *rq, int where) | |
1512 | { | |
1513 | struct as_data *ad = q->elevator->elevator_data; | |
1514 | struct as_rq *arq = RQ_DATA(rq); | |
1515 | ||
1516 | if (arq) { | |
1517 | if (arq->state != AS_RQ_PRESCHED) { | |
1518 | printk("arq->state: %d\n", arq->state); | |
1519 | WARN_ON(1); | |
1520 | } | |
1521 | arq->state = AS_RQ_NEW; | |
1522 | } | |
1523 | ||
1524 | /* barriers must flush the reorder queue */ | |
1525 | if (unlikely(rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER) | |
1526 | && where == ELEVATOR_INSERT_SORT)) { | |
1527 | WARN_ON(1); | |
1528 | where = ELEVATOR_INSERT_BACK; | |
1529 | } | |
1530 | ||
1531 | switch (where) { | |
1532 | case ELEVATOR_INSERT_BACK: | |
1533 | while (ad->next_arq[REQ_SYNC]) | |
1534 | as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]); | |
1535 | ||
1536 | while (ad->next_arq[REQ_ASYNC]) | |
1537 | as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]); | |
1538 | ||
1539 | list_add_tail(&rq->queuelist, ad->dispatch); | |
1540 | as_account_queued_request(ad, rq); | |
1541 | as_antic_stop(ad); | |
1542 | break; | |
1543 | case ELEVATOR_INSERT_FRONT: | |
1544 | list_add(&rq->queuelist, ad->dispatch); | |
1545 | as_account_queued_request(ad, rq); | |
1546 | as_antic_stop(ad); | |
1547 | break; | |
1548 | case ELEVATOR_INSERT_SORT: | |
1549 | BUG_ON(!blk_fs_request(rq)); | |
1550 | as_add_request(ad, arq); | |
1551 | break; | |
1552 | default: | |
1553 | BUG(); | |
1554 | return; | |
1555 | } | |
1556 | } | |
1557 | ||
1558 | /* | |
1559 | * as_queue_empty tells us if there are requests left in the device. It may | |
1560 | * not be the case that a driver can get the next request even if the queue | |
1561 | * is not empty - it is used in the block layer to check for plugging and | |
1562 | * merging opportunities | |
1563 | */ | |
1564 | static int as_queue_empty(request_queue_t *q) | |
1565 | { | |
1566 | struct as_data *ad = q->elevator->elevator_data; | |
1567 | ||
1568 | if (!list_empty(&ad->fifo_list[REQ_ASYNC]) | |
1569 | || !list_empty(&ad->fifo_list[REQ_SYNC]) | |
1570 | || !list_empty(ad->dispatch)) | |
1571 | return 0; | |
1572 | ||
1573 | return 1; | |
1574 | } | |
1575 | ||
1576 | static struct request * | |
1577 | as_former_request(request_queue_t *q, struct request *rq) | |
1578 | { | |
1579 | struct as_rq *arq = RQ_DATA(rq); | |
1580 | struct rb_node *rbprev = rb_prev(&arq->rb_node); | |
1581 | struct request *ret = NULL; | |
1582 | ||
1583 | if (rbprev) | |
1584 | ret = rb_entry_arq(rbprev)->request; | |
1585 | ||
1586 | return ret; | |
1587 | } | |
1588 | ||
1589 | static struct request * | |
1590 | as_latter_request(request_queue_t *q, struct request *rq) | |
1591 | { | |
1592 | struct as_rq *arq = RQ_DATA(rq); | |
1593 | struct rb_node *rbnext = rb_next(&arq->rb_node); | |
1594 | struct request *ret = NULL; | |
1595 | ||
1596 | if (rbnext) | |
1597 | ret = rb_entry_arq(rbnext)->request; | |
1598 | ||
1599 | return ret; | |
1600 | } | |
1601 | ||
1602 | static int | |
1603 | as_merge(request_queue_t *q, struct request **req, struct bio *bio) | |
1604 | { | |
1605 | struct as_data *ad = q->elevator->elevator_data; | |
1606 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | |
1607 | struct request *__rq; | |
1608 | int ret; | |
1609 | ||
1610 | /* | |
1611 | * try last_merge to avoid going to hash | |
1612 | */ | |
1613 | ret = elv_try_last_merge(q, bio); | |
1614 | if (ret != ELEVATOR_NO_MERGE) { | |
1615 | __rq = q->last_merge; | |
1616 | goto out_insert; | |
1617 | } | |
1618 | ||
1619 | /* | |
1620 | * see if the merge hash can satisfy a back merge | |
1621 | */ | |
1622 | __rq = as_find_arq_hash(ad, bio->bi_sector); | |
