]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic pidhash and scalable, time-bounded PID allocator | |
3 | * | |
6d49e352 NYC |
4 | * (C) 2002-2003 Nadia Yvette Chambers, IBM |
5 | * (C) 2004 Nadia Yvette Chambers, Oracle | |
1da177e4 LT |
6 | * (C) 2002-2004 Ingo Molnar, Red Hat |
7 | * | |
8 | * pid-structures are backing objects for tasks sharing a given ID to chain | |
9 | * against. There is very little to them aside from hashing them and | |
10 | * parking tasks using given ID's on a list. | |
11 | * | |
12 | * The hash is always changed with the tasklist_lock write-acquired, | |
13 | * and the hash is only accessed with the tasklist_lock at least | |
14 | * read-acquired, so there's no additional SMP locking needed here. | |
15 | * | |
16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | |
17 | * Allocating and freeing PIDs is completely lockless. The worst-case | |
18 | * allocation scenario when all but one out of 1 million PIDs possible are | |
19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | |
20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | |
30e49c26 PE |
21 | * |
22 | * Pid namespaces: | |
23 | * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. | |
24 | * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM | |
25 | * Many thanks to Oleg Nesterov for comments and help | |
26 | * | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
9984de1a | 30 | #include <linux/export.h> |
1da177e4 LT |
31 | #include <linux/slab.h> |
32 | #include <linux/init.h> | |
82524746 | 33 | #include <linux/rculist.h> |
1da177e4 LT |
34 | #include <linux/bootmem.h> |
35 | #include <linux/hash.h> | |
61a58c6c | 36 | #include <linux/pid_namespace.h> |
820e45db | 37 | #include <linux/init_task.h> |
3eb07c8c | 38 | #include <linux/syscalls.h> |
0a01f2cc | 39 | #include <linux/proc_fs.h> |
1da177e4 | 40 | |
8ef047aa PE |
41 | #define pid_hashfn(nr, ns) \ |
42 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | |
92476d7f | 43 | static struct hlist_head *pid_hash; |
2c85f51d | 44 | static unsigned int pidhash_shift = 4; |
820e45db | 45 | struct pid init_struct_pid = INIT_STRUCT_PID; |
1da177e4 LT |
46 | |
47 | int pid_max = PID_MAX_DEFAULT; | |
1da177e4 LT |
48 | |
49 | #define RESERVED_PIDS 300 | |
50 | ||
51 | int pid_max_min = RESERVED_PIDS + 1; | |
52 | int pid_max_max = PID_MAX_LIMIT; | |
53 | ||
1da177e4 LT |
54 | #define BITS_PER_PAGE (PAGE_SIZE*8) |
55 | #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) | |
3fbc9648 | 56 | |
61a58c6c SB |
57 | static inline int mk_pid(struct pid_namespace *pid_ns, |
58 | struct pidmap *map, int off) | |
3fbc9648 | 59 | { |
61a58c6c | 60 | return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; |
3fbc9648 SB |
61 | } |
62 | ||
1da177e4 LT |
63 | #define find_next_offset(map, off) \ |
64 | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | |
65 | ||
66 | /* | |
67 | * PID-map pages start out as NULL, they get allocated upon | |
68 | * first use and are never deallocated. This way a low pid_max | |
69 | * value does not cause lots of bitmaps to be allocated, but | |
70 | * the scheme scales to up to 4 million PIDs, runtime. | |
71 | */ | |
61a58c6c | 72 | struct pid_namespace init_pid_ns = { |
9a575a92 CLG |
