]>
Commit | Line | Data |
---|---|---|
039363f3 CL |
1 | /* |
2 | * Slab allocator functions that are independent of the allocator strategy | |
3 | * | |
4 | * (C) 2012 Christoph Lameter <[email protected]> | |
5 | */ | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #include <linux/mm.h> | |
9 | #include <linux/poison.h> | |
10 | #include <linux/interrupt.h> | |
11 | #include <linux/memory.h> | |
12 | #include <linux/compiler.h> | |
13 | #include <linux/module.h> | |
20cea968 CL |
14 | #include <linux/cpu.h> |
15 | #include <linux/uaccess.h> | |
b7454ad3 GC |
16 | #include <linux/seq_file.h> |
17 | #include <linux/proc_fs.h> | |
039363f3 CL |
18 | #include <asm/cacheflush.h> |
19 | #include <asm/tlbflush.h> | |
20 | #include <asm/page.h> | |
2633d7a0 | 21 | #include <linux/memcontrol.h> |
928cec9c AR |
22 | |
23 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 24 | #include <trace/events/kmem.h> |
039363f3 | 25 | |
97d06609 CL |
26 | #include "slab.h" |
27 | ||
28 | enum slab_state slab_state; | |
18004c5d CL |
29 | LIST_HEAD(slab_caches); |
30 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 31 | struct kmem_cache *kmem_cache; |
97d06609 | 32 | |
423c929c JK |
33 | /* |
34 | * Set of flags that will prevent slab merging | |
35 | */ | |
36 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
37 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | |
38 | SLAB_FAILSLAB) | |
39 | ||
3e810ae2 | 40 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK) |
423c929c JK |
41 | |
42 | /* | |
43 | * Merge control. If this is set then no merging of slab caches will occur. | |
44 | * (Could be removed. This was introduced to pacify the merge skeptics.) | |
45 | */ | |
46 | static int slab_nomerge; | |
47 | ||
48 | static int __init setup_slab_nomerge(char *str) | |
49 | { | |
50 | slab_nomerge = 1; | |
51 | return 1; | |
52 | } | |
53 | ||
54 | #ifdef CONFIG_SLUB | |
55 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
56 | #endif | |
57 | ||
58 | __setup("slab_nomerge", setup_slab_nomerge); | |
59 | ||
07f361b2 JK |
60 | /* |
61 | * Determine the size of a slab object | |
62 | */ | |
63 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
64 | { | |
65 | return s->object_size; | |
66 | } | |
67 | EXPORT_SYMBOL(kmem_cache_size); | |
68 | ||
77be4b13 | 69 | #ifdef CONFIG_DEBUG_VM |
794b1248 | 70 | static int kmem_cache_sanity_check(const char *name, size_t size) |
039363f3 CL |
71 | { |
72 | struct kmem_cache *s = NULL; | |
73 | ||
039363f3 CL |
74 | if (!name || in_interrupt() || size < sizeof(void *) || |
75 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
76 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
77 | return -EINVAL; | |
039363f3 | 78 | } |
b920536a | 79 | |
20cea968 CL |
80 | list_for_each_entry(s, &slab_caches, list) { |
81 | char tmp; | |
82 | int res; | |
83 | ||
84 | /* | |
85 | * This happens when the module gets unloaded and doesn't | |
86 | * destroy its slab cache and no-one else reuses the vmalloc | |
87 | * area of the module. Print a warning. | |
88 | */ | |
89 | res = probe_kernel_address(s->name, tmp); | |
90 | if (res) { | |
77be4b13 | 91 | pr_err("Slab cache with size %d has lost its name\n", |
20cea968 CL |
92 | s->object_size); |
93 | continue; | |
94 | } | |
20cea968 CL |
95 | } |
96 | ||
97 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
77be4b13 SK |
98 | return 0; |
99 | } | |
100 | #else | |
794b1248 | 101 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
77be4b13 SK |
102 | { |
103 | return 0; | |
104 | } | |
20cea968 CL |
105 | #endif |
106 | ||
484748f0 CL |
107 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
108 | { | |
109 | size_t i; | |
110 | ||
111 | for (i = 0; i < nr; i++) | |
112 | kmem_cache_free(s, p[i]); | |
113 | } | |
114 | ||
115 | bool __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, | |
116 | void **p) | |
117 | { | |
118 | size_t i; | |
119 | ||
120 | for (i = 0; i < nr; i++) { | |
121 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
122 | if (!x) { | |
123 | __kmem_cache_free_bulk(s, i, p); | |
124 | return false; | |
125 | } | |
126 | } | |
127 | return true; | |
128 | } | |
129 | ||
55007d84 | 130 | #ifdef CONFIG_MEMCG_KMEM |
f7ce3190 | 131 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 132 | { |
f7ce3190 | 133 | s->memcg_params.is_root_cache = true; |
426589f5 | 134 | INIT_LIST_HEAD(&s->memcg_params.list); |
f7ce3190 VD |
135 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
136 | } | |
137 | ||
138 | static int init_memcg_params(struct kmem_cache *s, | |
139 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
140 | { | |
141 | struct memcg_cache_array *arr; | |
33a690c4 | 142 | |
f7ce3190 VD |
143 | if (memcg) { |
144 | s->memcg_params.is_root_cache = false; | |
145 | s->memcg_params.memcg = memcg; | |
146 | s->memcg_params.root_cache = root_cache; | |
33a690c4 | 147 | return 0; |
f7ce3190 | 148 | } |
33a690c4 | 149 | |
f7ce3190 | 150 | slab_init_memcg_params(s); |
33a690c4 | 151 | |
f7ce3190 VD |
152 | if (!memcg_nr_cache_ids) |
153 | return 0; | |
33a690c4 | 154 | |
f7ce3190 VD |
155 | arr = kzalloc(sizeof(struct memcg_cache_array) + |
156 | memcg_nr_cache_ids * sizeof(void *), | |