1623 | if (__rq) { | |
1624 | BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); | |
1625 | ||
1626 | if (elv_rq_merge_ok(__rq, bio)) { | |
1627 | ret = ELEVATOR_BACK_MERGE; | |
1628 | goto out; | |
1629 | } | |
1630 | } | |
1631 | ||
1632 | /* | |
1633 | * check for front merge | |
1634 | */ | |
1635 | __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio)); | |
1636 | if (__rq) { | |
1637 | BUG_ON(rb_key != rq_rb_key(__rq)); | |
1638 | ||
1639 | if (elv_rq_merge_ok(__rq, bio)) { | |
1640 | ret = ELEVATOR_FRONT_MERGE; | |
1641 | goto out; | |
1642 | } | |
1643 | } | |
1644 | ||
1645 | return ELEVATOR_NO_MERGE; | |
1646 | out: | |
1647 | if (rq_mergeable(__rq)) | |
1648 | q->last_merge = __rq; | |
1649 | out_insert: | |
1650 | if (ret) { | |
1651 | if (rq_mergeable(__rq)) | |
1652 | as_hot_arq_hash(ad, RQ_DATA(__rq)); | |
1653 | } | |
1654 | *req = __rq; | |
1655 | return ret; | |
1656 | } | |
1657 | ||
1658 | static void as_merged_request(request_queue_t *q, struct request *req) | |
1659 | { | |
1660 | struct as_data *ad = q->elevator->elevator_data; | |
1661 | struct as_rq *arq = RQ_DATA(req); | |
1662 | ||
1663 | /* | |
1664 | * hash always needs to be repositioned, key is end sector | |
1665 | */ | |
1666 | as_del_arq_hash(arq); | |
1667 | as_add_arq_hash(ad, arq); | |
1668 | ||
1669 | /* | |
1670 | * if the merge was a front merge, we need to reposition request | |
1671 | */ | |
1672 | if (rq_rb_key(req) != arq->rb_key) { | |
1673 | struct as_rq *alias, *next_arq = NULL; | |
1674 | ||
1675 | if (ad->next_arq[arq->is_sync] == arq) | |
1676 | next_arq = as_find_next_arq(ad, arq); | |
1677 | ||
1678 | /* | |
1679 | * Note! We should really be moving any old aliased requests | |
1680 | * off this request and try to insert them into the rbtree. We | |
1681 | * currently don't bother. Ditto the next function. | |
1682 | */ | |
1683 | as_del_arq_rb(ad, arq); | |
1684 | if ((alias = as_add_arq_rb(ad, arq)) ) { | |
1685 | list_del_init(&arq->fifo); | |
1686 | as_add_aliased_request(ad, arq, alias); | |
1687 | if (next_arq) | |
1688 | ad->next_arq[arq->is_sync] = next_arq; | |
1689 | } | |
1690 | /* | |
1691 | * Note! At this stage of this and the next function, our next | |
1692 | * request may not be optimal - eg the request may have "grown" | |
1693 | * behind the disk head. We currently don't bother adjusting. | |
1694 | */ | |
1695 | } | |
1696 | ||
1697 | if (arq->on_hash) | |
1698 | q->last_merge = req; | |
1699 | } | |
1700 | ||
1701 | static void | |
1702 | as_merged_requests(request_queue_t *q, struct request *req, | |
1703 | struct request *next) | |
1704 | { | |
1705 | struct as_data *ad = q->elevator->elevator_data; | |
1706 | struct as_rq *arq = RQ_DATA(req); | |
1707 | struct as_rq *anext = RQ_DATA(next); | |
1708 | ||
1709 | BUG_ON(!arq); | |
1710 | BUG_ON(!anext); | |
1711 | ||
1712 | /* | |
1713 | * reposition arq (this is the merged request) in hash, and in rbtree | |
1714 | * in case of a front merge | |
1715 | */ | |
1716 | as_del_arq_hash(arq); | |
1717 | as_add_arq_hash(ad, arq); | |
1718 | ||
1719 | if (rq_rb_key(req) != arq->rb_key) { | |
1720 | struct as_rq *alias, *next_arq = NULL; | |
1721 | ||
1722 | if (ad->next_arq[arq->is_sync] == arq) | |
1723 | next_arq = as_find_next_arq(ad, arq); | |
1724 | ||
1725 | as_del_arq_rb(ad, arq); | |
1726 | if ((alias = as_add_arq_rb(ad, arq)) ) { | |
1727 | list_del_init(&arq->fifo); | |
1728 | as_add_aliased_request(ad, arq, alias); | |
1729 | if (next_arq) | |
1730 | ad->next_arq[arq->is_sync] = next_arq; | |
1731 | } | |
1732 | } | |
1733 | ||
1734 | /* | |
