]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Copyright (C) 2001 Jens Axboe <[email protected]> | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
22 | #include <linux/slab.h> | |
23 | #include <linux/init.h> | |
24 | #include <linux/kernel.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/mempool.h> | |
27 | #include <linux/workqueue.h> | |
2056a782 | 28 | #include <linux/blktrace_api.h> |
f1970baf | 29 | #include <scsi/sg.h> /* for struct sg_iovec */ |
1da177e4 LT |
30 | |
31 | #define BIO_POOL_SIZE 256 | |
32 | ||
33 | static kmem_cache_t *bio_slab; | |
34 | ||
35 | #define BIOVEC_NR_POOLS 6 | |
36 | ||
37 | /* | |
38 | * a small number of entries is fine, not going to be performance critical. | |
39 | * basically we just need to survive | |
40 | */ | |
41 | #define BIO_SPLIT_ENTRIES 8 | |
42 | mempool_t *bio_split_pool; | |
43 | ||
44 | struct biovec_slab { | |
45 | int nr_vecs; | |
46 | char *name; | |
47 | kmem_cache_t *slab; | |
48 | }; | |
49 | ||
50 | /* | |
51 | * if you change this list, also change bvec_alloc or things will | |
52 | * break badly! cannot be bigger than what you can fit into an | |
53 | * unsigned short | |
54 | */ | |
55 | ||
56 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | |
6c036527 | 57 | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { |
1da177e4 LT |
58 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
59 | }; | |
60 | #undef BV | |
61 | ||
62 | /* | |
63 | * bio_set is used to allow other portions of the IO system to | |
64 | * allocate their own private memory pools for bio and iovec structures. | |
65 | * These memory pools in turn all allocate from the bio_slab | |
66 | * and the bvec_slabs[]. | |
67 | */ | |
68 | struct bio_set { | |
69 | mempool_t *bio_pool; | |
70 | mempool_t *bvec_pools[BIOVEC_NR_POOLS]; | |
71 | }; | |
72 | ||
73 | /* | |
74 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
75 | * IO code that does not need private memory pools. | |
76 | */ | |
77 | static struct bio_set *fs_bio_set; | |
78 | ||
dd0fc66f | 79 | static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) |
1da177e4 LT |
80 | { |
81 | struct bio_vec *bvl; | |
82 | struct biovec_slab *bp; | |
83 | ||
84 | /* | |
85 | * see comment near bvec_array define! | |
86 | */ | |
87 | switch (nr) { | |
88 | case 1 : *idx = 0; break; | |
89 | case 2 ... 4: *idx = 1; break; | |
90 | case 5 ... 16: *idx = 2; break; | |
91 | case 17 ... 64: *idx = 3; break; | |
92 | case 65 ... 128: *idx = 4; break; | |
93 | case 129 ... BIO_MAX_PAGES: *idx = 5; break; | |
94 | default: | |
95 | return NULL; | |
96 | } | |
97 | /* | |
98 | * idx now points to the pool we want to allocate from | |
99 | */ | |
100 | ||
101 | bp = bvec_slabs + *idx; | |
102 | bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask); | |
103 | if (bvl) | |
104 | memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec)); | |
105 | ||
106 | return bvl; | |
107 | } | |
108 | ||
3676347a | 109 | void bio_free(struct bio *bio, struct bio_set *bio_set) |
1da177e4 LT |
110 | { |
111 | const int pool_idx = BIO_POOL_IDX(bio); | |
1da177e4 LT |
112 | |
113 | BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); | |
114 | ||
3676347a PO |
115 | mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]); |
116 | mempool_free(bio, bio_set->bio_pool); | |
117 | } | |
118 | ||
119 | /* | |
120 | * default destructor for a bio allocated with bio_alloc_bioset() | |
121 | */ | |
122 | static void bio_fs_destructor(struct bio *bio) | |
123 | { | |
124 | bio_free(bio, fs_bio_set); | |
1da177e4 LT |
125 | } |
126 | ||
858119e1 | 127 | void bio_init(struct bio *bio) |
1da177e4 LT |
128 | { |
129 | bio->bi_next = NULL; | |
0ea60b5a | 130 | bio->bi_bdev = NULL; |
1da177e4 LT |
131 | bio->bi_flags = 1 << BIO_UPTODATE; |
132 | bio->bi_rw = 0; | |
133 | bio->bi_vcnt = 0; | |
134 | bio->bi_idx = 0; | |
135 | bio->bi_phys_segments = 0; | |
136 | bio->bi_hw_segments = 0; | |
137 | bio->bi_hw_front_size = 0; | |
138 | bio->bi_hw_back_size = 0; | |
139 | bio->bi_size = 0; | |
140 | bio->bi_max_vecs = 0; | |
141 | bio->bi_end_io = NULL; | |
142 | atomic_set(&bio->bi_cnt, 1); | |
143 | bio->bi_private = NULL; | |
144 | } | |
145 | ||
146 | /** | |
147 | * bio_alloc_bioset - allocate a bio for I/O | |
148 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
149 | * @nr_iovecs: number of iovecs to pre-allocate | |
67be2dd1 | 150 | * @bs: the bio_set to allocate from |
1da177e4 LT |
151 | * |
152 | * Description: | |
153 | * bio_alloc_bioset will first try it's on mempool to satisfy the allocation. | |
154 | * If %__GFP_WAIT is set then we will block on the internal pool waiting | |
155 | * for a &struct bio to become free. | |
156 | * | |
157 | * allocate bio and iovecs from the memory pools specified by the | |
158 | * bio_set structure. | |
159 | **/ | |
dd0fc66f | 160 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
1da177e4 LT |
161 | { |
162 | struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask); | |
163 | ||
164 | if (likely(bio)) { | |
165 | struct bio_vec *bvl = NULL; | |
166 | ||
167 | bio_init(bio); | |
168 | if (likely(nr_iovecs)) { | |
169 | unsigned long idx; | |
170 | ||
171 | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); | |
