]> Git Repo - linux.git/blame - drivers/mtd/nand/raw/s3c2410.c
mtd: rawnand: Pass a nand_chip object to ecc->hwctl()
[linux.git] / drivers / mtd / nand / raw / s3c2410.c
CommitLineData
43a0a45a 1/*
7e74a507
BD
2 * Copyright © 2004-2008 Simtec Electronics
3 * http://armlinux.simtec.co.uk/
fdf2fd52 4 * Ben Dooks <[email protected]>
1da177e4 5 *
7e74a507 6 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4 7 *
1da177e4
LT
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21*/
22
92aeb5d2
SK
23#define pr_fmt(fmt) "nand-s3c2410: " fmt
24
1da177e4
LT
25#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
26#define DEBUG
27#endif
28
29#include <linux/module.h>
30#include <linux/types.h>
1da177e4
LT
31#include <linux/kernel.h>
32#include <linux/string.h>
d2a89be8 33#include <linux/io.h>
1da177e4 34#include <linux/ioport.h>
d052d1be 35#include <linux/platform_device.h>
1da177e4
LT
36#include <linux/delay.h>
37#include <linux/err.h>
4e57b681 38#include <linux/slab.h>
f8ce2547 39#include <linux/clk.h>
30821fee 40#include <linux/cpufreq.h>
1c825ad1
SP
41#include <linux/of.h>
42#include <linux/of_device.h>
1da177e4
LT
43
44#include <linux/mtd/mtd.h>
d4092d76 45#include <linux/mtd/rawnand.h>
1da177e4
LT
46#include <linux/mtd/nand_ecc.h>
47#include <linux/mtd/partitions.h>
48
436d42c6 49#include <linux/platform_data/mtd-nand-s3c2410.h>
1da177e4 50
02d01862
SK
51#define S3C2410_NFREG(x) (x)
52
53#define S3C2410_NFCONF S3C2410_NFREG(0x00)
54#define S3C2410_NFCMD S3C2410_NFREG(0x04)
55#define S3C2410_NFADDR S3C2410_NFREG(0x08)
56#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
57#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
58#define S3C2410_NFECC S3C2410_NFREG(0x14)
59#define S3C2440_NFCONT S3C2410_NFREG(0x04)
60#define S3C2440_NFCMD S3C2410_NFREG(0x08)
61#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
62#define S3C2440_NFDATA S3C2410_NFREG(0x10)
63#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
64#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
65#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
66#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
67#define S3C2410_NFCONF_EN (1<<15)
68#define S3C2410_NFCONF_INITECC (1<<12)
69#define S3C2410_NFCONF_nFCE (1<<11)
70#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
71#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
72#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
73#define S3C2410_NFSTAT_BUSY (1<<0)
74#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
75#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
76#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
77#define S3C2440_NFCONT_INITECC (1<<4)
78#define S3C2440_NFCONT_nFCE (1<<1)
79#define S3C2440_NFCONT_ENABLE (1<<0)
80#define S3C2440_NFSTAT_READY (1<<0)
81#define S3C2412_NFCONF_NANDBOOT (1<<31)
82#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
83#define S3C2412_NFCONT_nFCE0 (1<<1)
84#define S3C2412_NFSTAT_READY (1<<0)
85
1da177e4
LT
86/* new oob placement block for use with hardware ecc generation
87 */
bf01e06b
BB
88static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
89 struct mtd_oob_region *oobregion)
90{
91 if (section)
92 return -ERANGE;
93
94 oobregion->offset = 0;
95 oobregion->length = 3;
96
97 return 0;
98}
99
100static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
101 struct mtd_oob_region *oobregion)
102{
103 if (section)
104 return -ERANGE;
105
106 oobregion->offset = 8;
107 oobregion->length = 8;
108
109 return 0;
110}
1da177e4 111
bf01e06b
BB
112static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
113 .ecc = s3c2410_ooblayout_ecc,
114 .free = s3c2410_ooblayout_free,
1da177e4
LT
115};
116
117/* controller and mtd information */
118
119struct s3c2410_nand_info;
120
3db72151
BD
121/**
122 * struct s3c2410_nand_mtd - driver MTD structure
123 * @mtd: The MTD instance to pass to the MTD layer.
124 * @chip: The NAND chip information.
125 * @set: The platform information supplied for this set of NAND chips.
126 * @info: Link back to the hardware information.
3db72151 127*/
1da177e4 128struct s3c2410_nand_mtd {
1da177e4
LT
129 struct nand_chip chip;
130 struct s3c2410_nand_set *set;
131 struct s3c2410_nand_info *info;
1da177e4
LT
132};
133
2c06a082
BD
134enum s3c_cpu_type {
135 TYPE_S3C2410,
136 TYPE_S3C2412,
137 TYPE_S3C2440,
138};
139
ac497c16
JP
140enum s3c_nand_clk_state {
141 CLOCK_DISABLE = 0,
142 CLOCK_ENABLE,
143 CLOCK_SUSPEND,
144};
145
1da177e4
LT
146/* overview of the s3c2410 nand state */
147
3db72151
BD
148/**
149 * struct s3c2410_nand_info - NAND controller state.
