]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/ipc/sem.c | |
4 | * Copyright (C) 1992 Krishna Balasubramanian | |
5 | * Copyright (C) 1995 Eric Schenk, Bruno Haible | |
6 | * | |
1da177e4 LT |
7 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]> |
8 | * | |
9 | * SMP-threaded, sysctl's added | |
624dffcb | 10 | * (c) 1999 Manfred Spraul <[email protected]> |
1da177e4 | 11 | * Enforced range limit on SEM_UNDO |
046c6884 | 12 | * (c) 2001 Red Hat Inc |
1da177e4 LT |
13 | * Lockless wakeup |
14 | * (c) 2003 Manfred Spraul <[email protected]> | |
9ae949fa | 15 | * (c) 2016 Davidlohr Bueso <[email protected]> |
c5cf6359 MS |
16 | * Further wakeup optimizations, documentation |
17 | * (c) 2010 Manfred Spraul <[email protected]> | |
073115d6 SG |
18 | * |
19 | * support for audit of ipc object properties and permission changes | |
20 | * Dustin Kirkland <[email protected]> | |
e3893534 KK |
21 | * |
22 | * namespaces support | |
23 | * OpenVZ, SWsoft Inc. | |
24 | * Pavel Emelianov <[email protected]> | |
c5cf6359 MS |
25 | * |
26 | * Implementation notes: (May 2010) | |
27 | * This file implements System V semaphores. | |
28 | * | |
29 | * User space visible behavior: | |
30 | * - FIFO ordering for semop() operations (just FIFO, not starvation | |
31 | * protection) | |
32 | * - multiple semaphore operations that alter the same semaphore in | |
33 | * one semop() are handled. | |
34 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | |
35 | * SETALL calls. | |
36 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | |
37 | * - undo adjustments at process exit are limited to 0..SEMVMX. | |
38 | * - namespace are supported. | |
b1989a3d | 39 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing |
c5cf6359 MS |
40 | * to /proc/sys/kernel/sem. |
41 | * - statistics about the usage are reported in /proc/sysvipc/sem. | |
42 | * | |
43 | * Internals: | |
44 | * - scalability: | |
45 | * - all global variables are read-mostly. | |
46 | * - semop() calls and semctl(RMID) are synchronized by RCU. | |
47 | * - most operations do write operations (actually: spin_lock calls) to | |
48 | * the per-semaphore array structure. | |
49 | * Thus: Perfect SMP scaling between independent semaphore arrays. | |
50 | * If multiple semaphores in one array are used, then cache line | |
51 | * trashing on the semaphore array spinlock will limit the scaling. | |
2f2ed41d | 52 | * - semncnt and semzcnt are calculated on demand in count_semcnt() |
c5cf6359 MS |
53 | * - the task that performs a successful semop() scans the list of all |
54 | * sleeping tasks and completes any pending operations that can be fulfilled. | |
55 | * Semaphores are actively given to waiting tasks (necessary for FIFO). | |
56 | * (see update_queue()) | |
57 | * - To improve the scalability, the actual wake-up calls are performed after | |
9ae949fa | 58 | * dropping all locks. (see wake_up_sem_queue_prepare()) |
c5cf6359 MS |
59 | * - All work is done by the waker, the woken up task does not have to do |
60 | * anything - not even acquiring a lock or dropping a refcount. | |
61 | * - A woken up task may not even touch the semaphore array anymore, it may | |
62 | * have been destroyed already by a semctl(RMID). | |
c5cf6359 MS |
63 | * - UNDO values are stored in an array (one per process and per |
64 | * semaphore array, lazily allocated). For backwards compatibility, multiple | |
65 | * modes for the UNDO variables are supported (per process, per thread) | |
66 | * (see copy_semundo, CLONE_SYSVSEM) | |
67 | * - There are two lists of the pending operations: a per-array list | |
68 | * and per-semaphore list (stored in the array). This allows to achieve FIFO | |
69 | * ordering without always scanning all pending operations. | |
70 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. | |
1da177e4 LT |
71 | */ |
72 | ||
b0d17578 | 73 | #include <linux/compat.h> |
1da177e4 LT |
74 | #include <linux/slab.h> |
75 | #include <linux/spinlock.h> | |
76 | #include <linux/init.h> | |
77 | #include <linux/proc_fs.h> | |
78 | #include <linux/time.h> | |
1da177e4 LT |
79 | #include <linux/security.h> |
80 | #include <linux/syscalls.h> | |
81 | #include <linux/audit.h> | |
c59ede7b | 82 | #include <linux/capability.h> |
19b4946c | 83 | #include <linux/seq_file.h> |
3e148c79 | 84 | #include <linux/rwsem.h> |
e3893534 | 85 | #include <linux/nsproxy.h> |
ae5e1b22 | 86 | #include <linux/ipc_namespace.h> |
84f001e1 | 87 | #include <linux/sched/wake_q.h> |
ec67aaa4 | 88 | #include <linux/nospec.h> |
0eb71a9d | 89 | #include <linux/rhashtable.h> |
5f921ae9 | 90 | |
7153e402 | 91 | #include <linux/uaccess.h> |
1da177e4 LT |
92 | #include "util.h" |
93 | ||
1a5c1349 EB |
94 | /* One semaphore structure for each semaphore in the system. */ |
95 | struct sem { | |
96 | int semval; /* current value */ | |
97 | /* | |
98 | * PID of the process that last modified the semaphore. For | |
99 | * Linux, specifically these are: | |
100 | * - semop | |
101 | * - semctl, via SETVAL and SETALL. | |
102 | * - at task exit when performing undo adjustments (see exit_sem). | |
103 | */ | |
51d6f263 | 104 | struct pid *sempid; |
1a5c1349 EB |
105 | spinlock_t lock; /* spinlock for fine-grained semtimedop */ |
106 | struct list_head pending_alter; /* pending single-sop operations */ | |
107 | /* that alter the semaphore */ | |
108 | struct list_head pending_const; /* pending single-sop operations */ | |
109 | /* that do not alter the semaphore*/ | |
2a70b787 | 110 | time64_t sem_otime; /* candidate for sem_otime */ |
1a5c1349 EB |
111 | } ____cacheline_aligned_in_smp; |
112 | ||
113 | /* One sem_array data structure for each set of semaphores in the system. */ | |
114 | struct sem_array { | |
115 | struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ | |
116 | time64_t sem_ctime; /* create/last semctl() time */ | |
117 | struct list_head pending_alter; /* pending operations */ | |
118 | /* that alter the array */ | |
119 | struct list_head pending_const; /* pending complex operations */ | |
120 | /* that do not alter semvals */ | |
121 | struct list_head list_id; /* undo requests on this array */ | |
122 | int sem_nsems; /* no. of semaphores in array */ | |
123 | int complex_count; /* pending complex operations */ | |
124 | unsigned int use_global_lock;/* >0: global lock required */ | |
125 | ||
126 | struct sem sems[]; | |
127 | } __randomize_layout; | |
e57940d7 MS |
128 | |
129 | /* One queue for each sleeping process in the system. */ | |
130 | struct sem_queue { | |
e57940d7 MS |
131 | struct list_head list; /* queue of pending operations */ |
132 | struct task_struct *sleeper; /* this process */ | |
133 | struct sem_undo *undo; /* undo structure */ | |
51d6f263 | 134 | struct pid *pid; /* process id of requesting process */ |
e57940d7 MS |
135 | int status; /* completion status of operation */ |
136 | struct sembuf *sops; /* array of pending operations */ | |
ed247b7c | 137 | struct sembuf *blocking; /* the operation that blocked */ |
e57940d7 | 138 | int nsops; /* number of operations */ |
4ce33ec2 DB |
139 | bool alter; /* does *sops alter the array? */ |
140 | bool dupsop; /* sops on more than one sem_num */ | |
e57940d7 MS |
141 | }; |
142 | ||
143 | /* Each task has a list of undo requests. They are executed automatically | |
144 | * when the process exits. | |
145 | */ | |
146 | struct sem_undo { | |
147 | struct list_head list_proc; /* per-process list: * | |
148 | * all undos from one process | |
149 | * rcu protected */ | |
150 | struct rcu_head rcu; /* rcu struct for sem_undo */ | |
151 | struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ | |
152 | struct list_head list_id; /* per semaphore array list: | |
153 | * all undos for one array */ | |
154 | int semid; /* semaphore set identifier */ | |
155 | short *semadj; /* array of adjustments */ | |
156 | /* one per semaphore */ | |
157 | }; | |
158 | ||
159 | /* sem_undo_list controls shared access to the list of sem_undo structures | |
160 | * that may be shared among all a CLONE_SYSVSEM task group. | |
161 | */ | |
162 | struct sem_undo_list { | |
f74370b8 | 163 | refcount_t refcnt; |
e57940d7 MS |
164 | spinlock_t lock; |
165 | struct list_head list_proc; | |
166 | }; | |
167 | ||
168 | ||
ed2ddbf8 | 169 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
e3893534 | 170 | |
7748dbfa | 171 | static int newary(struct ipc_namespace *, struct ipc_params *); |
01b8b07a | 172 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
1da177e4 | 173 | #ifdef CONFIG_PROC_FS |
19b4946c | 174 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
1da177e4 LT |
175 | #endif |
176 | ||
177 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ | |
178 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ | |
179 | ||
9de5ab8a MS |
180 | /* |
181 | * Switching from the mode suitable for simple ops | |
182 | * to the mode for complex ops is costly. Therefore: | |
183 | * use some hysteresis | |
184 | */ | |
185 | #define USE_GLOBAL_LOCK_HYSTERESIS 10 | |
186 | ||
1da177e4 | 187 | /* |
758a6ba3 | 188 | * Locking: |
5864a2fd | 189 | * a) global sem_lock() for read/write |
1da177e4 | 190 | * sem_undo.id_next, |
758a6ba3 | 191 | * sem_array.complex_count, |
5864a2fd MS |
192 | * sem_array.pending{_alter,_const}, |
193 | * sem_array.sem_undo | |
46c0a8ca | 194 | * |
5864a2fd | 195 | * b) global or semaphore sem_lock() for read/write: |
1a233956 | 196 | * sem_array.sems[i].pending_{const,alter}: |
5864a2fd MS |
197 | * |
198 | * c) special: | |
199 | * sem_undo_list.list_proc: | |
200 | * * undo_list->lock for write | |
201 | * * rcu for read | |
9de5ab8a MS |
202 | * use_global_lock: |
203 | * * global sem_lock() for write | |
204 | * * either local or global sem_lock() for read. | |
205 | * | |
206 | * Memory ordering: | |
207 | * Most ordering is enforced by using spin_lock() and spin_unlock(). | |
8116b54e MS |
208 | * |
209 | * Exceptions: | |
210 | * 1) use_global_lock: (SEM_BARRIER_1) | |
9de5ab8a | 211 | * Setting it from non-zero to 0 is a RELEASE, this is ensured by |
8116b54e MS |
212 | * using smp_store_release(): Immediately after setting it to 0, |
213 | * a simple op can start. | |
9de5ab8a MS |
214 | * Testing if it is non-zero is an ACQUIRE, this is ensured by using |
215 | * smp_load_acquire(). | |
216 | * Setting it from 0 to non-zero must be ordered with regards to | |
217 | * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() | |
218 | * is inside a spin_lock() and after a write from 0 to non-zero a | |
219 | * spin_lock()+spin_unlock() is done. | |
8116b54e MS |
220 | * |
221 | * 2) queue.status: (SEM_BARRIER_2) | |
222 | * Initialization is done while holding sem_lock(), so no further barrier is | |
223 | * required. | |
224 | * Setting it to a result code is a RELEASE, this is ensured by both a | |
225 | * smp_store_release() (for case a) and while holding sem_lock() | |
226 | * (for case b). | |
b1989a3d | 227 | * The ACQUIRE when reading the result code without holding sem_lock() is |
8116b54e MS |
228 | * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep(). |
229 | * (case a above). | |
230 | * Reading the result code while holding sem_lock() needs no further barriers, | |
231 | * the locks inside sem_lock() enforce ordering (case b above) | |
232 | * | |
233 | * 3) current->state: | |
234 | * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock(). | |
235 | * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may | |
236 | * happen immediately after calling wake_q_add. As wake_q_add_safe() is called | |
237 | * when holding sem_lock(), no further barriers are required. | |
238 | * | |
239 | * See also ipc/mqueue.c for more details on the covered races. | |
1da177e4 LT |
240 | */ |
241 | ||
e3893534 KK |
242 | #define sc_semmsl sem_ctls[0] |
243 | #define sc_semmns sem_ctls[1] | |
244 | #define sc_semopm sem_ctls[2] | |
245 | #define sc_semmni sem_ctls[3] | |
246 | ||
eae04d25 | 247 | void sem_init_ns(struct ipc_namespace *ns) |
e3893534 | 248 | { |
e3893534 KK |
249 | ns->sc_semmsl = SEMMSL; |
250 | ns->sc_semmns = SEMMNS; | |