172 | if (unlikely(!bvl)) { | |
173 | mempool_free(bio, bs->bio_pool); | |
174 | bio = NULL; | |
175 | goto out; | |
176 | } | |
177 | bio->bi_flags |= idx << BIO_POOL_OFFSET; | |
178 | bio->bi_max_vecs = bvec_slabs[idx].nr_vecs; | |
179 | } | |
180 | bio->bi_io_vec = bvl; | |
1da177e4 LT |
181 | } |
182 | out: | |
183 | return bio; | |
184 | } | |
185 | ||
dd0fc66f | 186 | struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) |
1da177e4 | 187 | { |
3676347a PO |
188 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); |
189 | ||
190 | if (bio) | |
191 | bio->bi_destructor = bio_fs_destructor; | |
192 | ||
193 | return bio; | |
1da177e4 LT |
194 | } |
195 | ||
196 | void zero_fill_bio(struct bio *bio) | |
197 | { | |
198 | unsigned long flags; | |
199 | struct bio_vec *bv; | |
200 | int i; | |
201 | ||
202 | bio_for_each_segment(bv, bio, i) { | |
203 | char *data = bvec_kmap_irq(bv, &flags); | |
204 | memset(data, 0, bv->bv_len); | |
205 | flush_dcache_page(bv->bv_page); | |
206 | bvec_kunmap_irq(data, &flags); | |
207 | } | |
208 | } | |
209 | EXPORT_SYMBOL(zero_fill_bio); | |
210 | ||
211 | /** | |
212 | * bio_put - release a reference to a bio | |
213 | * @bio: bio to release reference to | |
214 | * | |
215 | * Description: | |
216 | * Put a reference to a &struct bio, either one you have gotten with | |
217 | * bio_alloc or bio_get. The last put of a bio will free it. | |
218 | **/ | |
219 | void bio_put(struct bio *bio) | |
220 | { | |
221 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | |
222 | ||
223 | /* | |
224 | * last put frees it | |
225 | */ | |
226 | if (atomic_dec_and_test(&bio->bi_cnt)) { | |
227 | bio->bi_next = NULL; | |
228 | bio->bi_destructor(bio); | |
229 | } | |
230 | } | |
231 | ||
232 | inline int bio_phys_segments(request_queue_t *q, struct bio *bio) | |
233 | { | |
234 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
235 | blk_recount_segments(q, bio); | |
236 | ||
237 | return bio->bi_phys_segments; | |
238 | } | |
239 | ||
240 | inline int bio_hw_segments(request_queue_t *q, struct bio *bio) | |
241 | { | |
242 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
243 | blk_recount_segments(q, bio); | |
244 | ||
245 | return bio->bi_hw_segments; | |
246 | } | |
247 | ||
248 | /** | |
249 | * __bio_clone - clone a bio | |
250 | * @bio: destination bio | |
251 | * @bio_src: bio to clone | |
252 | * | |
253 | * Clone a &bio. Caller will own the returned bio, but not | |
254 | * the actual data it points to. Reference count of returned | |
255 | * bio will be one. | |
256 | */ | |
858119e1 | 257 | void __bio_clone(struct bio *bio, struct bio *bio_src) |
1da177e4 LT |
258 | { |
259 | request_queue_t *q = bdev_get_queue(bio_src->bi_bdev); | |
260 | ||
e525e153 AM |
261 | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, |
262 | bio_src->bi_max_vecs * sizeof(struct bio_vec)); | |
1da177e4 LT |
263 | |
264 | bio->bi_sector = bio_src->bi_sector; | |
265 | bio->bi_bdev = bio_src->bi_bdev; | |
266 | bio->bi_flags |= 1 << BIO_CLONED; | |
267 | bio->bi_rw = bio_src->bi_rw; | |
1da177e4 LT |
268 | bio->bi_vcnt = bio_src->bi_vcnt; |
269 | bio->bi_size = bio_src->bi_size; | |
a5453be4 | 270 | bio->bi_idx = bio_src->bi_idx; |
1da177e4 LT |
271 | bio_phys_segments(q, bio); |
272 | bio_hw_segments(q, bio); | |
273 | } | |
274 | ||
275 | /** | |
276 | * bio_clone - clone a bio | |
277 | * @bio: bio to clone | |
278 | * @gfp_mask: allocation priority | |
279 | * | |
280 | * Like __bio_clone, only also allocates the returned bio | |
281 | */ | |
dd0fc66f | 282 | struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) |
1da177e4 LT |
283 | { |
284 | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); | |
285 | ||
3676347a PO |
286 | if (b) { |
287 | b->bi_destructor = bio_fs_destructor; | |
1da177e4 | 288 | __bio_clone(b, bio); |
3676347a | 289 | } |
1da177e4 LT |
290 | |
291 | return b; | |
292 | } | |
293 | ||
294 | /** | |
295 | * bio_get_nr_vecs - return approx number of vecs | |
296 | * @bdev: I/O target | |
297 | * | |
298 | * Return the approximate number of pages we can send to this target. | |
299 | * There's no guarantee that you will be able to fit this number of pages | |
300 | * into a bio, it does not account for dynamic restrictions that vary | |
301 | * on offset. | |
302 | */ | |
303 | int bio_get_nr_vecs(struct block_device *bdev) | |
304 | { | |
305 | request_queue_t *q = bdev_get_queue(bdev); | |
306 | int nr_pages; | |
307 | ||
308 | nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
309 | if (nr_pages > q->max_phys_segments) | |
310 | nr_pages = q->max_phys_segments; | |
311 | if (nr_pages > q->max_hw_segments) | |
312 | nr_pages = q->max_hw_segments; | |
313 | ||
314 | return nr_pages; | |
315 | } | |
316 | ||
317 | static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page | |
defd94b7 MC |
318 | *page, unsigned int len, unsigned int offset, |
319 | unsigned short max_sectors) | |
1da177e4 LT |
320 | { |
321 | int retried_segments = 0; | |
322 | struct bio_vec *bvec; | |
323 | ||
324 | /* | |
325 | * cloned bio must not modify vec list | |
326 | */ | |
327 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
328 | return 0; | |
329 | ||