1735 | * if anext expires before arq, assign its expire time to arq | |
1736 | * and move into anext position (anext will be deleted) in fifo | |
1737 | */ | |
1738 | if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) { | |
1739 | if (time_before(anext->expires, arq->expires)) { | |
1740 | list_move(&arq->fifo, &anext->fifo); | |
1741 | arq->expires = anext->expires; | |
1742 | /* | |
1743 | * Don't copy here but swap, because when anext is | |
1744 | * removed below, it must contain the unused context | |
1745 | */ | |
1746 | swap_io_context(&arq->io_context, &anext->io_context); | |
1747 | } | |
1748 | } | |
1749 | ||
1750 | /* | |
1751 | * Transfer list of aliases | |
1752 | */ | |
1753 | while (!list_empty(&next->queuelist)) { | |
1754 | struct request *__rq = list_entry_rq(next->queuelist.next); | |
1755 | struct as_rq *__arq = RQ_DATA(__rq); | |
1756 | ||
1757 | list_move_tail(&__rq->queuelist, &req->queuelist); | |
1758 | ||
1759 | WARN_ON(__arq->state != AS_RQ_QUEUED); | |
1760 | } | |
1761 | ||
1762 | /* | |
1763 | * kill knowledge of next, this one is a goner | |
1764 | */ | |
1765 | as_remove_queued_request(q, next); | |
1766 | ||
1767 | anext->state = AS_RQ_MERGED; | |
1768 | } | |
1769 | ||
1770 | /* | |
1771 | * This is executed in a "deferred" process context, by kblockd. It calls the | |
1772 | * driver's request_fn so the driver can submit that request. | |
1773 | * | |
1774 | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | |
1775 | * state before calling, and don't rely on any state over calls. | |
1776 | * | |
1777 | * FIXME! dispatch queue is not a queue at all! | |
1778 | */ | |
1779 | static void as_work_handler(void *data) | |
1780 | { | |
1781 | struct request_queue *q = data; | |
1782 | unsigned long flags; | |
1783 | ||
1784 | spin_lock_irqsave(q->queue_lock, flags); | |
1785 | if (as_next_request(q)) | |
1786 | q->request_fn(q); | |
1787 | spin_unlock_irqrestore(q->queue_lock, flags); | |
1788 | } | |
1789 | ||
1790 | static void as_put_request(request_queue_t *q, struct request *rq) | |
1791 | { | |
1792 | struct as_data *ad = q->elevator->elevator_data; | |
1793 | struct as_rq *arq = RQ_DATA(rq); | |
1794 | ||
1795 | if (!arq) { | |
1796 | WARN_ON(1); | |
1797 | return; | |
1798 | } | |
1799 | ||
1800 | if (arq->state != AS_RQ_POSTSCHED && arq->state != AS_RQ_PRESCHED) { | |
1801 | printk("arq->state %d\n", arq->state); | |
1802 | WARN_ON(1); | |
1803 | } | |
1804 | ||
1805 | mempool_free(arq, ad->arq_pool); | |
1806 | rq->elevator_private = NULL; | |
1807 | } | |
1808 | ||
22e2c507 JA |
1809 | static int as_set_request(request_queue_t *q, struct request *rq, |
1810 | struct bio *bio, int gfp_mask) | |
1da177e4 LT |
1811 | { |
1812 | struct as_data *ad = q->elevator->elevator_data; | |
1813 | struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask); | |
1814 | ||
1815 | if (arq) { | |
1816 | memset(arq, 0, sizeof(*arq)); | |
1817 | RB_CLEAR(&arq->rb_node); | |
1818 | arq->request = rq; | |
1819 | arq->state = AS_RQ_PRESCHED; | |
1820 | arq->io_context = NULL; | |
1821 | INIT_LIST_HEAD(&arq->hash); | |
1822 | arq->on_hash = 0; | |
1823 | INIT_LIST_HEAD(&arq->fifo); | |
1824 | rq->elevator_private = arq; | |
1825 | return 0; | |
1826 | } | |
1827 | ||
1828 | return 1; | |
1829 | } | |
1830 | ||
22e2c507 | 1831 | static int as_may_queue(request_queue_t *q, int rw, struct bio *bio) |
1da177e4 LT |
1832 | { |
1833 | int ret = ELV_MQUEUE_MAY; | |
1834 | struct as_data *ad = q->elevator->elevator_data; | |
1835 | struct io_context *ioc; | |
1836 | if (ad->antic_status == ANTIC_WAIT_REQ || | |
1837 | ad->antic_status == ANTIC_WAIT_NEXT) { | |
1838 | ioc = as_get_io_context(); | |