73 | .kref = { |
74 | .refcount = ATOMIC_INIT(2), | |
75 | }, | |
3fbc9648 SB |
76 | .pidmap = { |
77 | [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } | |
78 | }, | |
84d73786 | 79 | .last_pid = 0, |
faacbfd3 PE |
80 | .level = 0, |
81 | .child_reaper = &init_task, | |
49f4d8b9 | 82 | .user_ns = &init_user_ns, |
98f842e6 | 83 | .proc_inum = PROC_PID_INIT_INO, |
3fbc9648 | 84 | }; |
198fe21b | 85 | EXPORT_SYMBOL_GPL(init_pid_ns); |
1da177e4 | 86 | |
92476d7f EB |
87 | /* |
88 | * Note: disable interrupts while the pidmap_lock is held as an | |
89 | * interrupt might come in and do read_lock(&tasklist_lock). | |
90 | * | |
91 | * If we don't disable interrupts there is a nasty deadlock between | |
92 | * detach_pid()->free_pid() and another cpu that does | |
93 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | |
94 | * read_lock(&tasklist_lock); | |
95 | * | |
96 | * After we clean up the tasklist_lock and know there are no | |
97 | * irq handlers that take it we can leave the interrupts enabled. | |
98 | * For now it is easier to be safe than to prove it can't happen. | |
99 | */ | |
3fbc9648 | 100 | |
1da177e4 LT |
101 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
102 | ||
b7127aa4 | 103 | static void free_pidmap(struct upid *upid) |
1da177e4 | 104 | { |
b7127aa4 ON |
105 | int nr = upid->nr; |
106 | struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; | |
107 | int offset = nr & BITS_PER_PAGE_MASK; | |
1da177e4 LT |
108 | |
109 | clear_bit(offset, map->page); | |
110 | atomic_inc(&map->nr_free); | |
111 | } | |
112 | ||
5fdee8c4 S |
113 | /* |
114 | * If we started walking pids at 'base', is 'a' seen before 'b'? | |
115 | */ | |
116 | static int pid_before(int base, int a, int b) | |
117 | { | |
118 | /* | |
119 | * This is the same as saying | |
120 | * | |
121 | * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT | |
122 | * and that mapping orders 'a' and 'b' with respect to 'base'. | |
123 | */ | |
124 | return (unsigned)(a - base) < (unsigned)(b - base); | |
125 | } | |
126 | ||
127 | /* | |
b8f566b0 PE |
128 | * We might be racing with someone else trying to set pid_ns->last_pid |
129 | * at the pid allocation time (there's also a sysctl for this, but racing | |
130 | * with this one is OK, see comment in kernel/pid_namespace.c about it). | |
5fdee8c4 S |
131 | * We want the winner to have the "later" value, because if the |
132 | * "earlier" value prevails, then a pid may get reused immediately. | |
133 | * | |
134 | * Since pids rollover, it is not sufficient to just pick the bigger | |
135 | * value. We have to consider where we started counting from. | |
136 | * | |
137 | * 'base' is the value of pid_ns->last_pid that we observed when | |
138 | * we started looking for a pid. | |
139 | * | |
140 | * 'pid' is the pid that we eventually found. | |
141 | */ | |
142 | static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) | |
143 | { | |
144 | int prev; | |
145 | int last_write = base; | |
146 | do { | |
147 | prev = last_write; | |
148 | last_write = cmpxchg(&pid_ns->last_pid, prev, pid); | |
149 | } while ((prev != last_write) && (pid_before(base, last_write, pid))); | |
150 | } | |
151 | ||
61a58c6c | 152 | static int alloc_pidmap(struct pid_namespace *pid_ns) |
