]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/swap_state.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie | |
7 | * | |
8 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie | |
9 | */ | |
1da177e4 | 10 | #include <linux/mm.h> |
5a0e3ad6 | 11 | #include <linux/gfp.h> |
1da177e4 LT |
12 | #include <linux/kernel_stat.h> |
13 | #include <linux/swap.h> | |
46017e95 | 14 | #include <linux/swapops.h> |
1da177e4 LT |
15 | #include <linux/init.h> |
16 | #include <linux/pagemap.h> | |
1da177e4 | 17 | #include <linux/backing-dev.h> |
3fb5c298 | 18 | #include <linux/blkdev.h> |
c484d410 | 19 | #include <linux/pagevec.h> |
b20a3503 | 20 | #include <linux/migrate.h> |
4b3ef9da | 21 | #include <linux/vmalloc.h> |
67afa38e | 22 | #include <linux/swap_slots.h> |
38d8b4e6 | 23 | #include <linux/huge_mm.h> |
1da177e4 LT |
24 | |
25 | #include <asm/pgtable.h> | |
26 | ||
27 | /* | |
28 | * swapper_space is a fiction, retained to simplify the path through | |
7eaceacc | 29 | * vmscan's shrink_page_list. |
1da177e4 | 30 | */ |
f5e54d6e | 31 | static const struct address_space_operations swap_aops = { |
1da177e4 | 32 | .writepage = swap_writepage, |
62c230bc | 33 | .set_page_dirty = swap_set_page_dirty, |
1c93923c | 34 | #ifdef CONFIG_MIGRATION |
e965f963 | 35 | .migratepage = migrate_page, |
1c93923c | 36 | #endif |
1da177e4 LT |
37 | }; |
38 | ||
783cb68e CD |
39 | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; |
40 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | |
41 | bool swap_vma_readahead __read_mostly = true; | |
ec560175 | 42 | |
ec560175 YH |
43 | #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) |
44 | #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) | |
45 | #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK | |
46 | #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) | |
47 | ||
48 | #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) | |
49 | #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | |
50 | #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) | |
51 | ||
52 | #define SWAP_RA_VAL(addr, win, hits) \ | |
53 | (((addr) & PAGE_MASK) | \ | |
54 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ | |
55 | ((hits) & SWAP_RA_HITS_MASK)) | |
56 | ||
57 | /* Initial readahead hits is 4 to start up with a small window */ | |
58 | #define GET_SWAP_RA_VAL(vma) \ | |
59 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | |
1da177e4 LT |
60 | |
61 | #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) | |
38d8b4e6 | 62 | #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0) |
1da177e4 LT |
63 | |
64 | static struct { | |
65 | unsigned long add_total; | |
66 | unsigned long del_total; | |
67 | unsigned long find_success; | |
68 | unsigned long find_total; | |
1da177e4 LT |
69 | } swap_cache_info; |
70 | ||
33806f06 SL |
71 | unsigned long total_swapcache_pages(void) |
72 | { | |
4b3ef9da | 73 | unsigned int i, j, nr; |
33806f06 | 74 | unsigned long ret = 0; |
4b3ef9da | 75 | struct address_space *spaces; |
33806f06 | 76 | |
4b3ef9da YH |
77 | rcu_read_lock(); |
78 | for (i = 0; i < MAX_SWAPFILES; i++) { | |
79 | /* | |
80 | * The corresponding entries in nr_swapper_spaces and | |
81 | * swapper_spaces will be reused only after at least | |
82 | * one grace period. So it is impossible for them | |
83 | * belongs to different usage. | |
84 | */ | |
85 | nr = nr_swapper_spaces[i]; | |
86 | spaces = rcu_dereference(swapper_spaces[i]); | |
87 | if (!nr || !spaces) | |
88 | continue; | |
89 | for (j = 0; j < nr; j++) | |
90 | ret += spaces[j].nrpages; | |
91 | } | |
92 | rcu_read_unlock(); | |
33806f06 SL |
93 | return ret; |
94 | } | |
95 | ||
579f8290 SL |
96 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); |
97 | ||
1da177e4 LT |
98 | void show_swap_cache_info(void) |
99 | { | |
33806f06 | 100 | printk("%lu pages in swap cache\n", total_swapcache_pages()); |
2c97b7fc | 101 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", |