157 | GFP_KERNEL); | |
158 | if (!arr) | |
159 | return -ENOMEM; | |
33a690c4 | 160 | |
f7ce3190 | 161 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
162 | return 0; |
163 | } | |
164 | ||
f7ce3190 | 165 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 166 | { |
f7ce3190 VD |
167 | if (is_root_cache(s)) |
168 | kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | |
33a690c4 VD |
169 | } |
170 | ||
f7ce3190 | 171 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 172 | { |
f7ce3190 | 173 | struct memcg_cache_array *old, *new; |
6f817f4c | 174 | |
f7ce3190 VD |
175 | if (!is_root_cache(s)) |
176 | return 0; | |
6f817f4c | 177 | |
f7ce3190 VD |
178 | new = kzalloc(sizeof(struct memcg_cache_array) + |
179 | new_array_size * sizeof(void *), GFP_KERNEL); | |
180 | if (!new) | |
6f817f4c VD |
181 | return -ENOMEM; |
182 | ||
f7ce3190 VD |
183 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
184 | lockdep_is_held(&slab_mutex)); | |
185 | if (old) | |
186 | memcpy(new->entries, old->entries, | |
187 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 188 | |
f7ce3190 VD |
189 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
190 | if (old) | |
191 | kfree_rcu(old, rcu); | |
6f817f4c VD |
192 | return 0; |
193 | } | |
194 | ||
55007d84 GC |
195 | int memcg_update_all_caches(int num_memcgs) |
196 | { | |
197 | struct kmem_cache *s; | |
198 | int ret = 0; | |
55007d84 | 199 | |
05257a1a | 200 | mutex_lock(&slab_mutex); |
55007d84 | 201 | list_for_each_entry(s, &slab_caches, list) { |
f7ce3190 | 202 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 203 | /* |
55007d84 GC |
204 | * Instead of freeing the memory, we'll just leave the caches |
205 | * up to this point in an updated state. | |
206 | */ | |
207 | if (ret) | |
05257a1a | 208 | break; |
55007d84 | 209 | } |
55007d84 GC |
210 | mutex_unlock(&slab_mutex); |
211 | return ret; | |
212 | } | |
33a690c4 | 213 | #else |
f7ce3190 VD |
214 | static inline int init_memcg_params(struct kmem_cache *s, |
215 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
216 | { |
217 | return 0; | |
218 | } | |
219 | ||
f7ce3190 | 220 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
221 | { |
222 | } | |
223 | #endif /* CONFIG_MEMCG_KMEM */ | |
55007d84 | 224 | |
423c929c JK |
225 | /* |
226 | * Find a mergeable slab cache | |
227 | */ | |
228 | int slab_unmergeable(struct kmem_cache *s) | |
229 | { | |
230 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
231 | return 1; | |
232 | ||
233 | if (!is_root_cache(s)) | |
234 | return 1; | |
235 | ||
236 | if (s->ctor) | |
237 | return 1; | |
238 | ||
239 | /* | |
240 | * We may have set a slab to be unmergeable during bootstrap. | |
241 | */ | |
242 | if (s->refcount < 0) | |
243 | return 1; | |
244 | ||
245 | return 0; | |
246 | } | |
247 | ||
248 | struct kmem_cache *find_mergeable(size_t size, size_t align, | |
249 | unsigned long flags, const char *name, void (*ctor)(void *)) | |
250 | { | |
251 | struct kmem_cache *s; | |
252 | ||
253 | if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) | |
254 | return NULL; | |
255 | ||
256 | if (ctor) | |
257 | return NULL; | |
258 | ||
259 | size = ALIGN(size, sizeof(void *)); | |
260 | align = calculate_alignment(flags, align, size); | |
261 | size = ALIGN(size, align); | |
262 | flags = kmem_cache_flags(size, flags, name, NULL); | |
263 | ||
54362057 | 264 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
265 | if (slab_unmergeable(s)) |
266 | continue; | |
267 | ||
268 | if (size > s->size) | |
269 | continue; | |
270 | ||
271 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
272 | continue; | |
273 | /* | |
274 | * Check if alignment is compatible. | |
275 | * Courtesy of Adrian Drzewiecki | |
276 | */ | |
277 | if ((s->size & ~(align - 1)) != s->size) | |
278 | continue; | |
279 | ||
280 | if (s->size - size >= sizeof(void *)) | |
281 | continue; | |
282 | ||
95069ac8 JK |
283 | if (IS_ENABLED(CONFIG_SLAB) && align && |
284 | (align > s->align || s->align % align)) | |
285 | continue; | |
286 | ||
423c929c JK |
287 | return s; |
288 | } | |
289 | return NULL; | |
290 | } | |
291 | ||
45906855 CL |
292 | /* |
293 | * Figure out what the alignment of the objects will be given a set of | |
294 | * flags, a user specified alignment and the size of the objects. | |
295 | */ | |
296 | unsigned long calculate_alignment(unsigned long flags, | |
297 | unsigned long align, unsigned long size) | |
298 | { | |
299 | /* | |
300 | * If the user wants hardware cache aligned objects then follow that | |
301 | * suggestion if the object is sufficiently large. | |
302 | * | |
303 | * The hardware cache alignment cannot override the specified | |
304 | * alignment though. If that is greater then use it. | |
305 | */ | |
306 | if (flags & SLAB_HWCACHE_ALIGN) { | |
307 | unsigned long ralign = cache_line_size(); | |
308 | while (size <= ralign / 2) | |
309 | ralign /= 2; | |
310 | align = max(align, ralign); | |
311 | } | |
312 | ||
313 | if (align < ARCH_SLAB_MINALIGN) | |
314 | align = ARCH_SLAB_MINALIGN; | |
315 | ||
316 | return ALIGN(align, sizeof(void *)); | |
317 | } | |
318 | ||
794b1248 | 319 | static struct kmem_cache * |