150 * @mtds: An array of MTD instances on this controoler.
151 * @platform: The platform data for this board.
152 * @device: The platform device we bound to.
3db72151 153 * @clk: The clock resource for this controller.
6f32a3e2 154 * @regs: The area mapped for the hardware registers.
3db72151
BD
155 * @sel_reg: Pointer to the register controlling the NAND selection.
156 * @sel_bit: The bit in @sel_reg to select the NAND chip.
157 * @mtd_count: The number of MTDs created from this controller.
158 * @save_sel: The contents of @sel_reg to be saved over suspend.
159 * @clk_rate: The clock rate from @clk.
ac497c16 160 * @clk_state: The current clock state.
3db72151
BD
161 * @cpu_type: The exact type of this controller.
162 */
1da177e4
LT
163struct s3c2410_nand_info {
164 /* mtd info */
7da45139 165 struct nand_controller controller;
1da177e4
LT
166 struct s3c2410_nand_mtd *mtds;
167 struct s3c2410_platform_nand *platform;
168
169 /* device info */
170 struct device *device;
1da177e4 171 struct clk *clk;
fdf2fd52 172 void __iomem *regs;
2c06a082
BD
173 void __iomem *sel_reg;
174 int sel_bit;
1da177e4 175 int mtd_count;
09160832 176 unsigned long save_sel;
30821fee 177 unsigned long clk_rate;
ac497c16 178 enum s3c_nand_clk_state clk_state;
03680b1e 179
2c06a082 180 enum s3c_cpu_type cpu_type;
30821fee 181
d9ca77f0 182#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
183 struct notifier_block freq_transition;
184#endif
1da177e4
LT
185};
186
1c825ad1
SP
187struct s3c24XX_nand_devtype_data {
188 enum s3c_cpu_type type;
189};
190
191static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
192 .type = TYPE_S3C2410,
193};
194
195static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
196 .type = TYPE_S3C2412,
197};
198
199static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
200 .type = TYPE_S3C2440,
201};
202
1da177e4
LT
203/* conversion functions */
204
205static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
206{
7208b997
BB
207 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
208 chip);
1da177e4
LT
209}
210
211static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
212{
213 return s3c2410_nand_mtd_toours(mtd)->info;
214}
215
3ae5eaec 216static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 217{
3ae5eaec 218 return platform_get_drvdata(dev);
1da177e4
LT
219}
220
3ae5eaec 221static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 222{
453810b7 223 return dev_get_platdata(&dev->dev);
1da177e4
LT
224}
225
ac497c16 226static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
d1fef3c5 227{
a68c5ec8
SK
228#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
229 return 1;
230#else
231 return 0;
232#endif
d1fef3c5
BD
233}
234
ac497c16
JP
235/**
236 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
237 * @info: The controller instance.
238 * @new_state: State to which clock should be set.
239 */
240static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
241 enum s3c_nand_clk_state new_state)
242{
243 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
244 return;
245
246 if (info->clk_state == CLOCK_ENABLE) {
247 if (new_state != CLOCK_ENABLE)
887957b4 248 clk_disable_unprepare(info->clk);
ac497c16
JP
249 } else {
250 if (new_state == CLOCK_ENABLE)
887957b4 251 clk_prepare_enable(info->clk);
ac497c16
JP
252 }
253
254 info->clk_state = new_state;
255}
256
1da177e4
LT
257/* timing calculations */
258
cfd320fb 259#define NS_IN_KHZ 1000000
1da177e4 260
3db72151
BD
261/**
262 * s3c_nand_calc_rate - calculate timing data.
263 * @wanted: The cycle time in nanoseconds.
264 * @clk: The clock rate in kHz.
265 * @max: The maximum divider value.
266 *
267 * Calculate the timing value from the given parameters.
268 */
2c06a082 269static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
270{
271 int result;
272
947391cf 273 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
1da177e4
LT
274
275 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
276
277 if (result > max) {
92aeb5d2
SK
278 pr_err("%d ns is too big for current clock rate %ld\n",
279 wanted, clk);
1da177e4
LT
280 return -1;
281 }
282
283 if (result < 1)
284 result = 1;
285
286 return result;
287}
288
54cd0208 289#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
290
291/* controller setup */
292
3db72151
BD
293/**
294 * s3c2410_nand_setrate - setup controller timing information.
295 * @info: The controller instance.
296 *
297 * Given the information supplied by the platform, calculate and set
298 * the necessary timing registers in the hardware to generate the
299 * necessary timing cycles to the hardware.