80cfd548 | 330 | if (((bio->bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
331 | return 0; |
332 | ||
80cfd548 JA |
333 | /* |
334 | * For filesystems with a blocksize smaller than the pagesize | |
335 | * we will often be called with the same page as last time and | |
336 | * a consecutive offset. Optimize this special case. | |
337 | */ | |
338 | if (bio->bi_vcnt > 0) { | |
339 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
340 | ||
341 | if (page == prev->bv_page && | |
342 | offset == prev->bv_offset + prev->bv_len) { | |
343 | prev->bv_len += len; | |
344 | if (q->merge_bvec_fn && | |
345 | q->merge_bvec_fn(q, bio, prev) < len) { | |
346 | prev->bv_len -= len; | |
347 | return 0; | |
348 | } | |
349 | ||
350 | goto done; | |
351 | } | |
352 | } | |
353 | ||
354 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
1da177e4 LT |
355 | return 0; |
356 | ||
357 | /* | |
358 | * we might lose a segment or two here, but rather that than | |
359 | * make this too complex. | |
360 | */ | |
361 | ||
362 | while (bio->bi_phys_segments >= q->max_phys_segments | |
363 | || bio->bi_hw_segments >= q->max_hw_segments | |
364 | || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) { | |
365 | ||
366 | if (retried_segments) | |
367 | return 0; | |
368 | ||
369 | retried_segments = 1; | |
370 | blk_recount_segments(q, bio); | |
371 | } | |
372 | ||
373 | /* | |
374 | * setup the new entry, we might clear it again later if we | |
375 | * cannot add the page | |
376 | */ | |
377 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
378 | bvec->bv_page = page; | |
379 | bvec->bv_len = len; | |
380 | bvec->bv_offset = offset; | |
381 | ||
382 | /* | |
383 | * if queue has other restrictions (eg varying max sector size | |
384 | * depending on offset), it can specify a merge_bvec_fn in the | |
385 | * queue to get further control | |
386 | */ | |
387 | if (q->merge_bvec_fn) { | |
388 | /* | |
389 | * merge_bvec_fn() returns number of bytes it can accept | |
390 | * at this offset | |
391 | */ | |
392 | if (q->merge_bvec_fn(q, bio, bvec) < len) { | |
393 | bvec->bv_page = NULL; | |
394 | bvec->bv_len = 0; | |
395 | bvec->bv_offset = 0; | |
396 | return 0; | |
397 | } | |
398 | } | |
399 | ||
400 | /* If we may be able to merge these biovecs, force a recount */ | |
401 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) || | |
402 | BIOVEC_VIRT_MERGEABLE(bvec-1, bvec))) | |
403 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | |
404 | ||
405 | bio->bi_vcnt++; | |
406 | bio->bi_phys_segments++; | |
407 | bio->bi_hw_segments++; | |
80cfd548 | 408 | done: |
1da177e4 LT |
409 | bio->bi_size += len; |
410 | return len; | |
411 | } | |
412 | ||
6e68af66 MC |
413 | /** |
414 | * bio_add_pc_page - attempt to add page to bio | |
fddfdeaf | 415 | * @q: the target queue |
6e68af66 MC |
416 | * @bio: destination bio |
417 | * @page: page to add | |
418 | * @len: vec entry length | |
419 | * @offset: vec entry offset | |
420 | * | |
421 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
422 | * number of reasons, such as the bio being full or target block | |
423 | * device limitations. The target block device must allow bio's | |
424 | * smaller than PAGE_SIZE, so it is always possible to add a single | |
425 | * page to an empty bio. This should only be used by REQ_PC bios. | |
426 | */ | |
427 | int bio_add_pc_page(request_queue_t *q, struct bio *bio, struct page *page, | |
428 | unsigned int len, unsigned int offset) | |
429 | { | |
defd94b7 | 430 | return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); |
6e68af66 MC |
431 | } |
432 | ||
1da177e4 LT |
433 | /** |
434 | * bio_add_page - attempt to add page to bio | |
435 | * @bio: destination bio | |
436 | * @page: page to add | |
437 | * @len: vec entry length | |
438 | * @offset: vec entry offset | |
439 | * | |
440 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
441 | * number of reasons, such as the bio being full or target block | |
442 | * device limitations. The target block device must allow bio's | |
443 | * smaller than PAGE_SIZE, so it is always possible to add a single | |
444 | * page to an empty bio. | |
445 | */ | |
446 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | |
447 | unsigned int offset) | |
448 | { | |
defd94b7 MC |
449 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
450 | return __bio_add_page(q, bio, page, len, offset, q->max_sectors); | |
1da177e4 LT |
451 | } |
452 | ||
453 | struct bio_map_data { | |
454 | struct bio_vec *iovecs; | |
455 | void __user *userptr; | |
456 | }; | |
457 | ||
458 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio) | |
459 | { | |
460 | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); | |
461 | bio->bi_private = bmd; | |
462 | } | |
463 | ||
464 | static void bio_free_map_data(struct bio_map_data *bmd) | |
465 | { | |
466 | kfree(bmd->iovecs); | |
467 | kfree(bmd); | |
468 | } | |
469 | ||
470 | static struct bio_map_data *bio_alloc_map_data(int nr_segs) | |
471 | { | |
472 | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL); | |
473 | ||
474 | if (!bmd) | |
475 | return NULL; | |
476 | ||
477 | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL); | |
478 | if (bmd->iovecs) | |