1da177e4 | 153 | { |
61a58c6c | 154 | int i, offset, max_scan, pid, last = pid_ns->last_pid; |
6a1f3b84 | 155 | struct pidmap *map; |
1da177e4 LT |
156 | |
157 | pid = last + 1; | |
158 | if (pid >= pid_max) | |
159 | pid = RESERVED_PIDS; | |
160 | offset = pid & BITS_PER_PAGE_MASK; | |
61a58c6c | 161 | map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; |
c52b0b91 ON |
162 | /* |
163 | * If last_pid points into the middle of the map->page we | |
164 | * want to scan this bitmap block twice, the second time | |
165 | * we start with offset == 0 (or RESERVED_PIDS). | |
166 | */ | |
167 | max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; | |
1da177e4 LT |
168 | for (i = 0; i <= max_scan; ++i) { |
169 | if (unlikely(!map->page)) { | |
3fbc9648 | 170 | void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
1da177e4 LT |
171 | /* |
172 | * Free the page if someone raced with us | |
173 | * installing it: | |
174 | */ | |
92476d7f | 175 | spin_lock_irq(&pidmap_lock); |
7be6d991 | 176 | if (!map->page) { |
3fbc9648 | 177 | map->page = page; |
7be6d991 AGR |
178 | page = NULL; |
179 | } | |
92476d7f | 180 | spin_unlock_irq(&pidmap_lock); |
7be6d991 | 181 | kfree(page); |
1da177e4 LT |
182 | if (unlikely(!map->page)) |
183 | break; | |
184 | } | |
185 | if (likely(atomic_read(&map->nr_free))) { | |
186 | do { | |
187 | if (!test_and_set_bit(offset, map->page)) { | |
188 | atomic_dec(&map->nr_free); | |
5fdee8c4 | 189 | set_last_pid(pid_ns, last, pid); |
1da177e4 LT |
190 | return pid; |
191 | } | |
192 | offset = find_next_offset(map, offset); | |
61a58c6c | 193 | pid = mk_pid(pid_ns, map, offset); |
c52b0b91 | 194 | } while (offset < BITS_PER_PAGE && pid < pid_max); |
1da177e4 | 195 | } |
61a58c6c | 196 | if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { |
1da177e4 LT |
197 | ++map; |
198 | offset = 0; | |
199 | } else { | |
61a58c6c | 200 | map = &pid_ns->pidmap[0]; |
1da177e4 LT |
201 | offset = RESERVED_PIDS; |
202 | if (unlikely(last == offset)) | |
203 | break; | |
204 | } | |
61a58c6c | 205 | pid = mk_pid(pid_ns, map, offset); |
1da177e4 LT |
206 | } |
207 | return -1; | |
208 | } | |
209 | ||
c78193e9 | 210 | int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) |
0804ef4b EB |
211 | { |
212 | int offset; | |
f40f50d3 | 213 | struct pidmap *map, *end; |
0804ef4b | 214 | |
c78193e9 LT |
215 | if (last >= PID_MAX_LIMIT) |
216 | return -1; | |
217 | ||
0804ef4b | 218 | offset = (last + 1) & BITS_PER_PAGE_MASK; |
61a58c6c SB |
219 | map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; |
220 | end = &pid_ns->pidmap[PIDMAP_ENTRIES]; | |
f40f50d3 | 221 | for (; map < end; map++, offset = 0) { |
0804ef4b EB |
222 | if (unlikely(!map->page)) |
223 | continue; | |
224 | offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); | |
225 | if (offset < BITS_PER_PAGE) | |
61a58c6c | 226 | return mk_pid(pid_ns, map, offset); |
0804ef4b EB |
227 | } |
228 | return -1; | |
229 | } | |
230 | ||
7ad5b3a5 | 231 | void put_pid(struct pid *pid) |
92476d7f | 232 | { |
baf8f0f8 PE |
233 | struct pid_namespace *ns; |
234 | ||
92476d7f EB |
235 | if (!pid) |
236 | return; | |
baf8f0f8 | 237 | |
8ef047aa | 238 | ns = pid->numbers[pid->level].ns; |
