]>
Commit | Line | Data |
---|---|---|
38df6492 ME |
1 | /* Agere Systems Inc. |
2 | * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs | |
3 | * | |
4 | * Copyright © 2005 Agere Systems Inc. | |
5 | * All rights reserved. | |
6 | * http://www.agere.com | |
7 | * | |
8 | * Copyright (c) 2011 Mark Einon <[email protected]> | |
9 | * | |
10 | *------------------------------------------------------------------------------ | |
11 | * | |
12 | * SOFTWARE LICENSE | |
13 | * | |
14 | * This software is provided subject to the following terms and conditions, | |
15 | * which you should read carefully before using the software. Using this | |
16 | * software indicates your acceptance of these terms and conditions. If you do | |
17 | * not agree with these terms and conditions, do not use the software. | |
18 | * | |
19 | * Copyright © 2005 Agere Systems Inc. | |
20 | * All rights reserved. | |
21 | * | |
22 | * Redistribution and use in source or binary forms, with or without | |
23 | * modifications, are permitted provided that the following conditions are met: | |
24 | * | |
25 | * . Redistributions of source code must retain the above copyright notice, this | |
26 | * list of conditions and the following Disclaimer as comments in the code as | |
27 | * well as in the documentation and/or other materials provided with the | |
28 | * distribution. | |
29 | * | |
30 | * . Redistributions in binary form must reproduce the above copyright notice, | |
31 | * this list of conditions and the following Disclaimer in the documentation | |
32 | * and/or other materials provided with the distribution. | |
33 | * | |
34 | * . Neither the name of Agere Systems Inc. nor the names of the contributors | |
35 | * may be used to endorse or promote products derived from this software | |
36 | * without specific prior written permission. | |
37 | * | |
38 | * Disclaimer | |
39 | * | |
40 | * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, | |
41 | * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF | |
42 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY | |
43 | * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN | |
44 | * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY | |
45 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
46 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
48 | * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT | |
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT | |
50 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | |
51 | * DAMAGE. | |
52 | */ | |
53 | ||
54 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
55 | ||
56 | #include <linux/pci.h> | |
57 | #include <linux/module.h> | |
58 | #include <linux/types.h> | |
59 | #include <linux/kernel.h> | |
60 | ||
61 | #include <linux/sched.h> | |
62 | #include <linux/ptrace.h> | |
63 | #include <linux/slab.h> | |
64 | #include <linux/ctype.h> | |
65 | #include <linux/string.h> | |
66 | #include <linux/timer.h> | |
67 | #include <linux/interrupt.h> | |
68 | #include <linux/in.h> | |
69 | #include <linux/delay.h> | |
70 | #include <linux/bitops.h> | |
71 | #include <linux/io.h> | |
72 | ||
73 | #include <linux/netdevice.h> | |
74 | #include <linux/etherdevice.h> | |
75 | #include <linux/skbuff.h> | |
76 | #include <linux/if_arp.h> | |
77 | #include <linux/ioport.h> | |
78 | #include <linux/crc32.h> | |
79 | #include <linux/random.h> | |
80 | #include <linux/phy.h> | |
81 | ||
82 | #include "et131x.h" | |
83 | ||
84 | MODULE_AUTHOR("Victor Soriano <[email protected]>"); | |
85 | MODULE_AUTHOR("Mark Einon <[email protected]>"); | |
86 | MODULE_LICENSE("Dual BSD/GPL"); | |
87 | MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems"); | |
88 | ||
89 | /* EEPROM defines */ | |
90 | #define MAX_NUM_REGISTER_POLLS 1000 | |
91 | #define MAX_NUM_WRITE_RETRIES 2 | |
92 | ||
93 | /* MAC defines */ | |
94 | #define COUNTER_WRAP_16_BIT 0x10000 | |
95 | #define COUNTER_WRAP_12_BIT 0x1000 | |
96 | ||
97 | /* PCI defines */ | |
98 | #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */ | |
99 | #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */ | |
100 | ||
101 | /* ISR defines */ | |
102 | /* For interrupts, normal running is: | |
103 | * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt, | |
104 | * watchdog_interrupt & txdma_xfer_done | |
105 | * | |
106 | * In both cases, when flow control is enabled for either Tx or bi-direction, | |
107 | * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the | |
108 | * buffer rings are running low. | |
109 | */ | |
110 | #define INT_MASK_DISABLE 0xffffffff | |
111 | ||
112 | /* NOTE: Masking out MAC_STAT Interrupt for now... | |
113 | * #define INT_MASK_ENABLE 0xfff6bf17 | |
114 | * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7 | |
115 | */ | |
116 | #define INT_MASK_ENABLE 0xfffebf17 | |
117 | #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7 | |
118 | ||
119 | /* General defines */ | |
120 | /* Packet and header sizes */ | |
121 | #define NIC_MIN_PACKET_SIZE 60 | |
122 | ||
123 | /* Multicast list size */ | |
124 | #define NIC_MAX_MCAST_LIST 128 | |
125 | ||
126 | /* Supported Filters */ | |
127 | #define ET131X_PACKET_TYPE_DIRECTED 0x0001 | |
128 | #define ET131X_PACKET_TYPE_MULTICAST 0x0002 | |
129 | #define ET131X_PACKET_TYPE_BROADCAST 0x0004 | |
130 | #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008 | |
131 | #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010 | |
132 | ||
133 | /* Tx Timeout */ | |
134 | #define ET131X_TX_TIMEOUT (1 * HZ) | |
135 | #define NIC_SEND_HANG_THRESHOLD 0 | |
136 | ||
137 | /* MP_ADAPTER flags */ | |
138 | #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008 | |
139 | ||
140 | /* MP_SHARED flags */ | |
141 | #define FMP_ADAPTER_LOWER_POWER 0x00200000 | |
142 | ||
143 | #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000 | |
144 | #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000 | |
145 | ||
146 | #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000 | |
147 | ||
148 | /* Some offsets in PCI config space that are actually used. */ | |
149 | #define ET1310_PCI_MAC_ADDRESS 0xA4 | |
150 | #define ET1310_PCI_EEPROM_STATUS 0xB2 | |
151 | #define ET1310_PCI_ACK_NACK 0xC0 | |
152 | #define ET1310_PCI_REPLAY 0xC2 | |
153 | #define ET1310_PCI_L0L1LATENCY 0xCF | |
154 | ||
155 | /* PCI Product IDs */ | |
156 | #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */ | |
157 | #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */ | |
158 | ||
159 | /* Define order of magnitude converter */ | |
160 | #define NANO_IN_A_MICRO 1000 | |
161 | ||
162 | #define PARM_RX_NUM_BUFS_DEF 4 | |
163 | #define PARM_RX_TIME_INT_DEF 10 | |
164 | #define PARM_RX_MEM_END_DEF 0x2bc | |
165 | #define PARM_TX_TIME_INT_DEF 40 | |
166 | #define PARM_TX_NUM_BUFS_DEF 4 | |
167 | #define PARM_DMA_CACHE_DEF 0 | |
168 | ||
169 | /* RX defines */ | |
170 | #define FBR_CHUNKS 32 | |
171 | #define MAX_DESC_PER_RING_RX 1024 | |
172 | ||
173 | /* number of RFDs - default and min */ | |
174 | #define RFD_LOW_WATER_MARK 40 | |
175 | #define NIC_DEFAULT_NUM_RFD 1024 | |
176 | #define NUM_FBRS 2 | |
177 | ||
178 | #define MAX_PACKETS_HANDLED 256 | |
44770e11 JW |
179 | #define ET131X_MIN_MTU 64 |
180 | #define ET131X_MAX_MTU 9216 | |
38df6492 ME |
181 | |
182 | #define ALCATEL_MULTICAST_PKT 0x01000000 | |
183 | #define ALCATEL_BROADCAST_PKT 0x02000000 | |
184 | ||
185 | /* typedefs for Free Buffer Descriptors */ | |
186 | struct fbr_desc { | |
187 | u32 addr_lo; | |
188 | u32 addr_hi; | |
189 | u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */ | |
190 | }; | |
191 | ||
192 | /* Packet Status Ring Descriptors | |
193 | * | |
194 | * Word 0: | |
195 | * | |
196 | * top 16 bits are from the Alcatel Status Word as enumerated in | |
197 | * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2) | |
198 | * | |
199 | * 0: hp hash pass | |
200 | * 1: ipa IP checksum assist | |
201 | * 2: ipp IP checksum pass | |
202 | * 3: tcpa TCP checksum assist | |
203 | * 4: tcpp TCP checksum pass | |
204 | * 5: wol WOL Event | |
205 | * 6: rxmac_error RXMAC Error Indicator | |
206 | * 7: drop Drop packet | |
207 | * 8: ft Frame Truncated | |
208 | * 9: jp Jumbo Packet | |
209 | * 10: vp VLAN Packet | |
210 | * 11-15: unused | |
211 | * 16: asw_prev_pkt_dropped e.g. IFG too small on previous | |
212 | * 17: asw_RX_DV_event short receive event detected | |
213 | * 18: asw_false_carrier_event bad carrier since last good packet | |
214 | * 19: asw_code_err one or more nibbles signalled as errors | |
215 | * 20: asw_CRC_err CRC error | |
216 | * 21: asw_len_chk_err frame length field incorrect | |
217 | * 22: asw_too_long frame length > 1518 bytes | |
218 | * 23: asw_OK valid CRC + no code error | |
219 | * 24: asw_multicast has a multicast address | |
220 | * 25: asw_broadcast has a broadcast address | |
221 | * 26: asw_dribble_nibble spurious bits after EOP | |
222 | * 27: asw_control_frame is a control frame | |
223 | * 28: asw_pause_frame is a pause frame | |
224 | * 29: asw_unsupported_op unsupported OP code | |
225 | * 30: asw_VLAN_tag VLAN tag detected | |
226 | * 31: asw_long_evt Rx long event | |
227 | * | |
228 | * Word 1: | |
229 | * 0-15: length length in bytes | |
230 | * 16-25: bi Buffer Index | |
231 | * 26-27: ri Ring Index | |
232 | * 28-31: reserved | |
233 | */ | |
234 | struct pkt_stat_desc { | |
235 | u32 word0; | |
236 | u32 word1; | |
237 | }; | |
238 | ||
239 | /* Typedefs for the RX DMA status word */ | |
240 | ||
241 | /* rx status word 0 holds part of the status bits of the Rx DMA engine | |
242 | * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word | |
243 | * which contains the Free Buffer ring 0 and 1 available offset. | |
244 | * | |
245 | * bit 0-9 FBR1 offset | |
246 | * bit 10 Wrap flag for FBR1 | |
247 | * bit 16-25 FBR0 offset | |
248 | * bit 26 Wrap flag for FBR0 | |
249 | */ | |
250 | ||
251 | /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine | |
252 | * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word | |
253 | * which contains the Packet Status Ring available offset. | |
254 | * | |
255 | * bit 0-15 reserved | |
256 | * bit 16-27 PSRoffset | |
257 | * bit 28 PSRwrap | |
258 | * bit 29-31 unused | |
259 | */ | |
260 | ||
261 | /* struct rx_status_block is a structure representing the status of the Rx | |
262 | * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020 | |
263 | */ | |
264 | struct rx_status_block { | |
265 | u32 word0; | |
266 | u32 word1; | |
267 | }; | |
268 | ||
269 | /* Structure for look-up table holding free buffer ring pointers, addresses | |
270 | * and state. | |
271 | */ | |
272 | struct fbr_lookup { | |
273 | void *virt[MAX_DESC_PER_RING_RX]; | |
274 | u32 bus_high[MAX_DESC_PER_RING_RX]; | |
275 | u32 bus_low[MAX_DESC_PER_RING_RX]; | |
276 | void *ring_virtaddr; | |
277 | dma_addr_t ring_physaddr; | |
278 | void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; | |
279 | dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; | |
280 | u32 local_full; | |
281 | u32 num_entries; | |
282 | dma_addr_t buffsize; | |
283 | }; | |
284 | ||
285 | /* struct rx_ring is the structure representing the adaptor's local | |
286 | * reference(s) to the rings | |
287 | */ | |
288 | struct rx_ring { | |
289 | struct fbr_lookup *fbr[NUM_FBRS]; | |
290 | void *ps_ring_virtaddr; | |
291 | dma_addr_t ps_ring_physaddr; | |
292 | u32 local_psr_full; | |
293 | u32 psr_entries; | |
294 | ||
295 | struct rx_status_block *rx_status_block; | |
296 | dma_addr_t rx_status_bus; | |
297 | ||
298 | struct list_head recv_list; | |
299 | u32 num_ready_recv; | |
300 | ||
301 | u32 num_rfd; | |
302 | ||
303 | bool unfinished_receives; | |
304 | }; | |
305 | ||
306 | /* TX defines */ | |
307 | /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310 | |
308 | * | |
309 | * 0-15: length of packet | |
310 | * 16-27: VLAN tag | |
311 | * 28: VLAN CFI | |
312 | * 29-31: VLAN priority | |
313 | * | |
314 | * word 3 of the control bits in the Tx Descriptor ring for the ET-1310 | |
315 | * | |
316 | * 0: last packet in the sequence | |
317 | * 1: first packet in the sequence | |
318 | * 2: interrupt the processor when this pkt sent | |
319 | * 3: Control word - no packet data | |
320 | * 4: Issue half-duplex backpressure : XON/XOFF | |
321 | * 5: send pause frame | |
322 | * 6: Tx frame has error | |
323 | * 7: append CRC | |
324 | * 8: MAC override | |
325 | * 9: pad packet | |
326 | * 10: Packet is a Huge packet | |
327 | * 11: append VLAN tag | |
328 | * 12: IP checksum assist | |
329 | * 13: TCP checksum assist | |
330 | * 14: UDP checksum assist | |
331 | */ | |
332 | #define TXDESC_FLAG_LASTPKT 0x0001 | |
333 | #define TXDESC_FLAG_FIRSTPKT 0x0002 | |
334 | #define TXDESC_FLAG_INTPROC 0x0004 | |
335 | ||
336 | /* struct tx_desc represents each descriptor on the ring */ | |
337 | struct tx_desc { | |
338 | u32 addr_hi; | |
339 | u32 addr_lo; | |
340 | u32 len_vlan; /* control words how to xmit the */ | |
341 | u32 flags; /* data (detailed above) */ | |
342 | }; | |
343 | ||
344 | /* The status of the Tx DMA engine it sits in free memory, and is pointed to | |
345 | * by 0x101c / 0x1020. This is a DMA10 type | |
346 | */ | |
347 | ||
348 | /* TCB (Transmit Control Block: Host Side) */ | |
349 | struct tcb { | |
350 | struct tcb *next; /* Next entry in ring */ | |
351 | u32 count; /* Used to spot stuck/lost packets */ | |
352 | u32 stale; /* Used to spot stuck/lost packets */ | |
353 | struct sk_buff *skb; /* Network skb we are tied to */ | |
354 | u32 index; /* Ring indexes */ | |
355 | u32 index_start; | |
356 | }; | |
357 | ||
358 | /* Structure representing our local reference(s) to the ring */ | |
359 | struct tx_ring { | |
360 | /* TCB (Transmit Control Block) memory and lists */ | |
361 | struct tcb *tcb_ring; | |
362 | ||
363 | /* List of TCBs that are ready to be used */ | |
364 | struct tcb *tcb_qhead; | |
365 | struct tcb *tcb_qtail; | |
366 | ||
367 | /* list of TCBs that are currently being sent. */ | |
368 | struct tcb *send_head; | |
369 | struct tcb *send_tail; | |
370 | int used; | |
371 | ||
372 | /* The actual descriptor ring */ | |
373 | struct tx_desc *tx_desc_ring; | |
374 | dma_addr_t tx_desc_ring_pa; | |
375 | ||
376 | /* send_idx indicates where we last wrote to in the descriptor ring. */ | |
377 | u32 send_idx; | |
378 | ||
379 | /* The location of the write-back status block */ | |
380 | u32 *tx_status; | |
381 | dma_addr_t tx_status_pa; | |
382 | ||
383 | /* Packets since the last IRQ: used for interrupt coalescing */ | |
384 | int since_irq; | |
385 | }; | |
386 | ||
387 | /* Do not change these values: if changed, then change also in respective | |
388 | * TXdma and Rxdma engines | |
389 | */ | |
390 | #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */ | |
391 | #define NUM_TCB 64 | |
392 | ||
393 | /* These values are all superseded by registry entries to facilitate tuning. | |
394 | * Once the desired performance has been achieved, the optimal registry values | |
395 | * should be re-populated to these #defines: | |
396 | */ | |
397 | #define TX_ERROR_PERIOD 1000 | |
398 | ||
399 | #define LO_MARK_PERCENT_FOR_PSR 15 | |
400 | #define LO_MARK_PERCENT_FOR_RX 15 | |
401 | ||
402 | /* RFD (Receive Frame Descriptor) */ | |
403 | struct rfd { | |
404 | struct list_head list_node; | |
405 | struct sk_buff *skb; | |
406 | u32 len; /* total size of receive frame */ | |
407 | u16 bufferindex; | |
408 | u8 ringindex; | |
409 | }; | |
410 | ||
411 | /* Flow Control */ | |
412 | #define FLOW_BOTH 0 | |
413 | #define FLOW_TXONLY 1 | |
414 | #define FLOW_RXONLY 2 | |
415 | #define FLOW_NONE 3 | |
416 | ||
417 | /* Struct to define some device statistics */ | |
418 | struct ce_stats { | |
419 | u32 multicast_pkts_rcvd; | |
420 | u32 rcvd_pkts_dropped; | |
421 | ||
422 | u32 tx_underflows; | |
423 | u32 tx_collisions; | |
424 | u32 tx_excessive_collisions; | |
425 | u32 tx_first_collisions; | |
426 | u32 tx_late_collisions; | |
427 | u32 tx_max_pkt_errs; | |
428 | u32 tx_deferred; | |
429 | ||
430 | u32 rx_overflows; | |
431 | u32 rx_length_errs; | |
432 | u32 rx_align_errs; | |
433 | u32 rx_crc_errs; | |
434 | u32 rx_code_violations; | |
435 | u32 rx_other_errs; | |
436 | ||
437 | u32 interrupt_status; | |
438 | }; | |
439 | ||
440 | /* The private adapter structure */ | |
441 | struct et131x_adapter { | |
442 | struct net_device *netdev; | |
443 | struct pci_dev *pdev; | |
444 | struct mii_bus *mii_bus; | |
38df6492 ME |
445 | struct napi_struct napi; |
446 | ||
447 | /* Flags that indicate current state of the adapter */ | |
448 | u32 flags; | |
449 | ||
450 | /* local link state, to determine if a state change has occurred */ | |
451 | int link; | |
452 | ||
453 | /* Configuration */ | |
454 | u8 rom_addr[ETH_ALEN]; | |
455 | u8 addr[ETH_ALEN]; | |
456 | bool has_eeprom; | |
457 | u8 eeprom_data[2]; | |
458 | ||
459 | spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */ | |
460 | spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */ | |
461 | spinlock_t rcv_lock; /* protects the rx_ring receive list */ | |
462 | ||
463 | /* Packet Filter and look ahead size */ | |
464 | u32 packet_filter; | |
465 | ||
466 | /* multicast list */ | |
467 | u32 multicast_addr_count; | |
468 | u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN]; | |
469 | ||
470 | /* Pointer to the device's PCI register space */ | |
471 | struct address_map __iomem *regs; | |
472 | ||
473 | /* Registry parameters */ | |
474 | u8 wanted_flow; /* Flow we want for 802.3x flow control */ | |
475 | u32 registry_jumbo_packet; /* Max supported ethernet packet size */ | |
476 | ||
477 | /* Derived from the registry: */ | |
478 | u8 flow; /* flow control validated by the far-end */ | |
479 | ||
480 | /* Minimize init-time */ | |
481 | struct timer_list error_timer; | |
482 | ||
483 | /* variable putting the phy into coma mode when boot up with no cable | |
484 | * plugged in after 5 seconds | |
485 | */ | |
486 | u8 boot_coma; | |
487 | ||
488 | /* Tx Memory Variables */ | |
489 | struct tx_ring tx_ring; | |
490 | ||
491 | /* Rx Memory Variables */ | |
492 | struct rx_ring rx_ring; | |
493 | ||
494 | struct ce_stats stats; | |
495 | }; | |
496 | ||
497 | static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status) | |
498 | { | |
499 | u32 reg; | |
500 | int i; | |
501 | ||
502 | /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and | |
503 | * bits 7,1:0 both equal to 1, at least once after reset. | |
504 | * Subsequent operations need only to check that bits 1:0 are equal | |
505 | * to 1 prior to starting a single byte read/write | |
506 | */ | |
507 | for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) { | |
508 | if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®)) | |
509 | return -EIO; | |
510 | ||
511 | /* I2C idle and Phy Queue Avail both true */ | |
512 | if ((reg & 0x3000) == 0x3000) { | |
513 | if (status) | |
514 | *status = reg; | |
515 | return reg & 0xFF; | |
516 | } | |
517 | } | |
518 | return -ETIMEDOUT; | |
519 | } | |
520 | ||
521 | static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data) | |
522 | { | |
523 | struct pci_dev *pdev = adapter->pdev; | |
524 | int index = 0; | |
525 | int retries; | |
526 | int err = 0; | |
527 | int writeok = 0; | |
528 | u32 status; | |
529 | u32 val = 0; | |
530 | ||
531 | /* For an EEPROM, an I2C single byte write is defined as a START | |
532 | * condition followed by the device address, EEPROM address, one byte | |
533 | * of data and a STOP condition. The STOP condition will trigger the | |
534 | * EEPROM's internally timed write cycle to the nonvolatile memory. | |