479 | return bmd; | |
480 | ||
481 | kfree(bmd); | |
482 | return NULL; | |
483 | } | |
484 | ||
485 | /** | |
486 | * bio_uncopy_user - finish previously mapped bio | |
487 | * @bio: bio being terminated | |
488 | * | |
489 | * Free pages allocated from bio_copy_user() and write back data | |
490 | * to user space in case of a read. | |
491 | */ | |
492 | int bio_uncopy_user(struct bio *bio) | |
493 | { | |
494 | struct bio_map_data *bmd = bio->bi_private; | |
495 | const int read = bio_data_dir(bio) == READ; | |
496 | struct bio_vec *bvec; | |
497 | int i, ret = 0; | |
498 | ||
499 | __bio_for_each_segment(bvec, bio, i, 0) { | |
500 | char *addr = page_address(bvec->bv_page); | |
501 | unsigned int len = bmd->iovecs[i].bv_len; | |
502 | ||
503 | if (read && !ret && copy_to_user(bmd->userptr, addr, len)) | |
504 | ret = -EFAULT; | |
505 | ||
506 | __free_page(bvec->bv_page); | |
507 | bmd->userptr += len; | |
508 | } | |
509 | bio_free_map_data(bmd); | |
510 | bio_put(bio); | |
511 | return ret; | |
512 | } | |
513 | ||
514 | /** | |
515 | * bio_copy_user - copy user data to bio | |
516 | * @q: destination block queue | |
517 | * @uaddr: start of user address | |
518 | * @len: length in bytes | |
519 | * @write_to_vm: bool indicating writing to pages or not | |
520 | * | |
521 | * Prepares and returns a bio for indirect user io, bouncing data | |
522 | * to/from kernel pages as necessary. Must be paired with | |
523 | * call bio_uncopy_user() on io completion. | |
524 | */ | |
525 | struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr, | |
526 | unsigned int len, int write_to_vm) | |
527 | { | |
528 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
529 | unsigned long start = uaddr >> PAGE_SHIFT; | |
530 | struct bio_map_data *bmd; | |
531 | struct bio_vec *bvec; | |
532 | struct page *page; | |
533 | struct bio *bio; | |
534 | int i, ret; | |
535 | ||
536 | bmd = bio_alloc_map_data(end - start); | |
537 | if (!bmd) | |
538 | return ERR_PTR(-ENOMEM); | |
539 | ||
540 | bmd->userptr = (void __user *) uaddr; | |
541 | ||
542 | ret = -ENOMEM; | |
543 | bio = bio_alloc(GFP_KERNEL, end - start); | |
544 | if (!bio) | |
545 | goto out_bmd; | |
546 | ||
547 | bio->bi_rw |= (!write_to_vm << BIO_RW); | |
548 | ||
549 | ret = 0; | |
550 | while (len) { | |
551 | unsigned int bytes = PAGE_SIZE; | |
552 | ||
553 | if (bytes > len) | |
554 | bytes = len; | |
555 | ||
556 | page = alloc_page(q->bounce_gfp | GFP_KERNEL); | |
557 | if (!page) { | |
558 | ret = -ENOMEM; | |
559 | break; | |
560 | } | |
561 | ||
defd94b7 | 562 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) { |
1da177e4 LT |
563 | ret = -EINVAL; |
564 | break; | |
565 | } | |
566 | ||
567 | len -= bytes; | |
568 | } | |
569 | ||
570 | if (ret) | |
571 | goto cleanup; | |
572 | ||
573 | /* | |
574 | * success | |
575 | */ | |
576 | if (!write_to_vm) { | |
577 | char __user *p = (char __user *) uaddr; | |
578 | ||
579 | /* | |
580 | * for a write, copy in data to kernel pages | |
581 | */ | |
582 | ret = -EFAULT; | |
583 | bio_for_each_segment(bvec, bio, i) { | |
584 | char *addr = page_address(bvec->bv_page); | |
585 | ||
586 | if (copy_from_user(addr, p, bvec->bv_len)) | |
587 | goto cleanup; | |
588 | p += bvec->bv_len; | |
589 | } | |
590 | } | |
591 | ||
592 | bio_set_map_data(bmd, bio); | |
593 | return bio; | |
594 | cleanup: | |
595 | bio_for_each_segment(bvec, bio, i) | |
596 | __free_page(bvec->bv_page); | |
597 | ||
598 | bio_put(bio); | |
599 | out_bmd: | |
600 | bio_free_map_data(bmd); | |
601 | return ERR_PTR(ret); | |
602 | } | |
603 | ||
f1970baf JB |
604 | static struct bio *__bio_map_user_iov(request_queue_t *q, |
605 | struct block_device *bdev, | |
606 | struct sg_iovec *iov, int iov_count, | |
607 | int write_to_vm) | |
1da177e4 | 608 | { |
f1970baf JB |
609 | int i, j; |
610 | int nr_pages = 0; | |
1da177e4 LT |
611 | struct page **pages; |
612 | struct bio *bio; | |
f1970baf JB |
613 | int cur_page = 0; |
614 | int ret, offset; | |
1da177e4 | 615 | |
f1970baf JB |
616 | for (i = 0; i < iov_count; i++) { |
617 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | |
618 | unsigned long len = iov[i].iov_len; | |
619 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
620 | unsigned long start = uaddr >> PAGE_SHIFT; | |
621 | ||
622 | nr_pages += end - start; | |
623 | /* | |
624 | * transfer and buffer must be aligned to at least hardsector | |
625 | * size for now, in the future we can relax this restriction | |
626 | */ | |
627 | if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q))) | |
628 | return ERR_PTR(-EINVAL); | |
629 | } | |
630 | ||
631 | if (!nr_pages) | |
1da177e4 LT |
632 | return ERR_PTR(-EINVAL); |
633 | ||
634 | bio = bio_alloc(GFP_KERNEL, nr_pages); | |
635 | if (!bio) | |
636 | return ERR_PTR(-ENOMEM); | |
637 | ||
638 | ret = -ENOMEM; | |
639 | pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); | |
640 | if (!pages) | |
641 | goto out; | |
642 | ||
f1970baf JB |
643 | memset(pages, 0, nr_pages * sizeof(struct page *)); |
644 | ||
645 | for (i = 0; i < iov_count; i++) { | |
646 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | |
647 | unsigned long len = iov[i].iov_len; | |
648 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