92476d7f | 239 | if ((atomic_read(&pid->count) == 1) || |
8ef047aa | 240 | atomic_dec_and_test(&pid->count)) { |
baf8f0f8 | 241 | kmem_cache_free(ns->pid_cachep, pid); |
b461cc03 | 242 | put_pid_ns(ns); |
8ef047aa | 243 | } |
92476d7f | 244 | } |
bbf73147 | 245 | EXPORT_SYMBOL_GPL(put_pid); |
92476d7f EB |
246 | |
247 | static void delayed_put_pid(struct rcu_head *rhp) | |
248 | { | |
249 | struct pid *pid = container_of(rhp, struct pid, rcu); | |
250 | put_pid(pid); | |
251 | } | |
252 | ||
7ad5b3a5 | 253 | void free_pid(struct pid *pid) |
92476d7f EB |
254 | { |
255 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | |
8ef047aa | 256 | int i; |
92476d7f EB |
257 | unsigned long flags; |
258 | ||
259 | spin_lock_irqsave(&pidmap_lock, flags); | |
0a01f2cc EB |
260 | for (i = 0; i <= pid->level; i++) { |
261 | struct upid *upid = pid->numbers + i; | |
af4b8a83 | 262 | struct pid_namespace *ns = upid->ns; |
0a01f2cc | 263 | hlist_del_rcu(&upid->pid_chain); |
af4b8a83 EB |
264 | switch(--ns->nr_hashed) { |
265 | case 1: | |
266 | /* When all that is left in the pid namespace | |
267 | * is the reaper wake up the reaper. The reaper | |
268 | * may be sleeping in zap_pid_ns_processes(). | |
269 | */ | |
270 | wake_up_process(ns->child_reaper); | |
271 | break; | |
272 | case 0: | |
af4b8a83 EB |
273 | schedule_work(&ns->proc_work); |
274 | break; | |
5e1182de | 275 | } |
0a01f2cc | 276 | } |
92476d7f EB |
277 | spin_unlock_irqrestore(&pidmap_lock, flags); |
278 | ||
8ef047aa | 279 | for (i = 0; i <= pid->level; i++) |
b7127aa4 | 280 | free_pidmap(pid->numbers + i); |
8ef047aa | 281 | |
92476d7f EB |
282 | call_rcu(&pid->rcu, delayed_put_pid); |
283 | } | |
284 | ||
8ef047aa | 285 | struct pid *alloc_pid(struct pid_namespace *ns) |
92476d7f EB |
286 | { |
287 | struct pid *pid; | |
288 | enum pid_type type; | |
8ef047aa PE |
289 | int i, nr; |
290 | struct pid_namespace *tmp; | |
198fe21b | 291 | struct upid *upid; |
92476d7f | 292 | |
baf8f0f8 | 293 | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); |
92476d7f EB |
294 | if (!pid) |
295 | goto out; | |
296 | ||
8ef047aa | 297 | tmp = ns; |
0a01f2cc | 298 | pid->level = ns->level; |
8ef047aa PE |
299 | for (i = ns->level; i >= 0; i--) { |
300 | nr = alloc_pidmap(tmp); | |
301 | if (nr < 0) | |
302 | goto out_free; | |
92476d7f | 303 | |
8ef047aa PE |
304 | pid->numbers[i].nr = nr; |
305 | pid->numbers[i].ns = tmp; | |
306 | tmp = tmp->parent; | |
307 | } | |
308 | ||
0a01f2cc EB |
309 | if (unlikely(is_child_reaper(pid))) { |
310 | if (pid_ns_prepare_proc(ns)) | |
311 | goto out_free; | |
312 | } | |
313 | ||
b461cc03 | 314 | get_pid_ns(ns); |
92476d7f | 315 | atomic_set(&pid->count, 1); |
92476d7f EB |
316 | for (type = 0; type < PIDTYPE_MAX; ++type) |
317 | INIT_HLIST_HEAD(&pid->tasks[type]); | |
318 | ||
417e3152 | 319 | upid = pid->numbers + ns->level; |
92476d7f | 320 | spin_lock_irq(&pidmap_lock); |
c876ad76 | 321 | if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) |
5e1182de | 322 | goto out_unlock; |
0a01f2cc | 323 | for ( ; upid >= pid->numbers; --upid) { |
198fe21b PE |
324 | hlist_add_head_rcu(&upid->pid_chain, |
325 | &pid_hash[pid_hashfn(upid->nr, upid->ns)]); | |
0a01f2cc EB |
326 | upid->ns->nr_hashed++; |
327 | } | |
92476d7f EB |
328 | spin_unlock_irq(&pidmap_lock); |
329 | ||
330 | out: | |
331 | return pid; | |
332 | ||
5e1182de | 333 | out_unlock: |
6e666884 | 334 | spin_unlock_irq(&pidmap_lock); |
92476d7f | 335 | out_free: |
b7127aa4 ON |
336 | while (++i <= ns->level) |
337 | free_pidmap(pid->numbers + i); | |
8ef047aa | 338 | |
baf8f0f8 | 339 | kmem_cache_free(ns->pid_cachep, pid); |
92476d7f EB |
340 | pid = NULL; |
341 | goto out; | |
342 | } | |
343 | ||
c876ad76 EB |
344 | void disable_pid_allocation(struct pid_namespace *ns) |
345 | { | |
346 | spin_lock_irq(&pidmap_lock); | |
347 | ns->nr_hashed &= ~PIDNS_HASH_ADDING; | |
348 | spin_unlock_irq(&pidmap_lock); | |
349 | } | |
350 | ||
7ad5b3a5 | 351 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) |
1da177e4 | 352 | { |
198fe21b PE |
353 | struct upid *pnr; |
354 | ||
b67bfe0d | 355 | hlist_for_each_entry_rcu(pnr, |
198fe21b PE |
356 | &pid_hash[pid_hashfn(nr, ns)], pid_chain) |
357 | if (pnr->nr == nr && pnr->ns == ns) | |
358 | return container_of(pnr, struct pid, | |
359 | numbers[ns->level]); | |
1da177e4 | 360 | |
1da177e4 LT |
361 | return NULL; |
362 | } | |
198fe21b | 363 | EXPORT_SYMBOL_GPL(find_pid_ns); |
1da177e4 | 364 | |
8990571e PE |
365 | struct pid *find_vpid(int nr) |
366 | { | |
17cf22c3 | 367 | return find_pid_ns(nr, task_active_pid_ns(current)); |
8990571e PE |
368 | } |
369 | EXPORT_SYMBOL_GPL(find_vpid); | |
370 | ||
e713d0da SB |
371 | /* |
372 | * attach_pid() must be called with the tasklist_lock write-held. | |
373 | */ | |
24336eae | 374 | void attach_pid(struct task_struct *task, enum pid_type type, |
e713d0da | 375 | struct pid *pid) |
1da177e4 | 376 | { |
92476d7f | 377 | struct pid_link *link; |
92476d7f | 378 | |
92476d7f | 379 | link = &task->pids[type]; |
e713d0da | 380 | link->pid = pid; |
92476d7f | 381 | hlist_add_head_rcu(&link->node, &pid->tasks[type]); |
1da177e4 LT |
382 | } |
383 | ||
24336eae ON |
384 | static void __change_pid(struct task_struct *task, enum pid_type type, |
385 | struct pid *new) | |
1da177e4 | 386 | { |
92476d7f EB |
387 | struct pid_link *link; |
388 | struct pid *pid; | |
389 | int tmp; | |
1da177e4 | 390 | |
92476d7f EB |
391 | link = &task->pids[type]; |
392 | pid = link->pid; | |
1da177e4 | 393 | |
92476d7f | 394 | hlist_del_rcu(&link->node); |
24336eae | 395 | link->pid = new; |
1da177e4 | 396 | |
92476d7f EB |
397 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
398 | if (!hlist_empty(&pid->tasks[tmp])) | |
399 | return; | |
1da177e4 | 400 | |
92476d7f | 401 | free_pid(pid); |
1da177e4 LT |
402 | } |
403 | ||
24336eae ON |
404 | void detach_pid(struct task_struct *task, enum pid_type type) |
405 | { | |
406 | __change_pid(task, type, NULL); | |
407 | } | |
408 | ||
409 | void change_pid(struct task_struct *task, enum pid_type type, | |
410 | struct pid *pid) | |
411 | { | |
412 | __change_pid(task, type, pid); | |
413 | attach_pid(task, type, pid); | |
414 | } | |
415 | ||
c18258c6 | 416 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ |
7ad5b3a5 | 417 | void transfer_pid(struct task_struct *old, struct task_struct *new, |
c18258c6 EB |
418 | enum pid_type type) |
419 | { | |
420 | new->pids[type].pid = old->pids[type].pid; | |