535 | * All inputs are disabled during this write cycle and the EEPROM will | |
536 | * not respond to any access until the internal write is complete. | |
537 | */ | |
538 | err = eeprom_wait_ready(pdev, NULL); | |
539 | if (err < 0) | |
540 | return err; | |
541 | ||
542 | /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0, | |
543 | * and bits 1:0 both =0. Bit 5 should be set according to the | |
544 | * type of EEPROM being accessed (1=two byte addressing, 0=one | |
545 | * byte addressing). | |
546 | */ | |
547 | if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, | |
548 | LBCIF_CONTROL_LBCIF_ENABLE | | |
549 | LBCIF_CONTROL_I2C_WRITE)) | |
550 | return -EIO; | |
551 | ||
552 | /* Prepare EEPROM address for Step 3 */ | |
553 | for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) { | |
554 | if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) | |
555 | break; | |
556 | /* Write the data to the LBCIF Data Register (the I2C write | |
557 | * will begin). | |
558 | */ | |
559 | if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data)) | |
560 | break; | |
561 | /* Monitor bit 1:0 of the LBCIF Status Register. When bits | |
562 | * 1:0 are both equal to 1, the I2C write has completed and the | |
563 | * internal write cycle of the EEPROM is about to start. | |
564 | * (bits 1:0 = 01 is a legal state while waiting from both | |
565 | * equal to 1, but bits 1:0 = 10 is invalid and implies that | |
566 | * something is broken). | |
567 | */ | |
568 | err = eeprom_wait_ready(pdev, &status); | |
569 | if (err < 0) | |
570 | return 0; | |
571 | ||
572 | /* Check bit 3 of the LBCIF Status Register. If equal to 1, | |
573 | * an error has occurred.Don't break here if we are revision | |
574 | * 1, this is so we do a blind write for load bug. | |
575 | */ | |
576 | if ((status & LBCIF_STATUS_GENERAL_ERROR) && | |
577 | adapter->pdev->revision == 0) | |
578 | break; | |
579 | ||
580 | /* Check bit 2 of the LBCIF Status Register. If equal to 1 an | |
581 | * ACK error has occurred on the address phase of the write. | |
582 | * This could be due to an actual hardware failure or the | |
583 | * EEPROM may still be in its internal write cycle from a | |
584 | * previous write. This write operation was ignored and must be | |
585 | *repeated later. | |
586 | */ | |
587 | if (status & LBCIF_STATUS_ACK_ERROR) { | |
588 | /* This could be due to an actual hardware failure | |
589 | * or the EEPROM may still be in its internal write | |
590 | * cycle from a previous write. This write operation | |
591 | * was ignored and must be repeated later. | |
592 | */ | |
593 | udelay(10); | |
594 | continue; | |
595 | } | |
596 | ||
597 | writeok = 1; | |
598 | break; | |
599 | } | |
600 | ||
601 | udelay(10); | |
602 | ||
603 | while (1) { | |
604 | if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, | |
605 | LBCIF_CONTROL_LBCIF_ENABLE)) | |
606 | writeok = 0; | |
607 | ||
608 | /* Do read until internal ACK_ERROR goes away meaning write | |
609 | * completed | |
610 | */ | |
611 | do { | |
612 | pci_write_config_dword(pdev, | |
613 | LBCIF_ADDRESS_REGISTER, | |
614 | addr); | |
615 | do { | |
616 | pci_read_config_dword(pdev, | |
617 | LBCIF_DATA_REGISTER, | |
618 | &val); | |
619 | } while ((val & 0x00010000) == 0); | |
620 | } while (val & 0x00040000); | |
621 | ||
622 | if ((val & 0xFF00) != 0xC000 || index == 10000) | |
623 | break; | |
624 | index++; | |
625 | } | |
626 | return writeok ? 0 : -EIO; | |
627 | } | |
628 | ||
629 | static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata) | |
630 | { | |
631 | struct pci_dev *pdev = adapter->pdev; | |
632 | int err; | |
633 | u32 status; | |
634 | ||
635 | /* A single byte read is similar to the single byte write, with the | |
636 | * exception of the data flow: | |
637 | */ | |
638 | err = eeprom_wait_ready(pdev, NULL); | |
639 | if (err < 0) | |
640 | return err; | |
641 | /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0, | |
642 | * and bits 1:0 both =0. Bit 5 should be set according to the type | |
643 | * of EEPROM being accessed (1=two byte addressing, 0=one byte | |
644 | * addressing). | |
645 | */ | |
646 | if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, | |
647 | LBCIF_CONTROL_LBCIF_ENABLE)) | |
648 | return -EIO; | |
649 | /* Write the address to the LBCIF Address Register (I2C read will | |
650 | * begin). | |
651 | */ | |
652 | if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) | |
653 | return -EIO; | |
654 | /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read | |
655 | * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure | |
656 | * has occurred). | |
657 | */ | |
658 | err = eeprom_wait_ready(pdev, &status); | |
659 | if (err < 0) | |
660 | return err; | |
661 | /* Regardless of error status, read data byte from LBCIF Data | |
662 | * Register. | |
663 | */ | |
664 | *pdata = err; | |
665 | ||
666 | return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0; | |
667 | } | |
668 | ||
669 | static int et131x_init_eeprom(struct et131x_adapter *adapter) | |
670 | { | |
671 | struct pci_dev *pdev = adapter->pdev; | |
672 | u8 eestatus; | |
673 | ||
674 | pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus); | |
675 | ||
676 | /* THIS IS A WORKAROUND: | |
677 | * I need to call this function twice to get my card in a | |
678 | * LG M1 Express Dual running. I tried also a msleep before this | |
679 | * function, because I thought there could be some time conditions | |
680 | * but it didn't work. Call the whole function twice also work. | |
681 | */ | |
682 | if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) { | |
683 | dev_err(&pdev->dev, | |
684 | "Could not read PCI config space for EEPROM Status\n"); | |
685 | return -EIO; | |
686 | } | |
687 | ||
688 | /* Determine if the error(s) we care about are present. If they are | |
689 | * present we need to fail. | |
690 | */ | |
691 | if (eestatus & 0x4C) { | |
692 | int write_failed = 0; | |
693 | ||
694 | if (pdev->revision == 0x01) { | |
695 | int i; | |
696 | static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF }; | |
697 | ||
698 | /* Re-write the first 4 bytes if we have an eeprom | |
699 | * present and the revision id is 1, this fixes the | |
700 | * corruption seen with 1310 B Silicon | |
701 | */ | |
702 | for (i = 0; i < 3; i++) | |
703 | if (eeprom_write(adapter, i, eedata[i]) < 0) | |
704 | write_failed = 1; | |
705 | } | |
706 | if (pdev->revision != 0x01 || write_failed) { | |
707 | dev_err(&pdev->dev, | |
708 | "Fatal EEPROM Status Error - 0x%04x\n", | |
709 | eestatus); | |
710 | ||
711 | /* This error could mean that there was an error | |
712 | * reading the eeprom or that the eeprom doesn't exist. | |
713 | * We will treat each case the same and not try to | |
714 | * gather additional information that normally would | |
715 | * come from the eeprom, like MAC Address | |
716 | */ | |
717 | adapter->has_eeprom = 0; | |
718 | return -EIO; | |
719 | } | |
720 | } | |
721 | adapter->has_eeprom = 1; | |
722 | ||
723 | /* Read the EEPROM for information regarding LED behavior. Refer to | |
724 | * et131x_xcvr_init() for its use. | |
725 | */ | |
726 | eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]); | |
727 | eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]); | |
728 | ||
729 | if (adapter->eeprom_data[0] != 0xcd) | |
730 | /* Disable all optional features */ | |
731 | adapter->eeprom_data[1] = 0x00; | |
732 | ||
733 | return 0; | |
734 | } | |
735 | ||
736 | static void et131x_rx_dma_enable(struct et131x_adapter *adapter) | |
737 | { | |
738 | /* Setup the receive dma configuration register for normal operation */ | |
739 | u32 csr = ET_RXDMA_CSR_FBR1_ENABLE; | |
740 | struct rx_ring *rx_ring = &adapter->rx_ring; | |
741 | ||
742 | if (rx_ring->fbr[1]->buffsize == 4096) | |
743 | csr |= ET_RXDMA_CSR_FBR1_SIZE_LO; | |
744 | else if (rx_ring->fbr[1]->buffsize == 8192) | |
745 | csr |= ET_RXDMA_CSR_FBR1_SIZE_HI; | |
746 | else if (rx_ring->fbr[1]->buffsize == 16384) | |
747 | csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI; | |
748 | ||
749 | csr |= ET_RXDMA_CSR_FBR0_ENABLE; | |
750 | if (rx_ring->fbr[0]->buffsize == 256) | |
751 | csr |= ET_RXDMA_CSR_FBR0_SIZE_LO; | |
752 | else if (rx_ring->fbr[0]->buffsize == 512) | |
753 | csr |= ET_RXDMA_CSR_FBR0_SIZE_HI; | |
754 | else if (rx_ring->fbr[0]->buffsize == 1024) | |
755 | csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI; | |
756 | writel(csr, &adapter->regs->rxdma.csr); | |
757 | ||
758 | csr = readl(&adapter->regs->rxdma.csr); | |
759 | if (csr & ET_RXDMA_CSR_HALT_STATUS) { | |
760 | udelay(5); | |
761 | csr = readl(&adapter->regs->rxdma.csr); | |
762 | if (csr & ET_RXDMA_CSR_HALT_STATUS) { | |
763 | dev_err(&adapter->pdev->dev, | |
764 | "RX Dma failed to exit halt state. CSR 0x%08x\n", | |
765 | csr); | |
766 | } | |
767 | } | |
768 | } | |
769 | ||
770 | static void et131x_rx_dma_disable(struct et131x_adapter *adapter) | |
771 | { | |
772 | u32 csr; | |
773 | /* Setup the receive dma configuration register */ | |
774 | writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE, | |
775 | &adapter->regs->rxdma.csr); | |
776 | csr = readl(&adapter->regs->rxdma.csr); | |
777 | if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) { | |
778 | udelay(5); | |
779 | csr = readl(&adapter->regs->rxdma.csr); | |
780 | if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) | |
781 | dev_err(&adapter->pdev->dev, | |
782 | "RX Dma failed to enter halt state. CSR 0x%08x\n", | |
783 | csr); | |
784 | } | |
785 | } | |
786 | ||
787 | static void et131x_tx_dma_enable(struct et131x_adapter *adapter) | |
788 | { | |
789 | /* Setup the transmit dma configuration register for normal | |
790 | * operation | |
791 | */ | |
792 | writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT), | |
793 | &adapter->regs->txdma.csr); | |
794 | } | |
795 | ||
796 | static inline void add_10bit(u32 *v, int n) | |
797 | { | |
798 | *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP); | |
799 | } | |
800 | ||
801 | static inline void add_12bit(u32 *v, int n) | |
802 | { | |
803 | *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP); | |
804 | } | |
805 | ||
806 | static void et1310_config_mac_regs1(struct et131x_adapter *adapter) | |
807 | { | |
808 | struct mac_regs __iomem *macregs = &adapter->regs->mac; | |
809 | u32 station1; | |
810 | u32 station2; | |
811 | u32 ipg; | |
812 | ||
813 | /* First we need to reset everything. Write to MAC configuration | |
814 | * register 1 to perform reset. | |
815 | */ | |
816 | writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | | |
817 | ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | | |
818 | ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC, | |
819 | ¯egs->cfg1); | |
820 | ||
821 | /* Next lets configure the MAC Inter-packet gap register */ | |
822 | ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */ | |
823 | ipg |= 0x50 << 8; /* ifg enforce 0x50 */ | |
824 | writel(ipg, ¯egs->ipg); | |
825 | ||
826 | /* Next lets configure the MAC Half Duplex register */ | |
827 | /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */ | |
828 | writel(0x00A1F037, ¯egs->hfdp); | |
829 | ||
830 | /* Next lets configure the MAC Interface Control register */ | |
831 | writel(0, ¯egs->if_ctrl); | |
832 | ||
833 | writel(ET_MAC_MIIMGMT_CLK_RST, ¯egs->mii_mgmt_cfg); | |
834 | ||
835 | /* Next lets configure the MAC Station Address register. These | |
836 | * values are read from the EEPROM during initialization and stored | |
837 | * in the adapter structure. We write what is stored in the adapter | |
838 | * structure to the MAC Station Address registers high and low. This | |
839 | * station address is used for generating and checking pause control | |
840 | * packets. | |
841 | */ | |
842 | station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) | | |
843 | (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT); | |
844 | station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) | | |
845 | (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) | | |
846 | (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) | | |
847 | adapter->addr[2]; | |
848 | writel(station1, ¯egs->station_addr_1); | |
849 | writel(station2, ¯egs->station_addr_2); | |
850 | ||
851 | /* Max ethernet packet in bytes that will be passed by the mac without | |
852 | * being truncated. Allow the MAC to pass 4 more than our max packet | |
853 | * size. This is 4 for the Ethernet CRC. | |
854 | * | |
855 | * Packets larger than (registry_jumbo_packet) that do not contain a | |
856 | * VLAN ID will be dropped by the Rx function. | |
857 | */ | |
858 | writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len); | |
859 | ||
860 | /* clear out MAC config reset */ | |
861 | writel(0, ¯egs->cfg1); | |
862 | } | |
863 | ||
864 | static void et1310_config_mac_regs2(struct et131x_adapter *adapter) | |
865 | { | |
866 | int32_t delay = 0; | |
867 | struct mac_regs __iomem *mac = &adapter->regs->mac; | |
a0bbb9fe | 868 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
869 | u32 cfg1; |
870 | u32 cfg2; | |
871 | u32 ifctrl; | |
872 | u32 ctl; | |
873 | ||
874 | ctl = readl(&adapter->regs->txmac.ctl); | |
875 | cfg1 = readl(&mac->cfg1); | |
876 | cfg2 = readl(&mac->cfg2); | |
877 | ifctrl = readl(&mac->if_ctrl); | |
878 | ||
879 | /* Set up the if mode bits */ | |
880 | cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK; | |
881 | if (phydev->speed == SPEED_1000) { | |
882 | cfg2 |= ET_MAC_CFG2_IFMODE_1000; | |
883 | ifctrl &= ~ET_MAC_IFCTRL_PHYMODE; | |
884 | } else { | |
885 | cfg2 |= ET_MAC_CFG2_IFMODE_100; | |
886 | ifctrl |= ET_MAC_IFCTRL_PHYMODE; | |
887 | } | |
888 | ||
889 | cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE | | |
890 | ET_MAC_CFG1_TX_FLOW; | |
891 | ||
892 | cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW); | |
893 | if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH) | |
894 | cfg1 |= ET_MAC_CFG1_RX_FLOW; | |
895 | writel(cfg1, &mac->cfg1); | |
896 | ||
897 | /* Now we need to initialize the MAC Configuration 2 register */ | |
898 | /* preamble 7, check length, huge frame off, pad crc, crc enable | |
899 | * full duplex off | |
900 | */ | |
901 | cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT; | |
902 | cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK; | |
903 | cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC; | |
904 | cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE; | |
905 | cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME; | |
906 | cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX; | |
907 | ||
908 | if (phydev->duplex == DUPLEX_FULL) | |
909 | cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX; | |
910 | ||
911 | ifctrl &= ~ET_MAC_IFCTRL_GHDMODE; | |
912 | if (phydev->duplex == DUPLEX_HALF) | |
913 | ifctrl |= ET_MAC_IFCTRL_GHDMODE; | |
914 | ||
915 | writel(ifctrl, &mac->if_ctrl); | |
916 | writel(cfg2, &mac->cfg2); | |
917 | ||
918 | do { | |
919 | udelay(10); | |
920 | delay++; | |
921 | cfg1 = readl(&mac->cfg1); | |
922 | } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100); | |
923 | ||
924 | if (delay == 100) { | |
925 | dev_warn(&adapter->pdev->dev, | |
926 | "Syncd bits did not respond correctly cfg1 word 0x%08x\n", | |
927 | cfg1); | |
928 | } | |
929 | ||
930 | ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE; | |
931 | writel(ctl, &adapter->regs->txmac.ctl); | |
932 | ||
933 | if (adapter->flags & FMP_ADAPTER_LOWER_POWER) { | |
934 | et131x_rx_dma_enable(adapter); | |
935 | et131x_tx_dma_enable(adapter); | |
936 | } | |
937 | } | |
938 | ||
939 | static int et1310_in_phy_coma(struct et131x_adapter *adapter) | |
940 | { | |
941 | u32 pmcsr = readl(&adapter->regs->global.pm_csr); | |
942 | ||
943 | return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0; | |
944 | } | |
945 | ||
946 | static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter) | |
947 | { | |
948 | struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; | |
949 | u32 hash1 = 0; | |
950 | u32 hash2 = 0; | |
951 | u32 hash3 = 0; | |
952 | u32 hash4 = 0; | |
953 | u32 pm_csr; | |
954 | ||
955 | /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision | |
956 | * the multi-cast LIST. If it is NOT specified, (and "ALL" is not | |
957 | * specified) then we should pass NO multi-cast addresses to the | |
958 | * driver. | |
959 | */ | |
960 | if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) { | |
961 | int i; | |
962 | ||
963 | /* Loop through our multicast array and set up the device */ | |
964 | for (i = 0; i < adapter->multicast_addr_count; i++) { | |
965 | u32 result; | |
966 | ||
967 | result = ether_crc(6, adapter->multicast_list[i]); | |
968 | ||
969 | result = (result & 0x3F800000) >> 23; | |
970 | ||
971 | if (result < 32) { | |
972 | hash1 |= (1 << result); | |
973 | } else if ((31 < result) && (result < 64)) { | |
974 | result -= 32; | |
975 | hash2 |= (1 << result); | |
976 | } else if ((63 < result) && (result < 96)) { | |
977 | result -= 64; | |
978 | hash3 |= (1 << result); | |
979 | } else { | |
980 | result -= 96; | |
981 | hash4 |= (1 << result); | |
982 | } | |
983 | } | |
984 | } | |
985 | ||
986 | /* Write out the new hash to the device */ | |
987 | pm_csr = readl(&adapter->regs->global.pm_csr); | |
988 | if (!et1310_in_phy_coma(adapter)) { | |
989 | writel(hash1, &rxmac->multi_hash1); | |
990 | writel(hash2, &rxmac->multi_hash2); | |
991 | writel(hash3, &rxmac->multi_hash3); | |
992 | writel(hash4, &rxmac->multi_hash4); | |
993 | } | |
994 | } | |
995 | ||
996 | static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter) | |
997 | { | |
998 | struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; | |
999 | u32 uni_pf1; | |
1000 | u32 uni_pf2; | |
1001 | u32 uni_pf3; | |
1002 | u32 pm_csr; | |
1003 | ||
1004 | /* Set up unicast packet filter reg 3 to be the first two octets of | |
1005 | * the MAC address for both address | |
1006 | * | |
1007 | * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the | |
1008 | * MAC address for second address | |
1009 | * | |
1010 | * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the | |
1011 | * MAC address for first address | |
1012 | */ | |
1013 | uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) | | |
1014 | (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) | | |
1015 | (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) | | |
1016 | adapter->addr[1]; | |
1017 | ||
1018 | uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) | | |
1019 | (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) | | |
1020 | (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) | | |
1021 | adapter->addr[5]; | |
1022 | ||
1023 | uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) | | |
1024 | (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) | | |
1025 | (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) | | |
1026 | adapter->addr[5]; | |
1027 | ||
1028 | pm_csr = readl(&adapter->regs->global.pm_csr); | |
1029 | if (!et1310_in_phy_coma(adapter)) { | |
1030 | writel(uni_pf1, &rxmac->uni_pf_addr1); | |
1031 | writel(uni_pf2, &rxmac->uni_pf_addr2); | |
1032 | writel(uni_pf3, &rxmac->uni_pf_addr3); | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | static void et1310_config_rxmac_regs(struct et131x_adapter *adapter) | |
1037 | { | |
1038 | struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; | |
a0bbb9fe | 1039 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
1040 | u32 sa_lo; |
1041 | u32 sa_hi = 0; | |
1042 | u32 pf_ctrl = 0; | |
1043 | u32 __iomem *wolw; | |
1044 | ||