649 | unsigned long start = uaddr >> PAGE_SHIFT; | |
650 | const int local_nr_pages = end - start; | |
651 | const int page_limit = cur_page + local_nr_pages; | |
652 | ||
653 | down_read(¤t->mm->mmap_sem); | |
654 | ret = get_user_pages(current, current->mm, uaddr, | |
655 | local_nr_pages, | |
656 | write_to_vm, 0, &pages[cur_page], NULL); | |
657 | up_read(¤t->mm->mmap_sem); | |
658 | ||
659 | if (ret < local_nr_pages) | |
660 | goto out_unmap; | |
661 | ||
662 | ||
663 | offset = uaddr & ~PAGE_MASK; | |
664 | for (j = cur_page; j < page_limit; j++) { | |
665 | unsigned int bytes = PAGE_SIZE - offset; | |
666 | ||
667 | if (len <= 0) | |
668 | break; | |
669 | ||
670 | if (bytes > len) | |
671 | bytes = len; | |
672 | ||
673 | /* | |
674 | * sorry... | |
675 | */ | |
defd94b7 MC |
676 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
677 | bytes) | |
f1970baf JB |
678 | break; |
679 | ||
680 | len -= bytes; | |
681 | offset = 0; | |
682 | } | |
1da177e4 | 683 | |
f1970baf | 684 | cur_page = j; |
1da177e4 | 685 | /* |
f1970baf | 686 | * release the pages we didn't map into the bio, if any |
1da177e4 | 687 | */ |
f1970baf JB |
688 | while (j < page_limit) |
689 | page_cache_release(pages[j++]); | |
1da177e4 LT |
690 | } |
691 | ||
1da177e4 LT |
692 | kfree(pages); |
693 | ||
694 | /* | |
695 | * set data direction, and check if mapped pages need bouncing | |
696 | */ | |
697 | if (!write_to_vm) | |
698 | bio->bi_rw |= (1 << BIO_RW); | |
699 | ||
f1970baf | 700 | bio->bi_bdev = bdev; |
1da177e4 LT |
701 | bio->bi_flags |= (1 << BIO_USER_MAPPED); |
702 | return bio; | |
f1970baf JB |
703 | |
704 | out_unmap: | |
705 | for (i = 0; i < nr_pages; i++) { | |
706 | if(!pages[i]) | |
707 | break; | |
708 | page_cache_release(pages[i]); | |
709 | } | |
710 | out: | |
1da177e4 LT |
711 | kfree(pages); |
712 | bio_put(bio); | |
713 | return ERR_PTR(ret); | |
714 | } | |
715 | ||
716 | /** | |
717 | * bio_map_user - map user address into bio | |
67be2dd1 | 718 | * @q: the request_queue_t for the bio |
1da177e4 LT |
719 | * @bdev: destination block device |
720 | * @uaddr: start of user address | |
721 | * @len: length in bytes | |
722 | * @write_to_vm: bool indicating writing to pages or not | |
723 | * | |
724 | * Map the user space address into a bio suitable for io to a block | |
725 | * device. Returns an error pointer in case of error. | |
726 | */ | |
727 | struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev, | |
728 | unsigned long uaddr, unsigned int len, int write_to_vm) | |
f1970baf JB |
729 | { |
730 | struct sg_iovec iov; | |
731 | ||
3f70353e | 732 | iov.iov_base = (void __user *)uaddr; |
f1970baf JB |
733 | iov.iov_len = len; |
734 | ||
735 | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm); | |
736 | } | |
737 | ||
738 | /** | |
739 | * bio_map_user_iov - map user sg_iovec table into bio | |
740 | * @q: the request_queue_t for the bio | |
741 | * @bdev: destination block device | |
742 | * @iov: the iovec. | |
743 | * @iov_count: number of elements in the iovec | |
744 | * @write_to_vm: bool indicating writing to pages or not | |
745 | * | |
746 | * Map the user space address into a bio suitable for io to a block | |
747 | * device. Returns an error pointer in case of error. | |
748 | */ | |
749 | struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev, | |
750 | struct sg_iovec *iov, int iov_count, | |
751 | int write_to_vm) | |
1da177e4 LT |
752 | { |
753 | struct bio *bio; | |
f1970baf | 754 | int len = 0, i; |
1da177e4 | 755 | |
f1970baf | 756 | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm); |
1da177e4 LT |
757 | |
758 | if (IS_ERR(bio)) | |
759 | return bio; | |
760 | ||
761 | /* | |
762 | * subtle -- if __bio_map_user() ended up bouncing a bio, | |
763 | * it would normally disappear when its bi_end_io is run. | |
764 | * however, we need it for the unmap, so grab an extra | |
765 | * reference to it | |
766 | */ | |
767 | bio_get(bio); | |
768 | ||
f1970baf JB |
769 | for (i = 0; i < iov_count; i++) |
770 | len += iov[i].iov_len; | |
771 | ||
1da177e4 LT |
772 | if (bio->bi_size == len) |
773 | return bio; | |
774 | ||
775 | /* | |
776 | * don't support partial mappings | |
777 | */ | |
778 | bio_endio(bio, bio->bi_size, 0); | |
779 | bio_unmap_user(bio); | |
780 | return ERR_PTR(-EINVAL); | |
781 | } | |
782 | ||
783 | static void __bio_unmap_user(struct bio *bio) | |
784 | { | |
785 | struct bio_vec *bvec; | |
786 | int i; | |
787 | ||
788 | /* | |
789 | * make sure we dirty pages we wrote to | |
790 | */ | |
791 | __bio_for_each_segment(bvec, bio, i, 0) { | |
792 | if (bio_data_dir(bio) == READ) | |
793 | set_page_dirty_lock(bvec->bv_page); | |
794 | ||
795 | page_cache_release(bvec->bv_page); | |
796 | } | |
797 | ||
798 | bio_put(bio); | |
799 | } | |
800 | ||
801 | /** | |
802 | * bio_unmap_user - unmap a bio | |
803 | * @bio: the bio being unmapped | |
804 | * | |
805 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | |
806 | * a process context. | |
807 | * | |
808 | * bio_unmap_user() may sleep. | |
809 | */ | |
810 | void bio_unmap_user(struct bio *bio) | |
811 | { | |
812 | __bio_unmap_user(bio); | |
813 | bio_put(bio); | |
814 | } | |
815 | ||
b823825e JA |