251 | ns->sc_semopm = SEMOPM; | |
252 | ns->sc_semmni = SEMMNI; | |
253 | ns->used_sems = 0; | |
eae04d25 | 254 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
e3893534 KK |
255 | } |
256 | ||
ae5e1b22 | 257 | #ifdef CONFIG_IPC_NS |
e3893534 KK |
258 | void sem_exit_ns(struct ipc_namespace *ns) |
259 | { | |
01b8b07a | 260 | free_ipcs(ns, &sem_ids(ns), freeary); |
7d6feeb2 | 261 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
0cfb6aee | 262 | rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); |
e3893534 | 263 | } |
ae5e1b22 | 264 | #endif |
1da177e4 | 265 | |
eae04d25 | 266 | void __init sem_init(void) |
1da177e4 | 267 | { |
eae04d25 | 268 | sem_init_ns(&init_ipc_ns); |
19b4946c MW |
269 | ipc_init_proc_interface("sysvipc/sem", |
270 | " key semid perms nsems uid gid cuid cgid otime ctime\n", | |
e3893534 | 271 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
1da177e4 LT |
272 | } |
273 | ||
f269f40a MS |
274 | /** |
275 | * unmerge_queues - unmerge queues, if possible. | |
276 | * @sma: semaphore array | |
277 | * | |
278 | * The function unmerges the wait queues if complex_count is 0. | |
279 | * It must be called prior to dropping the global semaphore array lock. | |
280 | */ | |
281 | static void unmerge_queues(struct sem_array *sma) | |
282 | { | |
283 | struct sem_queue *q, *tq; | |
284 | ||
285 | /* complex operations still around? */ | |
286 | if (sma->complex_count) | |
287 | return; | |
288 | /* | |
289 | * We will switch back to simple mode. | |
290 | * Move all pending operation back into the per-semaphore | |
291 | * queues. | |
292 | */ | |
293 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
294 | struct sem *curr; | |
1a233956 | 295 | curr = &sma->sems[q->sops[0].sem_num]; |
f269f40a MS |
296 | |
297 | list_add_tail(&q->list, &curr->pending_alter); | |
298 | } | |
299 | INIT_LIST_HEAD(&sma->pending_alter); | |
300 | } | |
301 | ||
302 | /** | |
8001c858 | 303 | * merge_queues - merge single semop queues into global queue |
f269f40a MS |
304 | * @sma: semaphore array |
305 | * | |
306 | * This function merges all per-semaphore queues into the global queue. | |
307 | * It is necessary to achieve FIFO ordering for the pending single-sop | |
308 | * operations when a multi-semop operation must sleep. | |
309 | * Only the alter operations must be moved, the const operations can stay. | |
310 | */ | |
311 | static void merge_queues(struct sem_array *sma) | |
312 | { | |
313 | int i; | |
314 | for (i = 0; i < sma->sem_nsems; i++) { | |
1a233956 | 315 | struct sem *sem = &sma->sems[i]; |
f269f40a MS |
316 | |
317 | list_splice_init(&sem->pending_alter, &sma->pending_alter); | |
318 | } | |
319 | } | |
320 | ||
53dad6d3 DB |
321 | static void sem_rcu_free(struct rcu_head *head) |
322 | { | |
dba4cdd3 MS |
323 | struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); |
324 | struct sem_array *sma = container_of(p, struct sem_array, sem_perm); | |
53dad6d3 | 325 | |
aefad959 | 326 | security_sem_free(&sma->sem_perm); |
e2029dfe | 327 | kvfree(sma); |
53dad6d3 DB |
328 | } |
329 | ||
5e9d5275 | 330 | /* |
5864a2fd | 331 | * Enter the mode suitable for non-simple operations: |
5e9d5275 | 332 | * Caller must own sem_perm.lock. |
5e9d5275 | 333 | */ |
5864a2fd | 334 | static void complexmode_enter(struct sem_array *sma) |
5e9d5275 MS |
335 | { |
336 | int i; | |
337 | struct sem *sem; | |
338 | ||
9de5ab8a MS |
339 | if (sma->use_global_lock > 0) { |
340 | /* | |
341 | * We are already in global lock mode. | |
342 | * Nothing to do, just reset the | |
343 | * counter until we return to simple mode. | |
344 | */ | |
345 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; | |
6d07b68c MS |
346 | return; |
347 | } | |
9de5ab8a | 348 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; |
5864a2fd | 349 | |
5e9d5275 | 350 | for (i = 0; i < sma->sem_nsems; i++) { |
1a233956 | 351 | sem = &sma->sems[i]; |
27d7be18 MS |
352 | spin_lock(&sem->lock); |
353 | spin_unlock(&sem->lock); | |
5e9d5275 | 354 | } |
5864a2fd MS |
355 | } |
356 | ||
357 | /* | |
358 | * Try to leave the mode that disallows simple operations: | |
359 | * Caller must own sem_perm.lock. | |
360 | */ | |
361 | static void complexmode_tryleave(struct sem_array *sma) | |
362 | { | |
363 | if (sma->complex_count) { | |
364 | /* Complex ops are sleeping. | |
365 | * We must stay in complex mode | |
366 | */ | |
367 | return; | |
368 | } | |
9de5ab8a | 369 | if (sma->use_global_lock == 1) { |
8116b54e MS |
370 | |
371 | /* See SEM_BARRIER_1 for purpose/pairing */ | |
9de5ab8a MS |
372 | smp_store_release(&sma->use_global_lock, 0); |
373 | } else { | |
374 | sma->use_global_lock--; | |
375 | } | |
5e9d5275 MS |
376 | } |
377 | ||
5864a2fd | 378 | #define SEM_GLOBAL_LOCK (-1) |
6062a8dc RR |
379 | /* |
380 | * If the request contains only one semaphore operation, and there are | |
381 | * no complex transactions pending, lock only the semaphore involved. | |
382 | * Otherwise, lock the entire semaphore array, since we either have | |
383 | * multiple semaphores in our own semops, or we need to look at | |
384 | * semaphores from other pending complex operations. | |
6062a8dc RR |
385 | */ |
386 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | |
387 | int nsops) | |
388 | { | |
5e9d5275 | 389 | struct sem *sem; |
ec67aaa4 | 390 | int idx; |
6062a8dc | 391 | |
5e9d5275 MS |
392 | if (nsops != 1) { |
393 | /* Complex operation - acquire a full lock */ | |
394 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 395 | |
5864a2fd MS |
396 | /* Prevent parallel simple ops */ |
397 | complexmode_enter(sma); | |
398 | return SEM_GLOBAL_LOCK; | |
5e9d5275 MS |
399 | } |
400 | ||
401 | /* | |
402 | * Only one semaphore affected - try to optimize locking. | |
5864a2fd MS |
403 | * Optimized locking is possible if no complex operation |
404 | * is either enqueued or processed right now. | |
405 | * | |
9de5ab8a | 406 | * Both facts are tracked by use_global_mode. |
5e9d5275 | 407 | */ |
ec67aaa4 DB |
408 | idx = array_index_nospec(sops->sem_num, sma->sem_nsems); |
409 | sem = &sma->sems[idx]; | |
6062a8dc | 410 | |
5864a2fd | 411 | /* |
9de5ab8a | 412 | * Initial check for use_global_lock. Just an optimization, |
5864a2fd MS |
413 | * no locking, no memory barrier. |
414 | */ | |
9de5ab8a | 415 | if (!sma->use_global_lock) { |
6062a8dc | 416 | /* |
5e9d5275 MS |
417 | * It appears that no complex operation is around. |
418 | * Acquire the per-semaphore lock. | |
6062a8dc | 419 | */ |
5e9d5275 MS |
420 | spin_lock(&sem->lock); |
421 | ||
8116b54e | 422 | /* see SEM_BARRIER_1 for purpose/pairing */ |
9de5ab8a | 423 | if (!smp_load_acquire(&sma->use_global_lock)) { |
5864a2fd MS |
424 | /* fast path successful! */ |
425 | return sops->sem_num; | |
6062a8dc | 426 | } |
5e9d5275 MS |
427 | spin_unlock(&sem->lock); |
428 | } | |
429 | ||
430 | /* slow path: acquire the full lock */ | |
431 | ipc_lock_object(&sma->sem_perm); | |
6062a8dc | 432 | |
9de5ab8a MS |
433 | if (sma->use_global_lock == 0) { |
434 | /* | |
435 | * The use_global_lock mode ended while we waited for | |
436 | * sma->sem_perm.lock. Thus we must switch to locking | |
437 | * with sem->lock. | |
438 | * Unlike in the fast path, there is no need to recheck | |
439 | * sma->use_global_lock after we have acquired sem->lock: | |
440 | * We own sma->sem_perm.lock, thus use_global_lock cannot | |
441 | * change. | |
5e9d5275 MS |
442 | */ |
443 | spin_lock(&sem->lock); | |
9de5ab8a | 444 | |
5e9d5275 MS |
445 | ipc_unlock_object(&sma->sem_perm); |
446 | return sops->sem_num; | |
6062a8dc | 447 | } else { |
9de5ab8a MS |
448 | /* |
449 | * Not a false alarm, thus continue to use the global lock | |
450 | * mode. No need for complexmode_enter(), this was done by | |
451 | * the caller that has set use_global_mode to non-zero. | |
6062a8dc | 452 | */ |
5864a2fd | 453 | return SEM_GLOBAL_LOCK; |
6062a8dc | 454 | } |
6062a8dc RR |
455 | } |
456 | ||
457 | static inline void sem_unlock(struct sem_array *sma, int locknum) | |
458 | { | |
5864a2fd | 459 | if (locknum == SEM_GLOBAL_LOCK) { |
f269f40a | 460 | unmerge_queues(sma); |
5864a2fd | 461 | complexmode_tryleave(sma); |
cf9d5d78 | 462 | ipc_unlock_object(&sma->sem_perm); |
6062a8dc | 463 | } else { |
1a233956 | 464 | struct sem *sem = &sma->sems[locknum]; |
6062a8dc RR |
465 | spin_unlock(&sem->lock); |
466 | } | |
6062a8dc RR |
467 | } |
468 | ||
3e148c79 | 469 | /* |
d9a605e4 | 470 | * sem_lock_(check_) routines are called in the paths where the rwsem |
3e148c79 | 471 | * is not held. |
321310ce LT |
472 | * |
473 | * The caller holds the RCU read lock. | |
3e148c79 | 474 | */ |
16df3674 DB |
475 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) |
476 | { | |
55b7ae50 | 477 | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
16df3674 DB |
478 | |
479 | if (IS_ERR(ipcp)) | |
480 | return ERR_CAST(ipcp); | |
481 | ||
482 | return container_of(ipcp, struct sem_array, sem_perm); | |
483 | } | |
484 | ||
16df3674 DB |
485 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, |
486 | int id) | |
487 | { | |
488 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | |
489 | ||
490 | if (IS_ERR(ipcp)) | |
491 | return ERR_CAST(ipcp); | |
b1ed88b4 | 492 | |
03f02c76 | 493 | return container_of(ipcp, struct sem_array, sem_perm); |
023a5355 ND |
494 | } |
495 | ||
6ff37972 PP |
496 | static inline void sem_lock_and_putref(struct sem_array *sma) |
497 | { | |
6062a8dc | 498 | sem_lock(sma, NULL, -1); |
dba4cdd3 | 499 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
6ff37972 PP |
500 | } |
501 | ||
7ca7e564 ND |
502 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
503 | { | |
504 | ipc_rmid(&sem_ids(ns), &s->sem_perm); | |
505 | } | |
506 | ||
101ede01 KC |
507 | static struct sem_array *sem_alloc(size_t nsems) |
508 | { | |
509 | struct sem_array *sma; | |
101ede01 KC |
510 | |
511 | if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) | |
512 | return NULL; | |
513 | ||
4a2ae929 | 514 | sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL); |
101ede01 KC |
515 | if (unlikely(!sma)) |
516 | return NULL; | |
517 | ||
101ede01 KC |
518 | return sma; |
519 | } | |
520 | ||
f4566f04 ND |
521 | /** |
522 | * newary - Create a new semaphore set | |
523 | * @ns: namespace | |
524 | * @params: ptr to the structure that contains key, semflg and nsems | |
525 | * | |
d9a605e4 | 526 | * Called with sem_ids.rwsem held (as a writer) |
f4566f04 | 527 | */ |
7748dbfa | 528 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
1da177e4 | 529 | { |
1da177e4 LT |
530 | int retval; |
531 | struct sem_array *sma; | |
7748dbfa ND |
532 | key_t key = params->key; |
533 | int nsems = params->u.nsems; | |
534 | int semflg = params->flg; | |
b97e820f | 535 | int i; |
1da177e4 LT |
536 | |
537 | if (!nsems) | |
538 | return -EINVAL; | |
e3893534 | 539 | if (ns->used_sems + nsems > ns->sc_semmns) |
1da177e4 LT |
540 | return -ENOSPC; |
541 | ||
101ede01 | 542 | sma = sem_alloc(nsems); |
3ab08fe2 | 543 | if (!sma) |
1da177e4 | 544 | return -ENOMEM; |
3ab08fe2 | 545 | |
1da177e4 LT |
546 | sma->sem_perm.mode = (semflg & S_IRWXUGO); |
547 | sma->sem_perm.key = key; | |
548 | ||
549 | sma->sem_perm.security = NULL; | |
aefad959 | 550 | retval = security_sem_alloc(&sma->sem_perm); |
1da177e4 | 551 | if (retval) { |
e2029dfe | 552 | kvfree(sma); |
1da177e4 LT |
553 | return retval; |
554 | } | |
555 | ||
6062a8dc | 556 | for (i = 0; i < nsems; i++) { |
1a233956 MS |
557 | INIT_LIST_HEAD(&sma->sems[i].pending_alter); |
558 | INIT_LIST_HEAD(&sma->sems[i].pending_const); | |
559 | spin_lock_init(&sma->sems[i].lock); | |
6062a8dc | 560 | } |
b97e820f MS |
561 | |
562 | sma->complex_count = 0; | |
9de5ab8a | 563 | sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; |
1a82e9e1 MS |
564 | INIT_LIST_HEAD(&sma->pending_alter); |
565 | INIT_LIST_HEAD(&sma->pending_const); | |
4daa28f6 | 566 | INIT_LIST_HEAD(&sma->list_id); |
1da177e4 | 567 | sma->sem_nsems = nsems; |
e54d02b2 | 568 | sma->sem_ctime = ktime_get_real_seconds(); |
e8577d1f | 569 | |
