]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
8524070b | 4 | * Kernel internal timers, basic process system calls |
1da177e4 LT |
5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
23 | #include <linux/module.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
b488893a | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | #include <linux/notifier.h> |
31 | #include <linux/thread_info.h> | |
32 | #include <linux/time.h> | |
33 | #include <linux/jiffies.h> | |
34 | #include <linux/posix-timers.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/syscalls.h> | |
97a41e26 | 37 | #include <linux/delay.h> |
79bf2bb3 | 38 | #include <linux/tick.h> |
82f67cd9 | 39 | #include <linux/kallsyms.h> |
e360adbe | 40 | #include <linux/irq_work.h> |
eea08f32 | 41 | #include <linux/sched.h> |
5a0e3ad6 | 42 | #include <linux/slab.h> |
1da177e4 LT |
43 | |
44 | #include <asm/uaccess.h> | |
45 | #include <asm/unistd.h> | |
46 | #include <asm/div64.h> | |
47 | #include <asm/timex.h> | |
48 | #include <asm/io.h> | |
49 | ||
2b022e3d XG |
50 | #define CREATE_TRACE_POINTS |
51 | #include <trace/events/timer.h> | |
52 | ||
ecea8d19 TG |
53 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
54 | ||
55 | EXPORT_SYMBOL(jiffies_64); | |
56 | ||
1da177e4 LT |
57 | /* |
58 | * per-CPU timer vector definitions: | |
59 | */ | |
1da177e4 LT |
60 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
61 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
62 | #define TVN_SIZE (1 << TVN_BITS) | |
63 | #define TVR_SIZE (1 << TVR_BITS) | |
64 | #define TVN_MASK (TVN_SIZE - 1) | |
65 | #define TVR_MASK (TVR_SIZE - 1) | |
66 | ||
a6fa8e5a | 67 | struct tvec { |
1da177e4 | 68 | struct list_head vec[TVN_SIZE]; |
a6fa8e5a | 69 | }; |
1da177e4 | 70 | |
a6fa8e5a | 71 | struct tvec_root { |
1da177e4 | 72 | struct list_head vec[TVR_SIZE]; |
a6fa8e5a | 73 | }; |
1da177e4 | 74 | |
a6fa8e5a | 75 | struct tvec_base { |
3691c519 ON |
76 | spinlock_t lock; |
77 | struct timer_list *running_timer; | |
1da177e4 | 78 | unsigned long timer_jiffies; |
97fd9ed4 | 79 | unsigned long next_timer; |
a6fa8e5a PM |
80 | struct tvec_root tv1; |
81 | struct tvec tv2; | |
82 | struct tvec tv3; | |
83 | struct tvec tv4; | |
84 | struct tvec tv5; | |
6e453a67 | 85 | } ____cacheline_aligned; |
1da177e4 | 86 | |
a6fa8e5a | 87 | struct tvec_base boot_tvec_bases; |
3691c519 | 88 | EXPORT_SYMBOL(boot_tvec_bases); |
a6fa8e5a | 89 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; |
1da177e4 | 90 | |
6e453a67 | 91 | /* Functions below help us manage 'deferrable' flag */ |
a6fa8e5a | 92 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) |
6e453a67 | 93 | { |
e9910846 | 94 | return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG); |
6e453a67 VP |
95 | } |
96 | ||
a6fa8e5a | 97 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) |
6e453a67 | 98 | { |
a6fa8e5a | 99 | return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
100 | } |
101 | ||
102 | static inline void timer_set_deferrable(struct timer_list *timer) | |
103 | { | |
dd6414b5 | 104 | timer->base = TBASE_MAKE_DEFERRED(timer->base); |
6e453a67 VP |
105 | } |
106 | ||
107 | static inline void | |
a6fa8e5a | 108 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) |
6e453a67 | 109 | { |
a6fa8e5a | 110 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | |
6819457d | 111 | tbase_get_deferrable(timer->base)); |
6e453a67 VP |
112 | } |
113 | ||
9c133c46 AS |
114 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
115 | bool force_up) | |
4c36a5de AV |
116 | { |
117 | int rem; | |
118 | unsigned long original = j; | |
119 | ||
120 | /* | |
121 | * We don't want all cpus firing their timers at once hitting the | |
122 | * same lock or cachelines, so we skew each extra cpu with an extra | |
123 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | |
124 | * already did this. | |
125 | * The skew is done by adding 3*cpunr, then round, then subtract this | |
126 | * extra offset again. | |
127 | */ | |
128 | j += cpu * 3; | |
129 | ||
130 | rem = j % HZ; | |
131 | ||
132 | /* | |
133 | * If the target jiffie is just after a whole second (which can happen | |
134 | * due to delays of the timer irq, long irq off times etc etc) then | |
135 | * we should round down to the whole second, not up. Use 1/4th second | |
136 | * as cutoff for this rounding as an extreme upper bound for this. | |
9c133c46 | 137 | * But never round down if @force_up is set. |
4c36a5de | 138 | */ |
9c133c46 | 139 | if (rem < HZ/4 && !force_up) /* round down */ |
4c36a5de AV |
140 | j = j - rem; |
141 | else /* round up */ | |
142 | j = j - rem + HZ; | |
143 | ||
144 | /* now that we have rounded, subtract the extra skew again */ | |
145 | j -= cpu * 3; | |
146 | ||
147 | if (j <= jiffies) /* rounding ate our timeout entirely; */ | |
148 | return original; | |
149 | return j; | |
150 | } | |
9c133c46 AS |
151 | |
152 | /** | |
153 | * __round_jiffies - function to round jiffies to a full second | |
154 | * @j: the time in (absolute) jiffies that should be rounded | |
155 | * @cpu: the processor number on which the timeout will happen | |
156 | * | |
157 | * __round_jiffies() rounds an absolute time in the future (in jiffies) | |
158 | * up or down to (approximately) full seconds. This is useful for timers | |
159 | * for which the exact time they fire does not matter too much, as long as | |
160 | * they fire approximately every X seconds. | |
161 | * | |
162 | * By rounding these timers to whole seconds, all such timers will fire | |
163 | * at the same time, rather than at various times spread out. The goal | |
164 | * of this is to have the CPU wake up less, which saves power. | |
165 | * | |
166 | * The exact rounding is skewed for each processor to avoid all | |
167 | * processors firing at the exact same time, which could lead | |
168 | * to lock contention or spurious cache line bouncing. | |
169 | * | |
170 | * The return value is the rounded version of the @j parameter. | |
171 | */ | |
172 | unsigned long __round_jiffies(unsigned long j, int cpu) | |
173 | { | |
174 | return round_jiffies_common(j, cpu, false); | |
175 | } | |
4c36a5de AV |
176 | EXPORT_SYMBOL_GPL(__round_jiffies); |
177 | ||
178 | /** | |
179 | * __round_jiffies_relative - function to round jiffies to a full second | |
180 | * @j: the time in (relative) jiffies that should be rounded | |
181 | * @cpu: the processor number on which the timeout will happen | |
182 | * | |
72fd4a35 | 183 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
184 | * up or down to (approximately) full seconds. This is useful for timers |
185 | * for which the exact time they fire does not matter too much, as long as | |
186 | * they fire approximately every X seconds. | |
187 | * | |
188 | * By rounding these timers to whole seconds, all such timers will fire | |
189 | * at the same time, rather than at various times spread out. The goal | |
190 | * of this is to have the CPU wake up less, which saves power. | |
191 | * | |
192 | * The exact rounding is skewed for each processor to avoid all | |
193 | * processors firing at the exact same time, which could lead | |
194 | * to lock contention or spurious cache line bouncing. | |
195 | * | |
72fd4a35 | 196 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
197 | */ |
198 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | |
199 | { | |
9c133c46 AS |
200 | unsigned long j0 = jiffies; |
201 | ||
202 | /* Use j0 because jiffies might change while we run */ | |
203 | return round_jiffies_common(j + j0, cpu, false) - j0; | |
4c36a5de AV |
204 | } |
205 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | |
206 | ||
207 | /** | |
208 | * round_jiffies - function to round jiffies to a full second | |
209 | * @j: the time in (absolute) jiffies that should be rounded | |
210 | * | |
72fd4a35 | 211 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
212 | * up or down to (approximately) full seconds. This is useful for timers |
213 | * for which the exact time they fire does not matter too much, as long as | |
214 | * they fire approximately every X seconds. | |
215 | * | |
216 | * By rounding these timers to whole seconds, all such timers will fire | |
217 | * at the same time, rather than at various times spread out. The goal | |
218 | * of this is to have the CPU wake up less, which saves power. | |
219 | * | |
72fd4a35 | 220 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
221 | */ |
222 | unsigned long round_jiffies(unsigned long j) | |
223 | { | |
9c133c46 | 224 | return round_jiffies_common(j, raw_smp_processor_id(), false); |