816 | static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err) |
817 | { | |
818 | if (bio->bi_size) | |
819 | return 1; | |
820 | ||
821 | bio_put(bio); | |
822 | return 0; | |
823 | } | |
824 | ||
825 | ||
df46b9a4 | 826 | static struct bio *__bio_map_kern(request_queue_t *q, void *data, |
27496a8c | 827 | unsigned int len, gfp_t gfp_mask) |
df46b9a4 MC |
828 | { |
829 | unsigned long kaddr = (unsigned long)data; | |
830 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
831 | unsigned long start = kaddr >> PAGE_SHIFT; | |
832 | const int nr_pages = end - start; | |
833 | int offset, i; | |
834 | struct bio *bio; | |
835 | ||
836 | bio = bio_alloc(gfp_mask, nr_pages); | |
837 | if (!bio) | |
838 | return ERR_PTR(-ENOMEM); | |
839 | ||
840 | offset = offset_in_page(kaddr); | |
841 | for (i = 0; i < nr_pages; i++) { | |
842 | unsigned int bytes = PAGE_SIZE - offset; | |
843 | ||
844 | if (len <= 0) | |
845 | break; | |
846 | ||
847 | if (bytes > len) | |
848 | bytes = len; | |
849 | ||
defd94b7 MC |
850 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
851 | offset) < bytes) | |
df46b9a4 MC |
852 | break; |
853 | ||
854 | data += bytes; | |
855 | len -= bytes; | |
856 | offset = 0; | |
857 | } | |
858 | ||
b823825e | 859 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
860 | return bio; |
861 | } | |
862 | ||
863 | /** | |
864 | * bio_map_kern - map kernel address into bio | |
865 | * @q: the request_queue_t for the bio | |
866 | * @data: pointer to buffer to map | |
867 | * @len: length in bytes | |
868 | * @gfp_mask: allocation flags for bio allocation | |
869 | * | |
870 | * Map the kernel address into a bio suitable for io to a block | |
871 | * device. Returns an error pointer in case of error. | |
872 | */ | |
873 | struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len, | |
27496a8c | 874 | gfp_t gfp_mask) |
df46b9a4 MC |
875 | { |
876 | struct bio *bio; | |
877 | ||
878 | bio = __bio_map_kern(q, data, len, gfp_mask); | |
879 | if (IS_ERR(bio)) | |
880 | return bio; | |
881 | ||
882 | if (bio->bi_size == len) | |
883 | return bio; | |
884 | ||
885 | /* | |
886 | * Don't support partial mappings. | |
887 | */ | |
888 | bio_put(bio); | |
889 | return ERR_PTR(-EINVAL); | |
890 | } | |
891 | ||
1da177e4 LT |
892 | /* |
893 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
894 | * for performing direct-IO in BIOs. | |
895 | * | |
896 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
897 | * because the required locks are not interrupt-safe. So what we can do is to | |
898 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
899 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
900 | * in process context. | |
901 | * | |
902 | * We special-case compound pages here: normally this means reads into hugetlb | |
903 | * pages. The logic in here doesn't really work right for compound pages | |
904 | * because the VM does not uniformly chase down the head page in all cases. | |
905 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
906 | * handle them at all. So we skip compound pages here at an early stage. | |
907 | * | |
908 | * Note that this code is very hard to test under normal circumstances because | |
909 | * direct-io pins the pages with get_user_pages(). This makes | |
910 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
911 | * But other code (eg, pdflush) could clean the pages if they are mapped | |
912 | * pagecache. | |
913 | * | |
914 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
915 | * deferred bio dirtying paths. | |
916 | */ | |
917 | ||
918 | /* | |
919 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
920 | */ | |
921 | void bio_set_pages_dirty(struct bio *bio) | |
922 | { | |
923 | struct bio_vec *bvec = bio->bi_io_vec; | |
924 | int i; | |
925 | ||
926 | for (i = 0; i < bio->bi_vcnt; i++) { | |
927 | struct page *page = bvec[i].bv_page; | |
928 | ||
929 | if (page && !PageCompound(page)) | |
930 | set_page_dirty_lock(page); | |
931 | } | |
932 | } | |
933 | ||
934 | static void bio_release_pages(struct bio *bio) | |
935 | { | |
936 | struct bio_vec *bvec = bio->bi_io_vec; | |
937 | int i; | |
938 | ||
939 | for (i = 0; i < bio->bi_vcnt; i++) { | |
940 | struct page *page = bvec[i].bv_page; | |
941 | ||
942 | if (page) | |
943 | put_page(page); | |
944 | } | |
945 | } | |
946 | ||
947 | /* | |
948 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
949 | * If they are, then fine. If, however, some pages are clean then they must | |
950 | * have been written out during the direct-IO read. So we take another ref on | |
951 | * the BIO and the offending pages and re-dirty the pages in process context. | |
952 | * | |
953 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
954 | * here on. It will run one page_cache_release() against each page and will | |
955 | * run one bio_put() against the BIO. | |
956 | */ | |
957 | ||
958 | static void bio_dirty_fn(void *data); | |
959 | ||
960 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL); | |
961 | static DEFINE_SPINLOCK(bio_dirty_lock); | |
962 | static struct bio *bio_dirty_list; | |
963 | ||
964 | /* | |
965 | * This runs in process context | |
966 | */ | |
967 | static void bio_dirty_fn(void *data) | |