39c96a1b | 570 | /* ipc_addid() locks sma upon success. */ |
2ec55f80 MS |
571 | retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); |
572 | if (retval < 0) { | |
39cfffd7 | 573 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
2ec55f80 | 574 | return retval; |
e8577d1f MS |
575 | } |
576 | ns->used_sems += nsems; | |
577 | ||
6062a8dc | 578 | sem_unlock(sma, -1); |
6d49dab8 | 579 | rcu_read_unlock(); |
1da177e4 | 580 | |
7ca7e564 | 581 | return sma->sem_perm.id; |
1da177e4 LT |
582 | } |
583 | ||
7748dbfa | 584 | |
f4566f04 | 585 | /* |
d9a605e4 | 586 | * Called with sem_ids.rwsem and ipcp locked. |
f4566f04 | 587 | */ |
00898e85 | 588 | static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params) |
7748dbfa | 589 | { |
03f02c76 ND |
590 | struct sem_array *sma; |
591 | ||
592 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
593 | if (params->u.nsems > sma->sem_nsems) | |
7748dbfa ND |
594 | return -EINVAL; |
595 | ||
596 | return 0; | |
597 | } | |
598 | ||
69894718 | 599 | long ksys_semget(key_t key, int nsems, int semflg) |
1da177e4 | 600 | { |
e3893534 | 601 | struct ipc_namespace *ns; |
eb66ec44 MK |
602 | static const struct ipc_ops sem_ops = { |
603 | .getnew = newary, | |
50ab44b1 | 604 | .associate = security_sem_associate, |
eb66ec44 MK |
605 | .more_checks = sem_more_checks, |
606 | }; | |
7748dbfa | 607 | struct ipc_params sem_params; |
e3893534 KK |
608 | |
609 | ns = current->nsproxy->ipc_ns; | |
1da177e4 | 610 | |
e3893534 | 611 | if (nsems < 0 || nsems > ns->sc_semmsl) |
1da177e4 | 612 | return -EINVAL; |
7ca7e564 | 613 | |
7748dbfa ND |
614 | sem_params.key = key; |
615 | sem_params.flg = semflg; | |
616 | sem_params.u.nsems = nsems; | |
1da177e4 | 617 | |
7748dbfa | 618 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
1da177e4 LT |
619 | } |
620 | ||
69894718 DB |
621 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
622 | { | |
623 | return ksys_semget(key, nsems, semflg); | |
624 | } | |
625 | ||
78f5009c | 626 | /** |
4ce33ec2 DB |
627 | * perform_atomic_semop[_slow] - Attempt to perform semaphore |
628 | * operations on a given array. | |
758a6ba3 | 629 | * @sma: semaphore array |
d198cd6d | 630 | * @q: struct sem_queue that describes the operation |
758a6ba3 | 631 | * |
4ce33ec2 DB |
632 | * Caller blocking are as follows, based the value |
633 | * indicated by the semaphore operation (sem_op): | |
634 | * | |
635 | * (1) >0 never blocks. | |
636 | * (2) 0 (wait-for-zero operation): semval is non-zero. | |
637 | * (3) <0 attempting to decrement semval to a value smaller than zero. | |
638 | * | |
758a6ba3 MS |
639 | * Returns 0 if the operation was possible. |
640 | * Returns 1 if the operation is impossible, the caller must sleep. | |
4ce33ec2 | 641 | * Returns <0 for error codes. |
1da177e4 | 642 | */ |
4ce33ec2 | 643 | static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) |
1da177e4 | 644 | { |
51d6f263 EB |
645 | int result, sem_op, nsops; |
646 | struct pid *pid; | |
1da177e4 | 647 | struct sembuf *sop; |
239521f3 | 648 | struct sem *curr; |
d198cd6d MS |
649 | struct sembuf *sops; |
650 | struct sem_undo *un; | |
651 | ||
652 | sops = q->sops; | |
653 | nsops = q->nsops; | |
654 | un = q->undo; | |
1da177e4 LT |
655 | |
656 | for (sop = sops; sop < sops + nsops; sop++) { | |
ec67aaa4 DB |
657 | int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); |
658 | curr = &sma->sems[idx]; | |
1da177e4 LT |
659 | sem_op = sop->sem_op; |
660 | result = curr->semval; | |
78f5009c | 661 | |
1da177e4 LT |
662 | if (!sem_op && result) |
663 | goto would_block; | |
664 | ||
665 | result += sem_op; | |
666 | if (result < 0) | |
667 | goto would_block; | |
668 | if (result > SEMVMX) | |
669 | goto out_of_range; | |
78f5009c | 670 | |
1da177e4 LT |
671 | if (sop->sem_flg & SEM_UNDO) { |
672 | int undo = un->semadj[sop->sem_num] - sem_op; | |
78f5009c | 673 | /* Exceeding the undo range is an error. */ |
1da177e4 LT |
674 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
675 | goto out_of_range; | |
78f5009c | 676 | un->semadj[sop->sem_num] = undo; |
1da177e4 | 677 | } |
78f5009c | 678 | |
1da177e4 LT |
679 | curr->semval = result; |
680 | } | |
681 | ||
682 | sop--; | |
d198cd6d | 683 | pid = q->pid; |
1da177e4 | 684 | while (sop >= sops) { |
51d6f263 | 685 | ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); |
1da177e4 LT |
686 | sop--; |
687 | } | |
78f5009c | 688 | |
1da177e4 LT |
689 | return 0; |
690 | ||
691 | out_of_range: | |
692 | result = -ERANGE; | |
693 | goto undo; | |
694 | ||
695 | would_block: | |
ed247b7c MS |
696 | q->blocking = sop; |
697 | ||
1da177e4 LT |
698 | if (sop->sem_flg & IPC_NOWAIT) |
699 | result = -EAGAIN; | |
700 | else | |
701 | result = 1; | |
702 | ||
703 | undo: | |
704 | sop--; | |
705 | while (sop >= sops) { | |
78f5009c | 706 | sem_op = sop->sem_op; |
1a233956 | 707 | sma->sems[sop->sem_num].semval -= sem_op; |
78f5009c PM |
708 | if (sop->sem_flg & SEM_UNDO) |
709 | un->semadj[sop->sem_num] += sem_op; | |
1da177e4 LT |
710 | sop--; |
711 | } | |
712 | ||
713 | return result; | |
714 | } | |
715 | ||
4ce33ec2 DB |
716 | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) |
717 | { | |
718 | int result, sem_op, nsops; | |
719 | struct sembuf *sop; | |
720 | struct sem *curr; | |
721 | struct sembuf *sops; | |
722 | struct sem_undo *un; | |
723 | ||
724 | sops = q->sops; | |
725 | nsops = q->nsops; | |
726 | un = q->undo; | |
727 | ||
728 | if (unlikely(q->dupsop)) | |
729 | return perform_atomic_semop_slow(sma, q); | |
730 | ||
731 | /* | |
732 | * We scan the semaphore set twice, first to ensure that the entire | |
733 | * operation can succeed, therefore avoiding any pointless writes | |
734 | * to shared memory and having to undo such changes in order to block | |
735 | * until the operations can go through. | |
736 | */ | |
737 | for (sop = sops; sop < sops + nsops; sop++) { | |
ec67aaa4 DB |
738 | int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); |
739 | ||
740 | curr = &sma->sems[idx]; | |
4ce33ec2 DB |
741 | sem_op = sop->sem_op; |
742 | result = curr->semval; | |
743 | ||
744 | if (!sem_op && result) | |
745 | goto would_block; /* wait-for-zero */ | |
746 | ||
747 | result += sem_op; | |
748 | if (result < 0) | |
749 | goto would_block; | |
750 | ||
751 | if (result > SEMVMX) | |
752 | return -ERANGE; | |
753 | ||
754 | if (sop->sem_flg & SEM_UNDO) { | |
755 | int undo = un->semadj[sop->sem_num] - sem_op; | |
756 | ||
757 | /* Exceeding the undo range is an error. */ | |
758 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | |
759 | return -ERANGE; | |
760 | } | |
761 | } | |
762 | ||
763 | for (sop = sops; sop < sops + nsops; sop++) { | |
1a233956 | 764 | curr = &sma->sems[sop->sem_num]; |
4ce33ec2 DB |
765 | sem_op = sop->sem_op; |
766 | result = curr->semval; | |
767 | ||
768 | if (sop->sem_flg & SEM_UNDO) { | |
769 | int undo = un->semadj[sop->sem_num] - sem_op; | |
770 | ||
771 | un->semadj[sop->sem_num] = undo; | |
772 | } | |
773 | curr->semval += sem_op; | |
51d6f263 | 774 | ipc_update_pid(&curr->sempid, q->pid); |
4ce33ec2 DB |
775 | } |
776 | ||
777 | return 0; | |
778 | ||
779 | would_block: | |
780 | q->blocking = sop; | |
781 | return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; | |
782 | } | |
783 | ||
9ae949fa DB |
784 | static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, |
785 | struct wake_q_head *wake_q) | |
0a2b9d4c | 786 | { |
a11ddb37 VG |
787 | struct task_struct *sleeper; |
788 | ||
789 | sleeper = get_task_struct(q->sleeper); | |
8116b54e | 790 | |
7497835f | 791 | /* see SEM_BARRIER_2 for purpose/pairing */ |
8116b54e MS |
792 | smp_store_release(&q->status, error); |
793 | ||
a11ddb37 | 794 | wake_q_add_safe(wake_q, sleeper); |
d4212093 NP |
795 | } |
796 | ||
b97e820f MS |
797 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
798 | { | |
799 | list_del(&q->list); | |
9f1bc2c9 | 800 | if (q->nsops > 1) |
b97e820f MS |
801 | sma->complex_count--; |
802 | } | |
803 | ||
fd5db422 MS |
804 | /** check_restart(sma, q) |
805 | * @sma: semaphore array | |
806 | * @q: the operation that just completed | |
807 | * | |
808 | * update_queue is O(N^2) when it restarts scanning the whole queue of | |
809 | * waiting operations. Therefore this function checks if the restart is | |
810 | * really necessary. It is called after a previously waiting operation | |
1a82e9e1 MS |
811 | * modified the array. |
812 | * Note that wait-for-zero operations are handled without restart. | |
fd5db422 | 813 | */ |
4663d3e8 | 814 | static inline int check_restart(struct sem_array *sma, struct sem_queue *q) |
fd5db422 | 815 | { |
1a82e9e1 MS |
816 | /* pending complex alter operations are too difficult to analyse */ |
817 | if (!list_empty(&sma->pending_alter)) | |
fd5db422 MS |
818 | return 1; |
819 | ||
820 | /* we were a sleeping complex operation. Too difficult */ | |
821 | if (q->nsops > 1) | |
822 | return 1; | |
823 | ||
1a82e9e1 MS |
824 | /* It is impossible that someone waits for the new value: |
825 | * - complex operations always restart. | |
b1989a3d | 826 | * - wait-for-zero are handled separately. |
1a82e9e1 MS |
827 | * - q is a previously sleeping simple operation that |
828 | * altered the array. It must be a decrement, because | |
829 | * simple increments never sleep. | |
830 | * - If there are older (higher priority) decrements | |
831 | * in the queue, then they have observed the original | |
832 | * semval value and couldn't proceed. The operation | |
833 | * decremented to value - thus they won't proceed either. | |
834 | */ | |
835 | return 0; | |
836 | } | |
fd5db422 | 837 | |
1a82e9e1 | 838 | /** |
8001c858 | 839 | * wake_const_ops - wake up non-alter tasks |
1a82e9e1 MS |
840 | * @sma: semaphore array. |
841 | * @semnum: semaphore that was modified. | |
9ae949fa | 842 | * @wake_q: lockless wake-queue head. |
1a82e9e1 MS |
843 | * |
844 | * wake_const_ops must be called after a semaphore in a semaphore array | |
845 | * was set to 0. If complex const operations are pending, wake_const_ops must | |
846 | * be called with semnum = -1, as well as with the number of each modified | |
847 | * semaphore. | |
9ae949fa | 848 | * The tasks that must be woken up are added to @wake_q. The return code |
1a82e9e1 MS |
849 | * is stored in q->pid. |
850 | * The function returns 1 if at least one operation was completed successfully. | |
851 | */ | |
852 | static int wake_const_ops(struct sem_array *sma, int semnum, | |
9ae949fa | 853 | struct wake_q_head *wake_q) |
1a82e9e1 | 854 | { |
f150f02c | 855 | struct sem_queue *q, *tmp; |
1a82e9e1 MS |
856 | struct list_head *pending_list; |
857 | int semop_completed = 0; | |
858 | ||
859 | if (semnum == -1) | |
860 | pending_list = &sma->pending_const; | |
861 | else | |
1a233956 | 862 | pending_list = &sma->sems[semnum].pending_const; |
fd5db422 | 863 | |
f150f02c DB |
864 | list_for_each_entry_safe(q, tmp, pending_list, list) { |
865 | int error = perform_atomic_semop(sma, q); | |
1a82e9e1 | 866 | |
f150f02c DB |
867 | if (error > 0) |
868 | continue; | |
869 | /* operation completed, remove from queue & wakeup */ | |
870 | unlink_queue(sma, q); | |
1a82e9e1 | 871 | |
f150f02c DB |
872 | wake_up_sem_queue_prepare(q, error, wake_q); |
873 | if (error == 0) | |
874 | semop_completed = 1; | |
1a82e9e1 | 875 | } |
f150f02c | 876 | |
1a82e9e1 MS |
877 | return semop_completed; |
878 | } | |
879 | ||
880 | /** | |
8001c858 | 881 | * do_smart_wakeup_zero - wakeup all wait for zero tasks |
1a82e9e1 MS |
882 | * @sma: semaphore array |
883 | * @sops: operations that were performed | |
884 | * @nsops: number of operations | |
9ae949fa | 885 | * @wake_q: lockless wake-queue head |
1a82e9e1 | 886 | * |
8001c858 DB |
887 | * Checks all required queue for wait-for-zero operations, based |
888 | * on the actual changes that were performed on the semaphore array. | |
1a82e9e1 MS |
889 | * The function returns 1 if at least one operation was completed successfully. |
890 | */ | |
891 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | |
9ae949fa | 892 | int nsops, struct wake_q_head *wake_q) |
1a82e9e1 MS |
893 | { |
894 | int i; | |
895 | int semop_completed = 0; | |
896 | int got_zero = 0; | |
897 | ||
898 | /* first: the per-semaphore queues, if known */ | |
899 | if (sops) { | |
900 | for (i = 0; i < nsops; i++) { | |
901 | int num = sops[i].sem_num; | |
902 | ||
1a233956 | 903 | if (sma->sems[num].semval == 0) { |
1a82e9e1 | 904 | got_zero = 1; |
9ae949fa | 905 | semop_completed |= wake_const_ops(sma, num, wake_q); |
1a82e9e1 MS |
906 | } |
907 | } | |
908 | } else { | |
909 | /* | |
910 | * No sops means modified semaphores not known. | |
911 | * Assume all were changed. | |
fd5db422 | 912 | */ |
1a82e9e1 | 913 | for (i = 0; i < sma->sem_nsems; i++) { |
1a233956 | 914 | if (sma->sems[i].semval == 0) { |
1a82e9e1 | 915 | got_zero = 1; |
9ae949fa | 916 | semop_completed |= wake_const_ops(sma, i, wake_q); |
1a82e9e1 MS |
917 | } |
918 | } | |
fd5db422 MS |
919 | } |
920 | /* | |
1a82e9e1 MS |
921 | * If one of the modified semaphores got 0, |
922 | * then check the global queue, too. | |
fd5db422 | 923 | */ |
1a82e9e1 | 924 | if (got_zero) |
9ae949fa | 925 | semop_completed |= wake_const_ops(sma, -1, wake_q); |
fd5db422 | 926 | |
1a82e9e1 | 927 | return semop_completed; |
fd5db422 MS |
928 | } |
929 | ||
636c6be8 MS |
930 | |
931 | /** | |
8001c858 | 932 | * update_queue - look for tasks that can be completed. |
636c6be8 MS |
933 | * @sma: semaphore array. |
934 | * @semnum: semaphore that was modified. | |
9ae949fa | 935 | * @wake_q: lockless wake-queue head. |
636c6be8 MS |
936 | * |
937 | * update_queue must be called after a semaphore in a semaphore array | |
9f1bc2c9 RR |
938 | * was modified. If multiple semaphores were modified, update_queue must |
939 | * be called with semnum = -1, as well as with the number of each modified | |
940 | * semaphore. | |
9ae949fa | 941 | * The tasks that must be woken up are added to @wake_q. The return code |
0a2b9d4c | 942 | * is stored in q->pid. |
1a82e9e1 MS |
943 | * The function internally checks if const operations can now succeed. |
944 | * | |
0a2b9d4c | 945 | * The function return 1 if at least one semop was completed successfully. |
1da177e4 | 946 | */ |
9ae949fa | 947 | static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) |
1da177e4 | 948 | { |
f150f02c | 949 | struct sem_queue *q, *tmp; |
636c6be8 | 950 | struct list_head *pending_list; |
0a2b9d4c | 951 | int semop_completed = 0; |
636c6be8 | 952 | |
9f1bc2c9 | 953 | if (semnum == -1) |
1a82e9e1 | 954 | pending_list = &sma->pending_alter; |
9f1bc2c9 | 955 | else |
1a233956 | 956 | pending_list = &sma->sems[semnum].pending_alter; |
9cad200c NP |
957 | |
958 | again: | |
f150f02c | 959 | list_for_each_entry_safe(q, tmp, pending_list, list) { |
fd5db422 | 960 | int error, restart; |
636c6be8 | 961 | |
d987f8b2 MS |
962 | /* If we are scanning the single sop, per-semaphore list of |
963 | * one semaphore and that semaphore is 0, then it is not | |
1a82e9e1 | 964 | * necessary to scan further: simple increments |
d987f8b2 MS |
965 | * that affect only one entry succeed immediately and cannot |
966 | * be in the per semaphore pending queue, and decrements | |
967 | * cannot be successful if the value is already 0. | |
968 | */ | |
1a233956 | 969 | if (semnum != -1 && sma->sems[semnum].semval == 0) |
d987f8b2 MS |
970 | break; |
971 | ||
d198cd6d | 972 | error = perform_atomic_semop(sma, q); |
1da177e4 LT |
973 | |
974 | /* Does q->sleeper still need to sleep? */ | |
9cad200c NP |
975 | if (error > 0) |
976 | continue; | |
977 | ||
b97e820f | 978 | unlink_queue(sma, q); |
9cad200c | 979 | |
0a2b9d4c | 980 | if (error) { |
fd5db422 | 981 | restart = 0; |
0a2b9d4c MS |
982 | } else { |
983 | semop_completed = 1; | |
9ae949fa | 984 | do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); |
fd5db422 | 985 | restart = check_restart(sma, q); |
0a2b9d4c | 986 | } |
fd5db422 | 987 | |
9ae949fa | 988 | wake_up_sem_queue_prepare(q, error, wake_q); |
fd5db422 | 989 | if (restart) |
9cad200c | 990 | goto again; |
1da177e4 | 991 | } |
0a2b9d4c | 992 | return semop_completed; |
1da177e4 LT |
993 | } |
994 | ||
0e8c6656 | 995 | /** |
8001c858 | 996 | * set_semotime - set sem_otime |
0e8c6656 MS |
997 | * @sma: semaphore array |
998 | * @sops: operations that modified the array, may be NULL | |
999 | * | |
1000 | * sem_otime is replicated to avoid cache line trashing. | |
1001 | * This function sets one instance to the current time. | |
1002 | */ | |
1003 | static void set_semotime(struct sem_array *sma, struct sembuf *sops) | |
1004 | { | |
1005 | if (sops == NULL) { | |
2a70b787 | 1006 | sma->sems[0].sem_otime = ktime_get_real_seconds(); |
0e8c6656 | 1007 | } else { |
1a233956 | 1008 | sma->sems[sops[0].sem_num].sem_otime = |
2a70b787 | 1009 | ktime_get_real_seconds(); |
0e8c6656 MS |
1010 | } |
1011 | } | |
1012 | ||
0a2b9d4c | 1013 | /** |
8001c858 | 1014 | * do_smart_update - optimized update_queue |
fd5db422 MS |
1015 | * @sma: semaphore array |
1016 | * @sops: operations that were performed | |
1017 | * @nsops: number of operations | |
0a2b9d4c | 1018 | * @otime: force setting otime |
9ae949fa | 1019 | * @wake_q: lockless wake-queue head |
fd5db422 | 1020 | * |
1a82e9e1 MS |
1021 | * do_smart_update() does the required calls to update_queue and wakeup_zero, |
1022 | * based on the actual changes that were performed on the semaphore array. | |
0a2b9d4c | 1023 | * Note that the function does not do the actual wake-up: the caller is |
9ae949fa | 1024 | * responsible for calling wake_up_q(). |
0a2b9d4c | 1025 | * It is safe to perform this call after dropping all locks. |
fd5db422 | 1026 | */ |
0a2b9d4c | 1027 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
9ae949fa | 1028 | int otime, struct wake_q_head *wake_q) |
fd5db422 MS |
1029 | { |
1030 | int i; | |
1031 | ||
9ae949fa | 1032 | otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); |
1a82e9e1 | 1033 | |
f269f40a MS |
1034 | if (!list_empty(&sma->pending_alter)) { |
1035 | /* semaphore array uses the global queue - just process it. */ | |
9ae949fa | 1036 | otime |= update_queue(sma, -1, wake_q); |
f269f40a MS |
1037 | } else { |
1038 | if (!sops) { | |
1039 | /* | |
1040 | * No sops, thus the modified semaphores are not | |
1041 | * known. Check all. | |
1042 | */ | |
1043 | for (i = 0; i < sma->sem_nsems; i++) | |
9ae949fa | 1044 | otime |= update_queue(sma, i, wake_q); |
f269f40a MS |
1045 | } else { |
1046 | /* | |
1047 | * Check the semaphores that were increased: | |
1048 | * - No complex ops, thus all sleeping ops are | |
1049 | * decrease. | |
1050 | * - if we decreased the value, then any sleeping | |
b1989a3d | 1051 | * semaphore ops won't be able to run: If the |
f269f40a MS |
1052 | * previous value was too small, then the new |
1053 | * value will be too small, too. | |
1054 | */ | |
1055 | for (i = 0; i < nsops; i++) { | |
1056 | if (sops[i].sem_op > 0) { | |
1057 | otime |= update_queue(sma, | |
9ae949fa | 1058 | sops[i].sem_num, wake_q); |
f269f40a | 1059 | } |
ab465df9 | 1060 | } |
9f1bc2c9 | 1061 | } |
fd5db422 | 1062 | } |
0e8c6656 MS |
1063 | if (otime) |
1064 | set_semotime(sma, sops); | |
fd5db422 MS |
1065 | } |
1066 | ||
2f2ed41d | 1067 | /* |
b220c57a | 1068 | * check_qop: Test if a queued operation sleeps on the semaphore semnum |
2f2ed41d MS |
1069 | */ |
1070 | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, | |
1071 | bool count_zero) | |
1072 | { | |
b220c57a | 1073 | struct sembuf *sop = q->blocking; |
2f2ed41d | 1074 | |
9b44ee2e MS |
1075 | /* |
1076 | * Linux always (since 0.99.10) reported a task as sleeping on all | |
1077 | * semaphores. This violates SUS, therefore it was changed to the | |
1078 | * standard compliant behavior. | |
1079 | * Give the administrators a chance to notice that an application | |
1080 | * might misbehave because it relies on the Linux behavior. | |
1081 | */ | |
1082 | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" | |
1083 | "The task %s (%d) triggered the difference, watch for misbehavior.\n", | |
1084 | current->comm, task_pid_nr(current)); | |
1085 | ||
b220c57a MS |
1086 | if (sop->sem_num != semnum) |
1087 | return 0; | |
2f2ed41d | 1088 | |
b220c57a MS |
1089 | if (count_zero && sop->sem_op == 0) |
1090 | return 1; | |
1091 | if (!count_zero && sop->sem_op < 0) | |
1092 | return 1; | |
1093 | ||
1094 | return 0; | |
2f2ed41d MS |
1095 | } |
1096 | ||
1da177e4 LT |
1097 | /* The following counts are associated to each semaphore: |
1098 | * semncnt number of tasks waiting on semval being nonzero | |
1099 | * semzcnt number of tasks waiting on semval being zero | |
b220c57a MS |
1100 | * |
1101 | * Per definition, a task waits only on the semaphore of the first semop | |
1102 | * that cannot proceed, even if additional operation would block, too. | |
1da177e4 | 1103 | */ |
2f2ed41d MS |
1104 | static int count_semcnt(struct sem_array *sma, ushort semnum, |
1105 | bool count_zero) | |
1da177e4 | 1106 | { |
2f2ed41d | 1107 | struct list_head *l; |
239521f3 | 1108 | struct sem_queue *q; |
2f2ed41d | 1109 | int semcnt; |
1da177e4 | 1110 | |
2f2ed41d MS |
1111 | semcnt = 0; |
1112 | /* First: check the simple operations. They are easy to evaluate */ | |
1113 | if (count_zero) | |
1a233956 | 1114 | l = &sma->sems[semnum].pending_const; |
2f2ed41d | 1115 | else |
1a233956 | 1116 | l = &sma->sems[semnum].pending_alter; |
1da177e4 | 1117 | |
2f2ed41d MS |
1118 | list_for_each_entry(q, l, list) { |
1119 | /* all task on a per-semaphore list sleep on exactly | |
1120 | * that semaphore | |
1121 | */ | |
1122 | semcnt++; | |
ebc2e5e6 RR |
1123 | } |
1124 | ||
2f2ed41d | 1125 | /* Then: check the complex operations. */ |
1994862d | 1126 | list_for_each_entry(q, &sma->pending_alter, list) { |
2f2ed41d MS |
1127 | semcnt += check_qop(sma, semnum, q, count_zero); |
1128 | } | |
1129 | if (count_zero) { | |
1130 | list_for_each_entry(q, &sma->pending_const, list) { | |
1131 | semcnt += check_qop(sma, semnum, q, count_zero); | |
1132 | } | |
1994862d | 1133 | } |
2f2ed41d | 1134 | return semcnt; |
1da177e4 LT |
1135 | } |
1136 | ||
d9a605e4 DB |
1137 | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked |
1138 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem | |
3e148c79 | 1139 | * remains locked on exit. |
1da177e4 | 1140 | */ |
01b8b07a | 1141 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
1da177e4 | 1142 | { |
380af1b3 MS |
1143 | struct sem_undo *un, *tu; |
1144 | struct sem_queue *q, *tq; | |
01b8b07a | 1145 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
9f1bc2c9 | 1146 | int i; |
9ae949fa | 1147 | DEFINE_WAKE_Q(wake_q); |
1da177e4 | 1148 | |
380af1b3 | 1149 | /* Free the existing undo structures for this semaphore set. */ |
cf9d5d78 | 1150 | ipc_assert_locked_object(&sma->sem_perm); |
380af1b3 MS |
1151 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
1152 | list_del(&un->list_id); | |
1153 | spin_lock(&un->ulp->lock); | |
1da177e4 | 1154 | un->semid = -1; |
380af1b3 MS |
1155 | list_del_rcu(&un->list_proc); |
1156 | spin_unlock(&un->ulp->lock); | |
693a8b6e | 1157 | kfree_rcu(un, rcu); |
380af1b3 | 1158 | } |
1da177e4 LT |
1159 | |
1160 | /* Wake up all pending processes and let them fail with EIDRM. */ | |
1a82e9e1 MS |
1161 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { |
1162 | unlink_queue(sma, q); | |
9ae949fa | 1163 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
1a82e9e1 MS |
1164 | } |
1165 | ||
1166 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
b97e820f | 1167 | unlink_queue(sma, q); |
9ae949fa | 1168 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
1da177e4 | 1169 | } |
9f1bc2c9 | 1170 | for (i = 0; i < sma->sem_nsems; i++) { |
1a233956 | 1171 | struct sem *sem = &sma->sems[i]; |
1a82e9e1 MS |
1172 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { |
1173 | unlink_queue(sma, q); | |
9ae949fa | 1174 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
1a82e9e1 MS |
1175 | } |
1176 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | |
9f1bc2c9 | 1177 | unlink_queue(sma, q); |