1839 | if (ad->io_context == ioc) | |
1840 | ret = ELV_MQUEUE_MUST; | |
1841 | put_io_context(ioc); | |
1842 | } | |
1843 | ||
1844 | return ret; | |
1845 | } | |
1846 | ||
1847 | static void as_exit_queue(elevator_t *e) | |
1848 | { | |
1849 | struct as_data *ad = e->elevator_data; | |
1850 | ||
1851 | del_timer_sync(&ad->antic_timer); | |
1852 | kblockd_flush(); | |
1853 | ||
1854 | BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); | |
1855 | BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); | |
1856 | ||
1857 | mempool_destroy(ad->arq_pool); | |
1858 | put_io_context(ad->io_context); | |
1859 | kfree(ad->hash); | |
1860 | kfree(ad); | |
1861 | } | |
1862 | ||
1863 | /* | |
1864 | * initialize elevator private data (as_data), and alloc a arq for | |
1865 | * each request on the free lists | |
1866 | */ | |
1867 | static int as_init_queue(request_queue_t *q, elevator_t *e) | |
1868 | { | |
1869 | struct as_data *ad; | |
1870 | int i; | |
1871 | ||
1872 | if (!arq_pool) | |
1873 | return -ENOMEM; | |
1874 | ||
1946089a | 1875 | ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node); |
1da177e4 LT |
1876 | if (!ad) |
1877 | return -ENOMEM; | |
1878 | memset(ad, 0, sizeof(*ad)); | |
1879 | ||
1880 | ad->q = q; /* Identify what queue the data belongs to */ | |
1881 | ||
1946089a CL |
1882 | ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES, |
1883 | GFP_KERNEL, q->node); | |
1da177e4 LT |
1884 | if (!ad->hash) { |
1885 | kfree(ad); | |
1886 | return -ENOMEM; | |
1887 | } | |
1888 | ||
1946089a CL |
1889 | ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, |
1890 | mempool_free_slab, arq_pool, q->node); | |
1da177e4 LT |
1891 | if (!ad->arq_pool) { |
1892 | kfree(ad->hash); | |
1893 | kfree(ad); | |
1894 | return -ENOMEM; | |
1895 | } | |
1896 | ||
1897 | /* anticipatory scheduling helpers */ | |
1898 | ad->antic_timer.function = as_antic_timeout; | |
1899 | ad->antic_timer.data = (unsigned long)q; | |
1900 | init_timer(&ad->antic_timer); | |
1901 | INIT_WORK(&ad->antic_work, as_work_handler, q); | |
1902 | ||
1903 | for (i = 0; i < AS_HASH_ENTRIES; i++) | |
1904 | INIT_LIST_HEAD(&ad->hash[i]); | |
1905 | ||
1906 | INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); | |
1907 | INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); | |
1908 | ad->sort_list[REQ_SYNC] = RB_ROOT; | |
1909 | ad->sort_list[REQ_ASYNC] = RB_ROOT; | |
1910 | ad->dispatch = &q->queue_head; | |
1911 | ad->fifo_expire[REQ_SYNC] = default_read_expire; | |
1912 | ad->fifo_expire[REQ_ASYNC] = default_write_expire; | |
1913 | ad->antic_expire = default_antic_expire; | |
1914 | ad->batch_expire[REQ_SYNC] = default_read_batch_expire; | |
1915 | ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; | |
1916 | e->elevator_data = ad; | |
1917 | ||
1918 | ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; | |
1919 | ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; | |
1920 | if (ad->write_batch_count < 2) | |
1921 | ad->write_batch_count = 2; | |
1922 | ||
1923 | return 0; | |
1924 | } | |
1925 | ||
1926 | /* | |
1927 | * sysfs parts below | |
1928 | */ | |
1929 | struct as_fs_entry { | |
1930 | struct attribute attr; | |
1931 | ssize_t (*show)(struct as_data *, char *); | |
1932 | ssize_t (*store)(struct as_data *, const char *, size_t); | |
1933 | }; | |
1934 | ||
1935 | static ssize_t | |
1936 | as_var_show(unsigned int var, char *page) | |
1937 | { | |
1938 | var = (var * 1000) / HZ; | |
1939 | return sprintf(page, "%d\n", var); | |
1940 | } | |
1941 | ||
1942 | static ssize_t | |
1943 | as_var_store(unsigned long *var, const char *page, size_t count) | |
1944 | { | |