300 */
30821fee 301static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 302{
30821fee 303 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 304 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 305 int tacls, twrph0, twrph1;
30821fee 306 unsigned long clkrate = clk_get_rate(info->clk);
2612e523 307 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
30821fee 308 unsigned long flags;
1da177e4
LT
309
310 /* calculate the timing information for the controller */
311
30821fee 312 info->clk_rate = clkrate;
cfd320fb
BD
313 clkrate /= 1000; /* turn clock into kHz for ease of use */
314
1da177e4 315 if (plat != NULL) {
2c06a082
BD
316 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
317 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
318 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
319 } else {
320 /* default timings */
2c06a082 321 tacls = tacls_max;
1da177e4
LT
322 twrph0 = 8;
323 twrph1 = 8;
324 }
61b03bd7 325
1da177e4 326 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 327 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
328 return -EINVAL;
329 }
330
99974c62 331 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
54cd0208
SK
332 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
333 twrph1, to_ns(twrph1, clkrate));
1da177e4 334
30821fee
BD
335 switch (info->cpu_type) {
336 case TYPE_S3C2410:
337 mask = (S3C2410_NFCONF_TACLS(3) |
338 S3C2410_NFCONF_TWRPH0(7) |
339 S3C2410_NFCONF_TWRPH1(7));
340 set = S3C2410_NFCONF_EN;
341 set |= S3C2410_NFCONF_TACLS(tacls - 1);
342 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
343 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
344 break;
345
346 case TYPE_S3C2440:
347 case TYPE_S3C2412:
a755a385
PK
348 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
349 S3C2440_NFCONF_TWRPH0(7) |
350 S3C2440_NFCONF_TWRPH1(7));
30821fee
BD
351
352 set = S3C2440_NFCONF_TACLS(tacls - 1);
353 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
354 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
355 break;
356
357 default:
30821fee
BD
358 BUG();
359 }
360
30821fee
BD
361 local_irq_save(flags);
362
363 cfg = readl(info->regs + S3C2410_NFCONF);
364 cfg &= ~mask;
365 cfg |= set;
366 writel(cfg, info->regs + S3C2410_NFCONF);
367
368 local_irq_restore(flags);
369
ae7304e5
AG
370 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
371
30821fee
BD
372 return 0;
373}
374
3db72151
BD
375/**
376 * s3c2410_nand_inithw - basic hardware initialisation
377 * @info: The hardware state.
378 *
379 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
380 * to setup the hardware access speeds and set the controller to be enabled.
381*/
30821fee
BD
382static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
383{
384 int ret;
385
386 ret = s3c2410_nand_setrate(info);
387 if (ret < 0)
388 return ret;
389
54cd0208
SK
390 switch (info->cpu_type) {
391 case TYPE_S3C2410:
30821fee 392 default:
2c06a082
BD
393 break;
394
54cd0208
SK
395 case TYPE_S3C2440:
396 case TYPE_S3C2412:
d1fef3c5
BD
397 /* enable the controller and de-assert nFCE */
398
2c06a082 399 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 400 }
1da177e4 401
1da177e4
LT
402 return 0;
403}
404
3db72151
BD
405/**
406 * s3c2410_nand_select_chip - select the given nand chip
407 * @mtd: The MTD instance for this chip.
408 * @chip: The chip number.
409 *
410 * This is called by the MTD layer to either select a given chip for the
411 * @mtd instance, or to indicate that the access has finished and the
412 * chip can be de-selected.
413 *
414 * The routine ensures that the nFCE line is correctly setup, and any
415 * platform specific selection code is called to route nFCE to the specific
416 * chip.
417 */
1da177e4
LT
418static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
419{
420 struct s3c2410_nand_info *info;
61b03bd7 421 struct s3c2410_nand_mtd *nmtd;
4bd4ebcc 422 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
423 unsigned long cur;
424
d699ed25 425 nmtd = nand_get_controller_data(this);
1da177e4
LT
426 info = nmtd->info;
427
ac497c16
JP
428 if (chip != -1)
429 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
d1fef3c5 430
2c06a082 431 cur = readl(info->sel_reg);
1da177e4
LT
432
433 if (chip == -1) {
2c06a082 434 cur |= info->sel_bit;
1da177e4 435 } else {
fb8d82a8 436 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 437 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
438 return;
439 }
440
441 if (info->platform != NULL) {
442 if (info->platform->select_chip != NULL)
e0c7d767 443 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
444 }
445
2c06a082 446 cur &= ~info->sel_bit;
1da177e4
LT
447 }
448
2c06a082 449 writel(cur, info->sel_reg);
d1fef3c5 450
ac497c16
JP
451 if (chip == -1)
452 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1da177e4
LT
453}
454
ad3b5fb7 455/* s3c2410_nand_hwcontrol
a4f957f1 456 *
ad3b5fb7 457 * Issue command and address cycles to the chip
a4f957f1 458*/
1da177e4 459
7abd3ef9 460static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
f9068876 461 unsigned int ctrl)
1da177e4
LT
462{
463 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 464
7abd3ef9
TG
465 if (cmd == NAND_CMD_NONE)
466 return;
467
f9068876 468 if (ctrl & NAND_CLE)
7abd3ef9
TG
469 writeb(cmd, info->regs + S3C2410_NFCMD);
470 else
471 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
472}
473
474/* command and control functions */
475
f9068876
DW
476static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
477 unsigned int ctrl)
a4f957f1
BD
478{
479 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 480
7abd3ef9
TG
481 if (cmd == NAND_CMD_NONE)
482 return;
483
f9068876 484 if (ctrl & NAND_CLE)
7abd3ef9
TG
485 writeb(cmd, info->regs + S3C2440_NFCMD);
486 else
487 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
488}
489
1da177e4
LT
490/* s3c2410_nand_devready()
491 *
492 * returns 0 if the nand is busy, 1 if it is ready
493*/
494
495static int s3c2410_nand_devready(struct mtd_info *mtd)
496{
497 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
498 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
499}
500
2c06a082
BD
501static int s3c2440_nand_devready(struct mtd_info *mtd)
502{
503 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
504 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
505}
506
507static int s3c2412_nand_devready(struct mtd_info *mtd)
508{
509 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
510 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
511}
512
1da177e4
LT
513/* ECC handling functions */
514
2c06a082
BD
515static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
516 u_char *read_ecc, u_char *calc_ecc)
1da177e4 517{
a2593247
BD
518 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
519 unsigned int diff0, diff1, diff2;
520 unsigned int bit, byte;
521
522 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
523
524 diff0 = read_ecc[0] ^ calc_ecc[0];
525 diff1 = read_ecc[1] ^ calc_ecc[1];
526 diff2 = read_ecc[2] ^ calc_ecc[2];
527
13e85974
AS
528 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
529 __func__, 3, read_ecc, 3, calc_ecc,
a2593247
BD
530 diff0, diff1, diff2);
531
532 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
533 return 0; /* ECC is ok */
534
c45c6c68
BD
535 /* sometimes people do not think about using the ECC, so check
536 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
537 * the error, on the assumption that this is an un-eccd page.