9ae949fa | 1178 | wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); |
9f1bc2c9 | 1179 | } |
51d6f263 | 1180 | ipc_update_pid(&sem->sempid, NULL); |
9f1bc2c9 | 1181 | } |
1da177e4 | 1182 | |
7ca7e564 ND |
1183 | /* Remove the semaphore set from the IDR */ |
1184 | sem_rmid(ns, sma); | |
6062a8dc | 1185 | sem_unlock(sma, -1); |
6d49dab8 | 1186 | rcu_read_unlock(); |
1da177e4 | 1187 | |
9ae949fa | 1188 | wake_up_q(&wake_q); |
e3893534 | 1189 | ns->used_sems -= sma->sem_nsems; |
dba4cdd3 | 1190 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1191 | } |
1192 | ||
1193 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | |
1194 | { | |
239521f3 | 1195 | switch (version) { |
1da177e4 LT |
1196 | case IPC_64: |
1197 | return copy_to_user(buf, in, sizeof(*in)); | |
1198 | case IPC_OLD: | |
1199 | { | |
1200 | struct semid_ds out; | |
1201 | ||
982f7c2b DR |
1202 | memset(&out, 0, sizeof(out)); |
1203 | ||
1da177e4 LT |
1204 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
1205 | ||
1206 | out.sem_otime = in->sem_otime; | |
1207 | out.sem_ctime = in->sem_ctime; | |
1208 | out.sem_nsems = in->sem_nsems; | |
1209 | ||
1210 | return copy_to_user(buf, &out, sizeof(out)); | |
1211 | } | |
1212 | default: | |
1213 | return -EINVAL; | |
1214 | } | |
1215 | } | |
1216 | ||
e54d02b2 | 1217 | static time64_t get_semotime(struct sem_array *sma) |
d12e1e50 MS |
1218 | { |
1219 | int i; | |
e54d02b2 | 1220 | time64_t res; |
d12e1e50 | 1221 | |
1a233956 | 1222 | res = sma->sems[0].sem_otime; |
d12e1e50 | 1223 | for (i = 1; i < sma->sem_nsems; i++) { |
e54d02b2 | 1224 | time64_t to = sma->sems[i].sem_otime; |
d12e1e50 MS |
1225 | |
1226 | if (to > res) | |
1227 | res = to; | |
1228 | } | |
1229 | return res; | |
1230 | } | |
1231 | ||
45a4a64a AV |
1232 | static int semctl_stat(struct ipc_namespace *ns, int semid, |
1233 | int cmd, struct semid64_ds *semid64) | |
1da177e4 | 1234 | { |
1da177e4 | 1235 | struct sem_array *sma; |
c2ab975c | 1236 | time64_t semotime; |
45a4a64a | 1237 | int err; |
1da177e4 | 1238 | |
45a4a64a | 1239 | memset(semid64, 0, sizeof(*semid64)); |
46c0a8ca | 1240 | |
45a4a64a | 1241 | rcu_read_lock(); |
a280d6dc | 1242 | if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { |
45a4a64a AV |
1243 | sma = sem_obtain_object(ns, semid); |
1244 | if (IS_ERR(sma)) { | |
1245 | err = PTR_ERR(sma); | |
1246 | goto out_unlock; | |
1247 | } | |
a280d6dc | 1248 | } else { /* IPC_STAT */ |
45a4a64a AV |
1249 | sma = sem_obtain_object_check(ns, semid); |
1250 | if (IS_ERR(sma)) { | |
1251 | err = PTR_ERR(sma); | |
1252 | goto out_unlock; | |
1da177e4 | 1253 | } |
1da177e4 | 1254 | } |
1da177e4 | 1255 | |
a280d6dc DB |
1256 | /* see comment for SHM_STAT_ANY */ |
1257 | if (cmd == SEM_STAT_ANY) | |
1258 | audit_ipc_obj(&sma->sem_perm); | |
1259 | else { | |
1260 | err = -EACCES; | |
1261 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) | |
1262 | goto out_unlock; | |
1263 | } | |
1da177e4 | 1264 | |
aefad959 | 1265 | err = security_sem_semctl(&sma->sem_perm, cmd); |
45a4a64a AV |
1266 | if (err) |
1267 | goto out_unlock; | |
1da177e4 | 1268 | |
87ad4b0d PM |
1269 | ipc_lock_object(&sma->sem_perm); |
1270 | ||
1271 | if (!ipc_valid_object(&sma->sem_perm)) { | |
1272 | ipc_unlock_object(&sma->sem_perm); | |
1273 | err = -EIDRM; | |
1274 | goto out_unlock; | |
1275 | } | |
1276 | ||
45a4a64a | 1277 | kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); |
c2ab975c AB |
1278 | semotime = get_semotime(sma); |
1279 | semid64->sem_otime = semotime; | |
45a4a64a | 1280 | semid64->sem_ctime = sma->sem_ctime; |
c2ab975c AB |
1281 | #ifndef CONFIG_64BIT |
1282 | semid64->sem_otime_high = semotime >> 32; | |
1283 | semid64->sem_ctime_high = sma->sem_ctime >> 32; | |
1284 | #endif | |
45a4a64a | 1285 | semid64->sem_nsems = sma->sem_nsems; |
87ad4b0d | 1286 | |
615c999c MS |
1287 | if (cmd == IPC_STAT) { |
1288 | /* | |
1289 | * As defined in SUS: | |
1290 | * Return 0 on success | |
1291 | */ | |
1292 | err = 0; | |
1293 | } else { | |
1294 | /* | |
1295 | * SEM_STAT and SEM_STAT_ANY (both Linux specific) | |
1296 | * Return the full id, including the sequence number | |
1297 | */ | |
1298 | err = sma->sem_perm.id; | |
1299 | } | |
87ad4b0d | 1300 | ipc_unlock_object(&sma->sem_perm); |
1da177e4 | 1301 | out_unlock: |
16df3674 | 1302 | rcu_read_unlock(); |
1da177e4 LT |
1303 | return err; |
1304 | } | |
1305 | ||
45a4a64a AV |
1306 | static int semctl_info(struct ipc_namespace *ns, int semid, |
1307 | int cmd, void __user *p) | |
1308 | { | |
1309 | struct seminfo seminfo; | |
27c331a1 | 1310 | int max_idx; |
45a4a64a AV |
1311 | int err; |
1312 | ||
1313 | err = security_sem_semctl(NULL, cmd); | |
1314 | if (err) | |
1315 | return err; | |
1316 | ||
1317 | memset(&seminfo, 0, sizeof(seminfo)); | |
1318 | seminfo.semmni = ns->sc_semmni; | |
1319 | seminfo.semmns = ns->sc_semmns; | |
1320 | seminfo.semmsl = ns->sc_semmsl; | |
1321 | seminfo.semopm = ns->sc_semopm; | |
1322 | seminfo.semvmx = SEMVMX; | |
1323 | seminfo.semmnu = SEMMNU; | |
1324 | seminfo.semmap = SEMMAP; | |
1325 | seminfo.semume = SEMUME; | |
1326 | down_read(&sem_ids(ns).rwsem); | |
1327 | if (cmd == SEM_INFO) { | |
1328 | seminfo.semusz = sem_ids(ns).in_use; | |
1329 | seminfo.semaem = ns->used_sems; | |
1330 | } else { | |
1331 | seminfo.semusz = SEMUSZ; | |
1332 | seminfo.semaem = SEMAEM; | |
1333 | } | |
27c331a1 | 1334 | max_idx = ipc_get_maxidx(&sem_ids(ns)); |
45a4a64a AV |
1335 | up_read(&sem_ids(ns).rwsem); |
1336 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) | |
1337 | return -EFAULT; | |
27c331a1 | 1338 | return (max_idx < 0) ? 0 : max_idx; |
45a4a64a AV |
1339 | } |
1340 | ||
e1fd1f49 | 1341 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, |
45a4a64a | 1342 | int val) |
e1fd1f49 AV |
1343 | { |
1344 | struct sem_undo *un; | |
1345 | struct sem_array *sma; | |
239521f3 | 1346 | struct sem *curr; |
45a4a64a | 1347 | int err; |
9ae949fa DB |
1348 | DEFINE_WAKE_Q(wake_q); |
1349 | ||
6062a8dc RR |
1350 | if (val > SEMVMX || val < 0) |
1351 | return -ERANGE; | |
e1fd1f49 | 1352 | |
6062a8dc RR |
1353 | rcu_read_lock(); |
1354 | sma = sem_obtain_object_check(ns, semid); | |
1355 | if (IS_ERR(sma)) { | |
1356 | rcu_read_unlock(); | |
1357 | return PTR_ERR(sma); | |
1358 | } | |
1359 | ||
1360 | if (semnum < 0 || semnum >= sma->sem_nsems) { | |
1361 | rcu_read_unlock(); | |
1362 | return -EINVAL; | |
1363 | } | |
1364 | ||
1365 | ||
1366 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | |
1367 | rcu_read_unlock(); | |
1368 | return -EACCES; | |
1369 | } | |
e1fd1f49 | 1370 | |
aefad959 | 1371 | err = security_sem_semctl(&sma->sem_perm, SETVAL); |
6062a8dc RR |
1372 | if (err) { |
1373 | rcu_read_unlock(); | |
1374 | return -EACCES; | |
1375 | } | |
e1fd1f49 | 1376 | |
6062a8dc | 1377 | sem_lock(sma, NULL, -1); |
e1fd1f49 | 1378 | |
0f3d2b01 | 1379 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1380 | sem_unlock(sma, -1); |
1381 | rcu_read_unlock(); | |
1382 | return -EIDRM; | |
1383 | } | |
1384 | ||
ec67aaa4 | 1385 | semnum = array_index_nospec(semnum, sma->sem_nsems); |
1a233956 | 1386 | curr = &sma->sems[semnum]; |
e1fd1f49 | 1387 | |
cf9d5d78 | 1388 | ipc_assert_locked_object(&sma->sem_perm); |
e1fd1f49 AV |
1389 | list_for_each_entry(un, &sma->list_id, list_id) |
1390 | un->semadj[semnum] = 0; | |
1391 | ||
1392 | curr->semval = val; | |
51d6f263 | 1393 | ipc_update_pid(&curr->sempid, task_tgid(current)); |
e54d02b2 | 1394 | sma->sem_ctime = ktime_get_real_seconds(); |
e1fd1f49 | 1395 | /* maybe some queued-up processes were waiting for this */ |
9ae949fa | 1396 | do_smart_update(sma, NULL, 0, 0, &wake_q); |
6062a8dc | 1397 | sem_unlock(sma, -1); |
6d49dab8 | 1398 | rcu_read_unlock(); |
9ae949fa | 1399 | wake_up_q(&wake_q); |
6062a8dc | 1400 | return 0; |
e1fd1f49 AV |
1401 | } |
1402 | ||
e3893534 | 1403 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
e1fd1f49 | 1404 | int cmd, void __user *p) |
1da177e4 LT |
1405 | { |
1406 | struct sem_array *sma; | |
239521f3 | 1407 | struct sem *curr; |
16df3674 | 1408 | int err, nsems; |
1da177e4 | 1409 | ushort fast_sem_io[SEMMSL_FAST]; |
239521f3 | 1410 | ushort *sem_io = fast_sem_io; |
9ae949fa | 1411 | DEFINE_WAKE_Q(wake_q); |
16df3674 DB |
1412 | |
1413 | rcu_read_lock(); | |
1414 | sma = sem_obtain_object_check(ns, semid); | |
1415 | if (IS_ERR(sma)) { | |
1416 | rcu_read_unlock(); | |
023a5355 | 1417 | return PTR_ERR(sma); |
16df3674 | 1418 | } |
1da177e4 LT |
1419 | |
1420 | nsems = sma->sem_nsems; | |
1421 | ||
1da177e4 | 1422 | err = -EACCES; |
c728b9c8 LT |
1423 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) |
1424 | goto out_rcu_wakeup; | |
1da177e4 | 1425 | |
aefad959 | 1426 | err = security_sem_semctl(&sma->sem_perm, cmd); |
c728b9c8 LT |
1427 | if (err) |
1428 | goto out_rcu_wakeup; | |
1da177e4 LT |
1429 | |
1430 | err = -EACCES; | |
1431 | switch (cmd) { | |
1432 | case GETALL: | |
1433 | { | |
e1fd1f49 | 1434 | ushort __user *array = p; |
1da177e4 LT |
1435 | int i; |
1436 | ||
ce857229 | 1437 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1438 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1439 | err = -EIDRM; |
1440 | goto out_unlock; | |
1441 | } | |
239521f3 | 1442 | if (nsems > SEMMSL_FAST) { |
dba4cdd3 | 1443 | if (!ipc_rcu_getref(&sma->sem_perm)) { |
ce857229 | 1444 | err = -EIDRM; |
6e224f94 | 1445 | goto out_unlock; |
ce857229 AV |
1446 | } |
1447 | sem_unlock(sma, -1); | |
6d49dab8 | 1448 | rcu_read_unlock(); |
f8dbe8d2 KC |
1449 | sem_io = kvmalloc_array(nsems, sizeof(ushort), |
1450 | GFP_KERNEL); | |
239521f3 | 1451 | if (sem_io == NULL) { |
dba4cdd3 | 1452 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1453 | return -ENOMEM; |
1454 | } | |
1455 | ||
4091fd94 | 1456 | rcu_read_lock(); |
6ff37972 | 1457 | sem_lock_and_putref(sma); |
0f3d2b01 | 1458 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1459 | err = -EIDRM; |
6e224f94 | 1460 | goto out_unlock; |
1da177e4 | 1461 | } |
ce857229 | 1462 | } |
1da177e4 | 1463 | for (i = 0; i < sma->sem_nsems; i++) |
1a233956 | 1464 | sem_io[i] = sma->sems[i].semval; |
6062a8dc | 1465 | sem_unlock(sma, -1); |
6d49dab8 | 1466 | rcu_read_unlock(); |
1da177e4 | 1467 | err = 0; |
239521f3 | 1468 | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
1da177e4 LT |
1469 | err = -EFAULT; |
1470 | goto out_free; | |
1471 | } | |
1472 | case SETALL: | |
1473 | { | |
1474 | int i; | |
1475 | struct sem_undo *un; | |
1476 | ||
dba4cdd3 | 1477 | if (!ipc_rcu_getref(&sma->sem_perm)) { |
6e224f94 MS |
1478 | err = -EIDRM; |
1479 | goto out_rcu_wakeup; | |
6062a8dc | 1480 | } |
16df3674 | 1481 | rcu_read_unlock(); |
1da177e4 | 1482 | |
239521f3 | 1483 | if (nsems > SEMMSL_FAST) { |
f8dbe8d2 KC |
1484 | sem_io = kvmalloc_array(nsems, sizeof(ushort), |
1485 | GFP_KERNEL); | |
239521f3 | 1486 | if (sem_io == NULL) { |
dba4cdd3 | 1487 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1488 | return -ENOMEM; |
1489 | } | |
1490 | } | |
1491 | ||
239521f3 | 1492 | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { |
dba4cdd3 | 1493 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1494 | err = -EFAULT; |
1495 | goto out_free; | |
1496 | } | |
1497 | ||
1498 | for (i = 0; i < nsems; i++) { | |
1499 | if (sem_io[i] > SEMVMX) { | |
dba4cdd3 | 1500 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1501 | err = -ERANGE; |
1502 | goto out_free; | |
1503 | } | |
1504 | } | |
4091fd94 | 1505 | rcu_read_lock(); |
6ff37972 | 1506 | sem_lock_and_putref(sma); |
0f3d2b01 | 1507 | if (!ipc_valid_object(&sma->sem_perm)) { |
1da177e4 | 1508 | err = -EIDRM; |
6e224f94 | 1509 | goto out_unlock; |
1da177e4 LT |
1510 | } |
1511 | ||
a5f4db87 | 1512 | for (i = 0; i < nsems; i++) { |
1a233956 | 1513 | sma->sems[i].semval = sem_io[i]; |
51d6f263 | 1514 | ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); |
a5f4db87 | 1515 | } |
4daa28f6 | 1516 | |
cf9d5d78 | 1517 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1518 | list_for_each_entry(un, &sma->list_id, list_id) { |
1da177e4 LT |
1519 | for (i = 0; i < nsems; i++) |