1945 | unsigned long tmp; | |
1946 | char *p = (char *) page; | |
1947 | ||
1948 | tmp = simple_strtoul(p, &p, 10); | |
1949 | if (tmp != 0) { | |
1950 | tmp = (tmp * HZ) / 1000; | |
1951 | if (tmp == 0) | |
1952 | tmp = 1; | |
1953 | } | |
1954 | *var = tmp; | |
1955 | return count; | |
1956 | } | |
1957 | ||
1958 | static ssize_t as_est_show(struct as_data *ad, char *page) | |
1959 | { | |
1960 | int pos = 0; | |
1961 | ||
1962 | pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256); | |
1963 | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | |
1964 | pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean); | |
1965 | ||
1966 | return pos; | |
1967 | } | |
1968 | ||
1969 | #define SHOW_FUNCTION(__FUNC, __VAR) \ | |
1970 | static ssize_t __FUNC(struct as_data *ad, char *page) \ | |
1971 | { \ | |
1972 | return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ | |
1973 | } | |
1974 | SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]); | |
1975 | SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]); | |
1976 | SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire); | |
1977 | SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]); | |
1978 | SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]); | |
1979 | #undef SHOW_FUNCTION | |
1980 | ||
1981 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ | |
1982 | static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \ | |
1983 | { \ | |
1984 | int ret = as_var_store(__PTR, (page), count); \ | |
1985 | if (*(__PTR) < (MIN)) \ | |
1986 | *(__PTR) = (MIN); \ | |
1987 | else if (*(__PTR) > (MAX)) \ | |
1988 | *(__PTR) = (MAX); \ | |
1989 | *(__PTR) = msecs_to_jiffies(*(__PTR)); \ | |
1990 | return ret; \ | |
1991 | } | |
1992 | STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); | |
1993 | STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); | |
1994 | STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX); | |
1995 | STORE_FUNCTION(as_read_batchexpire_store, | |
1996 | &ad->batch_expire[REQ_SYNC], 0, INT_MAX); | |
1997 | STORE_FUNCTION(as_write_batchexpire_store, | |
1998 | &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); | |
1999 | #undef STORE_FUNCTION | |
2000 | ||
2001 | static struct as_fs_entry as_est_entry = { | |
2002 | .attr = {.name = "est_time", .mode = S_IRUGO }, | |
2003 | .show = as_est_show, | |
2004 | }; | |
2005 | static struct as_fs_entry as_readexpire_entry = { | |
2006 | .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, | |
2007 | .show = as_readexpire_show, | |
2008 | .store = as_readexpire_store, | |
2009 | }; | |
2010 | static struct as_fs_entry as_writeexpire_entry = { | |
2011 | .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, | |
2012 | .show = as_writeexpire_show, | |
2013 | .store = as_writeexpire_store, | |
2014 | }; | |
2015 | static struct as_fs_entry as_anticexpire_entry = { | |
2016 | .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR }, | |
2017 | .show = as_anticexpire_show, | |
2018 | .store = as_anticexpire_store, | |
2019 | }; | |
2020 | static struct as_fs_entry as_read_batchexpire_entry = { | |
2021 | .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR }, | |
2022 | .show = as_read_batchexpire_show, | |
2023 | .store = as_read_batchexpire_store, | |
2024 | }; | |
2025 | static struct as_fs_entry as_write_batchexpire_entry = { | |
2026 | .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR }, | |
2027 | .show = as_write_batchexpire_show, | |
2028 | .store = as_write_batchexpire_store, | |
2029 | }; | |
2030 | ||
2031 | static struct attribute *default_attrs[] = { | |
2032 | &as_est_entry.attr, | |
2033 | &as_readexpire_entry.attr, | |