3dec16ea AH |
320 | do_kmem_cache_create(const char *name, size_t object_size, size_t size, |
321 | size_t align, unsigned long flags, void (*ctor)(void *), | |
794b1248 VD |
322 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) |
323 | { | |
324 | struct kmem_cache *s; | |
325 | int err; | |
326 | ||
327 | err = -ENOMEM; | |
328 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
329 | if (!s) | |
330 | goto out; | |
331 | ||
332 | s->name = name; | |
333 | s->object_size = object_size; | |
334 | s->size = size; | |
335 | s->align = align; | |
336 | s->ctor = ctor; | |
337 | ||
f7ce3190 | 338 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
339 | if (err) |
340 | goto out_free_cache; | |
341 | ||
342 | err = __kmem_cache_create(s, flags); | |
343 | if (err) | |
344 | goto out_free_cache; | |
345 | ||
346 | s->refcount = 1; | |
347 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
348 | out: |
349 | if (err) | |
350 | return ERR_PTR(err); | |
351 | return s; | |
352 | ||
353 | out_free_cache: | |
f7ce3190 | 354 | destroy_memcg_params(s); |
7c4da061 | 355 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
356 | goto out; |
357 | } | |
45906855 | 358 | |
77be4b13 SK |
359 | /* |
360 | * kmem_cache_create - Create a cache. | |
361 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
362 | * @size: The size of objects to be created in this cache. | |
363 | * @align: The required alignment for the objects. | |
364 | * @flags: SLAB flags | |
365 | * @ctor: A constructor for the objects. | |
366 | * | |
367 | * Returns a ptr to the cache on success, NULL on failure. | |
368 | * Cannot be called within a interrupt, but can be interrupted. | |
369 | * The @ctor is run when new pages are allocated by the cache. | |
370 | * | |
371 | * The flags are | |
372 | * | |
373 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
374 | * to catch references to uninitialised memory. | |
375 | * | |
376 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
377 | * for buffer overruns. | |
378 | * | |
379 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
380 | * cacheline. This can be beneficial if you're counting cycles as closely | |
381 | * as davem. | |
382 | */ | |
2633d7a0 | 383 | struct kmem_cache * |
794b1248 VD |
384 | kmem_cache_create(const char *name, size_t size, size_t align, |
385 | unsigned long flags, void (*ctor)(void *)) | |
77be4b13 | 386 | { |
794b1248 | 387 | struct kmem_cache *s; |
3dec16ea | 388 | const char *cache_name; |
3965fc36 | 389 | int err; |
039363f3 | 390 | |
77be4b13 | 391 | get_online_cpus(); |
03afc0e2 | 392 | get_online_mems(); |
05257a1a | 393 | memcg_get_cache_ids(); |
03afc0e2 | 394 | |
77be4b13 | 395 | mutex_lock(&slab_mutex); |
686d550d | 396 | |
794b1248 | 397 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 AM |
398 | if (err) { |
399 | s = NULL; /* suppress uninit var warning */ | |
3965fc36 | 400 | goto out_unlock; |
3aa24f51 | 401 | } |
686d550d | 402 | |
d8843922 GC |
403 | /* |
404 | * Some allocators will constraint the set of valid flags to a subset | |
405 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
406 | * case, and we'll just provide them with a sanitized version of the | |
407 | * passed flags. | |
408 | */ | |
409 | flags &= CACHE_CREATE_MASK; | |
686d550d | 410 | |
794b1248 VD |
411 | s = __kmem_cache_alias(name, size, align, flags, ctor); |
412 | if (s) | |
3965fc36 | 413 | goto out_unlock; |
2633d7a0 | 414 | |
3dec16ea | 415 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
416 | if (!cache_name) { |
417 | err = -ENOMEM; | |
418 | goto out_unlock; | |
419 | } | |
7c9adf5a | 420 | |
794b1248 VD |
421 | s = do_kmem_cache_create(cache_name, size, size, |
422 | calculate_alignment(flags, align, size), | |
423 | flags, ctor, NULL, NULL); | |
424 | if (IS_ERR(s)) { | |
425 | err = PTR_ERR(s); | |
3dec16ea | 426 | kfree_const(cache_name); |
794b1248 | 427 | } |
3965fc36 VD |
428 | |
429 | out_unlock: | |
20cea968 | 430 | mutex_unlock(&slab_mutex); |
03afc0e2 | 431 | |
05257a1a | 432 | memcg_put_cache_ids(); |
03afc0e2 | 433 | put_online_mems(); |
20cea968 CL |
434 | put_online_cpus(); |
435 | ||
ba3253c7 | 436 | if (err) { |
686d550d CL |
437 | if (flags & SLAB_PANIC) |
438 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
439 | name, err); | |
440 | else { | |
441 | printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", | |
442 | name, err); | |
443 | dump_stack(); | |
444 | } | |
686d550d CL |
445 | return NULL; |
446 | } | |
039363f3 CL |
447 | return s; |
448 | } | |
794b1248 | 449 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 450 | |
d5b3cf71 VD |
451 | static int do_kmem_cache_shutdown(struct kmem_cache *s, |
452 | struct list_head *release, bool *need_rcu_barrier) | |
453 | { | |
454 | if (__kmem_cache_shutdown(s) != 0) { | |
455 | printk(KERN_ERR "kmem_cache_destroy %s: " | |
456 | "Slab cache still has objects\n", s->name); | |
457 | dump_stack(); | |
458 | return -EBUSY; | |
459 | } | |
460 | ||
461 | if (s->flags & SLAB_DESTROY_BY_RCU) | |
462 | *need_rcu_barrier = true; | |
463 | ||
464 | #ifdef CONFIG_MEMCG_KMEM | |
2a4db7eb | 465 | if (!is_root_cache(s)) |