1045 | /* Disable the MAC while it is being configured (also disable WOL) */ | |
1046 | writel(0x8, &rxmac->ctrl); | |
1047 | ||
1048 | /* Initialize WOL to disabled. */ | |
1049 | writel(0, &rxmac->crc0); | |
1050 | writel(0, &rxmac->crc12); | |
1051 | writel(0, &rxmac->crc34); | |
1052 | ||
1053 | /* We need to set the WOL mask0 - mask4 next. We initialize it to | |
1054 | * its default Values of 0x00000000 because there are not WOL masks | |
1055 | * as of this time. | |
1056 | */ | |
1057 | for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++) | |
1058 | writel(0, wolw); | |
1059 | ||
1060 | /* Lets setup the WOL Source Address */ | |
1061 | sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) | | |
1062 | (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) | | |
1063 | (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) | | |
1064 | adapter->addr[5]; | |
1065 | writel(sa_lo, &rxmac->sa_lo); | |
1066 | ||
1067 | sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) | | |
1068 | adapter->addr[1]; | |
1069 | writel(sa_hi, &rxmac->sa_hi); | |
1070 | ||
1071 | /* Disable all Packet Filtering */ | |
1072 | writel(0, &rxmac->pf_ctrl); | |
1073 | ||
1074 | /* Let's initialize the Unicast Packet filtering address */ | |
1075 | if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) { | |
1076 | et1310_setup_device_for_unicast(adapter); | |
1077 | pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE; | |
1078 | } else { | |
1079 | writel(0, &rxmac->uni_pf_addr1); | |
1080 | writel(0, &rxmac->uni_pf_addr2); | |
1081 | writel(0, &rxmac->uni_pf_addr3); | |
1082 | } | |
1083 | ||
1084 | /* Let's initialize the Multicast hash */ | |
1085 | if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) { | |
1086 | pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE; | |
1087 | et1310_setup_device_for_multicast(adapter); | |
1088 | } | |
1089 | ||
1090 | /* Runt packet filtering. Didn't work in version A silicon. */ | |
1091 | pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT; | |
1092 | pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE; | |
1093 | ||
1094 | if (adapter->registry_jumbo_packet > 8192) | |
1095 | /* In order to transmit jumbo packets greater than 8k, the | |
1096 | * FIFO between RxMAC and RxDMA needs to be reduced in size | |
1097 | * to (16k - Jumbo packet size). In order to implement this, | |
1098 | * we must use "cut through" mode in the RxMAC, which chops | |
1099 | * packets down into segments which are (max_size * 16). In | |
1100 | * this case we selected 256 bytes, since this is the size of | |
1101 | * the PCI-Express TLP's that the 1310 uses. | |
1102 | * | |
1103 | * seg_en on, fc_en off, size 0x10 | |
1104 | */ | |
1105 | writel(0x41, &rxmac->mcif_ctrl_max_seg); | |
1106 | else | |
1107 | writel(0, &rxmac->mcif_ctrl_max_seg); | |
1108 | ||
1109 | writel(0, &rxmac->mcif_water_mark); | |
1110 | writel(0, &rxmac->mif_ctrl); | |
1111 | writel(0, &rxmac->space_avail); | |
1112 | ||
1113 | /* Initialize the the mif_ctrl register | |
1114 | * bit 3: Receive code error. One or more nibbles were signaled as | |
1115 | * errors during the reception of the packet. Clear this | |
1116 | * bit in Gigabit, set it in 100Mbit. This was derived | |
1117 | * experimentally at UNH. | |
1118 | * bit 4: Receive CRC error. The packet's CRC did not match the | |
1119 | * internally generated CRC. | |
1120 | * bit 5: Receive length check error. Indicates that frame length | |
1121 | * field value in the packet does not match the actual data | |
1122 | * byte length and is not a type field. | |
1123 | * bit 16: Receive frame truncated. | |
1124 | * bit 17: Drop packet enable | |
1125 | */ | |
1126 | if (phydev && phydev->speed == SPEED_100) | |
1127 | writel(0x30038, &rxmac->mif_ctrl); | |
1128 | else | |
1129 | writel(0x30030, &rxmac->mif_ctrl); | |
1130 | ||
1131 | /* Finally we initialize RxMac to be enabled & WOL disabled. Packet | |
1132 | * filter is always enabled since it is where the runt packets are | |
1133 | * supposed to be dropped. For version A silicon, runt packet | |
1134 | * dropping doesn't work, so it is disabled in the pf_ctrl register, | |
1135 | * but we still leave the packet filter on. | |
1136 | */ | |
1137 | writel(pf_ctrl, &rxmac->pf_ctrl); | |
1138 | writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl); | |
1139 | } | |
1140 | ||
1141 | static void et1310_config_txmac_regs(struct et131x_adapter *adapter) | |
1142 | { | |
1143 | struct txmac_regs __iomem *txmac = &adapter->regs->txmac; | |
1144 | ||
1145 | /* We need to update the Control Frame Parameters | |
1146 | * cfpt - control frame pause timer set to 64 (0x40) | |
1147 | * cfep - control frame extended pause timer set to 0x0 | |
1148 | */ | |
1149 | if (adapter->flow == FLOW_NONE) | |
1150 | writel(0, &txmac->cf_param); | |
1151 | else | |
1152 | writel(0x40, &txmac->cf_param); | |
1153 | } | |
1154 | ||
1155 | static void et1310_config_macstat_regs(struct et131x_adapter *adapter) | |
1156 | { | |
1157 | struct macstat_regs __iomem *macstat = &adapter->regs->macstat; | |
1158 | u32 __iomem *reg; | |
1159 | ||
1160 | /* initialize all the macstat registers to zero on the device */ | |
1161 | for (reg = &macstat->txrx_0_64_byte_frames; | |
1162 | reg <= &macstat->carry_reg2; reg++) | |
1163 | writel(0, reg); | |
1164 | ||
1165 | /* Unmask any counters that we want to track the overflow of. | |
1166 | * Initially this will be all counters. It may become clear later | |
1167 | * that we do not need to track all counters. | |
1168 | */ | |
1169 | writel(0xFFFFBE32, &macstat->carry_reg1_mask); | |
1170 | writel(0xFFFE7E8B, &macstat->carry_reg2_mask); | |
1171 | } | |
1172 | ||
1173 | static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr, | |
1174 | u8 reg, u16 *value) | |
1175 | { | |
1176 | struct mac_regs __iomem *mac = &adapter->regs->mac; | |
1177 | int status = 0; | |
1178 | u32 delay = 0; | |
1179 | u32 mii_addr; | |
1180 | u32 mii_cmd; | |
1181 | u32 mii_indicator; | |
1182 | ||
1183 | /* Save a local copy of the registers we are dealing with so we can | |
1184 | * set them back | |
1185 | */ | |
1186 | mii_addr = readl(&mac->mii_mgmt_addr); | |
1187 | mii_cmd = readl(&mac->mii_mgmt_cmd); | |
1188 | ||
1189 | /* Stop the current operation */ | |
1190 | writel(0, &mac->mii_mgmt_cmd); | |
1191 | ||
1192 | /* Set up the register we need to read from on the correct PHY */ | |
1193 | writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); | |
1194 | ||
1195 | writel(0x1, &mac->mii_mgmt_cmd); | |
1196 | ||
1197 | do { | |
1198 | udelay(50); | |
1199 | delay++; | |
1200 | mii_indicator = readl(&mac->mii_mgmt_indicator); | |
1201 | } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50); | |
1202 | ||
1203 | /* If we hit the max delay, we could not read the register */ | |
1204 | if (delay == 50) { | |
1205 | dev_warn(&adapter->pdev->dev, | |
1206 | "reg 0x%08x could not be read\n", reg); | |
1207 | dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", | |
1208 | mii_indicator); | |
1209 | ||
1210 | status = -EIO; | |
1211 | goto out; | |
1212 | } | |
1213 | ||
1214 | /* If we hit here we were able to read the register and we need to | |
1215 | * return the value to the caller | |
1216 | */ | |
1217 | *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK; | |
1218 | ||
1219 | out: | |
1220 | /* Stop the read operation */ | |
1221 | writel(0, &mac->mii_mgmt_cmd); | |
1222 | ||
1223 | /* set the registers we touched back to the state at which we entered | |
1224 | * this function | |
1225 | */ | |
1226 | writel(mii_addr, &mac->mii_mgmt_addr); | |
1227 | writel(mii_cmd, &mac->mii_mgmt_cmd); | |
1228 | ||
1229 | return status; | |
1230 | } | |
1231 | ||
1232 | static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value) | |
1233 | { | |
a0bbb9fe | 1234 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
1235 | |
1236 | if (!phydev) | |
1237 | return -EIO; | |
1238 | ||
e5a03bfd | 1239 | return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value); |
38df6492 ME |
1240 | } |
1241 | ||
1242 | static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg, | |
1243 | u16 value) | |
1244 | { | |
1245 | struct mac_regs __iomem *mac = &adapter->regs->mac; | |
1246 | int status = 0; | |
1247 | u32 delay = 0; | |
1248 | u32 mii_addr; | |
1249 | u32 mii_cmd; | |
1250 | u32 mii_indicator; | |
1251 | ||
1252 | /* Save a local copy of the registers we are dealing with so we can | |
1253 | * set them back | |
1254 | */ | |
1255 | mii_addr = readl(&mac->mii_mgmt_addr); | |
1256 | mii_cmd = readl(&mac->mii_mgmt_cmd); | |
1257 | ||
1258 | /* Stop the current operation */ | |
1259 | writel(0, &mac->mii_mgmt_cmd); | |
1260 | ||
1261 | /* Set up the register we need to write to on the correct PHY */ | |
1262 | writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); | |
1263 | ||
1264 | /* Add the value to write to the registers to the mac */ | |
1265 | writel(value, &mac->mii_mgmt_ctrl); | |
1266 | ||
1267 | do { | |
1268 | udelay(50); | |
1269 | delay++; | |
1270 | mii_indicator = readl(&mac->mii_mgmt_indicator); | |
1271 | } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100); | |
1272 | ||
1273 | /* If we hit the max delay, we could not write the register */ | |
1274 | if (delay == 100) { | |
1275 | u16 tmp; | |
1276 | ||
1277 | dev_warn(&adapter->pdev->dev, | |
1278 | "reg 0x%08x could not be written", reg); | |
1279 | dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", | |
1280 | mii_indicator); | |
1281 | dev_warn(&adapter->pdev->dev, "command is 0x%08x\n", | |
1282 | readl(&mac->mii_mgmt_cmd)); | |
1283 | ||
1284 | et131x_mii_read(adapter, reg, &tmp); | |
1285 | ||
1286 | status = -EIO; | |
1287 | } | |
1288 | /* Stop the write operation */ | |
1289 | writel(0, &mac->mii_mgmt_cmd); | |
1290 | ||
1291 | /* set the registers we touched back to the state at which we entered | |
1292 | * this function | |
1293 | */ | |
1294 | writel(mii_addr, &mac->mii_mgmt_addr); | |
1295 | writel(mii_cmd, &mac->mii_mgmt_cmd); | |
1296 | ||
1297 | return status; | |
1298 | } | |
1299 | ||
1300 | static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter, | |
1301 | u16 regnum, | |
1302 | u16 bitnum, | |
1303 | u8 *value) | |
1304 | { | |
1305 | u16 reg; | |
1306 | u16 mask = 1 << bitnum; | |
1307 | ||
1308 | et131x_mii_read(adapter, regnum, ®); | |
1309 | ||
1310 | *value = (reg & mask) >> bitnum; | |
1311 | } | |
1312 | ||
1313 | static void et1310_config_flow_control(struct et131x_adapter *adapter) | |
1314 | { | |
a0bbb9fe | 1315 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
1316 | |
1317 | if (phydev->duplex == DUPLEX_HALF) { | |
1318 | adapter->flow = FLOW_NONE; | |
1319 | } else { | |
1320 | char remote_pause, remote_async_pause; | |
1321 | ||
1322 | et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause); | |
1323 | et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause); | |
1324 | ||
1325 | if (remote_pause && remote_async_pause) { | |
1326 | adapter->flow = adapter->wanted_flow; | |
1327 | } else if (remote_pause && !remote_async_pause) { | |
1328 | if (adapter->wanted_flow == FLOW_BOTH) | |
1329 | adapter->flow = FLOW_BOTH; | |
1330 | else | |
1331 | adapter->flow = FLOW_NONE; | |
1332 | } else if (!remote_pause && !remote_async_pause) { | |
1333 | adapter->flow = FLOW_NONE; | |
1334 | } else { | |
1335 | if (adapter->wanted_flow == FLOW_BOTH) | |
1336 | adapter->flow = FLOW_RXONLY; | |
1337 | else | |
1338 | adapter->flow = FLOW_NONE; | |
1339 | } | |
1340 | } | |
1341 | } | |
1342 | ||
1343 | /* et1310_update_macstat_host_counters - Update local copy of the statistics */ | |
1344 | static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter) | |
1345 | { | |
1346 | struct ce_stats *stats = &adapter->stats; | |
1347 | struct macstat_regs __iomem *macstat = | |
1348 | &adapter->regs->macstat; | |
1349 | ||
1350 | stats->tx_collisions += readl(&macstat->tx_total_collisions); | |
1351 | stats->tx_first_collisions += readl(&macstat->tx_single_collisions); | |
1352 | stats->tx_deferred += readl(&macstat->tx_deferred); | |
1353 | stats->tx_excessive_collisions += | |
1354 | readl(&macstat->tx_multiple_collisions); | |
1355 | stats->tx_late_collisions += readl(&macstat->tx_late_collisions); | |
1356 | stats->tx_underflows += readl(&macstat->tx_undersize_frames); | |
1357 | stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames); | |
1358 | ||
1359 | stats->rx_align_errs += readl(&macstat->rx_align_errs); | |
1360 | stats->rx_crc_errs += readl(&macstat->rx_code_errs); | |
1361 | stats->rcvd_pkts_dropped += readl(&macstat->rx_drops); | |
1362 | stats->rx_overflows += readl(&macstat->rx_oversize_packets); | |
1363 | stats->rx_code_violations += readl(&macstat->rx_fcs_errs); | |
1364 | stats->rx_length_errs += readl(&macstat->rx_frame_len_errs); | |
1365 | stats->rx_other_errs += readl(&macstat->rx_fragment_packets); | |
1366 | } | |
1367 | ||
1368 | /* et1310_handle_macstat_interrupt | |
1369 | * | |
1370 | * One of the MACSTAT counters has wrapped. Update the local copy of | |
1371 | * the statistics held in the adapter structure, checking the "wrap" | |
1372 | * bit for each counter. | |
1373 | */ | |
1374 | static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter) | |
1375 | { | |
1376 | u32 carry_reg1; | |
1377 | u32 carry_reg2; | |
1378 | ||
1379 | /* Read the interrupt bits from the register(s). These are Clear On | |
1380 | * Write. | |
1381 | */ | |
1382 | carry_reg1 = readl(&adapter->regs->macstat.carry_reg1); | |
1383 | carry_reg2 = readl(&adapter->regs->macstat.carry_reg2); | |
1384 | ||
1385 | writel(carry_reg1, &adapter->regs->macstat.carry_reg1); | |
1386 | writel(carry_reg2, &adapter->regs->macstat.carry_reg2); | |
1387 | ||
1388 | /* We need to do update the host copy of all the MAC_STAT counters. | |
1389 | * For each counter, check it's overflow bit. If the overflow bit is | |
1390 | * set, then increment the host version of the count by one complete | |
1391 | * revolution of the counter. This routine is called when the counter | |
1392 | * block indicates that one of the counters has wrapped. | |
1393 | */ | |
1394 | if (carry_reg1 & (1 << 14)) | |
1395 | adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT; | |
1396 | if (carry_reg1 & (1 << 8)) | |
1397 | adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT; | |
1398 | if (carry_reg1 & (1 << 7)) | |
1399 | adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT; | |
1400 | if (carry_reg1 & (1 << 2)) | |
1401 | adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT; | |
1402 | if (carry_reg1 & (1 << 6)) | |
1403 | adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT; | |
1404 | if (carry_reg1 & (1 << 3)) | |
1405 | adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT; | |
1406 | if (carry_reg1 & (1 << 0)) | |
1407 | adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT; | |
1408 | if (carry_reg2 & (1 << 16)) | |
1409 | adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT; | |
1410 | if (carry_reg2 & (1 << 15)) | |
1411 | adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT; | |
1412 | if (carry_reg2 & (1 << 6)) | |
1413 | adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT; | |
1414 | if (carry_reg2 & (1 << 8)) | |
1415 | adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT; | |
1416 | if (carry_reg2 & (1 << 5)) | |
1417 | adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT; | |
1418 | if (carry_reg2 & (1 << 4)) | |
1419 | adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT; | |
1420 | if (carry_reg2 & (1 << 2)) | |
1421 | adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT; | |
1422 | } | |
1423 | ||
1424 | static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg) | |
1425 | { | |
1426 | struct net_device *netdev = bus->priv; | |
1427 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
1428 | u16 value; | |
1429 | int ret; | |
1430 | ||
1431 | ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value); | |
1432 | ||
1433 | if (ret < 0) | |
1434 | return ret; | |
1435 | ||
1436 | return value; | |
1437 | } | |
1438 | ||
1439 | static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, | |
1440 | int reg, u16 value) | |
1441 | { | |
1442 | struct net_device *netdev = bus->priv; | |
1443 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
1444 | ||
1445 | return et131x_mii_write(adapter, phy_addr, reg, value); | |
1446 | } | |
1447 | ||
1448 | /* et1310_phy_power_switch - PHY power control | |
1449 | * @adapter: device to control | |
1450 | * @down: true for off/false for back on | |
1451 | * | |
1452 | * one hundred, ten, one thousand megs | |
1453 | * How would you like to have your LAN accessed | |
1454 | * Can't you see that this code processed | |
1455 | * Phy power, phy power.. | |
1456 | */ | |
1457 | static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down) | |
1458 | { | |
1459 | u16 data; | |
a0bbb9fe | 1460 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
1461 | |
1462 | et131x_mii_read(adapter, MII_BMCR, &data); | |
1463 | data &= ~BMCR_PDOWN; | |
1464 | if (down) | |
1465 | data |= BMCR_PDOWN; | |
e5a03bfd | 1466 | et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data); |
38df6492 ME |
1467 | } |
1468 | ||
1469 | /* et131x_xcvr_init - Init the phy if we are setting it into force mode */ | |
1470 | static void et131x_xcvr_init(struct et131x_adapter *adapter) | |
1471 | { | |
1472 | u16 lcr2; | |
a0bbb9fe | 1473 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
1474 | |
1475 | /* Set the LED behavior such that LED 1 indicates speed (off = | |
1476 | * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates | |
1477 | * link and activity (on for link, blink off for activity). | |
1478 | * | |
1479 | * NOTE: Some customizations have been added here for specific | |
1480 | * vendors; The LED behavior is now determined by vendor data in the | |
1481 | * EEPROM. However, the above description is the default. | |
1482 | */ | |
1483 | if ((adapter->eeprom_data[1] & 0x4) == 0) { | |
1484 | et131x_mii_read(adapter, PHY_LED_2, &lcr2); | |
1485 | ||
1486 | lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T); | |
1487 | lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT); | |
1488 | ||
1489 | if ((adapter->eeprom_data[1] & 0x8) == 0) | |
1490 | lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT); | |
1491 | else | |
1492 | lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT); | |
1493 | ||
e5a03bfd | 1494 | et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2); |
38df6492 ME |
1495 | } |
1496 | } | |
1497 | ||
1498 | /* et131x_configure_global_regs - configure JAGCore global regs */ | |
1499 | static void et131x_configure_global_regs(struct et131x_adapter *adapter) | |
1500 | { | |
1501 | struct global_regs __iomem *regs = &adapter->regs->global; | |
1502 | ||
1503 | writel(0, ®s->rxq_start_addr); | |
1504 | writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr); | |
1505 | ||
1506 | if (adapter->registry_jumbo_packet < 2048) { | |
1507 | /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word | |
1508 | * block of RAM that the driver can split between Tx | |
1509 | * and Rx as it desires. Our default is to split it | |
1510 | * 50/50: | |
1511 | */ | |
1512 | writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr); | |
1513 | writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr); | |
1514 | } else if (adapter->registry_jumbo_packet < 8192) { | |
1515 | /* For jumbo packets > 2k but < 8k, split 50-50. */ | |
1516 | writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr); | |
1517 | writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr); | |
1518 | } else { | |
1519 | /* 9216 is the only packet size greater than 8k that | |
1520 | * is available. The Tx buffer has to be big enough | |
1521 | * for one whole packet on the Tx side. We'll make | |
1522 | * the Tx 9408, and give the rest to Rx | |
1523 | */ | |
1524 | writel(0x01b3, ®s->rxq_end_addr); | |
1525 | writel(0x01b4, ®s->txq_start_addr); | |
1526 | } | |
1527 | ||
1528 | /* Initialize the loopback register. Disable all loopbacks. */ | |
1529 | writel(0, ®s->loopback); | |
1530 | ||
1531 | writel(0, ®s->msi_config); | |
1532 | ||
1533 | /* By default, disable the watchdog timer. It will be enabled when | |
1534 | * a packet is queued. | |
1535 | */ | |
1536 | writel(0, ®s->watchdog_timer); | |
1537 | } | |
1538 | ||
1539 | /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */ | |
1540 | static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter) | |
1541 | { | |
1542 | struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; | |
1543 | struct rx_ring *rx_local = &adapter->rx_ring; | |
1544 | struct fbr_desc *fbr_entry; | |
1545 | u32 entry; | |
1546 | u32 psr_num_des; | |
1547 | unsigned long flags; | |
1548 | u8 id; | |
1549 | ||
1550 | et131x_rx_dma_disable(adapter); | |
1551 | ||
1552 | /* Load the completion writeback physical address */ | |
1553 | writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi); | |
1554 | writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo); | |
1555 | ||
1556 | memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block)); | |
1557 | ||
1558 | /* Set the address and parameters of the packet status ring */ | |
1559 | writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi); | |
1560 | writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo); | |
1561 | writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des); | |
1562 | writel(0, &rx_dma->psr_full_offset); | |
1563 | ||
1564 | psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK; | |
1565 | writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100, | |
1566 | &rx_dma->psr_min_des); | |
1567 | ||
1568 | spin_lock_irqsave(&adapter->rcv_lock, flags); | |
1569 | ||
1570 | /* These local variables track the PSR in the adapter structure */ | |
1571 | rx_local->local_psr_full = 0; | |
1572 | ||
1573 | for (id = 0; id < NUM_FBRS; id++) { | |
1574 | u32 __iomem *num_des; | |
1575 | u32 __iomem *full_offset; | |
1576 | u32 __iomem *min_des; | |
1577 | u32 __iomem *base_hi; | |
1578 | u32 __iomem *base_lo; | |
1579 | struct fbr_lookup *fbr = rx_local->fbr[id]; | |
1580 | ||
1581 | if (id == 0) { | |
1582 | num_des = &rx_dma->fbr0_num_des; | |
1583 | full_offset = &rx_dma->fbr0_full_offset; | |
1584 | min_des = &rx_dma->fbr0_min_des; | |
1585 | base_hi = &rx_dma->fbr0_base_hi; | |
1586 | base_lo = &rx_dma->fbr0_base_lo; | |
1587 | } else { | |
1588 | num_des = &rx_dma->fbr1_num_des; | |
1589 | full_offset = &rx_dma->fbr1_full_offset; | |
1590 | min_des = &rx_dma->fbr1_min_des; | |
1591 | base_hi = &rx_dma->fbr1_base_hi; | |
1592 | base_lo = &rx_dma->fbr1_base_lo; | |
1593 | } | |
1594 | ||
1595 | /* Now's the best time to initialize FBR contents */ | |
1596 | fbr_entry = fbr->ring_virtaddr; | |
1597 | for (entry = 0; entry < fbr->num_entries; entry++) { | |
1598 | fbr_entry->addr_hi = fbr->bus_high[entry]; | |
1599 | fbr_entry->addr_lo = fbr->bus_low[entry]; | |
1600 | fbr_entry->word2 = entry; | |
1601 | fbr_entry++; | |
1602 | } | |
1603 | ||
1604 | /* Set the address and parameters of Free buffer ring 1 and 0 */ | |
1605 | writel(upper_32_bits(fbr->ring_physaddr), base_hi); | |
1606 | writel(lower_32_bits(fbr->ring_physaddr), base_lo); | |
1607 | writel(fbr->num_entries - 1, num_des); | |
1608 | writel(ET_DMA10_WRAP, full_offset); | |
1609 | ||
1610 | /* This variable tracks the free buffer ring 1 full position, | |
1611 | * so it has to match the above. | |
1612 | */ | |
1613 | fbr->local_full = ET_DMA10_WRAP; | |
1614 | writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, | |
1615 | min_des); | |
1616 | } | |
1617 | ||
1618 | /* Program the number of packets we will receive before generating an | |
1619 | * interrupt. | |
1620 | * For version B silicon, this value gets updated once autoneg is | |
1621 | *complete. | |
1622 | */ | |
1623 | writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done); | |
1624 | ||
1625 | /* The "time_done" is not working correctly to coalesce interrupts | |
1626 | * after a given time period, but rather is giving us an interrupt | |
1627 | * regardless of whether we have received packets. | |
1628 | * This value gets updated once autoneg is complete. | |
1629 | */ | |
1630 | writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time); | |
1631 | ||
1632 | spin_unlock_irqrestore(&adapter->rcv_lock, flags); | |
1633 | } | |
1634 | ||
1635 | /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore. | |
1636 | * | |
1637 | * Configure the transmit engine with the ring buffers we have created | |
1638 | * and prepare it for use. | |
1639 | */ | |
1640 | static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter) | |
1641 | { | |
1642 | struct txdma_regs __iomem *txdma = &adapter->regs->txdma; | |
1643 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
1644 | ||
1645 | /* Load the hardware with the start of the transmit descriptor ring. */ | |
1646 | writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi); | |
1647 | writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo); | |
1648 | ||
1649 | /* Initialise the transmit DMA engine */ | |
1650 | writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des); | |
1651 | ||
1652 | /* Load the completion writeback physical address */ | |
1653 | writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi); | |
1654 | writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo); | |
1655 | ||
1656 | *tx_ring->tx_status = 0; | |
1657 | ||
1658 | writel(0, &txdma->service_request); | |
1659 | tx_ring->send_idx = 0; | |
1660 | } | |
1661 | ||
1662 | /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */ | |
1663 | static void et131x_adapter_setup(struct et131x_adapter *adapter) | |
1664 | { | |
1665 | et131x_configure_global_regs(adapter); | |
1666 | et1310_config_mac_regs1(adapter); | |
1667 | ||
1668 | /* Configure the MMC registers */ | |
1669 | /* All we need to do is initialize the Memory Control Register */ | |
1670 | writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl); | |
1671 | ||
1672 | et1310_config_rxmac_regs(adapter); | |
1673 | et1310_config_txmac_regs(adapter); | |
1674 | ||
1675 | et131x_config_rx_dma_regs(adapter); | |
1676 | et131x_config_tx_dma_regs(adapter); | |
1677 | ||
1678 | et1310_config_macstat_regs(adapter); | |
1679 | ||
1680 | et1310_phy_power_switch(adapter, 0); | |
1681 | et131x_xcvr_init(adapter); | |
1682 | } | |
1683 | ||
1684 | /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */ | |
1685 | static void et131x_soft_reset(struct et131x_adapter *adapter) | |
1686 | { | |
1687 | u32 reg; | |
1688 | ||
1689 | /* Disable MAC Core */ | |
1690 | reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | | |
1691 | ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | | |
1692 | ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; | |
1693 | writel(reg, &adapter->regs->mac.cfg1); | |
1694 | ||
1695 | reg = ET_RESET_ALL; | |
1696 | writel(reg, &adapter->regs->global.sw_reset); | |
1697 | ||
1698 | reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | | |
1699 | ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; | |
1700 | writel(reg, &adapter->regs->mac.cfg1); | |
1701 | writel(0, &adapter->regs->mac.cfg1); | |
1702 | } | |
1703 | ||
1704 | static void et131x_enable_interrupts(struct et131x_adapter *adapter) | |
1705 | { | |
1706 | u32 mask; | |
1707 | ||
1708 | if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) | |
1709 | mask = INT_MASK_ENABLE; | |
1710 | else | |
1711 | mask = INT_MASK_ENABLE_NO_FLOW; | |
1712 | ||
1713 | writel(mask, &adapter->regs->global.int_mask); | |
1714 | } | |
1715 | ||
1716 | static void et131x_disable_interrupts(struct et131x_adapter *adapter) | |
1717 | { | |
1718 | writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask); | |
1719 | } | |
1720 | ||
1721 | static void et131x_tx_dma_disable(struct et131x_adapter *adapter) | |
1722 | { | |
1723 | /* Setup the transmit dma configuration register */ | |
1724 | writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT, | |
1725 | &adapter->regs->txdma.csr); | |
1726 | } | |
1727 | ||
1728 | static void et131x_enable_txrx(struct net_device *netdev) | |
1729 | { | |
1730 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
1731 | ||
1732 | et131x_rx_dma_enable(adapter); | |
1733 | et131x_tx_dma_enable(adapter); | |
1734 | ||
1735 | if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE) | |
1736 | et131x_enable_interrupts(adapter); | |
1737 | ||
1738 | netif_start_queue(netdev); | |
1739 | } | |
1740 | ||
1741 | static void et131x_disable_txrx(struct net_device *netdev) | |
1742 | { | |
1743 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
1744 | ||
1745 | netif_stop_queue(netdev); | |
1746 | ||
1747 | et131x_rx_dma_disable(adapter); | |
1748 | et131x_tx_dma_disable(adapter); | |
1749 | ||
1750 | et131x_disable_interrupts(adapter); | |
1751 | } | |
1752 | ||
1753 | static void et131x_init_send(struct et131x_adapter *adapter) | |
1754 | { | |
1755 | int i; | |
1756 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
1757 | struct tcb *tcb = tx_ring->tcb_ring; | |
1758 | ||
1759 | tx_ring->tcb_qhead = tcb; | |
1760 | ||
1761 | memset(tcb, 0, sizeof(struct tcb) * NUM_TCB); | |
1762 | ||
1763 | for (i = 0; i < NUM_TCB; i++) { | |
1764 | tcb->next = tcb + 1; | |
1765 | tcb++; | |
1766 | } | |
1767 | ||
1768 | tcb--; | |
1769 | tx_ring->tcb_qtail = tcb; | |
1770 | tcb->next = NULL; | |
1771 | /* Curr send queue should now be empty */ | |
1772 | tx_ring->send_head = NULL; | |
1773 | tx_ring->send_tail = NULL; | |
1774 | } | |
1775 | ||
1776 | /* et1310_enable_phy_coma | |
1777 | * | |
1778 | * driver receive an phy status change interrupt while in D0 and check that | |
1779 | * phy_status is down. | |
1780 | * | |
1781 | * -- gate off JAGCore; | |
1782 | * -- set gigE PHY in Coma mode | |
1783 | * -- wake on phy_interrupt; Perform software reset JAGCore, | |
1784 | * re-initialize jagcore and gigE PHY | |
1785 | */ | |
1786 | static void et1310_enable_phy_coma(struct et131x_adapter *adapter) | |
1787 | { | |
1788 | u32 pmcsr = readl(&adapter->regs->global.pm_csr); | |
1789 | ||
1790 | /* Stop sending packets. */ | |
1791 | adapter->flags |= FMP_ADAPTER_LOWER_POWER; | |
1792 | ||
1793 | /* Wait for outstanding Receive packets */ | |
1794 | et131x_disable_txrx(adapter->netdev); | |
1795 | ||
1796 | /* Gate off JAGCore 3 clock domains */ | |
1797 | pmcsr &= ~ET_PMCSR_INIT; | |
1798 | writel(pmcsr, &adapter->regs->global.pm_csr); | |
1799 | ||
1800 | /* Program gigE PHY in to Coma mode */ | |
1801 | pmcsr |= ET_PM_PHY_SW_COMA; | |
1802 | writel(pmcsr, &adapter->regs->global.pm_csr); | |
1803 | } | |
1804 | ||
1805 | static void et1310_disable_phy_coma(struct et131x_adapter *adapter) | |
1806 | { | |
1807 | u32 pmcsr; | |
1808 | ||
1809 | pmcsr = readl(&adapter->regs->global.pm_csr); | |
1810 | ||
1811 | /* Disable phy_sw_coma register and re-enable JAGCore clocks */ | |
1812 | pmcsr |= ET_PMCSR_INIT; | |
1813 | pmcsr &= ~ET_PM_PHY_SW_COMA; | |
1814 | writel(pmcsr, &adapter->regs->global.pm_csr); | |
1815 | ||
1816 | /* Restore the GbE PHY speed and duplex modes; | |
1817 | * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY | |
1818 | */ | |
1819 | ||
1820 | /* Re-initialize the send structures */ | |
1821 | et131x_init_send(adapter); | |
1822 | ||
1823 | /* Bring the device back to the state it was during init prior to | |
1824 | * autonegotiation being complete. This way, when we get the auto-neg | |
1825 | * complete interrupt, we can complete init by calling ConfigMacREGS2. | |
1826 | */ | |
1827 | et131x_soft_reset(adapter); | |
1828 | ||
1829 | et131x_adapter_setup(adapter); | |
1830 | ||
1831 | /* Allow Tx to restart */ | |
1832 | adapter->flags &= ~FMP_ADAPTER_LOWER_POWER; | |
1833 | ||
1834 | et131x_enable_txrx(adapter->netdev); | |
1835 | } | |
1836 | ||
1837 | static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit) | |
1838 | { | |
1839 | u32 tmp_free_buff_ring = *free_buff_ring; | |
1840 | ||
1841 | tmp_free_buff_ring++; | |
1842 | /* This works for all cases where limit < 1024. The 1023 case | |
1843 | * works because 1023++ is 1024 which means the if condition is not | |
1844 | * taken but the carry of the bit into the wrap bit toggles the wrap | |
1845 | * value correctly | |
1846 | */ | |
1847 | if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) { | |
1848 | tmp_free_buff_ring &= ~ET_DMA10_MASK; | |
1849 | tmp_free_buff_ring ^= ET_DMA10_WRAP; | |
1850 | } | |
1851 | /* For the 1023 case */ | |
1852 | tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP); | |
1853 | *free_buff_ring = tmp_free_buff_ring; | |
1854 | return tmp_free_buff_ring; | |
1855 | } | |
1856 | ||
1857 | /* et131x_rx_dma_memory_alloc | |
1858 | * | |
1859 | * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required, | |
1860 | * and the Packet Status Ring. | |
1861 | */ | |
1862 | static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter) | |
1863 | { | |
1864 | u8 id; | |
1865 | u32 i, j; | |
1866 | u32 bufsize; | |
1867 | u32 psr_size; | |
1868 | u32 fbr_chunksize; | |
1869 | struct rx_ring *rx_ring = &adapter->rx_ring; | |
1870 | struct fbr_lookup *fbr; | |
1871 | ||
1872 | /* Alloc memory for the lookup table */ | |
1873 | rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL); | |
1874 | if (rx_ring->fbr[0] == NULL) | |
1875 | return -ENOMEM; | |
1876 | rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL); | |
1877 | if (rx_ring->fbr[1] == NULL) | |
1878 | return -ENOMEM; | |
1879 | ||
1880 | /* The first thing we will do is configure the sizes of the buffer | |
1881 | * rings. These will change based on jumbo packet support. Larger | |
1882 | * jumbo packets increases the size of each entry in FBR0, and the | |
1883 | * number of entries in FBR0, while at the same time decreasing the | |
1884 | * number of entries in FBR1. | |
1885 | * | |
1886 | * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1 | |
1887 | * entries are huge in order to accommodate a "jumbo" frame, then it | |
1888 | * will have less entries. Conversely, FBR1 will now be relied upon | |
1889 | * to carry more "normal" frames, thus it's entry size also increases | |
1890 | * and the number of entries goes up too (since it now carries | |
1891 | * "small" + "regular" packets. | |
1892 | * | |
1893 | * In this scheme, we try to maintain 512 entries between the two | |
1894 | * rings. Also, FBR1 remains a constant size - when it's size doubles | |
1895 | * the number of entries halves. FBR0 increases in size, however. | |
1896 | */ | |
1897 | if (adapter->registry_jumbo_packet < 2048) { | |
1898 | rx_ring->fbr[0]->buffsize = 256; | |
1899 | rx_ring->fbr[0]->num_entries = 512; | |
1900 | rx_ring->fbr[1]->buffsize = 2048; | |
1901 | rx_ring->fbr[1]->num_entries = 512; | |
1902 | } else if (adapter->registry_jumbo_packet < 4096) { | |
1903 | rx_ring->fbr[0]->buffsize = 512; | |
1904 | rx_ring->fbr[0]->num_entries = 1024; | |
1905 | rx_ring->fbr[1]->buffsize = 4096; | |
1906 | rx_ring->fbr[1]->num_entries = 512; | |
1907 | } else { | |
1908 | rx_ring->fbr[0]->buffsize = 1024; | |
1909 | rx_ring->fbr[0]->num_entries = 768; | |
1910 | rx_ring->fbr[1]->buffsize = 16384; | |
1911 | rx_ring->fbr[1]->num_entries = 128; | |
1912 | } | |
1913 | ||
1914 | rx_ring->psr_entries = rx_ring->fbr[0]->num_entries + | |
1915 | rx_ring->fbr[1]->num_entries; | |
1916 | ||
1917 | for (id = 0; id < NUM_FBRS; id++) { | |
1918 | fbr = rx_ring->fbr[id]; | |
1919 | /* Allocate an area of memory for Free Buffer Ring */ | |
1920 | bufsize = sizeof(struct fbr_desc) * fbr->num_entries; | |
1921 | fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, | |
1922 | bufsize, | |
1923 | &fbr->ring_physaddr, | |
1924 | GFP_KERNEL); | |
1925 | if (!fbr->ring_virtaddr) { | |
1926 | dev_err(&adapter->pdev->dev, | |
1927 | "Cannot alloc memory for Free Buffer Ring %d\n", | |
1928 | id); | |
1929 | return -ENOMEM; | |
1930 | } | |
1931 | } | |
1932 | ||
1933 | for (id = 0; id < NUM_FBRS; id++) { | |
1934 | fbr = rx_ring->fbr[id]; | |
1935 | fbr_chunksize = (FBR_CHUNKS * fbr->buffsize); | |
1936 | ||
1937 | for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) { | |
1938 | dma_addr_t fbr_physaddr; | |
1939 | ||
1940 | fbr->mem_virtaddrs[i] = dma_alloc_coherent( | |
1941 | &adapter->pdev->dev, fbr_chunksize, | |
1942 | &fbr->mem_physaddrs[i], | |
1943 | GFP_KERNEL); | |
1944 | ||
1945 | if (!fbr->mem_virtaddrs[i]) { | |
1946 | dev_err(&adapter->pdev->dev, | |
1947 | "Could not alloc memory\n"); | |
1948 | return -ENOMEM; | |
1949 | } | |
1950 | ||
1951 | /* See NOTE in "Save Physical Address" comment above */ | |
1952 | fbr_physaddr = fbr->mem_physaddrs[i]; | |
1953 | ||
1954 | for (j = 0; j < FBR_CHUNKS; j++) { | |
1955 | u32 k = (i * FBR_CHUNKS) + j; | |
1956 | ||
1957 | /* Save the Virtual address of this index for | |
1958 | * quick access later | |
1959 | */ | |
1960 | fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] + | |
1961 | (j * fbr->buffsize); | |
1962 | ||
1963 | /* now store the physical address in the | |
1964 | * descriptor so the device can access it | |
1965 | */ | |
1966 | fbr->bus_high[k] = upper_32_bits(fbr_physaddr); | |
1967 | fbr->bus_low[k] = lower_32_bits(fbr_physaddr); | |
1968 | fbr_physaddr += fbr->buffsize; | |
1969 | } | |
1970 | } | |
1971 | } | |
1972 | ||
1973 | /* Allocate an area of memory for FIFO of Packet Status ring entries */ | |
1974 | psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; | |
1975 | ||
1976 | rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, | |
1977 | psr_size, | |
1978 | &rx_ring->ps_ring_physaddr, | |
1979 | GFP_KERNEL); | |
1980 | ||
1981 | if (!rx_ring->ps_ring_virtaddr) { | |
1982 | dev_err(&adapter->pdev->dev, | |
1983 | "Cannot alloc memory for Packet Status Ring\n"); | |
1984 | return -ENOMEM; | |
1985 | } | |
1986 | ||
1987 | /* Allocate an area of memory for writeback of status information */ | |
1988 | rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev, | |
1989 | sizeof(struct rx_status_block), | |
1990 | &rx_ring->rx_status_bus, | |
1991 | GFP_KERNEL); | |
1992 | if (!rx_ring->rx_status_block) { | |
1993 | dev_err(&adapter->pdev->dev, | |
1994 | "Cannot alloc memory for Status Block\n"); | |
1995 | return -ENOMEM; | |
1996 | } | |
1997 | rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD; | |
1998 | ||
1999 | /* The RFDs are going to be put on lists later on, so initialize the | |
2000 | * lists now. | |
2001 | */ | |
2002 | INIT_LIST_HEAD(&rx_ring->recv_list); | |
2003 | return 0; | |
2004 | } | |
2005 | ||
2006 | static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter) | |
2007 | { | |
2008 | u8 id; | |
2009 | u32 ii; | |
2010 | u32 bufsize; | |
2011 | u32 psr_size; | |
2012 | struct rfd *rfd; | |
2013 | struct rx_ring *rx_ring = &adapter->rx_ring; | |
2014 | struct fbr_lookup *fbr; | |
2015 | ||
2016 | /* Free RFDs and associated packet descriptors */ | |
2017 | WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd); | |
2018 | ||
2019 | while (!list_empty(&rx_ring->recv_list)) { | |
2020 | rfd = list_entry(rx_ring->recv_list.next, | |
2021 | struct rfd, list_node); | |
2022 | ||
2023 | list_del(&rfd->list_node); | |
2024 | rfd->skb = NULL; | |
2025 | kfree(rfd); | |
2026 | } | |
2027 | ||
2028 | /* Free Free Buffer Rings */ | |
2029 | for (id = 0; id < NUM_FBRS; id++) { | |
2030 | fbr = rx_ring->fbr[id]; | |
2031 | ||
2032 | if (!fbr || !fbr->ring_virtaddr) | |
2033 | continue; | |
2034 | ||
2035 | /* First the packet memory */ | |
2036 | for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) { | |
2037 | if (fbr->mem_virtaddrs[ii]) { | |
2038 | bufsize = fbr->buffsize * FBR_CHUNKS; | |
2039 | ||
2040 | dma_free_coherent(&adapter->pdev->dev, | |
2041 | bufsize, | |
2042 | fbr->mem_virtaddrs[ii], | |
2043 | fbr->mem_physaddrs[ii]); | |
2044 | ||
2045 | fbr->mem_virtaddrs[ii] = NULL; | |
2046 | } | |
2047 | } | |
2048 | ||
2049 | bufsize = sizeof(struct fbr_desc) * fbr->num_entries; | |
2050 | ||
2051 | dma_free_coherent(&adapter->pdev->dev, | |
2052 | bufsize, | |
2053 | fbr->ring_virtaddr, | |
2054 | fbr->ring_physaddr); | |
2055 | ||
2056 | fbr->ring_virtaddr = NULL; | |
2057 | } | |
2058 | ||
2059 | /* Free Packet Status Ring */ | |
2060 | if (rx_ring->ps_ring_virtaddr) { | |
2061 | psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; | |
2062 | ||
2063 | dma_free_coherent(&adapter->pdev->dev, psr_size, | |
2064 | rx_ring->ps_ring_virtaddr, | |
2065 | rx_ring->ps_ring_physaddr); | |
2066 | ||
2067 | rx_ring->ps_ring_virtaddr = NULL; | |
2068 | } | |
2069 | ||
2070 | /* Free area of memory for the writeback of status information */ | |
2071 | if (rx_ring->rx_status_block) { | |
2072 | dma_free_coherent(&adapter->pdev->dev, | |
2073 | sizeof(struct rx_status_block), | |
2074 | rx_ring->rx_status_block, | |
2075 | rx_ring->rx_status_bus); | |
2076 | rx_ring->rx_status_block = NULL; | |
2077 | } | |
2078 | ||
2079 | /* Free the FBR Lookup Table */ | |
2080 | kfree(rx_ring->fbr[0]); | |
2081 | kfree(rx_ring->fbr[1]); | |
2082 | ||
2083 | /* Reset Counters */ | |
2084 | rx_ring->num_ready_recv = 0; | |
2085 | } | |
2086 | ||
2087 | /* et131x_init_recv - Initialize receive data structures */ | |
2088 | static int et131x_init_recv(struct et131x_adapter *adapter) | |
2089 | { | |
2090 | struct rfd *rfd; | |
2091 | u32 rfdct; | |
2092 | struct rx_ring *rx_ring = &adapter->rx_ring; | |
2093 | ||
2094 | /* Setup each RFD */ | |
2095 | for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) { | |
2096 | rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA); | |
2097 | if (!rfd) | |
2098 | return -ENOMEM; | |
2099 | ||
2100 | rfd->skb = NULL; | |
2101 | ||
2102 | /* Add this RFD to the recv_list */ | |
2103 | list_add_tail(&rfd->list_node, &rx_ring->recv_list); | |
2104 | ||
2105 | /* Increment the available RFD's */ | |
2106 | rx_ring->num_ready_recv++; | |
2107 | } | |
2108 | ||
2109 | return 0; | |
2110 | } | |
2111 | ||
2112 | /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */ | |
2113 | static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter) | |
2114 | { | |
a0bbb9fe | 2115 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
2116 | |
2117 | /* For version B silicon, we do not use the RxDMA timer for 10 and 100 | |
2118 | * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing. | |
2119 | */ | |
2120 | if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) { | |
2121 | writel(0, &adapter->regs->rxdma.max_pkt_time); | |
2122 | writel(1, &adapter->regs->rxdma.num_pkt_done); | |
2123 | } | |
2124 | } | |
2125 | ||
2126 | /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */ | |
2127 | static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd) | |
2128 | { | |
2129 | struct rx_ring *rx_local = &adapter->rx_ring; | |
2130 | struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; | |
2131 | u16 buff_index = rfd->bufferindex; | |
2132 | u8 ring_index = rfd->ringindex; | |
2133 | unsigned long flags; | |
2134 | struct fbr_lookup *fbr = rx_local->fbr[ring_index]; | |
2135 | ||
2136 | /* We don't use any of the OOB data besides status. Otherwise, we | |
2137 | * need to clean up OOB data | |
2138 | */ | |
2139 | if (buff_index < fbr->num_entries) { | |
2140 | u32 free_buff_ring; | |
2141 | u32 __iomem *offset; | |
2142 | struct fbr_desc *next; | |
2143 | ||
2144 | if (ring_index == 0) | |
2145 | offset = &rx_dma->fbr0_full_offset; | |
2146 | else | |
2147 | offset = &rx_dma->fbr1_full_offset; | |
2148 | ||
2149 | next = (struct fbr_desc *)(fbr->ring_virtaddr) + | |
2150 | INDEX10(fbr->local_full); | |
2151 | ||
2152 | /* Handle the Free Buffer Ring advancement here. Write | |
2153 | * the PA / Buffer Index for the returned buffer into | |
2154 | * the oldest (next to be freed)FBR entry | |
2155 | */ | |
2156 | next->addr_hi = fbr->bus_high[buff_index]; | |
2157 | next->addr_lo = fbr->bus_low[buff_index]; | |
2158 | next->word2 = buff_index; | |
2159 | ||
2160 | free_buff_ring = bump_free_buff_ring(&fbr->local_full, | |
2161 | fbr->num_entries - 1); | |
2162 | writel(free_buff_ring, offset); | |
2163 | } else { | |
2164 | dev_err(&adapter->pdev->dev, | |
2165 | "%s illegal Buffer Index returned\n", __func__); | |
2166 | } | |
2167 | ||
2168 | /* The processing on this RFD is done, so put it back on the tail of | |
2169 | * our list | |
2170 | */ | |
2171 | spin_lock_irqsave(&adapter->rcv_lock, flags); | |
2172 | list_add_tail(&rfd->list_node, &rx_local->recv_list); | |
2173 | rx_local->num_ready_recv++; | |
2174 | spin_unlock_irqrestore(&adapter->rcv_lock, flags); | |
2175 | ||
2176 | WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd); | |
2177 | } | |
2178 | ||
2179 | /* nic_rx_pkts - Checks the hardware for available packets | |
2180 | * | |
2181 | * Checks the hardware for available packets, using completion ring | |
2182 | * If packets are available, it gets an RFD from the recv_list, attaches | |
2183 | * the packet to it, puts the RFD in the RecvPendList, and also returns | |
2184 | * the pointer to the RFD. | |
2185 | */ | |
2186 | static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter) | |
2187 | { | |
2188 | struct rx_ring *rx_local = &adapter->rx_ring; | |
2189 | struct rx_status_block *status; | |
2190 | struct pkt_stat_desc *psr; | |
2191 | struct rfd *rfd; | |
2192 | unsigned long flags; | |
2193 | struct list_head *element; | |
2194 | u8 ring_index; | |
2195 | u16 buff_index; | |
2196 | u32 len; | |
2197 | u32 word0; | |
2198 | u32 word1; | |
2199 | struct sk_buff *skb; | |
2200 | struct fbr_lookup *fbr; | |
2201 | ||
2202 | /* RX Status block is written by the DMA engine prior to every | |
2203 | * interrupt. It contains the next to be used entry in the Packet | |
2204 | * Status Ring, and also the two Free Buffer rings. | |
2205 | */ | |
2206 | status = rx_local->rx_status_block; | |
2207 | word1 = status->word1 >> 16; | |
2208 | ||
2209 | /* Check the PSR and wrap bits do not match */ | |
2210 | if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF)) | |
2211 | return NULL; /* Looks like this ring is not updated yet */ | |
2212 | ||
2213 | /* The packet status ring indicates that data is available. */ | |
2214 | psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) + | |
2215 | (rx_local->local_psr_full & 0xFFF); | |
2216 | ||
2217 | /* Grab any information that is required once the PSR is advanced, | |
2218 | * since we can no longer rely on the memory being accurate | |
2219 | */ | |
2220 | len = psr->word1 & 0xFFFF; | |
2221 | ring_index = (psr->word1 >> 26) & 0x03; | |
2222 | fbr = rx_local->fbr[ring_index]; | |
2223 | buff_index = (psr->word1 >> 16) & 0x3FF; | |
2224 | word0 = psr->word0; | |
2225 | ||
2226 | /* Indicate that we have used this PSR entry. */ | |
2227 | /* FIXME wrap 12 */ | |
2228 | add_12bit(&rx_local->local_psr_full, 1); | |
2229 | if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) { | |
2230 | /* Clear psr full and toggle the wrap bit */ | |
2231 | rx_local->local_psr_full &= ~0xFFF; | |
2232 | rx_local->local_psr_full ^= 0x1000; | |
2233 | } | |
2234 | ||
2235 | writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset); | |
2236 | ||
2237 | if (ring_index > 1 || buff_index > fbr->num_entries - 1) { | |
2238 | /* Illegal buffer or ring index cannot be used by S/W*/ | |
2239 | dev_err(&adapter->pdev->dev, | |
2240 | "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n", | |
2241 | rx_local->local_psr_full & 0xFFF, len, buff_index); | |
2242 | return NULL; | |
2243 | } | |
2244 | ||
2245 | /* Get and fill the RFD. */ | |
2246 | spin_lock_irqsave(&adapter->rcv_lock, flags); | |
2247 | ||
2248 | element = rx_local->recv_list.next; | |
2249 | rfd = list_entry(element, struct rfd, list_node); | |
2250 | ||
2251 | if (!rfd) { | |
2252 | spin_unlock_irqrestore(&adapter->rcv_lock, flags); | |
2253 | return NULL; | |
2254 | } | |
2255 | ||
2256 | list_del(&rfd->list_node); | |
2257 | rx_local->num_ready_recv--; | |
2258 | ||
2259 | spin_unlock_irqrestore(&adapter->rcv_lock, flags); | |
2260 | ||
2261 | rfd->bufferindex = buff_index; | |
2262 | rfd->ringindex = ring_index; | |
2263 | ||
2264 | /* In V1 silicon, there is a bug which screws up filtering of runt | |
2265 | * packets. Therefore runt packet filtering is disabled in the MAC and | |
2266 | * the packets are dropped here. They are also counted here. | |
2267 | */ | |
2268 | if (len < (NIC_MIN_PACKET_SIZE + 4)) { | |
2269 | adapter->stats.rx_other_errs++; | |
2270 | rfd->len = 0; | |
2271 | goto out; | |
2272 | } | |
2273 | ||
2274 | if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT)) | |
2275 | adapter->stats.multicast_pkts_rcvd++; | |
2276 | ||
2277 | rfd->len = len; | |
2278 | ||
2279 | skb = dev_alloc_skb(rfd->len + 2); | |
2280 | if (!skb) | |
2281 | return NULL; | |
2282 | ||
2283 | adapter->netdev->stats.rx_bytes += rfd->len; | |
2284 | ||
59ae1d12 | 2285 | skb_put_data(skb, fbr->virt[buff_index], rfd->len); |
38df6492 ME |
2286 | |
2287 | skb->protocol = eth_type_trans(skb, adapter->netdev); | |
2288 | skb->ip_summed = CHECKSUM_NONE; | |
2289 | netif_receive_skb(skb); | |
2290 | ||
2291 | out: | |
2292 | nic_return_rfd(adapter, rfd); | |
2293 | return rfd; | |
2294 | } | |
2295 | ||
2296 | static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget) | |
2297 | { | |
2298 | struct rfd *rfd = NULL; | |
2299 | int count = 0; | |
2300 | int limit = budget; | |
2301 | bool done = true; | |
2302 | struct rx_ring *rx_ring = &adapter->rx_ring; | |
2303 | ||
2304 | if (budget > MAX_PACKETS_HANDLED) | |
2305 | limit = MAX_PACKETS_HANDLED; | |
2306 | ||
2307 | /* Process up to available RFD's */ | |
2308 | while (count < limit) { | |
2309 | if (list_empty(&rx_ring->recv_list)) { | |
2310 | WARN_ON(rx_ring->num_ready_recv != 0); | |
2311 | done = false; | |
2312 | break; | |
2313 | } | |
2314 | ||
2315 | rfd = nic_rx_pkts(adapter); | |
2316 | ||
2317 | if (rfd == NULL) | |
2318 | break; | |
2319 | ||
2320 | /* Do not receive any packets until a filter has been set. | |
2321 | * Do not receive any packets until we have link. | |
2322 | * If length is zero, return the RFD in order to advance the | |
2323 | * Free buffer ring. | |
2324 | */ | |
2325 | if (!adapter->packet_filter || | |
2326 | !netif_carrier_ok(adapter->netdev) || | |
2327 | rfd->len == 0) | |
2328 | continue; | |
2329 | ||
2330 | adapter->netdev->stats.rx_packets++; | |
2331 | ||
2332 | if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK) | |
2333 | dev_warn(&adapter->pdev->dev, "RFD's are running out\n"); | |
2334 | ||
2335 | count++; | |
2336 | } | |
2337 | ||
2338 | if (count == limit || !done) { | |
2339 | rx_ring->unfinished_receives = true; | |
2340 | writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, | |
2341 | &adapter->regs->global.watchdog_timer); | |
2342 | } else { | |
2343 | /* Watchdog timer will disable itself if appropriate. */ | |
2344 | rx_ring->unfinished_receives = false; | |
2345 | } | |
2346 | ||
2347 | return count; | |
2348 | } | |
2349 | ||
2350 | /* et131x_tx_dma_memory_alloc | |
2351 | * | |
2352 | * Allocates memory that will be visible both to the device and to the CPU. | |
2353 | * The OS will pass us packets, pointers to which we will insert in the Tx | |
2354 | * Descriptor queue. The device will read this queue to find the packets in | |
2355 | * memory. The device will update the "status" in memory each time it xmits a | |
2356 | * packet. | |
2357 | */ | |
2358 | static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter) | |
2359 | { | |
2360 | int desc_size = 0; | |
2361 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2362 | ||
2363 | /* Allocate memory for the TCB's (Transmit Control Block) */ | |
2364 | tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb), | |
2365 | GFP_ATOMIC | GFP_DMA); | |
2366 | if (!tx_ring->tcb_ring) | |
2367 | return -ENOMEM; | |
2368 | ||
2369 | desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); | |
2370 | tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev, | |
2371 | desc_size, | |
2372 | &tx_ring->tx_desc_ring_pa, | |
2373 | GFP_KERNEL); | |
2374 | if (!tx_ring->tx_desc_ring) { | |
2375 | dev_err(&adapter->pdev->dev, | |
2376 | "Cannot alloc memory for Tx Ring\n"); | |
2377 | return -ENOMEM; | |
2378 | } | |
2379 | ||
2380 | tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev, | |
2381 | sizeof(u32), | |
2382 | &tx_ring->tx_status_pa, | |
2383 | GFP_KERNEL); | |
562a9f91 | 2384 | if (!tx_ring->tx_status) { |
38df6492 ME |
2385 | dev_err(&adapter->pdev->dev, |
2386 | "Cannot alloc memory for Tx status block\n"); | |
2387 | return -ENOMEM; | |
2388 | } | |
2389 | return 0; | |
2390 | } | |
2391 | ||
2392 | static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter) | |
2393 | { | |
2394 | int desc_size = 0; | |
2395 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2396 | ||
2397 | if (tx_ring->tx_desc_ring) { | |
2398 | /* Free memory relating to Tx rings here */ | |
2399 | desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); | |
2400 | dma_free_coherent(&adapter->pdev->dev, | |
2401 | desc_size, | |
2402 | tx_ring->tx_desc_ring, | |
2403 | tx_ring->tx_desc_ring_pa); | |
2404 | tx_ring->tx_desc_ring = NULL; | |
2405 | } | |
2406 | ||
2407 | /* Free memory for the Tx status block */ | |
2408 | if (tx_ring->tx_status) { | |
2409 | dma_free_coherent(&adapter->pdev->dev, | |
2410 | sizeof(u32), | |
2411 | tx_ring->tx_status, | |
2412 | tx_ring->tx_status_pa); | |
2413 | ||
2414 | tx_ring->tx_status = NULL; | |
2415 | } | |
2416 | /* Free the memory for the tcb structures */ | |
2417 | kfree(tx_ring->tcb_ring); | |
2418 | } | |
2419 | ||
2420 | /* nic_send_packet - NIC specific send handler for version B silicon. */ | |
2421 | static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb) | |
2422 | { | |
2423 | u32 i; | |
2424 | struct tx_desc desc[24]; | |
2425 | u32 frag = 0; | |
2426 | u32 thiscopy, remainder; | |
2427 | struct sk_buff *skb = tcb->skb; | |
2428 | u32 nr_frags = skb_shinfo(skb)->nr_frags + 1; | |
2429 | struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0]; | |
a0bbb9fe | 2430 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
2431 | dma_addr_t dma_addr; |
2432 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2433 | ||
2434 | /* Part of the optimizations of this send routine restrict us to | |
2435 | * sending 24 fragments at a pass. In practice we should never see | |
2436 | * more than 5 fragments. | |
2437 | */ | |
2438 | ||
2439 | /* nr_frags should be no more than 18. */ | |
2440 | BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23); | |
2441 | ||
2442 | memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1)); | |
2443 | ||
2444 | for (i = 0; i < nr_frags; i++) { | |
2445 | /* If there is something in this element, lets get a | |
2446 | * descriptor from the ring and get the necessary data | |
2447 | */ | |
2448 | if (i == 0) { | |
2449 | /* If the fragments are smaller than a standard MTU, | |
2450 | * then map them to a single descriptor in the Tx | |
2451 | * Desc ring. However, if they're larger, as is | |
2452 | * possible with support for jumbo packets, then | |
2453 | * split them each across 2 descriptors. | |
2454 | * | |
2455 | * This will work until we determine why the hardware | |
2456 | * doesn't seem to like large fragments. | |
2457 | */ | |
2458 | if (skb_headlen(skb) <= 1514) { | |
2459 | /* Low 16bits are length, high is vlan and | |
2460 | * unused currently so zero | |
2461 | */ | |
2462 | desc[frag].len_vlan = skb_headlen(skb); | |
2463 | dma_addr = dma_map_single(&adapter->pdev->dev, | |
2464 | skb->data, | |
2465 | skb_headlen(skb), | |
2466 | DMA_TO_DEVICE); | |
2467 | desc[frag].addr_lo = lower_32_bits(dma_addr); | |
2468 | desc[frag].addr_hi = upper_32_bits(dma_addr); | |
2469 | frag++; | |
2470 | } else { | |
2471 | desc[frag].len_vlan = skb_headlen(skb) / 2; | |
2472 | dma_addr = dma_map_single(&adapter->pdev->dev, | |
2473 | skb->data, | |
2474 | skb_headlen(skb) / 2, | |
2475 | DMA_TO_DEVICE); | |
2476 | desc[frag].addr_lo = lower_32_bits(dma_addr); | |
2477 | desc[frag].addr_hi = upper_32_bits(dma_addr); | |
2478 | frag++; | |
2479 | ||
2480 | desc[frag].len_vlan = skb_headlen(skb) / 2; | |
2481 | dma_addr = dma_map_single(&adapter->pdev->dev, | |
2482 | skb->data + | |
2483 | skb_headlen(skb) / 2, | |
2484 | skb_headlen(skb) / 2, | |
2485 | DMA_TO_DEVICE); | |
2486 | desc[frag].addr_lo = lower_32_bits(dma_addr); | |
2487 | desc[frag].addr_hi = upper_32_bits(dma_addr); | |
2488 | frag++; | |
2489 | } | |
2490 | } else { | |
2491 | desc[frag].len_vlan = frags[i - 1].size; | |
2492 | dma_addr = skb_frag_dma_map(&adapter->pdev->dev, | |
2493 | &frags[i - 1], | |
2494 | 0, | |
2495 | frags[i - 1].size, | |
2496 | DMA_TO_DEVICE); | |
2497 | desc[frag].addr_lo = lower_32_bits(dma_addr); | |
2498 | desc[frag].addr_hi = upper_32_bits(dma_addr); | |
2499 | frag++; | |
2500 | } | |
2501 | } | |
2502 | ||
2503 | if (phydev && phydev->speed == SPEED_1000) { | |
2504 | if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) { | |
2505 | /* Last element & Interrupt flag */ | |
2506 | desc[frag - 1].flags = | |
2507 | TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; | |
2508 | tx_ring->since_irq = 0; | |
2509 | } else { /* Last element */ | |
2510 | desc[frag - 1].flags = TXDESC_FLAG_LASTPKT; | |
2511 | } | |
2512 | } else { | |
2513 | desc[frag - 1].flags = | |
2514 | TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; | |
2515 | } | |
2516 | ||
2517 | desc[0].flags |= TXDESC_FLAG_FIRSTPKT; | |
2518 | ||
2519 | tcb->index_start = tx_ring->send_idx; | |
2520 | tcb->stale = 0; | |
2521 | ||
2522 | thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx); | |
2523 | ||
2524 | if (thiscopy >= frag) { | |
2525 | remainder = 0; | |
2526 | thiscopy = frag; | |
2527 | } else { | |
2528 | remainder = frag - thiscopy; | |
2529 | } | |
2530 | ||
2531 | memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx), | |
2532 | desc, | |
2533 | sizeof(struct tx_desc) * thiscopy); | |
2534 | ||
2535 | add_10bit(&tx_ring->send_idx, thiscopy); | |
2536 | ||
2537 | if (INDEX10(tx_ring->send_idx) == 0 || | |
2538 | INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) { | |
2539 | tx_ring->send_idx &= ~ET_DMA10_MASK; | |
2540 | tx_ring->send_idx ^= ET_DMA10_WRAP; | |
2541 | } | |
2542 | ||
2543 | if (remainder) { | |
2544 | memcpy(tx_ring->tx_desc_ring, | |
2545 | desc + thiscopy, | |
2546 | sizeof(struct tx_desc) * remainder); | |
2547 | ||
2548 | add_10bit(&tx_ring->send_idx, remainder); | |
2549 | } | |
2550 | ||
2551 | if (INDEX10(tx_ring->send_idx) == 0) { | |
2552 | if (tx_ring->send_idx) | |
2553 | tcb->index = NUM_DESC_PER_RING_TX - 1; | |
2554 | else | |
2555 | tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1); | |
2556 | } else { | |
2557 | tcb->index = tx_ring->send_idx - 1; | |
2558 | } | |
2559 | ||
2560 | spin_lock(&adapter->tcb_send_qlock); | |
2561 | ||
2562 | if (tx_ring->send_tail) | |
2563 | tx_ring->send_tail->next = tcb; | |
2564 | else | |
2565 | tx_ring->send_head = tcb; | |
2566 | ||
2567 | tx_ring->send_tail = tcb; | |
2568 | ||
2569 | WARN_ON(tcb->next != NULL); | |
2570 | ||
2571 | tx_ring->used++; | |
2572 | ||
2573 | spin_unlock(&adapter->tcb_send_qlock); | |
2574 | ||
2575 | /* Write the new write pointer back to the device. */ | |
2576 | writel(tx_ring->send_idx, &adapter->regs->txdma.service_request); | |
2577 | ||
2578 | /* For Gig only, we use Tx Interrupt coalescing. Enable the software | |
2579 | * timer to wake us up if this packet isn't followed by N more. | |
2580 | */ | |
2581 | if (phydev && phydev->speed == SPEED_1000) { | |
2582 | writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, | |
2583 | &adapter->regs->global.watchdog_timer); | |
2584 | } | |
2585 | return 0; | |
2586 | } | |
2587 | ||
2588 | static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter) | |
2589 | { | |
2590 | int status; | |
2591 | struct tcb *tcb; | |
2592 | unsigned long flags; | |
2593 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2594 | ||
2595 | /* All packets must have at least a MAC address and a protocol type */ | |
2596 | if (skb->len < ETH_HLEN) | |
2597 | return -EIO; | |
2598 | ||
2599 | spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); | |
2600 | ||
2601 | tcb = tx_ring->tcb_qhead; | |
2602 | ||
2603 | if (tcb == NULL) { | |
2604 | spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); | |
2605 | return -ENOMEM; | |
2606 | } | |
2607 | ||
2608 | tx_ring->tcb_qhead = tcb->next; | |
2609 | ||
2610 | if (tx_ring->tcb_qhead == NULL) | |
2611 | tx_ring->tcb_qtail = NULL; | |
2612 | ||
2613 | spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); | |
2614 | ||
2615 | tcb->skb = skb; | |
2616 | tcb->next = NULL; | |
2617 | ||
2618 | status = nic_send_packet(adapter, tcb); | |
2619 | ||
2620 | if (status != 0) { | |
2621 | spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); | |
2622 | ||
2623 | if (tx_ring->tcb_qtail) | |
2624 | tx_ring->tcb_qtail->next = tcb; | |
2625 | else | |
2626 | /* Apparently ready Q is empty. */ | |
2627 | tx_ring->tcb_qhead = tcb; | |
2628 | ||
2629 | tx_ring->tcb_qtail = tcb; | |
2630 | spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); | |
2631 | return status; | |
2632 | } | |
2633 | WARN_ON(tx_ring->used > NUM_TCB); | |
2634 | return 0; | |
2635 | } | |
2636 | ||
2637 | /* free_send_packet - Recycle a struct tcb */ | |
2638 | static inline void free_send_packet(struct et131x_adapter *adapter, | |
2639 | struct tcb *tcb) | |
2640 | { | |
2641 | unsigned long flags; | |
2642 | struct tx_desc *desc = NULL; | |
2643 | struct net_device_stats *stats = &adapter->netdev->stats; | |
2644 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2645 | u64 dma_addr; | |
2646 | ||
2647 | if (tcb->skb) { | |
2648 | stats->tx_bytes += tcb->skb->len; | |
2649 | ||
2650 | /* Iterate through the TX descriptors on the ring | |
2651 | * corresponding to this packet and umap the fragments | |
2652 | * they point to | |
2653 | */ | |
2654 | do { | |
2655 | desc = tx_ring->tx_desc_ring + | |
2656 | INDEX10(tcb->index_start); | |
2657 | ||
2658 | dma_addr = desc->addr_lo; | |
2659 | dma_addr |= (u64)desc->addr_hi << 32; | |
2660 | ||
2661 | dma_unmap_single(&adapter->pdev->dev, | |
2662 | dma_addr, | |
2663 | desc->len_vlan, DMA_TO_DEVICE); | |
2664 | ||
2665 | add_10bit(&tcb->index_start, 1); | |
2666 | if (INDEX10(tcb->index_start) >= | |
2667 | NUM_DESC_PER_RING_TX) { | |
2668 | tcb->index_start &= ~ET_DMA10_MASK; | |
2669 | tcb->index_start ^= ET_DMA10_WRAP; | |
2670 | } | |
2671 | } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index)); | |
2672 | ||
2673 | dev_kfree_skb_any(tcb->skb); | |
2674 | } | |
2675 | ||
2676 | memset(tcb, 0, sizeof(struct tcb)); | |
2677 | ||
2678 | /* Add the TCB to the Ready Q */ | |
2679 | spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); | |
2680 | ||
2681 | stats->tx_packets++; | |
2682 | ||
2683 | if (tx_ring->tcb_qtail) | |
2684 | tx_ring->tcb_qtail->next = tcb; | |
2685 | else /* Apparently ready Q is empty. */ | |
2686 | tx_ring->tcb_qhead = tcb; | |
2687 | ||
2688 | tx_ring->tcb_qtail = tcb; | |
2689 | ||
2690 | spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); | |
2691 | WARN_ON(tx_ring->used < 0); | |
2692 | } | |
2693 | ||
2694 | /* et131x_free_busy_send_packets - Free and complete the stopped active sends */ | |
2695 | static void et131x_free_busy_send_packets(struct et131x_adapter *adapter) | |
2696 | { | |
2697 | struct tcb *tcb; | |
2698 | unsigned long flags; | |
2699 | u32 freed = 0; | |
2700 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2701 | ||
2702 | /* Any packets being sent? Check the first TCB on the send list */ | |
2703 | spin_lock_irqsave(&adapter->tcb_send_qlock, flags); | |
2704 | ||
2705 | tcb = tx_ring->send_head; | |
2706 | ||
2707 | while (tcb != NULL && freed < NUM_TCB) { | |
2708 | struct tcb *next = tcb->next; | |
2709 | ||
2710 | tx_ring->send_head = next; | |
2711 | ||
2712 | if (next == NULL) | |
2713 | tx_ring->send_tail = NULL; | |
2714 | ||
2715 | tx_ring->used--; | |
2716 | ||
2717 | spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); | |
2718 | ||
2719 | freed++; | |
2720 | free_send_packet(adapter, tcb); | |
2721 | ||
2722 | spin_lock_irqsave(&adapter->tcb_send_qlock, flags); | |
2723 | ||
2724 | tcb = tx_ring->send_head; | |
2725 | } | |
2726 | ||
2727 | WARN_ON(freed == NUM_TCB); | |
2728 | ||
2729 | spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); | |
2730 | ||
2731 | tx_ring->used = 0; | |
2732 | } | |
2733 | ||
2734 | /* et131x_handle_send_pkts | |
2735 | * | |
2736 | * Re-claim the send resources, complete sends and get more to send from | |
2737 | * the send wait queue. | |
2738 | */ | |
2739 | static void et131x_handle_send_pkts(struct et131x_adapter *adapter) | |
2740 | { | |
2741 | unsigned long flags; | |
2742 | u32 serviced; | |
2743 | struct tcb *tcb; | |
2744 | u32 index; | |
2745 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
2746 | ||
2747 | serviced = readl(&adapter->regs->txdma.new_service_complete); | |
2748 | index = INDEX10(serviced); | |
2749 | ||
2750 | /* Has the ring wrapped? Process any descriptors that do not have | |
2751 | * the same "wrap" indicator as the current completion indicator | |
2752 | */ | |
2753 | spin_lock_irqsave(&adapter->tcb_send_qlock, flags); | |
2754 | ||
2755 | tcb = tx_ring->send_head; | |
2756 | ||
2757 | while (tcb && | |
2758 | ((serviced ^ tcb->index) & ET_DMA10_WRAP) && | |
2759 | index < INDEX10(tcb->index)) { | |
2760 | tx_ring->used--; | |
2761 | tx_ring->send_head = tcb->next; | |
2762 | if (tcb->next == NULL) | |
2763 | tx_ring->send_tail = NULL; | |
2764 | ||
2765 | spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); | |
2766 | free_send_packet(adapter, tcb); | |
2767 | spin_lock_irqsave(&adapter->tcb_send_qlock, flags); | |
2768 | ||
2769 | /* Goto the next packet */ | |
2770 | tcb = tx_ring->send_head; | |
2771 | } | |
2772 | while (tcb && | |
2773 | !((serviced ^ tcb->index) & ET_DMA10_WRAP) && | |
2774 | index > (tcb->index & ET_DMA10_MASK)) { | |
2775 | tx_ring->used--; | |
2776 | tx_ring->send_head = tcb->next; | |
2777 | if (tcb->next == NULL) | |
2778 | tx_ring->send_tail = NULL; | |
2779 | ||
2780 | spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); | |
2781 | free_send_packet(adapter, tcb); | |
2782 | spin_lock_irqsave(&adapter->tcb_send_qlock, flags); | |
2783 | ||
2784 | /* Goto the next packet */ | |
2785 | tcb = tx_ring->send_head; | |
2786 | } | |
2787 | ||
2788 | /* Wake up the queue when we hit a low-water mark */ | |
2789 | if (tx_ring->used <= NUM_TCB / 3) | |
2790 | netif_wake_queue(adapter->netdev); | |
2791 | ||
2792 | spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); | |
2793 | } | |
2794 | ||
38df6492 ME |
2795 | static int et131x_get_regs_len(struct net_device *netdev) |
2796 | { | |
2797 | #define ET131X_REGS_LEN 256 | |
2798 | return ET131X_REGS_LEN * sizeof(u32); | |
2799 | } | |
2800 | ||
2801 | static void et131x_get_regs(struct net_device *netdev, | |
2802 | struct ethtool_regs *regs, void *regs_data) | |
2803 | { | |
2804 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
2805 | struct address_map __iomem *aregs = adapter->regs; | |
2806 | u32 *regs_buff = regs_data; | |
2807 | u32 num = 0; | |
2808 | u16 tmp; | |
2809 | ||
2810 | memset(regs_data, 0, et131x_get_regs_len(netdev)); | |
2811 | ||
2812 | regs->version = (1 << 24) | (adapter->pdev->revision << 16) | | |
2813 | adapter->pdev->device; | |
2814 | ||
2815 | /* PHY regs */ | |
2816 | et131x_mii_read(adapter, MII_BMCR, &tmp); | |
2817 | regs_buff[num++] = tmp; | |
2818 | et131x_mii_read(adapter, MII_BMSR, &tmp); | |
2819 | regs_buff[num++] = tmp; | |
2820 | et131x_mii_read(adapter, MII_PHYSID1, &tmp); | |
2821 | regs_buff[num++] = tmp; | |
2822 | et131x_mii_read(adapter, MII_PHYSID2, &tmp); | |
2823 | regs_buff[num++] = tmp; | |
2824 | et131x_mii_read(adapter, MII_ADVERTISE, &tmp); | |
2825 | regs_buff[num++] = tmp; | |
2826 | et131x_mii_read(adapter, MII_LPA, &tmp); | |
2827 | regs_buff[num++] = tmp; | |
2828 | et131x_mii_read(adapter, MII_EXPANSION, &tmp); | |
2829 | regs_buff[num++] = tmp; | |
2830 | /* Autoneg next page transmit reg */ | |
2831 | et131x_mii_read(adapter, 0x07, &tmp); | |
2832 | regs_buff[num++] = tmp; | |
2833 | /* Link partner next page reg */ | |
2834 | et131x_mii_read(adapter, 0x08, &tmp); | |
2835 | regs_buff[num++] = tmp; | |
2836 | et131x_mii_read(adapter, MII_CTRL1000, &tmp); | |
2837 | regs_buff[num++] = tmp; | |
2838 | et131x_mii_read(adapter, MII_STAT1000, &tmp); | |
2839 | regs_buff[num++] = tmp; | |
2840 | et131x_mii_read(adapter, 0x0b, &tmp); | |
2841 | regs_buff[num++] = tmp; | |
2842 | et131x_mii_read(adapter, 0x0c, &tmp); | |
2843 | regs_buff[num++] = tmp; | |
2844 | et131x_mii_read(adapter, MII_MMD_CTRL, &tmp); | |
2845 | regs_buff[num++] = tmp; | |
2846 | et131x_mii_read(adapter, MII_MMD_DATA, &tmp); | |
2847 | regs_buff[num++] = tmp; | |
2848 | et131x_mii_read(adapter, MII_ESTATUS, &tmp); | |
2849 | regs_buff[num++] = tmp; | |
2850 | ||
2851 | et131x_mii_read(adapter, PHY_INDEX_REG, &tmp); | |
2852 | regs_buff[num++] = tmp; | |
2853 | et131x_mii_read(adapter, PHY_DATA_REG, &tmp); | |
2854 | regs_buff[num++] = tmp; | |
2855 | et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp); | |
2856 | regs_buff[num++] = tmp; | |
2857 | et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp); | |
2858 | regs_buff[num++] = tmp; | |
2859 | et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp); | |
2860 | regs_buff[num++] = tmp; | |
2861 | ||
2862 | et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp); | |
2863 | regs_buff[num++] = tmp; | |
2864 | et131x_mii_read(adapter, PHY_CONFIG, &tmp); | |
2865 | regs_buff[num++] = tmp; | |
2866 | et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp); | |
2867 | regs_buff[num++] = tmp; | |
2868 | et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp); | |
2869 | regs_buff[num++] = tmp; | |
2870 | et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp); | |
2871 | regs_buff[num++] = tmp; | |
2872 | et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp); | |
2873 | regs_buff[num++] = tmp; | |
2874 | et131x_mii_read(adapter, PHY_LED_1, &tmp); | |
2875 | regs_buff[num++] = tmp; | |
2876 | et131x_mii_read(adapter, PHY_LED_2, &tmp); | |
2877 | regs_buff[num++] = tmp; | |
2878 | ||
2879 | /* Global regs */ | |
2880 | regs_buff[num++] = readl(&aregs->global.txq_start_addr); | |
2881 | regs_buff[num++] = readl(&aregs->global.txq_end_addr); | |
2882 | regs_buff[num++] = readl(&aregs->global.rxq_start_addr); | |
2883 | regs_buff[num++] = readl(&aregs->global.rxq_end_addr); | |
2884 | regs_buff[num++] = readl(&aregs->global.pm_csr); | |
2885 | regs_buff[num++] = adapter->stats.interrupt_status; | |
2886 | regs_buff[num++] = readl(&aregs->global.int_mask); | |
2887 | regs_buff[num++] = readl(&aregs->global.int_alias_clr_en); | |
2888 | regs_buff[num++] = readl(&aregs->global.int_status_alias); | |
2889 | regs_buff[num++] = readl(&aregs->global.sw_reset); | |
2890 | regs_buff[num++] = readl(&aregs->global.slv_timer); | |
2891 | regs_buff[num++] = readl(&aregs->global.msi_config); | |
2892 | regs_buff[num++] = readl(&aregs->global.loopback); | |
2893 | regs_buff[num++] = readl(&aregs->global.watchdog_timer); | |
2894 | ||
2895 | /* TXDMA regs */ | |
2896 | regs_buff[num++] = readl(&aregs->txdma.csr); | |
2897 | regs_buff[num++] = readl(&aregs->txdma.pr_base_hi); | |
2898 | regs_buff[num++] = readl(&aregs->txdma.pr_base_lo); | |
2899 | regs_buff[num++] = readl(&aregs->txdma.pr_num_des); | |
2900 | regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr); | |
2901 | regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext); | |
2902 | regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr); | |
2903 | regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi); | |
2904 | regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo); | |
2905 | regs_buff[num++] = readl(&aregs->txdma.service_request); | |
2906 | regs_buff[num++] = readl(&aregs->txdma.service_complete); | |
2907 | regs_buff[num++] = readl(&aregs->txdma.cache_rd_index); | |
2908 | regs_buff[num++] = readl(&aregs->txdma.cache_wr_index); | |
2909 | regs_buff[num++] = readl(&aregs->txdma.tx_dma_error); | |
2910 | regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt); | |
2911 | regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt); | |
2912 | regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt); | |
2913 | regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt); | |
2914 | regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt); | |
2915 | regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt); | |
2916 | regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt); | |
2917 | regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt); | |
2918 | regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt); | |
2919 | regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt); | |
2920 | regs_buff[num++] = readl(&aregs->txdma.new_service_complete); | |
2921 | regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt); | |
2922 | ||
2923 | /* RXDMA regs */ | |
2924 | regs_buff[num++] = readl(&aregs->rxdma.csr); | |
2925 | regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi); | |
2926 | regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo); | |
2927 | regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done); | |
2928 | regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time); | |
2929 | regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr); | |
2930 | regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext); | |
2931 | regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr); | |
2932 | regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi); | |
2933 | regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo); | |
2934 | regs_buff[num++] = readl(&aregs->rxdma.psr_num_des); | |
2935 | regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset); | |
2936 | regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset); | |
2937 | regs_buff[num++] = readl(&aregs->rxdma.psr_access_index); | |
2938 | regs_buff[num++] = readl(&aregs->rxdma.psr_min_des); | |
2939 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo); | |
2940 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi); | |
2941 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des); | |
2942 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset); | |
2943 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset); | |
2944 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index); | |
2945 | regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des); | |
2946 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo); | |
2947 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi); | |
2948 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des); | |
2949 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset); | |
2950 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset); | |
2951 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index); | |
2952 | regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des); | |
2953 | } | |
2954 | ||
2955 | static void et131x_get_drvinfo(struct net_device *netdev, | |
2956 | struct ethtool_drvinfo *info) | |
2957 | { | |
2958 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
2959 | ||
2960 | strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); | |
2961 | strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); | |
2962 | strlcpy(info->bus_info, pci_name(adapter->pdev), | |
2963 | sizeof(info->bus_info)); | |
2964 | } | |
2965 | ||
1eff7002 | 2966 | static const struct ethtool_ops et131x_ethtool_ops = { |
38df6492 ME |
2967 | .get_drvinfo = et131x_get_drvinfo, |
2968 | .get_regs_len = et131x_get_regs_len, | |
2969 | .get_regs = et131x_get_regs, | |
2970 | .get_link = ethtool_op_get_link, | |
adc01582 PR |
2971 | .get_link_ksettings = phy_ethtool_get_link_ksettings, |
2972 | .set_link_ksettings = phy_ethtool_set_link_ksettings, | |
38df6492 ME |
2973 | }; |
2974 | ||
2975 | /* et131x_hwaddr_init - set up the MAC Address */ | |
2976 | static void et131x_hwaddr_init(struct et131x_adapter *adapter) | |
2977 | { | |
2978 | /* If have our default mac from init and no mac address from | |
2979 | * EEPROM then we need to generate the last octet and set it on the | |
2980 | * device | |
2981 | */ | |
2982 | if (is_zero_ether_addr(adapter->rom_addr)) { | |
2983 | /* We need to randomly generate the last octet so we | |
2984 | * decrease our chances of setting the mac address to | |
2985 | * same as another one of our cards in the system | |
2986 | */ | |
2987 | get_random_bytes(&adapter->addr[5], 1); | |
2988 | /* We have the default value in the register we are | |
2989 | * working with so we need to copy the current | |
2990 | * address into the permanent address | |
2991 | */ | |
2992 | ether_addr_copy(adapter->rom_addr, adapter->addr); | |
2993 | } else { | |
2994 | /* We do not have an override address, so set the | |
2995 | * current address to the permanent address and add | |
2996 | * it to the device | |
2997 | */ | |
2998 | ether_addr_copy(adapter->addr, adapter->rom_addr); | |
2999 | } | |
3000 | } | |
3001 | ||
3002 | static int et131x_pci_init(struct et131x_adapter *adapter, | |
3003 | struct pci_dev *pdev) | |
3004 | { | |
3005 | u16 max_payload; | |
3006 | int i, rc; | |
3007 | ||
3008 | rc = et131x_init_eeprom(adapter); | |
3009 | if (rc < 0) | |
3010 | goto out; | |
3011 | ||
3012 | if (!pci_is_pcie(pdev)) { | |
3013 | dev_err(&pdev->dev, "Missing PCIe capabilities\n"); | |
3014 | goto err_out; | |
3015 | } | |
3016 | ||
3017 | /* Program the Ack/Nak latency and replay timers */ | |
3018 | max_payload = pdev->pcie_mpss; | |
3019 | ||
3020 | if (max_payload < 2) { | |
3021 | static const u16 acknak[2] = { 0x76, 0xD0 }; | |
3022 | static const u16 replay[2] = { 0x1E0, 0x2ED }; | |
3023 | ||
3024 | if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK, | |
3025 | acknak[max_payload])) { | |
3026 | dev_err(&pdev->dev, | |
3027 | "Could not write PCI config space for ACK/NAK\n"); | |
3028 | goto err_out; | |
3029 | } | |
3030 | if (pci_write_config_word(pdev, ET1310_PCI_REPLAY, | |
3031 | replay[max_payload])) { | |
3032 | dev_err(&pdev->dev, | |
3033 | "Could not write PCI config space for Replay Timer\n"); | |
3034 | goto err_out; | |
3035 | } | |
3036 | } | |
3037 | ||
3038 | /* l0s and l1 latency timers. We are using default values. | |
3039 | * Representing 001 for L0s and 010 for L1 | |
3040 | */ | |
3041 | if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) { | |
3042 | dev_err(&pdev->dev, | |
3043 | "Could not write PCI config space for Latency Timers\n"); | |
3044 | goto err_out; | |
3045 | } | |
3046 | ||
3047 | /* Change the max read size to 2k */ | |
3048 | if (pcie_set_readrq(pdev, 2048)) { | |
3049 | dev_err(&pdev->dev, | |
3050 | "Couldn't change PCI config space for Max read size\n"); | |
3051 | goto err_out; | |
3052 | } | |
3053 | ||
3054 | /* Get MAC address from config space if an eeprom exists, otherwise | |
3055 | * the MAC address there will not be valid | |
3056 | */ | |
3057 | if (!adapter->has_eeprom) { | |
3058 | et131x_hwaddr_init(adapter); | |
3059 | return 0; | |
3060 | } | |
3061 | ||
3062 | for (i = 0; i < ETH_ALEN; i++) { | |
3063 | if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i, | |
3064 | adapter->rom_addr + i)) { | |
3065 | dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n"); | |
3066 | goto err_out; | |
3067 | } | |
3068 | } | |
3069 | ether_addr_copy(adapter->addr, adapter->rom_addr); | |
3070 | out: | |
3071 | return rc; | |
3072 | err_out: | |
3073 | rc = -EIO; | |
3074 | goto out; | |
3075 | } | |
3076 | ||
3077 | /* et131x_error_timer_handler | |
3078 | * @data: timer-specific variable; here a pointer to our adapter structure | |
3079 | * | |
3080 | * The routine called when the error timer expires, to track the number of | |
3081 | * recurring errors. | |
3082 | */ | |
e99e88a9 | 3083 | static void et131x_error_timer_handler(struct timer_list *t) |
38df6492 | 3084 | { |
e99e88a9 | 3085 | struct et131x_adapter *adapter = from_timer(adapter, t, error_timer); |
a0bbb9fe | 3086 | struct phy_device *phydev = adapter->netdev->phydev; |
38df6492 ME |
3087 | |
3088 | if (et1310_in_phy_coma(adapter)) { | |
3089 | /* Bring the device immediately out of coma, to | |
3090 | * prevent it from sleeping indefinitely, this | |
3091 | * mechanism could be improved! | |
3092 | */ | |
3093 | et1310_disable_phy_coma(adapter); | |
3094 | adapter->boot_coma = 20; | |
3095 | } else { | |
3096 | et1310_update_macstat_host_counters(adapter); | |
3097 | } | |
3098 | ||
3099 | if (!phydev->link && adapter->boot_coma < 11) | |
3100 | adapter->boot_coma++; | |
3101 | ||
3102 | if (adapter->boot_coma == 10) { | |
3103 | if (!phydev->link) { | |
3104 | if (!et1310_in_phy_coma(adapter)) { | |
3105 | /* NOTE - This was originally a 'sync with | |
3106 | * interrupt'. How to do that under Linux? | |
3107 | */ | |
3108 | et131x_enable_interrupts(adapter); | |
3109 | et1310_enable_phy_coma(adapter); | |
3110 | } | |
3111 | } | |
3112 | } | |
3113 | ||
3114 | /* This is a periodic timer, so reschedule */ | |
bc2f3873 NMG |
3115 | mod_timer(&adapter->error_timer, jiffies + |
3116 | msecs_to_jiffies(TX_ERROR_PERIOD)); | |
38df6492 ME |
3117 | } |
3118 | ||
3119 | static void et131x_adapter_memory_free(struct et131x_adapter *adapter) | |
3120 | { | |
3121 | et131x_tx_dma_memory_free(adapter); | |
3122 | et131x_rx_dma_memory_free(adapter); | |
3123 | } | |
3124 | ||
3125 | static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter) | |
3126 | { | |
3127 | int status; | |
3128 | ||
3129 | status = et131x_tx_dma_memory_alloc(adapter); | |
3130 | if (status) { | |
3131 | dev_err(&adapter->pdev->dev, | |
3132 | "et131x_tx_dma_memory_alloc FAILED\n"); | |
3133 | et131x_tx_dma_memory_free(adapter); | |
3134 | return status; | |
3135 | } | |
3136 | ||
3137 | status = et131x_rx_dma_memory_alloc(adapter); | |
3138 | if (status) { | |
3139 | dev_err(&adapter->pdev->dev, | |
3140 | "et131x_rx_dma_memory_alloc FAILED\n"); | |
3141 | et131x_adapter_memory_free(adapter); | |
3142 | return status; | |
3143 | } | |
3144 | ||
3145 | status = et131x_init_recv(adapter); | |
3146 | if (status) { | |
3147 | dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n"); | |
3148 | et131x_adapter_memory_free(adapter); | |
3149 | } | |
3150 | return status; | |
3151 | } | |
3152 | ||
3153 | static void et131x_adjust_link(struct net_device *netdev) | |
3154 | { | |
3155 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
a0bbb9fe | 3156 | struct phy_device *phydev = netdev->phydev; |
38df6492 ME |
3157 | |
3158 | if (!phydev) | |
3159 | return; | |
3160 | if (phydev->link == adapter->link) | |
3161 | return; | |
3162 | ||
3163 | /* Check to see if we are in coma mode and if | |
3164 | * so, disable it because we will not be able | |
3165 | * to read PHY values until we are out. | |
3166 | */ | |
3167 | if (et1310_in_phy_coma(adapter)) | |
3168 | et1310_disable_phy_coma(adapter); | |
3169 | ||
3170 | adapter->link = phydev->link; | |
3171 | phy_print_status(phydev); | |
3172 | ||
3173 | if (phydev->link) { | |
3174 | adapter->boot_coma = 20; | |
3175 | if (phydev->speed == SPEED_10) { | |
3176 | u16 register18; | |
3177 | ||
3178 | et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, | |
3179 | ®ister18); | |
e5a03bfd | 3180 | et131x_mii_write(adapter, phydev->mdio.addr, |
38df6492 ME |
3181 | PHY_MPHY_CONTROL_REG, |
3182 | register18 | 0x4); | |
e5a03bfd AL |
3183 | et131x_mii_write(adapter, phydev->mdio.addr, |
3184 | PHY_INDEX_REG, register18 | 0x8402); | |
3185 | et131x_mii_write(adapter, phydev->mdio.addr, | |
3186 | PHY_DATA_REG, register18 | 511); | |
3187 | et131x_mii_write(adapter, phydev->mdio.addr, | |
38df6492 ME |
3188 | PHY_MPHY_CONTROL_REG, register18); |
3189 | } | |
3190 | ||
3191 | et1310_config_flow_control(adapter); | |
3192 | ||
3193 | if (phydev->speed == SPEED_1000 && | |
3194 | adapter->registry_jumbo_packet > 2048) { | |
3195 | u16 reg; | |
3196 | ||
3197 | et131x_mii_read(adapter, PHY_CONFIG, ®); | |
3198 | reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH; | |
3199 | reg |= ET_PHY_CONFIG_FIFO_DEPTH_32; | |
e5a03bfd AL |
3200 | et131x_mii_write(adapter, phydev->mdio.addr, |
3201 | PHY_CONFIG, reg); | |
38df6492 ME |
3202 | } |
3203 | ||
3204 | et131x_set_rx_dma_timer(adapter); | |
3205 | et1310_config_mac_regs2(adapter); | |
3206 | } else { | |
3207 | adapter->boot_coma = 0; | |
3208 | ||
3209 | if (phydev->speed == SPEED_10) { | |
3210 | u16 register18; | |
3211 | ||
3212 | et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, | |
3213 | ®ister18); | |
e5a03bfd | 3214 | et131x_mii_write(adapter, phydev->mdio.addr, |
38df6492 ME |
3215 | PHY_MPHY_CONTROL_REG, |
3216 | register18 | 0x4); | |
e5a03bfd | 3217 | et131x_mii_write(adapter, phydev->mdio.addr, |
38df6492 | 3218 | PHY_INDEX_REG, register18 | 0x8402); |
e5a03bfd | 3219 | et131x_mii_write(adapter, phydev->mdio.addr, |
38df6492 | 3220 | PHY_DATA_REG, register18 | 511); |
e5a03bfd | 3221 | et131x_mii_write(adapter, phydev->mdio.addr, |
38df6492 ME |
3222 | PHY_MPHY_CONTROL_REG, register18); |
3223 | } | |
3224 | ||
3225 | et131x_free_busy_send_packets(adapter); | |
3226 | et131x_init_send(adapter); | |
3227 | ||
3228 | /* Bring the device back to the state it was during | |
3229 | * init prior to autonegotiation being complete. This | |
3230 | * way, when we get the auto-neg complete interrupt, | |
3231 | * we can complete init by calling config_mac_regs2. | |
3232 | */ | |
3233 | et131x_soft_reset(adapter); | |
3234 | ||
3235 | et131x_adapter_setup(adapter); | |
3236 | ||
3237 | et131x_disable_txrx(netdev); | |
3238 | et131x_enable_txrx(netdev); | |
3239 | } | |
3240 | } | |
3241 | ||
3242 | static int et131x_mii_probe(struct net_device *netdev) | |
3243 | { | |
3244 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3245 | struct phy_device *phydev = NULL; | |
3246 | ||
3247 | phydev = phy_find_first(adapter->mii_bus); | |
3248 | if (!phydev) { | |
3249 | dev_err(&adapter->pdev->dev, "no PHY found\n"); | |
3250 | return -ENODEV; | |
3251 | } | |
3252 | ||
84eff6d1 | 3253 | phydev = phy_connect(netdev, phydev_name(phydev), |
38df6492 ME |
3254 | &et131x_adjust_link, PHY_INTERFACE_MODE_MII); |
3255 | ||
3256 | if (IS_ERR(phydev)) { | |
3257 | dev_err(&adapter->pdev->dev, "Could not attach to PHY\n"); | |
3258 | return PTR_ERR(phydev); | |
3259 | } | |
3260 | ||
3261 | phydev->supported &= (SUPPORTED_10baseT_Half | | |
3262 | SUPPORTED_10baseT_Full | | |
3263 | SUPPORTED_100baseT_Half | | |
3264 | SUPPORTED_100baseT_Full | | |
3265 | SUPPORTED_Autoneg | | |
3266 | SUPPORTED_MII | | |
3267 | SUPPORTED_TP); | |
3268 | ||
3269 | if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST) | |
3270 | phydev->supported |= SUPPORTED_1000baseT_Half | | |
3271 | SUPPORTED_1000baseT_Full; | |
3272 | ||
3273 | phydev->advertising = phydev->supported; | |
3274 | phydev->autoneg = AUTONEG_ENABLE; | |
38df6492 | 3275 | |
2220943a | 3276 | phy_attached_info(phydev); |
38df6492 ME |
3277 | |
3278 | return 0; | |
3279 | } | |
3280 | ||
3281 | static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev, | |
3282 | struct pci_dev *pdev) | |
3283 | { | |
3284 | static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 }; | |
3285 | ||
3286 | struct et131x_adapter *adapter; | |
3287 | ||
3288 | adapter = netdev_priv(netdev); | |
3289 | adapter->pdev = pci_dev_get(pdev); | |
3290 | adapter->netdev = netdev; | |
3291 | ||
3292 | spin_lock_init(&adapter->tcb_send_qlock); | |
3293 | spin_lock_init(&adapter->tcb_ready_qlock); | |
3294 | spin_lock_init(&adapter->rcv_lock); | |
3295 | ||
3296 | adapter->registry_jumbo_packet = 1514; /* 1514-9216 */ | |
3297 | ||
3298 | ether_addr_copy(adapter->addr, default_mac); | |
3299 | ||
3300 | return adapter; | |
3301 | } | |
3302 | ||
3303 | static void et131x_pci_remove(struct pci_dev *pdev) | |
3304 | { | |
3305 | struct net_device *netdev = pci_get_drvdata(pdev); | |
3306 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3307 | ||
3308 | unregister_netdev(netdev); | |
3309 | netif_napi_del(&adapter->napi); | |
a0bbb9fe | 3310 | phy_disconnect(netdev->phydev); |
38df6492 | 3311 | mdiobus_unregister(adapter->mii_bus); |
38df6492 ME |
3312 | mdiobus_free(adapter->mii_bus); |
3313 | ||
3314 | et131x_adapter_memory_free(adapter); | |
3315 | iounmap(adapter->regs); | |
3316 | pci_dev_put(pdev); | |
3317 | ||
3318 | free_netdev(netdev); | |
3319 | pci_release_regions(pdev); | |
3320 | pci_disable_device(pdev); | |
3321 | } | |
3322 | ||
3323 | static void et131x_up(struct net_device *netdev) | |
3324 | { | |
38df6492 | 3325 | et131x_enable_txrx(netdev); |
a0bbb9fe | 3326 | phy_start(netdev->phydev); |
38df6492 ME |
3327 | } |
3328 | ||
3329 | static void et131x_down(struct net_device *netdev) | |
3330 | { | |
38df6492 | 3331 | /* Save the timestamp for the TX watchdog, prevent a timeout */ |
860e9538 | 3332 | netif_trans_update(netdev); |
38df6492 | 3333 | |
a0bbb9fe | 3334 | phy_stop(netdev->phydev); |
38df6492 ME |
3335 | et131x_disable_txrx(netdev); |
3336 | } | |
3337 | ||
3338 | #ifdef CONFIG_PM_SLEEP | |
3339 | static int et131x_suspend(struct device *dev) | |
3340 | { | |
3341 | struct pci_dev *pdev = to_pci_dev(dev); | |
3342 | struct net_device *netdev = pci_get_drvdata(pdev); | |
3343 | ||
3344 | if (netif_running(netdev)) { | |
3345 | netif_device_detach(netdev); | |
3346 | et131x_down(netdev); | |
3347 | pci_save_state(pdev); | |
3348 | } | |
3349 | ||
3350 | return 0; | |
3351 | } | |
3352 | ||
3353 | static int et131x_resume(struct device *dev) | |
3354 | { | |
3355 | struct pci_dev *pdev = to_pci_dev(dev); | |
3356 | struct net_device *netdev = pci_get_drvdata(pdev); | |
3357 | ||
3358 | if (netif_running(netdev)) { | |
3359 | pci_restore_state(pdev); | |
3360 | et131x_up(netdev); | |
3361 | netif_device_attach(netdev); | |
3362 | } | |
3363 | ||
3364 | return 0; | |
3365 | } | |
3366 | #endif | |
3367 | ||
3368 | static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume); | |
3369 | ||
3370 | static irqreturn_t et131x_isr(int irq, void *dev_id) | |
3371 | { | |
3372 | bool handled = true; | |
3373 | bool enable_interrupts = true; | |
3374 | struct net_device *netdev = dev_id; | |
3375 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3376 | struct address_map __iomem *iomem = adapter->regs; | |
3377 | struct rx_ring *rx_ring = &adapter->rx_ring; | |
3378 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
3379 | u32 status; | |
3380 | ||
3381 | if (!netif_device_present(netdev)) { | |
3382 | handled = false; | |
3383 | enable_interrupts = false; | |
3384 | goto out; | |
3385 | } | |
3386 | ||
3387 | et131x_disable_interrupts(adapter); | |
3388 | ||
3389 | status = readl(&adapter->regs->global.int_status); | |
3390 | ||
3391 | if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) | |
3392 | status &= ~INT_MASK_ENABLE; | |
3393 | else | |
3394 | status &= ~INT_MASK_ENABLE_NO_FLOW; | |
3395 | ||
3396 | /* Make sure this is our interrupt */ | |
3397 | if (!status) { | |
3398 | handled = false; | |
3399 | et131x_enable_interrupts(adapter); | |
3400 | goto out; | |
3401 | } | |
3402 | ||
3403 | /* This is our interrupt, so process accordingly */ | |
3404 | if (status & ET_INTR_WATCHDOG) { | |
3405 | struct tcb *tcb = tx_ring->send_head; | |
3406 | ||
3407 | if (tcb) | |
3408 | if (++tcb->stale > 1) | |
3409 | status |= ET_INTR_TXDMA_ISR; | |
3410 | ||
3411 | if (rx_ring->unfinished_receives) | |
3412 | status |= ET_INTR_RXDMA_XFR_DONE; | |
3413 | else if (tcb == NULL) | |
3414 | writel(0, &adapter->regs->global.watchdog_timer); | |
3415 | ||
3416 | status &= ~ET_INTR_WATCHDOG; | |
3417 | } | |
3418 | ||
3419 | if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) { | |
3420 | enable_interrupts = false; | |
3421 | napi_schedule(&adapter->napi); | |
3422 | } | |
3423 | ||
3424 | status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE); | |
3425 | ||
3426 | if (!status) | |
3427 | goto out; | |
3428 | ||
3429 | if (status & ET_INTR_TXDMA_ERR) { | |
3430 | /* Following read also clears the register (COR) */ | |
3431 | u32 txdma_err = readl(&iomem->txdma.tx_dma_error); | |
3432 | ||
3433 | dev_warn(&adapter->pdev->dev, | |
3434 | "TXDMA_ERR interrupt, error = %d\n", | |
3435 | txdma_err); | |
3436 | } | |
3437 | ||
3438 | if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) { | |
3439 | /* This indicates the number of unused buffers in RXDMA free | |
3440 | * buffer ring 0 is <= the limit you programmed. Free buffer | |
3441 | * resources need to be returned. Free buffers are consumed as | |
3442 | * packets are passed from the network to the host. The host | |
3443 | * becomes aware of the packets from the contents of the packet | |
3444 | * status ring. This ring is queried when the packet done | |
3445 | * interrupt occurs. Packets are then passed to the OS. When | |
3446 | * the OS is done with the packets the resources can be | |
3447 | * returned to the ET1310 for re-use. This interrupt is one | |
3448 | * method of returning resources. | |
3449 | */ | |
3450 | ||
3451 | /* If the user has flow control on, then we will | |
3452 | * send a pause packet, otherwise just exit | |
3453 | */ | |
3454 | if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) { | |
3455 | u32 pm_csr; | |
3456 | ||
3457 | /* Tell the device to send a pause packet via the back | |
3458 | * pressure register (bp req and bp xon/xoff) | |
3459 | */ | |
3460 | pm_csr = readl(&iomem->global.pm_csr); | |
3461 | if (!et1310_in_phy_coma(adapter)) | |
3462 | writel(3, &iomem->txmac.bp_ctrl); | |
3463 | } | |
3464 | } | |
3465 | ||
3466 | /* Handle Packet Status Ring Low Interrupt */ | |
3467 | if (status & ET_INTR_RXDMA_STAT_LOW) { | |
3468 | /* Same idea as with the two Free Buffer Rings. Packets going | |
3469 | * from the network to the host each consume a free buffer | |
3470 | * resource and a packet status resource. These resources are | |
3471 | * passed to the OS. When the OS is done with the resources, | |
3472 | * they need to be returned to the ET1310. This is one method | |
3473 | * of returning the resources. | |
3474 | */ | |
3475 | } | |
3476 | ||
3477 | if (status & ET_INTR_RXDMA_ERR) { | |
3478 | /* The rxdma_error interrupt is sent when a time-out on a | |
3479 | * request issued by the JAGCore has occurred or a completion is | |
3480 | * returned with an un-successful status. In both cases the | |
3481 | * request is considered complete. The JAGCore will | |
3482 | * automatically re-try the request in question. Normally | |
3483 | * information on events like these are sent to the host using | |
3484 | * the "Advanced Error Reporting" capability. This interrupt is | |
3485 | * another way of getting similar information. The only thing | |
3486 | * required is to clear the interrupt by reading the ISR in the | |
3487 | * global resources. The JAGCore will do a re-try on the | |
3488 | * request. Normally you should never see this interrupt. If | |
3489 | * you start to see this interrupt occurring frequently then | |
3490 | * something bad has occurred. A reset might be the thing to do. | |
3491 | */ | |
3492 | /* TRAP();*/ | |
3493 | ||
3494 | dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n", | |
3495 | readl(&iomem->txmac.tx_test)); | |
3496 | } | |
3497 | ||
3498 | /* Handle the Wake on LAN Event */ | |
3499 | if (status & ET_INTR_WOL) { | |
3500 | /* This is a secondary interrupt for wake on LAN. The driver | |
3501 | * should never see this, if it does, something serious is | |
3502 | * wrong. | |
3503 | */ | |
3504 | dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n"); | |
3505 | } | |
3506 | ||
3507 | if (status & ET_INTR_TXMAC) { | |
3508 | u32 err = readl(&iomem->txmac.err); | |
3509 | ||
3510 | /* When any of the errors occur and TXMAC generates an | |
3511 | * interrupt to report these errors, it usually means that | |
3512 | * TXMAC has detected an error in the data stream retrieved | |
3513 | * from the on-chip Tx Q. All of these errors are catastrophic | |
3514 | * and TXMAC won't be able to recover data when these errors | |
3515 | * occur. In a nutshell, the whole Tx path will have to be reset | |
3516 | * and re-configured afterwards. | |
3517 | */ | |
3518 | dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n", | |
3519 | err); | |
3520 | ||
3521 | /* If we are debugging, we want to see this error, otherwise we | |
3522 | * just want the device to be reset and continue | |
3523 | */ | |
3524 | } | |
3525 | ||
3526 | if (status & ET_INTR_RXMAC) { | |
3527 | /* These interrupts are catastrophic to the device, what we need | |
3528 | * to do is disable the interrupts and set the flag to cause us | |
3529 | * to reset so we can solve this issue. | |
3530 | */ | |
3531 | dev_warn(&adapter->pdev->dev, | |
3532 | "RXMAC interrupt, error 0x%08x. Requesting reset\n", | |
3533 | readl(&iomem->rxmac.err_reg)); | |
3534 | ||
3535 | dev_warn(&adapter->pdev->dev, | |
3536 | "Enable 0x%08x, Diag 0x%08x\n", | |
3537 | readl(&iomem->rxmac.ctrl), | |
3538 | readl(&iomem->rxmac.rxq_diag)); | |
3539 | ||
3540 | /* If we are debugging, we want to see this error, otherwise we | |
3541 | * just want the device to be reset and continue | |
3542 | */ | |
3543 | } | |
3544 | ||
3545 | if (status & ET_INTR_MAC_STAT) { | |
3546 | /* This means at least one of the un-masked counters in the | |
3547 | * MAC_STAT block has rolled over. Use this to maintain the top, | |
3548 | * software managed bits of the counter(s). | |
3549 | */ | |
3550 | et1310_handle_macstat_interrupt(adapter); | |
3551 | } | |
3552 | ||
3553 | if (status & ET_INTR_SLV_TIMEOUT) { | |
3554 | /* This means a timeout has occurred on a read or write request | |
3555 | * to one of the JAGCore registers. The Global Resources block | |
3556 | * has terminated the request and on a read request, returned a | |
3557 | * "fake" value. The most likely reasons are: Bad Address or the | |
3558 | * addressed module is in a power-down state and can't respond. | |
3559 | */ | |
3560 | } | |
3561 | ||
3562 | out: | |
3563 | if (enable_interrupts) | |
3564 | et131x_enable_interrupts(adapter); | |
3565 | ||
3566 | return IRQ_RETVAL(handled); | |
3567 | } | |
3568 | ||
3569 | static int et131x_poll(struct napi_struct *napi, int budget) | |
3570 | { | |
3571 | struct et131x_adapter *adapter = | |
3572 | container_of(napi, struct et131x_adapter, napi); | |
3573 | int work_done = et131x_handle_recv_pkts(adapter, budget); | |
3574 | ||
3575 | et131x_handle_send_pkts(adapter); | |
3576 | ||
3577 | if (work_done < budget) { | |
6ad20165 | 3578 | napi_complete_done(&adapter->napi, work_done); |
38df6492 ME |
3579 | et131x_enable_interrupts(adapter); |
3580 | } | |
3581 | ||
3582 | return work_done; | |
3583 | } | |
3584 | ||
3585 | /* et131x_stats - Return the current device statistics */ | |
3586 | static struct net_device_stats *et131x_stats(struct net_device *netdev) | |
3587 | { | |
3588 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3589 | struct net_device_stats *stats = &adapter->netdev->stats; | |
3590 | struct ce_stats *devstat = &adapter->stats; | |
3591 | ||
3592 | stats->rx_errors = devstat->rx_length_errs + | |
3593 | devstat->rx_align_errs + | |
3594 | devstat->rx_crc_errs + | |
3595 | devstat->rx_code_violations + | |
3596 | devstat->rx_other_errs; | |
3597 | stats->tx_errors = devstat->tx_max_pkt_errs; | |
3598 | stats->multicast = devstat->multicast_pkts_rcvd; | |
3599 | stats->collisions = devstat->tx_collisions; | |
3600 | ||
3601 | stats->rx_length_errors = devstat->rx_length_errs; | |
3602 | stats->rx_over_errors = devstat->rx_overflows; | |
3603 | stats->rx_crc_errors = devstat->rx_crc_errs; | |
3604 | stats->rx_dropped = devstat->rcvd_pkts_dropped; | |
3605 | ||
3606 | /* NOTE: Not used, can't find analogous statistics */ | |
3607 | /* stats->rx_frame_errors = devstat->; */ | |
3608 | /* stats->rx_fifo_errors = devstat->; */ | |
3609 | /* stats->rx_missed_errors = devstat->; */ | |
3610 | ||
3611 | /* stats->tx_aborted_errors = devstat->; */ | |
3612 | /* stats->tx_carrier_errors = devstat->; */ | |
3613 | /* stats->tx_fifo_errors = devstat->; */ | |
3614 | /* stats->tx_heartbeat_errors = devstat->; */ | |
3615 | /* stats->tx_window_errors = devstat->; */ | |
3616 | return stats; | |
3617 | } | |
3618 | ||
3619 | static int et131x_open(struct net_device *netdev) | |
3620 | { | |
3621 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3622 | struct pci_dev *pdev = adapter->pdev; | |
3623 | unsigned int irq = pdev->irq; | |
3624 | int result; | |
3625 | ||
3626 | /* Start the timer to track NIC errors */ | |
e99e88a9 | 3627 | timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0); |
bc2f3873 NMG |
3628 | adapter->error_timer.expires = jiffies + |
3629 | msecs_to_jiffies(TX_ERROR_PERIOD); | |
38df6492 ME |
3630 | add_timer(&adapter->error_timer); |
3631 | ||
3632 | result = request_irq(irq, et131x_isr, | |
3633 | IRQF_SHARED, netdev->name, netdev); | |
3634 | if (result) { | |
3635 | dev_err(&pdev->dev, "could not register IRQ %d\n", irq); | |
3636 | return result; | |
3637 | } | |
3638 | ||
3639 | adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE; | |
3640 | ||
3641 | napi_enable(&adapter->napi); | |
3642 | ||
3643 | et131x_up(netdev); | |
3644 | ||
3645 | return result; | |
3646 | } | |
3647 | ||
3648 | static int et131x_close(struct net_device *netdev) | |
3649 | { | |
3650 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3651 | ||
3652 | et131x_down(netdev); | |
3653 | napi_disable(&adapter->napi); | |
3654 | ||
3655 | adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE; | |
3656 | free_irq(adapter->pdev->irq, netdev); | |
3657 | ||
3658 | /* Stop the error timer */ | |
3659 | return del_timer_sync(&adapter->error_timer); | |
3660 | } | |
3661 | ||
3662 | static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf, | |
3663 | int cmd) | |
3664 | { | |
a0bbb9fe | 3665 | if (!netdev->phydev) |
38df6492 ME |
3666 | return -EINVAL; |
3667 | ||
a0bbb9fe | 3668 | return phy_mii_ioctl(netdev->phydev, reqbuf, cmd); |
38df6492 ME |
3669 | } |
3670 | ||
3671 | /* et131x_set_packet_filter - Configures the Rx Packet filtering */ | |
3672 | static int et131x_set_packet_filter(struct et131x_adapter *adapter) | |
3673 | { | |
3674 | int filter = adapter->packet_filter; | |
3675 | u32 ctrl; | |
3676 | u32 pf_ctrl; | |
3677 | ||
3678 | ctrl = readl(&adapter->regs->rxmac.ctrl); | |
3679 | pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl); | |
3680 | ||
3681 | /* Default to disabled packet filtering */ | |
3682 | ctrl |= 0x04; | |
3683 | ||
3684 | /* Set us to be in promiscuous mode so we receive everything, this | |
3685 | * is also true when we get a packet filter of 0 | |
3686 | */ | |
3687 | if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0) | |
3688 | pf_ctrl &= ~7; /* Clear filter bits */ | |
3689 | else { | |
3690 | /* Set us up with Multicast packet filtering. Three cases are | |
3691 | * possible - (1) we have a multi-cast list, (2) we receive ALL | |
3692 | * multicast entries or (3) we receive none. | |
3693 | */ | |
3694 | if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST) | |
3695 | pf_ctrl &= ~2; /* Multicast filter bit */ | |
3696 | else { | |
3697 | et1310_setup_device_for_multicast(adapter); | |
3698 | pf_ctrl |= 2; | |
3699 | ctrl &= ~0x04; | |
3700 | } | |
3701 | ||
3702 | /* Set us up with Unicast packet filtering */ | |
3703 | if (filter & ET131X_PACKET_TYPE_DIRECTED) { | |
3704 | et1310_setup_device_for_unicast(adapter); | |
3705 | pf_ctrl |= 4; | |
3706 | ctrl &= ~0x04; | |
3707 | } | |
3708 | ||
3709 | /* Set us up with Broadcast packet filtering */ | |
3710 | if (filter & ET131X_PACKET_TYPE_BROADCAST) { | |
3711 | pf_ctrl |= 1; /* Broadcast filter bit */ | |
3712 | ctrl &= ~0x04; | |
3713 | } else { | |
3714 | pf_ctrl &= ~1; | |
3715 | } | |
3716 | ||
3717 | /* Setup the receive mac configuration registers - Packet | |
3718 | * Filter control + the enable / disable for packet filter | |
3719 | * in the control reg. | |
3720 | */ | |
3721 | writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl); | |
3722 | writel(ctrl, &adapter->regs->rxmac.ctrl); | |
3723 | } | |
3724 | return 0; | |
3725 | } | |
3726 | ||
3727 | static void et131x_multicast(struct net_device *netdev) | |
3728 | { | |
3729 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3730 | int packet_filter; | |
3731 | struct netdev_hw_addr *ha; | |
3732 | int i; | |
3733 | ||
3734 | /* Before we modify the platform-independent filter flags, store them | |
3735 | * locally. This allows us to determine if anything's changed and if | |
3736 | * we even need to bother the hardware | |
3737 | */ | |
3738 | packet_filter = adapter->packet_filter; | |
3739 | ||
3740 | /* Clear the 'multicast' flag locally; because we only have a single | |
3741 | * flag to check multicast, and multiple multicast addresses can be | |
3742 | * set, this is the easiest way to determine if more than one | |
3743 | * multicast address is being set. | |
3744 | */ | |
3745 | packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; | |
3746 | ||
3747 | /* Check the net_device flags and set the device independent flags | |
3748 | * accordingly | |
3749 | */ | |
3750 | if (netdev->flags & IFF_PROMISC) | |
3751 | adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS; | |
3752 | else | |
3753 | adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS; | |
3754 | ||
3755 | if ((netdev->flags & IFF_ALLMULTI) || | |
3756 | (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)) | |
3757 | adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST; | |
3758 | ||
3759 | if (netdev_mc_count(netdev) < 1) { | |
3760 | adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST; | |
3761 | adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; | |
3762 | } else { | |
3763 | adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST; | |
3764 | } | |
3765 | ||
3766 | /* Set values in the private adapter struct */ | |
3767 | i = 0; | |
3768 | netdev_for_each_mc_addr(ha, netdev) { | |
3769 | if (i == NIC_MAX_MCAST_LIST) | |
3770 | break; | |
3771 | ether_addr_copy(adapter->multicast_list[i++], ha->addr); | |
3772 | } | |
3773 | adapter->multicast_addr_count = i; | |
3774 | ||
3775 | /* Are the new flags different from the previous ones? If not, then no | |
3776 | * action is required | |
3777 | * | |
3778 | * NOTE - This block will always update the multicast_list with the | |
3779 | * hardware, even if the addresses aren't the same. | |
3780 | */ | |
3781 | if (packet_filter != adapter->packet_filter) | |
3782 | et131x_set_packet_filter(adapter); | |
3783 | } | |
3784 | ||
3785 | static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev) | |
3786 | { | |
3787 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3788 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
3789 | ||
3790 | /* stop the queue if it's getting full */ | |
3791 | if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev)) | |
3792 | netif_stop_queue(netdev); | |
3793 | ||
3794 | /* Save the timestamp for the TX timeout watchdog */ | |
860e9538 | 3795 | netif_trans_update(netdev); |
38df6492 ME |
3796 | |
3797 | /* TCB is not available */ | |
3798 | if (tx_ring->used >= NUM_TCB) | |
3799 | goto drop_err; | |
3800 | ||
3801 | if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) || | |
3802 | !netif_carrier_ok(netdev)) | |
3803 | goto drop_err; | |
3804 | ||
3805 | if (send_packet(skb, adapter)) | |
3806 | goto drop_err; | |
3807 | ||
3808 | return NETDEV_TX_OK; | |
3809 | ||
3810 | drop_err: | |
3811 | dev_kfree_skb_any(skb); | |
3812 | adapter->netdev->stats.tx_dropped++; | |
3813 | return NETDEV_TX_OK; | |
3814 | } | |
3815 | ||
3816 | /* et131x_tx_timeout - Timeout handler | |
3817 | * | |
3818 | * The handler called when a Tx request times out. The timeout period is | |
3819 | * specified by the 'tx_timeo" element in the net_device structure (see | |
3820 | * et131x_alloc_device() to see how this value is set). | |
3821 | */ | |
3822 | static void et131x_tx_timeout(struct net_device *netdev) | |
3823 | { | |
3824 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3825 | struct tx_ring *tx_ring = &adapter->tx_ring; | |
3826 | struct tcb *tcb; | |
3827 | unsigned long flags; | |
3828 | ||
3829 | /* If the device is closed, ignore the timeout */ | |
de702da7 | 3830 | if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)) |
38df6492 ME |
3831 | return; |
3832 | ||
3833 | /* Any nonrecoverable hardware error? | |
3834 | * Checks adapter->flags for any failure in phy reading | |
3835 | */ | |
3836 | if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR) | |
3837 | return; | |
3838 | ||
3839 | /* Hardware failure? */ | |
3840 | if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) { | |
3841 | dev_err(&adapter->pdev->dev, "hardware error - reset\n"); | |
3842 | return; | |
3843 | } | |
3844 | ||
3845 | /* Is send stuck? */ | |
3846 | spin_lock_irqsave(&adapter->tcb_send_qlock, flags); | |
3847 | tcb = tx_ring->send_head; | |
3848 | spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); | |
3849 | ||
3850 | if (tcb) { | |
3851 | tcb->count++; | |
3852 | ||
3853 | if (tcb->count > NIC_SEND_HANG_THRESHOLD) { | |
3854 | dev_warn(&adapter->pdev->dev, | |
3855 | "Send stuck - reset. tcb->WrIndex %x\n", | |
3856 | tcb->index); | |
3857 | ||
3858 | adapter->netdev->stats.tx_errors++; | |
3859 | ||
3860 | /* perform reset of tx/rx */ | |
3861 | et131x_disable_txrx(netdev); | |
3862 | et131x_enable_txrx(netdev); | |
3863 | } | |
3864 | } | |
3865 | } | |
3866 | ||
3867 | static int et131x_change_mtu(struct net_device *netdev, int new_mtu) | |
3868 | { | |
3869 | int result = 0; | |
3870 | struct et131x_adapter *adapter = netdev_priv(netdev); | |
3871 | ||
38df6492 ME |
3872 | et131x_disable_txrx(netdev); |
3873 | ||
3874 | netdev->mtu = new_mtu; | |
3875 | ||
3876 | et131x_adapter_memory_free(adapter); | |
3877 | ||
3878 | /* Set the config parameter for Jumbo Packet support */ | |
3879 | adapter->registry_jumbo_packet = new_mtu + 14; | |
3880 | et131x_soft_reset(adapter); | |
3881 | ||
3882 | result = et131x_adapter_memory_alloc(adapter); | |
3883 | if (result != 0) { | |
3884 | dev_warn(&adapter->pdev->dev, | |
3885 | "Change MTU failed; couldn't re-alloc DMA memory\n"); | |
3886 | return result; | |
3887 | } | |
3888 | ||
3889 | et131x_init_send(adapter); | |
3890 | et131x_hwaddr_init(adapter); | |
3891 | ether_addr_copy(netdev->dev_addr, adapter->addr); | |
3892 | ||
3893 | /* Init the device with the new settings */ | |
3894 | et131x_adapter_setup(adapter); | |
3895 | et131x_enable_txrx(netdev); | |
3896 | ||
3897 | return result; | |
3898 | } | |
3899 | ||
3900 | static const struct net_device_ops et131x_netdev_ops = { | |
3901 | .ndo_open = et131x_open, | |
3902 | .ndo_stop = et131x_close, | |
3903 | .ndo_start_xmit = et131x_tx, | |
3904 | .ndo_set_rx_mode = et131x_multicast, | |
3905 | .ndo_tx_timeout = et131x_tx_timeout, | |
3906 | .ndo_change_mtu = et131x_change_mtu, | |
3907 | .ndo_set_mac_address = eth_mac_addr, | |
3908 | .ndo_validate_addr = eth_validate_addr, | |
3909 | .ndo_get_stats = et131x_stats, | |
3910 | .ndo_do_ioctl = et131x_ioctl, | |
3911 | }; | |
3912 | ||
3913 | static int et131x_pci_setup(struct pci_dev *pdev, | |
3914 | const struct pci_device_id *ent) | |
3915 | { | |
3916 | struct net_device *netdev; | |
3917 | struct et131x_adapter *adapter; | |
3918 | int rc; | |
38df6492 ME |
3919 | |
3920 | rc = pci_enable_device(pdev); | |
3921 | if (rc < 0) { | |
3922 | dev_err(&pdev->dev, "pci_enable_device() failed\n"); | |
3923 | goto out; | |
3924 | } | |
3925 | ||
3926 | /* Perform some basic PCI checks */ | |
3927 | if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | |
3928 | dev_err(&pdev->dev, "Can't find PCI device's base address\n"); | |
3929 | rc = -ENODEV; | |
3930 | goto err_disable; | |
3931 | } | |
3932 | ||
3933 | rc = pci_request_regions(pdev, DRIVER_NAME); | |
3934 | if (rc < 0) { | |
3935 | dev_err(&pdev->dev, "Can't get PCI resources\n"); | |
3936 | goto err_disable; | |
3937 | } | |
3938 | ||
3939 | pci_set_master(pdev); | |
3940 | ||
3941 | /* Check the DMA addressing support of this device */ | |
3942 | if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) && | |
3943 | dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) { | |
3944 | dev_err(&pdev->dev, "No usable DMA addressing method\n"); | |
3945 | rc = -EIO; | |
3946 | goto err_release_res; | |
3947 | } | |
3948 | ||
3949 | netdev = alloc_etherdev(sizeof(struct et131x_adapter)); | |
3950 | if (!netdev) { | |
3951 | dev_err(&pdev->dev, "Couldn't alloc netdev struct\n"); | |
3952 | rc = -ENOMEM; | |
3953 | goto err_release_res; | |
3954 | } | |
3955 | ||
3956 | netdev->watchdog_timeo = ET131X_TX_TIMEOUT; | |
3957 | netdev->netdev_ops = &et131x_netdev_ops; | |
44770e11 JW |
3958 | netdev->min_mtu = ET131X_MIN_MTU; |
3959 | netdev->max_mtu = ET131X_MAX_MTU; | |
38df6492 ME |
3960 | |
3961 | SET_NETDEV_DEV(netdev, &pdev->dev); | |
3962 | netdev->ethtool_ops = &et131x_ethtool_ops; | |
3963 | ||
3964 | adapter = et131x_adapter_init(netdev, pdev); | |
3965 | ||
3966 | rc = et131x_pci_init(adapter, pdev); | |
3967 | if (rc < 0) | |
3968 | goto err_free_dev; | |
3969 | ||
3970 | /* Map the bus-relative registers to system virtual memory */ | |
3971 | adapter->regs = pci_ioremap_bar(pdev, 0); | |
3972 | if (!adapter->regs) { | |
3973 | dev_err(&pdev->dev, "Cannot map device registers\n"); | |
3974 | rc = -ENOMEM; | |
3975 | goto err_free_dev; | |
3976 | } | |
3977 | ||
3978 | /* If Phy COMA mode was enabled when we went down, disable it here. */ | |
3979 | writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr); | |
3980 | ||
3981 | et131x_soft_reset(adapter); | |
3982 | et131x_disable_interrupts(adapter); | |
3983 | ||
3984 | rc = et131x_adapter_memory_alloc(adapter); | |
3985 | if (rc < 0) { | |
3986 | dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n"); | |
3987 | goto err_iounmap; | |
3988 | } | |
3989 | ||
3990 | et131x_init_send(adapter); | |
3991 | ||
3992 | netif_napi_add(netdev, &adapter->napi, et131x_poll, 64); | |
3993 | ||
3994 | ether_addr_copy(netdev->dev_addr, adapter->addr); | |
3995 | ||
3996 | rc = -ENOMEM; | |
3997 | ||
3998 | adapter->mii_bus = mdiobus_alloc(); | |
3999 | if (!adapter->mii_bus) { | |
4000 | dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n"); | |
4001 | goto err_mem_free; | |
4002 | } | |
4003 | ||
4004 | adapter->mii_bus->name = "et131x_eth_mii"; | |
4005 | snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", | |
4006 | (adapter->pdev->bus->number << 8) | adapter->pdev->devfn); | |
4007 | adapter->mii_bus->priv = netdev; | |
4008 | adapter->mii_bus->read = et131x_mdio_read; | |
4009 | adapter->mii_bus->write = et131x_mdio_write; | |
38df6492 ME |
4010 | |
4011 | rc = mdiobus_register(adapter->mii_bus); | |
4012 | if (rc < 0) { | |
4013 | dev_err(&pdev->dev, "failed to register MII bus\n"); | |
e7f4dc35 | 4014 | goto err_mdio_free; |
38df6492 ME |
4015 | } |
4016 | ||
4017 | rc = et131x_mii_probe(netdev); | |
4018 | if (rc < 0) { | |
4019 | dev_err(&pdev->dev, "failed to probe MII bus\n"); | |
4020 | goto err_mdio_unregister; | |
4021 | } | |
4022 | ||
4023 | et131x_adapter_setup(adapter); | |
4024 | ||
4025 | /* Init variable for counting how long we do not have link status */ | |
4026 | adapter->boot_coma = 0; | |
4027 | et1310_disable_phy_coma(adapter); | |
4028 | ||
4029 | /* We can enable interrupts now | |
4030 | * | |
4031 | * NOTE - Because registration of interrupt handler is done in the | |
4032 | * device's open(), defer enabling device interrupts to that | |
4033 | * point | |
4034 | */ | |
4035 | ||
4036 | rc = register_netdev(netdev); | |
4037 | if (rc < 0) { | |
4038 | dev_err(&pdev->dev, "register_netdev() failed\n"); | |
4039 | goto err_phy_disconnect; | |
4040 | } | |
4041 | ||
4042 | /* Register the net_device struct with the PCI subsystem. Save a copy | |
4043 | * of the PCI config space for this device now that the device has | |
4044 | * been initialized, just in case it needs to be quickly restored. | |
4045 | */ | |
4046 | pci_set_drvdata(pdev, netdev); | |
4047 | out: | |
4048 | return rc; | |
4049 | ||
4050 | err_phy_disconnect: | |
a0bbb9fe | 4051 | phy_disconnect(netdev->phydev); |
38df6492 ME |
4052 | err_mdio_unregister: |
4053 | mdiobus_unregister(adapter->mii_bus); | |
38df6492 ME |
4054 | err_mdio_free: |
4055 | mdiobus_free(adapter->mii_bus); | |
4056 | err_mem_free: | |
4057 | et131x_adapter_memory_free(adapter); | |
4058 | err_iounmap: | |
4059 | iounmap(adapter->regs); | |
4060 | err_free_dev: | |
4061 | pci_dev_put(pdev); | |
4062 | free_netdev(netdev); | |
4063 | err_release_res: | |
4064 | pci_release_regions(pdev); | |
4065 | err_disable: | |
4066 | pci_disable_device(pdev); | |
4067 | goto out; | |
4068 | } | |
4069 | ||
4070 | static const struct pci_device_id et131x_pci_table[] = { | |
4071 | { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL}, | |
4072 | { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL}, | |
4073 | { 0,} | |
4074 | }; | |
4075 | MODULE_DEVICE_TABLE(pci, et131x_pci_table); | |
4076 | ||
4077 | static struct pci_driver et131x_driver = { | |
4078 | .name = DRIVER_NAME, | |
4079 | .id_table = et131x_pci_table, | |
4080 | .probe = et131x_pci_setup, | |
4081 | .remove = et131x_pci_remove, | |
4082 | .driver.pm = &et131x_pm_ops, | |
4083 | }; | |
4084 | ||
4085 | module_pci_driver(et131x_driver); |