2034 | &as_writeexpire_entry.attr, | |
2035 | &as_anticexpire_entry.attr, | |
2036 | &as_read_batchexpire_entry.attr, | |
2037 | &as_write_batchexpire_entry.attr, | |
2038 | NULL, | |
2039 | }; | |
2040 | ||
2041 | #define to_as(atr) container_of((atr), struct as_fs_entry, attr) | |
2042 | ||
2043 | static ssize_t | |
2044 | as_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | |
2045 | { | |
2046 | elevator_t *e = container_of(kobj, elevator_t, kobj); | |
2047 | struct as_fs_entry *entry = to_as(attr); | |
2048 | ||
2049 | if (!entry->show) | |
6c1852a0 | 2050 | return -EIO; |
1da177e4 LT |
2051 | |
2052 | return entry->show(e->elevator_data, page); | |
2053 | } | |
2054 | ||
2055 | static ssize_t | |
2056 | as_attr_store(struct kobject *kobj, struct attribute *attr, | |
2057 | const char *page, size_t length) | |
2058 | { | |
2059 | elevator_t *e = container_of(kobj, elevator_t, kobj); | |
2060 | struct as_fs_entry *entry = to_as(attr); | |
2061 | ||
2062 | if (!entry->store) | |
6c1852a0 | 2063 | return -EIO; |
1da177e4 LT |
2064 | |
2065 | return entry->store(e->elevator_data, page, length); | |
2066 | } | |
2067 | ||
2068 | static struct sysfs_ops as_sysfs_ops = { | |
2069 | .show = as_attr_show, | |
2070 | .store = as_attr_store, | |
2071 | }; | |
2072 | ||
2073 | static struct kobj_type as_ktype = { | |
2074 | .sysfs_ops = &as_sysfs_ops, | |
2075 | .default_attrs = default_attrs, | |
2076 | }; | |
2077 | ||
2078 | static struct elevator_type iosched_as = { | |
2079 | .ops = { | |
2080 | .elevator_merge_fn = as_merge, | |
2081 | .elevator_merged_fn = as_merged_request, | |
2082 | .elevator_merge_req_fn = as_merged_requests, | |
2083 | .elevator_next_req_fn = as_next_request, | |
2084 | .elevator_add_req_fn = as_insert_request, | |
2085 | .elevator_remove_req_fn = as_remove_request, | |
2086 | .elevator_requeue_req_fn = as_requeue_request, | |
2087 | .elevator_deactivate_req_fn = as_deactivate_request, | |
2088 | .elevator_queue_empty_fn = as_queue_empty, | |
2089 | .elevator_completed_req_fn = as_completed_request, | |
2090 | .elevator_former_req_fn = as_former_request, | |
2091 | .elevator_latter_req_fn = as_latter_request, | |
2092 | .elevator_set_req_fn = as_set_request, | |
2093 | .elevator_put_req_fn = as_put_request, | |
2094 | .elevator_may_queue_fn = as_may_queue, | |
2095 | .elevator_init_fn = as_init_queue, | |
2096 | .elevator_exit_fn = as_exit_queue, | |
2097 | }, | |
2098 | ||
2099 | .elevator_ktype = &as_ktype, | |
2100 | .elevator_name = "anticipatory", | |
2101 | .elevator_owner = THIS_MODULE, | |
2102 | }; | |
2103 | ||
2104 | static int __init as_init(void) | |
2105 | { | |
2106 | int ret; | |
2107 | ||
2108 | arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq), | |
2109 | 0, 0, NULL, NULL); | |
2110 | if (!arq_pool) | |
2111 | return -ENOMEM; | |
2112 | ||
2113 | ret = elv_register(&iosched_as); | |
2114 | if (!ret) { | |
2115 | /* | |
2116 | * don't allow AS to get unregistered, since we would have | |
2117 | * to browse all tasks in the system and release their | |
2118 | * as_io_context first | |
2119 | */ | |
2120 | __module_get(THIS_MODULE); | |
2121 | return 0; | |
2122 | } | |
2123 | ||
2124 | kmem_cache_destroy(arq_pool); | |
2125 | return ret; | |
2126 | } | |
2127 | ||
2128 | static void __exit as_exit(void) | |
2129 | { | |
2130 | kmem_cache_destroy(arq_pool); | |
2131 | elv_unregister(&iosched_as); | |
2132 | } | |
2133 | ||
2134 | module_init(as_init); | |
2135 | module_exit(as_exit); | |
2136 | ||
2137 | MODULE_AUTHOR("Nick Piggin"); | |
2138 | MODULE_LICENSE("GPL"); | |
2139 | MODULE_DESCRIPTION("anticipatory IO scheduler"); |