426589f5 | 466 | list_del(&s->memcg_params.list); |
d5b3cf71 VD |
467 | #endif |
468 | list_move(&s->list, release); | |
469 | return 0; | |
470 | } | |
471 | ||
472 | static void do_kmem_cache_release(struct list_head *release, | |
473 | bool need_rcu_barrier) | |
474 | { | |
475 | struct kmem_cache *s, *s2; | |
476 | ||
477 | if (need_rcu_barrier) | |
478 | rcu_barrier(); | |
479 | ||
480 | list_for_each_entry_safe(s, s2, release, list) { | |
481 | #ifdef SLAB_SUPPORTS_SYSFS | |
482 | sysfs_slab_remove(s); | |
483 | #else | |
484 | slab_kmem_cache_release(s); | |
485 | #endif | |
486 | } | |
487 | } | |
488 | ||
794b1248 VD |
489 | #ifdef CONFIG_MEMCG_KMEM |
490 | /* | |
776ed0f0 | 491 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
492 | * @memcg: The memory cgroup the new cache is for. |
493 | * @root_cache: The parent of the new cache. | |
494 | * | |
495 | * This function attempts to create a kmem cache that will serve allocation | |
496 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
497 | * from its parent. | |
498 | */ | |
d5b3cf71 VD |
499 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
500 | struct kmem_cache *root_cache) | |
2633d7a0 | 501 | { |
3e0350a3 | 502 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 503 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 504 | struct memcg_cache_array *arr; |
bd673145 | 505 | struct kmem_cache *s = NULL; |
794b1248 | 506 | char *cache_name; |
f7ce3190 | 507 | int idx; |
794b1248 VD |
508 | |
509 | get_online_cpus(); | |
03afc0e2 VD |
510 | get_online_mems(); |
511 | ||
794b1248 VD |
512 | mutex_lock(&slab_mutex); |
513 | ||
2a4db7eb VD |
514 | /* |
515 | * The memory cgroup could have been deactivated while the cache | |
516 | * creation work was pending. | |
517 | */ | |
518 | if (!memcg_kmem_is_active(memcg)) | |
519 | goto out_unlock; | |
520 | ||
f7ce3190 VD |
521 | idx = memcg_cache_id(memcg); |
522 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
523 | lockdep_is_held(&slab_mutex)); | |
524 | ||
d5b3cf71 VD |
525 | /* |
526 | * Since per-memcg caches are created asynchronously on first | |
527 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
528 | * create the same cache, but only one of them may succeed. | |
529 | */ | |
f7ce3190 | 530 | if (arr->entries[idx]) |
d5b3cf71 VD |
531 | goto out_unlock; |
532 | ||
f1008365 | 533 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
073ee1c6 | 534 | cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, |
f1008365 | 535 | css->id, memcg_name_buf); |
794b1248 VD |
536 | if (!cache_name) |
537 | goto out_unlock; | |
538 | ||
539 | s = do_kmem_cache_create(cache_name, root_cache->object_size, | |
540 | root_cache->size, root_cache->align, | |
541 | root_cache->flags, root_cache->ctor, | |
542 | memcg, root_cache); | |
d5b3cf71 VD |
543 | /* |
544 | * If we could not create a memcg cache, do not complain, because | |
545 | * that's not critical at all as we can always proceed with the root | |
546 | * cache. | |
547 | */ | |
bd673145 | 548 | if (IS_ERR(s)) { |
794b1248 | 549 | kfree(cache_name); |
d5b3cf71 | 550 | goto out_unlock; |
bd673145 | 551 | } |
794b1248 | 552 | |
426589f5 VD |
553 | list_add(&s->memcg_params.list, &root_cache->memcg_params.list); |
554 | ||
d5b3cf71 VD |
555 | /* |
556 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
557 | * barrier here to ensure nobody will see the kmem_cache partially | |
558 | * initialized. | |
559 | */ | |
560 | smp_wmb(); | |
f7ce3190 | 561 | arr->entries[idx] = s; |
d5b3cf71 | 562 | |
794b1248 VD |
563 | out_unlock: |
564 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
565 | |
566 | put_online_mems(); | |
794b1248 | 567 | put_online_cpus(); |
2633d7a0 | 568 | } |
b8529907 | 569 | |
2a4db7eb VD |
570 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
571 | { | |
572 | int idx; | |
573 | struct memcg_cache_array *arr; | |
d6e0b7fa | 574 | struct kmem_cache *s, *c; |
2a4db7eb VD |
575 | |
576 | idx = memcg_cache_id(memcg); | |
577 | ||
d6e0b7fa VD |
578 | get_online_cpus(); |
579 | get_online_mems(); | |
580 | ||
2a4db7eb VD |
581 | mutex_lock(&slab_mutex); |
582 | list_for_each_entry(s, &slab_caches, list) { | |
583 | if (!is_root_cache(s)) | |
584 | continue; | |
585 | ||
586 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
587 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
588 | c = arr->entries[idx]; |
589 | if (!c) | |
590 | continue; | |
591 | ||
592 | __kmem_cache_shrink(c, true); | |
2a4db7eb VD |
593 | arr->entries[idx] = NULL; |
594 | } | |
595 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
596 | |
597 | put_online_mems(); | |
598 | put_online_cpus(); | |
2a4db7eb VD |
599 | } |
600 | ||
d5b3cf71 | 601 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 602 | { |
d5b3cf71 VD |
603 | LIST_HEAD(release); |
604 | bool need_rcu_barrier = false; | |
605 | struct kmem_cache *s, *s2; | |
b8529907 | 606 | |
d5b3cf71 VD |
607 | get_online_cpus(); |
608 | get_online_mems(); | |
b8529907 | 609 | |
b8529907 | 610 | mutex_lock(&slab_mutex); |
d5b3cf71 | 611 | list_for_each_entry_safe(s, s2, &slab_caches, list) { |
f7ce3190 | 612 | if (is_root_cache(s) || s->memcg_params.memcg != memcg) |
d5b3cf71 VD |