538 */
539 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
540 && info->platform->ignore_unset_ecc)
541 return 0;
542
a2593247
BD
543 /* Can we correct this ECC (ie, one row and column change).
544 * Note, this is similar to the 256 error code on smartmedia */
545
546 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
547 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
548 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
549 /* calculate the bit position of the error */
550
d0bf3793
MR
551 bit = ((diff2 >> 3) & 1) |
552 ((diff2 >> 4) & 2) |
553 ((diff2 >> 5) & 4);
1da177e4 554
a2593247 555 /* calculate the byte position of the error */
1da177e4 556
d0bf3793
MR
557 byte = ((diff2 << 7) & 0x100) |
558 ((diff1 << 0) & 0x80) |
559 ((diff1 << 1) & 0x40) |
560 ((diff1 << 2) & 0x20) |
561 ((diff1 << 3) & 0x10) |
562 ((diff0 >> 4) & 0x08) |
563 ((diff0 >> 3) & 0x04) |
564 ((diff0 >> 2) & 0x02) |
565 ((diff0 >> 1) & 0x01);
a2593247
BD
566
567 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
568 bit, byte);
569
570 dat[byte] ^= (1 << bit);
571 return 1;
572 }
573
574 /* if there is only one bit difference in the ECC, then
575 * one of only a row or column parity has changed, which
576 * means the error is most probably in the ECC itself */
577
578 diff0 |= (diff1 << 8);
579 diff0 |= (diff2 << 16);
580
03a97550
ZZ
581 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
582 if ((diff0 & (diff0 - 1)) == 0)
a2593247
BD
583 return 1;
584
4fac9f69 585 return -1;
1da177e4
LT
586}
587
a4f957f1
BD
588/* ECC functions
589 *
590 * These allow the s3c2410 and s3c2440 to use the controller's ECC
591 * generator block to ECC the data as it passes through]
592*/
593
ec47636c 594static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
1da177e4 595{
ec47636c 596 struct s3c2410_nand_info *info;
1da177e4
LT
597 unsigned long ctrl;
598
ec47636c 599 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
1da177e4
LT
600 ctrl = readl(info->regs + S3C2410_NFCONF);
601 ctrl |= S3C2410_NFCONF_INITECC;
602 writel(ctrl, info->regs + S3C2410_NFCONF);
603}
604
ec47636c 605static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
4f659923 606{
ec47636c 607 struct s3c2410_nand_info *info;
4f659923
MC
608 unsigned long ctrl;
609
ec47636c 610 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
4f659923 611 ctrl = readl(info->regs + S3C2440_NFCONT);
f938bc56
SK
612 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
613 info->regs + S3C2440_NFCONT);
4f659923
MC
614}
615
ec47636c 616static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
a4f957f1 617{
ec47636c 618 struct s3c2410_nand_info *info;
a4f957f1
BD
619 unsigned long ctrl;
620
ec47636c 621 info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
a4f957f1
BD
622 ctrl = readl(info->regs + S3C2440_NFCONT);
623 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
624}
625
f938bc56
SK
626static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
627 u_char *ecc_code)
1da177e4
LT
628{
629 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
630
631 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
632 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
633 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
634
13e85974 635 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
1da177e4
LT
636
637 return 0;
638}
639
f938bc56
SK
640static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
641 u_char *ecc_code)
4f659923
MC
642{
643 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
644 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
645
646 ecc_code[0] = ecc;
647 ecc_code[1] = ecc >> 8;
648 ecc_code[2] = ecc >> 16;
649
13e85974 650 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
4f659923
MC
651
652 return 0;
653}
654
f938bc56
SK
655static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
656 u_char *ecc_code)
a4f957f1
BD
657{
658 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
659 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
660
661 ecc_code[0] = ecc;
662 ecc_code[1] = ecc >> 8;
663 ecc_code[2] = ecc >> 16;
664
71d54f38 665 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
666
667 return 0;
668}
669
a4f957f1
BD
670/* over-ride the standard functions for a little more speed. We can
671 * use read/write block to move the data buffers to/from the controller
672*/
1da177e4
LT
673
674static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
675{
4bd4ebcc 676 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
677 readsb(this->IO_ADDR_R, buf, len);
678}
679
b773bb2e
MR
680static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
681{
682 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
683
684 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