1da177e4 | 102 | swap_cache_info.add_total, swap_cache_info.del_total, |
bb63be0a | 103 | swap_cache_info.find_success, swap_cache_info.find_total); |
ec8acf20 SL |
104 | printk("Free swap = %ldkB\n", |
105 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | |
1da177e4 LT |
106 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
107 | } | |
108 | ||
109 | /* | |
31a56396 | 110 | * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
1da177e4 LT |
111 | * but sets SwapCache flag and private instead of mapping and index. |
112 | */ | |
2f772e6c | 113 | int __add_to_swap_cache(struct page *page, swp_entry_t entry) |
1da177e4 | 114 | { |
38d8b4e6 | 115 | int error, i, nr = hpage_nr_pages(page); |
33806f06 | 116 | struct address_space *address_space; |
38d8b4e6 | 117 | pgoff_t idx = swp_offset(entry); |
1da177e4 | 118 | |
309381fe SL |
119 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
120 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
121 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | |
51726b12 | 122 | |
38d8b4e6 | 123 | page_ref_add(page, nr); |
31a56396 | 124 | SetPageSwapCache(page); |
31a56396 | 125 | |
33806f06 SL |
126 | address_space = swap_address_space(entry); |
127 | spin_lock_irq(&address_space->tree_lock); | |
38d8b4e6 YH |
128 | for (i = 0; i < nr; i++) { |
129 | set_page_private(page + i, entry.val + i); | |
130 | error = radix_tree_insert(&address_space->page_tree, | |
131 | idx + i, page + i); | |
132 | if (unlikely(error)) | |
133 | break; | |
31a56396 | 134 | } |
38d8b4e6 YH |
135 | if (likely(!error)) { |
136 | address_space->nrpages += nr; | |
137 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | |
138 | ADD_CACHE_INFO(add_total, nr); | |
139 | } else { | |
2ca4532a DN |
140 | /* |
141 | * Only the context which have set SWAP_HAS_CACHE flag | |
142 | * would call add_to_swap_cache(). | |
143 | * So add_to_swap_cache() doesn't returns -EEXIST. | |
144 | */ | |
145 | VM_BUG_ON(error == -EEXIST); | |
38d8b4e6 YH |
146 | set_page_private(page + i, 0UL); |
147 | while (i--) { | |
148 | radix_tree_delete(&address_space->page_tree, idx + i); | |
149 | set_page_private(page + i, 0UL); | |
150 | } | |
31a56396 | 151 | ClearPageSwapCache(page); |
38d8b4e6 | 152 | page_ref_sub(page, nr); |
31a56396 | 153 | } |
38d8b4e6 | 154 | spin_unlock_irq(&address_space->tree_lock); |
31a56396 DN |
155 | |
156 | return error; | |
157 | } | |
158 | ||
159 | ||
160 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | |
161 | { | |
162 | int error; | |
163 | ||
38d8b4e6 | 164 | error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page)); |
35c754d7 | 165 | if (!error) { |
31a56396 | 166 | error = __add_to_swap_cache(page, entry); |
1da177e4 | 167 | radix_tree_preload_end(); |
fa1de900 | 168 | } |
1da177e4 LT |
169 | return error; |
170 | } | |
171 | ||
1da177e4 LT |
172 | /* |
173 | * This must be called only on pages that have | |
174 | * been verified to be in the swap cache. | |
175 | */ | |
176 | void __delete_from_swap_cache(struct page *page) | |
177 | { | |
33806f06 | 178 | struct address_space *address_space; |
38d8b4e6 YH |
179 | int i, nr = hpage_nr_pages(page); |
180 | swp_entry_t entry; | |
181 | pgoff_t idx; | |
33806f06 | 182 | |
309381fe SL |
183 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
184 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
185 | VM_BUG_ON_PAGE(PageWriteback(page), page); | |
1da177e4 | 186 | |
33806f06 SL |
187 | entry.val = page_private(page); |
188 | address_space = swap_address_space(entry); | |
38d8b4e6 YH |
189 | idx = swp_offset(entry); |
190 | for (i = 0; i < nr; i++) { | |
191 | radix_tree_delete(&address_space->page_tree, idx + i); | |
192 | set_page_private(page + i, 0); | |
193 | } | |
1da177e4 | 194 | ClearPageSwapCache(page); |
38d8b4e6 YH |
195 | address_space->nrpages -= nr; |
196 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
197 | ADD_CACHE_INFO(del_total, nr); | |
1da177e4 LT |
198 | } |
199 | ||
200 | /** | |
201 | * add_to_swap - allocate swap space for a page | |
202 | * @page: page we want to move to swap | |
203 | * | |
204 | * Allocate swap space for the page and add the page to the | |
205 | * swap cache. Caller needs to hold the page lock. | |
206 | */ | |
0f074658 | 207 | int add_to_swap(struct page *page) |
1da177e4 LT |
208 | { |
209 | swp_entry_t entry; | |
1da177e4 LT |
210 | int err; |
211 | ||
309381fe SL |
212 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
213 | VM_BUG_ON_PAGE(!PageUptodate(page), page); | |
1da177e4 | 214 | |
38d8b4e6 | 215 | entry = get_swap_page(page); |
2ca4532a | 216 | if (!entry.val) |
0f074658 MK |
217 | return 0; |
218 | ||
38d8b4e6 | 219 | if (mem_cgroup_try_charge_swap(page, entry)) |
0f074658 | 220 | goto fail; |
3f04f62f | 221 | |
2ca4532a DN |
222 | /* |
223 | * Radix-tree node allocations from PF_MEMALLOC contexts could | |
224 | * completely exhaust the page allocator. __GFP_NOMEMALLOC | |
225 | * stops emergency reserves from being allocated. | |
226 | * | |
227 | * TODO: this could cause a theoretical memory reclaim | |
228 | * deadlock in the swap out path. | |
229 | */ | |
230 | /* | |
854e9ed0 | 231 | * Add it to the swap cache. |
2ca4532a DN |
232 | */ |
233 | err = add_to_swap_cache(page, entry, | |
234 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | |
38d8b4e6 YH |
235 | /* -ENOMEM radix-tree allocation failure */ |
236 | if (err) | |
bd53b714 | 237 | /* |
2ca4532a DN |
238 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
239 | * clear SWAP_HAS_CACHE flag. | |
1da177e4 | 240 | */ |
0f074658 | 241 | goto fail; |
9625456c SL |
242 | /* |
243 | * Normally the page will be dirtied in unmap because its pte should be | |
244 | * dirty. A special case is MADV_FREE page. The page'e pte could have | |
245 | * dirty bit cleared but the page's SwapBacked bit is still set because | |
246 | * clearing the dirty bit and SwapBacked bit has no lock protected. For | |
247 | * such page, unmap will not set dirty bit for it, so page reclaim will | |
248 | * not write the page out. This can cause data corruption when the page | |
249 | * is swap in later. Always setting the dirty bit for the page solves | |
250 | * the problem. | |
251 | */ | |
252 | set_page_dirty(page); | |
38d8b4e6 YH |
253 | |
254 | return 1; | |
255 | ||
38d8b4e6 | 256 | fail: |
0f074658 | 257 | put_swap_page(page, entry); |
38d8b4e6 | 258 | return 0; |
1da177e4 LT |
259 | } |
260 | ||
261 | /* | |
262 | * This must be called only on pages that have | |
263 | * been verified to be in the swap cache and locked. | |
264 | * It will never put the page into the free list, | |
265 | * the caller has a reference on the page. | |
266 | */ | |
267 | void delete_from_swap_cache(struct page *page) | |
268 | { | |
269 | swp_entry_t entry; | |
33806f06 | 270 | struct address_space *address_space; |
1da177e4 | 271 | |
4c21e2f2 | 272 | entry.val = page_private(page); |
1da177e4 | 273 | |
33806f06 SL |
274 | address_space = swap_address_space(entry); |
275 | spin_lock_irq(&address_space->tree_lock); | |
1da177e4 | 276 | __delete_from_swap_cache(page); |
33806f06 | 277 | spin_unlock_irq(&address_space->tree_lock); |
1da177e4 | 278 | |
75f6d6d2 | 279 | put_swap_page(page, entry); |
38d8b4e6 | 280 | page_ref_sub(page, hpage_nr_pages(page)); |
1da177e4 LT |
281 | } |
282 | ||
1da177e4 LT |
283 | /* |
284 | * If we are the only user, then try to free up the swap cache. | |
285 | * | |
286 | * Its ok to check for PageSwapCache without the page lock | |
a2c43eed HD |
287 | * here because we are going to recheck again inside |
288 | * try_to_free_swap() _with_ the lock. | |
1da177e4 LT |
289 | * - Marcelo |
290 | */ | |
291 | static inline void free_swap_cache(struct page *page) | |
292 | { | |
a2c43eed HD |
293 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
294 | try_to_free_swap(page); | |
1da177e4 LT |
295 | unlock_page(page); |
296 | } | |
297 | } | |
298 | ||
299 | /* | |
300 | * Perform a free_page(), also freeing any swap cache associated with | |
b8072f09 | 301 | * this page if it is the last user of the page. |
1da177e4 LT |
302 | */ |
303 | void free_page_and_swap_cache(struct page *page) | |
304 | { | |
305 | free_swap_cache(page); | |
6fcb52a5 | 306 | if (!is_huge_zero_page(page)) |
770a5370 | 307 | put_page(page); |
1da177e4 LT |
308 | } |
309 | ||
310 | /* | |
311 | * Passed an array of pages, drop them all from swapcache and then release | |
312 | * them. They are removed from the LRU and freed if this is their last use. | |
313 | */ | |
314 | void free_pages_and_swap_cache(struct page **pages, int nr) | |
315 | { | |
1da177e4 | 316 | struct page **pagep = pages; |
aabfb572 | 317 | int i; |
1da177e4 LT |
318 | |
319 | lru_add_drain(); | |
aabfb572 MH |
320 | for (i = 0; i < nr; i++) |
321 | free_swap_cache(pagep[i]); | |
c6f92f9f | 322 | release_pages(pagep, nr); |
1da177e4 LT |
323 | } |
324 | ||
325 | /* | |
326 | * Lookup a swap entry in the swap cache. A found page will be returned | |
327 | * unlocked and with its refcount incremented - we rely on the kernel | |
328 | * lock getting page table operations atomic even if we drop the page | |
329 | * lock before returning. | |
330 | */ | |
ec560175 YH |
331 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, |
332 | unsigned long addr) | |
1da177e4 LT |
333 | { |
334 | struct page *page; | |
335 | ||
f6ab1f7f | 336 | page = find_get_page(swap_address_space(entry), swp_offset(entry)); |
1da177e4 | 337 | |
ec560175 YH |
338 | INC_CACHE_INFO(find_total); |
339 | if (page) { | |
eaf649eb MK |
340 | bool vma_ra = swap_use_vma_readahead(); |
341 | bool readahead; | |
342 | ||
1da177e4 | 343 | INC_CACHE_INFO(find_success); |
eaf649eb MK |
344 | /* |
345 | * At the moment, we don't support PG_readahead for anon THP | |
346 | * so let's bail out rather than confusing the readahead stat. | |
347 | */ | |
ec560175 YH |
348 | if (unlikely(PageTransCompound(page))) |
349 | return page; | |
eaf649eb | 350 | |
ec560175 | 351 | readahead = TestClearPageReadahead(page); |
eaf649eb MK |
352 | if (vma && vma_ra) { |
353 | unsigned long ra_val; | |
354 | int win, hits; | |
355 | ||
356 | ra_val = GET_SWAP_RA_VAL(vma); | |
357 | win = SWAP_RA_WIN(ra_val); | |
358 | hits = SWAP_RA_HITS(ra_val); | |
ec560175 YH |
359 | if (readahead) |
360 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | |
361 | atomic_long_set(&vma->swap_readahead_info, | |
362 | SWAP_RA_VAL(addr, win, hits)); | |
363 | } | |
eaf649eb | 364 | |
ec560175 | 365 | if (readahead) { |
cbc65df2 | 366 | count_vm_event(SWAP_RA_HIT); |
eaf649eb | 367 | if (!vma || !vma_ra) |
ec560175 | 368 | atomic_inc(&swapin_readahead_hits); |
cbc65df2 | 369 | } |
579f8290 | 370 | } |
eaf649eb | 371 | |
1da177e4 LT |
372 | return page; |
373 | } | |
374 | ||
5b999aad DS |
375 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
376 | struct vm_area_struct *vma, unsigned long addr, | |
377 | bool *new_page_allocated) | |
1da177e4 LT |
378 | { |
379 | struct page *found_page, *new_page = NULL; | |
5b999aad | 380 | struct address_space *swapper_space = swap_address_space(entry); |
1da177e4 | 381 | int err; |
5b999aad | 382 | *new_page_allocated = false; |
1da177e4 LT |
383 | |
384 | do { | |
385 | /* | |
386 | * First check the swap cache. Since this is normally | |
387 | * called after lookup_swap_cache() failed, re-calling | |
388 | * that would confuse statistics. | |
389 | */ | |
f6ab1f7f | 390 | found_page = find_get_page(swapper_space, swp_offset(entry)); |
1da177e4 LT |
391 | if (found_page) |
392 | break; | |
393 | ||
ba81f838 YH |
394 | /* |
395 | * Just skip read ahead for unused swap slot. | |
396 | * During swap_off when swap_slot_cache is disabled, | |
397 | * we have to handle the race between putting | |
398 | * swap entry in swap cache and marking swap slot | |
399 | * as SWAP_HAS_CACHE. That's done in later part of code or | |