613 | continue; |
614 | /* | |
615 | * The cgroup is about to be freed and therefore has no charges | |
616 | * left. Hence, all its caches must be empty by now. | |
617 | */ | |
618 | BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier)); | |
619 | } | |
620 | mutex_unlock(&slab_mutex); | |
b8529907 | 621 | |
d5b3cf71 VD |
622 | put_online_mems(); |
623 | put_online_cpus(); | |
624 | ||
625 | do_kmem_cache_release(&release, need_rcu_barrier); | |
b8529907 | 626 | } |
794b1248 | 627 | #endif /* CONFIG_MEMCG_KMEM */ |
97d06609 | 628 | |
41a21285 CL |
629 | void slab_kmem_cache_release(struct kmem_cache *s) |
630 | { | |
f7ce3190 | 631 | destroy_memcg_params(s); |
3dec16ea | 632 | kfree_const(s->name); |
41a21285 CL |
633 | kmem_cache_free(kmem_cache, s); |
634 | } | |
635 | ||
945cf2b6 CL |
636 | void kmem_cache_destroy(struct kmem_cache *s) |
637 | { | |
426589f5 | 638 | struct kmem_cache *c, *c2; |
d5b3cf71 VD |
639 | LIST_HEAD(release); |
640 | bool need_rcu_barrier = false; | |
641 | bool busy = false; | |
642 | ||
3942d299 SS |
643 | if (unlikely(!s)) |
644 | return; | |
645 | ||
426589f5 VD |
646 | BUG_ON(!is_root_cache(s)); |
647 | ||
945cf2b6 | 648 | get_online_cpus(); |
03afc0e2 VD |
649 | get_online_mems(); |
650 | ||
945cf2b6 | 651 | mutex_lock(&slab_mutex); |
b8529907 | 652 | |
945cf2b6 | 653 | s->refcount--; |
b8529907 VD |
654 | if (s->refcount) |
655 | goto out_unlock; | |
656 | ||
426589f5 VD |
657 | for_each_memcg_cache_safe(c, c2, s) { |
658 | if (do_kmem_cache_shutdown(c, &release, &need_rcu_barrier)) | |
d5b3cf71 | 659 | busy = true; |
945cf2b6 | 660 | } |
b8529907 | 661 | |
d5b3cf71 VD |
662 | if (!busy) |
663 | do_kmem_cache_shutdown(s, &release, &need_rcu_barrier); | |
b8529907 VD |
664 | |
665 | out_unlock: | |
666 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 667 | |
03afc0e2 | 668 | put_online_mems(); |
945cf2b6 | 669 | put_online_cpus(); |
d5b3cf71 VD |
670 | |
671 | do_kmem_cache_release(&release, need_rcu_barrier); | |
945cf2b6 CL |
672 | } |
673 | EXPORT_SYMBOL(kmem_cache_destroy); | |
674 | ||
03afc0e2 VD |
675 | /** |
676 | * kmem_cache_shrink - Shrink a cache. | |
677 | * @cachep: The cache to shrink. | |
678 | * | |
679 | * Releases as many slabs as possible for a cache. | |
680 | * To help debugging, a zero exit status indicates all slabs were released. | |
681 | */ | |
682 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
683 | { | |
684 | int ret; | |
685 | ||
686 | get_online_cpus(); | |
687 | get_online_mems(); | |
d6e0b7fa | 688 | ret = __kmem_cache_shrink(cachep, false); |
03afc0e2 VD |
689 | put_online_mems(); |
690 | put_online_cpus(); | |
691 | return ret; | |
692 | } | |
693 | EXPORT_SYMBOL(kmem_cache_shrink); | |
694 | ||
97d06609 CL |
695 | int slab_is_available(void) |
696 | { | |
697 | return slab_state >= UP; | |
698 | } | |
b7454ad3 | 699 | |
45530c44 CL |
700 | #ifndef CONFIG_SLOB |
701 | /* Create a cache during boot when no slab services are available yet */ | |
702 | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | |
703 | unsigned long flags) | |
704 | { | |
705 | int err; | |
706 | ||
707 | s->name = name; | |
708 | s->size = s->object_size = size; | |
45906855 | 709 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
f7ce3190 VD |
710 | |
711 | slab_init_memcg_params(s); | |
712 | ||
45530c44 CL |
713 | err = __kmem_cache_create(s, flags); |
714 | ||
715 | if (err) | |
31ba7346 | 716 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
45530c44 CL |
717 | name, size, err); |
718 | ||
719 | s->refcount = -1; /* Exempt from merging for now */ | |
720 | } | |
721 | ||
722 | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | |
723 | unsigned long flags) | |
724 | { | |
725 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
726 | ||
727 | if (!s) | |
728 | panic("Out of memory when creating slab %s\n", name); | |
729 | ||
730 | create_boot_cache(s, name, size, flags); | |
731 | list_add(&s->list, &slab_caches); | |
732 | s->refcount = 1; | |
733 | return s; | |
734 | } | |
735 | ||
9425c58e CL |
736 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
737 | EXPORT_SYMBOL(kmalloc_caches); | |
738 | ||
739 | #ifdef CONFIG_ZONE_DMA | |
740 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | |
741 | EXPORT_SYMBOL(kmalloc_dma_caches); | |
742 | #endif | |
743 | ||
2c59dd65 CL |
744 | /* |
745 | * Conversion table for small slabs sizes / 8 to the index in the | |
746 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
747 | * of two cache sizes there. The size of larger slabs can be determined using | |
748 | * fls. | |
749 | */ | |
750 | static s8 size_index[24] = { | |
751 | 3, /* 8 */ | |
752 | 4, /* 16 */ | |
753 | 5, /* 24 */ | |
754 | 5, /* 32 */ | |
755 | 6, /* 40 */ | |
756 | 6, /* 48 */ | |
757 | 6, /* 56 */ | |
758 | 6, /* 64 */ | |
759 | 1, /* 72 */ | |
760 | 1, /* 80 */ | |
761 | 1, /* 88 */ | |
762 | 1, /* 96 */ | |
763 | 7, /* 104 */ | |
764 | 7, /* 112 */ | |
765 | 7, /* 120 */ | |
766 | 7, /* 128 */ | |
767 | 2, /* 136 */ | |
768 | 2, /* 144 */ | |
769 | 2, /* 152 */ | |
770 | 2, /* 160 */ | |
771 | 2, /* 168 */ | |
772 | 2, /* 176 */ | |
773 | 2, /* 184 */ | |
774 | 2 /* 192 */ | |