685
686 /* cleanup if we've got less than a word to do */
687 if (len & 3) {
688 buf += len & ~3;
689
690 for (; len & 3; len--)
691 *buf++ = readb(info->regs + S3C2440_NFDATA);
692 }
b773bb2e
MR
693}
694
f938bc56
SK
695static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
696 int len)
1da177e4 697{
4bd4ebcc 698 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
699 writesb(this->IO_ADDR_W, buf, len);
700}
701
f938bc56
SK
702static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
703 int len)
b773bb2e
MR
704{
705 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
706
707 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
708
709 /* cleanup any fractional write */
710 if (len & 3) {
711 buf += len & ~3;
712
713 for (; len & 3; len--, buf++)
714 writeb(*buf, info->regs + S3C2440_NFDATA);
715 }
b773bb2e
MR
716}
717
30821fee
BD
718/* cpufreq driver support */
719
d9ca77f0 720#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
30821fee
BD
721
722static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
723 unsigned long val, void *data)
724{
725 struct s3c2410_nand_info *info;
726 unsigned long newclk;
727
728 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
729 newclk = clk_get_rate(info->clk);
730
731 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
732 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
733 s3c2410_nand_setrate(info);
734 }
735
736 return 0;
737}
738
739static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
740{
741 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
742
743 return cpufreq_register_notifier(&info->freq_transition,
744 CPUFREQ_TRANSITION_NOTIFIER);
745}
746
f938bc56
SK
747static inline void
748s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
749{
750 cpufreq_unregister_notifier(&info->freq_transition,
751 CPUFREQ_TRANSITION_NOTIFIER);
752}
753
754#else
755static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
756{
757 return 0;
758}
759
f938bc56
SK
760static inline void
761s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
762{
763}
764#endif
765
1da177e4
LT
766/* device management functions */
767
ec0482e6 768static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 769{
3ae5eaec 770 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 771
61b03bd7 772 if (info == NULL)
1da177e4
LT
773 return 0;
774
30821fee
BD
775 s3c2410_nand_cpufreq_deregister(info);
776
777 /* Release all our mtds and their partitions, then go through
778 * freeing the resources used
1da177e4 779 */
61b03bd7 780
1da177e4
LT
781 if (info->mtds != NULL) {
782 struct s3c2410_nand_mtd *ptr = info->mtds;
783 int mtdno;
784
785 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
786 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
59ac276f 787 nand_release(&ptr->chip);
1da177e4 788 }
1da177e4
LT
789 }
790
791 /* free the common resources */
792
6f32a3e2 793 if (!IS_ERR(info->clk))
ac497c16 794 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1da177e4
LT
795
796 return 0;
797}
798
1da177e4
LT
799static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
800 struct s3c2410_nand_mtd *mtd,
801 struct s3c2410_nand_set *set)
802{
ded4c55d 803 if (set) {
7208b997 804 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
ed27f028 805
7208b997
BB
806 mtdinfo->name = set->name;
807
29597ca1
RM
808 return mtd_device_register(mtdinfo, set->partitions,
809 set->nr_partitions);
ded4c55d
SK
810 }
811
812 return -ENODEV;
1da177e4 813}
1da177e4 814
104e442a
BB
815static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
816 const struct nand_data_interface *conf)
1c825ad1
SP
817{
818 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
819 struct s3c2410_platform_nand *pdata = info->platform;
820 const struct nand_sdr_timings *timings;
821 int tacls;
822
823 timings = nand_get_sdr_timings(conf);
824 if (IS_ERR(timings))
825 return -ENOTSUPP;
826
827 tacls = timings->tCLS_min - timings->tWP_min;
828 if (tacls < 0)
829 tacls = 0;
830
831 pdata->tacls = DIV_ROUND_UP(tacls, 1000);
832 pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
833 pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
834
835 return s3c2410_nand_setrate(info);
836}
837
3db72151
BD
838/**
839 * s3c2410_nand_init_chip - initialise a single instance of an chip
840 * @info: The base NAND controller the chip is on.
841 * @nmtd: The new controller MTD instance to fill in.
842 * @set: The information passed from the board specific platform data.
1da177e4 843 *
3db72151
BD
844 * Initialise the given @nmtd from the information in @info and @set. This
845 * readies the structure for use with the MTD layer functions by ensuring
846 * all pointers are setup and the necessary control routines selected.