1520 | un->semadj[i] = 0; | |
4daa28f6 | 1521 | } |
e54d02b2 | 1522 | sma->sem_ctime = ktime_get_real_seconds(); |
1da177e4 | 1523 | /* maybe some queued-up processes were waiting for this */ |
9ae949fa | 1524 | do_smart_update(sma, NULL, 0, 0, &wake_q); |
1da177e4 LT |
1525 | err = 0; |
1526 | goto out_unlock; | |
1527 | } | |
e1fd1f49 | 1528 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ |
1da177e4 LT |
1529 | } |
1530 | err = -EINVAL; | |
c728b9c8 LT |
1531 | if (semnum < 0 || semnum >= nsems) |
1532 | goto out_rcu_wakeup; | |
1da177e4 | 1533 | |
6062a8dc | 1534 | sem_lock(sma, NULL, -1); |
0f3d2b01 | 1535 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
1536 | err = -EIDRM; |
1537 | goto out_unlock; | |
1538 | } | |
ec67aaa4 DB |
1539 | |
1540 | semnum = array_index_nospec(semnum, nsems); | |
1a233956 | 1541 | curr = &sma->sems[semnum]; |
1da177e4 LT |
1542 | |
1543 | switch (cmd) { | |
1544 | case GETVAL: | |
1545 | err = curr->semval; | |
1546 | goto out_unlock; | |
1547 | case GETPID: | |
51d6f263 | 1548 | err = pid_vnr(curr->sempid); |
1da177e4 LT |
1549 | goto out_unlock; |
1550 | case GETNCNT: | |
2f2ed41d | 1551 | err = count_semcnt(sma, semnum, 0); |
1da177e4 LT |
1552 | goto out_unlock; |
1553 | case GETZCNT: | |
2f2ed41d | 1554 | err = count_semcnt(sma, semnum, 1); |
1da177e4 | 1555 | goto out_unlock; |
1da177e4 | 1556 | } |
16df3674 | 1557 | |
1da177e4 | 1558 | out_unlock: |
6062a8dc | 1559 | sem_unlock(sma, -1); |
c728b9c8 | 1560 | out_rcu_wakeup: |
6d49dab8 | 1561 | rcu_read_unlock(); |
9ae949fa | 1562 | wake_up_q(&wake_q); |
1da177e4 | 1563 | out_free: |
239521f3 | 1564 | if (sem_io != fast_sem_io) |
f8dbe8d2 | 1565 | kvfree(sem_io); |
1da177e4 LT |
1566 | return err; |
1567 | } | |
1568 | ||
016d7132 PP |
1569 | static inline unsigned long |
1570 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | |
1da177e4 | 1571 | { |
239521f3 | 1572 | switch (version) { |
1da177e4 | 1573 | case IPC_64: |
016d7132 | 1574 | if (copy_from_user(out, buf, sizeof(*out))) |
1da177e4 | 1575 | return -EFAULT; |
1da177e4 | 1576 | return 0; |
1da177e4 LT |
1577 | case IPC_OLD: |
1578 | { | |
1579 | struct semid_ds tbuf_old; | |
1580 | ||
239521f3 | 1581 | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
1da177e4 LT |
1582 | return -EFAULT; |
1583 | ||
016d7132 PP |
1584 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
1585 | out->sem_perm.gid = tbuf_old.sem_perm.gid; | |
1586 | out->sem_perm.mode = tbuf_old.sem_perm.mode; | |
1da177e4 LT |
1587 | |
1588 | return 0; | |
1589 | } | |
1590 | default: | |
1591 | return -EINVAL; | |
1592 | } | |
1593 | } | |
1594 | ||
522bb2a2 | 1595 | /* |
d9a605e4 | 1596 | * This function handles some semctl commands which require the rwsem |
522bb2a2 | 1597 | * to be held in write mode. |
d9a605e4 | 1598 | * NOTE: no locks must be held, the rwsem is taken inside this function. |
522bb2a2 | 1599 | */ |
21a4826a | 1600 | static int semctl_down(struct ipc_namespace *ns, int semid, |
45a4a64a | 1601 | int cmd, struct semid64_ds *semid64) |
1da177e4 LT |
1602 | { |
1603 | struct sem_array *sma; | |
1604 | int err; | |
1da177e4 LT |
1605 | struct kern_ipc_perm *ipcp; |
1606 | ||
d9a605e4 | 1607 | down_write(&sem_ids(ns).rwsem); |
7b4cc5d8 DB |
1608 | rcu_read_lock(); |
1609 | ||
4241c1a3 | 1610 | ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, |
45a4a64a | 1611 | &semid64->sem_perm, 0); |
7b4cc5d8 DB |
1612 | if (IS_ERR(ipcp)) { |
1613 | err = PTR_ERR(ipcp); | |
7b4cc5d8 DB |
1614 | goto out_unlock1; |
1615 | } | |
073115d6 | 1616 | |
a5f75e7f | 1617 | sma = container_of(ipcp, struct sem_array, sem_perm); |
1da177e4 | 1618 | |
aefad959 | 1619 | err = security_sem_semctl(&sma->sem_perm, cmd); |
7b4cc5d8 DB |
1620 | if (err) |
1621 | goto out_unlock1; | |
1da177e4 | 1622 | |
7b4cc5d8 | 1623 | switch (cmd) { |
1da177e4 | 1624 | case IPC_RMID: |
6062a8dc | 1625 | sem_lock(sma, NULL, -1); |
7b4cc5d8 | 1626 | /* freeary unlocks the ipc object and rcu */ |
01b8b07a | 1627 | freeary(ns, ipcp); |
522bb2a2 | 1628 | goto out_up; |
1da177e4 | 1629 | case IPC_SET: |
6062a8dc | 1630 | sem_lock(sma, NULL, -1); |
45a4a64a | 1631 | err = ipc_update_perm(&semid64->sem_perm, ipcp); |
1efdb69b | 1632 | if (err) |
7b4cc5d8 | 1633 | goto out_unlock0; |
e54d02b2 | 1634 | sma->sem_ctime = ktime_get_real_seconds(); |
1da177e4 LT |
1635 | break; |
1636 | default: | |
1da177e4 | 1637 | err = -EINVAL; |
7b4cc5d8 | 1638 | goto out_unlock1; |
1da177e4 | 1639 | } |
1da177e4 | 1640 | |
7b4cc5d8 | 1641 | out_unlock0: |
6062a8dc | 1642 | sem_unlock(sma, -1); |
7b4cc5d8 | 1643 | out_unlock1: |
6d49dab8 | 1644 | rcu_read_unlock(); |
522bb2a2 | 1645 | out_up: |
d9a605e4 | 1646 | up_write(&sem_ids(ns).rwsem); |
1da177e4 LT |
1647 | return err; |
1648 | } | |
1649 | ||
275f2214 | 1650 | static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) |
1da177e4 | 1651 | { |
e3893534 | 1652 | struct ipc_namespace *ns; |
e1fd1f49 | 1653 | void __user *p = (void __user *)arg; |
45a4a64a AV |
1654 | struct semid64_ds semid64; |
1655 | int err; | |
1da177e4 LT |
1656 | |
1657 | if (semid < 0) | |
1658 | return -EINVAL; | |
1659 | ||
e3893534 | 1660 | ns = current->nsproxy->ipc_ns; |
1da177e4 | 1661 | |
239521f3 | 1662 | switch (cmd) { |
1da177e4 LT |
1663 | case IPC_INFO: |
1664 | case SEM_INFO: | |
45a4a64a | 1665 | return semctl_info(ns, semid, cmd, p); |
4b9fcb0e | 1666 | case IPC_STAT: |
1da177e4 | 1667 | case SEM_STAT: |
a280d6dc | 1668 | case SEM_STAT_ANY: |
45a4a64a AV |
1669 | err = semctl_stat(ns, semid, cmd, &semid64); |
1670 | if (err < 0) | |
1671 | return err; | |
1672 | if (copy_semid_to_user(p, &semid64, version)) | |
1673 | err = -EFAULT; | |
1674 | return err; | |
1da177e4 LT |
1675 | case GETALL: |
1676 | case GETVAL: | |
1677 | case GETPID: | |
1678 | case GETNCNT: | |
1679 | case GETZCNT: | |
1da177e4 | 1680 | case SETALL: |
e1fd1f49 | 1681 | return semctl_main(ns, semid, semnum, cmd, p); |
45a4a64a AV |
1682 | case SETVAL: { |
1683 | int val; | |
1684 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | |
1685 | /* big-endian 64bit */ | |
1686 | val = arg >> 32; | |
1687 | #else | |
1688 | /* 32bit or little-endian 64bit */ | |
1689 | val = arg; | |
1690 | #endif | |
1691 | return semctl_setval(ns, semid, semnum, val); | |
1692 | } | |
1da177e4 | 1693 | case IPC_SET: |
45a4a64a AV |
1694 | if (copy_semid_from_user(&semid64, p, version)) |
1695 | return -EFAULT; | |
df561f66 | 1696 | fallthrough; |
45a4a64a AV |
1697 | case IPC_RMID: |
1698 | return semctl_down(ns, semid, cmd, &semid64); | |
1da177e4 LT |
1699 | default: |
1700 | return -EINVAL; | |
1701 | } | |
1702 | } | |
1703 | ||
d969c6fa DB |
1704 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) |
1705 | { | |
275f2214 | 1706 | return ksys_semctl(semid, semnum, cmd, arg, IPC_64); |
d969c6fa DB |
1707 | } |
1708 | ||
275f2214 AB |
1709 | #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION |
1710 | long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) | |
1711 | { | |
1712 | int version = ipc_parse_version(&cmd); | |
1713 | ||
1714 | return ksys_semctl(semid, semnum, cmd, arg, version); | |
1715 | } | |
1716 | ||
1717 | SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) | |
1718 | { | |
1719 | return ksys_old_semctl(semid, semnum, cmd, arg); | |
1720 | } | |
1721 | #endif | |
1722 | ||
c0ebccb6 AV |
1723 | #ifdef CONFIG_COMPAT |
1724 | ||
1725 | struct compat_semid_ds { | |
1726 | struct compat_ipc_perm sem_perm; | |
9afc5eee AB |
1727 | old_time32_t sem_otime; |
1728 | old_time32_t sem_ctime; | |
c0ebccb6 AV |
1729 | compat_uptr_t sem_base; |
1730 | compat_uptr_t sem_pending; | |
1731 | compat_uptr_t sem_pending_last; | |
1732 | compat_uptr_t undo; | |
1733 | unsigned short sem_nsems; | |
1734 | }; | |
1735 | ||
1736 | static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, | |
1737 | int version) | |
1738 | { | |
1739 | memset(out, 0, sizeof(*out)); | |
1740 | if (version == IPC_64) { | |
6aa211e8 | 1741 | struct compat_semid64_ds __user *p = buf; |
c0ebccb6 AV |
1742 | return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); |
1743 | } else { | |
6aa211e8 | 1744 | struct compat_semid_ds __user *p = buf; |
c0ebccb6 AV |
1745 | return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); |
1746 | } | |
1747 | } | |
1748 | ||
1749 | static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, | |
1750 | int version) | |
1751 | { | |
1752 | if (version == IPC_64) { | |
1753 | struct compat_semid64_ds v; | |
1754 | memset(&v, 0, sizeof(v)); | |
1755 | to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); | |
c2ab975c AB |
1756 | v.sem_otime = lower_32_bits(in->sem_otime); |
1757 | v.sem_otime_high = upper_32_bits(in->sem_otime); | |
1758 | v.sem_ctime = lower_32_bits(in->sem_ctime); | |
1759 | v.sem_ctime_high = upper_32_bits(in->sem_ctime); | |
c0ebccb6 AV |
1760 | v.sem_nsems = in->sem_nsems; |
1761 | return copy_to_user(buf, &v, sizeof(v)); | |
1762 | } else { | |
1763 | struct compat_semid_ds v; | |
1764 | memset(&v, 0, sizeof(v)); | |
1765 | to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); | |
1766 | v.sem_otime = in->sem_otime; | |
1767 | v.sem_ctime = in->sem_ctime; | |
1768 | v.sem_nsems = in->sem_nsems; | |
1769 | return copy_to_user(buf, &v, sizeof(v)); | |
1770 | } | |
1771 | } | |
1772 | ||
275f2214 | 1773 | static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) |
c0ebccb6 AV |
1774 | { |
1775 | void __user *p = compat_ptr(arg); | |
1776 | struct ipc_namespace *ns; | |
1777 | struct semid64_ds semid64; | |
c0ebccb6 AV |
1778 | int err; |
1779 | ||
1780 | ns = current->nsproxy->ipc_ns; | |
1781 | ||
1782 | if (semid < 0) | |
1783 | return -EINVAL; | |
1784 | ||
1785 | switch (cmd & (~IPC_64)) { | |
1786 | case IPC_INFO: | |
1787 | case SEM_INFO: | |
1788 | return semctl_info(ns, semid, cmd, p); | |
1789 | case IPC_STAT: | |
1790 | case SEM_STAT: | |
a280d6dc | 1791 | case SEM_STAT_ANY: |
c0ebccb6 AV |
1792 | err = semctl_stat(ns, semid, cmd, &semid64); |
1793 | if (err < 0) | |
1794 | return err; | |
1795 | if (copy_compat_semid_to_user(p, &semid64, version)) | |
1796 | err = -EFAULT; | |
1797 | return err; | |
1798 | case GETVAL: | |
1799 | case GETPID: | |
1800 | case GETNCNT: | |
1801 | case GETZCNT: | |
1802 | case GETALL: | |
1da177e4 | 1803 | case SETALL: |
e1fd1f49 AV |
1804 | return semctl_main(ns, semid, semnum, cmd, p); |
1805 | case SETVAL: | |
1806 | return semctl_setval(ns, semid, semnum, arg); | |
1da177e4 | 1807 | case IPC_SET: |
c0ebccb6 AV |
1808 | if (copy_compat_semid_from_user(&semid64, p, version)) |
1809 | return -EFAULT; | |
df561f66 | 1810 | fallthrough; |
c0ebccb6 AV |
1811 | case IPC_RMID: |
1812 | return semctl_down(ns, semid, cmd, &semid64); | |
1da177e4 LT |
1813 | default: |
1814 | return -EINVAL; | |
1815 | } | |
1816 | } | |
d969c6fa DB |
1817 | |
1818 | COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) | |
1819 | { | |
275f2214 | 1820 | return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); |
d969c6fa | 1821 | } |
275f2214 AB |
1822 | |
1823 | #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION | |
1824 | long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) | |
1825 | { | |
1826 | int version = compat_ipc_parse_version(&cmd); | |
1827 | ||
1828 | return compat_ksys_semctl(semid, semnum, cmd, arg, version); | |
1829 | } | |
1830 | ||
1831 | COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) | |
1832 | { | |
1833 | return compat_ksys_old_semctl(semid, semnum, cmd, arg); | |
1834 | } | |
1835 | #endif | |
c0ebccb6 | 1836 | #endif |
1da177e4 | 1837 | |
1da177e4 LT |
1838 | /* If the task doesn't already have a undo_list, then allocate one |
1839 | * here. We guarantee there is only one thread using this undo list, | |
1840 | * and current is THE ONE | |
1841 | * | |
1842 | * If this allocation and assignment succeeds, but later | |
1843 | * portions of this code fail, there is no need to free the sem_undo_list. | |
1844 | * Just let it stay associated with the task, and it'll be freed later | |
1845 | * at exit time. | |
1846 | * | |