775 | }; | |
776 | ||
777 | static inline int size_index_elem(size_t bytes) | |
778 | { | |
779 | return (bytes - 1) / 8; | |
780 | } | |
781 | ||
782 | /* | |
783 | * Find the kmem_cache structure that serves a given size of | |
784 | * allocation | |
785 | */ | |
786 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
787 | { | |
788 | int index; | |
789 | ||
9de1bc87 | 790 | if (unlikely(size > KMALLOC_MAX_SIZE)) { |
907985f4 | 791 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); |
6286ae97 | 792 | return NULL; |
907985f4 | 793 | } |
6286ae97 | 794 | |
2c59dd65 CL |
795 | if (size <= 192) { |
796 | if (!size) | |
797 | return ZERO_SIZE_PTR; | |
798 | ||
799 | index = size_index[size_index_elem(size)]; | |
800 | } else | |
801 | index = fls(size - 1); | |
802 | ||
803 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 804 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
805 | return kmalloc_dma_caches[index]; |
806 | ||
807 | #endif | |
808 | return kmalloc_caches[index]; | |
809 | } | |
810 | ||
4066c33d GG |
811 | /* |
812 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
813 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
814 | * kmalloc-67108864. | |
815 | */ | |
816 | static struct { | |
817 | const char *name; | |
818 | unsigned long size; | |
819 | } const kmalloc_info[] __initconst = { | |
820 | {NULL, 0}, {"kmalloc-96", 96}, | |
821 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
822 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
823 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
824 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
825 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
826 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
827 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
828 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
829 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
830 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
831 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
832 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
833 | {"kmalloc-67108864", 67108864} | |
834 | }; | |
835 | ||
f97d5f63 | 836 | /* |
34cc6990 DS |
837 | * Patch up the size_index table if we have strange large alignment |
838 | * requirements for the kmalloc array. This is only the case for | |
839 | * MIPS it seems. The standard arches will not generate any code here. | |
840 | * | |
841 | * Largest permitted alignment is 256 bytes due to the way we | |
842 | * handle the index determination for the smaller caches. | |
843 | * | |
844 | * Make sure that nothing crazy happens if someone starts tinkering | |
845 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 846 | */ |
34cc6990 | 847 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 CL |
848 | { |
849 | int i; | |
850 | ||
2c59dd65 CL |
851 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
852 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
853 | ||
854 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
855 | int elem = size_index_elem(i); | |
856 | ||
857 | if (elem >= ARRAY_SIZE(size_index)) | |
858 | break; | |
859 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
860 | } | |
861 | ||
862 | if (KMALLOC_MIN_SIZE >= 64) { | |
863 | /* | |
864 | * The 96 byte size cache is not used if the alignment | |
865 | * is 64 byte. | |
866 | */ | |
867 | for (i = 64 + 8; i <= 96; i += 8) | |
868 | size_index[size_index_elem(i)] = 7; | |
869 | ||
870 | } | |
871 | ||
872 | if (KMALLOC_MIN_SIZE >= 128) { | |
873 | /* | |
874 | * The 192 byte sized cache is not used if the alignment | |
875 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
876 | * instead. | |
877 | */ | |
878 | for (i = 128 + 8; i <= 192; i += 8) | |
879 | size_index[size_index_elem(i)] = 8; | |
880 | } | |
34cc6990 DS |
881 | } |
882 | ||
ae6f2462 | 883 | static void __init new_kmalloc_cache(int idx, unsigned long flags) |
a9730fca CL |
884 | { |
885 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
886 | kmalloc_info[idx].size, flags); | |
887 | } | |
888 | ||
34cc6990 DS |
889 | /* |
890 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
891 | * may already have been created because they were needed to | |
892 | * enable allocations for slab creation. | |
893 | */ | |
894 | void __init create_kmalloc_caches(unsigned long flags) | |
895 | { | |
896 | int i; | |
897 | ||
a9730fca CL |
898 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
899 | if (!kmalloc_caches[i]) | |
900 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 901 | |
956e46ef | 902 | /* |
a9730fca CL |
903 | * Caches that are not of the two-to-the-power-of size. |
904 | * These have to be created immediately after the | |
905 | * earlier power of two caches | |
956e46ef | 906 | */ |
a9730fca CL |
907 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
908 | new_kmalloc_cache(1, flags); | |
909 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
910 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
911 | } |
912 | ||
f97d5f63 CL |
913 | /* Kmalloc array is now usable */ |
914 | slab_state = UP; | |
915 | ||
f97d5f63 CL |
916 | #ifdef CONFIG_ZONE_DMA |