400 | * else swap_off will be aborted if we return NULL. | |
401 | */ | |
402 | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | |
403 | break; | |
e8c26ab6 | 404 | |
1da177e4 LT |
405 | /* |
406 | * Get a new page to read into from swap. | |
407 | */ | |
408 | if (!new_page) { | |
02098fea | 409 | new_page = alloc_page_vma(gfp_mask, vma, addr); |
1da177e4 LT |
410 | if (!new_page) |
411 | break; /* Out of memory */ | |
412 | } | |
413 | ||
31a56396 DN |
414 | /* |
415 | * call radix_tree_preload() while we can wait. | |
416 | */ | |
5e4c0d97 | 417 | err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); |
31a56396 DN |
418 | if (err) |
419 | break; | |
420 | ||
f000944d HD |
421 | /* |
422 | * Swap entry may have been freed since our caller observed it. | |
423 | */ | |
355cfa73 | 424 | err = swapcache_prepare(entry); |
cbab0e4e | 425 | if (err == -EEXIST) { |
31a56396 | 426 | radix_tree_preload_end(); |
cbab0e4e RA |
427 | /* |
428 | * We might race against get_swap_page() and stumble | |
429 | * across a SWAP_HAS_CACHE swap_map entry whose page | |
9c1cc2e4 | 430 | * has not been brought into the swapcache yet. |
cbab0e4e RA |
431 | */ |
432 | cond_resched(); | |
355cfa73 | 433 | continue; |
31a56396 DN |
434 | } |
435 | if (err) { /* swp entry is obsolete ? */ | |
436 | radix_tree_preload_end(); | |
f000944d | 437 | break; |
31a56396 | 438 | } |
f000944d | 439 | |
2ca4532a | 440 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ |
48c935ad | 441 | __SetPageLocked(new_page); |
fa9949da | 442 | __SetPageSwapBacked(new_page); |
31a56396 | 443 | err = __add_to_swap_cache(new_page, entry); |
529ae9aa | 444 | if (likely(!err)) { |
31a56396 | 445 | radix_tree_preload_end(); |
1da177e4 LT |
446 | /* |
447 | * Initiate read into locked page and return. | |
448 | */ | |
c5fdae46 | 449 | lru_cache_add_anon(new_page); |
5b999aad | 450 | *new_page_allocated = true; |
1da177e4 LT |
451 | return new_page; |
452 | } | |
31a56396 | 453 | radix_tree_preload_end(); |
48c935ad | 454 | __ClearPageLocked(new_page); |
2ca4532a DN |
455 | /* |
456 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | |
457 | * clear SWAP_HAS_CACHE flag. | |
458 | */ | |
75f6d6d2 | 459 | put_swap_page(new_page, entry); |
f000944d | 460 | } while (err != -ENOMEM); |
1da177e4 LT |
461 | |
462 | if (new_page) | |
09cbfeaf | 463 | put_page(new_page); |
1da177e4 LT |
464 | return found_page; |
465 | } | |
46017e95 | 466 | |
5b999aad DS |
467 | /* |
468 | * Locate a page of swap in physical memory, reserving swap cache space | |
469 | * and reading the disk if it is not already cached. | |
470 | * A failure return means that either the page allocation failed or that | |
471 | * the swap entry is no longer in use. | |
472 | */ | |
473 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |
23955622 | 474 | struct vm_area_struct *vma, unsigned long addr, bool do_poll) |
5b999aad DS |
475 | { |
476 | bool page_was_allocated; | |
477 | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | |
478 | vma, addr, &page_was_allocated); | |
479 | ||
480 | if (page_was_allocated) | |
23955622 | 481 | swap_readpage(retpage, do_poll); |
5b999aad DS |
482 | |
483 | return retpage; | |
484 | } | |
485 | ||
ec560175 YH |
486 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, |
487 | unsigned long offset, | |
488 | int hits, | |
489 | int max_pages, | |
490 | int prev_win) | |
579f8290 | 491 | { |
ec560175 | 492 | unsigned int pages, last_ra; |
579f8290 SL |
493 | |
494 | /* | |
495 | * This heuristic has been found to work well on both sequential and | |
496 | * random loads, swapping to hard disk or to SSD: please don't ask | |
497 | * what the "+ 2" means, it just happens to work well, that's all. | |
498 | */ | |
ec560175 | 499 | pages = hits + 2; |
579f8290 SL |
500 | if (pages == 2) { |
501 | /* | |
502 | * We can have no readahead hits to judge by: but must not get | |
503 | * stuck here forever, so check for an adjacent offset instead | |