4c36a5de AV |
225 | } |
226 | EXPORT_SYMBOL_GPL(round_jiffies); | |
227 | ||
228 | /** | |
229 | * round_jiffies_relative - function to round jiffies to a full second | |
230 | * @j: the time in (relative) jiffies that should be rounded | |
231 | * | |
72fd4a35 | 232 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
233 | * up or down to (approximately) full seconds. This is useful for timers |
234 | * for which the exact time they fire does not matter too much, as long as | |
235 | * they fire approximately every X seconds. | |
236 | * | |
237 | * By rounding these timers to whole seconds, all such timers will fire | |
238 | * at the same time, rather than at various times spread out. The goal | |
239 | * of this is to have the CPU wake up less, which saves power. | |
240 | * | |
72fd4a35 | 241 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
242 | */ |
243 | unsigned long round_jiffies_relative(unsigned long j) | |
244 | { | |
245 | return __round_jiffies_relative(j, raw_smp_processor_id()); | |
246 | } | |
247 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | |
248 | ||
9c133c46 AS |
249 | /** |
250 | * __round_jiffies_up - function to round jiffies up to a full second | |
251 | * @j: the time in (absolute) jiffies that should be rounded | |
252 | * @cpu: the processor number on which the timeout will happen | |
253 | * | |
254 | * This is the same as __round_jiffies() except that it will never | |
255 | * round down. This is useful for timeouts for which the exact time | |
256 | * of firing does not matter too much, as long as they don't fire too | |
257 | * early. | |
258 | */ | |
259 | unsigned long __round_jiffies_up(unsigned long j, int cpu) | |
260 | { | |
261 | return round_jiffies_common(j, cpu, true); | |
262 | } | |
263 | EXPORT_SYMBOL_GPL(__round_jiffies_up); | |
264 | ||
265 | /** | |
266 | * __round_jiffies_up_relative - function to round jiffies up to a full second | |
267 | * @j: the time in (relative) jiffies that should be rounded | |
268 | * @cpu: the processor number on which the timeout will happen | |
269 | * | |
270 | * This is the same as __round_jiffies_relative() except that it will never | |
271 | * round down. This is useful for timeouts for which the exact time | |
272 | * of firing does not matter too much, as long as they don't fire too | |
273 | * early. | |
274 | */ | |
275 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) | |
276 | { | |
277 | unsigned long j0 = jiffies; | |
278 | ||
279 | /* Use j0 because jiffies might change while we run */ | |
280 | return round_jiffies_common(j + j0, cpu, true) - j0; | |
281 | } | |
282 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); | |
283 | ||
284 | /** | |
285 | * round_jiffies_up - function to round jiffies up to a full second | |
286 | * @j: the time in (absolute) jiffies that should be rounded | |
287 | * | |
288 | * This is the same as round_jiffies() except that it will never | |
289 | * round down. This is useful for timeouts for which the exact time | |
290 | * of firing does not matter too much, as long as they don't fire too | |
291 | * early. | |
292 | */ | |
293 | unsigned long round_jiffies_up(unsigned long j) | |
294 | { | |
295 | return round_jiffies_common(j, raw_smp_processor_id(), true); | |
296 | } | |
297 | EXPORT_SYMBOL_GPL(round_jiffies_up); | |
298 | ||
299 | /** | |
300 | * round_jiffies_up_relative - function to round jiffies up to a full second | |
301 | * @j: the time in (relative) jiffies that should be rounded | |
302 | * | |
303 | * This is the same as round_jiffies_relative() except that it will never | |
304 | * round down. This is useful for timeouts for which the exact time | |
305 | * of firing does not matter too much, as long as they don't fire too | |
306 | * early. | |
307 | */ | |
308 | unsigned long round_jiffies_up_relative(unsigned long j) | |
309 | { | |
310 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); | |
311 | } | |
312 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | |
313 | ||
3bbb9ec9 AV |
314 | /** |
315 | * set_timer_slack - set the allowed slack for a timer | |
0caa6210 | 316 | * @timer: the timer to be modified |
3bbb9ec9 AV |
317 | * @slack_hz: the amount of time (in jiffies) allowed for rounding |
318 | * | |
319 | * Set the amount of time, in jiffies, that a certain timer has | |
320 | * in terms of slack. By setting this value, the timer subsystem | |
321 | * will schedule the actual timer somewhere between | |
322 | * the time mod_timer() asks for, and that time plus the slack. | |
323 | * | |
324 | * By setting the slack to -1, a percentage of the delay is used | |
325 | * instead. | |
326 | */ | |
327 | void set_timer_slack(struct timer_list *timer, int slack_hz) | |
328 | { | |
329 | timer->slack = slack_hz; | |
330 | } | |
331 | EXPORT_SYMBOL_GPL(set_timer_slack); | |
332 | ||
a6fa8e5a | 333 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) |
1da177e4 LT |
334 | { |
335 | unsigned long expires = timer->expires; | |
336 | unsigned long idx = expires - base->timer_jiffies; | |
337 | struct list_head *vec; | |
338 | ||
339 | if (idx < TVR_SIZE) { | |
340 | int i = expires & TVR_MASK; | |
341 | vec = base->tv1.vec + i; | |
342 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
343 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
344 | vec = base->tv2.vec + i; | |
345 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
346 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
347 | vec = base->tv3.vec + i; | |
348 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
349 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
350 | vec = base->tv4.vec + i; | |
351 | } else if ((signed long) idx < 0) { | |
352 | /* | |
353 | * Can happen if you add a timer with expires == jiffies, | |
354 | * or you set a timer to go off in the past | |
355 | */ | |
356 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
357 | } else { | |
358 | int i; | |
359 | /* If the timeout is larger than 0xffffffff on 64-bit | |
360 | * architectures then we use the maximum timeout: | |
361 | */ | |
362 | if (idx > 0xffffffffUL) { | |
363 | idx = 0xffffffffUL; | |
364 | expires = idx + base->timer_jiffies; | |
365 | } | |
366 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
367 | vec = base->tv5.vec + i; | |
368 | } | |
369 | /* | |
370 | * Timers are FIFO: | |
371 | */ | |
372 | list_add_tail(&timer->entry, vec); | |
373 | } | |
374 | ||
82f67cd9 IM |
375 | #ifdef CONFIG_TIMER_STATS |
376 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | |
377 | { | |
378 | if (timer->start_site) | |
379 | return; | |
380 | ||
381 | timer->start_site = addr; | |
382 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
383 | timer->start_pid = current->pid; | |
384 | } | |
c5c061b8 VP |
385 | |
386 | static void timer_stats_account_timer(struct timer_list *timer) | |
387 | { | |
388 | unsigned int flag = 0; | |
389 | ||
507e1231 HC |
390 | if (likely(!timer->start_site)) |
391 | return; | |
c5c061b8 VP |
392 | if (unlikely(tbase_get_deferrable(timer->base))) |
393 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | |
394 | ||
395 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
396 | timer->function, timer->start_comm, flag); | |
397 | } | |
398 | ||
399 | #else | |
400 | static void timer_stats_account_timer(struct timer_list *timer) {} | |
82f67cd9 IM |
401 | #endif |
402 | ||
c6f3a97f TG |
403 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
404 | ||
405 | static struct debug_obj_descr timer_debug_descr; | |
406 | ||
99777288 SG |
407 | static void *timer_debug_hint(void *addr) |
408 | { | |
409 | return ((struct timer_list *) addr)->function; | |
410 | } | |
411 | ||
c6f3a97f TG |
412 | /* |
413 | * fixup_init is called when: | |
414 | * - an active object is initialized | |
55c888d6 | 415 | */ |
c6f3a97f TG |
416 | static int timer_fixup_init(void *addr, enum debug_obj_state state) |
417 | { | |
418 | struct timer_list *timer = addr; | |
419 | ||
420 | switch (state) { | |
421 | case ODEBUG_STATE_ACTIVE: | |
422 | del_timer_sync(timer); | |
423 | debug_object_init(timer, &timer_debug_descr); | |
424 | return 1; | |
425 | default: | |
426 | return 0; | |
427 | } | |
428 | } | |
429 | ||
430 | /* | |
431 | * fixup_activate is called when: | |
432 | * - an active object is activated | |
433 | * - an unknown object is activated (might be a statically initialized object) | |
434 | */ | |
435 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | |
436 | { | |
437 | struct timer_list *timer = addr; | |