917 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
918 | struct kmem_cache *s = kmalloc_caches[i]; | |
919 | ||
920 | if (s) { | |
921 | int size = kmalloc_size(i); | |
922 | char *n = kasprintf(GFP_NOWAIT, | |
923 | "dma-kmalloc-%d", size); | |
924 | ||
925 | BUG_ON(!n); | |
926 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
927 | size, SLAB_CACHE_DMA | flags); | |
928 | } | |
929 | } | |
930 | #endif | |
931 | } | |
45530c44 CL |
932 | #endif /* !CONFIG_SLOB */ |
933 | ||
cea371f4 VD |
934 | /* |
935 | * To avoid unnecessary overhead, we pass through large allocation requests | |
936 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
937 | * know the allocation order to free the pages properly in kfree. | |
938 | */ | |
52383431 VD |
939 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
940 | { | |
941 | void *ret; | |
942 | struct page *page; | |
943 | ||
944 | flags |= __GFP_COMP; | |
945 | page = alloc_kmem_pages(flags, order); | |
946 | ret = page ? page_address(page) : NULL; | |
947 | kmemleak_alloc(ret, size, 1, flags); | |
0316bec2 | 948 | kasan_kmalloc_large(ret, size); |
52383431 VD |
949 | return ret; |
950 | } | |
951 | EXPORT_SYMBOL(kmalloc_order); | |
952 | ||
f1b6eb6e CL |
953 | #ifdef CONFIG_TRACING |
954 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
955 | { | |
956 | void *ret = kmalloc_order(size, flags, order); | |
957 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
958 | return ret; | |
959 | } | |
960 | EXPORT_SYMBOL(kmalloc_order_trace); | |
961 | #endif | |
45530c44 | 962 | |
b7454ad3 | 963 | #ifdef CONFIG_SLABINFO |
e9b4db2b WL |
964 | |
965 | #ifdef CONFIG_SLAB | |
966 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | |
967 | #else | |
968 | #define SLABINFO_RIGHTS S_IRUSR | |
969 | #endif | |
970 | ||
b047501c | 971 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
972 | { |
973 | /* | |
974 | * Output format version, so at least we can change it | |
975 | * without _too_ many complaints. | |
976 | */ | |
977 | #ifdef CONFIG_DEBUG_SLAB | |
978 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
979 | #else | |
980 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
981 | #endif | |
982 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
983 | "<objperslab> <pagesperslab>"); | |
984 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
985 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
986 | #ifdef CONFIG_DEBUG_SLAB | |
987 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " | |
988 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | |
989 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | |
990 | #endif | |
991 | seq_putc(m, '\n'); | |
992 | } | |
993 | ||
1df3b26f | 994 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 995 | { |
b7454ad3 | 996 | mutex_lock(&slab_mutex); |
b7454ad3 GC |
997 | return seq_list_start(&slab_caches, *pos); |
998 | } | |
999 | ||
276a2439 | 1000 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 GC |
1001 | { |
1002 | return seq_list_next(p, &slab_caches, pos); | |
1003 | } | |
1004 | ||
276a2439 | 1005 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1006 | { |
1007 | mutex_unlock(&slab_mutex); | |
1008 | } | |
1009 | ||
749c5415 GC |
1010 | static void |
1011 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1012 | { | |
1013 | struct kmem_cache *c; | |
1014 | struct slabinfo sinfo; | |
749c5415 GC |
1015 | |
1016 | if (!is_root_cache(s)) | |
1017 | return; | |
1018 | ||
426589f5 | 1019 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1020 | memset(&sinfo, 0, sizeof(sinfo)); |
1021 | get_slabinfo(c, &sinfo); | |
1022 | ||
1023 | info->active_slabs += sinfo.active_slabs; | |
1024 | info->num_slabs += sinfo.num_slabs; | |
1025 | info->shared_avail += sinfo.shared_avail; | |
1026 | info->active_objs += sinfo.active_objs; | |
1027 | info->num_objs += sinfo.num_objs; | |
1028 | } | |
1029 | } | |
1030 | ||
b047501c | 1031 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1032 | { |
0d7561c6 GC |
1033 | struct slabinfo sinfo; |
1034 | ||
1035 | memset(&sinfo, 0, sizeof(sinfo)); | |
1036 | get_slabinfo(s, &sinfo); | |
1037 | ||
749c5415 GC |
1038 | memcg_accumulate_slabinfo(s, &sinfo); |
1039 | ||
0d7561c6 | 1040 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1041 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1042 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1043 | ||
1044 | seq_printf(m, " : tunables %4u %4u %4u", | |
1045 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1046 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1047 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1048 | slabinfo_show_stats(m, s); | |
1049 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1050 | } |
1051 | ||
1df3b26f | 1052 | static int slab_show(struct seq_file *m, void *p) |
749c5415 GC |
1053 | { |
1054 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1055 | ||
1df3b26f VD |
1056 | if (p == slab_caches.next) |
1057 | print_slabinfo_header(m); | |
b047501c VD |
1058 | if (is_root_cache(s)) |
1059 | cache_show(s, m); | |
1060 | return 0; | |
1061 | } | |
1062 | ||
1063 | #ifdef CONFIG_MEMCG_KMEM | |
1064 | int memcg_slab_show(struct seq_file *m, void *p) | |