968 | { | |
969 | unsigned long flags; | |
970 | struct bio *bio; | |
971 | ||
972 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
973 | bio = bio_dirty_list; | |
974 | bio_dirty_list = NULL; | |
975 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
976 | ||
977 | while (bio) { | |
978 | struct bio *next = bio->bi_private; | |
979 | ||
980 | bio_set_pages_dirty(bio); | |
981 | bio_release_pages(bio); | |
982 | bio_put(bio); | |
983 | bio = next; | |
984 | } | |
985 | } | |
986 | ||
987 | void bio_check_pages_dirty(struct bio *bio) | |
988 | { | |
989 | struct bio_vec *bvec = bio->bi_io_vec; | |
990 | int nr_clean_pages = 0; | |
991 | int i; | |
992 | ||
993 | for (i = 0; i < bio->bi_vcnt; i++) { | |
994 | struct page *page = bvec[i].bv_page; | |
995 | ||
996 | if (PageDirty(page) || PageCompound(page)) { | |
997 | page_cache_release(page); | |
998 | bvec[i].bv_page = NULL; | |
999 | } else { | |
1000 | nr_clean_pages++; | |
1001 | } | |
1002 | } | |
1003 | ||
1004 | if (nr_clean_pages) { | |
1005 | unsigned long flags; | |
1006 | ||
1007 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1008 | bio->bi_private = bio_dirty_list; | |
1009 | bio_dirty_list = bio; | |
1010 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1011 | schedule_work(&bio_dirty_work); | |
1012 | } else { | |
1013 | bio_put(bio); | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | /** | |
1018 | * bio_endio - end I/O on a bio | |
1019 | * @bio: bio | |
1020 | * @bytes_done: number of bytes completed | |
1021 | * @error: error, if any | |
1022 | * | |
1023 | * Description: | |
1024 | * bio_endio() will end I/O on @bytes_done number of bytes. This may be | |
1025 | * just a partial part of the bio, or it may be the whole bio. bio_endio() | |
1026 | * is the preferred way to end I/O on a bio, it takes care of decrementing | |
1027 | * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and | |
1028 | * and one of the established -Exxxx (-EIO, for instance) error values in | |
1029 | * case something went wrong. Noone should call bi_end_io() directly on | |
1030 | * a bio unless they own it and thus know that it has an end_io function. | |
1031 | **/ | |
1032 | void bio_endio(struct bio *bio, unsigned int bytes_done, int error) | |
1033 | { | |
1034 | if (error) | |
1035 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | |
1036 | ||
1037 | if (unlikely(bytes_done > bio->bi_size)) { | |
1038 | printk("%s: want %u bytes done, only %u left\n", __FUNCTION__, | |
1039 | bytes_done, bio->bi_size); | |
1040 | bytes_done = bio->bi_size; | |
1041 | } | |
1042 | ||
1043 | bio->bi_size -= bytes_done; | |
1044 | bio->bi_sector += (bytes_done >> 9); | |
1045 | ||
1046 | if (bio->bi_end_io) | |
1047 | bio->bi_end_io(bio, bytes_done, error); | |
1048 | } | |
1049 | ||
1050 | void bio_pair_release(struct bio_pair *bp) | |
1051 | { | |
1052 | if (atomic_dec_and_test(&bp->cnt)) { | |
1053 | struct bio *master = bp->bio1.bi_private; | |
1054 | ||
1055 | bio_endio(master, master->bi_size, bp->error); | |
1056 | mempool_free(bp, bp->bio2.bi_private); | |
1057 | } | |
1058 | } | |
1059 | ||
1060 | static int bio_pair_end_1(struct bio * bi, unsigned int done, int err) | |
1061 | { | |
1062 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); | |
1063 | ||
1064 | if (err) | |
1065 | bp->error = err; | |
1066 | ||
1067 | if (bi->bi_size) | |
1068 | return 1; | |
1069 | ||
1070 | bio_pair_release(bp); | |
1071 | return 0; | |
1072 | } | |
1073 | ||
1074 | static int bio_pair_end_2(struct bio * bi, unsigned int done, int err) | |
1075 | { | |
1076 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); | |
1077 | ||
1078 | if (err) | |
1079 | bp->error = err; | |
1080 | ||
1081 | if (bi->bi_size) | |
1082 | return 1; | |
1083 | ||
1084 | bio_pair_release(bp); | |
1085 | return 0; | |
1086 | } | |
1087 | ||
1088 | /* | |
1089 | * split a bio - only worry about a bio with a single page | |
1090 | * in it's iovec | |
1091 | */ | |
1092 | struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) | |
1093 | { | |
1094 | struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO); | |
1095 | ||
1096 | if (!bp) | |
1097 | return bp; | |
1098 | ||
2056a782 JA |
1099 | blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi, |
1100 | bi->bi_sector + first_sectors); | |
1101 | ||
1da177e4 LT |
1102 | BUG_ON(bi->bi_vcnt != 1); |
1103 | BUG_ON(bi->bi_idx != 0); | |
1104 | atomic_set(&bp->cnt, 3); | |
1105 | bp->error = 0; | |
1106 | bp->bio1 = *bi; | |
1107 | bp->bio2 = *bi; | |
1108 | bp->bio2.bi_sector += first_sectors; | |
1109 | bp->bio2.bi_size -= first_sectors << 9; | |
1110 | bp->bio1.bi_size = first_sectors << 9; | |
1111 | ||
1112 | bp->bv1 = bi->bi_io_vec[0]; | |
1113 | bp->bv2 = bi->bi_io_vec[0]; | |
1114 | bp->bv2.bv_offset += first_sectors << 9; | |
1115 | bp->bv2.bv_len -= first_sectors << 9; | |
1116 | bp->bv1.bv_len = first_sectors << 9; | |
1117 | ||
1118 | bp->bio1.bi_io_vec = &bp->bv1; | |
1119 | bp->bio2.bi_io_vec = &bp->bv2; | |
1120 | ||
1121 | bp->bio1.bi_end_io = bio_pair_end_1; | |
1122 | bp->bio2.bi_end_io = bio_pair_end_2; | |
1123 | ||
1124 | bp->bio1.bi_private = bi; | |
1125 | bp->bio2.bi_private = pool; | |
1126 | ||
1127 | return bp; | |