421 | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | |
c18258c6 EB |
422 | } |
423 | ||
7ad5b3a5 | 424 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) |
1da177e4 | 425 | { |
92476d7f EB |
426 | struct task_struct *result = NULL; |
427 | if (pid) { | |
428 | struct hlist_node *first; | |
67bdbffd | 429 | first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), |
db1466b3 | 430 | lockdep_tasklist_lock_is_held()); |
92476d7f EB |
431 | if (first) |
432 | result = hlist_entry(first, struct task_struct, pids[(type)].node); | |
433 | } | |
434 | return result; | |
435 | } | |
eccba068 | 436 | EXPORT_SYMBOL(pid_task); |
1da177e4 | 437 | |
92476d7f | 438 | /* |
9728e5d6 | 439 | * Must be called under rcu_read_lock(). |
92476d7f | 440 | */ |
17f98dcf | 441 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) |
92476d7f | 442 | { |
b3fbab05 PM |
443 | rcu_lockdep_assert(rcu_read_lock_held(), |
444 | "find_task_by_pid_ns() needs rcu_read_lock()" | |
445 | " protection"); | |
17f98dcf | 446 | return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); |
92476d7f | 447 | } |
1da177e4 | 448 | |
228ebcbe PE |
449 | struct task_struct *find_task_by_vpid(pid_t vnr) |
450 | { | |
17cf22c3 | 451 | return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); |
228ebcbe | 452 | } |
228ebcbe | 453 | |
1a657f78 ON |
454 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) |
455 | { | |
456 | struct pid *pid; | |
457 | rcu_read_lock(); | |
2ae448ef ON |
458 | if (type != PIDTYPE_PID) |
459 | task = task->group_leader; | |
1a657f78 ON |
460 | pid = get_pid(task->pids[type].pid); |
461 | rcu_read_unlock(); | |
462 | return pid; | |
463 | } | |
77c100c8 | 464 | EXPORT_SYMBOL_GPL(get_task_pid); |
1a657f78 | 465 | |
7ad5b3a5 | 466 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) |
92476d7f EB |
467 | { |
468 | struct task_struct *result; | |
469 | rcu_read_lock(); | |
470 | result = pid_task(pid, type); | |
471 | if (result) | |
472 | get_task_struct(result); | |
473 | rcu_read_unlock(); | |
474 | return result; | |
1da177e4 | 475 | } |
77c100c8 | 476 | EXPORT_SYMBOL_GPL(get_pid_task); |
1da177e4 | 477 | |
92476d7f | 478 | struct pid *find_get_pid(pid_t nr) |
1da177e4 LT |
479 | { |
480 | struct pid *pid; | |
481 | ||
92476d7f | 482 | rcu_read_lock(); |
198fe21b | 483 | pid = get_pid(find_vpid(nr)); |
92476d7f | 484 | rcu_read_unlock(); |
1da177e4 | 485 | |
92476d7f | 486 | return pid; |
1da177e4 | 487 | } |
339caf2a | 488 | EXPORT_SYMBOL_GPL(find_get_pid); |
1da177e4 | 489 | |
7af57294 PE |
490 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) |
491 | { | |
492 | struct upid *upid; | |
493 | pid_t nr = 0; | |
494 | ||
495 | if (pid && ns->level <= pid->level) { | |
496 | upid = &pid->numbers[ns->level]; | |
497 | if (upid->ns == ns) | |
498 | nr = upid->nr; | |
499 | } | |
500 | return nr; | |
501 | } | |
4f82f457 | 502 | EXPORT_SYMBOL_GPL(pid_nr_ns); |
7af57294 | 503 | |
44c4e1b2 EB |
504 | pid_t pid_vnr(struct pid *pid) |
505 | { | |
17cf22c3 | 506 | return pid_nr_ns(pid, task_active_pid_ns(current)); |
44c4e1b2 EB |
507 | } |
508 | EXPORT_SYMBOL_GPL(pid_vnr); | |
509 | ||
52ee2dfd ON |
510 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
511 | struct pid_namespace *ns) | |
2f2a3a46 | 512 | { |