504 | * (and don't even bother to check whether swap type is same). | |
505 | */ | |
506 | if (offset != prev_offset + 1 && offset != prev_offset - 1) | |
507 | pages = 1; | |
579f8290 SL |
508 | } else { |
509 | unsigned int roundup = 4; | |
510 | while (roundup < pages) | |
511 | roundup <<= 1; | |
512 | pages = roundup; | |
513 | } | |
514 | ||
515 | if (pages > max_pages) | |
516 | pages = max_pages; | |
517 | ||
518 | /* Don't shrink readahead too fast */ | |
ec560175 | 519 | last_ra = prev_win / 2; |
579f8290 SL |
520 | if (pages < last_ra) |
521 | pages = last_ra; | |
ec560175 YH |
522 | |
523 | return pages; | |
524 | } | |
525 | ||
526 | static unsigned long swapin_nr_pages(unsigned long offset) | |
527 | { | |
528 | static unsigned long prev_offset; | |
529 | unsigned int hits, pages, max_pages; | |
530 | static atomic_t last_readahead_pages; | |
531 | ||
532 | max_pages = 1 << READ_ONCE(page_cluster); | |
533 | if (max_pages <= 1) | |
534 | return 1; | |
535 | ||
536 | hits = atomic_xchg(&swapin_readahead_hits, 0); | |
537 | pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages, | |
538 | atomic_read(&last_readahead_pages)); | |
539 | if (!hits) | |
540 | prev_offset = offset; | |
579f8290 SL |
541 | atomic_set(&last_readahead_pages, pages); |
542 | ||
543 | return pages; | |
544 | } | |
545 | ||
46017e95 HD |
546 | /** |
547 | * swapin_readahead - swap in pages in hope we need them soon | |
548 | * @entry: swap entry of this memory | |
7682486b | 549 | * @gfp_mask: memory allocation flags |
46017e95 HD |
550 | * @vma: user vma this address belongs to |
551 | * @addr: target address for mempolicy | |
552 | * | |
553 | * Returns the struct page for entry and addr, after queueing swapin. | |
554 | * | |
555 | * Primitive swap readahead code. We simply read an aligned block of | |
556 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
557 | * because it doesn't cost us any seek time. We also make sure to queue | |
558 | * the 'original' request together with the readahead ones... | |
559 | * | |
560 | * This has been extended to use the NUMA policies from the mm triggering | |
561 | * the readahead. | |
562 | * | |
563 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | |
564 | */ | |
02098fea | 565 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, |
46017e95 HD |
566 | struct vm_area_struct *vma, unsigned long addr) |
567 | { | |
46017e95 | 568 | struct page *page; |
579f8290 SL |
569 | unsigned long entry_offset = swp_offset(entry); |
570 | unsigned long offset = entry_offset; | |
67f96aa2 | 571 | unsigned long start_offset, end_offset; |
579f8290 | 572 | unsigned long mask; |
e9a6effa | 573 | struct swap_info_struct *si = swp_swap_info(entry); |
3fb5c298 | 574 | struct blk_plug plug; |
c4fa6309 | 575 | bool do_poll = true, page_allocated; |
46017e95 | 576 | |
579f8290 SL |
577 | mask = swapin_nr_pages(offset) - 1; |
578 | if (!mask) | |
579 | goto skip; | |
580 | ||
23955622 | 581 | do_poll = false; |
67f96aa2 RR |
582 | /* Read a page_cluster sized and aligned cluster around offset. */ |
583 | start_offset = offset & ~mask; | |
584 | end_offset = offset | mask; | |
585 | if (!start_offset) /* First page is swap header. */ | |
586 | start_offset++; | |
e9a6effa HY |
587 | if (end_offset >= si->max) |
588 | end_offset = si->max - 1; | |
67f96aa2 | 589 | |
3fb5c298 | 590 | blk_start_plug(&plug); |
67f96aa2 | 591 | for (offset = start_offset; offset <= end_offset ; offset++) { |
46017e95 | 592 | /* Ok, do the async read-ahead now */ |
c4fa6309 YH |
593 | page = __read_swap_cache_async( |
594 | swp_entry(swp_type(entry), offset), | |
595 | gfp_mask, vma, addr, &page_allocated); | |
46017e95 | 596 | if (!page) |
67f96aa2 | 597 | continue; |
c4fa6309 YH |
598 | if (page_allocated) { |
599 | swap_readpage(page, false); | |
eaf649eb | 600 | if (offset != entry_offset) { |
c4fa6309 YH |
601 | SetPageReadahead(page); |
602 | count_vm_event(SWAP_RA); | |
603 | } | |