1847 | * This can block, so callers must hold no locks. | |
1848 | */ | |
1849 | static inline int get_undo_list(struct sem_undo_list **undo_listp) | |
1850 | { | |
1851 | struct sem_undo_list *undo_list; | |
1da177e4 LT |
1852 | |
1853 | undo_list = current->sysvsem.undo_list; | |
1854 | if (!undo_list) { | |
2453a306 | 1855 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
1da177e4 LT |
1856 | if (undo_list == NULL) |
1857 | return -ENOMEM; | |
00a5dfdb | 1858 | spin_lock_init(&undo_list->lock); |
f74370b8 | 1859 | refcount_set(&undo_list->refcnt, 1); |
4daa28f6 MS |
1860 | INIT_LIST_HEAD(&undo_list->list_proc); |
1861 | ||
1da177e4 LT |
1862 | current->sysvsem.undo_list = undo_list; |
1863 | } | |
1864 | *undo_listp = undo_list; | |
1865 | return 0; | |
1866 | } | |
1867 | ||
bf17bb71 | 1868 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
1da177e4 | 1869 | { |
bf17bb71 | 1870 | struct sem_undo *un; |
4daa28f6 | 1871 | |
984035ad JFG |
1872 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, |
1873 | spin_is_locked(&ulp->lock)) { | |
bf17bb71 NP |
1874 | if (un->semid == semid) |
1875 | return un; | |
1da177e4 | 1876 | } |
4daa28f6 | 1877 | return NULL; |
1da177e4 LT |
1878 | } |
1879 | ||
bf17bb71 NP |
1880 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
1881 | { | |
1882 | struct sem_undo *un; | |
1883 | ||
239521f3 | 1884 | assert_spin_locked(&ulp->lock); |
bf17bb71 NP |
1885 | |
1886 | un = __lookup_undo(ulp, semid); | |
1887 | if (un) { | |
1888 | list_del_rcu(&un->list_proc); | |
1889 | list_add_rcu(&un->list_proc, &ulp->list_proc); | |
1890 | } | |
1891 | return un; | |
1892 | } | |
1893 | ||
4daa28f6 | 1894 | /** |
8001c858 | 1895 | * find_alloc_undo - lookup (and if not present create) undo array |
4daa28f6 MS |
1896 | * @ns: namespace |
1897 | * @semid: semaphore array id | |
1898 | * | |
1899 | * The function looks up (and if not present creates) the undo structure. | |
1900 | * The size of the undo structure depends on the size of the semaphore | |
1901 | * array, thus the alloc path is not that straightforward. | |
380af1b3 MS |
1902 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
1903 | * performs a rcu_read_lock(). | |
4daa28f6 MS |
1904 | */ |
1905 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | |
1da177e4 LT |
1906 | { |
1907 | struct sem_array *sma; | |
1908 | struct sem_undo_list *ulp; | |
1909 | struct sem_undo *un, *new; | |
6062a8dc | 1910 | int nsems, error; |
1da177e4 LT |
1911 | |
1912 | error = get_undo_list(&ulp); | |
1913 | if (error) | |
1914 | return ERR_PTR(error); | |
1915 | ||
380af1b3 | 1916 | rcu_read_lock(); |
c530c6ac | 1917 | spin_lock(&ulp->lock); |
1da177e4 | 1918 | un = lookup_undo(ulp, semid); |
c530c6ac | 1919 | spin_unlock(&ulp->lock); |
239521f3 | 1920 | if (likely(un != NULL)) |
1da177e4 LT |
1921 | goto out; |
1922 | ||
1923 | /* no undo structure around - allocate one. */ | |
4daa28f6 | 1924 | /* step 1: figure out the size of the semaphore array */ |
16df3674 DB |
1925 | sma = sem_obtain_object_check(ns, semid); |
1926 | if (IS_ERR(sma)) { | |
1927 | rcu_read_unlock(); | |
4de85cd6 | 1928 | return ERR_CAST(sma); |
16df3674 | 1929 | } |
023a5355 | 1930 | |
1da177e4 | 1931 | nsems = sma->sem_nsems; |
dba4cdd3 | 1932 | if (!ipc_rcu_getref(&sma->sem_perm)) { |
6062a8dc RR |
1933 | rcu_read_unlock(); |
1934 | un = ERR_PTR(-EIDRM); | |
1935 | goto out; | |
1936 | } | |
16df3674 | 1937 | rcu_read_unlock(); |
1da177e4 | 1938 | |
4daa28f6 | 1939 | /* step 2: allocate new undo structure */ |
4668edc3 | 1940 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
1da177e4 | 1941 | if (!new) { |
dba4cdd3 | 1942 | ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); |
1da177e4 LT |
1943 | return ERR_PTR(-ENOMEM); |
1944 | } | |
1da177e4 | 1945 | |
380af1b3 | 1946 | /* step 3: Acquire the lock on semaphore array */ |
4091fd94 | 1947 | rcu_read_lock(); |
6ff37972 | 1948 | sem_lock_and_putref(sma); |
0f3d2b01 | 1949 | if (!ipc_valid_object(&sma->sem_perm)) { |
6062a8dc | 1950 | sem_unlock(sma, -1); |
6d49dab8 | 1951 | rcu_read_unlock(); |
1da177e4 LT |
1952 | kfree(new); |
1953 | un = ERR_PTR(-EIDRM); | |
1954 | goto out; | |
1955 | } | |
380af1b3 MS |
1956 | spin_lock(&ulp->lock); |
1957 | ||
1958 | /* | |
1959 | * step 4: check for races: did someone else allocate the undo struct? | |
1960 | */ | |
1961 | un = lookup_undo(ulp, semid); | |
1962 | if (un) { | |
1963 | kfree(new); | |
1964 | goto success; | |
1965 | } | |
4daa28f6 MS |
1966 | /* step 5: initialize & link new undo structure */ |
1967 | new->semadj = (short *) &new[1]; | |
380af1b3 | 1968 | new->ulp = ulp; |
4daa28f6 MS |
1969 | new->semid = semid; |
1970 | assert_spin_locked(&ulp->lock); | |
380af1b3 | 1971 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
cf9d5d78 | 1972 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1973 | list_add(&new->list_id, &sma->list_id); |
380af1b3 | 1974 | un = new; |
4daa28f6 | 1975 | |
380af1b3 | 1976 | success: |
c530c6ac | 1977 | spin_unlock(&ulp->lock); |
6062a8dc | 1978 | sem_unlock(sma, -1); |
1da177e4 LT |
1979 | out: |
1980 | return un; | |
1981 | } | |
1982 | ||
44ee4546 | 1983 | static long do_semtimedop(int semid, struct sembuf __user *tsops, |
3ef56dc2 | 1984 | unsigned nsops, const struct timespec64 *timeout) |
1da177e4 LT |
1985 | { |
1986 | int error = -EINVAL; | |
1987 | struct sem_array *sma; | |
1988 | struct sembuf fast_sops[SEMOPM_FAST]; | |
239521f3 | 1989 | struct sembuf *sops = fast_sops, *sop; |
1da177e4 | 1990 | struct sem_undo *un; |
4ce33ec2 DB |
1991 | int max, locknum; |
1992 | bool undos = false, alter = false, dupsop = false; | |
1da177e4 | 1993 | struct sem_queue queue; |
4ce33ec2 | 1994 | unsigned long dup = 0, jiffies_left = 0; |
e3893534 KK |
1995 | struct ipc_namespace *ns; |
1996 | ||
1997 | ns = current->nsproxy->ipc_ns; | |
1da177e4 LT |
1998 | |
1999 | if (nsops < 1 || semid < 0) | |
2000 | return -EINVAL; | |
e3893534 | 2001 | if (nsops > ns->sc_semopm) |
1da177e4 | 2002 | return -E2BIG; |
239521f3 | 2003 | if (nsops > SEMOPM_FAST) { |
344476e1 | 2004 | sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); |
239521f3 | 2005 | if (sops == NULL) |
1da177e4 LT |
2006 | return -ENOMEM; |
2007 | } | |
4ce33ec2 | 2008 | |
239521f3 MS |
2009 | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { |
2010 | error = -EFAULT; | |
1da177e4 LT |
2011 | goto out_free; |
2012 | } | |
4ce33ec2 | 2013 | |
1da177e4 | 2014 | if (timeout) { |
44ee4546 AV |
2015 | if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || |
2016 | timeout->tv_nsec >= 1000000000L) { | |
1da177e4 LT |
2017 | error = -EINVAL; |
2018 | goto out_free; | |
2019 | } | |
3ef56dc2 | 2020 | jiffies_left = timespec64_to_jiffies(timeout); |
1da177e4 | 2021 | } |
4ce33ec2 | 2022 | |
1da177e4 LT |
2023 | max = 0; |
2024 | for (sop = sops; sop < sops + nsops; sop++) { | |
4ce33ec2 DB |
2025 | unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); |
2026 | ||
1da177e4 LT |
2027 | if (sop->sem_num >= max) |
2028 | max = sop->sem_num; | |
2029 | if (sop->sem_flg & SEM_UNDO) | |
4ce33ec2 DB |
2030 | undos = true; |
2031 | if (dup & mask) { | |
2032 | /* | |
2033 | * There was a previous alter access that appears | |
2034 | * to have accessed the same semaphore, thus use | |
2035 | * the dupsop logic. "appears", because the detection | |
2036 | * can only check % BITS_PER_LONG. | |
2037 | */ | |
2038 | dupsop = true; | |
2039 | } | |
2040 | if (sop->sem_op != 0) { | |
2041 | alter = true; | |
2042 | dup |= mask; | |
2043 | } | |
1da177e4 | 2044 | } |
1da177e4 | 2045 | |
1da177e4 | 2046 | if (undos) { |
6062a8dc | 2047 | /* On success, find_alloc_undo takes the rcu_read_lock */ |
4daa28f6 | 2048 | un = find_alloc_undo(ns, semid); |
1da177e4 LT |
2049 | if (IS_ERR(un)) { |
2050 | error = PTR_ERR(un); | |
2051 | goto out_free; | |
2052 | } | |
6062a8dc | 2053 | } else { |
1da177e4 | 2054 | un = NULL; |
6062a8dc RR |
2055 | rcu_read_lock(); |
2056 | } | |
1da177e4 | 2057 | |
16df3674 | 2058 | sma = sem_obtain_object_check(ns, semid); |
023a5355 | 2059 | if (IS_ERR(sma)) { |
6062a8dc | 2060 | rcu_read_unlock(); |
023a5355 | 2061 | error = PTR_ERR(sma); |
1da177e4 | 2062 | goto out_free; |
023a5355 ND |
2063 | } |
2064 | ||
16df3674 | 2065 | error = -EFBIG; |
248e7357 DB |
2066 | if (max >= sma->sem_nsems) { |
2067 | rcu_read_unlock(); | |
2068 | goto out_free; | |
2069 | } | |
16df3674 DB |
2070 | |
2071 | error = -EACCES; | |
248e7357 DB |
2072 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { |
2073 | rcu_read_unlock(); | |
2074 | goto out_free; | |
2075 | } | |
16df3674 | 2076 | |
aefad959 | 2077 | error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); |
248e7357 DB |
2078 | if (error) { |
2079 | rcu_read_unlock(); | |
2080 | goto out_free; | |
2081 | } | |
16df3674 | 2082 | |
6e224f94 MS |
2083 | error = -EIDRM; |
2084 | locknum = sem_lock(sma, sops, nsops); | |
0f3d2b01 RA |
2085 | /* |
2086 | * We eventually might perform the following check in a lockless | |
2087 | * fashion, considering ipc_valid_object() locking constraints. | |
2088 | * If nsops == 1 and there is no contention for sem_perm.lock, then | |
2089 | * only a per-semaphore lock is held and it's OK to proceed with the | |
2090 | * check below. More details on the fine grained locking scheme | |
2091 | * entangled here and why it's RMID race safe on comments at sem_lock() | |
2092 | */ | |
2093 | if (!ipc_valid_object(&sma->sem_perm)) | |
6e224f94 | 2094 | goto out_unlock_free; |
1da177e4 | 2095 | /* |
4daa28f6 | 2096 | * semid identifiers are not unique - find_alloc_undo may have |
1da177e4 | 2097 | * allocated an undo structure, it was invalidated by an RMID |
4daa28f6 | 2098 | * and now a new array with received the same id. Check and fail. |
25985edc | 2099 | * This case can be detected checking un->semid. The existence of |
380af1b3 | 2100 | * "un" itself is guaranteed by rcu. |
1da177e4 | 2101 | */ |
6062a8dc RR |
2102 | if (un && un->semid == -1) |
2103 | goto out_unlock_free; | |
4daa28f6 | 2104 | |
d198cd6d MS |
2105 | queue.sops = sops; |
2106 | queue.nsops = nsops; | |
2107 | queue.undo = un; | |
51d6f263 | 2108 | queue.pid = task_tgid(current); |
d198cd6d | 2109 | queue.alter = alter; |
4ce33ec2 | 2110 | queue.dupsop = dupsop; |
d198cd6d MS |
2111 | |
2112 | error = perform_atomic_semop(sma, &queue); | |
b1989a3d | 2113 | if (error == 0) { /* non-blocking successful path */ |
9ae949fa DB |
2114 | DEFINE_WAKE_Q(wake_q); |
2115 | ||
2116 | /* | |
2117 | * If the operation was successful, then do | |
0e8c6656 MS |
2118 | * the required updates. |
2119 | */ | |
2120 | if (alter) | |
9ae949fa | 2121 | do_smart_update(sma, sops, nsops, 1, &wake_q); |
0e8c6656 MS |
2122 | else |
2123 | set_semotime(sma, sops); | |
9ae949fa DB |
2124 | |
2125 | sem_unlock(sma, locknum); | |
2126 | rcu_read_unlock(); | |
2127 | wake_up_q(&wake_q); | |
2128 | ||
2129 | goto out_free; | |
1da177e4 | 2130 | } |
9ae949fa | 2131 | if (error < 0) /* non-blocking error path */ |
0e8c6656 | 2132 | goto out_unlock_free; |
1da177e4 | 2133 | |
9ae949fa DB |
2134 | /* |
2135 | * We need to sleep on this operation, so we put the current | |
1da177e4 LT |
2136 | * task into the pending queue and go to sleep. |
2137 | */ | |
b97e820f MS |
2138 | if (nsops == 1) { |
2139 | struct sem *curr; | |
ec67aaa4 DB |
2140 | int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); |
2141 | curr = &sma->sems[idx]; | |
b97e820f | 2142 | |
f269f40a MS |
2143 | if (alter) { |
2144 | if (sma->complex_count) { | |
2145 | list_add_tail(&queue.list, | |
2146 | &sma->pending_alter); | |
2147 | } else { | |
2148 | ||
2149 | list_add_tail(&queue.list, | |
2150 | &curr->pending_alter); | |
2151 | } | |
2152 | } else { | |
1a82e9e1 | 2153 | list_add_tail(&queue.list, &curr->pending_const); |
f269f40a | 2154 | } |
b97e820f | 2155 | } else { |
f269f40a MS |
2156 | if (!sma->complex_count) |
2157 | merge_queues(sma); | |
2158 | ||
9f1bc2c9 | 2159 | if (alter) |
1a82e9e1 | 2160 | list_add_tail(&queue.list, &sma->pending_alter); |
9f1bc2c9 | 2161 | else |