1128 | } | |
1129 | ||
dd0fc66f | 1130 | static void *bio_pair_alloc(gfp_t gfp_flags, void *data) |
1da177e4 LT |
1131 | { |
1132 | return kmalloc(sizeof(struct bio_pair), gfp_flags); | |
1133 | } | |
1134 | ||
1135 | static void bio_pair_free(void *bp, void *data) | |
1136 | { | |
1137 | kfree(bp); | |
1138 | } | |
1139 | ||
1140 | ||
1141 | /* | |
1142 | * create memory pools for biovec's in a bio_set. | |
1143 | * use the global biovec slabs created for general use. | |
1144 | */ | |
1145 | static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale) | |
1146 | { | |
1147 | int i; | |
1148 | ||
1149 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1150 | struct biovec_slab *bp = bvec_slabs + i; | |
1151 | mempool_t **bvp = bs->bvec_pools + i; | |
1152 | ||
1153 | if (i >= scale) | |
1154 | pool_entries >>= 1; | |
1155 | ||
1156 | *bvp = mempool_create(pool_entries, mempool_alloc_slab, | |
1157 | mempool_free_slab, bp->slab); | |
1158 | if (!*bvp) | |
1159 | return -ENOMEM; | |
1160 | } | |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | static void biovec_free_pools(struct bio_set *bs) | |
1165 | { | |
1166 | int i; | |
1167 | ||
1168 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1169 | mempool_t *bvp = bs->bvec_pools[i]; | |
1170 | ||
1171 | if (bvp) | |
1172 | mempool_destroy(bvp); | |
1173 | } | |
1174 | ||
1175 | } | |
1176 | ||
1177 | void bioset_free(struct bio_set *bs) | |
1178 | { | |
1179 | if (bs->bio_pool) | |
1180 | mempool_destroy(bs->bio_pool); | |
1181 | ||
1182 | biovec_free_pools(bs); | |
1183 | ||
1184 | kfree(bs); | |
1185 | } | |
1186 | ||
1187 | struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale) | |
1188 | { | |
1189 | struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL); | |
1190 | ||
1191 | if (!bs) | |
1192 | return NULL; | |
1193 | ||
1194 | memset(bs, 0, sizeof(*bs)); | |
1195 | bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab, | |
1196 | mempool_free_slab, bio_slab); | |
1197 | ||
1198 | if (!bs->bio_pool) | |
1199 | goto bad; | |
1200 | ||
1201 | if (!biovec_create_pools(bs, bvec_pool_size, scale)) | |
1202 | return bs; | |
1203 | ||
1204 | bad: | |
1205 | bioset_free(bs); | |
1206 | return NULL; | |
1207 | } | |
1208 | ||
1209 | static void __init biovec_init_slabs(void) | |
1210 | { | |
1211 | int i; | |
1212 | ||
1213 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1214 | int size; | |
1215 | struct biovec_slab *bvs = bvec_slabs + i; | |
1216 | ||
1217 | size = bvs->nr_vecs * sizeof(struct bio_vec); | |
1218 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
1219 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1220 | } | |
1221 | } | |
1222 | ||
1223 | static int __init init_bio(void) | |
1224 | { | |
1225 | int megabytes, bvec_pool_entries; | |
1226 | int scale = BIOVEC_NR_POOLS; | |
1227 | ||
1228 | bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0, | |
1229 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | |
1230 | ||
1231 | biovec_init_slabs(); | |
1232 | ||
1233 | megabytes = nr_free_pages() >> (20 - PAGE_SHIFT); | |
1234 | ||
1235 | /* | |
1236 | * find out where to start scaling | |
1237 | */ | |
1238 | if (megabytes <= 16) | |
1239 | scale = 0; | |
1240 | else if (megabytes <= 32) | |
1241 | scale = 1; | |
1242 | else if (megabytes <= 64) | |
1243 | scale = 2; | |
1244 | else if (megabytes <= 96) | |
1245 | scale = 3; | |
1246 | else if (megabytes <= 128) | |
1247 | scale = 4; | |
1248 | ||
1249 | /* | |
b0e6e962 BL |
1250 | * Limit number of entries reserved -- mempools are only used when |
1251 | * the system is completely unable to allocate memory, so we only | |
1252 | * need enough to make progress. | |
1da177e4 | 1253 | */ |
b0e6e962 | 1254 | bvec_pool_entries = 1 + scale; |
1da177e4 LT |
1255 | |
1256 | fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale); | |
1257 | if (!fs_bio_set) | |
1258 | panic("bio: can't allocate bios\n"); | |
1259 | ||
1260 | bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES, | |
1261 | bio_pair_alloc, bio_pair_free, NULL); | |
1262 | if (!bio_split_pool) | |
1263 | panic("bio: can't create split pool\n"); | |
1264 | ||
1265 | return 0; | |
1266 | } | |
1267 | ||
1268 | subsys_initcall(init_bio); | |
1269 | ||
1270 | EXPORT_SYMBOL(bio_alloc); | |
1271 | EXPORT_SYMBOL(bio_put); | |
3676347a | 1272 | EXPORT_SYMBOL(bio_free); |
1da177e4 LT |
1273 | EXPORT_SYMBOL(bio_endio); |
1274 | EXPORT_SYMBOL(bio_init); | |
1275 | EXPORT_SYMBOL(__bio_clone); | |
1276 | EXPORT_SYMBOL(bio_clone); | |
1277 | EXPORT_SYMBOL(bio_phys_segments); | |
1278 | EXPORT_SYMBOL(bio_hw_segments); | |
1279 | EXPORT_SYMBOL(bio_add_page); | |
6e68af66 | 1280 | EXPORT_SYMBOL(bio_add_pc_page); |
1da177e4 LT |
1281 | EXPORT_SYMBOL(bio_get_nr_vecs); |
1282 | EXPORT_SYMBOL(bio_map_user); | |
1283 | EXPORT_SYMBOL(bio_unmap_user); | |
df46b9a4 | 1284 | EXPORT_SYMBOL(bio_map_kern); |
1da177e4 LT |
1285 | EXPORT_SYMBOL(bio_pair_release); |
1286 | EXPORT_SYMBOL(bio_split); | |
1287 | EXPORT_SYMBOL(bio_split_pool); | |
1288 | EXPORT_SYMBOL(bio_copy_user); | |
1289 | EXPORT_SYMBOL(bio_uncopy_user); | |
1290 | EXPORT_SYMBOL(bioset_create); | |
1291 | EXPORT_SYMBOL(bioset_free); | |
1292 | EXPORT_SYMBOL(bio_alloc_bioset); |