cbc65df2 | 604 | } |
09cbfeaf | 605 | put_page(page); |
46017e95 | 606 | } |
3fb5c298 CE |
607 | blk_finish_plug(&plug); |
608 | ||
46017e95 | 609 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
579f8290 | 610 | skip: |
23955622 | 611 | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); |
46017e95 | 612 | } |
4b3ef9da YH |
613 | |
614 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | |
615 | { | |
616 | struct address_space *spaces, *space; | |
617 | unsigned int i, nr; | |
618 | ||
619 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | |
54f180d3 | 620 | spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL); |
4b3ef9da YH |
621 | if (!spaces) |
622 | return -ENOMEM; | |
623 | for (i = 0; i < nr; i++) { | |
624 | space = spaces + i; | |
625 | INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN); | |
626 | atomic_set(&space->i_mmap_writable, 0); | |
627 | space->a_ops = &swap_aops; | |
628 | /* swap cache doesn't use writeback related tags */ | |
629 | mapping_set_no_writeback_tags(space); | |
630 | spin_lock_init(&space->tree_lock); | |
631 | } | |
632 | nr_swapper_spaces[type] = nr; | |
633 | rcu_assign_pointer(swapper_spaces[type], spaces); | |
634 | ||
635 | return 0; | |
636 | } | |
637 | ||
638 | void exit_swap_address_space(unsigned int type) | |
639 | { | |
640 | struct address_space *spaces; | |
641 | ||
642 | spaces = swapper_spaces[type]; | |
643 | nr_swapper_spaces[type] = 0; | |
644 | rcu_assign_pointer(swapper_spaces[type], NULL); | |
645 | synchronize_rcu(); | |
646 | kvfree(spaces); | |
647 | } | |
ec560175 YH |
648 | |
649 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | |
650 | unsigned long faddr, | |
651 | unsigned long lpfn, | |
652 | unsigned long rpfn, | |
653 | unsigned long *start, | |
654 | unsigned long *end) | |
655 | { | |
656 | *start = max3(lpfn, PFN_DOWN(vma->vm_start), | |
657 | PFN_DOWN(faddr & PMD_MASK)); | |
658 | *end = min3(rpfn, PFN_DOWN(vma->vm_end), | |
659 | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | |
660 | } | |
661 | ||
eaf649eb MK |
662 | static void swap_ra_info(struct vm_fault *vmf, |
663 | struct vma_swap_readahead *ra_info) | |
ec560175 YH |
664 | { |
665 | struct vm_area_struct *vma = vmf->vma; | |
eaf649eb | 666 | unsigned long ra_val; |
ec560175 YH |
667 | swp_entry_t entry; |
668 | unsigned long faddr, pfn, fpfn; | |
669 | unsigned long start, end; | |
eaf649eb | 670 | pte_t *pte, *orig_pte; |
ec560175 YH |
671 | unsigned int max_win, hits, prev_win, win, left; |
672 | #ifndef CONFIG_64BIT | |
673 | pte_t *tpte; | |
674 | #endif | |
675 | ||
61b63972 YH |
676 | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), |
677 | SWAP_RA_ORDER_CEILING); | |
678 | if (max_win == 1) { | |
eaf649eb MK |
679 | ra_info->win = 1; |
680 | return; | |
61b63972 YH |
681 | } |
682 | ||
ec560175 | 683 | faddr = vmf->address; |
eaf649eb MK |
684 | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); |
685 | entry = pte_to_swp_entry(*pte); | |
686 | if ((unlikely(non_swap_entry(entry)))) { | |
687 | pte_unmap(orig_pte); | |
688 | return; | |
689 | } | |
ec560175 | 690 | |
ec560175 | 691 | fpfn = PFN_DOWN(faddr); |
eaf649eb MK |
692 | ra_val = GET_SWAP_RA_VAL(vma); |
693 | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | |
694 | prev_win = SWAP_RA_WIN(ra_val); | |
695 | hits = SWAP_RA_HITS(ra_val); | |
696 | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | |
ec560175 YH |
697 | max_win, prev_win); |
698 | atomic_long_set(&vma->swap_readahead_info, | |
699 | SWAP_RA_VAL(faddr, win, 0)); | |
700 | ||
eaf649eb MK |
701 | if (win == 1) { |
702 | pte_unmap(orig_pte); | |
703 | return; | |
704 | } | |
ec560175 YH |
705 | |
706 | /* Copy the PTEs because the page table may be unmapped */ | |
707 | if (fpfn == pfn + 1) | |
708 | swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | |
709 | else if (pfn == fpfn + 1) | |
710 | swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | |
711 | &start, &end); | |
712 | else { | |
713 | left = (win - 1) / 2; | |
714 | swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | |
715 | &start, &end); | |
716 | } | |
eaf649eb MK |
717 | ra_info->nr_pte = end - start; |
718 | ra_info->offset = fpfn - start; | |
719 | pte -= ra_info->offset; | |
ec560175 | 720 | #ifdef CONFIG_64BIT |
eaf649eb | 721 | ra_info->ptes = pte; |
ec560175 | 722 | #else |
eaf649eb | 723 | tpte = ra_info->ptes; |
ec560175 YH |
724 | for (pfn = start; pfn != end; pfn++) |
725 | *tpte++ = *pte++; | |
726 | #endif | |
eaf649eb | 727 | pte_unmap(orig_pte); |
ec560175 YH |
728 | } |
729 | ||
730 | struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask, | |
eaf649eb | 731 | struct vm_fault *vmf) |
ec560175 YH |
732 | { |
733 | struct blk_plug plug; | |
734 | struct vm_area_struct *vma = vmf->vma; | |
735 | struct page *page; | |
736 | pte_t *pte, pentry; | |
737 | swp_entry_t entry; | |
738 | unsigned int i; | |
739 | bool page_allocated; | |
eaf649eb | 740 | struct vma_swap_readahead ra_info = {0,}; |
ec560175 | 741 | |
eaf649eb MK |
742 | swap_ra_info(vmf, &ra_info); |
743 | if (ra_info.win == 1) | |
ec560175 YH |
744 | goto skip; |
745 | ||
746 | blk_start_plug(&plug); | |
eaf649eb | 747 | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; |
ec560175 YH |
748 | i++, pte++) { |
749 | pentry = *pte; | |
750 | if (pte_none(pentry)) | |
751 | continue; | |
752 | if (pte_present(pentry)) | |
753 | continue; | |
754 | entry = pte_to_swp_entry(pentry); | |
755 | if (unlikely(non_swap_entry(entry))) | |
756 | continue; | |
757 | page = __read_swap_cache_async(entry, gfp_mask, vma, | |
758 | vmf->address, &page_allocated); | |
759 | if (!page) | |
760 | continue; | |
761 | if (page_allocated) { | |
762 | swap_readpage(page, false); | |
eaf649eb | 763 | if (i != ra_info.offset) { |
ec560175 YH |
764 | SetPageReadahead(page); |
765 | count_vm_event(SWAP_RA); | |
766 | } | |
767 | } | |
768 | put_page(page); | |
769 | } | |
770 | blk_finish_plug(&plug); | |
771 | lru_add_drain(); | |
772 | skip: | |
773 | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | |
eaf649eb | 774 | ra_info.win == 1); |
ec560175 | 775 | } |
d9bfcfdc YH |
776 | |
777 | #ifdef CONFIG_SYSFS | |
778 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | |
779 | struct kobj_attribute *attr, char *buf) | |
780 | { | |
781 | return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false"); | |
782 | } | |
783 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | |
784 | struct kobj_attribute *attr, | |
785 | const char *buf, size_t count) | |
786 | { | |
787 | if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | |
788 | swap_vma_readahead = true; | |
789 | else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) | |
790 | swap_vma_readahead = false; | |
791 | else | |
792 | return -EINVAL; | |
793 | ||
794 | return count; | |
795 | } | |
796 | static struct kobj_attribute vma_ra_enabled_attr = | |
797 | __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, | |
798 | vma_ra_enabled_store); | |
799 | ||
d9bfcfdc YH |
800 | static struct attribute *swap_attrs[] = { |
801 | &vma_ra_enabled_attr.attr, | |
d9bfcfdc YH |
802 | NULL, |
803 | }; | |
804 | ||
805 | static struct attribute_group swap_attr_group = { | |
806 | .attrs = swap_attrs, | |
807 | }; | |
808 | ||
809 | static int __init swap_init_sysfs(void) | |
810 | { | |
811 | int err; | |
812 | struct kobject *swap_kobj; | |
813 | ||
814 | swap_kobj = kobject_create_and_add("swap", mm_kobj); | |
815 | if (!swap_kobj) { | |
816 | pr_err("failed to create swap kobject\n"); | |
817 | return -ENOMEM; | |
818 | } | |
819 | err = sysfs_create_group(swap_kobj, &swap_attr_group); | |
820 | if (err) { | |
821 | pr_err("failed to register swap group\n"); | |
822 | goto delete_obj; | |
823 | } | |
824 | return 0; | |
825 | ||
826 | delete_obj: | |
827 | kobject_put(swap_kobj); | |
828 | return err; | |
829 | } | |
830 | subsys_initcall(swap_init_sysfs); | |
831 | #endif |