52ee2dfd ON |
513 | pid_t nr = 0; |
514 | ||
515 | rcu_read_lock(); | |
516 | if (!ns) | |
17cf22c3 | 517 | ns = task_active_pid_ns(current); |
52ee2dfd ON |
518 | if (likely(pid_alive(task))) { |
519 | if (type != PIDTYPE_PID) | |
520 | task = task->group_leader; | |
521 | nr = pid_nr_ns(task->pids[type].pid, ns); | |
522 | } | |
523 | rcu_read_unlock(); | |
524 | ||
525 | return nr; | |
2f2a3a46 | 526 | } |
52ee2dfd | 527 | EXPORT_SYMBOL(__task_pid_nr_ns); |
2f2a3a46 PE |
528 | |
529 | pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | |
530 | { | |
531 | return pid_nr_ns(task_tgid(tsk), ns); | |
532 | } | |
533 | EXPORT_SYMBOL(task_tgid_nr_ns); | |
534 | ||
61bce0f1 EB |
535 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) |
536 | { | |
537 | return ns_of_pid(task_pid(tsk)); | |
538 | } | |
539 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | |
540 | ||
0804ef4b | 541 | /* |
025dfdaf | 542 | * Used by proc to find the first pid that is greater than or equal to nr. |
0804ef4b | 543 | * |
e49859e7 | 544 | * If there is a pid at nr this function is exactly the same as find_pid_ns. |
0804ef4b | 545 | */ |
198fe21b | 546 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) |
0804ef4b EB |
547 | { |
548 | struct pid *pid; | |
549 | ||
550 | do { | |
198fe21b | 551 | pid = find_pid_ns(nr, ns); |
0804ef4b EB |
552 | if (pid) |
553 | break; | |
198fe21b | 554 | nr = next_pidmap(ns, nr); |
0804ef4b EB |
555 | } while (nr > 0); |
556 | ||
557 | return pid; | |
558 | } | |
559 | ||
1da177e4 LT |
560 | /* |
561 | * The pid hash table is scaled according to the amount of memory in the | |
562 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | |
563 | * more. | |
564 | */ | |
565 | void __init pidhash_init(void) | |
566 | { | |
074b8517 | 567 | unsigned int i, pidhash_size; |
1da177e4 | 568 | |
2c85f51d JB |
569 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
570 | HASH_EARLY | HASH_SMALL, | |
31fe62b9 TB |
571 | &pidhash_shift, NULL, |
572 | 0, 4096); | |
074b8517 | 573 | pidhash_size = 1U << pidhash_shift; |
1da177e4 | 574 | |
92476d7f EB |
575 | for (i = 0; i < pidhash_size; i++) |
576 | INIT_HLIST_HEAD(&pid_hash[i]); | |
1da177e4 LT |
577 | } |
578 | ||
579 | void __init pidmap_init(void) | |
580 | { | |
c876ad76 EB |
581 | /* Veryify no one has done anything silly */ |
582 | BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); | |
583 | ||
72680a19 HB |
584 | /* bump default and minimum pid_max based on number of cpus */ |
585 | pid_max = min(pid_max_max, max_t(int, pid_max, | |
586 | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | |
587 | pid_max_min = max_t(int, pid_max_min, | |
588 | PIDS_PER_CPU_MIN * num_possible_cpus()); | |
589 | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | |
590 | ||
61a58c6c | 591 | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
73b9ebfe | 592 | /* Reserve PID 0. We never call free_pidmap(0) */ |
61a58c6c SB |
593 | set_bit(0, init_pid_ns.pidmap[0].page); |
594 | atomic_dec(&init_pid_ns.pidmap[0].nr_free); | |
c876ad76 | 595 | init_pid_ns.nr_hashed = PIDNS_HASH_ADDING; |
92476d7f | 596 | |
74bd59bb PE |
597 | init_pid_ns.pid_cachep = KMEM_CACHE(pid, |
598 | SLAB_HWCACHE_ALIGN | SLAB_PANIC); | |
1da177e4 | 599 | } |