847 */
1da177e4
LT
848static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
849 struct s3c2410_nand_mtd *nmtd,
850 struct s3c2410_nand_set *set)
851{
1c825ad1 852 struct device_node *np = info->device->of_node;
1da177e4 853 struct nand_chip *chip = &nmtd->chip;
2c06a082 854 void __iomem *regs = info->regs;
1da177e4 855
1c825ad1
SP
856 nand_set_flash_node(chip, set->of_node);
857
1da177e4
LT
858 chip->write_buf = s3c2410_nand_write_buf;
859 chip->read_buf = s3c2410_nand_read_buf;
860 chip->select_chip = s3c2410_nand_select_chip;
861 chip->chip_delay = 50;
d699ed25 862 nand_set_controller_data(chip, nmtd);
74218fed 863 chip->options = set->options;
1da177e4
LT
864 chip->controller = &info->controller;
865
1c825ad1
SP
866 /*
867 * let's keep behavior unchanged for legacy boards booting via pdata and
868 * auto-detect timings only when booting with a device tree.
869 */
870 if (np)
871 chip->setup_data_interface = s3c2410_nand_setup_data_interface;
872
2c06a082
BD
873 switch (info->cpu_type) {
874 case TYPE_S3C2410:
875 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
876 info->sel_reg = regs + S3C2410_NFCONF;
877 info->sel_bit = S3C2410_NFCONF_nFCE;
878 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
879 chip->dev_ready = s3c2410_nand_devready;
880 break;
881
882 case TYPE_S3C2440:
883 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
884 info->sel_reg = regs + S3C2440_NFCONT;
885 info->sel_bit = S3C2440_NFCONT_nFCE;
886 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
887 chip->dev_ready = s3c2440_nand_devready;
b773bb2e
MR
888 chip->read_buf = s3c2440_nand_read_buf;
889 chip->write_buf = s3c2440_nand_write_buf;
2c06a082
BD
890 break;
891
892 case TYPE_S3C2412:
893 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
894 info->sel_reg = regs + S3C2440_NFCONT;
895 info->sel_bit = S3C2412_NFCONT_nFCE0;
896 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
897 chip->dev_ready = s3c2412_nand_devready;
898
899 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
900 dev_info(info->device, "System booted from NAND\n");
901
902 break;
54cd0208 903 }
2c06a082
BD
904
905 chip->IO_ADDR_R = chip->IO_ADDR_W;
a4f957f1 906
1da177e4 907 nmtd->info = info;
1da177e4
LT
908 nmtd->set = set;
909
e9f66ae2 910 chip->ecc.mode = info->platform->ecc_mode;
9db41f9e 911
1c825ad1
SP
912 /*
913 * If you use u-boot BBT creation code, specifying this flag will
914 * let the kernel fish out the BBT from the NAND.
915 */
916 if (set->flash_bbt)
bb9ebd4e 917 chip->bbt_options |= NAND_BBT_USE_FLASH;
1da177e4
LT
918}
919
3db72151 920/**
12748318
MR
921 * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
922 * @chip: The NAND chip
71d54f38 923 *
12748318
MR
924 * This hook is called by the core after the identification of the NAND chip,
925 * once the relevant per-chip information is up to date.. This call ensure that
3db72151
BD
926 * we update the internal state accordingly.
927 *
928 * The internal state is currently limited to the ECC state information.
929*/
12748318 930static int s3c2410_nand_attach_chip(struct nand_chip *chip)
71d54f38 931{
12748318
MR
932 struct mtd_info *mtd = nand_to_mtd(chip);
933 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
71d54f38 934
e9f66ae2 935 switch (chip->ecc.mode) {
71d54f38 936
e9f66ae2
SP
937 case NAND_ECC_NONE:
938 dev_info(info->device, "ECC disabled\n");
939 break;
940
941 case NAND_ECC_SOFT:
942 /*
943 * This driver expects Hamming based ECC when ecc_mode is set
944 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
945 * avoid adding an extra ecc_algo field to
946 * s3c2410_platform_nand.