438 | ||
439 | switch (state) { | |
440 | ||
441 | case ODEBUG_STATE_NOTAVAILABLE: | |
442 | /* | |
443 | * This is not really a fixup. The timer was | |
444 | * statically initialized. We just make sure that it | |
445 | * is tracked in the object tracker. | |
446 | */ | |
447 | if (timer->entry.next == NULL && | |
448 | timer->entry.prev == TIMER_ENTRY_STATIC) { | |
449 | debug_object_init(timer, &timer_debug_descr); | |
450 | debug_object_activate(timer, &timer_debug_descr); | |
451 | return 0; | |
452 | } else { | |
453 | WARN_ON_ONCE(1); | |
454 | } | |
455 | return 0; | |
456 | ||
457 | case ODEBUG_STATE_ACTIVE: | |
458 | WARN_ON(1); | |
459 | ||
460 | default: | |
461 | return 0; | |
462 | } | |
463 | } | |
464 | ||
465 | /* | |
466 | * fixup_free is called when: | |
467 | * - an active object is freed | |
468 | */ | |
469 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | |
470 | { | |
471 | struct timer_list *timer = addr; | |
472 | ||
473 | switch (state) { | |
474 | case ODEBUG_STATE_ACTIVE: | |
475 | del_timer_sync(timer); | |
476 | debug_object_free(timer, &timer_debug_descr); | |
477 | return 1; | |
478 | default: | |
479 | return 0; | |
480 | } | |
481 | } | |
482 | ||
483 | static struct debug_obj_descr timer_debug_descr = { | |
484 | .name = "timer_list", | |
99777288 | 485 | .debug_hint = timer_debug_hint, |
c6f3a97f TG |
486 | .fixup_init = timer_fixup_init, |
487 | .fixup_activate = timer_fixup_activate, | |
488 | .fixup_free = timer_fixup_free, | |
489 | }; | |
490 | ||
491 | static inline void debug_timer_init(struct timer_list *timer) | |
492 | { | |
493 | debug_object_init(timer, &timer_debug_descr); | |
494 | } | |
495 | ||
496 | static inline void debug_timer_activate(struct timer_list *timer) | |
497 | { | |
498 | debug_object_activate(timer, &timer_debug_descr); | |
499 | } | |
500 | ||
501 | static inline void debug_timer_deactivate(struct timer_list *timer) | |
502 | { | |
503 | debug_object_deactivate(timer, &timer_debug_descr); | |
504 | } | |
505 | ||
506 | static inline void debug_timer_free(struct timer_list *timer) | |
507 | { | |
508 | debug_object_free(timer, &timer_debug_descr); | |
509 | } | |
510 | ||
6f2b9b9a JB |
511 | static void __init_timer(struct timer_list *timer, |
512 | const char *name, | |
513 | struct lock_class_key *key); | |
c6f3a97f | 514 | |
6f2b9b9a JB |
515 | void init_timer_on_stack_key(struct timer_list *timer, |
516 | const char *name, | |
517 | struct lock_class_key *key) | |
c6f3a97f TG |
518 | { |
519 | debug_object_init_on_stack(timer, &timer_debug_descr); | |
6f2b9b9a | 520 | __init_timer(timer, name, key); |
c6f3a97f | 521 | } |
6f2b9b9a | 522 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); |
c6f3a97f TG |
523 | |
524 | void destroy_timer_on_stack(struct timer_list *timer) | |
525 | { | |
526 | debug_object_free(timer, &timer_debug_descr); | |
527 | } | |
528 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | |
529 | ||
530 | #else | |
531 | static inline void debug_timer_init(struct timer_list *timer) { } | |
532 | static inline void debug_timer_activate(struct timer_list *timer) { } | |
533 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | |
534 | #endif | |
535 | ||
2b022e3d XG |
536 | static inline void debug_init(struct timer_list *timer) |
537 | { | |
538 | debug_timer_init(timer); | |
539 | trace_timer_init(timer); | |
540 | } | |
541 | ||
542 | static inline void | |
543 | debug_activate(struct timer_list *timer, unsigned long expires) | |
544 | { | |
545 | debug_timer_activate(timer); | |
546 | trace_timer_start(timer, expires); | |
547 | } | |
548 | ||
549 | static inline void debug_deactivate(struct timer_list *timer) | |
550 | { | |
551 | debug_timer_deactivate(timer); | |
552 | trace_timer_cancel(timer); | |
553 | } | |
554 | ||
6f2b9b9a JB |
555 | static void __init_timer(struct timer_list *timer, |
556 | const char *name, | |
557 | struct lock_class_key *key) | |
55c888d6 ON |
558 | { |
559 | timer->entry.next = NULL; | |
bfe5d834 | 560 | timer->base = __raw_get_cpu_var(tvec_bases); |
3bbb9ec9 | 561 | timer->slack = -1; |
82f67cd9 IM |
562 | #ifdef CONFIG_TIMER_STATS |
563 | timer->start_site = NULL; | |
564 | timer->start_pid = -1; | |
565 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
566 | #endif | |
6f2b9b9a | 567 | lockdep_init_map(&timer->lockdep_map, name, key, 0); |
55c888d6 | 568 | } |
c6f3a97f | 569 | |
8cadd283 JB |
570 | void setup_deferrable_timer_on_stack_key(struct timer_list *timer, |
571 | const char *name, | |
572 | struct lock_class_key *key, | |
573 | void (*function)(unsigned long), | |
574 | unsigned long data) | |
575 | { | |
576 | timer->function = function; | |
577 | timer->data = data; | |
578 | init_timer_on_stack_key(timer, name, key); | |
579 | timer_set_deferrable(timer); | |
580 | } | |
581 | EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key); | |
582 | ||
c6f3a97f | 583 | /** |
633fe795 | 584 | * init_timer_key - initialize a timer |
c6f3a97f | 585 | * @timer: the timer to be initialized |
633fe795 RD |
586 | * @name: name of the timer |
587 | * @key: lockdep class key of the fake lock used for tracking timer | |
588 | * sync lock dependencies | |
c6f3a97f | 589 | * |
633fe795 | 590 | * init_timer_key() must be done to a timer prior calling *any* of the |
c6f3a97f TG |
591 | * other timer functions. |
592 | */ | |
6f2b9b9a JB |
593 | void init_timer_key(struct timer_list *timer, |
594 | const char *name, | |
595 | struct lock_class_key *key) | |
c6f3a97f | 596 | { |
2b022e3d | 597 | debug_init(timer); |
6f2b9b9a | 598 | __init_timer(timer, name, key); |
c6f3a97f | 599 | } |
6f2b9b9a | 600 | EXPORT_SYMBOL(init_timer_key); |
55c888d6 | 601 | |
6f2b9b9a JB |
602 | void init_timer_deferrable_key(struct timer_list *timer, |
603 | const char *name, | |
604 | struct lock_class_key *key) | |
6e453a67 | 605 | { |
6f2b9b9a | 606 | init_timer_key(timer, name, key); |
6e453a67 VP |
607 | timer_set_deferrable(timer); |
608 | } | |
6f2b9b9a | 609 | EXPORT_SYMBOL(init_timer_deferrable_key); |
6e453a67 | 610 | |
55c888d6 | 611 | static inline void detach_timer(struct timer_list *timer, |
82f67cd9 | 612 | int clear_pending) |
55c888d6 ON |
613 | { |
614 | struct list_head *entry = &timer->entry; | |
615 | ||
2b022e3d | 616 | debug_deactivate(timer); |
c6f3a97f | 617 | |
55c888d6 ON |
618 | __list_del(entry->prev, entry->next); |
619 | if (clear_pending) | |
620 | entry->next = NULL; | |
621 | entry->prev = LIST_POISON2; | |
622 | } | |
623 | ||
624 | /* | |
3691c519 | 625 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
626 | * means that all timers which are tied to this base via timer->base are |
627 | * locked, and the base itself is locked too. | |
628 | * | |
629 | * So __run_timers/migrate_timers can safely modify all timers which could | |
630 | * be found on ->tvX lists. | |
631 | * | |
632 | * When the timer's base is locked, and the timer removed from list, it is | |
633 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
634 | * locked. | |
635 | */ | |
a6fa8e5a | 636 | static struct tvec_base *lock_timer_base(struct timer_list *timer, |
55c888d6 | 637 | unsigned long *flags) |
89e7e374 | 638 | __acquires(timer->base->lock) |
55c888d6 | 639 | { |
a6fa8e5a | 640 | struct tvec_base *base; |
55c888d6 ON |
641 | |
642 | for (;;) { | |
a6fa8e5a | 643 | struct tvec_base *prelock_base = timer->base; |
6e453a67 | 644 | base = tbase_get_base(prelock_base); |
55c888d6 ON |
645 | if (likely(base != NULL)) { |
646 | spin_lock_irqsave(&base->lock, *flags); | |
6e453a67 | 647 | if (likely(prelock_base == timer->base)) |
55c888d6 ON |
648 | return base; |
649 | /* The timer has migrated to another CPU */ | |
650 | spin_unlock_irqrestore(&base->lock, *flags); | |
651 | } | |
652 | cpu_relax(); | |
653 | } | |
654 | } | |
655 | ||
74019224 | 656 | static inline int |
597d0275 AB |
657 | __mod_timer(struct timer_list *timer, unsigned long expires, |
658 | bool pending_only, int pinned) | |
1da177e4 | 659 | { |
a6fa8e5a | 660 | struct tvec_base *base, *new_base; |
1da177e4 | 661 | unsigned long flags; |
eea08f32 | 662 | int ret = 0 , cpu; |
1da177e4 | 663 | |
82f67cd9 | 664 | timer_stats_timer_set_start_info(timer); |
1da177e4 | 665 | BUG_ON(!timer->function); |
1da177e4 | 666 | |
55c888d6 ON |
667 | base = lock_timer_base(timer, &flags); |
668 | ||
669 | if (timer_pending(timer)) { | |
670 | detach_timer(timer, 0); | |
97fd9ed4 MS |
671 | if (timer->expires == base->next_timer && |
672 | !tbase_get_deferrable(timer->base)) | |
673 | base->next_timer = base->timer_jiffies; | |
55c888d6 | 674 | ret = 1; |
74019224 IM |
675 | } else { |
676 | if (pending_only) | |
677 | goto out_unlock; | |
55c888d6 ON |
678 | } |
679 | ||
2b022e3d | 680 | debug_activate(timer, expires); |
c6f3a97f | 681 | |
eea08f32 AB |
682 | cpu = smp_processor_id(); |
683 | ||
684 | #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) | |
83cd4fe2 VP |
685 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) |
686 | cpu = get_nohz_timer_target(); | |
eea08f32 AB |
687 | #endif |
688 | new_base = per_cpu(tvec_bases, cpu); | |
689 | ||
3691c519 | 690 | if (base != new_base) { |
1da177e4 | 691 | /* |
55c888d6 ON |
692 | * We are trying to schedule the timer on the local CPU. |
693 | * However we can't change timer's base while it is running, | |
694 | * otherwise del_timer_sync() can't detect that the timer's | |
695 | * handler yet has not finished. This also guarantees that | |
696 | * the timer is serialized wrt itself. | |
1da177e4 | 697 | */ |
a2c348fe | 698 | if (likely(base->running_timer != timer)) { |
55c888d6 | 699 | /* See the comment in lock_timer_base() */ |
6e453a67 | 700 | timer_set_base(timer, NULL); |
55c888d6 | 701 | spin_unlock(&base->lock); |
a2c348fe ON |
702 | base = new_base; |
703 | spin_lock(&base->lock); | |
6e453a67 | 704 | timer_set_base(timer, base); |
1da177e4 LT |
705 | } |
706 | } | |
707 | ||
1da177e4 | 708 | timer->expires = expires; |
97fd9ed4 MS |
709 | if (time_before(timer->expires, base->next_timer) && |
710 | !tbase_get_deferrable(timer->base)) | |
711 | base->next_timer = timer->expires; | |
a2c348fe | 712 | internal_add_timer(base, timer); |
74019224 IM |
713 | |
714 | out_unlock: | |
a2c348fe | 715 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
716 | |
717 | return ret; | |
718 | } | |
719 | ||
2aae4a10 | 720 | /** |
74019224 IM |
721 | * mod_timer_pending - modify a pending timer's timeout |
722 | * @timer: the pending timer to be modified | |
723 | * @expires: new timeout in jiffies | |
1da177e4 | 724 | * |
74019224 IM |
725 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
726 | * but will not re-activate and modify already deleted timers. | |
727 | * | |
728 | * It is useful for unserialized use of timers. | |
1da177e4 | 729 | */ |
74019224 | 730 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
1da177e4 | 731 | { |
597d0275 | 732 | return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); |
1da177e4 | 733 | } |
74019224 | 734 | EXPORT_SYMBOL(mod_timer_pending); |
1da177e4 | 735 | |
3bbb9ec9 AV |
736 | /* |
737 | * Decide where to put the timer while taking the slack into account | |
738 | * | |
739 | * Algorithm: | |
740 | * 1) calculate the maximum (absolute) time | |
741 | * 2) calculate the highest bit where the expires and new max are different | |
742 | * 3) use this bit to make a mask | |
743 | * 4) use the bitmask to round down the maximum time, so that all last | |
744 | * bits are zeros | |
745 | */ | |
746 | static inline | |
747 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | |
748 | { | |
749 | unsigned long expires_limit, mask; | |
750 | int bit; | |
751 | ||
f00e047e | 752 | expires_limit = expires; |
3bbb9ec9 | 753 | |
8e63d779 | 754 | if (timer->slack >= 0) { |
f00e047e | 755 | expires_limit = expires + timer->slack; |
8e63d779 | 756 | } else { |
2abfb9e1 | 757 | unsigned long now = jiffies; |
3bbb9ec9 | 758 | |
8e63d779 TG |
759 | /* No slack, if already expired else auto slack 0.4% */ |
760 | if (time_after(expires, now)) | |
761 | expires_limit = expires + (expires - now)/256; | |
762 | } | |
3bbb9ec9 | 763 | mask = expires ^ expires_limit; |
3bbb9ec9 AV |
764 | if (mask == 0) |
765 | return expires; | |
766 | ||
767 | bit = find_last_bit(&mask, BITS_PER_LONG); | |
768 | ||
769 | mask = (1 << bit) - 1; | |
770 | ||
771 | expires_limit = expires_limit & ~(mask); | |
772 | ||
773 | return expires_limit; | |
774 | } | |
775 | ||
2aae4a10 | 776 | /** |
1da177e4 LT |
777 | * mod_timer - modify a timer's timeout |
778 | * @timer: the timer to be modified | |
2aae4a10 | 779 | * @expires: new timeout in jiffies |
1da177e4 | 780 | * |
72fd4a35 | 781 | * mod_timer() is a more efficient way to update the expire field of an |
1da177e4 LT |
782 | * active timer (if the timer is inactive it will be activated) |
783 | * | |
784 | * mod_timer(timer, expires) is equivalent to: | |
785 | * | |
786 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
787 | * | |
788 | * Note that if there are multiple unserialized concurrent users of the | |
789 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
790 | * since add_timer() cannot modify an already running timer. | |
791 | * | |
792 | * The function returns whether it has modified a pending timer or not. | |
793 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
794 | * active timer returns 1.) | |
795 | */ | |
796 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
797 | { | |
1da177e4 LT |
798 | /* |
799 | * This is a common optimization triggered by the | |
800 | * networking code - if the timer is re-modified | |
801 | * to be the same thing then just return: | |
802 | */ | |
4841158b | 803 | if (timer_pending(timer) && timer->expires == expires) |
1da177e4 LT |
804 | return 1; |
805 | ||
3bbb9ec9 AV |
806 | expires = apply_slack(timer, expires); |
807 | ||
597d0275 | 808 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
1da177e4 | 809 | } |
1da177e4 LT |
810 | EXPORT_SYMBOL(mod_timer); |
811 | ||
597d0275 AB |
812 | /** |
813 | * mod_timer_pinned - modify a timer's timeout | |
814 | * @timer: the timer to be modified | |
815 | * @expires: new timeout in jiffies | |
816 | * | |
817 | * mod_timer_pinned() is a way to update the expire field of an | |
818 | * active timer (if the timer is inactive it will be activated) | |
819 | * and not allow the timer to be migrated to a different CPU. | |
820 | * | |
821 | * mod_timer_pinned(timer, expires) is equivalent to: | |
822 | * | |
823 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
824 | */ | |
825 | int mod_timer_pinned(struct timer_list *timer, unsigned long expires) | |
826 | { | |
827 | if (timer->expires == expires && timer_pending(timer)) | |
828 | return 1; | |
829 | ||
830 | return __mod_timer(timer, expires, false, TIMER_PINNED); | |
831 | } | |
832 | EXPORT_SYMBOL(mod_timer_pinned); | |
833 | ||
74019224 IM |
834 | /** |
835 | * add_timer - start a timer | |
836 | * @timer: the timer to be added | |
837 | * | |
838 | * The kernel will do a ->function(->data) callback from the | |
839 | * timer interrupt at the ->expires point in the future. The | |
840 | * current time is 'jiffies'. | |
841 | * | |
842 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | |
843 | * fields must be set prior calling this function. | |
844 | * | |
845 | * Timers with an ->expires field in the past will be executed in the next | |
846 | * timer tick. | |
847 | */ | |
848 | void add_timer(struct timer_list *timer) | |
849 | { | |
850 | BUG_ON(timer_pending(timer)); | |
851 | mod_timer(timer, timer->expires); | |
852 | } | |
853 | EXPORT_SYMBOL(add_timer); | |
854 | ||
855 | /** | |
856 | * add_timer_on - start a timer on a particular CPU | |
857 | * @timer: the timer to be added | |
858 | * @cpu: the CPU to start it on | |
859 | * | |
860 | * This is not very scalable on SMP. Double adds are not possible. | |
861 | */ | |
862 | void add_timer_on(struct timer_list *timer, int cpu) | |
863 | { | |
864 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | |
865 | unsigned long flags; | |
866 | ||
867 | timer_stats_timer_set_start_info(timer); | |
868 | BUG_ON(timer_pending(timer) || !timer->function); | |
869 | spin_lock_irqsave(&base->lock, flags); | |
870 | timer_set_base(timer, base); | |
2b022e3d | 871 | debug_activate(timer, timer->expires); |
97fd9ed4 MS |
872 | if (time_before(timer->expires, base->next_timer) && |
873 | !tbase_get_deferrable(timer->base)) | |
874 | base->next_timer = timer->expires; | |
74019224 IM |
875 | internal_add_timer(base, timer); |
876 | /* | |
877 | * Check whether the other CPU is idle and needs to be | |
878 | * triggered to reevaluate the timer wheel when nohz is | |
879 | * active. We are protected against the other CPU fiddling | |
880 | * with the timer by holding the timer base lock. This also | |
881 | * makes sure that a CPU on the way to idle can not evaluate | |
882 | * the timer wheel. | |
883 | */ | |
884 | wake_up_idle_cpu(cpu); | |
885 | spin_unlock_irqrestore(&base->lock, flags); | |
886 | } | |
a9862e05 | 887 | EXPORT_SYMBOL_GPL(add_timer_on); |
74019224 | 888 | |
2aae4a10 | 889 | /** |
1da177e4 LT |
890 | * del_timer - deactive a timer. |
891 | * @timer: the timer to be deactivated | |
892 | * | |
893 | * del_timer() deactivates a timer - this works on both active and inactive | |
894 | * timers. | |
895 | * | |
896 | * The function returns whether it has deactivated a pending timer or not. | |
897 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
898 | * active timer returns 1.) | |
899 | */ | |
900 | int del_timer(struct timer_list *timer) | |
901 | { | |
a6fa8e5a | 902 | struct tvec_base *base; |
1da177e4 | 903 | unsigned long flags; |
55c888d6 | 904 | int ret = 0; |
1da177e4 | 905 | |
82f67cd9 | 906 | timer_stats_timer_clear_start_info(timer); |
55c888d6 ON |
907 | if (timer_pending(timer)) { |
908 | base = lock_timer_base(timer, &flags); | |
909 | if (timer_pending(timer)) { | |
910 | detach_timer(timer, 1); | |
97fd9ed4 MS |
911 | if (timer->expires == base->next_timer && |
912 | !tbase_get_deferrable(timer->base)) | |
913 | base->next_timer = base->timer_jiffies; | |
55c888d6 ON |
914 | ret = 1; |
915 | } | |
1da177e4 | 916 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 917 | } |
1da177e4 | 918 | |
55c888d6 | 919 | return ret; |
1da177e4 | 920 | } |
1da177e4 LT |
921 | EXPORT_SYMBOL(del_timer); |
922 | ||
2aae4a10 REB |
923 | /** |
924 | * try_to_del_timer_sync - Try to deactivate a timer | |
925 | * @timer: timer do del | |
926 | * | |
fd450b73 ON |
927 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
928 | * exit the timer is not queued and the handler is not running on any CPU. | |
fd450b73 ON |
929 | */ |
930 | int try_to_del_timer_sync(struct timer_list *timer) | |
931 | { | |
a6fa8e5a | 932 | struct tvec_base *base; |
fd450b73 ON |
933 | unsigned long flags; |
934 | int ret = -1; | |
935 | ||
936 | base = lock_timer_base(timer, &flags); | |
937 | ||
938 | if (base->running_timer == timer) | |
939 | goto out; | |
940 | ||
829b6c1e | 941 | timer_stats_timer_clear_start_info(timer); |
fd450b73 ON |
942 | ret = 0; |
943 | if (timer_pending(timer)) { | |
944 | detach_timer(timer, 1); | |
97fd9ed4 MS |
945 | if (timer->expires == base->next_timer && |
946 | !tbase_get_deferrable(timer->base)) | |
947 | base->next_timer = base->timer_jiffies; | |
fd450b73 ON |
948 | ret = 1; |
949 | } | |
950 | out: | |
951 | spin_unlock_irqrestore(&base->lock, flags); | |
952 | ||
953 | return ret; | |
954 | } | |
e19dff1f DH |
955 | EXPORT_SYMBOL(try_to_del_timer_sync); |
956 | ||
6f1bc451 | 957 | #ifdef CONFIG_SMP |
2aae4a10 | 958 | /** |
1da177e4 LT |
959 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
960 | * @timer: the timer to be deactivated | |
961 | * | |
962 | * This function only differs from del_timer() on SMP: besides deactivating | |
963 | * the timer it also makes sure the handler has finished executing on other | |
964 | * CPUs. | |
965 | * | |
72fd4a35 | 966 | * Synchronization rules: Callers must prevent restarting of the timer, |
1da177e4 | 967 | * otherwise this function is meaningless. It must not be called from |
7ff20792 | 968 | * interrupt contexts. The caller must not hold locks which would prevent |
55c888d6 ON |
969 | * completion of the timer's handler. The timer's handler must not call |
970 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
971 | * not running on any CPU. | |
1da177e4 | 972 | * |
48228f7b SR |
973 | * Note: You must not hold locks that are held in interrupt context |
974 | * while calling this function. Even if the lock has nothing to do | |
975 | * with the timer in question. Here's why: | |
976 | * | |
977 | * CPU0 CPU1 | |
978 | * ---- ---- | |
979 | * <SOFTIRQ> | |
980 | * call_timer_fn(); | |
981 | * base->running_timer = mytimer; | |
982 | * spin_lock_irq(somelock); | |
983 | * <IRQ> | |
984 | * spin_lock(somelock); | |
985 | * del_timer_sync(mytimer); | |
986 | * while (base->running_timer == mytimer); | |
987 | * | |
988 | * Now del_timer_sync() will never return and never release somelock. | |
989 | * The interrupt on the other CPU is waiting to grab somelock but | |
990 | * it has interrupted the softirq that CPU0 is waiting to finish. | |
991 | * | |
1da177e4 | 992 | * The function returns whether it has deactivated a pending timer or not. |
1da177e4 LT |
993 | */ |
994 | int del_timer_sync(struct timer_list *timer) | |
995 | { | |
6f2b9b9a | 996 | #ifdef CONFIG_LOCKDEP |
f266a511 PZ |
997 | unsigned long flags; |
998 | ||
48228f7b SR |
999 | /* |
1000 | * If lockdep gives a backtrace here, please reference | |
1001 | * the synchronization rules above. | |
1002 | */ | |
7ff20792 | 1003 | local_irq_save(flags); |
6f2b9b9a JB |
1004 | lock_map_acquire(&timer->lockdep_map); |
1005 | lock_map_release(&timer->lockdep_map); | |
7ff20792 | 1006 | local_irq_restore(flags); |
6f2b9b9a | 1007 | #endif |
466bd303 YZ |
1008 | /* |
1009 | * don't use it in hardirq context, because it | |
1010 | * could lead to deadlock. | |
1011 | */ | |
1012 | WARN_ON(in_irq()); | |
fd450b73 ON |
1013 | for (;;) { |
1014 | int ret = try_to_del_timer_sync(timer); | |
1015 | if (ret >= 0) | |
1016 | return ret; | |
a0009652 | 1017 | cpu_relax(); |
fd450b73 | 1018 | } |
1da177e4 | 1019 | } |
55c888d6 | 1020 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
1021 | #endif |
1022 | ||
a6fa8e5a | 1023 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) |
1da177e4 LT |
1024 | { |
1025 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
1026 | struct timer_list *timer, *tmp; |
1027 | struct list_head tv_list; | |
1028 | ||
1029 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 1030 | |
1da177e4 | 1031 | /* |
3439dd86 P |
1032 | * We are removing _all_ timers from the list, so we |
1033 | * don't have to detach them individually. | |
1da177e4 | 1034 | */ |
3439dd86 | 1035 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
6e453a67 | 1036 | BUG_ON(tbase_get_base(timer->base) != base); |
3439dd86 | 1037 | internal_add_timer(base, timer); |
1da177e4 | 1038 | } |
1da177e4 LT |
1039 | |
1040 | return index; | |
1041 | } | |
1042 | ||
576da126 TG |
1043 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), |
1044 | unsigned long data) | |
1045 | { | |
1046 | int preempt_count = preempt_count(); | |
1047 | ||
1048 | #ifdef CONFIG_LOCKDEP | |
1049 | /* | |
1050 | * It is permissible to free the timer from inside the | |
1051 | * function that is called from it, this we need to take into | |
1052 | * account for lockdep too. To avoid bogus "held lock freed" | |
1053 | * warnings as well as problems when looking into | |
1054 | * timer->lockdep_map, make a copy and use that here. | |
1055 | */ | |
1056 | struct lockdep_map lockdep_map = timer->lockdep_map; | |
1057 | #endif | |
1058 | /* | |
1059 | * Couple the lock chain with the lock chain at | |
1060 | * del_timer_sync() by acquiring the lock_map around the fn() | |
1061 | * call here and in del_timer_sync(). | |
1062 | */ | |
1063 | lock_map_acquire(&lockdep_map); | |
1064 | ||
1065 | trace_timer_expire_entry(timer); | |
1066 | fn(data); | |
1067 | trace_timer_expire_exit(timer); | |
1068 | ||
1069 | lock_map_release(&lockdep_map); | |
1070 | ||
1071 | if (preempt_count != preempt_count()) { | |
802702e0 TG |
1072 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", |
1073 | fn, preempt_count, preempt_count()); | |
1074 | /* | |
1075 | * Restore the preempt count. That gives us a decent | |
1076 | * chance to survive and extract information. If the | |
1077 | * callback kept a lock held, bad luck, but not worse | |
1078 | * than the BUG() we had. | |
1079 | */ | |
1080 | preempt_count() = preempt_count; | |
576da126 TG |
1081 | } |
1082 | } | |
1083 | ||
2aae4a10 REB |
1084 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
1085 | ||
1086 | /** | |
1da177e4 LT |
1087 | * __run_timers - run all expired timers (if any) on this CPU. |
1088 | * @base: the timer vector to be processed. | |
1089 | * | |
1090 | * This function cascades all vectors and executes all expired timer | |
1091 | * vectors. | |
1092 | */ | |
a6fa8e5a | 1093 | static inline void __run_timers(struct tvec_base *base) |
1da177e4 LT |
1094 | { |
1095 | struct timer_list *timer; | |
1096 | ||
3691c519 | 1097 | spin_lock_irq(&base->lock); |
1da177e4 | 1098 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 1099 | struct list_head work_list; |
1da177e4 | 1100 | struct list_head *head = &work_list; |
6819457d | 1101 | int index = base->timer_jiffies & TVR_MASK; |
626ab0e6 | 1102 | |
1da177e4 LT |
1103 | /* |
1104 | * Cascade timers: | |
1105 | */ | |
1106 | if (!index && | |
1107 | (!cascade(base, &base->tv2, INDEX(0))) && | |
1108 | (!cascade(base, &base->tv3, INDEX(1))) && | |
1109 | !cascade(base, &base->tv4, INDEX(2))) | |
1110 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
1111 | ++base->timer_jiffies; |
1112 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 1113 | while (!list_empty(head)) { |
1da177e4 LT |
1114 | void (*fn)(unsigned long); |
1115 | unsigned long data; | |
1116 | ||
b5e61818 | 1117 | timer = list_first_entry(head, struct timer_list,entry); |
6819457d TG |
1118 | fn = timer->function; |
1119 | data = timer->data; | |
1da177e4 | 1120 | |
82f67cd9 IM |
1121 | timer_stats_account_timer(timer); |
1122 | ||
6f1bc451 | 1123 | base->running_timer = timer; |
55c888d6 | 1124 | detach_timer(timer, 1); |
6f2b9b9a | 1125 | |
3691c519 | 1126 | spin_unlock_irq(&base->lock); |
576da126 | 1127 | call_timer_fn(timer, fn, data); |
3691c519 | 1128 | spin_lock_irq(&base->lock); |
1da177e4 LT |
1129 | } |
1130 | } | |
6f1bc451 | 1131 | base->running_timer = NULL; |
3691c519 | 1132 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
1133 | } |
1134 | ||
ee9c5785 | 1135 | #ifdef CONFIG_NO_HZ |
1da177e4 LT |
1136 | /* |
1137 | * Find out when the next timer event is due to happen. This | |
90cba64a RD |
1138 | * is used on S/390 to stop all activity when a CPU is idle. |
1139 | * This function needs to be called with interrupts disabled. | |
1da177e4 | 1140 | */ |
a6fa8e5a | 1141 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1da177e4 | 1142 | { |
1cfd6849 | 1143 | unsigned long timer_jiffies = base->timer_jiffies; |
eaad084b | 1144 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 1145 | int index, slot, array, found = 0; |
1da177e4 | 1146 | struct timer_list *nte; |
a6fa8e5a | 1147 | struct tvec *varray[4]; |
1da177e4 LT |
1148 | |
1149 | /* Look for timer events in tv1. */ | |
1cfd6849 | 1150 | index = slot = timer_jiffies & TVR_MASK; |
1da177e4 | 1151 | do { |
1cfd6849 | 1152 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { |
6819457d TG |
1153 | if (tbase_get_deferrable(nte->base)) |
1154 | continue; | |
6e453a67 | 1155 | |
1cfd6849 | 1156 | found = 1; |
1da177e4 | 1157 | expires = nte->expires; |
1cfd6849 TG |
1158 | /* Look at the cascade bucket(s)? */ |
1159 | if (!index || slot < index) | |
1160 | goto cascade; | |
1161 | return expires; | |
1da177e4 | 1162 | } |
1cfd6849 TG |
1163 | slot = (slot + 1) & TVR_MASK; |
1164 | } while (slot != index); | |
1165 | ||
1166 | cascade: | |
1167 | /* Calculate the next cascade event */ | |
1168 | if (index) | |
1169 | timer_jiffies += TVR_SIZE - index; | |
1170 | timer_jiffies >>= TVR_BITS; | |
1da177e4 LT |
1171 | |
1172 | /* Check tv2-tv5. */ | |
1173 | varray[0] = &base->tv2; | |
1174 | varray[1] = &base->tv3; | |
1175 | varray[2] = &base->tv4; | |
1176 | varray[3] = &base->tv5; | |
1cfd6849 TG |
1177 | |
1178 | for (array = 0; array < 4; array++) { | |
a6fa8e5a | 1179 | struct tvec *varp = varray[array]; |
1cfd6849 TG |
1180 | |
1181 | index = slot = timer_jiffies & TVN_MASK; | |
1da177e4 | 1182 | do { |
1cfd6849 | 1183 | list_for_each_entry(nte, varp->vec + slot, entry) { |
a0419888 JH |
1184 | if (tbase_get_deferrable(nte->base)) |
1185 | continue; | |
1186 | ||
1cfd6849 | 1187 | found = 1; |
1da177e4 LT |
1188 | if (time_before(nte->expires, expires)) |
1189 | expires = nte->expires; | |
1cfd6849 TG |
1190 | } |
1191 | /* | |
1192 | * Do we still search for the first timer or are | |
1193 | * we looking up the cascade buckets ? | |
1194 | */ | |
1195 | if (found) { | |
1196 | /* Look at the cascade bucket(s)? */ | |
1197 | if (!index || slot < index) | |
1198 | break; | |
1199 | return expires; | |
1200 | } | |
1201 | slot = (slot + 1) & TVN_MASK; | |
1202 | } while (slot != index); | |
1203 | ||
1204 | if (index) | |
1205 | timer_jiffies += TVN_SIZE - index; | |
1206 | timer_jiffies >>= TVN_BITS; | |
1da177e4 | 1207 | } |
1cfd6849 TG |
1208 | return expires; |
1209 | } | |
69239749 | 1210 | |
1cfd6849 TG |
1211 | /* |
1212 | * Check, if the next hrtimer event is before the next timer wheel | |
1213 | * event: | |
1214 | */ | |
1215 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | |
1216 | unsigned long expires) | |
1217 | { | |
1218 | ktime_t hr_delta = hrtimer_get_next_event(); | |
1219 | struct timespec tsdelta; | |
9501b6cf | 1220 | unsigned long delta; |
1cfd6849 TG |
1221 | |
1222 | if (hr_delta.tv64 == KTIME_MAX) | |
1223 | return expires; | |
0662b713 | 1224 | |
9501b6cf TG |
1225 | /* |
1226 | * Expired timer available, let it expire in the next tick | |
1227 | */ | |
1228 | if (hr_delta.tv64 <= 0) | |
1229 | return now + 1; | |
69239749 | 1230 | |
1cfd6849 | 1231 | tsdelta = ktime_to_timespec(hr_delta); |
9501b6cf | 1232 | delta = timespec_to_jiffies(&tsdelta); |
eaad084b TG |
1233 | |
1234 | /* | |
1235 | * Limit the delta to the max value, which is checked in | |
1236 | * tick_nohz_stop_sched_tick(): | |
1237 | */ | |
1238 | if (delta > NEXT_TIMER_MAX_DELTA) | |
1239 | delta = NEXT_TIMER_MAX_DELTA; | |
1240 | ||
9501b6cf TG |
1241 | /* |
1242 | * Take rounding errors in to account and make sure, that it | |
1243 | * expires in the next tick. Otherwise we go into an endless | |
1244 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | |
1245 | * the timer softirq | |
1246 | */ | |
1247 | if (delta < 1) | |
1248 | delta = 1; | |
1249 | now += delta; | |
1cfd6849 TG |
1250 | if (time_before(now, expires)) |
1251 | return now; | |
1da177e4 LT |
1252 | return expires; |
1253 | } | |
1cfd6849 TG |
1254 | |
1255 | /** | |
8dce39c2 | 1256 | * get_next_timer_interrupt - return the jiffy of the next pending timer |
05fb6bf0 | 1257 | * @now: current time (in jiffies) |
1cfd6849 | 1258 | */ |
fd064b9b | 1259 | unsigned long get_next_timer_interrupt(unsigned long now) |
1cfd6849 | 1260 | { |
7496351a | 1261 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
fd064b9b | 1262 | unsigned long expires; |
1cfd6849 | 1263 | |
dbd87b5a HC |
1264 | /* |
1265 | * Pretend that there is no timer pending if the cpu is offline. | |
1266 | * Possible pending timers will be migrated later to an active cpu. | |
1267 | */ | |
1268 | if (cpu_is_offline(smp_processor_id())) | |
1269 | return now + NEXT_TIMER_MAX_DELTA; | |
1cfd6849 | 1270 | spin_lock(&base->lock); |
97fd9ed4 MS |
1271 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
1272 | base->next_timer = __next_timer_interrupt(base); | |
1273 | expires = base->next_timer; | |
1cfd6849 TG |
1274 | spin_unlock(&base->lock); |
1275 | ||
1276 | if (time_before_eq(expires, now)) | |
1277 | return now; | |
1278 | ||
1279 | return cmp_next_hrtimer_event(now, expires); | |
1280 | } | |
1da177e4 LT |
1281 | #endif |
1282 | ||
1da177e4 | 1283 | /* |
5b4db0c2 | 1284 | * Called from the timer interrupt handler to charge one tick to the current |
1da177e4 LT |
1285 | * process. user_tick is 1 if the tick is user time, 0 for system. |
1286 | */ | |
1287 | void update_process_times(int user_tick) | |
1288 | { | |
1289 | struct task_struct *p = current; | |
1290 | int cpu = smp_processor_id(); | |
1291 | ||
1292 | /* Note: this timer irq context must be accounted for as well. */ | |
fa13a5a1 | 1293 | account_process_tick(p, user_tick); |
1da177e4 | 1294 | run_local_timers(); |
a157229c | 1295 | rcu_check_callbacks(cpu, user_tick); |
b845b517 | 1296 | printk_tick(); |
e360adbe PZ |
1297 | #ifdef CONFIG_IRQ_WORK |
1298 | if (in_irq()) | |
1299 | irq_work_run(); | |
1300 | #endif | |
1da177e4 | 1301 | scheduler_tick(); |
6819457d | 1302 | run_posix_cpu_timers(p); |
1da177e4 LT |
1303 | } |
1304 | ||
1da177e4 LT |
1305 | /* |
1306 | * This function runs timers and the timer-tq in bottom half context. | |
1307 | */ | |
1308 | static void run_timer_softirq(struct softirq_action *h) | |
1309 | { | |
7496351a | 1310 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
1da177e4 | 1311 | |
d3d74453 | 1312 | hrtimer_run_pending(); |
82f67cd9 | 1313 | |
1da177e4 LT |
1314 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1315 | __run_timers(base); | |
1316 | } | |
1317 | ||
1318 | /* | |
1319 | * Called by the local, per-CPU timer interrupt on SMP. | |
1320 | */ | |
1321 | void run_local_timers(void) | |
1322 | { | |
d3d74453 | 1323 | hrtimer_run_queues(); |
1da177e4 LT |
1324 | raise_softirq(TIMER_SOFTIRQ); |
1325 | } | |
1326 | ||
1da177e4 LT |
1327 | #ifdef __ARCH_WANT_SYS_ALARM |
1328 | ||
1329 | /* | |
1330 | * For backwards compatibility? This can be done in libc so Alpha | |
1331 | * and all newer ports shouldn't need it. | |
1332 | */ | |
58fd3aa2 | 1333 | SYSCALL_DEFINE1(alarm, unsigned int, seconds) |
1da177e4 | 1334 | { |
c08b8a49 | 1335 | return alarm_setitimer(seconds); |
1da177e4 LT |
1336 | } |
1337 | ||
1338 | #endif | |
1339 | ||
1340 | #ifndef __alpha__ | |
1341 | ||
1342 | /* | |
1343 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
1344 | * should be moved into arch/i386 instead? | |
1345 | */ | |
1346 | ||
1347 | /** | |
1348 | * sys_getpid - return the thread group id of the current process | |
1349 | * | |
1350 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1351 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1352 | * which case the tgid is the same in all threads of the same group. | |
1353 | * | |
1354 | * This is SMP safe as current->tgid does not change. | |
1355 | */ | |
58fd3aa2 | 1356 | SYSCALL_DEFINE0(getpid) |
1da177e4 | 1357 | { |
b488893a | 1358 | return task_tgid_vnr(current); |
1da177e4 LT |
1359 | } |
1360 | ||
1361 | /* | |
6997a6fa KK |
1362 | * Accessing ->real_parent is not SMP-safe, it could |
1363 | * change from under us. However, we can use a stale | |
1364 | * value of ->real_parent under rcu_read_lock(), see | |
1365 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 | 1366 | */ |
dbf040d9 | 1367 | SYSCALL_DEFINE0(getppid) |
1da177e4 LT |
1368 | { |
1369 | int pid; | |
1da177e4 | 1370 | |
6997a6fa | 1371 | rcu_read_lock(); |
6c5f3e7b | 1372 | pid = task_tgid_vnr(current->real_parent); |
6997a6fa | 1373 | rcu_read_unlock(); |
1da177e4 | 1374 | |
1da177e4 LT |
1375 | return pid; |
1376 | } | |
1377 | ||
dbf040d9 | 1378 | SYSCALL_DEFINE0(getuid) |
1da177e4 LT |
1379 | { |
1380 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1381 | return current_uid(); |
1da177e4 LT |
1382 | } |
1383 | ||
dbf040d9 | 1384 | SYSCALL_DEFINE0(geteuid) |
1da177e4 LT |
1385 | { |
1386 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1387 | return current_euid(); |
1da177e4 LT |
1388 | } |
1389 | ||
dbf040d9 | 1390 | SYSCALL_DEFINE0(getgid) |
1da177e4 LT |
1391 | { |
1392 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1393 | return current_gid(); |
1da177e4 LT |
1394 | } |
1395 | ||
dbf040d9 | 1396 | SYSCALL_DEFINE0(getegid) |
1da177e4 LT |
1397 | { |
1398 | /* Only we change this so SMP safe */ | |
76aac0e9 | 1399 | return current_egid(); |
1da177e4 LT |
1400 | } |
1401 | ||
1402 | #endif | |
1403 | ||
1404 | static void process_timeout(unsigned long __data) | |
1405 | { | |
36c8b586 | 1406 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1407 | } |
1408 | ||
1409 | /** | |
1410 | * schedule_timeout - sleep until timeout | |
1411 | * @timeout: timeout value in jiffies | |
1412 | * | |
1413 | * Make the current task sleep until @timeout jiffies have | |
1414 | * elapsed. The routine will return immediately unless | |
1415 | * the current task state has been set (see set_current_state()). | |
1416 | * | |
1417 | * You can set the task state as follows - | |
1418 | * | |
1419 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1420 | * pass before the routine returns. The routine will return 0 | |
1421 | * | |
1422 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1423 | * delivered to the current task. In this case the remaining time | |
1424 | * in jiffies will be returned, or 0 if the timer expired in time | |
1425 | * | |
1426 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1427 | * routine returns. | |
1428 | * | |
1429 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1430 | * the CPU away without a bound on the timeout. In this case the return | |
1431 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1432 | * | |
1433 | * In all cases the return value is guaranteed to be non-negative. | |
1434 | */ | |
7ad5b3a5 | 1435 | signed long __sched schedule_timeout(signed long timeout) |
1da177e4 LT |
1436 | { |
1437 | struct timer_list timer; | |
1438 | unsigned long expire; | |
1439 | ||
1440 | switch (timeout) | |
1441 | { | |
1442 | case MAX_SCHEDULE_TIMEOUT: | |
1443 | /* | |
1444 | * These two special cases are useful to be comfortable | |
1445 | * in the caller. Nothing more. We could take | |
1446 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1447 | * but I' d like to return a valid offset (>=0) to allow | |
1448 | * the caller to do everything it want with the retval. | |
1449 | */ | |
1450 | schedule(); | |
1451 | goto out; | |
1452 | default: | |
1453 | /* | |
1454 | * Another bit of PARANOID. Note that the retval will be | |
1455 | * 0 since no piece of kernel is supposed to do a check | |
1456 | * for a negative retval of schedule_timeout() (since it | |
1457 | * should never happens anyway). You just have the printk() | |
1458 | * that will tell you if something is gone wrong and where. | |
1459 | */ | |
5b149bcc | 1460 | if (timeout < 0) { |
1da177e4 | 1461 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
5b149bcc AM |
1462 | "value %lx\n", timeout); |
1463 | dump_stack(); | |
1da177e4 LT |
1464 | current->state = TASK_RUNNING; |
1465 | goto out; | |
1466 | } | |
1467 | } | |
1468 | ||
1469 | expire = timeout + jiffies; | |
1470 | ||
c6f3a97f | 1471 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
597d0275 | 1472 | __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); |
1da177e4 LT |
1473 | schedule(); |
1474 | del_singleshot_timer_sync(&timer); | |
1475 | ||
c6f3a97f TG |
1476 | /* Remove the timer from the object tracker */ |
1477 | destroy_timer_on_stack(&timer); | |
1478 | ||
1da177e4 LT |
1479 | timeout = expire - jiffies; |
1480 | ||
1481 | out: | |
1482 | return timeout < 0 ? 0 : timeout; | |
1483 | } | |
1da177e4 LT |
1484 | EXPORT_SYMBOL(schedule_timeout); |
1485 | ||
8a1c1757 AM |
1486 | /* |
1487 | * We can use __set_current_state() here because schedule_timeout() calls | |
1488 | * schedule() unconditionally. | |
1489 | */ | |
64ed93a2 NA |
1490 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1491 | { | |
a5a0d52c AM |
1492 | __set_current_state(TASK_INTERRUPTIBLE); |
1493 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1494 | } |
1495 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1496 | ||
294d5cc2 MW |
1497 | signed long __sched schedule_timeout_killable(signed long timeout) |
1498 | { | |
1499 | __set_current_state(TASK_KILLABLE); | |
1500 | return schedule_timeout(timeout); | |
1501 | } | |
1502 | EXPORT_SYMBOL(schedule_timeout_killable); | |
1503 | ||
64ed93a2 NA |
1504 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1505 | { | |
a5a0d52c AM |
1506 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1507 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1508 | } |
1509 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1510 | ||
1da177e4 | 1511 | /* Thread ID - the internal kernel "pid" */ |
58fd3aa2 | 1512 | SYSCALL_DEFINE0(gettid) |
1da177e4 | 1513 | { |
b488893a | 1514 | return task_pid_vnr(current); |
1da177e4 LT |
1515 | } |
1516 | ||
2aae4a10 | 1517 | /** |
d4d23add | 1518 | * do_sysinfo - fill in sysinfo struct |
2aae4a10 | 1519 | * @info: pointer to buffer to fill |
6819457d | 1520 | */ |
d4d23add | 1521 | int do_sysinfo(struct sysinfo *info) |
1da177e4 | 1522 | { |
1da177e4 LT |
1523 | unsigned long mem_total, sav_total; |
1524 | unsigned int mem_unit, bitcount; | |
2d02494f | 1525 | struct timespec tp; |
1da177e4 | 1526 | |
d4d23add | 1527 | memset(info, 0, sizeof(struct sysinfo)); |
1da177e4 | 1528 | |
2d02494f TG |
1529 | ktime_get_ts(&tp); |
1530 | monotonic_to_bootbased(&tp); | |
1531 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | |
1da177e4 | 1532 | |
2d02494f | 1533 | get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); |
1da177e4 | 1534 | |
2d02494f | 1535 | info->procs = nr_threads; |
1da177e4 | 1536 | |
d4d23add KM |
1537 | si_meminfo(info); |
1538 | si_swapinfo(info); | |
1da177e4 LT |
1539 | |
1540 | /* | |
1541 | * If the sum of all the available memory (i.e. ram + swap) | |
1542 | * is less than can be stored in a 32 bit unsigned long then | |
1543 | * we can be binary compatible with 2.2.x kernels. If not, | |
1544 | * well, in that case 2.2.x was broken anyways... | |
1545 | * | |
1546 | * -Erik Andersen <[email protected]> | |
1547 | */ | |
1548 | ||
d4d23add KM |
1549 | mem_total = info->totalram + info->totalswap; |
1550 | if (mem_total < info->totalram || mem_total < info->totalswap) | |
1da177e4 LT |
1551 | goto out; |
1552 | bitcount = 0; | |
d4d23add | 1553 | mem_unit = info->mem_unit; |
1da177e4 LT |
1554 | while (mem_unit > 1) { |
1555 | bitcount++; | |
1556 | mem_unit >>= 1; | |
1557 | sav_total = mem_total; | |
1558 | mem_total <<= 1; | |
1559 | if (mem_total < sav_total) | |
1560 | goto out; | |
1561 | } | |
1562 | ||
1563 | /* | |
1564 | * If mem_total did not overflow, multiply all memory values by | |
d4d23add | 1565 | * info->mem_unit and set it to 1. This leaves things compatible |
1da177e4 LT |
1566 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1567 | * kernels... | |
1568 | */ | |
1569 | ||
d4d23add KM |
1570 | info->mem_unit = 1; |
1571 | info->totalram <<= bitcount; | |
1572 | info->freeram <<= bitcount; | |
1573 | info->sharedram <<= bitcount; | |
1574 | info->bufferram <<= bitcount; | |
1575 | info->totalswap <<= bitcount; | |
1576 | info->freeswap <<= bitcount; | |
1577 | info->totalhigh <<= bitcount; | |
1578 | info->freehigh <<= bitcount; | |
1579 | ||
1580 | out: | |
1581 | return 0; | |
1582 | } | |
1583 | ||
1e7bfb21 | 1584 | SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) |
d4d23add KM |
1585 | { |
1586 | struct sysinfo val; | |
1587 | ||
1588 | do_sysinfo(&val); | |
1da177e4 | 1589 | |
1da177e4 LT |
1590 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1591 | return -EFAULT; | |
1592 | ||
1593 | return 0; | |
1594 | } | |
1595 | ||
b4be6258 | 1596 | static int __cpuinit init_timers_cpu(int cpu) |
1da177e4 LT |
1597 | { |
1598 | int j; | |
a6fa8e5a | 1599 | struct tvec_base *base; |
b4be6258 | 1600 | static char __cpuinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1601 | |
ba6edfcd | 1602 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1603 | static char boot_done; |
1604 | ||
a4a6198b | 1605 | if (boot_done) { |
ba6edfcd AM |
1606 | /* |
1607 | * The APs use this path later in boot | |
1608 | */ | |
94f6030c CL |
1609 | base = kmalloc_node(sizeof(*base), |
1610 | GFP_KERNEL | __GFP_ZERO, | |
a4a6198b JB |
1611 | cpu_to_node(cpu)); |
1612 | if (!base) | |
1613 | return -ENOMEM; | |
6e453a67 VP |
1614 | |
1615 | /* Make sure that tvec_base is 2 byte aligned */ | |
1616 | if (tbase_get_deferrable(base)) { | |
1617 | WARN_ON(1); | |
1618 | kfree(base); | |
1619 | return -ENOMEM; | |
1620 | } | |
ba6edfcd | 1621 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1622 | } else { |
ba6edfcd AM |
1623 | /* |
1624 | * This is for the boot CPU - we use compile-time | |
1625 | * static initialisation because per-cpu memory isn't | |
1626 | * ready yet and because the memory allocators are not | |
1627 | * initialised either. | |
1628 | */ | |
a4a6198b | 1629 | boot_done = 1; |
ba6edfcd | 1630 | base = &boot_tvec_bases; |
a4a6198b | 1631 | } |
ba6edfcd AM |
1632 | tvec_base_done[cpu] = 1; |
1633 | } else { | |
1634 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1635 | } |
ba6edfcd | 1636 | |
3691c519 | 1637 | spin_lock_init(&base->lock); |
d730e882 | 1638 | |
1da177e4 LT |
1639 | for (j = 0; j < TVN_SIZE; j++) { |
1640 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1641 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1642 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1643 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1644 | } | |
1645 | for (j = 0; j < TVR_SIZE; j++) | |
1646 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1647 | ||
1648 | base->timer_jiffies = jiffies; | |
97fd9ed4 | 1649 | base->next_timer = base->timer_jiffies; |
a4a6198b | 1650 | return 0; |
1da177e4 LT |
1651 | } |
1652 | ||
1653 | #ifdef CONFIG_HOTPLUG_CPU | |
a6fa8e5a | 1654 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) |
1da177e4 LT |
1655 | { |
1656 | struct timer_list *timer; | |
1657 | ||
1658 | while (!list_empty(head)) { | |
b5e61818 | 1659 | timer = list_first_entry(head, struct timer_list, entry); |
55c888d6 | 1660 | detach_timer(timer, 0); |
6e453a67 | 1661 | timer_set_base(timer, new_base); |
97fd9ed4 MS |
1662 | if (time_before(timer->expires, new_base->next_timer) && |
1663 | !tbase_get_deferrable(timer->base)) | |
1664 | new_base->next_timer = timer->expires; | |
1da177e4 | 1665 | internal_add_timer(new_base, timer); |
1da177e4 | 1666 | } |
1da177e4 LT |
1667 | } |
1668 | ||
48ccf3da | 1669 | static void __cpuinit migrate_timers(int cpu) |
1da177e4 | 1670 | { |
a6fa8e5a PM |
1671 | struct tvec_base *old_base; |
1672 | struct tvec_base *new_base; | |
1da177e4 LT |
1673 | int i; |
1674 | ||
1675 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1676 | old_base = per_cpu(tvec_bases, cpu); |
1677 | new_base = get_cpu_var(tvec_bases); | |
d82f0b0f ON |
1678 | /* |
1679 | * The caller is globally serialized and nobody else | |
1680 | * takes two locks at once, deadlock is not possible. | |
1681 | */ | |
1682 | spin_lock_irq(&new_base->lock); | |
0d180406 | 1683 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
3691c519 ON |
1684 | |
1685 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1686 | |
1da177e4 | 1687 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1688 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1689 | for (i = 0; i < TVN_SIZE; i++) { | |
1690 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1691 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1692 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1693 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1694 | } | |
1695 | ||
0d180406 | 1696 | spin_unlock(&old_base->lock); |
d82f0b0f | 1697 | spin_unlock_irq(&new_base->lock); |
1da177e4 | 1698 | put_cpu_var(tvec_bases); |
1da177e4 LT |
1699 | } |
1700 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1701 | ||
8c78f307 | 1702 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1703 | unsigned long action, void *hcpu) |
1704 | { | |
1705 | long cpu = (long)hcpu; | |
80b5184c AM |
1706 | int err; |
1707 | ||
1da177e4 LT |
1708 | switch(action) { |
1709 | case CPU_UP_PREPARE: | |
8bb78442 | 1710 | case CPU_UP_PREPARE_FROZEN: |
80b5184c AM |
1711 | err = init_timers_cpu(cpu); |
1712 | if (err < 0) | |
1713 | return notifier_from_errno(err); | |
1da177e4 LT |
1714 | break; |
1715 | #ifdef CONFIG_HOTPLUG_CPU | |
1716 | case CPU_DEAD: | |
8bb78442 | 1717 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
1718 | migrate_timers(cpu); |
1719 | break; | |
1720 | #endif | |
1721 | default: | |
1722 | break; | |
1723 | } | |
1724 | return NOTIFY_OK; | |
1725 | } | |
1726 | ||
8c78f307 | 1727 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1728 | .notifier_call = timer_cpu_notify, |
1729 | }; | |
1730 | ||
1731 | ||
1732 | void __init init_timers(void) | |
1733 | { | |
07dccf33 | 1734 | int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1da177e4 | 1735 | (void *)(long)smp_processor_id()); |
07dccf33 | 1736 | |
82f67cd9 IM |
1737 | init_timer_stats(); |
1738 | ||
9e506f7a | 1739 | BUG_ON(err != NOTIFY_OK); |
1da177e4 | 1740 | register_cpu_notifier(&timers_nb); |
962cf36c | 1741 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); |
1da177e4 LT |
1742 | } |
1743 | ||
1da177e4 LT |
1744 | /** |
1745 | * msleep - sleep safely even with waitqueue interruptions | |
1746 | * @msecs: Time in milliseconds to sleep for | |
1747 | */ | |
1748 | void msleep(unsigned int msecs) | |
1749 | { | |
1750 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1751 | ||
75bcc8c5 NA |
1752 | while (timeout) |
1753 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1754 | } |
1755 | ||
1756 | EXPORT_SYMBOL(msleep); | |
1757 | ||
1758 | /** | |
96ec3efd | 1759 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1760 | * @msecs: Time in milliseconds to sleep for |
1761 | */ | |
1762 | unsigned long msleep_interruptible(unsigned int msecs) | |
1763 | { | |
1764 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1765 | ||
75bcc8c5 NA |
1766 | while (timeout && !signal_pending(current)) |
1767 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1768 | return jiffies_to_msecs(timeout); |
1769 | } | |
1770 | ||
1771 | EXPORT_SYMBOL(msleep_interruptible); | |
5e7f5a17 PP |
1772 | |
1773 | static int __sched do_usleep_range(unsigned long min, unsigned long max) | |
1774 | { | |
1775 | ktime_t kmin; | |
1776 | unsigned long delta; | |
1777 | ||
1778 | kmin = ktime_set(0, min * NSEC_PER_USEC); | |
1779 | delta = (max - min) * NSEC_PER_USEC; | |
1780 | return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); | |
1781 | } | |
1782 | ||
1783 | /** | |
1784 | * usleep_range - Drop in replacement for udelay where wakeup is flexible | |
1785 | * @min: Minimum time in usecs to sleep | |
1786 | * @max: Maximum time in usecs to sleep | |
1787 | */ | |
1788 | void usleep_range(unsigned long min, unsigned long max) | |
1789 | { | |
1790 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
1791 | do_usleep_range(min, max); | |
1792 | } | |
1793 | EXPORT_SYMBOL(usleep_range); |