1a82e9e1 MS |
2162 | list_add_tail(&queue.list, &sma->pending_const); |
2163 | ||
b97e820f MS |
2164 | sma->complex_count++; |
2165 | } | |
2166 | ||
b5fa01a2 | 2167 | do { |
8116b54e | 2168 | /* memory ordering ensured by the lock in sem_lock() */ |
f075faa3 | 2169 | WRITE_ONCE(queue.status, -EINTR); |
b5fa01a2 | 2170 | queue.sleeper = current; |
0b0577f6 | 2171 | |
8116b54e | 2172 | /* memory ordering is ensured by the lock in sem_lock() */ |
b5fa01a2 DB |
2173 | __set_current_state(TASK_INTERRUPTIBLE); |
2174 | sem_unlock(sma, locknum); | |
2175 | rcu_read_unlock(); | |
1da177e4 | 2176 | |
b5fa01a2 DB |
2177 | if (timeout) |
2178 | jiffies_left = schedule_timeout(jiffies_left); | |
2179 | else | |
2180 | schedule(); | |
1da177e4 | 2181 | |
9ae949fa | 2182 | /* |
b5fa01a2 DB |
2183 | * fastpath: the semop has completed, either successfully or |
2184 | * not, from the syscall pov, is quite irrelevant to us at this | |
2185 | * point; we're done. | |
2186 | * | |
2187 | * We _do_ care, nonetheless, about being awoken by a signal or | |
2188 | * spuriously. The queue.status is checked again in the | |
2189 | * slowpath (aka after taking sem_lock), such that we can detect | |
2190 | * scenarios where we were awakened externally, during the | |
2191 | * window between wake_q_add() and wake_up_q(). | |
c61284e9 | 2192 | */ |
b5fa01a2 DB |
2193 | error = READ_ONCE(queue.status); |
2194 | if (error != -EINTR) { | |
8116b54e MS |
2195 | /* see SEM_BARRIER_2 for purpose/pairing */ |
2196 | smp_acquire__after_ctrl_dep(); | |
b5fa01a2 DB |
2197 | goto out_free; |
2198 | } | |
d694ad62 | 2199 | |
b5fa01a2 | 2200 | rcu_read_lock(); |
c626bc46 | 2201 | locknum = sem_lock(sma, sops, nsops); |
1da177e4 | 2202 | |
370b262c DB |
2203 | if (!ipc_valid_object(&sma->sem_perm)) |
2204 | goto out_unlock_free; | |
2205 | ||
8116b54e MS |
2206 | /* |
2207 | * No necessity for any barrier: We are protect by sem_lock() | |
2208 | */ | |
370b262c | 2209 | error = READ_ONCE(queue.status); |
1da177e4 | 2210 | |
b5fa01a2 DB |
2211 | /* |
2212 | * If queue.status != -EINTR we are woken up by another process. | |
2213 | * Leave without unlink_queue(), but with sem_unlock(). | |
2214 | */ | |
2215 | if (error != -EINTR) | |
2216 | goto out_unlock_free; | |
0b0577f6 | 2217 | |
b5fa01a2 DB |
2218 | /* |
2219 | * If an interrupt occurred we have to clean up the queue. | |
2220 | */ | |
2221 | if (timeout && jiffies_left == 0) | |
2222 | error = -EAGAIN; | |
2223 | } while (error == -EINTR && !signal_pending(current)); /* spurious */ | |
0b0577f6 | 2224 | |
b97e820f | 2225 | unlink_queue(sma, &queue); |
1da177e4 LT |
2226 | |
2227 | out_unlock_free: | |
6062a8dc | 2228 | sem_unlock(sma, locknum); |
6d49dab8 | 2229 | rcu_read_unlock(); |
1da177e4 | 2230 | out_free: |
239521f3 | 2231 | if (sops != fast_sops) |
e4243b80 | 2232 | kvfree(sops); |
1da177e4 LT |
2233 | return error; |
2234 | } | |
2235 | ||
41f4f0e2 | 2236 | long ksys_semtimedop(int semid, struct sembuf __user *tsops, |
21fc538d | 2237 | unsigned int nsops, const struct __kernel_timespec __user *timeout) |
44ee4546 AV |
2238 | { |
2239 | if (timeout) { | |
3ef56dc2 DD |
2240 | struct timespec64 ts; |
2241 | if (get_timespec64(&ts, timeout)) | |
44ee4546 AV |
2242 | return -EFAULT; |
2243 | return do_semtimedop(semid, tsops, nsops, &ts); | |
2244 | } | |
2245 | return do_semtimedop(semid, tsops, nsops, NULL); | |
2246 | } | |
2247 | ||
41f4f0e2 | 2248 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
21fc538d | 2249 | unsigned int, nsops, const struct __kernel_timespec __user *, timeout) |
41f4f0e2 DB |
2250 | { |
2251 | return ksys_semtimedop(semid, tsops, nsops, timeout); | |
2252 | } | |
2253 | ||
b0d17578 | 2254 | #ifdef CONFIG_COMPAT_32BIT_TIME |
41f4f0e2 DB |
2255 | long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, |
2256 | unsigned int nsops, | |
9afc5eee | 2257 | const struct old_timespec32 __user *timeout) |
44ee4546 AV |
2258 | { |
2259 | if (timeout) { | |
3ef56dc2 | 2260 | struct timespec64 ts; |
9afc5eee | 2261 | if (get_old_timespec32(&ts, timeout)) |
44ee4546 AV |
2262 | return -EFAULT; |
2263 | return do_semtimedop(semid, tsems, nsops, &ts); | |
2264 | } | |
2265 | return do_semtimedop(semid, tsems, nsops, NULL); | |
2266 | } | |
41f4f0e2 | 2267 | |
8dabe724 | 2268 | SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, |
41f4f0e2 | 2269 | unsigned int, nsops, |
9afc5eee | 2270 | const struct old_timespec32 __user *, timeout) |
41f4f0e2 DB |
2271 | { |
2272 | return compat_ksys_semtimedop(semid, tsems, nsops, timeout); | |
2273 | } | |
44ee4546 AV |
2274 | #endif |
2275 | ||
d5460c99 HC |
2276 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
2277 | unsigned, nsops) | |
1da177e4 | 2278 | { |
44ee4546 | 2279 | return do_semtimedop(semid, tsops, nsops, NULL); |
1da177e4 LT |
2280 | } |
2281 | ||
2282 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | |
2283 | * parent and child tasks. | |
1da177e4 LT |
2284 | */ |
2285 | ||
2286 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | |
2287 | { | |
2288 | struct sem_undo_list *undo_list; | |
2289 | int error; | |
2290 | ||
2291 | if (clone_flags & CLONE_SYSVSEM) { | |
2292 | error = get_undo_list(&undo_list); | |
2293 | if (error) | |
2294 | return error; | |
f74370b8 | 2295 | refcount_inc(&undo_list->refcnt); |
1da177e4 | 2296 | tsk->sysvsem.undo_list = undo_list; |
46c0a8ca | 2297 | } else |
1da177e4 LT |
2298 | tsk->sysvsem.undo_list = NULL; |
2299 | ||
2300 | return 0; | |
2301 | } | |
2302 | ||
2303 | /* | |
2304 | * add semadj values to semaphores, free undo structures. | |
2305 | * undo structures are not freed when semaphore arrays are destroyed | |
2306 | * so some of them may be out of date. | |
2307 | * IMPLEMENTATION NOTE: There is some confusion over whether the | |
2308 | * set of adjustments that needs to be done should be done in an atomic | |
2309 | * manner or not. That is, if we are attempting to decrement the semval | |
2310 | * should we queue up and wait until we can do so legally? | |
2311 | * The original implementation attempted to do this (queue and wait). | |
2312 | * The current implementation does not do so. The POSIX standard | |
2313 | * and SVID should be consulted to determine what behavior is mandated. | |
2314 | */ | |
2315 | void exit_sem(struct task_struct *tsk) | |
2316 | { | |
4daa28f6 | 2317 | struct sem_undo_list *ulp; |
1da177e4 | 2318 | |
4daa28f6 MS |
2319 | ulp = tsk->sysvsem.undo_list; |
2320 | if (!ulp) | |
1da177e4 | 2321 | return; |
9edff4ab | 2322 | tsk->sysvsem.undo_list = NULL; |
1da177e4 | 2323 | |
f74370b8 | 2324 | if (!refcount_dec_and_test(&ulp->refcnt)) |
1da177e4 LT |
2325 | return; |
2326 | ||
380af1b3 | 2327 | for (;;) { |
1da177e4 | 2328 | struct sem_array *sma; |
380af1b3 | 2329 | struct sem_undo *un; |
6062a8dc | 2330 | int semid, i; |
9ae949fa | 2331 | DEFINE_WAKE_Q(wake_q); |
4daa28f6 | 2332 | |
2a1613a5 NB |
2333 | cond_resched(); |
2334 | ||
380af1b3 | 2335 | rcu_read_lock(); |
05725f7e JP |
2336 | un = list_entry_rcu(ulp->list_proc.next, |
2337 | struct sem_undo, list_proc); | |
602b8593 HK |
2338 | if (&un->list_proc == &ulp->list_proc) { |
2339 | /* | |
2340 | * We must wait for freeary() before freeing this ulp, | |
2341 | * in case we raced with last sem_undo. There is a small | |
2342 | * possibility where we exit while freeary() didn't | |
2343 | * finish unlocking sem_undo_list. | |
2344 | */ | |
e0892e08 PM |
2345 | spin_lock(&ulp->lock); |
2346 | spin_unlock(&ulp->lock); | |
602b8593 HK |
2347 | rcu_read_unlock(); |
2348 | break; | |
2349 | } | |
2350 | spin_lock(&ulp->lock); | |
2351 | semid = un->semid; | |
2352 | spin_unlock(&ulp->lock); | |
4daa28f6 | 2353 | |
602b8593 | 2354 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2355 | if (semid == -1) { |
2356 | rcu_read_unlock(); | |
602b8593 | 2357 | continue; |
6062a8dc | 2358 | } |
1da177e4 | 2359 | |
602b8593 | 2360 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); |
380af1b3 | 2361 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
2362 | if (IS_ERR(sma)) { |
2363 | rcu_read_unlock(); | |
380af1b3 | 2364 | continue; |
6062a8dc | 2365 | } |
1da177e4 | 2366 | |
6062a8dc | 2367 | sem_lock(sma, NULL, -1); |
6e224f94 | 2368 | /* exit_sem raced with IPC_RMID, nothing to do */ |
0f3d2b01 | 2369 | if (!ipc_valid_object(&sma->sem_perm)) { |
6e224f94 MS |
2370 | sem_unlock(sma, -1); |
2371 | rcu_read_unlock(); | |
2372 | continue; | |
2373 | } | |
bf17bb71 | 2374 | un = __lookup_undo(ulp, semid); |
380af1b3 MS |
2375 | if (un == NULL) { |
2376 | /* exit_sem raced with IPC_RMID+semget() that created | |
2377 | * exactly the same semid. Nothing to do. | |
2378 | */ | |
6062a8dc | 2379 | sem_unlock(sma, -1); |
6d49dab8 | 2380 | rcu_read_unlock(); |
380af1b3 MS |
2381 | continue; |
2382 | } | |
2383 | ||
2384 | /* remove un from the linked lists */ | |
cf9d5d78 | 2385 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 MS |
2386 | list_del(&un->list_id); |
2387 | ||
edf28f40 | 2388 | spin_lock(&ulp->lock); |
380af1b3 | 2389 | list_del_rcu(&un->list_proc); |
edf28f40 | 2390 | spin_unlock(&ulp->lock); |
380af1b3 | 2391 | |
4daa28f6 MS |
2392 | /* perform adjustments registered in un */ |
2393 | for (i = 0; i < sma->sem_nsems; i++) { | |
1a233956 | 2394 | struct sem *semaphore = &sma->sems[i]; |
4daa28f6 MS |
2395 | if (un->semadj[i]) { |
2396 | semaphore->semval += un->semadj[i]; | |
1da177e4 LT |
2397 | /* |
2398 | * Range checks of the new semaphore value, | |
2399 | * not defined by sus: | |
2400 | * - Some unices ignore the undo entirely | |
2401 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) | |
2402 | * - some cap the value (e.g. FreeBSD caps | |
2403 | * at 0, but doesn't enforce SEMVMX) | |
2404 | * | |
2405 | * Linux caps the semaphore value, both at 0 | |
2406 | * and at SEMVMX. | |
2407 | * | |
239521f3 | 2408 | * Manfred <[email protected]> |
1da177e4 | 2409 | */ |
5f921ae9 IM |
2410 | if (semaphore->semval < 0) |
2411 | semaphore->semval = 0; | |
2412 | if (semaphore->semval > SEMVMX) | |
2413 | semaphore->semval = SEMVMX; | |
51d6f263 | 2414 | ipc_update_pid(&semaphore->sempid, task_tgid(current)); |
1da177e4 LT |
2415 | } |
2416 | } | |
1da177e4 | 2417 | /* maybe some queued-up processes were waiting for this */ |
9ae949fa | 2418 | do_smart_update(sma, NULL, 0, 1, &wake_q); |
6062a8dc | 2419 | sem_unlock(sma, -1); |
6d49dab8 | 2420 | rcu_read_unlock(); |
9ae949fa | 2421 | wake_up_q(&wake_q); |
380af1b3 | 2422 | |
693a8b6e | 2423 | kfree_rcu(un, rcu); |
1da177e4 | 2424 | } |
4daa28f6 | 2425 | kfree(ulp); |
1da177e4 LT |
2426 | } |
2427 | ||
2428 | #ifdef CONFIG_PROC_FS | |
19b4946c | 2429 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
1da177e4 | 2430 | { |
1efdb69b | 2431 | struct user_namespace *user_ns = seq_user_ns(s); |
ade9f91b KC |
2432 | struct kern_ipc_perm *ipcp = it; |
2433 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | |
e54d02b2 | 2434 | time64_t sem_otime; |
d12e1e50 | 2435 | |
d8c63376 MS |
2436 | /* |
2437 | * The proc interface isn't aware of sem_lock(), it calls | |
2438 | * ipc_lock_object() directly (in sysvipc_find_ipc). | |
5864a2fd MS |
2439 | * In order to stay compatible with sem_lock(), we must |
2440 | * enter / leave complex_mode. | |
d8c63376 | 2441 | */ |
5864a2fd | 2442 | complexmode_enter(sma); |
d8c63376 | 2443 | |
d12e1e50 | 2444 | sem_otime = get_semotime(sma); |
19b4946c | 2445 | |
7f032d6e | 2446 | seq_printf(s, |
e54d02b2 | 2447 | "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", |
7f032d6e JP |
2448 | sma->sem_perm.key, |
2449 | sma->sem_perm.id, | |
2450 | sma->sem_perm.mode, | |
2451 | sma->sem_nsems, | |
2452 | from_kuid_munged(user_ns, sma->sem_perm.uid), | |
2453 | from_kgid_munged(user_ns, sma->sem_perm.gid), | |
2454 | from_kuid_munged(user_ns, sma->sem_perm.cuid), | |
2455 | from_kgid_munged(user_ns, sma->sem_perm.cgid), | |
2456 | sem_otime, | |
2457 | sma->sem_ctime); | |
2458 | ||
5864a2fd MS |
2459 | complexmode_tryleave(sma); |
2460 | ||
7f032d6e | 2461 | return 0; |
1da177e4 LT |
2462 | } |
2463 | #endif |