947 */
948 chip->ecc.algo = NAND_ECC_HAMMING;
949 dev_info(info->device, "soft ECC\n");
950 break;
951
952 case NAND_ECC_HW:
953 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
954 chip->ecc.correct = s3c2410_nand_correct_data;
955 chip->ecc.strength = 1;
956
957 switch (info->cpu_type) {
958 case TYPE_S3C2410:
959 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
960 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
961 break;
962
963 case TYPE_S3C2412:
964 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
965 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
966 break;
967
968 case TYPE_S3C2440:
969 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
970 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
971 break;
972 }
973
974 dev_dbg(info->device, "chip %p => page shift %d\n",
975 chip, chip->page_shift);
8c3e843d 976
48fc7f7e 977 /* change the behaviour depending on whether we are using
71d54f38 978 * the large or small page nand device */
e9f66ae2
SP
979 if (chip->page_shift > 10) {
980 chip->ecc.size = 256;
981 chip->ecc.bytes = 3;
982 } else {
983 chip->ecc.size = 512;
984 chip->ecc.bytes = 3;
985 mtd_set_ooblayout(nand_to_mtd(chip),
986 &s3c2410_ooblayout_ops);
987 }
71d54f38 988
e9f66ae2
SP
989 dev_info(info->device, "hardware ECC\n");
990 break;
991
992 default:
993 dev_err(info->device, "invalid ECC mode!\n");
994 return -EINVAL;
71d54f38 995 }
e9f66ae2 996
1c825ad1
SP
997 if (chip->bbt_options & NAND_BBT_USE_FLASH)
998 chip->options |= NAND_SKIP_BBTSCAN;
999
1000 return 0;
1001}
1002
12748318
MR
1003static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1004 .attach_chip = s3c2410_nand_attach_chip,
1005};
1006
1c825ad1
SP
1007static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1008 {
1009 .compatible = "samsung,s3c2410-nand",
1010 .data = &s3c2410_nand_devtype_data,
1011 }, {
1012 /* also compatible with s3c6400 */
1013 .compatible = "samsung,s3c2412-nand",
1014 .data = &s3c2412_nand_devtype_data,
1015 }, {
1016 .compatible = "samsung,s3c2440-nand",
1017 .data = &s3c2440_nand_devtype_data,
1018 },
1019 { /* sentinel */ }
1020};
1021MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1022
1023static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1024{
1025 const struct s3c24XX_nand_devtype_data *devtype_data;
1026 struct s3c2410_platform_nand *pdata;
1027 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1028 struct device_node *np = pdev->dev.of_node, *child;
1029 struct s3c2410_nand_set *sets;
1030
1031 devtype_data = of_device_get_match_data(&pdev->dev);
1032 if (!devtype_data)
1033 return -ENODEV;
1034
1035 info->cpu_type = devtype_data->type;
1036
1037 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1038 if (!pdata)
1039 return -ENOMEM;
1040
1041 pdev->dev.platform_data = pdata;
1042
1043 pdata->nr_sets = of_get_child_count(np);
1044 if (!pdata->nr_sets)
1045 return 0;
1046
a86854d0 1047 sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1c825ad1
SP
1048 GFP_KERNEL);
1049 if (!sets)
1050 return -ENOMEM;
1051
1052 pdata->sets = sets;
1053
1054 for_each_available_child_of_node(np, child) {
1055 sets->name = (char *)child->name;
1056 sets->of_node = child;
1057 sets->nr_chips = 1;
1058
1059 of_node_get(child);
1060
1061 sets++;
1062 }
1063
1064 return 0;
1065}
1066
1067static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1068{
1069 struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1070
1071 info->cpu_type = platform_get_device_id(pdev)->driver_data;
1072
e9f66ae2 1073 return 0;
71d54f38
BD
1074}
1075
ec0482e6 1076/* s3c24xx_nand_probe
1da177e4
LT
1077 *
1078 * called by device layer when it finds a device matching
1079 * one our driver can handled. This code checks to see if
1080 * it can allocate all necessary resources then calls the
1081 * nand layer to look for devices
1082*/
ec0482e6 1083static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 1084{
1c825ad1 1085 struct s3c2410_platform_nand *plat;
1da177e4
LT
1086 struct s3c2410_nand_info *info;
1087 struct s3c2410_nand_mtd *nmtd;
1088 struct s3c2410_nand_set *sets;
1089 struct resource *res;
1090 int err = 0;
1091 int size;
1092 int nr_sets;
1093 int setno;
1094
6f32a3e2 1095 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1da177e4 1096 if (info == NULL) {
1da177e4
LT
1097 err = -ENOMEM;
1098 goto exit_error;
1099 }
1100
3ae5eaec 1101 platform_set_drvdata(pdev, info);
1da177e4 1102
7da45139 1103 nand_controller_init(&info->controller);
12748318 1104 info->controller.ops = &s3c24xx_nand_controller_ops;
1da177e4
LT
1105
1106 /* get the clock source and enable it */
1107
6f32a3e2 1108 info->clk = devm_clk_get(&pdev->dev, "nand");
1da177e4 1109 if (IS_ERR(info->clk)) {
898eb71c 1110 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
1111 err = -ENOENT;
1112 goto exit_error;
1113 }
1114
ac497c16 1115 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1da177e4 1116
1c825ad1
SP
1117 if (pdev->dev.of_node)
1118 err = s3c24xx_nand_probe_dt(pdev);
1119 else
1120 err = s3c24xx_nand_probe_pdata(pdev);
1121
1122 if (err)
1123 goto exit_error;
1124
1125 plat = to_nand_plat(pdev);
1126
1da177e4
LT
1127 /* allocate and map the resource */
1128
a4f957f1 1129 /* currently we assume we have the one resource */
6f32a3e2 1130 res = pdev->resource;
fc161c4e 1131 size = resource_size(res);
1da177e4 1132
6f32a3e2
SK
1133 info->device = &pdev->dev;
1134 info->platform = plat;
1da177e4 1135
b0de774c
TR
1136 info->regs = devm_ioremap_resource(&pdev->dev, res);
1137 if (IS_ERR(info->regs)) {
1138 err = PTR_ERR(info->regs);
1da177e4 1139 goto exit_error;
61b03bd7 1140 }
1da177e4 1141
3ae5eaec 1142 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4 1143
bdc4e58d
BB
1144 if (!plat->sets || plat->nr_sets < 1) {
1145 err = -EINVAL;
1146 goto exit_error;
1147 }
1148
1149 sets = plat->sets;
1150 nr_sets = plat->nr_sets;
1da177e4
LT
1151
1152 info->mtd_count = nr_sets;
1153
1154 /* allocate our information */
1155
1156 size = nr_sets * sizeof(*info->mtds);
6f32a3e2 1157 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1da177e4 1158 if (info->mtds == NULL) {
1da177e4
LT
1159 err = -ENOMEM;
1160 goto exit_error;
1161 }
1162
1da177e4
LT
1163 /* initialise all possible chips */
1164
1165 nmtd = info->mtds;
1166
bdc4e58d 1167 for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
7208b997
BB
1168 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1169
f938bc56
SK
1170 pr_debug("initialising set %d (%p, info %p)\n",
1171 setno, nmtd, info);
61b03bd7 1172
7208b997 1173 mtd->dev.parent = &pdev->dev;
1da177e4
LT
1174 s3c2410_nand_init_chip(info, nmtd, sets);
1175
00ad378f 1176 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
bb00ff2f
MR
1177 if (err)
1178 goto exit_error;
1179
1180 s3c2410_nand_add_partition(info, nmtd, sets);
1da177e4 1181 }
61b03bd7 1182
1c825ad1
SP
1183 /* initialise the hardware */
1184 err = s3c2410_nand_inithw(info);
1185 if (err != 0)
1186 goto exit_error;
1187
30821fee
BD
1188 err = s3c2410_nand_cpufreq_register(info);
1189 if (err < 0) {
1190 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1191 goto exit_error;
1192 }
1193
ac497c16 1194 if (allow_clk_suspend(info)) {
d1fef3c5 1195 dev_info(&pdev->dev, "clock idle support enabled\n");
ac497c16 1196 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1197 }
1198
1da177e4
LT
1199 return 0;
1200
1201 exit_error:
ec0482e6 1202 s3c24xx_nand_remove(pdev);
1da177e4
LT
1203
1204 if (err == 0)
1205 err = -EINVAL;
1206 return err;
1207}
1208
d1fef3c5
BD
1209/* PM Support */
1210#ifdef CONFIG_PM
1211
1212static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1213{
1214 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1215
1216 if (info) {
09160832 1217 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1218
1219 /* For the moment, we must ensure nFCE is high during
1220 * the time we are suspended. This really should be
1221 * handled by suspending the MTDs we are using, but
1222 * that is currently not the case. */
1223
09160832 1224 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1225
ac497c16 1226 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
d1fef3c5
BD
1227 }
1228
1229 return 0;
1230}
1231
1232static int s3c24xx_nand_resume(struct platform_device *dev)
1233{
1234 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1235 unsigned long sel;
d1fef3c5
BD
1236
1237 if (info) {
ac497c16 1238 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
30821fee 1239 s3c2410_nand_inithw(info);
d1fef3c5 1240
03680b1e
BD
1241 /* Restore the state of the nFCE line. */
1242
09160832
BD
1243 sel = readl(info->sel_reg);
1244 sel &= ~info->sel_bit;
1245 sel |= info->save_sel & info->sel_bit;
1246 writel(sel, info->sel_reg);
03680b1e 1247
ac497c16 1248 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1249 }
1250
1251 return 0;
1252}
1253
1254#else
1255#define s3c24xx_nand_suspend NULL
1256#define s3c24xx_nand_resume NULL
1257#endif
1258
a4f957f1
BD
1259/* driver device registration */
1260
0abe75d2 1261static const struct platform_device_id s3c24xx_driver_ids[] = {
ec0482e6
BD
1262 {
1263 .name = "s3c2410-nand",
1264 .driver_data = TYPE_S3C2410,
1265 }, {
1266 .name = "s3c2440-nand",
1267 .driver_data = TYPE_S3C2440,
1268 }, {
1269 .name = "s3c2412-nand",
1270 .driver_data = TYPE_S3C2412,
9dbc0902
PK
1271 }, {
1272 .name = "s3c6400-nand",
1273 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
3ae5eaec 1274 },
ec0482e6 1275 { }
1da177e4
LT
1276};
1277
ec0482e6 1278MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1279
ec0482e6
BD
1280static struct platform_driver s3c24xx_nand_driver = {
1281 .probe = s3c24xx_nand_probe,
1282 .remove = s3c24xx_nand_remove,
2c06a082
BD
1283 .suspend = s3c24xx_nand_suspend,
1284 .resume = s3c24xx_nand_resume,
ec0482e6 1285 .id_table = s3c24xx_driver_ids,
2c06a082 1286 .driver = {
ec0482e6 1287 .name = "s3c24xx-nand",
1c825ad1 1288 .of_match_table = s3c24xx_nand_dt_ids,
2c06a082
BD
1289 },
1290};
1291
056fcab5 1292module_platform_driver(s3c24xx_nand_driver);
1da177e4
LT
1293
1294MODULE_LICENSE("GPL");
1295MODULE_AUTHOR("Ben Dooks <[email protected]>");
a4f957f1 1296MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
This page took 1.123215 seconds and 4 git commands to generate.