1065 | { | |
1066 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1067 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1068 | ||
1069 | if (p == slab_caches.next) | |
1070 | print_slabinfo_header(m); | |
f7ce3190 | 1071 | if (!is_root_cache(s) && s->memcg_params.memcg == memcg) |
b047501c VD |
1072 | cache_show(s, m); |
1073 | return 0; | |
749c5415 | 1074 | } |
b047501c | 1075 | #endif |
749c5415 | 1076 | |
b7454ad3 GC |
1077 | /* |
1078 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1079 | * | |
1080 | * Output layout: | |
1081 | * cache-name | |
1082 | * num-active-objs | |
1083 | * total-objs | |
1084 | * object size | |
1085 | * num-active-slabs | |
1086 | * total-slabs | |
1087 | * num-pages-per-slab | |
1088 | * + further values on SMP and with statistics enabled | |
1089 | */ | |
1090 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1091 | .start = slab_start, |
276a2439 WL |
1092 | .next = slab_next, |
1093 | .stop = slab_stop, | |
1df3b26f | 1094 | .show = slab_show, |
b7454ad3 GC |
1095 | }; |
1096 | ||
1097 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1098 | { | |
1099 | return seq_open(file, &slabinfo_op); | |
1100 | } | |
1101 | ||
1102 | static const struct file_operations proc_slabinfo_operations = { | |
1103 | .open = slabinfo_open, | |
1104 | .read = seq_read, | |
1105 | .write = slabinfo_write, | |
1106 | .llseek = seq_lseek, | |
1107 | .release = seq_release, | |
1108 | }; | |
1109 | ||
1110 | static int __init slab_proc_init(void) | |
1111 | { | |
e9b4db2b WL |
1112 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1113 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1114 | return 0; |
1115 | } | |
1116 | module_init(slab_proc_init); | |
1117 | #endif /* CONFIG_SLABINFO */ | |
928cec9c AR |
1118 | |
1119 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1120 | gfp_t flags) | |
1121 | { | |
1122 | void *ret; | |
1123 | size_t ks = 0; | |
1124 | ||
1125 | if (p) | |
1126 | ks = ksize(p); | |
1127 | ||
0316bec2 AR |
1128 | if (ks >= new_size) { |
1129 | kasan_krealloc((void *)p, new_size); | |
928cec9c | 1130 | return (void *)p; |
0316bec2 | 1131 | } |
928cec9c AR |
1132 | |
1133 | ret = kmalloc_track_caller(new_size, flags); | |
1134 | if (ret && p) | |
1135 | memcpy(ret, p, ks); | |
1136 | ||
1137 | return ret; | |
1138 | } | |
1139 | ||
1140 | /** | |
1141 | * __krealloc - like krealloc() but don't free @p. | |
1142 | * @p: object to reallocate memory for. | |
1143 | * @new_size: how many bytes of memory are required. | |
1144 | * @flags: the type of memory to allocate. | |
1145 | * | |
1146 | * This function is like krealloc() except it never frees the originally | |
1147 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1148 | * like, for example, with RCU. | |
1149 | */ | |
1150 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1151 | { | |
1152 | if (unlikely(!new_size)) | |
1153 | return ZERO_SIZE_PTR; | |
1154 | ||
1155 | return __do_krealloc(p, new_size, flags); | |
1156 | ||
1157 | } | |
1158 | EXPORT_SYMBOL(__krealloc); | |
1159 | ||
1160 | /** | |
1161 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1162 | * @p: object to reallocate memory for. | |
1163 | * @new_size: how many bytes of memory are required. | |
1164 | * @flags: the type of memory to allocate. | |
1165 | * | |
1166 | * The contents of the object pointed to are preserved up to the | |
1167 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1168 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1169 | * %NULL pointer, the object pointed to is freed. | |
1170 | */ | |
1171 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1172 | { | |
1173 | void *ret; | |
1174 | ||
1175 | if (unlikely(!new_size)) { | |
1176 | kfree(p); | |
1177 | return ZERO_SIZE_PTR; | |
1178 | } | |
1179 | ||
1180 | ret = __do_krealloc(p, new_size, flags); | |
1181 | if (ret && p != ret) | |
1182 | kfree(p); | |
1183 | ||
1184 | return ret; | |
1185 | } | |
1186 | EXPORT_SYMBOL(krealloc); | |
1187 | ||
1188 | /** | |
1189 | * kzfree - like kfree but zero memory | |
1190 | * @p: object to free memory of | |
1191 | * | |
1192 | * The memory of the object @p points to is zeroed before freed. | |
1193 | * If @p is %NULL, kzfree() does nothing. | |
1194 | * | |
1195 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1196 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1197 | * careful when using this function in performance sensitive code. | |
1198 | */ | |
1199 | void kzfree(const void *p) | |
1200 | { | |
1201 | size_t ks; | |
1202 | void *mem = (void *)p; | |
1203 | ||
1204 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1205 | return; | |
1206 | ks = ksize(mem); | |
1207 | memset(mem, 0, ks); | |
1208 | kfree(mem); | |
1209 | } | |
1210 | EXPORT_SYMBOL(kzfree); | |
1211 | ||
1212 | /* Tracepoints definitions. */ | |
1213 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1214 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1215 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1216 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1217 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1218 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |