Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * Generic hugetlb support. | |
6d49e352 | 4 | * (C) Nadia Yvette Chambers, April 2004 |
1da177e4 | 5 | */ |
1da177e4 LT |
6 | #include <linux/list.h> |
7 | #include <linux/init.h> | |
1da177e4 | 8 | #include <linux/mm.h> |
e1759c21 | 9 | #include <linux/seq_file.h> |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
cddb8a5c | 12 | #include <linux/mmu_notifier.h> |
1da177e4 | 13 | #include <linux/nodemask.h> |
63551ae0 | 14 | #include <linux/pagemap.h> |
5da7ca86 | 15 | #include <linux/mempolicy.h> |
3b32123d | 16 | #include <linux/compiler.h> |
aea47ff3 | 17 | #include <linux/cpuset.h> |
3935baa9 | 18 | #include <linux/mutex.h> |
97ad1087 | 19 | #include <linux/memblock.h> |
a3437870 | 20 | #include <linux/sysfs.h> |
5a0e3ad6 | 21 | #include <linux/slab.h> |
bbe88753 | 22 | #include <linux/sched/mm.h> |
63489f8e | 23 | #include <linux/mmdebug.h> |
174cd4b1 | 24 | #include <linux/sched/signal.h> |
0fe6e20b | 25 | #include <linux/rmap.h> |
c6247f72 | 26 | #include <linux/string_helpers.h> |
fd6a03ed NH |
27 | #include <linux/swap.h> |
28 | #include <linux/swapops.h> | |
8382d914 | 29 | #include <linux/jhash.h> |
98fa15f3 | 30 | #include <linux/numa.h> |
c77c0a8a | 31 | #include <linux/llist.h> |
cf11e85f | 32 | #include <linux/cma.h> |
8cc5fcbb | 33 | #include <linux/migrate.h> |
f9317f77 | 34 | #include <linux/nospec.h> |
662ce1dc | 35 | #include <linux/delayacct.h> |
b958d4d0 | 36 | #include <linux/memory.h> |
d6606683 | 37 | |
63551ae0 | 38 | #include <asm/page.h> |
ca15ca40 | 39 | #include <asm/pgalloc.h> |
24669e58 | 40 | #include <asm/tlb.h> |
63551ae0 | 41 | |
24669e58 | 42 | #include <linux/io.h> |
63551ae0 | 43 | #include <linux/hugetlb.h> |
9dd540e2 | 44 | #include <linux/hugetlb_cgroup.h> |
9a305230 | 45 | #include <linux/node.h> |
ab5ac90a | 46 | #include <linux/page_owner.h> |
7835e98b | 47 | #include "internal.h" |
f41f2ed4 | 48 | #include "hugetlb_vmemmap.h" |
1da177e4 | 49 | |
c3f38a38 | 50 | int hugetlb_max_hstate __read_mostly; |
e5ff2159 AK |
51 | unsigned int default_hstate_idx; |
52 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
cf11e85f | 53 | |
dbda8fea | 54 | #ifdef CONFIG_CMA |
cf11e85f | 55 | static struct cma *hugetlb_cma[MAX_NUMNODES]; |
38e719ab | 56 | static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; |
2f6c57d6 | 57 | static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) |
a01f4390 | 58 | { |
2f6c57d6 | 59 | return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, |
a01f4390 MK |
60 | 1 << order); |
61 | } | |
62 | #else | |
2f6c57d6 | 63 | static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) |
a01f4390 MK |
64 | { |
65 | return false; | |
66 | } | |
dbda8fea BS |
67 | #endif |
68 | static unsigned long hugetlb_cma_size __initdata; | |
cf11e85f | 69 | |
53ba51d2 JT |
70 | __initdata LIST_HEAD(huge_boot_pages); |
71 | ||
e5ff2159 AK |
72 | /* for command line parsing */ |
73 | static struct hstate * __initdata parsed_hstate; | |
74 | static unsigned long __initdata default_hstate_max_huge_pages; | |
9fee021d | 75 | static bool __initdata parsed_valid_hugepagesz = true; |
282f4214 | 76 | static bool __initdata parsed_default_hugepagesz; |
b5389086 | 77 | static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; |
e5ff2159 | 78 | |
3935baa9 | 79 | /* |
31caf665 NH |
80 | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, |
81 | * free_huge_pages, and surplus_huge_pages. | |
3935baa9 | 82 | */ |
c3f38a38 | 83 | DEFINE_SPINLOCK(hugetlb_lock); |
0bd0f9fb | 84 | |
8382d914 DB |
85 | /* |
86 | * Serializes faults on the same logical page. This is used to | |
87 | * prevent spurious OOMs when the hugepage pool is fully utilized. | |
88 | */ | |
89 | static int num_fault_mutexes; | |
c672c7f2 | 90 | struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; |
8382d914 | 91 | |
7ca02d0a MK |
92 | /* Forward declaration */ |
93 | static int hugetlb_acct_memory(struct hstate *h, long delta); | |
8d9bfb26 MK |
94 | static void hugetlb_vma_lock_free(struct vm_area_struct *vma); |
95 | static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); | |
ecfbd733 | 96 | static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); |
b30c14cd JH |
97 | static void hugetlb_unshare_pmds(struct vm_area_struct *vma, |
98 | unsigned long start, unsigned long end); | |
7ca02d0a | 99 | |
1d88433b | 100 | static inline bool subpool_is_free(struct hugepage_subpool *spool) |
90481622 | 101 | { |
1d88433b ML |
102 | if (spool->count) |
103 | return false; | |
104 | if (spool->max_hpages != -1) | |
105 | return spool->used_hpages == 0; | |
106 | if (spool->min_hpages != -1) | |
107 | return spool->rsv_hpages == spool->min_hpages; | |
108 | ||
109 | return true; | |
110 | } | |
90481622 | 111 | |
db71ef79 MK |
112 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, |
113 | unsigned long irq_flags) | |
1d88433b | 114 | { |
db71ef79 | 115 | spin_unlock_irqrestore(&spool->lock, irq_flags); |
90481622 DG |
116 | |
117 | /* If no pages are used, and no other handles to the subpool | |
7c8de358 | 118 | * remain, give up any reservations based on minimum size and |
7ca02d0a | 119 | * free the subpool */ |
1d88433b | 120 | if (subpool_is_free(spool)) { |
7ca02d0a MK |
121 | if (spool->min_hpages != -1) |
122 | hugetlb_acct_memory(spool->hstate, | |
123 | -spool->min_hpages); | |
90481622 | 124 | kfree(spool); |
7ca02d0a | 125 | } |
90481622 DG |
126 | } |
127 | ||
7ca02d0a MK |
128 | struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, |
129 | long min_hpages) | |
90481622 DG |
130 | { |
131 | struct hugepage_subpool *spool; | |
132 | ||
c6a91820 | 133 | spool = kzalloc(sizeof(*spool), GFP_KERNEL); |
90481622 DG |
134 | if (!spool) |
135 | return NULL; | |
136 | ||
137 | spin_lock_init(&spool->lock); | |
138 | spool->count = 1; | |
7ca02d0a MK |
139 | spool->max_hpages = max_hpages; |
140 | spool->hstate = h; | |
141 | spool->min_hpages = min_hpages; | |
142 | ||
143 | if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { | |
144 | kfree(spool); | |
145 | return NULL; | |
146 | } | |
147 | spool->rsv_hpages = min_hpages; | |
90481622 DG |
148 | |
149 | return spool; | |
150 | } | |
151 | ||
152 | void hugepage_put_subpool(struct hugepage_subpool *spool) | |
153 | { | |
db71ef79 MK |
154 | unsigned long flags; |
155 | ||
156 | spin_lock_irqsave(&spool->lock, flags); | |
90481622 DG |
157 | BUG_ON(!spool->count); |
158 | spool->count--; | |
db71ef79 | 159 | unlock_or_release_subpool(spool, flags); |
90481622 DG |
160 | } |
161 | ||
1c5ecae3 MK |
162 | /* |
163 | * Subpool accounting for allocating and reserving pages. | |
164 | * Return -ENOMEM if there are not enough resources to satisfy the | |
9e7ee400 | 165 | * request. Otherwise, return the number of pages by which the |
1c5ecae3 MK |
166 | * global pools must be adjusted (upward). The returned value may |
167 | * only be different than the passed value (delta) in the case where | |
7c8de358 | 168 | * a subpool minimum size must be maintained. |
1c5ecae3 MK |
169 | */ |
170 | static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, | |
90481622 DG |
171 | long delta) |
172 | { | |
1c5ecae3 | 173 | long ret = delta; |
90481622 DG |
174 | |
175 | if (!spool) | |
1c5ecae3 | 176 | return ret; |
90481622 | 177 | |
db71ef79 | 178 | spin_lock_irq(&spool->lock); |
1c5ecae3 MK |
179 | |
180 | if (spool->max_hpages != -1) { /* maximum size accounting */ | |
181 | if ((spool->used_hpages + delta) <= spool->max_hpages) | |
182 | spool->used_hpages += delta; | |
183 | else { | |
184 | ret = -ENOMEM; | |
185 | goto unlock_ret; | |
186 | } | |
90481622 | 187 | } |
90481622 | 188 | |
09a95e29 MK |
189 | /* minimum size accounting */ |
190 | if (spool->min_hpages != -1 && spool->rsv_hpages) { | |
1c5ecae3 MK |
191 | if (delta > spool->rsv_hpages) { |
192 | /* | |
193 | * Asking for more reserves than those already taken on | |
194 | * behalf of subpool. Return difference. | |
195 | */ | |
196 | ret = delta - spool->rsv_hpages; | |
197 | spool->rsv_hpages = 0; | |
198 | } else { | |
199 | ret = 0; /* reserves already accounted for */ | |
200 | spool->rsv_hpages -= delta; | |
201 | } | |
202 | } | |
203 | ||
204 | unlock_ret: | |
db71ef79 | 205 | spin_unlock_irq(&spool->lock); |
90481622 DG |
206 | return ret; |
207 | } | |
208 | ||
1c5ecae3 MK |
209 | /* |
210 | * Subpool accounting for freeing and unreserving pages. | |
211 | * Return the number of global page reservations that must be dropped. | |
212 | * The return value may only be different than the passed value (delta) | |
213 | * in the case where a subpool minimum size must be maintained. | |
214 | */ | |
215 | static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, | |
90481622 DG |
216 | long delta) |
217 | { | |
1c5ecae3 | 218 | long ret = delta; |
db71ef79 | 219 | unsigned long flags; |
1c5ecae3 | 220 | |
90481622 | 221 | if (!spool) |
1c5ecae3 | 222 | return delta; |
90481622 | 223 | |
db71ef79 | 224 | spin_lock_irqsave(&spool->lock, flags); |
1c5ecae3 MK |
225 | |
226 | if (spool->max_hpages != -1) /* maximum size accounting */ | |
227 | spool->used_hpages -= delta; | |
228 | ||
09a95e29 MK |
229 | /* minimum size accounting */ |
230 | if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { | |
1c5ecae3 MK |
231 | if (spool->rsv_hpages + delta <= spool->min_hpages) |
232 | ret = 0; | |
233 | else | |
234 | ret = spool->rsv_hpages + delta - spool->min_hpages; | |
235 | ||
236 | spool->rsv_hpages += delta; | |
237 | if (spool->rsv_hpages > spool->min_hpages) | |
238 | spool->rsv_hpages = spool->min_hpages; | |
239 | } | |
240 | ||
241 | /* | |
242 | * If hugetlbfs_put_super couldn't free spool due to an outstanding | |
243 | * quota reference, free it now. | |
244 | */ | |
db71ef79 | 245 | unlock_or_release_subpool(spool, flags); |
1c5ecae3 MK |
246 | |
247 | return ret; | |
90481622 DG |
248 | } |
249 | ||
250 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | |
251 | { | |
252 | return HUGETLBFS_SB(inode->i_sb)->spool; | |
253 | } | |
254 | ||
255 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | |
256 | { | |
496ad9aa | 257 | return subpool_inode(file_inode(vma->vm_file)); |
90481622 DG |
258 | } |
259 | ||
e700898f MK |
260 | /* |
261 | * hugetlb vma_lock helper routines | |
262 | */ | |
e700898f MK |
263 | void hugetlb_vma_lock_read(struct vm_area_struct *vma) |
264 | { | |
265 | if (__vma_shareable_lock(vma)) { | |
266 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
267 | ||
268 | down_read(&vma_lock->rw_sema); | |
269 | } | |
270 | } | |
271 | ||
272 | void hugetlb_vma_unlock_read(struct vm_area_struct *vma) | |
273 | { | |
274 | if (__vma_shareable_lock(vma)) { | |
275 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
276 | ||
277 | up_read(&vma_lock->rw_sema); | |
278 | } | |
279 | } | |
280 | ||
281 | void hugetlb_vma_lock_write(struct vm_area_struct *vma) | |
282 | { | |
283 | if (__vma_shareable_lock(vma)) { | |
284 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
285 | ||
286 | down_write(&vma_lock->rw_sema); | |
287 | } | |
288 | } | |
289 | ||
290 | void hugetlb_vma_unlock_write(struct vm_area_struct *vma) | |
291 | { | |
292 | if (__vma_shareable_lock(vma)) { | |
293 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
294 | ||
295 | up_write(&vma_lock->rw_sema); | |
296 | } | |
297 | } | |
298 | ||
299 | int hugetlb_vma_trylock_write(struct vm_area_struct *vma) | |
300 | { | |
301 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
302 | ||
303 | if (!__vma_shareable_lock(vma)) | |
304 | return 1; | |
305 | ||
306 | return down_write_trylock(&vma_lock->rw_sema); | |
307 | } | |
308 | ||
309 | void hugetlb_vma_assert_locked(struct vm_area_struct *vma) | |
310 | { | |
311 | if (__vma_shareable_lock(vma)) { | |
312 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
313 | ||
314 | lockdep_assert_held(&vma_lock->rw_sema); | |
315 | } | |
316 | } | |
317 | ||
318 | void hugetlb_vma_lock_release(struct kref *kref) | |
319 | { | |
320 | struct hugetlb_vma_lock *vma_lock = container_of(kref, | |
321 | struct hugetlb_vma_lock, refs); | |
322 | ||
323 | kfree(vma_lock); | |
324 | } | |
325 | ||
326 | static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) | |
327 | { | |
328 | struct vm_area_struct *vma = vma_lock->vma; | |
329 | ||
330 | /* | |
331 | * vma_lock structure may or not be released as a result of put, | |
332 | * it certainly will no longer be attached to vma so clear pointer. | |
333 | * Semaphore synchronizes access to vma_lock->vma field. | |
334 | */ | |
335 | vma_lock->vma = NULL; | |
336 | vma->vm_private_data = NULL; | |
337 | up_write(&vma_lock->rw_sema); | |
338 | kref_put(&vma_lock->refs, hugetlb_vma_lock_release); | |
339 | } | |
340 | ||
341 | static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) | |
342 | { | |
343 | if (__vma_shareable_lock(vma)) { | |
344 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
345 | ||
346 | __hugetlb_vma_unlock_write_put(vma_lock); | |
347 | } | |
348 | } | |
349 | ||
350 | static void hugetlb_vma_lock_free(struct vm_area_struct *vma) | |
351 | { | |
352 | /* | |
353 | * Only present in sharable vmas. | |
354 | */ | |
355 | if (!vma || !__vma_shareable_lock(vma)) | |
356 | return; | |
357 | ||
358 | if (vma->vm_private_data) { | |
359 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
360 | ||
361 | down_write(&vma_lock->rw_sema); | |
362 | __hugetlb_vma_unlock_write_put(vma_lock); | |
363 | } | |
364 | } | |
365 | ||
366 | static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) | |
367 | { | |
368 | struct hugetlb_vma_lock *vma_lock; | |
369 | ||
370 | /* Only establish in (flags) sharable vmas */ | |
371 | if (!vma || !(vma->vm_flags & VM_MAYSHARE)) | |
372 | return; | |
373 | ||
374 | /* Should never get here with non-NULL vm_private_data */ | |
375 | if (vma->vm_private_data) | |
376 | return; | |
377 | ||
378 | vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); | |
379 | if (!vma_lock) { | |
380 | /* | |
381 | * If we can not allocate structure, then vma can not | |
382 | * participate in pmd sharing. This is only a possible | |
383 | * performance enhancement and memory saving issue. | |
384 | * However, the lock is also used to synchronize page | |
385 | * faults with truncation. If the lock is not present, | |
386 | * unlikely races could leave pages in a file past i_size | |
387 | * until the file is removed. Warn in the unlikely case of | |
388 | * allocation failure. | |
389 | */ | |
390 | pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); | |
391 | return; | |
392 | } | |
393 | ||
394 | kref_init(&vma_lock->refs); | |
395 | init_rwsem(&vma_lock->rw_sema); | |
396 | vma_lock->vma = vma; | |
397 | vma->vm_private_data = vma_lock; | |
398 | } | |
399 | ||
0db9d74e MA |
400 | /* Helper that removes a struct file_region from the resv_map cache and returns |
401 | * it for use. | |
402 | */ | |
403 | static struct file_region * | |
404 | get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) | |
405 | { | |
3259914f | 406 | struct file_region *nrg; |
0db9d74e MA |
407 | |
408 | VM_BUG_ON(resv->region_cache_count <= 0); | |
409 | ||
410 | resv->region_cache_count--; | |
411 | nrg = list_first_entry(&resv->region_cache, struct file_region, link); | |
0db9d74e MA |
412 | list_del(&nrg->link); |
413 | ||
414 | nrg->from = from; | |
415 | nrg->to = to; | |
416 | ||
417 | return nrg; | |
418 | } | |
419 | ||
075a61d0 MA |
420 | static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, |
421 | struct file_region *rg) | |
422 | { | |
423 | #ifdef CONFIG_CGROUP_HUGETLB | |
424 | nrg->reservation_counter = rg->reservation_counter; | |
425 | nrg->css = rg->css; | |
426 | if (rg->css) | |
427 | css_get(rg->css); | |
428 | #endif | |
429 | } | |
430 | ||
431 | /* Helper that records hugetlb_cgroup uncharge info. */ | |
432 | static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, | |
433 | struct hstate *h, | |
434 | struct resv_map *resv, | |
435 | struct file_region *nrg) | |
436 | { | |
437 | #ifdef CONFIG_CGROUP_HUGETLB | |
438 | if (h_cg) { | |
439 | nrg->reservation_counter = | |
440 | &h_cg->rsvd_hugepage[hstate_index(h)]; | |
441 | nrg->css = &h_cg->css; | |
d85aecf2 ML |
442 | /* |
443 | * The caller will hold exactly one h_cg->css reference for the | |
444 | * whole contiguous reservation region. But this area might be | |
445 | * scattered when there are already some file_regions reside in | |
446 | * it. As a result, many file_regions may share only one css | |
447 | * reference. In order to ensure that one file_region must hold | |
448 | * exactly one h_cg->css reference, we should do css_get for | |
449 | * each file_region and leave the reference held by caller | |
450 | * untouched. | |
451 | */ | |
452 | css_get(&h_cg->css); | |
075a61d0 MA |
453 | if (!resv->pages_per_hpage) |
454 | resv->pages_per_hpage = pages_per_huge_page(h); | |
455 | /* pages_per_hpage should be the same for all entries in | |
456 | * a resv_map. | |
457 | */ | |
458 | VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); | |
459 | } else { | |
460 | nrg->reservation_counter = NULL; | |
461 | nrg->css = NULL; | |
462 | } | |
463 | #endif | |
464 | } | |
465 | ||
d85aecf2 ML |
466 | static void put_uncharge_info(struct file_region *rg) |
467 | { | |
468 | #ifdef CONFIG_CGROUP_HUGETLB | |
469 | if (rg->css) | |
470 | css_put(rg->css); | |
471 | #endif | |
472 | } | |
473 | ||
a9b3f867 MA |
474 | static bool has_same_uncharge_info(struct file_region *rg, |
475 | struct file_region *org) | |
476 | { | |
477 | #ifdef CONFIG_CGROUP_HUGETLB | |
0739eb43 | 478 | return rg->reservation_counter == org->reservation_counter && |
a9b3f867 MA |
479 | rg->css == org->css; |
480 | ||
481 | #else | |
482 | return true; | |
483 | #endif | |
484 | } | |
485 | ||
486 | static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) | |
487 | { | |
3259914f | 488 | struct file_region *nrg, *prg; |
a9b3f867 MA |
489 | |
490 | prg = list_prev_entry(rg, link); | |
491 | if (&prg->link != &resv->regions && prg->to == rg->from && | |
492 | has_same_uncharge_info(prg, rg)) { | |
493 | prg->to = rg->to; | |
494 | ||
495 | list_del(&rg->link); | |
d85aecf2 | 496 | put_uncharge_info(rg); |
a9b3f867 MA |
497 | kfree(rg); |
498 | ||
7db5e7b6 | 499 | rg = prg; |
a9b3f867 MA |
500 | } |
501 | ||
502 | nrg = list_next_entry(rg, link); | |
503 | if (&nrg->link != &resv->regions && nrg->from == rg->to && | |
504 | has_same_uncharge_info(nrg, rg)) { | |
505 | nrg->from = rg->from; | |
506 | ||
507 | list_del(&rg->link); | |
d85aecf2 | 508 | put_uncharge_info(rg); |
a9b3f867 | 509 | kfree(rg); |
a9b3f867 MA |
510 | } |
511 | } | |
512 | ||
2103cf9c | 513 | static inline long |
84448c8e | 514 | hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, |
2103cf9c PX |
515 | long to, struct hstate *h, struct hugetlb_cgroup *cg, |
516 | long *regions_needed) | |
517 | { | |
518 | struct file_region *nrg; | |
519 | ||
520 | if (!regions_needed) { | |
521 | nrg = get_file_region_entry_from_cache(map, from, to); | |
522 | record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); | |
84448c8e | 523 | list_add(&nrg->link, rg); |
2103cf9c PX |
524 | coalesce_file_region(map, nrg); |
525 | } else | |
526 | *regions_needed += 1; | |
527 | ||
528 | return to - from; | |
529 | } | |
530 | ||
972a3da3 WY |
531 | /* |
532 | * Must be called with resv->lock held. | |
533 | * | |
534 | * Calling this with regions_needed != NULL will count the number of pages | |
535 | * to be added but will not modify the linked list. And regions_needed will | |
536 | * indicate the number of file_regions needed in the cache to carry out to add | |
537 | * the regions for this range. | |
d75c6af9 MA |
538 | */ |
539 | static long add_reservation_in_range(struct resv_map *resv, long f, long t, | |
075a61d0 | 540 | struct hugetlb_cgroup *h_cg, |
972a3da3 | 541 | struct hstate *h, long *regions_needed) |
d75c6af9 | 542 | { |
0db9d74e | 543 | long add = 0; |
d75c6af9 | 544 | struct list_head *head = &resv->regions; |
0db9d74e | 545 | long last_accounted_offset = f; |
84448c8e JK |
546 | struct file_region *iter, *trg = NULL; |
547 | struct list_head *rg = NULL; | |
d75c6af9 | 548 | |
0db9d74e MA |
549 | if (regions_needed) |
550 | *regions_needed = 0; | |
d75c6af9 | 551 | |
0db9d74e | 552 | /* In this loop, we essentially handle an entry for the range |
84448c8e | 553 | * [last_accounted_offset, iter->from), at every iteration, with some |
0db9d74e MA |
554 | * bounds checking. |
555 | */ | |
84448c8e | 556 | list_for_each_entry_safe(iter, trg, head, link) { |
0db9d74e | 557 | /* Skip irrelevant regions that start before our range. */ |
84448c8e | 558 | if (iter->from < f) { |
0db9d74e MA |
559 | /* If this region ends after the last accounted offset, |
560 | * then we need to update last_accounted_offset. | |
561 | */ | |
84448c8e JK |
562 | if (iter->to > last_accounted_offset) |
563 | last_accounted_offset = iter->to; | |
0db9d74e MA |
564 | continue; |
565 | } | |
d75c6af9 | 566 | |
0db9d74e MA |
567 | /* When we find a region that starts beyond our range, we've |
568 | * finished. | |
569 | */ | |
84448c8e JK |
570 | if (iter->from >= t) { |
571 | rg = iter->link.prev; | |
d75c6af9 | 572 | break; |
84448c8e | 573 | } |
d75c6af9 | 574 | |
84448c8e | 575 | /* Add an entry for last_accounted_offset -> iter->from, and |
0db9d74e MA |
576 | * update last_accounted_offset. |
577 | */ | |
84448c8e JK |
578 | if (iter->from > last_accounted_offset) |
579 | add += hugetlb_resv_map_add(resv, iter->link.prev, | |
2103cf9c | 580 | last_accounted_offset, |
84448c8e | 581 | iter->from, h, h_cg, |
2103cf9c | 582 | regions_needed); |
0db9d74e | 583 | |
84448c8e | 584 | last_accounted_offset = iter->to; |
0db9d74e MA |
585 | } |
586 | ||
587 | /* Handle the case where our range extends beyond | |
588 | * last_accounted_offset. | |
589 | */ | |
84448c8e JK |
590 | if (!rg) |
591 | rg = head->prev; | |
2103cf9c PX |
592 | if (last_accounted_offset < t) |
593 | add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, | |
594 | t, h, h_cg, regions_needed); | |
0db9d74e | 595 | |
0db9d74e MA |
596 | return add; |
597 | } | |
598 | ||
599 | /* Must be called with resv->lock acquired. Will drop lock to allocate entries. | |
600 | */ | |
601 | static int allocate_file_region_entries(struct resv_map *resv, | |
602 | int regions_needed) | |
603 | __must_hold(&resv->lock) | |
604 | { | |
34665341 | 605 | LIST_HEAD(allocated_regions); |
0db9d74e MA |
606 | int to_allocate = 0, i = 0; |
607 | struct file_region *trg = NULL, *rg = NULL; | |
608 | ||
609 | VM_BUG_ON(regions_needed < 0); | |
610 | ||
0db9d74e MA |
611 | /* |
612 | * Check for sufficient descriptors in the cache to accommodate | |
613 | * the number of in progress add operations plus regions_needed. | |
614 | * | |
615 | * This is a while loop because when we drop the lock, some other call | |
616 | * to region_add or region_del may have consumed some region_entries, | |
617 | * so we keep looping here until we finally have enough entries for | |
618 | * (adds_in_progress + regions_needed). | |
619 | */ | |
620 | while (resv->region_cache_count < | |
621 | (resv->adds_in_progress + regions_needed)) { | |
622 | to_allocate = resv->adds_in_progress + regions_needed - | |
623 | resv->region_cache_count; | |
624 | ||
625 | /* At this point, we should have enough entries in the cache | |
f0953a1b | 626 | * for all the existing adds_in_progress. We should only be |
0db9d74e | 627 | * needing to allocate for regions_needed. |
d75c6af9 | 628 | */ |
0db9d74e MA |
629 | VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); |
630 | ||
631 | spin_unlock(&resv->lock); | |
632 | for (i = 0; i < to_allocate; i++) { | |
633 | trg = kmalloc(sizeof(*trg), GFP_KERNEL); | |
634 | if (!trg) | |
635 | goto out_of_memory; | |
636 | list_add(&trg->link, &allocated_regions); | |
d75c6af9 | 637 | } |
d75c6af9 | 638 | |
0db9d74e MA |
639 | spin_lock(&resv->lock); |
640 | ||
d3ec7b6e WY |
641 | list_splice(&allocated_regions, &resv->region_cache); |
642 | resv->region_cache_count += to_allocate; | |
d75c6af9 MA |
643 | } |
644 | ||
0db9d74e | 645 | return 0; |
d75c6af9 | 646 | |
0db9d74e MA |
647 | out_of_memory: |
648 | list_for_each_entry_safe(rg, trg, &allocated_regions, link) { | |
649 | list_del(&rg->link); | |
650 | kfree(rg); | |
651 | } | |
652 | return -ENOMEM; | |
d75c6af9 MA |
653 | } |
654 | ||
1dd308a7 MK |
655 | /* |
656 | * Add the huge page range represented by [f, t) to the reserve | |
0db9d74e MA |
657 | * map. Regions will be taken from the cache to fill in this range. |
658 | * Sufficient regions should exist in the cache due to the previous | |
659 | * call to region_chg with the same range, but in some cases the cache will not | |
660 | * have sufficient entries due to races with other code doing region_add or | |
661 | * region_del. The extra needed entries will be allocated. | |
cf3ad20b | 662 | * |
0db9d74e MA |
663 | * regions_needed is the out value provided by a previous call to region_chg. |
664 | * | |
665 | * Return the number of new huge pages added to the map. This number is greater | |
666 | * than or equal to zero. If file_region entries needed to be allocated for | |
7c8de358 | 667 | * this operation and we were not able to allocate, it returns -ENOMEM. |
0db9d74e MA |
668 | * region_add of regions of length 1 never allocate file_regions and cannot |
669 | * fail; region_chg will always allocate at least 1 entry and a region_add for | |
670 | * 1 page will only require at most 1 entry. | |
1dd308a7 | 671 | */ |
0db9d74e | 672 | static long region_add(struct resv_map *resv, long f, long t, |
075a61d0 MA |
673 | long in_regions_needed, struct hstate *h, |
674 | struct hugetlb_cgroup *h_cg) | |
96822904 | 675 | { |
0db9d74e | 676 | long add = 0, actual_regions_needed = 0; |
96822904 | 677 | |
7b24d861 | 678 | spin_lock(&resv->lock); |
0db9d74e MA |
679 | retry: |
680 | ||
681 | /* Count how many regions are actually needed to execute this add. */ | |
972a3da3 WY |
682 | add_reservation_in_range(resv, f, t, NULL, NULL, |
683 | &actual_regions_needed); | |
96822904 | 684 | |
5e911373 | 685 | /* |
0db9d74e MA |
686 | * Check for sufficient descriptors in the cache to accommodate |
687 | * this add operation. Note that actual_regions_needed may be greater | |
688 | * than in_regions_needed, as the resv_map may have been modified since | |
689 | * the region_chg call. In this case, we need to make sure that we | |
690 | * allocate extra entries, such that we have enough for all the | |
691 | * existing adds_in_progress, plus the excess needed for this | |
692 | * operation. | |
5e911373 | 693 | */ |
0db9d74e MA |
694 | if (actual_regions_needed > in_regions_needed && |
695 | resv->region_cache_count < | |
696 | resv->adds_in_progress + | |
697 | (actual_regions_needed - in_regions_needed)) { | |
698 | /* region_add operation of range 1 should never need to | |
699 | * allocate file_region entries. | |
700 | */ | |
701 | VM_BUG_ON(t - f <= 1); | |
5e911373 | 702 | |
0db9d74e MA |
703 | if (allocate_file_region_entries( |
704 | resv, actual_regions_needed - in_regions_needed)) { | |
705 | return -ENOMEM; | |
706 | } | |
5e911373 | 707 | |
0db9d74e | 708 | goto retry; |
5e911373 MK |
709 | } |
710 | ||
972a3da3 | 711 | add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); |
0db9d74e MA |
712 | |
713 | resv->adds_in_progress -= in_regions_needed; | |
cf3ad20b | 714 | |
7b24d861 | 715 | spin_unlock(&resv->lock); |
cf3ad20b | 716 | return add; |
96822904 AW |
717 | } |
718 | ||
1dd308a7 MK |
719 | /* |
720 | * Examine the existing reserve map and determine how many | |
721 | * huge pages in the specified range [f, t) are NOT currently | |
722 | * represented. This routine is called before a subsequent | |
723 | * call to region_add that will actually modify the reserve | |
724 | * map to add the specified range [f, t). region_chg does | |
725 | * not change the number of huge pages represented by the | |
0db9d74e MA |
726 | * map. A number of new file_region structures is added to the cache as a |
727 | * placeholder, for the subsequent region_add call to use. At least 1 | |
728 | * file_region structure is added. | |
729 | * | |
730 | * out_regions_needed is the number of regions added to the | |
731 | * resv->adds_in_progress. This value needs to be provided to a follow up call | |
732 | * to region_add or region_abort for proper accounting. | |
5e911373 MK |
733 | * |
734 | * Returns the number of huge pages that need to be added to the existing | |
735 | * reservation map for the range [f, t). This number is greater or equal to | |
736 | * zero. -ENOMEM is returned if a new file_region structure or cache entry | |
737 | * is needed and can not be allocated. | |
1dd308a7 | 738 | */ |
0db9d74e MA |
739 | static long region_chg(struct resv_map *resv, long f, long t, |
740 | long *out_regions_needed) | |
96822904 | 741 | { |
96822904 AW |
742 | long chg = 0; |
743 | ||
7b24d861 | 744 | spin_lock(&resv->lock); |
5e911373 | 745 | |
972a3da3 | 746 | /* Count how many hugepages in this range are NOT represented. */ |
075a61d0 | 747 | chg = add_reservation_in_range(resv, f, t, NULL, NULL, |
972a3da3 | 748 | out_regions_needed); |
5e911373 | 749 | |
0db9d74e MA |
750 | if (*out_regions_needed == 0) |
751 | *out_regions_needed = 1; | |
5e911373 | 752 | |
0db9d74e MA |
753 | if (allocate_file_region_entries(resv, *out_regions_needed)) |
754 | return -ENOMEM; | |
5e911373 | 755 | |
0db9d74e | 756 | resv->adds_in_progress += *out_regions_needed; |
7b24d861 | 757 | |
7b24d861 | 758 | spin_unlock(&resv->lock); |
96822904 AW |
759 | return chg; |
760 | } | |
761 | ||
5e911373 MK |
762 | /* |
763 | * Abort the in progress add operation. The adds_in_progress field | |
764 | * of the resv_map keeps track of the operations in progress between | |
765 | * calls to region_chg and region_add. Operations are sometimes | |
766 | * aborted after the call to region_chg. In such cases, region_abort | |
0db9d74e MA |
767 | * is called to decrement the adds_in_progress counter. regions_needed |
768 | * is the value returned by the region_chg call, it is used to decrement | |
769 | * the adds_in_progress counter. | |
5e911373 MK |
770 | * |
771 | * NOTE: The range arguments [f, t) are not needed or used in this | |
772 | * routine. They are kept to make reading the calling code easier as | |
773 | * arguments will match the associated region_chg call. | |
774 | */ | |
0db9d74e MA |
775 | static void region_abort(struct resv_map *resv, long f, long t, |
776 | long regions_needed) | |
5e911373 MK |
777 | { |
778 | spin_lock(&resv->lock); | |
779 | VM_BUG_ON(!resv->region_cache_count); | |
0db9d74e | 780 | resv->adds_in_progress -= regions_needed; |
5e911373 MK |
781 | spin_unlock(&resv->lock); |
782 | } | |
783 | ||
1dd308a7 | 784 | /* |
feba16e2 MK |
785 | * Delete the specified range [f, t) from the reserve map. If the |
786 | * t parameter is LONG_MAX, this indicates that ALL regions after f | |
787 | * should be deleted. Locate the regions which intersect [f, t) | |
788 | * and either trim, delete or split the existing regions. | |
789 | * | |
790 | * Returns the number of huge pages deleted from the reserve map. | |
791 | * In the normal case, the return value is zero or more. In the | |
792 | * case where a region must be split, a new region descriptor must | |
793 | * be allocated. If the allocation fails, -ENOMEM will be returned. | |
794 | * NOTE: If the parameter t == LONG_MAX, then we will never split | |
795 | * a region and possibly return -ENOMEM. Callers specifying | |
796 | * t == LONG_MAX do not need to check for -ENOMEM error. | |
1dd308a7 | 797 | */ |
feba16e2 | 798 | static long region_del(struct resv_map *resv, long f, long t) |
96822904 | 799 | { |
1406ec9b | 800 | struct list_head *head = &resv->regions; |
96822904 | 801 | struct file_region *rg, *trg; |
feba16e2 MK |
802 | struct file_region *nrg = NULL; |
803 | long del = 0; | |
96822904 | 804 | |
feba16e2 | 805 | retry: |
7b24d861 | 806 | spin_lock(&resv->lock); |
feba16e2 | 807 | list_for_each_entry_safe(rg, trg, head, link) { |
dbe409e4 MK |
808 | /* |
809 | * Skip regions before the range to be deleted. file_region | |
810 | * ranges are normally of the form [from, to). However, there | |
811 | * may be a "placeholder" entry in the map which is of the form | |
812 | * (from, to) with from == to. Check for placeholder entries | |
813 | * at the beginning of the range to be deleted. | |
814 | */ | |
815 | if (rg->to <= f && (rg->to != rg->from || rg->to != f)) | |
feba16e2 | 816 | continue; |
dbe409e4 | 817 | |
feba16e2 | 818 | if (rg->from >= t) |
96822904 | 819 | break; |
96822904 | 820 | |
feba16e2 MK |
821 | if (f > rg->from && t < rg->to) { /* Must split region */ |
822 | /* | |
823 | * Check for an entry in the cache before dropping | |
824 | * lock and attempting allocation. | |
825 | */ | |
826 | if (!nrg && | |
827 | resv->region_cache_count > resv->adds_in_progress) { | |
828 | nrg = list_first_entry(&resv->region_cache, | |
829 | struct file_region, | |
830 | link); | |
831 | list_del(&nrg->link); | |
832 | resv->region_cache_count--; | |
833 | } | |
96822904 | 834 | |
feba16e2 MK |
835 | if (!nrg) { |
836 | spin_unlock(&resv->lock); | |
837 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
838 | if (!nrg) | |
839 | return -ENOMEM; | |
840 | goto retry; | |
841 | } | |
842 | ||
843 | del += t - f; | |
79aa925b | 844 | hugetlb_cgroup_uncharge_file_region( |
d85aecf2 | 845 | resv, rg, t - f, false); |
feba16e2 MK |
846 | |
847 | /* New entry for end of split region */ | |
848 | nrg->from = t; | |
849 | nrg->to = rg->to; | |
075a61d0 MA |
850 | |
851 | copy_hugetlb_cgroup_uncharge_info(nrg, rg); | |
852 | ||
feba16e2 MK |
853 | INIT_LIST_HEAD(&nrg->link); |
854 | ||
855 | /* Original entry is trimmed */ | |
856 | rg->to = f; | |
857 | ||
858 | list_add(&nrg->link, &rg->link); | |
859 | nrg = NULL; | |
96822904 | 860 | break; |
feba16e2 MK |
861 | } |
862 | ||
863 | if (f <= rg->from && t >= rg->to) { /* Remove entire region */ | |
864 | del += rg->to - rg->from; | |
075a61d0 | 865 | hugetlb_cgroup_uncharge_file_region(resv, rg, |
d85aecf2 | 866 | rg->to - rg->from, true); |
feba16e2 MK |
867 | list_del(&rg->link); |
868 | kfree(rg); | |
869 | continue; | |
870 | } | |
871 | ||
872 | if (f <= rg->from) { /* Trim beginning of region */ | |
075a61d0 | 873 | hugetlb_cgroup_uncharge_file_region(resv, rg, |
d85aecf2 | 874 | t - rg->from, false); |
075a61d0 | 875 | |
79aa925b MK |
876 | del += t - rg->from; |
877 | rg->from = t; | |
878 | } else { /* Trim end of region */ | |
075a61d0 | 879 | hugetlb_cgroup_uncharge_file_region(resv, rg, |
d85aecf2 | 880 | rg->to - f, false); |
79aa925b MK |
881 | |
882 | del += rg->to - f; | |
883 | rg->to = f; | |
feba16e2 | 884 | } |
96822904 | 885 | } |
7b24d861 | 886 | |
7b24d861 | 887 | spin_unlock(&resv->lock); |
feba16e2 MK |
888 | kfree(nrg); |
889 | return del; | |
96822904 AW |
890 | } |
891 | ||
b5cec28d MK |
892 | /* |
893 | * A rare out of memory error was encountered which prevented removal of | |
894 | * the reserve map region for a page. The huge page itself was free'ed | |
895 | * and removed from the page cache. This routine will adjust the subpool | |
896 | * usage count, and the global reserve count if needed. By incrementing | |
897 | * these counts, the reserve map entry which could not be deleted will | |
898 | * appear as a "reserved" entry instead of simply dangling with incorrect | |
899 | * counts. | |
900 | */ | |
72e2936c | 901 | void hugetlb_fix_reserve_counts(struct inode *inode) |
b5cec28d MK |
902 | { |
903 | struct hugepage_subpool *spool = subpool_inode(inode); | |
904 | long rsv_adjust; | |
da56388c | 905 | bool reserved = false; |
b5cec28d MK |
906 | |
907 | rsv_adjust = hugepage_subpool_get_pages(spool, 1); | |
da56388c | 908 | if (rsv_adjust > 0) { |
b5cec28d MK |
909 | struct hstate *h = hstate_inode(inode); |
910 | ||
da56388c ML |
911 | if (!hugetlb_acct_memory(h, 1)) |
912 | reserved = true; | |
913 | } else if (!rsv_adjust) { | |
914 | reserved = true; | |
b5cec28d | 915 | } |
da56388c ML |
916 | |
917 | if (!reserved) | |
918 | pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); | |
b5cec28d MK |
919 | } |
920 | ||
1dd308a7 MK |
921 | /* |
922 | * Count and return the number of huge pages in the reserve map | |
923 | * that intersect with the range [f, t). | |
924 | */ | |
1406ec9b | 925 | static long region_count(struct resv_map *resv, long f, long t) |
84afd99b | 926 | { |
1406ec9b | 927 | struct list_head *head = &resv->regions; |
84afd99b AW |
928 | struct file_region *rg; |
929 | long chg = 0; | |
930 | ||
7b24d861 | 931 | spin_lock(&resv->lock); |
84afd99b AW |
932 | /* Locate each segment we overlap with, and count that overlap. */ |
933 | list_for_each_entry(rg, head, link) { | |
f2135a4a WSH |
934 | long seg_from; |
935 | long seg_to; | |
84afd99b AW |
936 | |
937 | if (rg->to <= f) | |
938 | continue; | |
939 | if (rg->from >= t) | |
940 | break; | |
941 | ||
942 | seg_from = max(rg->from, f); | |
943 | seg_to = min(rg->to, t); | |
944 | ||
945 | chg += seg_to - seg_from; | |
946 | } | |
7b24d861 | 947 | spin_unlock(&resv->lock); |
84afd99b AW |
948 | |
949 | return chg; | |
950 | } | |
951 | ||
e7c4b0bf AW |
952 | /* |
953 | * Convert the address within this vma to the page offset within | |
954 | * the mapping, in pagecache page units; huge pages here. | |
955 | */ | |
a5516438 AK |
956 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
957 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 958 | { |
a5516438 AK |
959 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
960 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
961 | } |
962 | ||
0fe6e20b NH |
963 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
964 | unsigned long address) | |
965 | { | |
966 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | |
967 | } | |
dee41079 | 968 | EXPORT_SYMBOL_GPL(linear_hugepage_index); |
0fe6e20b | 969 | |
08fba699 MG |
970 | /* |
971 | * Return the size of the pages allocated when backing a VMA. In the majority | |
972 | * cases this will be same size as used by the page table entries. | |
973 | */ | |
974 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | |
975 | { | |
05ea8860 DW |
976 | if (vma->vm_ops && vma->vm_ops->pagesize) |
977 | return vma->vm_ops->pagesize(vma); | |
978 | return PAGE_SIZE; | |
08fba699 | 979 | } |
f340ca0f | 980 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
08fba699 | 981 | |
3340289d MG |
982 | /* |
983 | * Return the page size being used by the MMU to back a VMA. In the majority | |
984 | * of cases, the page size used by the kernel matches the MMU size. On | |
09135cc5 DW |
985 | * architectures where it differs, an architecture-specific 'strong' |
986 | * version of this symbol is required. | |
3340289d | 987 | */ |
09135cc5 | 988 | __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) |
3340289d MG |
989 | { |
990 | return vma_kernel_pagesize(vma); | |
991 | } | |
3340289d | 992 | |
84afd99b AW |
993 | /* |
994 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
995 | * bits of the reservation map pointer, which are always clear due to | |
996 | * alignment. | |
997 | */ | |
998 | #define HPAGE_RESV_OWNER (1UL << 0) | |
999 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 1000 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 1001 | |
a1e78772 MG |
1002 | /* |
1003 | * These helpers are used to track how many pages are reserved for | |
1004 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
1005 | * is guaranteed to have their future faults succeed. | |
1006 | * | |
8d9bfb26 | 1007 | * With the exception of hugetlb_dup_vma_private() which is called at fork(), |
a1e78772 MG |
1008 | * the reserve counters are updated with the hugetlb_lock held. It is safe |
1009 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
1010 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
1011 | * |
1012 | * The private mapping reservation is represented in a subtly different | |
1013 | * manner to a shared mapping. A shared mapping has a region map associated | |
1014 | * with the underlying file, this region map represents the backing file | |
1015 | * pages which have ever had a reservation assigned which this persists even | |
1016 | * after the page is instantiated. A private mapping has a region map | |
1017 | * associated with the original mmap which is attached to all VMAs which | |
1018 | * reference it, this region map represents those offsets which have consumed | |
1019 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 1020 | */ |
e7c4b0bf AW |
1021 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
1022 | { | |
1023 | return (unsigned long)vma->vm_private_data; | |
1024 | } | |
1025 | ||
1026 | static void set_vma_private_data(struct vm_area_struct *vma, | |
1027 | unsigned long value) | |
1028 | { | |
1029 | vma->vm_private_data = (void *)value; | |
1030 | } | |
1031 | ||
e9fe92ae MA |
1032 | static void |
1033 | resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, | |
1034 | struct hugetlb_cgroup *h_cg, | |
1035 | struct hstate *h) | |
1036 | { | |
1037 | #ifdef CONFIG_CGROUP_HUGETLB | |
1038 | if (!h_cg || !h) { | |
1039 | resv_map->reservation_counter = NULL; | |
1040 | resv_map->pages_per_hpage = 0; | |
1041 | resv_map->css = NULL; | |
1042 | } else { | |
1043 | resv_map->reservation_counter = | |
1044 | &h_cg->rsvd_hugepage[hstate_index(h)]; | |
1045 | resv_map->pages_per_hpage = pages_per_huge_page(h); | |
1046 | resv_map->css = &h_cg->css; | |
1047 | } | |
1048 | #endif | |
1049 | } | |
1050 | ||
9119a41e | 1051 | struct resv_map *resv_map_alloc(void) |
84afd99b AW |
1052 | { |
1053 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
5e911373 MK |
1054 | struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); |
1055 | ||
1056 | if (!resv_map || !rg) { | |
1057 | kfree(resv_map); | |
1058 | kfree(rg); | |
84afd99b | 1059 | return NULL; |
5e911373 | 1060 | } |
84afd99b AW |
1061 | |
1062 | kref_init(&resv_map->refs); | |
7b24d861 | 1063 | spin_lock_init(&resv_map->lock); |
84afd99b AW |
1064 | INIT_LIST_HEAD(&resv_map->regions); |
1065 | ||
5e911373 | 1066 | resv_map->adds_in_progress = 0; |
e9fe92ae MA |
1067 | /* |
1068 | * Initialize these to 0. On shared mappings, 0's here indicate these | |
1069 | * fields don't do cgroup accounting. On private mappings, these will be | |
1070 | * re-initialized to the proper values, to indicate that hugetlb cgroup | |
1071 | * reservations are to be un-charged from here. | |
1072 | */ | |
1073 | resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); | |
5e911373 MK |
1074 | |
1075 | INIT_LIST_HEAD(&resv_map->region_cache); | |
1076 | list_add(&rg->link, &resv_map->region_cache); | |
1077 | resv_map->region_cache_count = 1; | |
1078 | ||
84afd99b AW |
1079 | return resv_map; |
1080 | } | |
1081 | ||
9119a41e | 1082 | void resv_map_release(struct kref *ref) |
84afd99b AW |
1083 | { |
1084 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
5e911373 MK |
1085 | struct list_head *head = &resv_map->region_cache; |
1086 | struct file_region *rg, *trg; | |
84afd99b AW |
1087 | |
1088 | /* Clear out any active regions before we release the map. */ | |
feba16e2 | 1089 | region_del(resv_map, 0, LONG_MAX); |
5e911373 MK |
1090 | |
1091 | /* ... and any entries left in the cache */ | |
1092 | list_for_each_entry_safe(rg, trg, head, link) { | |
1093 | list_del(&rg->link); | |
1094 | kfree(rg); | |
1095 | } | |
1096 | ||
1097 | VM_BUG_ON(resv_map->adds_in_progress); | |
1098 | ||
84afd99b AW |
1099 | kfree(resv_map); |
1100 | } | |
1101 | ||
4e35f483 JK |
1102 | static inline struct resv_map *inode_resv_map(struct inode *inode) |
1103 | { | |
f27a5136 MK |
1104 | /* |
1105 | * At inode evict time, i_mapping may not point to the original | |
1106 | * address space within the inode. This original address space | |
1107 | * contains the pointer to the resv_map. So, always use the | |
1108 | * address space embedded within the inode. | |
1109 | * The VERY common case is inode->mapping == &inode->i_data but, | |
1110 | * this may not be true for device special inodes. | |
1111 | */ | |
1112 | return (struct resv_map *)(&inode->i_data)->private_data; | |
4e35f483 JK |
1113 | } |
1114 | ||
84afd99b | 1115 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) |
a1e78772 | 1116 | { |
81d1b09c | 1117 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
4e35f483 JK |
1118 | if (vma->vm_flags & VM_MAYSHARE) { |
1119 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1120 | struct inode *inode = mapping->host; | |
1121 | ||
1122 | return inode_resv_map(inode); | |
1123 | ||
1124 | } else { | |
84afd99b AW |
1125 | return (struct resv_map *)(get_vma_private_data(vma) & |
1126 | ~HPAGE_RESV_MASK); | |
4e35f483 | 1127 | } |
a1e78772 MG |
1128 | } |
1129 | ||
84afd99b | 1130 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 | 1131 | { |
81d1b09c SL |
1132 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
1133 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | |
a1e78772 | 1134 | |
84afd99b AW |
1135 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
1136 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
1137 | } |
1138 | ||
1139 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
1140 | { | |
81d1b09c SL |
1141 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
1142 | VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); | |
e7c4b0bf AW |
1143 | |
1144 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
1145 | } |
1146 | ||
1147 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
1148 | { | |
81d1b09c | 1149 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
e7c4b0bf AW |
1150 | |
1151 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
1152 | } |
1153 | ||
8d9bfb26 | 1154 | void hugetlb_dup_vma_private(struct vm_area_struct *vma) |
a1e78772 | 1155 | { |
81d1b09c | 1156 | VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); |
8d9bfb26 MK |
1157 | /* |
1158 | * Clear vm_private_data | |
612b8a31 MK |
1159 | * - For shared mappings this is a per-vma semaphore that may be |
1160 | * allocated in a subsequent call to hugetlb_vm_op_open. | |
1161 | * Before clearing, make sure pointer is not associated with vma | |
1162 | * as this will leak the structure. This is the case when called | |
1163 | * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already | |
1164 | * been called to allocate a new structure. | |
8d9bfb26 MK |
1165 | * - For MAP_PRIVATE mappings, this is the reserve map which does |
1166 | * not apply to children. Faults generated by the children are | |
1167 | * not guaranteed to succeed, even if read-only. | |
8d9bfb26 | 1168 | */ |
612b8a31 MK |
1169 | if (vma->vm_flags & VM_MAYSHARE) { |
1170 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; | |
1171 | ||
1172 | if (vma_lock && vma_lock->vma != vma) | |
1173 | vma->vm_private_data = NULL; | |
1174 | } else | |
1175 | vma->vm_private_data = NULL; | |
a1e78772 MG |
1176 | } |
1177 | ||
550a7d60 MA |
1178 | /* |
1179 | * Reset and decrement one ref on hugepage private reservation. | |
8651a137 | 1180 | * Called with mm->mmap_lock writer semaphore held. |
550a7d60 MA |
1181 | * This function should be only used by move_vma() and operate on |
1182 | * same sized vma. It should never come here with last ref on the | |
1183 | * reservation. | |
1184 | */ | |
1185 | void clear_vma_resv_huge_pages(struct vm_area_struct *vma) | |
1186 | { | |
1187 | /* | |
1188 | * Clear the old hugetlb private page reservation. | |
1189 | * It has already been transferred to new_vma. | |
1190 | * | |
1191 | * During a mremap() operation of a hugetlb vma we call move_vma() | |
1192 | * which copies vma into new_vma and unmaps vma. After the copy | |
1193 | * operation both new_vma and vma share a reference to the resv_map | |
1194 | * struct, and at that point vma is about to be unmapped. We don't | |
1195 | * want to return the reservation to the pool at unmap of vma because | |
1196 | * the reservation still lives on in new_vma, so simply decrement the | |
1197 | * ref here and remove the resv_map reference from this vma. | |
1198 | */ | |
1199 | struct resv_map *reservations = vma_resv_map(vma); | |
1200 | ||
afe041c2 BQM |
1201 | if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1202 | resv_map_put_hugetlb_cgroup_uncharge_info(reservations); | |
550a7d60 | 1203 | kref_put(&reservations->refs, resv_map_release); |
afe041c2 | 1204 | } |
550a7d60 | 1205 | |
8d9bfb26 | 1206 | hugetlb_dup_vma_private(vma); |
550a7d60 MA |
1207 | } |
1208 | ||
a1e78772 | 1209 | /* Returns true if the VMA has associated reserve pages */ |
559ec2f8 | 1210 | static bool vma_has_reserves(struct vm_area_struct *vma, long chg) |
a1e78772 | 1211 | { |
af0ed73e JK |
1212 | if (vma->vm_flags & VM_NORESERVE) { |
1213 | /* | |
1214 | * This address is already reserved by other process(chg == 0), | |
1215 | * so, we should decrement reserved count. Without decrementing, | |
1216 | * reserve count remains after releasing inode, because this | |
1217 | * allocated page will go into page cache and is regarded as | |
1218 | * coming from reserved pool in releasing step. Currently, we | |
1219 | * don't have any other solution to deal with this situation | |
1220 | * properly, so add work-around here. | |
1221 | */ | |
1222 | if (vma->vm_flags & VM_MAYSHARE && chg == 0) | |
559ec2f8 | 1223 | return true; |
af0ed73e | 1224 | else |
559ec2f8 | 1225 | return false; |
af0ed73e | 1226 | } |
a63884e9 JK |
1227 | |
1228 | /* Shared mappings always use reserves */ | |
1fb1b0e9 MK |
1229 | if (vma->vm_flags & VM_MAYSHARE) { |
1230 | /* | |
1231 | * We know VM_NORESERVE is not set. Therefore, there SHOULD | |
1232 | * be a region map for all pages. The only situation where | |
1233 | * there is no region map is if a hole was punched via | |
7c8de358 | 1234 | * fallocate. In this case, there really are no reserves to |
1fb1b0e9 MK |
1235 | * use. This situation is indicated if chg != 0. |
1236 | */ | |
1237 | if (chg) | |
1238 | return false; | |
1239 | else | |
1240 | return true; | |
1241 | } | |
a63884e9 JK |
1242 | |
1243 | /* | |
1244 | * Only the process that called mmap() has reserves for | |
1245 | * private mappings. | |
1246 | */ | |
67961f9d MK |
1247 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1248 | /* | |
1249 | * Like the shared case above, a hole punch or truncate | |
1250 | * could have been performed on the private mapping. | |
1251 | * Examine the value of chg to determine if reserves | |
1252 | * actually exist or were previously consumed. | |
1253 | * Very Subtle - The value of chg comes from a previous | |
1254 | * call to vma_needs_reserves(). The reserve map for | |
1255 | * private mappings has different (opposite) semantics | |
1256 | * than that of shared mappings. vma_needs_reserves() | |
1257 | * has already taken this difference in semantics into | |
1258 | * account. Therefore, the meaning of chg is the same | |
1259 | * as in the shared case above. Code could easily be | |
1260 | * combined, but keeping it separate draws attention to | |
1261 | * subtle differences. | |
1262 | */ | |
1263 | if (chg) | |
1264 | return false; | |
1265 | else | |
1266 | return true; | |
1267 | } | |
a63884e9 | 1268 | |
559ec2f8 | 1269 | return false; |
a1e78772 MG |
1270 | } |
1271 | ||
240d67a8 | 1272 | static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) |
1da177e4 | 1273 | { |
240d67a8 | 1274 | int nid = folio_nid(folio); |
9487ca60 MK |
1275 | |
1276 | lockdep_assert_held(&hugetlb_lock); | |
240d67a8 | 1277 | VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); |
b65a4eda | 1278 | |
240d67a8 | 1279 | list_move(&folio->lru, &h->hugepage_freelists[nid]); |
a5516438 AK |
1280 | h->free_huge_pages++; |
1281 | h->free_huge_pages_node[nid]++; | |
240d67a8 | 1282 | folio_set_hugetlb_freed(folio); |
1da177e4 LT |
1283 | } |
1284 | ||
94310cbc | 1285 | static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) |
bf50bab2 NH |
1286 | { |
1287 | struct page *page; | |
1a08ae36 | 1288 | bool pin = !!(current->flags & PF_MEMALLOC_PIN); |
bbe88753 | 1289 | |
9487ca60 | 1290 | lockdep_assert_held(&hugetlb_lock); |
bbe88753 | 1291 | list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { |
6077c943 | 1292 | if (pin && !is_longterm_pinnable_page(page)) |
bbe88753 | 1293 | continue; |
bf50bab2 | 1294 | |
6664bfc8 WY |
1295 | if (PageHWPoison(page)) |
1296 | continue; | |
1297 | ||
1298 | list_move(&page->lru, &h->hugepage_activelist); | |
1299 | set_page_refcounted(page); | |
6c037149 | 1300 | ClearHPageFreed(page); |
6664bfc8 WY |
1301 | h->free_huge_pages--; |
1302 | h->free_huge_pages_node[nid]--; | |
1303 | return page; | |
bbe88753 JK |
1304 | } |
1305 | ||
6664bfc8 | 1306 | return NULL; |
bf50bab2 NH |
1307 | } |
1308 | ||
3e59fcb0 MH |
1309 | static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, |
1310 | nodemask_t *nmask) | |
94310cbc | 1311 | { |
3e59fcb0 MH |
1312 | unsigned int cpuset_mems_cookie; |
1313 | struct zonelist *zonelist; | |
1314 | struct zone *zone; | |
1315 | struct zoneref *z; | |
98fa15f3 | 1316 | int node = NUMA_NO_NODE; |
94310cbc | 1317 | |
3e59fcb0 MH |
1318 | zonelist = node_zonelist(nid, gfp_mask); |
1319 | ||
1320 | retry_cpuset: | |
1321 | cpuset_mems_cookie = read_mems_allowed_begin(); | |
1322 | for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { | |
1323 | struct page *page; | |
1324 | ||
1325 | if (!cpuset_zone_allowed(zone, gfp_mask)) | |
1326 | continue; | |
1327 | /* | |
1328 | * no need to ask again on the same node. Pool is node rather than | |
1329 | * zone aware | |
1330 | */ | |
1331 | if (zone_to_nid(zone) == node) | |
1332 | continue; | |
1333 | node = zone_to_nid(zone); | |
94310cbc | 1334 | |
94310cbc AK |
1335 | page = dequeue_huge_page_node_exact(h, node); |
1336 | if (page) | |
1337 | return page; | |
1338 | } | |
3e59fcb0 MH |
1339 | if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) |
1340 | goto retry_cpuset; | |
1341 | ||
94310cbc AK |
1342 | return NULL; |
1343 | } | |
1344 | ||
8346d69d XH |
1345 | static unsigned long available_huge_pages(struct hstate *h) |
1346 | { | |
1347 | return h->free_huge_pages - h->resv_huge_pages; | |
1348 | } | |
1349 | ||
a5516438 AK |
1350 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
1351 | struct vm_area_struct *vma, | |
af0ed73e JK |
1352 | unsigned long address, int avoid_reserve, |
1353 | long chg) | |
1da177e4 | 1354 | { |
cfcaa66f | 1355 | struct page *page = NULL; |
480eccf9 | 1356 | struct mempolicy *mpol; |
04ec6264 | 1357 | gfp_t gfp_mask; |
3e59fcb0 | 1358 | nodemask_t *nodemask; |
04ec6264 | 1359 | int nid; |
1da177e4 | 1360 | |
a1e78772 MG |
1361 | /* |
1362 | * A child process with MAP_PRIVATE mappings created by their parent | |
1363 | * have no page reserves. This check ensures that reservations are | |
1364 | * not "stolen". The child may still get SIGKILLed | |
1365 | */ | |
8346d69d | 1366 | if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) |
c0ff7453 | 1367 | goto err; |
a1e78772 | 1368 | |
04f2cbe3 | 1369 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
8346d69d | 1370 | if (avoid_reserve && !available_huge_pages(h)) |
6eab04a8 | 1371 | goto err; |
04f2cbe3 | 1372 | |
04ec6264 VB |
1373 | gfp_mask = htlb_alloc_mask(h); |
1374 | nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | |
cfcaa66f BW |
1375 | |
1376 | if (mpol_is_preferred_many(mpol)) { | |
1377 | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); | |
1378 | ||
1379 | /* Fallback to all nodes if page==NULL */ | |
1380 | nodemask = NULL; | |
1381 | } | |
1382 | ||
1383 | if (!page) | |
1384 | page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); | |
1385 | ||
3e59fcb0 | 1386 | if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { |
d6995da3 | 1387 | SetHPageRestoreReserve(page); |
3e59fcb0 | 1388 | h->resv_huge_pages--; |
1da177e4 | 1389 | } |
cc9a6c87 | 1390 | |
52cd3b07 | 1391 | mpol_cond_put(mpol); |
1da177e4 | 1392 | return page; |
cc9a6c87 MG |
1393 | |
1394 | err: | |
cc9a6c87 | 1395 | return NULL; |
1da177e4 LT |
1396 | } |
1397 | ||
1cac6f2c LC |
1398 | /* |
1399 | * common helper functions for hstate_next_node_to_{alloc|free}. | |
1400 | * We may have allocated or freed a huge page based on a different | |
1401 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | |
1402 | * be outside of *nodes_allowed. Ensure that we use an allowed | |
1403 | * node for alloc or free. | |
1404 | */ | |
1405 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | |
1406 | { | |
0edaf86c | 1407 | nid = next_node_in(nid, *nodes_allowed); |
1cac6f2c LC |
1408 | VM_BUG_ON(nid >= MAX_NUMNODES); |
1409 | ||
1410 | return nid; | |
1411 | } | |
1412 | ||
1413 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | |
1414 | { | |
1415 | if (!node_isset(nid, *nodes_allowed)) | |
1416 | nid = next_node_allowed(nid, nodes_allowed); | |
1417 | return nid; | |
1418 | } | |
1419 | ||
1420 | /* | |
1421 | * returns the previously saved node ["this node"] from which to | |
1422 | * allocate a persistent huge page for the pool and advance the | |
1423 | * next node from which to allocate, handling wrap at end of node | |
1424 | * mask. | |
1425 | */ | |
1426 | static int hstate_next_node_to_alloc(struct hstate *h, | |
1427 | nodemask_t *nodes_allowed) | |
1428 | { | |
1429 | int nid; | |
1430 | ||
1431 | VM_BUG_ON(!nodes_allowed); | |
1432 | ||
1433 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | |
1434 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | |
1435 | ||
1436 | return nid; | |
1437 | } | |
1438 | ||
1439 | /* | |
10c6ec49 | 1440 | * helper for remove_pool_huge_page() - return the previously saved |
1cac6f2c LC |
1441 | * node ["this node"] from which to free a huge page. Advance the |
1442 | * next node id whether or not we find a free huge page to free so | |
1443 | * that the next attempt to free addresses the next node. | |
1444 | */ | |
1445 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | |
1446 | { | |
1447 | int nid; | |
1448 | ||
1449 | VM_BUG_ON(!nodes_allowed); | |
1450 | ||
1451 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | |
1452 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | |
1453 | ||
1454 | return nid; | |
1455 | } | |
1456 | ||
1457 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ | |
1458 | for (nr_nodes = nodes_weight(*mask); \ | |
1459 | nr_nodes > 0 && \ | |
1460 | ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ | |
1461 | nr_nodes--) | |
1462 | ||
1463 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ | |
1464 | for (nr_nodes = nodes_weight(*mask); \ | |
1465 | nr_nodes > 0 && \ | |
1466 | ((node = hstate_next_node_to_free(hs, mask)) || 1); \ | |
1467 | nr_nodes--) | |
1468 | ||
8531fc6f | 1469 | /* used to demote non-gigantic_huge pages as well */ |
911565b8 | 1470 | static void __destroy_compound_gigantic_folio(struct folio *folio, |
34d9e35b | 1471 | unsigned int order, bool demote) |
944d9fec LC |
1472 | { |
1473 | int i; | |
1474 | int nr_pages = 1 << order; | |
14455eab | 1475 | struct page *p; |
944d9fec | 1476 | |
46f27228 | 1477 | atomic_set(&folio->_entire_mapcount, 0); |
eec20426 | 1478 | atomic_set(&folio->_nr_pages_mapped, 0); |
94688e8e | 1479 | atomic_set(&folio->_pincount, 0); |
47e29d32 | 1480 | |
14455eab | 1481 | for (i = 1; i < nr_pages; i++) { |
911565b8 | 1482 | p = folio_page(folio, i); |
a01f4390 | 1483 | p->mapping = NULL; |
1d798ca3 | 1484 | clear_compound_head(p); |
34d9e35b MK |
1485 | if (!demote) |
1486 | set_page_refcounted(p); | |
944d9fec LC |
1487 | } |
1488 | ||
04a42e72 | 1489 | folio_set_order(folio, 0); |
911565b8 | 1490 | __folio_clear_head(folio); |
944d9fec LC |
1491 | } |
1492 | ||
911565b8 | 1493 | static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, |
8531fc6f MK |
1494 | unsigned int order) |
1495 | { | |
911565b8 | 1496 | __destroy_compound_gigantic_folio(folio, order, true); |
8531fc6f MK |
1497 | } |
1498 | ||
1499 | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE | |
911565b8 | 1500 | static void destroy_compound_gigantic_folio(struct folio *folio, |
34d9e35b MK |
1501 | unsigned int order) |
1502 | { | |
911565b8 | 1503 | __destroy_compound_gigantic_folio(folio, order, false); |
34d9e35b MK |
1504 | } |
1505 | ||
7f325a8d | 1506 | static void free_gigantic_folio(struct folio *folio, unsigned int order) |
944d9fec | 1507 | { |
cf11e85f RG |
1508 | /* |
1509 | * If the page isn't allocated using the cma allocator, | |
1510 | * cma_release() returns false. | |
1511 | */ | |
dbda8fea | 1512 | #ifdef CONFIG_CMA |
7f325a8d SK |
1513 | int nid = folio_nid(folio); |
1514 | ||
1515 | if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) | |
cf11e85f | 1516 | return; |
dbda8fea | 1517 | #endif |
cf11e85f | 1518 | |
7f325a8d | 1519 | free_contig_range(folio_pfn(folio), 1 << order); |
944d9fec LC |
1520 | } |
1521 | ||
4eb0716e | 1522 | #ifdef CONFIG_CONTIG_ALLOC |
19fc1a7e | 1523 | static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, |
d9cc948f | 1524 | int nid, nodemask_t *nodemask) |
944d9fec | 1525 | { |
19fc1a7e | 1526 | struct page *page; |
04adbc3f | 1527 | unsigned long nr_pages = pages_per_huge_page(h); |
953f064a LX |
1528 | if (nid == NUMA_NO_NODE) |
1529 | nid = numa_mem_id(); | |
944d9fec | 1530 | |
dbda8fea BS |
1531 | #ifdef CONFIG_CMA |
1532 | { | |
cf11e85f RG |
1533 | int node; |
1534 | ||
953f064a LX |
1535 | if (hugetlb_cma[nid]) { |
1536 | page = cma_alloc(hugetlb_cma[nid], nr_pages, | |
1537 | huge_page_order(h), true); | |
cf11e85f | 1538 | if (page) |
19fc1a7e | 1539 | return page_folio(page); |
cf11e85f | 1540 | } |
953f064a LX |
1541 | |
1542 | if (!(gfp_mask & __GFP_THISNODE)) { | |
1543 | for_each_node_mask(node, *nodemask) { | |
1544 | if (node == nid || !hugetlb_cma[node]) | |
1545 | continue; | |
1546 | ||
1547 | page = cma_alloc(hugetlb_cma[node], nr_pages, | |
1548 | huge_page_order(h), true); | |
1549 | if (page) | |
19fc1a7e | 1550 | return page_folio(page); |
953f064a LX |
1551 | } |
1552 | } | |
cf11e85f | 1553 | } |
dbda8fea | 1554 | #endif |
cf11e85f | 1555 | |
19fc1a7e SK |
1556 | page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); |
1557 | return page ? page_folio(page) : NULL; | |
944d9fec LC |
1558 | } |
1559 | ||
4eb0716e | 1560 | #else /* !CONFIG_CONTIG_ALLOC */ |
19fc1a7e | 1561 | static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, |
4eb0716e AG |
1562 | int nid, nodemask_t *nodemask) |
1563 | { | |
1564 | return NULL; | |
1565 | } | |
1566 | #endif /* CONFIG_CONTIG_ALLOC */ | |
944d9fec | 1567 | |
e1073d1e | 1568 | #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ |
19fc1a7e | 1569 | static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, |
4eb0716e AG |
1570 | int nid, nodemask_t *nodemask) |
1571 | { | |
1572 | return NULL; | |
1573 | } | |
7f325a8d SK |
1574 | static inline void free_gigantic_folio(struct folio *folio, |
1575 | unsigned int order) { } | |
911565b8 | 1576 | static inline void destroy_compound_gigantic_folio(struct folio *folio, |
d00181b9 | 1577 | unsigned int order) { } |
944d9fec LC |
1578 | #endif |
1579 | ||
6eb4e88a | 1580 | /* |
cfd5082b | 1581 | * Remove hugetlb folio from lists, and update dtor so that the folio appears |
34d9e35b MK |
1582 | * as just a compound page. |
1583 | * | |
cfd5082b | 1584 | * A reference is held on the folio, except in the case of demote. |
6eb4e88a MK |
1585 | * |
1586 | * Must be called with hugetlb lock held. | |
1587 | */ | |
cfd5082b | 1588 | static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, |
34d9e35b MK |
1589 | bool adjust_surplus, |
1590 | bool demote) | |
6eb4e88a | 1591 | { |
cfd5082b | 1592 | int nid = folio_nid(folio); |
6eb4e88a | 1593 | |
f074732d SK |
1594 | VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); |
1595 | VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); | |
6eb4e88a | 1596 | |
9487ca60 | 1597 | lockdep_assert_held(&hugetlb_lock); |
6eb4e88a MK |
1598 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) |
1599 | return; | |
1600 | ||
cfd5082b | 1601 | list_del(&folio->lru); |
6eb4e88a | 1602 | |
cfd5082b | 1603 | if (folio_test_hugetlb_freed(folio)) { |
6eb4e88a MK |
1604 | h->free_huge_pages--; |
1605 | h->free_huge_pages_node[nid]--; | |
1606 | } | |
1607 | if (adjust_surplus) { | |
1608 | h->surplus_huge_pages--; | |
1609 | h->surplus_huge_pages_node[nid]--; | |
1610 | } | |
1611 | ||
e32d20c0 MK |
1612 | /* |
1613 | * Very subtle | |
1614 | * | |
1615 | * For non-gigantic pages set the destructor to the normal compound | |
1616 | * page dtor. This is needed in case someone takes an additional | |
1617 | * temporary ref to the page, and freeing is delayed until they drop | |
1618 | * their reference. | |
1619 | * | |
1620 | * For gigantic pages set the destructor to the null dtor. This | |
1621 | * destructor will never be called. Before freeing the gigantic | |
911565b8 SK |
1622 | * page destroy_compound_gigantic_folio will turn the folio into a |
1623 | * simple group of pages. After this the destructor does not | |
e32d20c0 MK |
1624 | * apply. |
1625 | * | |
1626 | * This handles the case where more than one ref is held when and | |
d6ef19e2 | 1627 | * after update_and_free_hugetlb_folio is called. |
34d9e35b MK |
1628 | * |
1629 | * In the case of demote we do not ref count the page as it will soon | |
1630 | * be turned into a page of smaller size. | |
e32d20c0 | 1631 | */ |
34d9e35b | 1632 | if (!demote) |
cfd5082b | 1633 | folio_ref_unfreeze(folio, 1); |
e32d20c0 | 1634 | if (hstate_is_gigantic(h)) |
cfd5082b | 1635 | folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); |
e32d20c0 | 1636 | else |
cfd5082b | 1637 | folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); |
6eb4e88a MK |
1638 | |
1639 | h->nr_huge_pages--; | |
1640 | h->nr_huge_pages_node[nid]--; | |
1641 | } | |
1642 | ||
cfd5082b | 1643 | static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, |
34d9e35b MK |
1644 | bool adjust_surplus) |
1645 | { | |
cfd5082b | 1646 | __remove_hugetlb_folio(h, folio, adjust_surplus, false); |
34d9e35b MK |
1647 | } |
1648 | ||
cfd5082b | 1649 | static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, |
8531fc6f MK |
1650 | bool adjust_surplus) |
1651 | { | |
cfd5082b | 1652 | __remove_hugetlb_folio(h, folio, adjust_surplus, true); |
8531fc6f MK |
1653 | } |
1654 | ||
2f6c57d6 | 1655 | static void add_hugetlb_folio(struct hstate *h, struct folio *folio, |
ad2fa371 MS |
1656 | bool adjust_surplus) |
1657 | { | |
1658 | int zeroed; | |
2f6c57d6 | 1659 | int nid = folio_nid(folio); |
ad2fa371 | 1660 | |
2f6c57d6 | 1661 | VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); |
ad2fa371 MS |
1662 | |
1663 | lockdep_assert_held(&hugetlb_lock); | |
1664 | ||
2f6c57d6 | 1665 | INIT_LIST_HEAD(&folio->lru); |
ad2fa371 MS |
1666 | h->nr_huge_pages++; |
1667 | h->nr_huge_pages_node[nid]++; | |
1668 | ||
1669 | if (adjust_surplus) { | |
1670 | h->surplus_huge_pages++; | |
1671 | h->surplus_huge_pages_node[nid]++; | |
1672 | } | |
1673 | ||
2f6c57d6 SK |
1674 | folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); |
1675 | folio_change_private(folio, NULL); | |
a9e1eab2 | 1676 | /* |
2f6c57d6 SK |
1677 | * We have to set hugetlb_vmemmap_optimized again as above |
1678 | * folio_change_private(folio, NULL) cleared it. | |
a9e1eab2 | 1679 | */ |
2f6c57d6 | 1680 | folio_set_hugetlb_vmemmap_optimized(folio); |
ad2fa371 MS |
1681 | |
1682 | /* | |
2f6c57d6 | 1683 | * This folio is about to be managed by the hugetlb allocator and |
b65a4eda MK |
1684 | * should have no users. Drop our reference, and check for others |
1685 | * just in case. | |
ad2fa371 | 1686 | */ |
2f6c57d6 SK |
1687 | zeroed = folio_put_testzero(folio); |
1688 | if (unlikely(!zeroed)) | |
b65a4eda MK |
1689 | /* |
1690 | * It is VERY unlikely soneone else has taken a ref on | |
1691 | * the page. In this case, we simply return as the | |
1692 | * hugetlb destructor (free_huge_page) will be called | |
1693 | * when this other ref is dropped. | |
1694 | */ | |
1695 | return; | |
1696 | ||
2f6c57d6 | 1697 | arch_clear_hugepage_flags(&folio->page); |
240d67a8 | 1698 | enqueue_hugetlb_folio(h, folio); |
ad2fa371 MS |
1699 | } |
1700 | ||
b65d4adb | 1701 | static void __update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
1702 | { |
1703 | int i; | |
911565b8 | 1704 | struct folio *folio = page_folio(page); |
14455eab | 1705 | struct page *subpage; |
a5516438 | 1706 | |
4eb0716e | 1707 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) |
944d9fec | 1708 | return; |
18229df5 | 1709 | |
161df60e NH |
1710 | /* |
1711 | * If we don't know which subpages are hwpoisoned, we can't free | |
1712 | * the hugepage, so it's leaked intentionally. | |
1713 | */ | |
7f325a8d | 1714 | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) |
161df60e NH |
1715 | return; |
1716 | ||
6213834c | 1717 | if (hugetlb_vmemmap_restore(h, page)) { |
ad2fa371 MS |
1718 | spin_lock_irq(&hugetlb_lock); |
1719 | /* | |
1720 | * If we cannot allocate vmemmap pages, just refuse to free the | |
1721 | * page and put the page back on the hugetlb free list and treat | |
1722 | * as a surplus page. | |
1723 | */ | |
7f325a8d | 1724 | add_hugetlb_folio(h, folio, true); |
ad2fa371 MS |
1725 | spin_unlock_irq(&hugetlb_lock); |
1726 | return; | |
1727 | } | |
1728 | ||
161df60e NH |
1729 | /* |
1730 | * Move PageHWPoison flag from head page to the raw error pages, | |
1731 | * which makes any healthy subpages reusable. | |
1732 | */ | |
911565b8 | 1733 | if (unlikely(folio_test_hwpoison(folio))) |
2ff6cece | 1734 | folio_clear_hugetlb_hwpoison(folio); |
161df60e | 1735 | |
14455eab | 1736 | for (i = 0; i < pages_per_huge_page(h); i++) { |
7f325a8d | 1737 | subpage = folio_page(folio, i); |
dbfee5ae | 1738 | subpage->flags &= ~(1 << PG_locked | 1 << PG_error | |
32f84528 | 1739 | 1 << PG_referenced | 1 << PG_dirty | |
a7407a27 LC |
1740 | 1 << PG_active | 1 << PG_private | |
1741 | 1 << PG_writeback); | |
6af2acb6 | 1742 | } |
a01f4390 MK |
1743 | |
1744 | /* | |
1745 | * Non-gigantic pages demoted from CMA allocated gigantic pages | |
7f325a8d | 1746 | * need to be given back to CMA in free_gigantic_folio. |
a01f4390 MK |
1747 | */ |
1748 | if (hstate_is_gigantic(h) || | |
2f6c57d6 | 1749 | hugetlb_cma_folio(folio, huge_page_order(h))) { |
911565b8 | 1750 | destroy_compound_gigantic_folio(folio, huge_page_order(h)); |
7f325a8d | 1751 | free_gigantic_folio(folio, huge_page_order(h)); |
944d9fec | 1752 | } else { |
944d9fec LC |
1753 | __free_pages(page, huge_page_order(h)); |
1754 | } | |
6af2acb6 AL |
1755 | } |
1756 | ||
b65d4adb | 1757 | /* |
d6ef19e2 | 1758 | * As update_and_free_hugetlb_folio() can be called under any context, so we cannot |
b65d4adb MS |
1759 | * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the |
1760 | * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate | |
1761 | * the vmemmap pages. | |
1762 | * | |
1763 | * free_hpage_workfn() locklessly retrieves the linked list of pages to be | |
1764 | * freed and frees them one-by-one. As the page->mapping pointer is going | |
1765 | * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node | |
1766 | * structure of a lockless linked list of huge pages to be freed. | |
1767 | */ | |
1768 | static LLIST_HEAD(hpage_freelist); | |
1769 | ||
1770 | static void free_hpage_workfn(struct work_struct *work) | |
1771 | { | |
1772 | struct llist_node *node; | |
1773 | ||
1774 | node = llist_del_all(&hpage_freelist); | |
1775 | ||
1776 | while (node) { | |
1777 | struct page *page; | |
1778 | struct hstate *h; | |
1779 | ||
1780 | page = container_of((struct address_space **)node, | |
1781 | struct page, mapping); | |
1782 | node = node->next; | |
1783 | page->mapping = NULL; | |
1784 | /* | |
1785 | * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() | |
1786 | * is going to trigger because a previous call to | |
cfd5082b SK |
1787 | * remove_hugetlb_folio() will call folio_set_compound_dtor |
1788 | * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() | |
1789 | * directly. | |
b65d4adb MS |
1790 | */ |
1791 | h = size_to_hstate(page_size(page)); | |
1792 | ||
1793 | __update_and_free_page(h, page); | |
1794 | ||
1795 | cond_resched(); | |
1796 | } | |
1797 | } | |
1798 | static DECLARE_WORK(free_hpage_work, free_hpage_workfn); | |
1799 | ||
1800 | static inline void flush_free_hpage_work(struct hstate *h) | |
1801 | { | |
6213834c | 1802 | if (hugetlb_vmemmap_optimizable(h)) |
b65d4adb MS |
1803 | flush_work(&free_hpage_work); |
1804 | } | |
1805 | ||
d6ef19e2 | 1806 | static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, |
b65d4adb MS |
1807 | bool atomic) |
1808 | { | |
d6ef19e2 SK |
1809 | if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { |
1810 | __update_and_free_page(h, &folio->page); | |
b65d4adb MS |
1811 | return; |
1812 | } | |
1813 | ||
1814 | /* | |
1815 | * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. | |
1816 | * | |
1817 | * Only call schedule_work() if hpage_freelist is previously | |
1818 | * empty. Otherwise, schedule_work() had been called but the workfn | |
1819 | * hasn't retrieved the list yet. | |
1820 | */ | |
d6ef19e2 | 1821 | if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) |
b65d4adb MS |
1822 | schedule_work(&free_hpage_work); |
1823 | } | |
1824 | ||
10c6ec49 MK |
1825 | static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) |
1826 | { | |
1827 | struct page *page, *t_page; | |
d6ef19e2 | 1828 | struct folio *folio; |
10c6ec49 MK |
1829 | |
1830 | list_for_each_entry_safe(page, t_page, list, lru) { | |
d6ef19e2 SK |
1831 | folio = page_folio(page); |
1832 | update_and_free_hugetlb_folio(h, folio, false); | |
10c6ec49 MK |
1833 | cond_resched(); |
1834 | } | |
1835 | } | |
1836 | ||
e5ff2159 AK |
1837 | struct hstate *size_to_hstate(unsigned long size) |
1838 | { | |
1839 | struct hstate *h; | |
1840 | ||
1841 | for_each_hstate(h) { | |
1842 | if (huge_page_size(h) == size) | |
1843 | return h; | |
1844 | } | |
1845 | return NULL; | |
1846 | } | |
1847 | ||
db71ef79 | 1848 | void free_huge_page(struct page *page) |
27a85ef1 | 1849 | { |
a5516438 AK |
1850 | /* |
1851 | * Can't pass hstate in here because it is called from the | |
1852 | * compound page destructor. | |
1853 | */ | |
0356c4b9 SK |
1854 | struct folio *folio = page_folio(page); |
1855 | struct hstate *h = folio_hstate(folio); | |
1856 | int nid = folio_nid(folio); | |
1857 | struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); | |
07443a85 | 1858 | bool restore_reserve; |
db71ef79 | 1859 | unsigned long flags; |
27a85ef1 | 1860 | |
0356c4b9 SK |
1861 | VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); |
1862 | VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); | |
8ace22bc | 1863 | |
0356c4b9 SK |
1864 | hugetlb_set_folio_subpool(folio, NULL); |
1865 | if (folio_test_anon(folio)) | |
1866 | __ClearPageAnonExclusive(&folio->page); | |
1867 | folio->mapping = NULL; | |
1868 | restore_reserve = folio_test_hugetlb_restore_reserve(folio); | |
1869 | folio_clear_hugetlb_restore_reserve(folio); | |
27a85ef1 | 1870 | |
1c5ecae3 | 1871 | /* |
d6995da3 | 1872 | * If HPageRestoreReserve was set on page, page allocation consumed a |
0919e1b6 MK |
1873 | * reservation. If the page was associated with a subpool, there |
1874 | * would have been a page reserved in the subpool before allocation | |
1875 | * via hugepage_subpool_get_pages(). Since we are 'restoring' the | |
6c26d310 | 1876 | * reservation, do not call hugepage_subpool_put_pages() as this will |
0919e1b6 | 1877 | * remove the reserved page from the subpool. |
1c5ecae3 | 1878 | */ |
0919e1b6 MK |
1879 | if (!restore_reserve) { |
1880 | /* | |
1881 | * A return code of zero implies that the subpool will be | |
1882 | * under its minimum size if the reservation is not restored | |
1883 | * after page is free. Therefore, force restore_reserve | |
1884 | * operation. | |
1885 | */ | |
1886 | if (hugepage_subpool_put_pages(spool, 1) == 0) | |
1887 | restore_reserve = true; | |
1888 | } | |
1c5ecae3 | 1889 | |
db71ef79 | 1890 | spin_lock_irqsave(&hugetlb_lock, flags); |
0356c4b9 | 1891 | folio_clear_hugetlb_migratable(folio); |
d4ab0316 SK |
1892 | hugetlb_cgroup_uncharge_folio(hstate_index(h), |
1893 | pages_per_huge_page(h), folio); | |
1894 | hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), | |
1895 | pages_per_huge_page(h), folio); | |
07443a85 JK |
1896 | if (restore_reserve) |
1897 | h->resv_huge_pages++; | |
1898 | ||
0356c4b9 | 1899 | if (folio_test_hugetlb_temporary(folio)) { |
cfd5082b | 1900 | remove_hugetlb_folio(h, folio, false); |
db71ef79 | 1901 | spin_unlock_irqrestore(&hugetlb_lock, flags); |
d6ef19e2 | 1902 | update_and_free_hugetlb_folio(h, folio, true); |
ab5ac90a | 1903 | } else if (h->surplus_huge_pages_node[nid]) { |
0edaecfa | 1904 | /* remove the page from active list */ |
cfd5082b | 1905 | remove_hugetlb_folio(h, folio, true); |
db71ef79 | 1906 | spin_unlock_irqrestore(&hugetlb_lock, flags); |
d6ef19e2 | 1907 | update_and_free_hugetlb_folio(h, folio, true); |
7893d1d5 | 1908 | } else { |
5d3a551c | 1909 | arch_clear_hugepage_flags(page); |
240d67a8 | 1910 | enqueue_hugetlb_folio(h, folio); |
db71ef79 | 1911 | spin_unlock_irqrestore(&hugetlb_lock, flags); |
c77c0a8a | 1912 | } |
c77c0a8a WL |
1913 | } |
1914 | ||
d3d99fcc OS |
1915 | /* |
1916 | * Must be called with the hugetlb lock held | |
1917 | */ | |
1918 | static void __prep_account_new_huge_page(struct hstate *h, int nid) | |
1919 | { | |
1920 | lockdep_assert_held(&hugetlb_lock); | |
1921 | h->nr_huge_pages++; | |
1922 | h->nr_huge_pages_node[nid]++; | |
1923 | } | |
1924 | ||
de656ed3 | 1925 | static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) |
b7ba30c6 | 1926 | { |
de656ed3 SK |
1927 | hugetlb_vmemmap_optimize(h, &folio->page); |
1928 | INIT_LIST_HEAD(&folio->lru); | |
9fd33058 | 1929 | folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); |
de656ed3 SK |
1930 | hugetlb_set_folio_subpool(folio, NULL); |
1931 | set_hugetlb_cgroup(folio, NULL); | |
1932 | set_hugetlb_cgroup_rsvd(folio, NULL); | |
d3d99fcc OS |
1933 | } |
1934 | ||
d1c60955 | 1935 | static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) |
d3d99fcc | 1936 | { |
de656ed3 | 1937 | __prep_new_hugetlb_folio(h, folio); |
db71ef79 | 1938 | spin_lock_irq(&hugetlb_lock); |
d3d99fcc | 1939 | __prep_account_new_huge_page(h, nid); |
db71ef79 | 1940 | spin_unlock_irq(&hugetlb_lock); |
b7ba30c6 AK |
1941 | } |
1942 | ||
d1c60955 SK |
1943 | static bool __prep_compound_gigantic_folio(struct folio *folio, |
1944 | unsigned int order, bool demote) | |
20a0307c | 1945 | { |
7118fc29 | 1946 | int i, j; |
20a0307c | 1947 | int nr_pages = 1 << order; |
14455eab | 1948 | struct page *p; |
20a0307c | 1949 | |
d1c60955 SK |
1950 | __folio_clear_reserved(folio); |
1951 | __folio_set_head(folio); | |
c45bc55a | 1952 | /* we rely on prep_new_hugetlb_folio to set the destructor */ |
04a42e72 | 1953 | folio_set_order(folio, order); |
2b21624f | 1954 | for (i = 0; i < nr_pages; i++) { |
d1c60955 | 1955 | p = folio_page(folio, i); |
14455eab | 1956 | |
ef5a22be AA |
1957 | /* |
1958 | * For gigantic hugepages allocated through bootmem at | |
1959 | * boot, it's safer to be consistent with the not-gigantic | |
1960 | * hugepages and clear the PG_reserved bit from all tail pages | |
7c8de358 | 1961 | * too. Otherwise drivers using get_user_pages() to access tail |
ef5a22be AA |
1962 | * pages may get the reference counting wrong if they see |
1963 | * PG_reserved set on a tail page (despite the head page not | |
1964 | * having PG_reserved set). Enforcing this consistency between | |
1965 | * head and tail pages allows drivers to optimize away a check | |
1966 | * on the head page when they need know if put_page() is needed | |
1967 | * after get_user_pages(). | |
1968 | */ | |
7fb0728a MK |
1969 | if (i != 0) /* head page cleared above */ |
1970 | __ClearPageReserved(p); | |
7118fc29 MK |
1971 | /* |
1972 | * Subtle and very unlikely | |
1973 | * | |
1974 | * Gigantic 'page allocators' such as memblock or cma will | |
1975 | * return a set of pages with each page ref counted. We need | |
1976 | * to turn this set of pages into a compound page with tail | |
1977 | * page ref counts set to zero. Code such as speculative page | |
1978 | * cache adding could take a ref on a 'to be' tail page. | |
1979 | * We need to respect any increased ref count, and only set | |
1980 | * the ref count to zero if count is currently 1. If count | |
416d85ed MK |
1981 | * is not 1, we return an error. An error return indicates |
1982 | * the set of pages can not be converted to a gigantic page. | |
1983 | * The caller who allocated the pages should then discard the | |
1984 | * pages using the appropriate free interface. | |
34d9e35b MK |
1985 | * |
1986 | * In the case of demote, the ref count will be zero. | |
7118fc29 | 1987 | */ |
34d9e35b MK |
1988 | if (!demote) { |
1989 | if (!page_ref_freeze(p, 1)) { | |
1990 | pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); | |
1991 | goto out_error; | |
1992 | } | |
1993 | } else { | |
1994 | VM_BUG_ON_PAGE(page_count(p), p); | |
7118fc29 | 1995 | } |
2b21624f | 1996 | if (i != 0) |
d1c60955 | 1997 | set_compound_head(p, &folio->page); |
20a0307c | 1998 | } |
46f27228 | 1999 | atomic_set(&folio->_entire_mapcount, -1); |
eec20426 | 2000 | atomic_set(&folio->_nr_pages_mapped, 0); |
94688e8e | 2001 | atomic_set(&folio->_pincount, 0); |
7118fc29 MK |
2002 | return true; |
2003 | ||
2004 | out_error: | |
2b21624f MK |
2005 | /* undo page modifications made above */ |
2006 | for (j = 0; j < i; j++) { | |
d1c60955 | 2007 | p = folio_page(folio, j); |
2b21624f MK |
2008 | if (j != 0) |
2009 | clear_compound_head(p); | |
7118fc29 MK |
2010 | set_page_refcounted(p); |
2011 | } | |
2012 | /* need to clear PG_reserved on remaining tail pages */ | |
14455eab | 2013 | for (; j < nr_pages; j++) { |
d1c60955 | 2014 | p = folio_page(folio, j); |
7118fc29 | 2015 | __ClearPageReserved(p); |
14455eab | 2016 | } |
04a42e72 | 2017 | folio_set_order(folio, 0); |
d1c60955 | 2018 | __folio_clear_head(folio); |
7118fc29 | 2019 | return false; |
20a0307c WF |
2020 | } |
2021 | ||
d1c60955 SK |
2022 | static bool prep_compound_gigantic_folio(struct folio *folio, |
2023 | unsigned int order) | |
34d9e35b | 2024 | { |
d1c60955 | 2025 | return __prep_compound_gigantic_folio(folio, order, false); |
34d9e35b MK |
2026 | } |
2027 | ||
d1c60955 | 2028 | static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, |
8531fc6f MK |
2029 | unsigned int order) |
2030 | { | |
d1c60955 | 2031 | return __prep_compound_gigantic_folio(folio, order, true); |
8531fc6f MK |
2032 | } |
2033 | ||
7795912c AM |
2034 | /* |
2035 | * PageHuge() only returns true for hugetlbfs pages, but not for normal or | |
2036 | * transparent huge pages. See the PageTransHuge() documentation for more | |
2037 | * details. | |
2038 | */ | |
20a0307c WF |
2039 | int PageHuge(struct page *page) |
2040 | { | |
2d678c64 MWO |
2041 | struct folio *folio; |
2042 | ||
20a0307c WF |
2043 | if (!PageCompound(page)) |
2044 | return 0; | |
2d678c64 MWO |
2045 | folio = page_folio(page); |
2046 | return folio->_folio_dtor == HUGETLB_PAGE_DTOR; | |
20a0307c | 2047 | } |
43131e14 NH |
2048 | EXPORT_SYMBOL_GPL(PageHuge); |
2049 | ||
27c73ae7 AA |
2050 | /* |
2051 | * PageHeadHuge() only returns true for hugetlbfs head page, but not for | |
2052 | * normal or transparent huge pages. | |
2053 | */ | |
2054 | int PageHeadHuge(struct page *page_head) | |
2055 | { | |
2d678c64 MWO |
2056 | struct folio *folio = (struct folio *)page_head; |
2057 | if (!folio_test_large(folio)) | |
27c73ae7 AA |
2058 | return 0; |
2059 | ||
2d678c64 | 2060 | return folio->_folio_dtor == HUGETLB_PAGE_DTOR; |
27c73ae7 | 2061 | } |
4e936ecc | 2062 | EXPORT_SYMBOL_GPL(PageHeadHuge); |
27c73ae7 | 2063 | |
c0d0381a MK |
2064 | /* |
2065 | * Find and lock address space (mapping) in write mode. | |
2066 | * | |
336bf30e MK |
2067 | * Upon entry, the page is locked which means that page_mapping() is |
2068 | * stable. Due to locking order, we can only trylock_write. If we can | |
2069 | * not get the lock, simply return NULL to caller. | |
c0d0381a MK |
2070 | */ |
2071 | struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) | |
2072 | { | |
336bf30e | 2073 | struct address_space *mapping = page_mapping(hpage); |
c0d0381a | 2074 | |
c0d0381a MK |
2075 | if (!mapping) |
2076 | return mapping; | |
2077 | ||
c0d0381a MK |
2078 | if (i_mmap_trylock_write(mapping)) |
2079 | return mapping; | |
2080 | ||
336bf30e | 2081 | return NULL; |
c0d0381a MK |
2082 | } |
2083 | ||
fe19bd3d | 2084 | pgoff_t hugetlb_basepage_index(struct page *page) |
13d60f4b ZY |
2085 | { |
2086 | struct page *page_head = compound_head(page); | |
2087 | pgoff_t index = page_index(page_head); | |
2088 | unsigned long compound_idx; | |
2089 | ||
13d60f4b ZY |
2090 | if (compound_order(page_head) >= MAX_ORDER) |
2091 | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | |
2092 | else | |
2093 | compound_idx = page - page_head; | |
2094 | ||
2095 | return (index << compound_order(page_head)) + compound_idx; | |
2096 | } | |
2097 | ||
19fc1a7e | 2098 | static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, |
f60858f9 MK |
2099 | gfp_t gfp_mask, int nid, nodemask_t *nmask, |
2100 | nodemask_t *node_alloc_noretry) | |
1da177e4 | 2101 | { |
af0fb9df | 2102 | int order = huge_page_order(h); |
1da177e4 | 2103 | struct page *page; |
f60858f9 | 2104 | bool alloc_try_hard = true; |
2b21624f | 2105 | bool retry = true; |
f96efd58 | 2106 | |
f60858f9 MK |
2107 | /* |
2108 | * By default we always try hard to allocate the page with | |
2109 | * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in | |
2110 | * a loop (to adjust global huge page counts) and previous allocation | |
2111 | * failed, do not continue to try hard on the same node. Use the | |
2112 | * node_alloc_noretry bitmap to manage this state information. | |
2113 | */ | |
2114 | if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) | |
2115 | alloc_try_hard = false; | |
2116 | gfp_mask |= __GFP_COMP|__GFP_NOWARN; | |
2117 | if (alloc_try_hard) | |
2118 | gfp_mask |= __GFP_RETRY_MAYFAIL; | |
af0fb9df MH |
2119 | if (nid == NUMA_NO_NODE) |
2120 | nid = numa_mem_id(); | |
2b21624f | 2121 | retry: |
84172f4b | 2122 | page = __alloc_pages(gfp_mask, order, nid, nmask); |
2b21624f MK |
2123 | |
2124 | /* Freeze head page */ | |
2125 | if (page && !page_ref_freeze(page, 1)) { | |
2126 | __free_pages(page, order); | |
2127 | if (retry) { /* retry once */ | |
2128 | retry = false; | |
2129 | goto retry; | |
2130 | } | |
2131 | /* WOW! twice in a row. */ | |
2132 | pr_warn("HugeTLB head page unexpected inflated ref count\n"); | |
2133 | page = NULL; | |
2134 | } | |
2135 | ||
f60858f9 MK |
2136 | /* |
2137 | * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this | |
2138 | * indicates an overall state change. Clear bit so that we resume | |
2139 | * normal 'try hard' allocations. | |
2140 | */ | |
2141 | if (node_alloc_noretry && page && !alloc_try_hard) | |
2142 | node_clear(nid, *node_alloc_noretry); | |
2143 | ||
2144 | /* | |
2145 | * If we tried hard to get a page but failed, set bit so that | |
2146 | * subsequent attempts will not try as hard until there is an | |
2147 | * overall state change. | |
2148 | */ | |
2149 | if (node_alloc_noretry && !page && alloc_try_hard) | |
2150 | node_set(nid, *node_alloc_noretry); | |
2151 | ||
19fc1a7e SK |
2152 | if (!page) { |
2153 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
2154 | return NULL; | |
2155 | } | |
2156 | ||
2157 | __count_vm_event(HTLB_BUDDY_PGALLOC); | |
2158 | return page_folio(page); | |
63b4613c NA |
2159 | } |
2160 | ||
0c397dae MH |
2161 | /* |
2162 | * Common helper to allocate a fresh hugetlb page. All specific allocators | |
2163 | * should use this function to get new hugetlb pages | |
2b21624f MK |
2164 | * |
2165 | * Note that returned page is 'frozen': ref count of head page and all tail | |
2166 | * pages is zero. | |
0c397dae | 2167 | */ |
19fc1a7e | 2168 | static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, |
f60858f9 MK |
2169 | gfp_t gfp_mask, int nid, nodemask_t *nmask, |
2170 | nodemask_t *node_alloc_noretry) | |
0c397dae | 2171 | { |
7f325a8d | 2172 | struct folio *folio; |
7118fc29 | 2173 | bool retry = false; |
0c397dae | 2174 | |
7118fc29 | 2175 | retry: |
0c397dae | 2176 | if (hstate_is_gigantic(h)) |
19fc1a7e | 2177 | folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); |
0c397dae | 2178 | else |
19fc1a7e | 2179 | folio = alloc_buddy_hugetlb_folio(h, gfp_mask, |
f60858f9 | 2180 | nid, nmask, node_alloc_noretry); |
19fc1a7e | 2181 | if (!folio) |
0c397dae | 2182 | return NULL; |
7118fc29 | 2183 | if (hstate_is_gigantic(h)) { |
d1c60955 | 2184 | if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { |
7118fc29 MK |
2185 | /* |
2186 | * Rare failure to convert pages to compound page. | |
2187 | * Free pages and try again - ONCE! | |
2188 | */ | |
7f325a8d | 2189 | free_gigantic_folio(folio, huge_page_order(h)); |
7118fc29 MK |
2190 | if (!retry) { |
2191 | retry = true; | |
2192 | goto retry; | |
2193 | } | |
7118fc29 MK |
2194 | return NULL; |
2195 | } | |
2196 | } | |
d1c60955 | 2197 | prep_new_hugetlb_folio(h, folio, folio_nid(folio)); |
0c397dae | 2198 | |
19fc1a7e | 2199 | return folio; |
0c397dae MH |
2200 | } |
2201 | ||
af0fb9df MH |
2202 | /* |
2203 | * Allocates a fresh page to the hugetlb allocator pool in the node interleaved | |
2204 | * manner. | |
2205 | */ | |
f60858f9 MK |
2206 | static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
2207 | nodemask_t *node_alloc_noretry) | |
b2261026 | 2208 | { |
19fc1a7e | 2209 | struct folio *folio; |
b2261026 | 2210 | int nr_nodes, node; |
af0fb9df | 2211 | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; |
b2261026 JK |
2212 | |
2213 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
19fc1a7e SK |
2214 | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, |
2215 | nodes_allowed, node_alloc_noretry); | |
2216 | if (folio) { | |
2217 | free_huge_page(&folio->page); /* free it into the hugepage allocator */ | |
2218 | return 1; | |
2219 | } | |
b2261026 JK |
2220 | } |
2221 | ||
19fc1a7e | 2222 | return 0; |
b2261026 JK |
2223 | } |
2224 | ||
e8c5c824 | 2225 | /* |
10c6ec49 MK |
2226 | * Remove huge page from pool from next node to free. Attempt to keep |
2227 | * persistent huge pages more or less balanced over allowed nodes. | |
2228 | * This routine only 'removes' the hugetlb page. The caller must make | |
2229 | * an additional call to free the page to low level allocators. | |
e8c5c824 LS |
2230 | * Called with hugetlb_lock locked. |
2231 | */ | |
10c6ec49 MK |
2232 | static struct page *remove_pool_huge_page(struct hstate *h, |
2233 | nodemask_t *nodes_allowed, | |
2234 | bool acct_surplus) | |
e8c5c824 | 2235 | { |
b2261026 | 2236 | int nr_nodes, node; |
10c6ec49 | 2237 | struct page *page = NULL; |
cfd5082b | 2238 | struct folio *folio; |
e8c5c824 | 2239 | |
9487ca60 | 2240 | lockdep_assert_held(&hugetlb_lock); |
b2261026 | 2241 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
685f3457 LS |
2242 | /* |
2243 | * If we're returning unused surplus pages, only examine | |
2244 | * nodes with surplus pages. | |
2245 | */ | |
b2261026 JK |
2246 | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && |
2247 | !list_empty(&h->hugepage_freelists[node])) { | |
10c6ec49 | 2248 | page = list_entry(h->hugepage_freelists[node].next, |
e8c5c824 | 2249 | struct page, lru); |
cfd5082b SK |
2250 | folio = page_folio(page); |
2251 | remove_hugetlb_folio(h, folio, acct_surplus); | |
9a76db09 | 2252 | break; |
e8c5c824 | 2253 | } |
b2261026 | 2254 | } |
e8c5c824 | 2255 | |
10c6ec49 | 2256 | return page; |
e8c5c824 LS |
2257 | } |
2258 | ||
c8721bbb NH |
2259 | /* |
2260 | * Dissolve a given free hugepage into free buddy pages. This function does | |
faf53def NH |
2261 | * nothing for in-use hugepages and non-hugepages. |
2262 | * This function returns values like below: | |
2263 | * | |
ad2fa371 MS |
2264 | * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages |
2265 | * when the system is under memory pressure and the feature of | |
2266 | * freeing unused vmemmap pages associated with each hugetlb page | |
2267 | * is enabled. | |
2268 | * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use | |
2269 | * (allocated or reserved.) | |
2270 | * 0: successfully dissolved free hugepages or the page is not a | |
2271 | * hugepage (considered as already dissolved) | |
c8721bbb | 2272 | */ |
c3114a84 | 2273 | int dissolve_free_huge_page(struct page *page) |
c8721bbb | 2274 | { |
6bc9b564 | 2275 | int rc = -EBUSY; |
1a7cdab5 | 2276 | struct folio *folio = page_folio(page); |
082d5b6b | 2277 | |
7ffddd49 | 2278 | retry: |
faf53def | 2279 | /* Not to disrupt normal path by vainly holding hugetlb_lock */ |
1a7cdab5 | 2280 | if (!folio_test_hugetlb(folio)) |
faf53def NH |
2281 | return 0; |
2282 | ||
db71ef79 | 2283 | spin_lock_irq(&hugetlb_lock); |
1a7cdab5 | 2284 | if (!folio_test_hugetlb(folio)) { |
faf53def NH |
2285 | rc = 0; |
2286 | goto out; | |
2287 | } | |
2288 | ||
1a7cdab5 SK |
2289 | if (!folio_ref_count(folio)) { |
2290 | struct hstate *h = folio_hstate(folio); | |
8346d69d | 2291 | if (!available_huge_pages(h)) |
082d5b6b | 2292 | goto out; |
7ffddd49 MS |
2293 | |
2294 | /* | |
2295 | * We should make sure that the page is already on the free list | |
2296 | * when it is dissolved. | |
2297 | */ | |
1a7cdab5 | 2298 | if (unlikely(!folio_test_hugetlb_freed(folio))) { |
db71ef79 | 2299 | spin_unlock_irq(&hugetlb_lock); |
7ffddd49 MS |
2300 | cond_resched(); |
2301 | ||
2302 | /* | |
2303 | * Theoretically, we should return -EBUSY when we | |
2304 | * encounter this race. In fact, we have a chance | |
2305 | * to successfully dissolve the page if we do a | |
2306 | * retry. Because the race window is quite small. | |
2307 | * If we seize this opportunity, it is an optimization | |
2308 | * for increasing the success rate of dissolving page. | |
2309 | */ | |
2310 | goto retry; | |
2311 | } | |
2312 | ||
cfd5082b | 2313 | remove_hugetlb_folio(h, folio, false); |
c1470b33 | 2314 | h->max_huge_pages--; |
db71ef79 | 2315 | spin_unlock_irq(&hugetlb_lock); |
ad2fa371 MS |
2316 | |
2317 | /* | |
d6ef19e2 SK |
2318 | * Normally update_and_free_hugtlb_folio will allocate required vmemmmap |
2319 | * before freeing the page. update_and_free_hugtlb_folio will fail to | |
ad2fa371 MS |
2320 | * free the page if it can not allocate required vmemmap. We |
2321 | * need to adjust max_huge_pages if the page is not freed. | |
2322 | * Attempt to allocate vmemmmap here so that we can take | |
2323 | * appropriate action on failure. | |
2324 | */ | |
1a7cdab5 | 2325 | rc = hugetlb_vmemmap_restore(h, &folio->page); |
ad2fa371 | 2326 | if (!rc) { |
d6ef19e2 | 2327 | update_and_free_hugetlb_folio(h, folio, false); |
ad2fa371 MS |
2328 | } else { |
2329 | spin_lock_irq(&hugetlb_lock); | |
2f6c57d6 | 2330 | add_hugetlb_folio(h, folio, false); |
ad2fa371 MS |
2331 | h->max_huge_pages++; |
2332 | spin_unlock_irq(&hugetlb_lock); | |
2333 | } | |
2334 | ||
2335 | return rc; | |
c8721bbb | 2336 | } |
082d5b6b | 2337 | out: |
db71ef79 | 2338 | spin_unlock_irq(&hugetlb_lock); |
082d5b6b | 2339 | return rc; |
c8721bbb NH |
2340 | } |
2341 | ||
2342 | /* | |
2343 | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to | |
2344 | * make specified memory blocks removable from the system. | |
2247bb33 GS |
2345 | * Note that this will dissolve a free gigantic hugepage completely, if any |
2346 | * part of it lies within the given range. | |
082d5b6b GS |
2347 | * Also note that if dissolve_free_huge_page() returns with an error, all |
2348 | * free hugepages that were dissolved before that error are lost. | |
c8721bbb | 2349 | */ |
082d5b6b | 2350 | int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) |
c8721bbb | 2351 | { |
c8721bbb | 2352 | unsigned long pfn; |
eb03aa00 | 2353 | struct page *page; |
082d5b6b | 2354 | int rc = 0; |
dc2628f3 MS |
2355 | unsigned int order; |
2356 | struct hstate *h; | |
c8721bbb | 2357 | |
d0177639 | 2358 | if (!hugepages_supported()) |
082d5b6b | 2359 | return rc; |
d0177639 | 2360 | |
dc2628f3 MS |
2361 | order = huge_page_order(&default_hstate); |
2362 | for_each_hstate(h) | |
2363 | order = min(order, huge_page_order(h)); | |
2364 | ||
2365 | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { | |
eb03aa00 | 2366 | page = pfn_to_page(pfn); |
faf53def NH |
2367 | rc = dissolve_free_huge_page(page); |
2368 | if (rc) | |
2369 | break; | |
eb03aa00 | 2370 | } |
082d5b6b GS |
2371 | |
2372 | return rc; | |
c8721bbb NH |
2373 | } |
2374 | ||
ab5ac90a MH |
2375 | /* |
2376 | * Allocates a fresh surplus page from the page allocator. | |
2377 | */ | |
0c397dae | 2378 | static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, |
2b21624f | 2379 | int nid, nodemask_t *nmask) |
7893d1d5 | 2380 | { |
19fc1a7e | 2381 | struct folio *folio = NULL; |
7893d1d5 | 2382 | |
bae7f4ae | 2383 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
2384 | return NULL; |
2385 | ||
db71ef79 | 2386 | spin_lock_irq(&hugetlb_lock); |
9980d744 MH |
2387 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) |
2388 | goto out_unlock; | |
db71ef79 | 2389 | spin_unlock_irq(&hugetlb_lock); |
d1c3fb1f | 2390 | |
19fc1a7e SK |
2391 | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); |
2392 | if (!folio) | |
0c397dae | 2393 | return NULL; |
d1c3fb1f | 2394 | |
db71ef79 | 2395 | spin_lock_irq(&hugetlb_lock); |
9980d744 MH |
2396 | /* |
2397 | * We could have raced with the pool size change. | |
2398 | * Double check that and simply deallocate the new page | |
2399 | * if we would end up overcommiting the surpluses. Abuse | |
2400 | * temporary page to workaround the nasty free_huge_page | |
2401 | * codeflow | |
2402 | */ | |
2403 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | |
19fc1a7e | 2404 | folio_set_hugetlb_temporary(folio); |
db71ef79 | 2405 | spin_unlock_irq(&hugetlb_lock); |
19fc1a7e | 2406 | free_huge_page(&folio->page); |
2bf753e6 | 2407 | return NULL; |
7893d1d5 | 2408 | } |
9980d744 | 2409 | |
b65a4eda | 2410 | h->surplus_huge_pages++; |
19fc1a7e | 2411 | h->surplus_huge_pages_node[folio_nid(folio)]++; |
b65a4eda | 2412 | |
9980d744 | 2413 | out_unlock: |
db71ef79 | 2414 | spin_unlock_irq(&hugetlb_lock); |
7893d1d5 | 2415 | |
19fc1a7e | 2416 | return &folio->page; |
7893d1d5 AL |
2417 | } |
2418 | ||
bbe88753 | 2419 | static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, |
9a4e9f3b | 2420 | int nid, nodemask_t *nmask) |
ab5ac90a | 2421 | { |
19fc1a7e | 2422 | struct folio *folio; |
ab5ac90a MH |
2423 | |
2424 | if (hstate_is_gigantic(h)) | |
2425 | return NULL; | |
2426 | ||
19fc1a7e SK |
2427 | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); |
2428 | if (!folio) | |
ab5ac90a MH |
2429 | return NULL; |
2430 | ||
2b21624f | 2431 | /* fresh huge pages are frozen */ |
19fc1a7e | 2432 | folio_ref_unfreeze(folio, 1); |
ab5ac90a MH |
2433 | /* |
2434 | * We do not account these pages as surplus because they are only | |
2435 | * temporary and will be released properly on the last reference | |
2436 | */ | |
19fc1a7e | 2437 | folio_set_hugetlb_temporary(folio); |
ab5ac90a | 2438 | |
19fc1a7e | 2439 | return &folio->page; |
ab5ac90a MH |
2440 | } |
2441 | ||
099730d6 DH |
2442 | /* |
2443 | * Use the VMA's mpolicy to allocate a huge page from the buddy. | |
2444 | */ | |
e0ec90ee | 2445 | static |
0c397dae | 2446 | struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, |
099730d6 DH |
2447 | struct vm_area_struct *vma, unsigned long addr) |
2448 | { | |
cfcaa66f | 2449 | struct page *page = NULL; |
aaf14e40 MH |
2450 | struct mempolicy *mpol; |
2451 | gfp_t gfp_mask = htlb_alloc_mask(h); | |
2452 | int nid; | |
2453 | nodemask_t *nodemask; | |
2454 | ||
2455 | nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); | |
cfcaa66f BW |
2456 | if (mpol_is_preferred_many(mpol)) { |
2457 | gfp_t gfp = gfp_mask | __GFP_NOWARN; | |
2458 | ||
2459 | gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); | |
2b21624f | 2460 | page = alloc_surplus_huge_page(h, gfp, nid, nodemask); |
aaf14e40 | 2461 | |
cfcaa66f BW |
2462 | /* Fallback to all nodes if page==NULL */ |
2463 | nodemask = NULL; | |
2464 | } | |
2465 | ||
2466 | if (!page) | |
2b21624f | 2467 | page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); |
cfcaa66f | 2468 | mpol_cond_put(mpol); |
aaf14e40 | 2469 | return page; |
099730d6 DH |
2470 | } |
2471 | ||
ab5ac90a | 2472 | /* page migration callback function */ |
3e59fcb0 | 2473 | struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, |
d92bbc27 | 2474 | nodemask_t *nmask, gfp_t gfp_mask) |
4db9b2ef | 2475 | { |
db71ef79 | 2476 | spin_lock_irq(&hugetlb_lock); |
8346d69d | 2477 | if (available_huge_pages(h)) { |
3e59fcb0 MH |
2478 | struct page *page; |
2479 | ||
2480 | page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); | |
2481 | if (page) { | |
db71ef79 | 2482 | spin_unlock_irq(&hugetlb_lock); |
3e59fcb0 | 2483 | return page; |
4db9b2ef MH |
2484 | } |
2485 | } | |
db71ef79 | 2486 | spin_unlock_irq(&hugetlb_lock); |
4db9b2ef | 2487 | |
0c397dae | 2488 | return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); |
4db9b2ef MH |
2489 | } |
2490 | ||
ebd63723 | 2491 | /* mempolicy aware migration callback */ |
389c8178 MH |
2492 | struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, |
2493 | unsigned long address) | |
ebd63723 MH |
2494 | { |
2495 | struct mempolicy *mpol; | |
2496 | nodemask_t *nodemask; | |
2497 | struct page *page; | |
ebd63723 MH |
2498 | gfp_t gfp_mask; |
2499 | int node; | |
2500 | ||
ebd63723 MH |
2501 | gfp_mask = htlb_alloc_mask(h); |
2502 | node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); | |
d92bbc27 | 2503 | page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); |
ebd63723 MH |
2504 | mpol_cond_put(mpol); |
2505 | ||
2506 | return page; | |
2507 | } | |
2508 | ||
e4e574b7 | 2509 | /* |
25985edc | 2510 | * Increase the hugetlb pool such that it can accommodate a reservation |
e4e574b7 AL |
2511 | * of size 'delta'. |
2512 | */ | |
0a4f3d1b | 2513 | static int gather_surplus_pages(struct hstate *h, long delta) |
1b2a1e7b | 2514 | __must_hold(&hugetlb_lock) |
e4e574b7 | 2515 | { |
34665341 | 2516 | LIST_HEAD(surplus_list); |
e4e574b7 | 2517 | struct page *page, *tmp; |
0a4f3d1b LX |
2518 | int ret; |
2519 | long i; | |
2520 | long needed, allocated; | |
28073b02 | 2521 | bool alloc_ok = true; |
e4e574b7 | 2522 | |
9487ca60 | 2523 | lockdep_assert_held(&hugetlb_lock); |
a5516438 | 2524 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 2525 | if (needed <= 0) { |
a5516438 | 2526 | h->resv_huge_pages += delta; |
e4e574b7 | 2527 | return 0; |
ac09b3a1 | 2528 | } |
e4e574b7 AL |
2529 | |
2530 | allocated = 0; | |
e4e574b7 AL |
2531 | |
2532 | ret = -ENOMEM; | |
2533 | retry: | |
db71ef79 | 2534 | spin_unlock_irq(&hugetlb_lock); |
e4e574b7 | 2535 | for (i = 0; i < needed; i++) { |
0c397dae | 2536 | page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), |
2b21624f | 2537 | NUMA_NO_NODE, NULL); |
28073b02 HD |
2538 | if (!page) { |
2539 | alloc_ok = false; | |
2540 | break; | |
2541 | } | |
e4e574b7 | 2542 | list_add(&page->lru, &surplus_list); |
69ed779a | 2543 | cond_resched(); |
e4e574b7 | 2544 | } |
28073b02 | 2545 | allocated += i; |
e4e574b7 AL |
2546 | |
2547 | /* | |
2548 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
2549 | * because either resv_huge_pages or free_huge_pages may have changed. | |
2550 | */ | |
db71ef79 | 2551 | spin_lock_irq(&hugetlb_lock); |
a5516438 AK |
2552 | needed = (h->resv_huge_pages + delta) - |
2553 | (h->free_huge_pages + allocated); | |
28073b02 HD |
2554 | if (needed > 0) { |
2555 | if (alloc_ok) | |
2556 | goto retry; | |
2557 | /* | |
2558 | * We were not able to allocate enough pages to | |
2559 | * satisfy the entire reservation so we free what | |
2560 | * we've allocated so far. | |
2561 | */ | |
2562 | goto free; | |
2563 | } | |
e4e574b7 AL |
2564 | /* |
2565 | * The surplus_list now contains _at_least_ the number of extra pages | |
25985edc | 2566 | * needed to accommodate the reservation. Add the appropriate number |
e4e574b7 | 2567 | * of pages to the hugetlb pool and free the extras back to the buddy |
ac09b3a1 AL |
2568 | * allocator. Commit the entire reservation here to prevent another |
2569 | * process from stealing the pages as they are added to the pool but | |
2570 | * before they are reserved. | |
e4e574b7 AL |
2571 | */ |
2572 | needed += allocated; | |
a5516438 | 2573 | h->resv_huge_pages += delta; |
e4e574b7 | 2574 | ret = 0; |
a9869b83 | 2575 | |
19fc3f0a | 2576 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 2577 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
2578 | if ((--needed) < 0) |
2579 | break; | |
b65a4eda | 2580 | /* Add the page to the hugetlb allocator */ |
240d67a8 | 2581 | enqueue_hugetlb_folio(h, page_folio(page)); |
19fc3f0a | 2582 | } |
28073b02 | 2583 | free: |
db71ef79 | 2584 | spin_unlock_irq(&hugetlb_lock); |
19fc3f0a | 2585 | |
b65a4eda MK |
2586 | /* |
2587 | * Free unnecessary surplus pages to the buddy allocator. | |
2588 | * Pages have no ref count, call free_huge_page directly. | |
2589 | */ | |
c0d934ba | 2590 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) |
b65a4eda | 2591 | free_huge_page(page); |
db71ef79 | 2592 | spin_lock_irq(&hugetlb_lock); |
e4e574b7 AL |
2593 | |
2594 | return ret; | |
2595 | } | |
2596 | ||
2597 | /* | |
e5bbc8a6 MK |
2598 | * This routine has two main purposes: |
2599 | * 1) Decrement the reservation count (resv_huge_pages) by the value passed | |
2600 | * in unused_resv_pages. This corresponds to the prior adjustments made | |
2601 | * to the associated reservation map. | |
2602 | * 2) Free any unused surplus pages that may have been allocated to satisfy | |
2603 | * the reservation. As many as unused_resv_pages may be freed. | |
e4e574b7 | 2604 | */ |
a5516438 AK |
2605 | static void return_unused_surplus_pages(struct hstate *h, |
2606 | unsigned long unused_resv_pages) | |
e4e574b7 | 2607 | { |
e4e574b7 | 2608 | unsigned long nr_pages; |
10c6ec49 MK |
2609 | struct page *page; |
2610 | LIST_HEAD(page_list); | |
2611 | ||
9487ca60 | 2612 | lockdep_assert_held(&hugetlb_lock); |
10c6ec49 MK |
2613 | /* Uncommit the reservation */ |
2614 | h->resv_huge_pages -= unused_resv_pages; | |
e4e574b7 | 2615 | |
c0531714 | 2616 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) |
e5bbc8a6 | 2617 | goto out; |
aa888a74 | 2618 | |
e5bbc8a6 MK |
2619 | /* |
2620 | * Part (or even all) of the reservation could have been backed | |
2621 | * by pre-allocated pages. Only free surplus pages. | |
2622 | */ | |
a5516438 | 2623 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 2624 | |
685f3457 LS |
2625 | /* |
2626 | * We want to release as many surplus pages as possible, spread | |
9b5e5d0f LS |
2627 | * evenly across all nodes with memory. Iterate across these nodes |
2628 | * until we can no longer free unreserved surplus pages. This occurs | |
2629 | * when the nodes with surplus pages have no free pages. | |
10c6ec49 | 2630 | * remove_pool_huge_page() will balance the freed pages across the |
9b5e5d0f | 2631 | * on-line nodes with memory and will handle the hstate accounting. |
685f3457 LS |
2632 | */ |
2633 | while (nr_pages--) { | |
10c6ec49 MK |
2634 | page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); |
2635 | if (!page) | |
e5bbc8a6 | 2636 | goto out; |
10c6ec49 MK |
2637 | |
2638 | list_add(&page->lru, &page_list); | |
e4e574b7 | 2639 | } |
e5bbc8a6 MK |
2640 | |
2641 | out: | |
db71ef79 | 2642 | spin_unlock_irq(&hugetlb_lock); |
10c6ec49 | 2643 | update_and_free_pages_bulk(h, &page_list); |
db71ef79 | 2644 | spin_lock_irq(&hugetlb_lock); |
e4e574b7 AL |
2645 | } |
2646 | ||
5e911373 | 2647 | |
c37f9fb1 | 2648 | /* |
feba16e2 | 2649 | * vma_needs_reservation, vma_commit_reservation and vma_end_reservation |
5e911373 | 2650 | * are used by the huge page allocation routines to manage reservations. |
cf3ad20b MK |
2651 | * |
2652 | * vma_needs_reservation is called to determine if the huge page at addr | |
2653 | * within the vma has an associated reservation. If a reservation is | |
2654 | * needed, the value 1 is returned. The caller is then responsible for | |
2655 | * managing the global reservation and subpool usage counts. After | |
2656 | * the huge page has been allocated, vma_commit_reservation is called | |
feba16e2 MK |
2657 | * to add the page to the reservation map. If the page allocation fails, |
2658 | * the reservation must be ended instead of committed. vma_end_reservation | |
2659 | * is called in such cases. | |
cf3ad20b MK |
2660 | * |
2661 | * In the normal case, vma_commit_reservation returns the same value | |
2662 | * as the preceding vma_needs_reservation call. The only time this | |
2663 | * is not the case is if a reserve map was changed between calls. It | |
2664 | * is the responsibility of the caller to notice the difference and | |
2665 | * take appropriate action. | |
96b96a96 MK |
2666 | * |
2667 | * vma_add_reservation is used in error paths where a reservation must | |
2668 | * be restored when a newly allocated huge page must be freed. It is | |
2669 | * to be called after calling vma_needs_reservation to determine if a | |
2670 | * reservation exists. | |
846be085 MK |
2671 | * |
2672 | * vma_del_reservation is used in error paths where an entry in the reserve | |
2673 | * map was created during huge page allocation and must be removed. It is to | |
2674 | * be called after calling vma_needs_reservation to determine if a reservation | |
2675 | * exists. | |
c37f9fb1 | 2676 | */ |
5e911373 MK |
2677 | enum vma_resv_mode { |
2678 | VMA_NEEDS_RESV, | |
2679 | VMA_COMMIT_RESV, | |
feba16e2 | 2680 | VMA_END_RESV, |
96b96a96 | 2681 | VMA_ADD_RESV, |
846be085 | 2682 | VMA_DEL_RESV, |
5e911373 | 2683 | }; |
cf3ad20b MK |
2684 | static long __vma_reservation_common(struct hstate *h, |
2685 | struct vm_area_struct *vma, unsigned long addr, | |
5e911373 | 2686 | enum vma_resv_mode mode) |
c37f9fb1 | 2687 | { |
4e35f483 JK |
2688 | struct resv_map *resv; |
2689 | pgoff_t idx; | |
cf3ad20b | 2690 | long ret; |
0db9d74e | 2691 | long dummy_out_regions_needed; |
c37f9fb1 | 2692 | |
4e35f483 JK |
2693 | resv = vma_resv_map(vma); |
2694 | if (!resv) | |
84afd99b | 2695 | return 1; |
c37f9fb1 | 2696 | |
4e35f483 | 2697 | idx = vma_hugecache_offset(h, vma, addr); |
5e911373 MK |
2698 | switch (mode) { |
2699 | case VMA_NEEDS_RESV: | |
0db9d74e MA |
2700 | ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); |
2701 | /* We assume that vma_reservation_* routines always operate on | |
2702 | * 1 page, and that adding to resv map a 1 page entry can only | |
2703 | * ever require 1 region. | |
2704 | */ | |
2705 | VM_BUG_ON(dummy_out_regions_needed != 1); | |
5e911373 MK |
2706 | break; |
2707 | case VMA_COMMIT_RESV: | |
075a61d0 | 2708 | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); |
0db9d74e MA |
2709 | /* region_add calls of range 1 should never fail. */ |
2710 | VM_BUG_ON(ret < 0); | |
5e911373 | 2711 | break; |
feba16e2 | 2712 | case VMA_END_RESV: |
0db9d74e | 2713 | region_abort(resv, idx, idx + 1, 1); |
5e911373 MK |
2714 | ret = 0; |
2715 | break; | |
96b96a96 | 2716 | case VMA_ADD_RESV: |
0db9d74e | 2717 | if (vma->vm_flags & VM_MAYSHARE) { |
075a61d0 | 2718 | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); |
0db9d74e MA |
2719 | /* region_add calls of range 1 should never fail. */ |
2720 | VM_BUG_ON(ret < 0); | |
2721 | } else { | |
2722 | region_abort(resv, idx, idx + 1, 1); | |
96b96a96 MK |
2723 | ret = region_del(resv, idx, idx + 1); |
2724 | } | |
2725 | break; | |
846be085 MK |
2726 | case VMA_DEL_RESV: |
2727 | if (vma->vm_flags & VM_MAYSHARE) { | |
2728 | region_abort(resv, idx, idx + 1, 1); | |
2729 | ret = region_del(resv, idx, idx + 1); | |
2730 | } else { | |
2731 | ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); | |
2732 | /* region_add calls of range 1 should never fail. */ | |
2733 | VM_BUG_ON(ret < 0); | |
2734 | } | |
2735 | break; | |
5e911373 MK |
2736 | default: |
2737 | BUG(); | |
2738 | } | |
84afd99b | 2739 | |
846be085 | 2740 | if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) |
cf3ad20b | 2741 | return ret; |
bf3d12b9 ML |
2742 | /* |
2743 | * We know private mapping must have HPAGE_RESV_OWNER set. | |
2744 | * | |
2745 | * In most cases, reserves always exist for private mappings. | |
2746 | * However, a file associated with mapping could have been | |
2747 | * hole punched or truncated after reserves were consumed. | |
2748 | * As subsequent fault on such a range will not use reserves. | |
2749 | * Subtle - The reserve map for private mappings has the | |
2750 | * opposite meaning than that of shared mappings. If NO | |
2751 | * entry is in the reserve map, it means a reservation exists. | |
2752 | * If an entry exists in the reserve map, it means the | |
2753 | * reservation has already been consumed. As a result, the | |
2754 | * return value of this routine is the opposite of the | |
2755 | * value returned from reserve map manipulation routines above. | |
2756 | */ | |
2757 | if (ret > 0) | |
2758 | return 0; | |
2759 | if (ret == 0) | |
2760 | return 1; | |
2761 | return ret; | |
c37f9fb1 | 2762 | } |
cf3ad20b MK |
2763 | |
2764 | static long vma_needs_reservation(struct hstate *h, | |
a5516438 | 2765 | struct vm_area_struct *vma, unsigned long addr) |
c37f9fb1 | 2766 | { |
5e911373 | 2767 | return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); |
cf3ad20b | 2768 | } |
84afd99b | 2769 | |
cf3ad20b MK |
2770 | static long vma_commit_reservation(struct hstate *h, |
2771 | struct vm_area_struct *vma, unsigned long addr) | |
2772 | { | |
5e911373 MK |
2773 | return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); |
2774 | } | |
2775 | ||
feba16e2 | 2776 | static void vma_end_reservation(struct hstate *h, |
5e911373 MK |
2777 | struct vm_area_struct *vma, unsigned long addr) |
2778 | { | |
feba16e2 | 2779 | (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); |
c37f9fb1 AW |
2780 | } |
2781 | ||
96b96a96 MK |
2782 | static long vma_add_reservation(struct hstate *h, |
2783 | struct vm_area_struct *vma, unsigned long addr) | |
2784 | { | |
2785 | return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); | |
2786 | } | |
2787 | ||
846be085 MK |
2788 | static long vma_del_reservation(struct hstate *h, |
2789 | struct vm_area_struct *vma, unsigned long addr) | |
2790 | { | |
2791 | return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); | |
2792 | } | |
2793 | ||
96b96a96 | 2794 | /* |
846be085 MK |
2795 | * This routine is called to restore reservation information on error paths. |
2796 | * It should ONLY be called for pages allocated via alloc_huge_page(), and | |
2797 | * the hugetlb mutex should remain held when calling this routine. | |
2798 | * | |
2799 | * It handles two specific cases: | |
2800 | * 1) A reservation was in place and the page consumed the reservation. | |
2801 | * HPageRestoreReserve is set in the page. | |
2802 | * 2) No reservation was in place for the page, so HPageRestoreReserve is | |
2803 | * not set. However, alloc_huge_page always updates the reserve map. | |
2804 | * | |
2805 | * In case 1, free_huge_page later in the error path will increment the | |
2806 | * global reserve count. But, free_huge_page does not have enough context | |
2807 | * to adjust the reservation map. This case deals primarily with private | |
2808 | * mappings. Adjust the reserve map here to be consistent with global | |
2809 | * reserve count adjustments to be made by free_huge_page. Make sure the | |
2810 | * reserve map indicates there is a reservation present. | |
2811 | * | |
2812 | * In case 2, simply undo reserve map modifications done by alloc_huge_page. | |
96b96a96 | 2813 | */ |
846be085 MK |
2814 | void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, |
2815 | unsigned long address, struct page *page) | |
96b96a96 | 2816 | { |
846be085 | 2817 | long rc = vma_needs_reservation(h, vma, address); |
96b96a96 | 2818 | |
846be085 MK |
2819 | if (HPageRestoreReserve(page)) { |
2820 | if (unlikely(rc < 0)) | |
96b96a96 MK |
2821 | /* |
2822 | * Rare out of memory condition in reserve map | |
d6995da3 | 2823 | * manipulation. Clear HPageRestoreReserve so that |
96b96a96 MK |
2824 | * global reserve count will not be incremented |
2825 | * by free_huge_page. This will make it appear | |
2826 | * as though the reservation for this page was | |
2827 | * consumed. This may prevent the task from | |
2828 | * faulting in the page at a later time. This | |
2829 | * is better than inconsistent global huge page | |
2830 | * accounting of reserve counts. | |
2831 | */ | |
d6995da3 | 2832 | ClearHPageRestoreReserve(page); |
846be085 MK |
2833 | else if (rc) |
2834 | (void)vma_add_reservation(h, vma, address); | |
2835 | else | |
2836 | vma_end_reservation(h, vma, address); | |
2837 | } else { | |
2838 | if (!rc) { | |
2839 | /* | |
2840 | * This indicates there is an entry in the reserve map | |
c7b1850d | 2841 | * not added by alloc_huge_page. We know it was added |
846be085 MK |
2842 | * before the alloc_huge_page call, otherwise |
2843 | * HPageRestoreReserve would be set on the page. | |
2844 | * Remove the entry so that a subsequent allocation | |
2845 | * does not consume a reservation. | |
2846 | */ | |
2847 | rc = vma_del_reservation(h, vma, address); | |
2848 | if (rc < 0) | |
96b96a96 | 2849 | /* |
846be085 MK |
2850 | * VERY rare out of memory condition. Since |
2851 | * we can not delete the entry, set | |
2852 | * HPageRestoreReserve so that the reserve | |
2853 | * count will be incremented when the page | |
2854 | * is freed. This reserve will be consumed | |
2855 | * on a subsequent allocation. | |
96b96a96 | 2856 | */ |
846be085 MK |
2857 | SetHPageRestoreReserve(page); |
2858 | } else if (rc < 0) { | |
2859 | /* | |
2860 | * Rare out of memory condition from | |
2861 | * vma_needs_reservation call. Memory allocation is | |
2862 | * only attempted if a new entry is needed. Therefore, | |
2863 | * this implies there is not an entry in the | |
2864 | * reserve map. | |
2865 | * | |
2866 | * For shared mappings, no entry in the map indicates | |
2867 | * no reservation. We are done. | |
2868 | */ | |
2869 | if (!(vma->vm_flags & VM_MAYSHARE)) | |
2870 | /* | |
2871 | * For private mappings, no entry indicates | |
2872 | * a reservation is present. Since we can | |
2873 | * not add an entry, set SetHPageRestoreReserve | |
2874 | * on the page so reserve count will be | |
2875 | * incremented when freed. This reserve will | |
2876 | * be consumed on a subsequent allocation. | |
2877 | */ | |
2878 | SetHPageRestoreReserve(page); | |
96b96a96 | 2879 | } else |
846be085 MK |
2880 | /* |
2881 | * No reservation present, do nothing | |
2882 | */ | |
2883 | vma_end_reservation(h, vma, address); | |
96b96a96 MK |
2884 | } |
2885 | } | |
2886 | ||
369fa227 | 2887 | /* |
19fc1a7e SK |
2888 | * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve |
2889 | * the old one | |
369fa227 | 2890 | * @h: struct hstate old page belongs to |
19fc1a7e | 2891 | * @old_folio: Old folio to dissolve |
ae37c7ff | 2892 | * @list: List to isolate the page in case we need to |
369fa227 OS |
2893 | * Returns 0 on success, otherwise negated error. |
2894 | */ | |
19fc1a7e SK |
2895 | static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, |
2896 | struct folio *old_folio, struct list_head *list) | |
369fa227 OS |
2897 | { |
2898 | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; | |
de656ed3 | 2899 | int nid = folio_nid(old_folio); |
de656ed3 | 2900 | struct folio *new_folio; |
369fa227 OS |
2901 | int ret = 0; |
2902 | ||
2903 | /* | |
19fc1a7e SK |
2904 | * Before dissolving the folio, we need to allocate a new one for the |
2905 | * pool to remain stable. Here, we allocate the folio and 'prep' it | |
f41f2ed4 MS |
2906 | * by doing everything but actually updating counters and adding to |
2907 | * the pool. This simplifies and let us do most of the processing | |
2908 | * under the lock. | |
369fa227 | 2909 | */ |
19fc1a7e SK |
2910 | new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); |
2911 | if (!new_folio) | |
369fa227 | 2912 | return -ENOMEM; |
de656ed3 | 2913 | __prep_new_hugetlb_folio(h, new_folio); |
369fa227 OS |
2914 | |
2915 | retry: | |
2916 | spin_lock_irq(&hugetlb_lock); | |
de656ed3 | 2917 | if (!folio_test_hugetlb(old_folio)) { |
369fa227 | 2918 | /* |
19fc1a7e | 2919 | * Freed from under us. Drop new_folio too. |
369fa227 OS |
2920 | */ |
2921 | goto free_new; | |
de656ed3 | 2922 | } else if (folio_ref_count(old_folio)) { |
369fa227 | 2923 | /* |
19fc1a7e | 2924 | * Someone has grabbed the folio, try to isolate it here. |
ae37c7ff | 2925 | * Fail with -EBUSY if not possible. |
369fa227 | 2926 | */ |
ae37c7ff | 2927 | spin_unlock_irq(&hugetlb_lock); |
19fc1a7e | 2928 | ret = isolate_hugetlb(&old_folio->page, list); |
ae37c7ff | 2929 | spin_lock_irq(&hugetlb_lock); |
369fa227 | 2930 | goto free_new; |
de656ed3 | 2931 | } else if (!folio_test_hugetlb_freed(old_folio)) { |
369fa227 | 2932 | /* |
19fc1a7e | 2933 | * Folio's refcount is 0 but it has not been enqueued in the |
369fa227 OS |
2934 | * freelist yet. Race window is small, so we can succeed here if |
2935 | * we retry. | |
2936 | */ | |
2937 | spin_unlock_irq(&hugetlb_lock); | |
2938 | cond_resched(); | |
2939 | goto retry; | |
2940 | } else { | |
2941 | /* | |
19fc1a7e | 2942 | * Ok, old_folio is still a genuine free hugepage. Remove it from |
369fa227 OS |
2943 | * the freelist and decrease the counters. These will be |
2944 | * incremented again when calling __prep_account_new_huge_page() | |
240d67a8 SK |
2945 | * and enqueue_hugetlb_folio() for new_folio. The counters will |
2946 | * remain stable since this happens under the lock. | |
369fa227 | 2947 | */ |
cfd5082b | 2948 | remove_hugetlb_folio(h, old_folio, false); |
369fa227 OS |
2949 | |
2950 | /* | |
19fc1a7e | 2951 | * Ref count on new_folio is already zero as it was dropped |
b65a4eda | 2952 | * earlier. It can be directly added to the pool free list. |
369fa227 | 2953 | */ |
369fa227 | 2954 | __prep_account_new_huge_page(h, nid); |
240d67a8 | 2955 | enqueue_hugetlb_folio(h, new_folio); |
369fa227 OS |
2956 | |
2957 | /* | |
19fc1a7e | 2958 | * Folio has been replaced, we can safely free the old one. |
369fa227 OS |
2959 | */ |
2960 | spin_unlock_irq(&hugetlb_lock); | |
d6ef19e2 | 2961 | update_and_free_hugetlb_folio(h, old_folio, false); |
369fa227 OS |
2962 | } |
2963 | ||
2964 | return ret; | |
2965 | ||
2966 | free_new: | |
2967 | spin_unlock_irq(&hugetlb_lock); | |
19fc1a7e | 2968 | /* Folio has a zero ref count, but needs a ref to be freed */ |
de656ed3 | 2969 | folio_ref_unfreeze(new_folio, 1); |
d6ef19e2 | 2970 | update_and_free_hugetlb_folio(h, new_folio, false); |
369fa227 OS |
2971 | |
2972 | return ret; | |
2973 | } | |
2974 | ||
ae37c7ff | 2975 | int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) |
369fa227 OS |
2976 | { |
2977 | struct hstate *h; | |
d5e33bd8 | 2978 | struct folio *folio = page_folio(page); |
ae37c7ff | 2979 | int ret = -EBUSY; |
369fa227 OS |
2980 | |
2981 | /* | |
2982 | * The page might have been dissolved from under our feet, so make sure | |
2983 | * to carefully check the state under the lock. | |
2984 | * Return success when racing as if we dissolved the page ourselves. | |
2985 | */ | |
2986 | spin_lock_irq(&hugetlb_lock); | |
d5e33bd8 SK |
2987 | if (folio_test_hugetlb(folio)) { |
2988 | h = folio_hstate(folio); | |
369fa227 OS |
2989 | } else { |
2990 | spin_unlock_irq(&hugetlb_lock); | |
2991 | return 0; | |
2992 | } | |
2993 | spin_unlock_irq(&hugetlb_lock); | |
2994 | ||
2995 | /* | |
2996 | * Fence off gigantic pages as there is a cyclic dependency between | |
2997 | * alloc_contig_range and them. Return -ENOMEM as this has the effect | |
2998 | * of bailing out right away without further retrying. | |
2999 | */ | |
3000 | if (hstate_is_gigantic(h)) | |
3001 | return -ENOMEM; | |
3002 | ||
d5e33bd8 | 3003 | if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list)) |
ae37c7ff | 3004 | ret = 0; |
d5e33bd8 | 3005 | else if (!folio_ref_count(folio)) |
19fc1a7e | 3006 | ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); |
ae37c7ff OS |
3007 | |
3008 | return ret; | |
369fa227 OS |
3009 | } |
3010 | ||
70c3547e | 3011 | struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 3012 | unsigned long addr, int avoid_reserve) |
1da177e4 | 3013 | { |
90481622 | 3014 | struct hugepage_subpool *spool = subpool_vma(vma); |
a5516438 | 3015 | struct hstate *h = hstate_vma(vma); |
348ea204 | 3016 | struct page *page; |
d4ab0316 | 3017 | struct folio *folio; |
d85f69b0 MK |
3018 | long map_chg, map_commit; |
3019 | long gbl_chg; | |
6d76dcf4 AK |
3020 | int ret, idx; |
3021 | struct hugetlb_cgroup *h_cg; | |
08cf9faf | 3022 | bool deferred_reserve; |
a1e78772 | 3023 | |
6d76dcf4 | 3024 | idx = hstate_index(h); |
a1e78772 | 3025 | /* |
d85f69b0 MK |
3026 | * Examine the region/reserve map to determine if the process |
3027 | * has a reservation for the page to be allocated. A return | |
3028 | * code of zero indicates a reservation exists (no change). | |
a1e78772 | 3029 | */ |
d85f69b0 MK |
3030 | map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); |
3031 | if (map_chg < 0) | |
76dcee75 | 3032 | return ERR_PTR(-ENOMEM); |
d85f69b0 MK |
3033 | |
3034 | /* | |
3035 | * Processes that did not create the mapping will have no | |
3036 | * reserves as indicated by the region/reserve map. Check | |
3037 | * that the allocation will not exceed the subpool limit. | |
3038 | * Allocations for MAP_NORESERVE mappings also need to be | |
3039 | * checked against any subpool limit. | |
3040 | */ | |
3041 | if (map_chg || avoid_reserve) { | |
3042 | gbl_chg = hugepage_subpool_get_pages(spool, 1); | |
3043 | if (gbl_chg < 0) { | |
feba16e2 | 3044 | vma_end_reservation(h, vma, addr); |
76dcee75 | 3045 | return ERR_PTR(-ENOSPC); |
5e911373 | 3046 | } |
1da177e4 | 3047 | |
d85f69b0 MK |
3048 | /* |
3049 | * Even though there was no reservation in the region/reserve | |
3050 | * map, there could be reservations associated with the | |
3051 | * subpool that can be used. This would be indicated if the | |
3052 | * return value of hugepage_subpool_get_pages() is zero. | |
3053 | * However, if avoid_reserve is specified we still avoid even | |
3054 | * the subpool reservations. | |
3055 | */ | |
3056 | if (avoid_reserve) | |
3057 | gbl_chg = 1; | |
3058 | } | |
3059 | ||
08cf9faf MA |
3060 | /* If this allocation is not consuming a reservation, charge it now. |
3061 | */ | |
6501fe5f | 3062 | deferred_reserve = map_chg || avoid_reserve; |
08cf9faf MA |
3063 | if (deferred_reserve) { |
3064 | ret = hugetlb_cgroup_charge_cgroup_rsvd( | |
3065 | idx, pages_per_huge_page(h), &h_cg); | |
3066 | if (ret) | |
3067 | goto out_subpool_put; | |
3068 | } | |
3069 | ||
6d76dcf4 | 3070 | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); |
8f34af6f | 3071 | if (ret) |
08cf9faf | 3072 | goto out_uncharge_cgroup_reservation; |
8f34af6f | 3073 | |
db71ef79 | 3074 | spin_lock_irq(&hugetlb_lock); |
d85f69b0 MK |
3075 | /* |
3076 | * glb_chg is passed to indicate whether or not a page must be taken | |
3077 | * from the global free pool (global change). gbl_chg == 0 indicates | |
3078 | * a reservation exists for the allocation. | |
3079 | */ | |
3080 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); | |
81a6fcae | 3081 | if (!page) { |
db71ef79 | 3082 | spin_unlock_irq(&hugetlb_lock); |
0c397dae | 3083 | page = alloc_buddy_huge_page_with_mpol(h, vma, addr); |
8f34af6f JZ |
3084 | if (!page) |
3085 | goto out_uncharge_cgroup; | |
12df140f | 3086 | spin_lock_irq(&hugetlb_lock); |
a88c7695 | 3087 | if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { |
d6995da3 | 3088 | SetHPageRestoreReserve(page); |
a88c7695 NH |
3089 | h->resv_huge_pages--; |
3090 | } | |
15a8d68e | 3091 | list_add(&page->lru, &h->hugepage_activelist); |
2b21624f | 3092 | set_page_refcounted(page); |
81a6fcae | 3093 | /* Fall through */ |
68842c9b | 3094 | } |
d4ab0316 | 3095 | folio = page_folio(page); |
81a6fcae | 3096 | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); |
08cf9faf MA |
3097 | /* If allocation is not consuming a reservation, also store the |
3098 | * hugetlb_cgroup pointer on the page. | |
3099 | */ | |
3100 | if (deferred_reserve) { | |
3101 | hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), | |
3102 | h_cg, page); | |
3103 | } | |
3104 | ||
db71ef79 | 3105 | spin_unlock_irq(&hugetlb_lock); |
348ea204 | 3106 | |
d6995da3 | 3107 | hugetlb_set_page_subpool(page, spool); |
90d8b7e6 | 3108 | |
d85f69b0 MK |
3109 | map_commit = vma_commit_reservation(h, vma, addr); |
3110 | if (unlikely(map_chg > map_commit)) { | |
33039678 MK |
3111 | /* |
3112 | * The page was added to the reservation map between | |
3113 | * vma_needs_reservation and vma_commit_reservation. | |
3114 | * This indicates a race with hugetlb_reserve_pages. | |
3115 | * Adjust for the subpool count incremented above AND | |
3116 | * in hugetlb_reserve_pages for the same page. Also, | |
3117 | * the reservation count added in hugetlb_reserve_pages | |
3118 | * no longer applies. | |
3119 | */ | |
3120 | long rsv_adjust; | |
3121 | ||
3122 | rsv_adjust = hugepage_subpool_put_pages(spool, 1); | |
3123 | hugetlb_acct_memory(h, -rsv_adjust); | |
79aa925b | 3124 | if (deferred_reserve) |
d4ab0316 SK |
3125 | hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), |
3126 | pages_per_huge_page(h), folio); | |
33039678 | 3127 | } |
90d8b7e6 | 3128 | return page; |
8f34af6f JZ |
3129 | |
3130 | out_uncharge_cgroup: | |
3131 | hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); | |
08cf9faf MA |
3132 | out_uncharge_cgroup_reservation: |
3133 | if (deferred_reserve) | |
3134 | hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), | |
3135 | h_cg); | |
8f34af6f | 3136 | out_subpool_put: |
d85f69b0 | 3137 | if (map_chg || avoid_reserve) |
8f34af6f | 3138 | hugepage_subpool_put_pages(spool, 1); |
feba16e2 | 3139 | vma_end_reservation(h, vma, addr); |
8f34af6f | 3140 | return ERR_PTR(-ENOSPC); |
b45b5bd6 DG |
3141 | } |
3142 | ||
b5389086 | 3143 | int alloc_bootmem_huge_page(struct hstate *h, int nid) |
e24a1307 | 3144 | __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); |
b5389086 | 3145 | int __alloc_bootmem_huge_page(struct hstate *h, int nid) |
aa888a74 | 3146 | { |
b5389086 | 3147 | struct huge_bootmem_page *m = NULL; /* initialize for clang */ |
b2261026 | 3148 | int nr_nodes, node; |
aa888a74 | 3149 | |
b5389086 ZY |
3150 | /* do node specific alloc */ |
3151 | if (nid != NUMA_NO_NODE) { | |
3152 | m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), | |
3153 | 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); | |
3154 | if (!m) | |
3155 | return 0; | |
3156 | goto found; | |
3157 | } | |
3158 | /* allocate from next node when distributing huge pages */ | |
b2261026 | 3159 | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { |
b5389086 | 3160 | m = memblock_alloc_try_nid_raw( |
8b89a116 | 3161 | huge_page_size(h), huge_page_size(h), |
97ad1087 | 3162 | 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); |
b5389086 ZY |
3163 | /* |
3164 | * Use the beginning of the huge page to store the | |
3165 | * huge_bootmem_page struct (until gather_bootmem | |
3166 | * puts them into the mem_map). | |
3167 | */ | |
3168 | if (!m) | |
3169 | return 0; | |
3170 | goto found; | |
aa888a74 | 3171 | } |
aa888a74 AK |
3172 | |
3173 | found: | |
aa888a74 | 3174 | /* Put them into a private list first because mem_map is not up yet */ |
330d6e48 | 3175 | INIT_LIST_HEAD(&m->list); |
aa888a74 AK |
3176 | list_add(&m->list, &huge_boot_pages); |
3177 | m->hstate = h; | |
3178 | return 1; | |
3179 | } | |
3180 | ||
48b8d744 MK |
3181 | /* |
3182 | * Put bootmem huge pages into the standard lists after mem_map is up. | |
3183 | * Note: This only applies to gigantic (order > MAX_ORDER) pages. | |
3184 | */ | |
aa888a74 AK |
3185 | static void __init gather_bootmem_prealloc(void) |
3186 | { | |
3187 | struct huge_bootmem_page *m; | |
3188 | ||
3189 | list_for_each_entry(m, &huge_boot_pages, list) { | |
40d18ebf | 3190 | struct page *page = virt_to_page(m); |
7f325a8d | 3191 | struct folio *folio = page_folio(page); |
aa888a74 | 3192 | struct hstate *h = m->hstate; |
ee8f248d | 3193 | |
48b8d744 | 3194 | VM_BUG_ON(!hstate_is_gigantic(h)); |
d1c60955 SK |
3195 | WARN_ON(folio_ref_count(folio) != 1); |
3196 | if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { | |
3197 | WARN_ON(folio_test_reserved(folio)); | |
3198 | prep_new_hugetlb_folio(h, folio, folio_nid(folio)); | |
2b21624f | 3199 | free_huge_page(page); /* add to the hugepage allocator */ |
7118fc29 | 3200 | } else { |
416d85ed | 3201 | /* VERY unlikely inflated ref count on a tail page */ |
7f325a8d | 3202 | free_gigantic_folio(folio, huge_page_order(h)); |
7118fc29 | 3203 | } |
af0fb9df | 3204 | |
b0320c7b | 3205 | /* |
48b8d744 MK |
3206 | * We need to restore the 'stolen' pages to totalram_pages |
3207 | * in order to fix confusing memory reports from free(1) and | |
3208 | * other side-effects, like CommitLimit going negative. | |
b0320c7b | 3209 | */ |
48b8d744 | 3210 | adjust_managed_page_count(page, pages_per_huge_page(h)); |
520495fe | 3211 | cond_resched(); |
aa888a74 AK |
3212 | } |
3213 | } | |
b5389086 ZY |
3214 | static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) |
3215 | { | |
3216 | unsigned long i; | |
3217 | char buf[32]; | |
3218 | ||
3219 | for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { | |
3220 | if (hstate_is_gigantic(h)) { | |
3221 | if (!alloc_bootmem_huge_page(h, nid)) | |
3222 | break; | |
3223 | } else { | |
19fc1a7e | 3224 | struct folio *folio; |
b5389086 ZY |
3225 | gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; |
3226 | ||
19fc1a7e | 3227 | folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, |
b5389086 | 3228 | &node_states[N_MEMORY], NULL); |
19fc1a7e | 3229 | if (!folio) |
b5389086 | 3230 | break; |
19fc1a7e | 3231 | free_huge_page(&folio->page); /* free it into the hugepage allocator */ |
b5389086 ZY |
3232 | } |
3233 | cond_resched(); | |
3234 | } | |
3235 | if (i == h->max_huge_pages_node[nid]) | |
3236 | return; | |
3237 | ||
3238 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | |
3239 | pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", | |
3240 | h->max_huge_pages_node[nid], buf, nid, i); | |
3241 | h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); | |
3242 | h->max_huge_pages_node[nid] = i; | |
3243 | } | |
aa888a74 | 3244 | |
8faa8b07 | 3245 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
3246 | { |
3247 | unsigned long i; | |
f60858f9 | 3248 | nodemask_t *node_alloc_noretry; |
b5389086 ZY |
3249 | bool node_specific_alloc = false; |
3250 | ||
3251 | /* skip gigantic hugepages allocation if hugetlb_cma enabled */ | |
3252 | if (hstate_is_gigantic(h) && hugetlb_cma_size) { | |
3253 | pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); | |
3254 | return; | |
3255 | } | |
3256 | ||
3257 | /* do node specific alloc */ | |
0a7a0f6f | 3258 | for_each_online_node(i) { |
b5389086 ZY |
3259 | if (h->max_huge_pages_node[i] > 0) { |
3260 | hugetlb_hstate_alloc_pages_onenode(h, i); | |
3261 | node_specific_alloc = true; | |
3262 | } | |
3263 | } | |
f60858f9 | 3264 | |
b5389086 ZY |
3265 | if (node_specific_alloc) |
3266 | return; | |
3267 | ||
3268 | /* below will do all node balanced alloc */ | |
f60858f9 MK |
3269 | if (!hstate_is_gigantic(h)) { |
3270 | /* | |
3271 | * Bit mask controlling how hard we retry per-node allocations. | |
3272 | * Ignore errors as lower level routines can deal with | |
3273 | * node_alloc_noretry == NULL. If this kmalloc fails at boot | |
3274 | * time, we are likely in bigger trouble. | |
3275 | */ | |
3276 | node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), | |
3277 | GFP_KERNEL); | |
3278 | } else { | |
3279 | /* allocations done at boot time */ | |
3280 | node_alloc_noretry = NULL; | |
3281 | } | |
3282 | ||
3283 | /* bit mask controlling how hard we retry per-node allocations */ | |
3284 | if (node_alloc_noretry) | |
3285 | nodes_clear(*node_alloc_noretry); | |
a5516438 | 3286 | |
e5ff2159 | 3287 | for (i = 0; i < h->max_huge_pages; ++i) { |
bae7f4ae | 3288 | if (hstate_is_gigantic(h)) { |
b5389086 | 3289 | if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) |
aa888a74 | 3290 | break; |
0c397dae | 3291 | } else if (!alloc_pool_huge_page(h, |
f60858f9 MK |
3292 | &node_states[N_MEMORY], |
3293 | node_alloc_noretry)) | |
1da177e4 | 3294 | break; |
69ed779a | 3295 | cond_resched(); |
1da177e4 | 3296 | } |
d715cf80 LH |
3297 | if (i < h->max_huge_pages) { |
3298 | char buf[32]; | |
3299 | ||
c6247f72 | 3300 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); |
d715cf80 LH |
3301 | pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", |
3302 | h->max_huge_pages, buf, i); | |
3303 | h->max_huge_pages = i; | |
3304 | } | |
f60858f9 | 3305 | kfree(node_alloc_noretry); |
e5ff2159 AK |
3306 | } |
3307 | ||
3308 | static void __init hugetlb_init_hstates(void) | |
3309 | { | |
79dfc695 | 3310 | struct hstate *h, *h2; |
e5ff2159 AK |
3311 | |
3312 | for_each_hstate(h) { | |
8faa8b07 | 3313 | /* oversize hugepages were init'ed in early boot */ |
bae7f4ae | 3314 | if (!hstate_is_gigantic(h)) |
8faa8b07 | 3315 | hugetlb_hstate_alloc_pages(h); |
79dfc695 MK |
3316 | |
3317 | /* | |
3318 | * Set demote order for each hstate. Note that | |
3319 | * h->demote_order is initially 0. | |
3320 | * - We can not demote gigantic pages if runtime freeing | |
3321 | * is not supported, so skip this. | |
a01f4390 MK |
3322 | * - If CMA allocation is possible, we can not demote |
3323 | * HUGETLB_PAGE_ORDER or smaller size pages. | |
79dfc695 MK |
3324 | */ |
3325 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) | |
3326 | continue; | |
a01f4390 MK |
3327 | if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) |
3328 | continue; | |
79dfc695 MK |
3329 | for_each_hstate(h2) { |
3330 | if (h2 == h) | |
3331 | continue; | |
3332 | if (h2->order < h->order && | |
3333 | h2->order > h->demote_order) | |
3334 | h->demote_order = h2->order; | |
3335 | } | |
e5ff2159 AK |
3336 | } |
3337 | } | |
3338 | ||
3339 | static void __init report_hugepages(void) | |
3340 | { | |
3341 | struct hstate *h; | |
3342 | ||
3343 | for_each_hstate(h) { | |
4abd32db | 3344 | char buf[32]; |
c6247f72 MW |
3345 | |
3346 | string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); | |
6213834c | 3347 | pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", |
c6247f72 | 3348 | buf, h->free_huge_pages); |
6213834c MS |
3349 | pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", |
3350 | hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); | |
e5ff2159 AK |
3351 | } |
3352 | } | |
3353 | ||
1da177e4 | 3354 | #ifdef CONFIG_HIGHMEM |
6ae11b27 LS |
3355 | static void try_to_free_low(struct hstate *h, unsigned long count, |
3356 | nodemask_t *nodes_allowed) | |
1da177e4 | 3357 | { |
4415cc8d | 3358 | int i; |
1121828a | 3359 | LIST_HEAD(page_list); |
4415cc8d | 3360 | |
9487ca60 | 3361 | lockdep_assert_held(&hugetlb_lock); |
bae7f4ae | 3362 | if (hstate_is_gigantic(h)) |
aa888a74 AK |
3363 | return; |
3364 | ||
1121828a MK |
3365 | /* |
3366 | * Collect pages to be freed on a list, and free after dropping lock | |
3367 | */ | |
6ae11b27 | 3368 | for_each_node_mask(i, *nodes_allowed) { |
10c6ec49 | 3369 | struct page *page, *next; |
a5516438 AK |
3370 | struct list_head *freel = &h->hugepage_freelists[i]; |
3371 | list_for_each_entry_safe(page, next, freel, lru) { | |
3372 | if (count >= h->nr_huge_pages) | |
1121828a | 3373 | goto out; |
1da177e4 LT |
3374 | if (PageHighMem(page)) |
3375 | continue; | |
cfd5082b | 3376 | remove_hugetlb_folio(h, page_folio(page), false); |
1121828a | 3377 | list_add(&page->lru, &page_list); |
1da177e4 LT |
3378 | } |
3379 | } | |
1121828a MK |
3380 | |
3381 | out: | |
db71ef79 | 3382 | spin_unlock_irq(&hugetlb_lock); |
10c6ec49 | 3383 | update_and_free_pages_bulk(h, &page_list); |
db71ef79 | 3384 | spin_lock_irq(&hugetlb_lock); |
1da177e4 LT |
3385 | } |
3386 | #else | |
6ae11b27 LS |
3387 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
3388 | nodemask_t *nodes_allowed) | |
1da177e4 LT |
3389 | { |
3390 | } | |
3391 | #endif | |
3392 | ||
20a0307c WF |
3393 | /* |
3394 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
3395 | * balanced by operating on them in a round-robin fashion. | |
3396 | * Returns 1 if an adjustment was made. | |
3397 | */ | |
6ae11b27 LS |
3398 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
3399 | int delta) | |
20a0307c | 3400 | { |
b2261026 | 3401 | int nr_nodes, node; |
20a0307c | 3402 | |
9487ca60 | 3403 | lockdep_assert_held(&hugetlb_lock); |
20a0307c | 3404 | VM_BUG_ON(delta != -1 && delta != 1); |
20a0307c | 3405 | |
b2261026 JK |
3406 | if (delta < 0) { |
3407 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { | |
3408 | if (h->surplus_huge_pages_node[node]) | |
3409 | goto found; | |
e8c5c824 | 3410 | } |
b2261026 JK |
3411 | } else { |
3412 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { | |
3413 | if (h->surplus_huge_pages_node[node] < | |
3414 | h->nr_huge_pages_node[node]) | |
3415 | goto found; | |
e8c5c824 | 3416 | } |
b2261026 JK |
3417 | } |
3418 | return 0; | |
20a0307c | 3419 | |
b2261026 JK |
3420 | found: |
3421 | h->surplus_huge_pages += delta; | |
3422 | h->surplus_huge_pages_node[node] += delta; | |
3423 | return 1; | |
20a0307c WF |
3424 | } |
3425 | ||
a5516438 | 3426 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
fd875dca | 3427 | static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, |
4eb0716e | 3428 | nodemask_t *nodes_allowed) |
1da177e4 | 3429 | { |
7893d1d5 | 3430 | unsigned long min_count, ret; |
10c6ec49 MK |
3431 | struct page *page; |
3432 | LIST_HEAD(page_list); | |
f60858f9 MK |
3433 | NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); |
3434 | ||
3435 | /* | |
3436 | * Bit mask controlling how hard we retry per-node allocations. | |
3437 | * If we can not allocate the bit mask, do not attempt to allocate | |
3438 | * the requested huge pages. | |
3439 | */ | |
3440 | if (node_alloc_noretry) | |
3441 | nodes_clear(*node_alloc_noretry); | |
3442 | else | |
3443 | return -ENOMEM; | |
1da177e4 | 3444 | |
29383967 MK |
3445 | /* |
3446 | * resize_lock mutex prevents concurrent adjustments to number of | |
3447 | * pages in hstate via the proc/sysfs interfaces. | |
3448 | */ | |
3449 | mutex_lock(&h->resize_lock); | |
b65d4adb | 3450 | flush_free_hpage_work(h); |
db71ef79 | 3451 | spin_lock_irq(&hugetlb_lock); |
4eb0716e | 3452 | |
fd875dca MK |
3453 | /* |
3454 | * Check for a node specific request. | |
3455 | * Changing node specific huge page count may require a corresponding | |
3456 | * change to the global count. In any case, the passed node mask | |
3457 | * (nodes_allowed) will restrict alloc/free to the specified node. | |
3458 | */ | |
3459 | if (nid != NUMA_NO_NODE) { | |
3460 | unsigned long old_count = count; | |
3461 | ||
3462 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | |
3463 | /* | |
3464 | * User may have specified a large count value which caused the | |
3465 | * above calculation to overflow. In this case, they wanted | |
3466 | * to allocate as many huge pages as possible. Set count to | |
3467 | * largest possible value to align with their intention. | |
3468 | */ | |
3469 | if (count < old_count) | |
3470 | count = ULONG_MAX; | |
3471 | } | |
3472 | ||
4eb0716e AG |
3473 | /* |
3474 | * Gigantic pages runtime allocation depend on the capability for large | |
3475 | * page range allocation. | |
3476 | * If the system does not provide this feature, return an error when | |
3477 | * the user tries to allocate gigantic pages but let the user free the | |
3478 | * boottime allocated gigantic pages. | |
3479 | */ | |
3480 | if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { | |
3481 | if (count > persistent_huge_pages(h)) { | |
db71ef79 | 3482 | spin_unlock_irq(&hugetlb_lock); |
29383967 | 3483 | mutex_unlock(&h->resize_lock); |
f60858f9 | 3484 | NODEMASK_FREE(node_alloc_noretry); |
4eb0716e AG |
3485 | return -EINVAL; |
3486 | } | |
3487 | /* Fall through to decrease pool */ | |
3488 | } | |
aa888a74 | 3489 | |
7893d1d5 AL |
3490 | /* |
3491 | * Increase the pool size | |
3492 | * First take pages out of surplus state. Then make up the | |
3493 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f | 3494 | * |
0c397dae | 3495 | * We might race with alloc_surplus_huge_page() here and be unable |
d1c3fb1f NA |
3496 | * to convert a surplus huge page to a normal huge page. That is |
3497 | * not critical, though, it just means the overall size of the | |
3498 | * pool might be one hugepage larger than it needs to be, but | |
3499 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 3500 | */ |
a5516438 | 3501 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
6ae11b27 | 3502 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
7893d1d5 AL |
3503 | break; |
3504 | } | |
3505 | ||
a5516438 | 3506 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
3507 | /* |
3508 | * If this allocation races such that we no longer need the | |
3509 | * page, free_huge_page will handle it by freeing the page | |
3510 | * and reducing the surplus. | |
3511 | */ | |
db71ef79 | 3512 | spin_unlock_irq(&hugetlb_lock); |
649920c6 JH |
3513 | |
3514 | /* yield cpu to avoid soft lockup */ | |
3515 | cond_resched(); | |
3516 | ||
f60858f9 MK |
3517 | ret = alloc_pool_huge_page(h, nodes_allowed, |
3518 | node_alloc_noretry); | |
db71ef79 | 3519 | spin_lock_irq(&hugetlb_lock); |
7893d1d5 AL |
3520 | if (!ret) |
3521 | goto out; | |
3522 | ||
536240f2 MG |
3523 | /* Bail for signals. Probably ctrl-c from user */ |
3524 | if (signal_pending(current)) | |
3525 | goto out; | |
7893d1d5 | 3526 | } |
7893d1d5 AL |
3527 | |
3528 | /* | |
3529 | * Decrease the pool size | |
3530 | * First return free pages to the buddy allocator (being careful | |
3531 | * to keep enough around to satisfy reservations). Then place | |
3532 | * pages into surplus state as needed so the pool will shrink | |
3533 | * to the desired size as pages become free. | |
d1c3fb1f NA |
3534 | * |
3535 | * By placing pages into the surplus state independent of the | |
3536 | * overcommit value, we are allowing the surplus pool size to | |
3537 | * exceed overcommit. There are few sane options here. Since | |
0c397dae | 3538 | * alloc_surplus_huge_page() is checking the global counter, |
d1c3fb1f NA |
3539 | * though, we'll note that we're not allowed to exceed surplus |
3540 | * and won't grow the pool anywhere else. Not until one of the | |
3541 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 3542 | */ |
a5516438 | 3543 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 3544 | min_count = max(count, min_count); |
6ae11b27 | 3545 | try_to_free_low(h, min_count, nodes_allowed); |
10c6ec49 MK |
3546 | |
3547 | /* | |
3548 | * Collect pages to be removed on list without dropping lock | |
3549 | */ | |
a5516438 | 3550 | while (min_count < persistent_huge_pages(h)) { |
10c6ec49 MK |
3551 | page = remove_pool_huge_page(h, nodes_allowed, 0); |
3552 | if (!page) | |
1da177e4 | 3553 | break; |
10c6ec49 MK |
3554 | |
3555 | list_add(&page->lru, &page_list); | |
1da177e4 | 3556 | } |
10c6ec49 | 3557 | /* free the pages after dropping lock */ |
db71ef79 | 3558 | spin_unlock_irq(&hugetlb_lock); |
10c6ec49 | 3559 | update_and_free_pages_bulk(h, &page_list); |
b65d4adb | 3560 | flush_free_hpage_work(h); |
db71ef79 | 3561 | spin_lock_irq(&hugetlb_lock); |
10c6ec49 | 3562 | |
a5516438 | 3563 | while (count < persistent_huge_pages(h)) { |
6ae11b27 | 3564 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
7893d1d5 AL |
3565 | break; |
3566 | } | |
3567 | out: | |
4eb0716e | 3568 | h->max_huge_pages = persistent_huge_pages(h); |
db71ef79 | 3569 | spin_unlock_irq(&hugetlb_lock); |
29383967 | 3570 | mutex_unlock(&h->resize_lock); |
4eb0716e | 3571 | |
f60858f9 MK |
3572 | NODEMASK_FREE(node_alloc_noretry); |
3573 | ||
4eb0716e | 3574 | return 0; |
1da177e4 LT |
3575 | } |
3576 | ||
8531fc6f MK |
3577 | static int demote_free_huge_page(struct hstate *h, struct page *page) |
3578 | { | |
3579 | int i, nid = page_to_nid(page); | |
3580 | struct hstate *target_hstate; | |
911565b8 | 3581 | struct folio *folio = page_folio(page); |
31731452 | 3582 | struct page *subpage; |
8531fc6f MK |
3583 | int rc = 0; |
3584 | ||
3585 | target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); | |
3586 | ||
cfd5082b | 3587 | remove_hugetlb_folio_for_demote(h, folio, false); |
8531fc6f MK |
3588 | spin_unlock_irq(&hugetlb_lock); |
3589 | ||
6213834c | 3590 | rc = hugetlb_vmemmap_restore(h, page); |
8531fc6f MK |
3591 | if (rc) { |
3592 | /* Allocation of vmemmmap failed, we can not demote page */ | |
3593 | spin_lock_irq(&hugetlb_lock); | |
3594 | set_page_refcounted(page); | |
2f6c57d6 | 3595 | add_hugetlb_folio(h, page_folio(page), false); |
8531fc6f MK |
3596 | return rc; |
3597 | } | |
3598 | ||
3599 | /* | |
911565b8 | 3600 | * Use destroy_compound_hugetlb_folio_for_demote for all huge page |
8531fc6f MK |
3601 | * sizes as it will not ref count pages. |
3602 | */ | |
911565b8 | 3603 | destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); |
8531fc6f MK |
3604 | |
3605 | /* | |
3606 | * Taking target hstate mutex synchronizes with set_max_huge_pages. | |
3607 | * Without the mutex, pages added to target hstate could be marked | |
3608 | * as surplus. | |
3609 | * | |
3610 | * Note that we already hold h->resize_lock. To prevent deadlock, | |
3611 | * use the convention of always taking larger size hstate mutex first. | |
3612 | */ | |
3613 | mutex_lock(&target_hstate->resize_lock); | |
3614 | for (i = 0; i < pages_per_huge_page(h); | |
3615 | i += pages_per_huge_page(target_hstate)) { | |
31731452 | 3616 | subpage = nth_page(page, i); |
d1c60955 | 3617 | folio = page_folio(subpage); |
8531fc6f | 3618 | if (hstate_is_gigantic(target_hstate)) |
d1c60955 | 3619 | prep_compound_gigantic_folio_for_demote(folio, |
8531fc6f MK |
3620 | target_hstate->order); |
3621 | else | |
31731452 DB |
3622 | prep_compound_page(subpage, target_hstate->order); |
3623 | set_page_private(subpage, 0); | |
d1c60955 | 3624 | prep_new_hugetlb_folio(target_hstate, folio, nid); |
2b21624f | 3625 | free_huge_page(subpage); |
8531fc6f MK |
3626 | } |
3627 | mutex_unlock(&target_hstate->resize_lock); | |
3628 | ||
3629 | spin_lock_irq(&hugetlb_lock); | |
3630 | ||
3631 | /* | |
3632 | * Not absolutely necessary, but for consistency update max_huge_pages | |
3633 | * based on pool changes for the demoted page. | |
3634 | */ | |
3635 | h->max_huge_pages--; | |
a43a83c7 ML |
3636 | target_hstate->max_huge_pages += |
3637 | pages_per_huge_page(h) / pages_per_huge_page(target_hstate); | |
8531fc6f MK |
3638 | |
3639 | return rc; | |
3640 | } | |
3641 | ||
79dfc695 MK |
3642 | static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
3643 | __must_hold(&hugetlb_lock) | |
3644 | { | |
8531fc6f MK |
3645 | int nr_nodes, node; |
3646 | struct page *page; | |
79dfc695 MK |
3647 | |
3648 | lockdep_assert_held(&hugetlb_lock); | |
3649 | ||
3650 | /* We should never get here if no demote order */ | |
3651 | if (!h->demote_order) { | |
3652 | pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); | |
3653 | return -EINVAL; /* internal error */ | |
3654 | } | |
3655 | ||
8531fc6f | 3656 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
5a317412 MK |
3657 | list_for_each_entry(page, &h->hugepage_freelists[node], lru) { |
3658 | if (PageHWPoison(page)) | |
3659 | continue; | |
3660 | ||
3661 | return demote_free_huge_page(h, page); | |
8531fc6f MK |
3662 | } |
3663 | } | |
3664 | ||
5a317412 MK |
3665 | /* |
3666 | * Only way to get here is if all pages on free lists are poisoned. | |
3667 | * Return -EBUSY so that caller will not retry. | |
3668 | */ | |
3669 | return -EBUSY; | |
79dfc695 MK |
3670 | } |
3671 | ||
a3437870 NA |
3672 | #define HSTATE_ATTR_RO(_name) \ |
3673 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
3674 | ||
79dfc695 MK |
3675 | #define HSTATE_ATTR_WO(_name) \ |
3676 | static struct kobj_attribute _name##_attr = __ATTR_WO(_name) | |
3677 | ||
a3437870 | 3678 | #define HSTATE_ATTR(_name) \ |
98bc26ac | 3679 | static struct kobj_attribute _name##_attr = __ATTR_RW(_name) |
a3437870 NA |
3680 | |
3681 | static struct kobject *hugepages_kobj; | |
3682 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
3683 | ||
9a305230 LS |
3684 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
3685 | ||
3686 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | |
a3437870 NA |
3687 | { |
3688 | int i; | |
9a305230 | 3689 | |
a3437870 | 3690 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
9a305230 LS |
3691 | if (hstate_kobjs[i] == kobj) { |
3692 | if (nidp) | |
3693 | *nidp = NUMA_NO_NODE; | |
a3437870 | 3694 | return &hstates[i]; |
9a305230 LS |
3695 | } |
3696 | ||
3697 | return kobj_to_node_hstate(kobj, nidp); | |
a3437870 NA |
3698 | } |
3699 | ||
06808b08 | 3700 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
a3437870 NA |
3701 | struct kobj_attribute *attr, char *buf) |
3702 | { | |
9a305230 LS |
3703 | struct hstate *h; |
3704 | unsigned long nr_huge_pages; | |
3705 | int nid; | |
3706 | ||
3707 | h = kobj_to_hstate(kobj, &nid); | |
3708 | if (nid == NUMA_NO_NODE) | |
3709 | nr_huge_pages = h->nr_huge_pages; | |
3710 | else | |
3711 | nr_huge_pages = h->nr_huge_pages_node[nid]; | |
3712 | ||
ae7a927d | 3713 | return sysfs_emit(buf, "%lu\n", nr_huge_pages); |
a3437870 | 3714 | } |
adbe8726 | 3715 | |
238d3c13 DR |
3716 | static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, |
3717 | struct hstate *h, int nid, | |
3718 | unsigned long count, size_t len) | |
a3437870 NA |
3719 | { |
3720 | int err; | |
2d0adf7e | 3721 | nodemask_t nodes_allowed, *n_mask; |
a3437870 | 3722 | |
2d0adf7e OS |
3723 | if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) |
3724 | return -EINVAL; | |
adbe8726 | 3725 | |
9a305230 LS |
3726 | if (nid == NUMA_NO_NODE) { |
3727 | /* | |
3728 | * global hstate attribute | |
3729 | */ | |
3730 | if (!(obey_mempolicy && | |
2d0adf7e OS |
3731 | init_nodemask_of_mempolicy(&nodes_allowed))) |
3732 | n_mask = &node_states[N_MEMORY]; | |
3733 | else | |
3734 | n_mask = &nodes_allowed; | |
3735 | } else { | |
9a305230 | 3736 | /* |
fd875dca MK |
3737 | * Node specific request. count adjustment happens in |
3738 | * set_max_huge_pages() after acquiring hugetlb_lock. | |
9a305230 | 3739 | */ |
2d0adf7e OS |
3740 | init_nodemask_of_node(&nodes_allowed, nid); |
3741 | n_mask = &nodes_allowed; | |
fd875dca | 3742 | } |
9a305230 | 3743 | |
2d0adf7e | 3744 | err = set_max_huge_pages(h, count, nid, n_mask); |
06808b08 | 3745 | |
4eb0716e | 3746 | return err ? err : len; |
06808b08 LS |
3747 | } |
3748 | ||
238d3c13 DR |
3749 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
3750 | struct kobject *kobj, const char *buf, | |
3751 | size_t len) | |
3752 | { | |
3753 | struct hstate *h; | |
3754 | unsigned long count; | |
3755 | int nid; | |
3756 | int err; | |
3757 | ||
3758 | err = kstrtoul(buf, 10, &count); | |
3759 | if (err) | |
3760 | return err; | |
3761 | ||
3762 | h = kobj_to_hstate(kobj, &nid); | |
3763 | return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); | |
3764 | } | |
3765 | ||
06808b08 LS |
3766 | static ssize_t nr_hugepages_show(struct kobject *kobj, |
3767 | struct kobj_attribute *attr, char *buf) | |
3768 | { | |
3769 | return nr_hugepages_show_common(kobj, attr, buf); | |
3770 | } | |
3771 | ||
3772 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
3773 | struct kobj_attribute *attr, const char *buf, size_t len) | |
3774 | { | |
238d3c13 | 3775 | return nr_hugepages_store_common(false, kobj, buf, len); |
a3437870 NA |
3776 | } |
3777 | HSTATE_ATTR(nr_hugepages); | |
3778 | ||
06808b08 LS |
3779 | #ifdef CONFIG_NUMA |
3780 | ||
3781 | /* | |
3782 | * hstate attribute for optionally mempolicy-based constraint on persistent | |
3783 | * huge page alloc/free. | |
3784 | */ | |
3785 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | |
ae7a927d JP |
3786 | struct kobj_attribute *attr, |
3787 | char *buf) | |
06808b08 LS |
3788 | { |
3789 | return nr_hugepages_show_common(kobj, attr, buf); | |
3790 | } | |
3791 | ||
3792 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | |
3793 | struct kobj_attribute *attr, const char *buf, size_t len) | |
3794 | { | |
238d3c13 | 3795 | return nr_hugepages_store_common(true, kobj, buf, len); |
06808b08 LS |
3796 | } |
3797 | HSTATE_ATTR(nr_hugepages_mempolicy); | |
3798 | #endif | |
3799 | ||
3800 | ||
a3437870 NA |
3801 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
3802 | struct kobj_attribute *attr, char *buf) | |
3803 | { | |
9a305230 | 3804 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
ae7a927d | 3805 | return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); |
a3437870 | 3806 | } |
adbe8726 | 3807 | |
a3437870 NA |
3808 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, |
3809 | struct kobj_attribute *attr, const char *buf, size_t count) | |
3810 | { | |
3811 | int err; | |
3812 | unsigned long input; | |
9a305230 | 3813 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 | 3814 | |
bae7f4ae | 3815 | if (hstate_is_gigantic(h)) |
adbe8726 EM |
3816 | return -EINVAL; |
3817 | ||
3dbb95f7 | 3818 | err = kstrtoul(buf, 10, &input); |
a3437870 | 3819 | if (err) |
73ae31e5 | 3820 | return err; |
a3437870 | 3821 | |
db71ef79 | 3822 | spin_lock_irq(&hugetlb_lock); |
a3437870 | 3823 | h->nr_overcommit_huge_pages = input; |
db71ef79 | 3824 | spin_unlock_irq(&hugetlb_lock); |
a3437870 NA |
3825 | |
3826 | return count; | |
3827 | } | |
3828 | HSTATE_ATTR(nr_overcommit_hugepages); | |
3829 | ||
3830 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
3831 | struct kobj_attribute *attr, char *buf) | |
3832 | { | |
9a305230 LS |
3833 | struct hstate *h; |
3834 | unsigned long free_huge_pages; | |
3835 | int nid; | |
3836 | ||
3837 | h = kobj_to_hstate(kobj, &nid); | |
3838 | if (nid == NUMA_NO_NODE) | |
3839 | free_huge_pages = h->free_huge_pages; | |
3840 | else | |
3841 | free_huge_pages = h->free_huge_pages_node[nid]; | |
3842 | ||
ae7a927d | 3843 | return sysfs_emit(buf, "%lu\n", free_huge_pages); |
a3437870 NA |
3844 | } |
3845 | HSTATE_ATTR_RO(free_hugepages); | |
3846 | ||
3847 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
3848 | struct kobj_attribute *attr, char *buf) | |
3849 | { | |
9a305230 | 3850 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
ae7a927d | 3851 | return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); |
a3437870 NA |
3852 | } |
3853 | HSTATE_ATTR_RO(resv_hugepages); | |
3854 | ||
3855 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
3856 | struct kobj_attribute *attr, char *buf) | |
3857 | { | |
9a305230 LS |
3858 | struct hstate *h; |
3859 | unsigned long surplus_huge_pages; | |
3860 | int nid; | |
3861 | ||
3862 | h = kobj_to_hstate(kobj, &nid); | |
3863 | if (nid == NUMA_NO_NODE) | |
3864 | surplus_huge_pages = h->surplus_huge_pages; | |
3865 | else | |
3866 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | |
3867 | ||
ae7a927d | 3868 | return sysfs_emit(buf, "%lu\n", surplus_huge_pages); |
a3437870 NA |
3869 | } |
3870 | HSTATE_ATTR_RO(surplus_hugepages); | |
3871 | ||
79dfc695 MK |
3872 | static ssize_t demote_store(struct kobject *kobj, |
3873 | struct kobj_attribute *attr, const char *buf, size_t len) | |
3874 | { | |
3875 | unsigned long nr_demote; | |
3876 | unsigned long nr_available; | |
3877 | nodemask_t nodes_allowed, *n_mask; | |
3878 | struct hstate *h; | |
8eeda55f | 3879 | int err; |
79dfc695 MK |
3880 | int nid; |
3881 | ||
3882 | err = kstrtoul(buf, 10, &nr_demote); | |
3883 | if (err) | |
3884 | return err; | |
3885 | h = kobj_to_hstate(kobj, &nid); | |
3886 | ||
3887 | if (nid != NUMA_NO_NODE) { | |
3888 | init_nodemask_of_node(&nodes_allowed, nid); | |
3889 | n_mask = &nodes_allowed; | |
3890 | } else { | |
3891 | n_mask = &node_states[N_MEMORY]; | |
3892 | } | |
3893 | ||
3894 | /* Synchronize with other sysfs operations modifying huge pages */ | |
3895 | mutex_lock(&h->resize_lock); | |
3896 | spin_lock_irq(&hugetlb_lock); | |
3897 | ||
3898 | while (nr_demote) { | |
3899 | /* | |
3900 | * Check for available pages to demote each time thorough the | |
3901 | * loop as demote_pool_huge_page will drop hugetlb_lock. | |
79dfc695 MK |
3902 | */ |
3903 | if (nid != NUMA_NO_NODE) | |
3904 | nr_available = h->free_huge_pages_node[nid]; | |
3905 | else | |
3906 | nr_available = h->free_huge_pages; | |
3907 | nr_available -= h->resv_huge_pages; | |
3908 | if (!nr_available) | |
3909 | break; | |
3910 | ||
3911 | err = demote_pool_huge_page(h, n_mask); | |
3912 | if (err) | |
3913 | break; | |
3914 | ||
3915 | nr_demote--; | |
3916 | } | |
3917 | ||
3918 | spin_unlock_irq(&hugetlb_lock); | |
3919 | mutex_unlock(&h->resize_lock); | |
3920 | ||
3921 | if (err) | |
3922 | return err; | |
3923 | return len; | |
3924 | } | |
3925 | HSTATE_ATTR_WO(demote); | |
3926 | ||
3927 | static ssize_t demote_size_show(struct kobject *kobj, | |
3928 | struct kobj_attribute *attr, char *buf) | |
3929 | { | |
12658abf | 3930 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
79dfc695 MK |
3931 | unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; |
3932 | ||
3933 | return sysfs_emit(buf, "%lukB\n", demote_size); | |
3934 | } | |
3935 | ||
3936 | static ssize_t demote_size_store(struct kobject *kobj, | |
3937 | struct kobj_attribute *attr, | |
3938 | const char *buf, size_t count) | |
3939 | { | |
3940 | struct hstate *h, *demote_hstate; | |
3941 | unsigned long demote_size; | |
3942 | unsigned int demote_order; | |
79dfc695 MK |
3943 | |
3944 | demote_size = (unsigned long)memparse(buf, NULL); | |
3945 | ||
3946 | demote_hstate = size_to_hstate(demote_size); | |
3947 | if (!demote_hstate) | |
3948 | return -EINVAL; | |
3949 | demote_order = demote_hstate->order; | |
a01f4390 MK |
3950 | if (demote_order < HUGETLB_PAGE_ORDER) |
3951 | return -EINVAL; | |
79dfc695 MK |
3952 | |
3953 | /* demote order must be smaller than hstate order */ | |
12658abf | 3954 | h = kobj_to_hstate(kobj, NULL); |
79dfc695 MK |
3955 | if (demote_order >= h->order) |
3956 | return -EINVAL; | |
3957 | ||
3958 | /* resize_lock synchronizes access to demote size and writes */ | |
3959 | mutex_lock(&h->resize_lock); | |
3960 | h->demote_order = demote_order; | |
3961 | mutex_unlock(&h->resize_lock); | |
3962 | ||
3963 | return count; | |
3964 | } | |
3965 | HSTATE_ATTR(demote_size); | |
3966 | ||
a3437870 NA |
3967 | static struct attribute *hstate_attrs[] = { |
3968 | &nr_hugepages_attr.attr, | |
3969 | &nr_overcommit_hugepages_attr.attr, | |
3970 | &free_hugepages_attr.attr, | |
3971 | &resv_hugepages_attr.attr, | |
3972 | &surplus_hugepages_attr.attr, | |
06808b08 LS |
3973 | #ifdef CONFIG_NUMA |
3974 | &nr_hugepages_mempolicy_attr.attr, | |
3975 | #endif | |
a3437870 NA |
3976 | NULL, |
3977 | }; | |
3978 | ||
67e5ed96 | 3979 | static const struct attribute_group hstate_attr_group = { |
a3437870 NA |
3980 | .attrs = hstate_attrs, |
3981 | }; | |
3982 | ||
79dfc695 MK |
3983 | static struct attribute *hstate_demote_attrs[] = { |
3984 | &demote_size_attr.attr, | |
3985 | &demote_attr.attr, | |
3986 | NULL, | |
3987 | }; | |
3988 | ||
3989 | static const struct attribute_group hstate_demote_attr_group = { | |
3990 | .attrs = hstate_demote_attrs, | |
3991 | }; | |
3992 | ||
094e9539 JM |
3993 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
3994 | struct kobject **hstate_kobjs, | |
67e5ed96 | 3995 | const struct attribute_group *hstate_attr_group) |
a3437870 NA |
3996 | { |
3997 | int retval; | |
972dc4de | 3998 | int hi = hstate_index(h); |
a3437870 | 3999 | |
9a305230 LS |
4000 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
4001 | if (!hstate_kobjs[hi]) | |
a3437870 NA |
4002 | return -ENOMEM; |
4003 | ||
9a305230 | 4004 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
cc2205a6 | 4005 | if (retval) { |
9a305230 | 4006 | kobject_put(hstate_kobjs[hi]); |
cc2205a6 | 4007 | hstate_kobjs[hi] = NULL; |
3a6bdda0 | 4008 | return retval; |
cc2205a6 | 4009 | } |
a3437870 | 4010 | |
79dfc695 | 4011 | if (h->demote_order) { |
01088a60 ML |
4012 | retval = sysfs_create_group(hstate_kobjs[hi], |
4013 | &hstate_demote_attr_group); | |
4014 | if (retval) { | |
79dfc695 | 4015 | pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); |
01088a60 ML |
4016 | sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); |
4017 | kobject_put(hstate_kobjs[hi]); | |
4018 | hstate_kobjs[hi] = NULL; | |
4019 | return retval; | |
4020 | } | |
79dfc695 MK |
4021 | } |
4022 | ||
01088a60 | 4023 | return 0; |
a3437870 NA |
4024 | } |
4025 | ||
9a305230 | 4026 | #ifdef CONFIG_NUMA |
a4a00b45 | 4027 | static bool hugetlb_sysfs_initialized __ro_after_init; |
9a305230 LS |
4028 | |
4029 | /* | |
4030 | * node_hstate/s - associate per node hstate attributes, via their kobjects, | |
10fbcf4c KS |
4031 | * with node devices in node_devices[] using a parallel array. The array |
4032 | * index of a node device or _hstate == node id. | |
4033 | * This is here to avoid any static dependency of the node device driver, in | |
9a305230 LS |
4034 | * the base kernel, on the hugetlb module. |
4035 | */ | |
4036 | struct node_hstate { | |
4037 | struct kobject *hugepages_kobj; | |
4038 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
4039 | }; | |
b4e289a6 | 4040 | static struct node_hstate node_hstates[MAX_NUMNODES]; |
9a305230 LS |
4041 | |
4042 | /* | |
10fbcf4c | 4043 | * A subset of global hstate attributes for node devices |
9a305230 LS |
4044 | */ |
4045 | static struct attribute *per_node_hstate_attrs[] = { | |
4046 | &nr_hugepages_attr.attr, | |
4047 | &free_hugepages_attr.attr, | |
4048 | &surplus_hugepages_attr.attr, | |
4049 | NULL, | |
4050 | }; | |
4051 | ||
67e5ed96 | 4052 | static const struct attribute_group per_node_hstate_attr_group = { |
9a305230 LS |
4053 | .attrs = per_node_hstate_attrs, |
4054 | }; | |
4055 | ||
4056 | /* | |
10fbcf4c | 4057 | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. |
9a305230 LS |
4058 | * Returns node id via non-NULL nidp. |
4059 | */ | |
4060 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
4061 | { | |
4062 | int nid; | |
4063 | ||
4064 | for (nid = 0; nid < nr_node_ids; nid++) { | |
4065 | struct node_hstate *nhs = &node_hstates[nid]; | |
4066 | int i; | |
4067 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
4068 | if (nhs->hstate_kobjs[i] == kobj) { | |
4069 | if (nidp) | |
4070 | *nidp = nid; | |
4071 | return &hstates[i]; | |
4072 | } | |
4073 | } | |
4074 | ||
4075 | BUG(); | |
4076 | return NULL; | |
4077 | } | |
4078 | ||
4079 | /* | |
10fbcf4c | 4080 | * Unregister hstate attributes from a single node device. |
9a305230 LS |
4081 | * No-op if no hstate attributes attached. |
4082 | */ | |
a4a00b45 | 4083 | void hugetlb_unregister_node(struct node *node) |
9a305230 LS |
4084 | { |
4085 | struct hstate *h; | |
10fbcf4c | 4086 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
4087 | |
4088 | if (!nhs->hugepages_kobj) | |
9b5e5d0f | 4089 | return; /* no hstate attributes */ |
9a305230 | 4090 | |
972dc4de AK |
4091 | for_each_hstate(h) { |
4092 | int idx = hstate_index(h); | |
01088a60 ML |
4093 | struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; |
4094 | ||
4095 | if (!hstate_kobj) | |
4096 | continue; | |
4097 | if (h->demote_order) | |
4098 | sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); | |
4099 | sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); | |
4100 | kobject_put(hstate_kobj); | |
4101 | nhs->hstate_kobjs[idx] = NULL; | |
972dc4de | 4102 | } |
9a305230 LS |
4103 | |
4104 | kobject_put(nhs->hugepages_kobj); | |
4105 | nhs->hugepages_kobj = NULL; | |
4106 | } | |
4107 | ||
9a305230 LS |
4108 | |
4109 | /* | |
10fbcf4c | 4110 | * Register hstate attributes for a single node device. |
9a305230 LS |
4111 | * No-op if attributes already registered. |
4112 | */ | |
a4a00b45 | 4113 | void hugetlb_register_node(struct node *node) |
9a305230 LS |
4114 | { |
4115 | struct hstate *h; | |
10fbcf4c | 4116 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
4117 | int err; |
4118 | ||
a4a00b45 MS |
4119 | if (!hugetlb_sysfs_initialized) |
4120 | return; | |
4121 | ||
9a305230 LS |
4122 | if (nhs->hugepages_kobj) |
4123 | return; /* already allocated */ | |
4124 | ||
4125 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | |
10fbcf4c | 4126 | &node->dev.kobj); |
9a305230 LS |
4127 | if (!nhs->hugepages_kobj) |
4128 | return; | |
4129 | ||
4130 | for_each_hstate(h) { | |
4131 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | |
4132 | nhs->hstate_kobjs, | |
4133 | &per_node_hstate_attr_group); | |
4134 | if (err) { | |
282f4214 | 4135 | pr_err("HugeTLB: Unable to add hstate %s for node %d\n", |
ffb22af5 | 4136 | h->name, node->dev.id); |
9a305230 LS |
4137 | hugetlb_unregister_node(node); |
4138 | break; | |
4139 | } | |
4140 | } | |
4141 | } | |
4142 | ||
4143 | /* | |
9b5e5d0f | 4144 | * hugetlb init time: register hstate attributes for all registered node |
10fbcf4c KS |
4145 | * devices of nodes that have memory. All on-line nodes should have |
4146 | * registered their associated device by this time. | |
9a305230 | 4147 | */ |
7d9ca000 | 4148 | static void __init hugetlb_register_all_nodes(void) |
9a305230 LS |
4149 | { |
4150 | int nid; | |
4151 | ||
a4a00b45 | 4152 | for_each_online_node(nid) |
b958d4d0 | 4153 | hugetlb_register_node(node_devices[nid]); |
9a305230 LS |
4154 | } |
4155 | #else /* !CONFIG_NUMA */ | |
4156 | ||
4157 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
4158 | { | |
4159 | BUG(); | |
4160 | if (nidp) | |
4161 | *nidp = -1; | |
4162 | return NULL; | |
4163 | } | |
4164 | ||
9a305230 LS |
4165 | static void hugetlb_register_all_nodes(void) { } |
4166 | ||
4167 | #endif | |
4168 | ||
263b8998 ML |
4169 | #ifdef CONFIG_CMA |
4170 | static void __init hugetlb_cma_check(void); | |
4171 | #else | |
4172 | static inline __init void hugetlb_cma_check(void) | |
4173 | { | |
4174 | } | |
4175 | #endif | |
4176 | ||
a4a00b45 MS |
4177 | static void __init hugetlb_sysfs_init(void) |
4178 | { | |
4179 | struct hstate *h; | |
4180 | int err; | |
4181 | ||
4182 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
4183 | if (!hugepages_kobj) | |
4184 | return; | |
4185 | ||
4186 | for_each_hstate(h) { | |
4187 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | |
4188 | hstate_kobjs, &hstate_attr_group); | |
4189 | if (err) | |
4190 | pr_err("HugeTLB: Unable to add hstate %s", h->name); | |
4191 | } | |
4192 | ||
4193 | #ifdef CONFIG_NUMA | |
4194 | hugetlb_sysfs_initialized = true; | |
4195 | #endif | |
4196 | hugetlb_register_all_nodes(); | |
4197 | } | |
4198 | ||
a3437870 NA |
4199 | static int __init hugetlb_init(void) |
4200 | { | |
8382d914 DB |
4201 | int i; |
4202 | ||
d6995da3 MK |
4203 | BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < |
4204 | __NR_HPAGEFLAGS); | |
4205 | ||
c2833a5b MK |
4206 | if (!hugepages_supported()) { |
4207 | if (hugetlb_max_hstate || default_hstate_max_huge_pages) | |
4208 | pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); | |
0ef89d25 | 4209 | return 0; |
c2833a5b | 4210 | } |
a3437870 | 4211 | |
282f4214 MK |
4212 | /* |
4213 | * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some | |
4214 | * architectures depend on setup being done here. | |
4215 | */ | |
4216 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
4217 | if (!parsed_default_hugepagesz) { | |
4218 | /* | |
4219 | * If we did not parse a default huge page size, set | |
4220 | * default_hstate_idx to HPAGE_SIZE hstate. And, if the | |
4221 | * number of huge pages for this default size was implicitly | |
4222 | * specified, set that here as well. | |
4223 | * Note that the implicit setting will overwrite an explicit | |
4224 | * setting. A warning will be printed in this case. | |
4225 | */ | |
4226 | default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); | |
4227 | if (default_hstate_max_huge_pages) { | |
4228 | if (default_hstate.max_huge_pages) { | |
4229 | char buf[32]; | |
4230 | ||
4231 | string_get_size(huge_page_size(&default_hstate), | |
4232 | 1, STRING_UNITS_2, buf, 32); | |
4233 | pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", | |
4234 | default_hstate.max_huge_pages, buf); | |
4235 | pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", | |
4236 | default_hstate_max_huge_pages); | |
4237 | } | |
4238 | default_hstate.max_huge_pages = | |
4239 | default_hstate_max_huge_pages; | |
b5389086 | 4240 | |
0a7a0f6f | 4241 | for_each_online_node(i) |
b5389086 ZY |
4242 | default_hstate.max_huge_pages_node[i] = |
4243 | default_hugepages_in_node[i]; | |
d715cf80 | 4244 | } |
f8b74815 | 4245 | } |
a3437870 | 4246 | |
cf11e85f | 4247 | hugetlb_cma_check(); |
a3437870 | 4248 | hugetlb_init_hstates(); |
aa888a74 | 4249 | gather_bootmem_prealloc(); |
a3437870 NA |
4250 | report_hugepages(); |
4251 | ||
4252 | hugetlb_sysfs_init(); | |
7179e7bf | 4253 | hugetlb_cgroup_file_init(); |
9a305230 | 4254 | |
8382d914 DB |
4255 | #ifdef CONFIG_SMP |
4256 | num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); | |
4257 | #else | |
4258 | num_fault_mutexes = 1; | |
4259 | #endif | |
c672c7f2 | 4260 | hugetlb_fault_mutex_table = |
6da2ec56 KC |
4261 | kmalloc_array(num_fault_mutexes, sizeof(struct mutex), |
4262 | GFP_KERNEL); | |
c672c7f2 | 4263 | BUG_ON(!hugetlb_fault_mutex_table); |
8382d914 DB |
4264 | |
4265 | for (i = 0; i < num_fault_mutexes; i++) | |
c672c7f2 | 4266 | mutex_init(&hugetlb_fault_mutex_table[i]); |
a3437870 NA |
4267 | return 0; |
4268 | } | |
3e89e1c5 | 4269 | subsys_initcall(hugetlb_init); |
a3437870 | 4270 | |
ae94da89 MK |
4271 | /* Overwritten by architectures with more huge page sizes */ |
4272 | bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) | |
9fee021d | 4273 | { |
ae94da89 | 4274 | return size == HPAGE_SIZE; |
9fee021d VT |
4275 | } |
4276 | ||
d00181b9 | 4277 | void __init hugetlb_add_hstate(unsigned int order) |
a3437870 NA |
4278 | { |
4279 | struct hstate *h; | |
8faa8b07 AK |
4280 | unsigned long i; |
4281 | ||
a3437870 | 4282 | if (size_to_hstate(PAGE_SIZE << order)) { |
a3437870 NA |
4283 | return; |
4284 | } | |
47d38344 | 4285 | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); |
a3437870 | 4286 | BUG_ON(order == 0); |
47d38344 | 4287 | h = &hstates[hugetlb_max_hstate++]; |
29383967 | 4288 | mutex_init(&h->resize_lock); |
a3437870 | 4289 | h->order = order; |
aca78307 | 4290 | h->mask = ~(huge_page_size(h) - 1); |
8faa8b07 AK |
4291 | for (i = 0; i < MAX_NUMNODES; ++i) |
4292 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
0edaecfa | 4293 | INIT_LIST_HEAD(&h->hugepage_activelist); |
54f18d35 AM |
4294 | h->next_nid_to_alloc = first_memory_node; |
4295 | h->next_nid_to_free = first_memory_node; | |
a3437870 | 4296 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
c2c3a60a | 4297 | huge_page_size(h)/SZ_1K); |
8faa8b07 | 4298 | |
a3437870 NA |
4299 | parsed_hstate = h; |
4300 | } | |
4301 | ||
b5389086 ZY |
4302 | bool __init __weak hugetlb_node_alloc_supported(void) |
4303 | { | |
4304 | return true; | |
4305 | } | |
f87442f4 PL |
4306 | |
4307 | static void __init hugepages_clear_pages_in_node(void) | |
4308 | { | |
4309 | if (!hugetlb_max_hstate) { | |
4310 | default_hstate_max_huge_pages = 0; | |
4311 | memset(default_hugepages_in_node, 0, | |
10395680 | 4312 | sizeof(default_hugepages_in_node)); |
f87442f4 PL |
4313 | } else { |
4314 | parsed_hstate->max_huge_pages = 0; | |
4315 | memset(parsed_hstate->max_huge_pages_node, 0, | |
10395680 | 4316 | sizeof(parsed_hstate->max_huge_pages_node)); |
f87442f4 PL |
4317 | } |
4318 | } | |
4319 | ||
282f4214 MK |
4320 | /* |
4321 | * hugepages command line processing | |
4322 | * hugepages normally follows a valid hugepagsz or default_hugepagsz | |
4323 | * specification. If not, ignore the hugepages value. hugepages can also | |
4324 | * be the first huge page command line option in which case it implicitly | |
4325 | * specifies the number of huge pages for the default size. | |
4326 | */ | |
4327 | static int __init hugepages_setup(char *s) | |
a3437870 NA |
4328 | { |
4329 | unsigned long *mhp; | |
8faa8b07 | 4330 | static unsigned long *last_mhp; |
b5389086 ZY |
4331 | int node = NUMA_NO_NODE; |
4332 | int count; | |
4333 | unsigned long tmp; | |
4334 | char *p = s; | |
a3437870 | 4335 | |
9fee021d | 4336 | if (!parsed_valid_hugepagesz) { |
282f4214 | 4337 | pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); |
9fee021d | 4338 | parsed_valid_hugepagesz = true; |
f81f6e4b | 4339 | return 1; |
9fee021d | 4340 | } |
282f4214 | 4341 | |
a3437870 | 4342 | /* |
282f4214 MK |
4343 | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter |
4344 | * yet, so this hugepages= parameter goes to the "default hstate". | |
4345 | * Otherwise, it goes with the previously parsed hugepagesz or | |
4346 | * default_hugepagesz. | |
a3437870 | 4347 | */ |
9fee021d | 4348 | else if (!hugetlb_max_hstate) |
a3437870 NA |
4349 | mhp = &default_hstate_max_huge_pages; |
4350 | else | |
4351 | mhp = &parsed_hstate->max_huge_pages; | |
4352 | ||
8faa8b07 | 4353 | if (mhp == last_mhp) { |
282f4214 | 4354 | pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); |
f81f6e4b | 4355 | return 1; |
8faa8b07 AK |
4356 | } |
4357 | ||
b5389086 ZY |
4358 | while (*p) { |
4359 | count = 0; | |
4360 | if (sscanf(p, "%lu%n", &tmp, &count) != 1) | |
4361 | goto invalid; | |
4362 | /* Parameter is node format */ | |
4363 | if (p[count] == ':') { | |
4364 | if (!hugetlb_node_alloc_supported()) { | |
4365 | pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); | |
f81f6e4b | 4366 | return 1; |
b5389086 | 4367 | } |
0a7a0f6f | 4368 | if (tmp >= MAX_NUMNODES || !node_online(tmp)) |
e79ce983 | 4369 | goto invalid; |
0a7a0f6f | 4370 | node = array_index_nospec(tmp, MAX_NUMNODES); |
b5389086 | 4371 | p += count + 1; |
b5389086 ZY |
4372 | /* Parse hugepages */ |
4373 | if (sscanf(p, "%lu%n", &tmp, &count) != 1) | |
4374 | goto invalid; | |
4375 | if (!hugetlb_max_hstate) | |
4376 | default_hugepages_in_node[node] = tmp; | |
4377 | else | |
4378 | parsed_hstate->max_huge_pages_node[node] = tmp; | |
4379 | *mhp += tmp; | |
4380 | /* Go to parse next node*/ | |
4381 | if (p[count] == ',') | |
4382 | p += count + 1; | |
4383 | else | |
4384 | break; | |
4385 | } else { | |
4386 | if (p != s) | |
4387 | goto invalid; | |
4388 | *mhp = tmp; | |
4389 | break; | |
4390 | } | |
4391 | } | |
a3437870 | 4392 | |
8faa8b07 AK |
4393 | /* |
4394 | * Global state is always initialized later in hugetlb_init. | |
04adbc3f | 4395 | * But we need to allocate gigantic hstates here early to still |
8faa8b07 AK |
4396 | * use the bootmem allocator. |
4397 | */ | |
04adbc3f | 4398 | if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) |
8faa8b07 AK |
4399 | hugetlb_hstate_alloc_pages(parsed_hstate); |
4400 | ||
4401 | last_mhp = mhp; | |
4402 | ||
a3437870 | 4403 | return 1; |
b5389086 ZY |
4404 | |
4405 | invalid: | |
4406 | pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); | |
f87442f4 | 4407 | hugepages_clear_pages_in_node(); |
f81f6e4b | 4408 | return 1; |
a3437870 | 4409 | } |
282f4214 | 4410 | __setup("hugepages=", hugepages_setup); |
e11bfbfc | 4411 | |
282f4214 MK |
4412 | /* |
4413 | * hugepagesz command line processing | |
4414 | * A specific huge page size can only be specified once with hugepagesz. | |
4415 | * hugepagesz is followed by hugepages on the command line. The global | |
4416 | * variable 'parsed_valid_hugepagesz' is used to determine if prior | |
4417 | * hugepagesz argument was valid. | |
4418 | */ | |
359f2544 | 4419 | static int __init hugepagesz_setup(char *s) |
e11bfbfc | 4420 | { |
359f2544 | 4421 | unsigned long size; |
282f4214 MK |
4422 | struct hstate *h; |
4423 | ||
4424 | parsed_valid_hugepagesz = false; | |
359f2544 MK |
4425 | size = (unsigned long)memparse(s, NULL); |
4426 | ||
4427 | if (!arch_hugetlb_valid_size(size)) { | |
282f4214 | 4428 | pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); |
f81f6e4b | 4429 | return 1; |
359f2544 MK |
4430 | } |
4431 | ||
282f4214 MK |
4432 | h = size_to_hstate(size); |
4433 | if (h) { | |
4434 | /* | |
4435 | * hstate for this size already exists. This is normally | |
4436 | * an error, but is allowed if the existing hstate is the | |
4437 | * default hstate. More specifically, it is only allowed if | |
4438 | * the number of huge pages for the default hstate was not | |
4439 | * previously specified. | |
4440 | */ | |
4441 | if (!parsed_default_hugepagesz || h != &default_hstate || | |
4442 | default_hstate.max_huge_pages) { | |
4443 | pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); | |
f81f6e4b | 4444 | return 1; |
282f4214 MK |
4445 | } |
4446 | ||
4447 | /* | |
4448 | * No need to call hugetlb_add_hstate() as hstate already | |
4449 | * exists. But, do set parsed_hstate so that a following | |
4450 | * hugepages= parameter will be applied to this hstate. | |
4451 | */ | |
4452 | parsed_hstate = h; | |
4453 | parsed_valid_hugepagesz = true; | |
4454 | return 1; | |
38237830 MK |
4455 | } |
4456 | ||
359f2544 | 4457 | hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); |
282f4214 | 4458 | parsed_valid_hugepagesz = true; |
e11bfbfc NP |
4459 | return 1; |
4460 | } | |
359f2544 MK |
4461 | __setup("hugepagesz=", hugepagesz_setup); |
4462 | ||
282f4214 MK |
4463 | /* |
4464 | * default_hugepagesz command line input | |
4465 | * Only one instance of default_hugepagesz allowed on command line. | |
4466 | */ | |
ae94da89 | 4467 | static int __init default_hugepagesz_setup(char *s) |
e11bfbfc | 4468 | { |
ae94da89 | 4469 | unsigned long size; |
b5389086 | 4470 | int i; |
ae94da89 | 4471 | |
282f4214 | 4472 | parsed_valid_hugepagesz = false; |
282f4214 MK |
4473 | if (parsed_default_hugepagesz) { |
4474 | pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); | |
f81f6e4b | 4475 | return 1; |
282f4214 MK |
4476 | } |
4477 | ||
ae94da89 MK |
4478 | size = (unsigned long)memparse(s, NULL); |
4479 | ||
4480 | if (!arch_hugetlb_valid_size(size)) { | |
282f4214 | 4481 | pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); |
f81f6e4b | 4482 | return 1; |
ae94da89 MK |
4483 | } |
4484 | ||
282f4214 MK |
4485 | hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); |
4486 | parsed_valid_hugepagesz = true; | |
4487 | parsed_default_hugepagesz = true; | |
4488 | default_hstate_idx = hstate_index(size_to_hstate(size)); | |
4489 | ||
4490 | /* | |
4491 | * The number of default huge pages (for this size) could have been | |
4492 | * specified as the first hugetlb parameter: hugepages=X. If so, | |
4493 | * then default_hstate_max_huge_pages is set. If the default huge | |
4494 | * page size is gigantic (>= MAX_ORDER), then the pages must be | |
4495 | * allocated here from bootmem allocator. | |
4496 | */ | |
4497 | if (default_hstate_max_huge_pages) { | |
4498 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
0a7a0f6f | 4499 | for_each_online_node(i) |
b5389086 ZY |
4500 | default_hstate.max_huge_pages_node[i] = |
4501 | default_hugepages_in_node[i]; | |
282f4214 MK |
4502 | if (hstate_is_gigantic(&default_hstate)) |
4503 | hugetlb_hstate_alloc_pages(&default_hstate); | |
4504 | default_hstate_max_huge_pages = 0; | |
4505 | } | |
4506 | ||
e11bfbfc NP |
4507 | return 1; |
4508 | } | |
ae94da89 | 4509 | __setup("default_hugepagesz=", default_hugepagesz_setup); |
a3437870 | 4510 | |
d2226ebd FT |
4511 | static nodemask_t *policy_mbind_nodemask(gfp_t gfp) |
4512 | { | |
4513 | #ifdef CONFIG_NUMA | |
4514 | struct mempolicy *mpol = get_task_policy(current); | |
4515 | ||
4516 | /* | |
4517 | * Only enforce MPOL_BIND policy which overlaps with cpuset policy | |
4518 | * (from policy_nodemask) specifically for hugetlb case | |
4519 | */ | |
4520 | if (mpol->mode == MPOL_BIND && | |
4521 | (apply_policy_zone(mpol, gfp_zone(gfp)) && | |
4522 | cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) | |
4523 | return &mpol->nodes; | |
4524 | #endif | |
4525 | return NULL; | |
4526 | } | |
4527 | ||
8ca39e68 | 4528 | static unsigned int allowed_mems_nr(struct hstate *h) |
8a213460 NA |
4529 | { |
4530 | int node; | |
4531 | unsigned int nr = 0; | |
d2226ebd | 4532 | nodemask_t *mbind_nodemask; |
8ca39e68 MS |
4533 | unsigned int *array = h->free_huge_pages_node; |
4534 | gfp_t gfp_mask = htlb_alloc_mask(h); | |
4535 | ||
d2226ebd | 4536 | mbind_nodemask = policy_mbind_nodemask(gfp_mask); |
8ca39e68 | 4537 | for_each_node_mask(node, cpuset_current_mems_allowed) { |
d2226ebd | 4538 | if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) |
8ca39e68 MS |
4539 | nr += array[node]; |
4540 | } | |
8a213460 NA |
4541 | |
4542 | return nr; | |
4543 | } | |
4544 | ||
4545 | #ifdef CONFIG_SYSCTL | |
17743798 MS |
4546 | static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, |
4547 | void *buffer, size_t *length, | |
4548 | loff_t *ppos, unsigned long *out) | |
4549 | { | |
4550 | struct ctl_table dup_table; | |
4551 | ||
4552 | /* | |
4553 | * In order to avoid races with __do_proc_doulongvec_minmax(), we | |
4554 | * can duplicate the @table and alter the duplicate of it. | |
4555 | */ | |
4556 | dup_table = *table; | |
4557 | dup_table.data = out; | |
4558 | ||
4559 | return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); | |
4560 | } | |
4561 | ||
06808b08 LS |
4562 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
4563 | struct ctl_table *table, int write, | |
32927393 | 4564 | void *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 4565 | { |
e5ff2159 | 4566 | struct hstate *h = &default_hstate; |
238d3c13 | 4567 | unsigned long tmp = h->max_huge_pages; |
08d4a246 | 4568 | int ret; |
e5ff2159 | 4569 | |
457c1b27 | 4570 | if (!hugepages_supported()) |
86613628 | 4571 | return -EOPNOTSUPP; |
457c1b27 | 4572 | |
17743798 MS |
4573 | ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, |
4574 | &tmp); | |
08d4a246 MH |
4575 | if (ret) |
4576 | goto out; | |
e5ff2159 | 4577 | |
238d3c13 DR |
4578 | if (write) |
4579 | ret = __nr_hugepages_store_common(obey_mempolicy, h, | |
4580 | NUMA_NO_NODE, tmp, *length); | |
08d4a246 MH |
4581 | out: |
4582 | return ret; | |
1da177e4 | 4583 | } |
396faf03 | 4584 | |
06808b08 | 4585 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
32927393 | 4586 | void *buffer, size_t *length, loff_t *ppos) |
06808b08 LS |
4587 | { |
4588 | ||
4589 | return hugetlb_sysctl_handler_common(false, table, write, | |
4590 | buffer, length, ppos); | |
4591 | } | |
4592 | ||
4593 | #ifdef CONFIG_NUMA | |
4594 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | |
32927393 | 4595 | void *buffer, size_t *length, loff_t *ppos) |
06808b08 LS |
4596 | { |
4597 | return hugetlb_sysctl_handler_common(true, table, write, | |
4598 | buffer, length, ppos); | |
4599 | } | |
4600 | #endif /* CONFIG_NUMA */ | |
4601 | ||
a3d0c6aa | 4602 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
32927393 | 4603 | void *buffer, size_t *length, loff_t *ppos) |
a3d0c6aa | 4604 | { |
a5516438 | 4605 | struct hstate *h = &default_hstate; |
e5ff2159 | 4606 | unsigned long tmp; |
08d4a246 | 4607 | int ret; |
e5ff2159 | 4608 | |
457c1b27 | 4609 | if (!hugepages_supported()) |
86613628 | 4610 | return -EOPNOTSUPP; |
457c1b27 | 4611 | |
c033a93c | 4612 | tmp = h->nr_overcommit_huge_pages; |
e5ff2159 | 4613 | |
bae7f4ae | 4614 | if (write && hstate_is_gigantic(h)) |
adbe8726 EM |
4615 | return -EINVAL; |
4616 | ||
17743798 MS |
4617 | ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, |
4618 | &tmp); | |
08d4a246 MH |
4619 | if (ret) |
4620 | goto out; | |
e5ff2159 AK |
4621 | |
4622 | if (write) { | |
db71ef79 | 4623 | spin_lock_irq(&hugetlb_lock); |
e5ff2159 | 4624 | h->nr_overcommit_huge_pages = tmp; |
db71ef79 | 4625 | spin_unlock_irq(&hugetlb_lock); |
e5ff2159 | 4626 | } |
08d4a246 MH |
4627 | out: |
4628 | return ret; | |
a3d0c6aa NA |
4629 | } |
4630 | ||
1da177e4 LT |
4631 | #endif /* CONFIG_SYSCTL */ |
4632 | ||
e1759c21 | 4633 | void hugetlb_report_meminfo(struct seq_file *m) |
1da177e4 | 4634 | { |
fcb2b0c5 RG |
4635 | struct hstate *h; |
4636 | unsigned long total = 0; | |
4637 | ||
457c1b27 NA |
4638 | if (!hugepages_supported()) |
4639 | return; | |
fcb2b0c5 RG |
4640 | |
4641 | for_each_hstate(h) { | |
4642 | unsigned long count = h->nr_huge_pages; | |
4643 | ||
aca78307 | 4644 | total += huge_page_size(h) * count; |
fcb2b0c5 RG |
4645 | |
4646 | if (h == &default_hstate) | |
4647 | seq_printf(m, | |
4648 | "HugePages_Total: %5lu\n" | |
4649 | "HugePages_Free: %5lu\n" | |
4650 | "HugePages_Rsvd: %5lu\n" | |
4651 | "HugePages_Surp: %5lu\n" | |
4652 | "Hugepagesize: %8lu kB\n", | |
4653 | count, | |
4654 | h->free_huge_pages, | |
4655 | h->resv_huge_pages, | |
4656 | h->surplus_huge_pages, | |
aca78307 | 4657 | huge_page_size(h) / SZ_1K); |
fcb2b0c5 RG |
4658 | } |
4659 | ||
aca78307 | 4660 | seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); |
1da177e4 LT |
4661 | } |
4662 | ||
7981593b | 4663 | int hugetlb_report_node_meminfo(char *buf, int len, int nid) |
1da177e4 | 4664 | { |
a5516438 | 4665 | struct hstate *h = &default_hstate; |
7981593b | 4666 | |
457c1b27 NA |
4667 | if (!hugepages_supported()) |
4668 | return 0; | |
7981593b JP |
4669 | |
4670 | return sysfs_emit_at(buf, len, | |
4671 | "Node %d HugePages_Total: %5u\n" | |
4672 | "Node %d HugePages_Free: %5u\n" | |
4673 | "Node %d HugePages_Surp: %5u\n", | |
4674 | nid, h->nr_huge_pages_node[nid], | |
4675 | nid, h->free_huge_pages_node[nid], | |
4676 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
4677 | } |
4678 | ||
dcadcf1c | 4679 | void hugetlb_show_meminfo_node(int nid) |
949f7ec5 DR |
4680 | { |
4681 | struct hstate *h; | |
949f7ec5 | 4682 | |
457c1b27 NA |
4683 | if (!hugepages_supported()) |
4684 | return; | |
4685 | ||
dcadcf1c GL |
4686 | for_each_hstate(h) |
4687 | printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | |
4688 | nid, | |
4689 | h->nr_huge_pages_node[nid], | |
4690 | h->free_huge_pages_node[nid], | |
4691 | h->surplus_huge_pages_node[nid], | |
4692 | huge_page_size(h) / SZ_1K); | |
949f7ec5 DR |
4693 | } |
4694 | ||
5d317b2b NH |
4695 | void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) |
4696 | { | |
4697 | seq_printf(m, "HugetlbPages:\t%8lu kB\n", | |
4698 | atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); | |
4699 | } | |
4700 | ||
1da177e4 LT |
4701 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
4702 | unsigned long hugetlb_total_pages(void) | |
4703 | { | |
d0028588 WL |
4704 | struct hstate *h; |
4705 | unsigned long nr_total_pages = 0; | |
4706 | ||
4707 | for_each_hstate(h) | |
4708 | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | |
4709 | return nr_total_pages; | |
1da177e4 | 4710 | } |
1da177e4 | 4711 | |
a5516438 | 4712 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
4713 | { |
4714 | int ret = -ENOMEM; | |
4715 | ||
0aa7f354 ML |
4716 | if (!delta) |
4717 | return 0; | |
4718 | ||
db71ef79 | 4719 | spin_lock_irq(&hugetlb_lock); |
fc1b8a73 MG |
4720 | /* |
4721 | * When cpuset is configured, it breaks the strict hugetlb page | |
4722 | * reservation as the accounting is done on a global variable. Such | |
4723 | * reservation is completely rubbish in the presence of cpuset because | |
4724 | * the reservation is not checked against page availability for the | |
4725 | * current cpuset. Application can still potentially OOM'ed by kernel | |
4726 | * with lack of free htlb page in cpuset that the task is in. | |
4727 | * Attempt to enforce strict accounting with cpuset is almost | |
4728 | * impossible (or too ugly) because cpuset is too fluid that | |
4729 | * task or memory node can be dynamically moved between cpusets. | |
4730 | * | |
4731 | * The change of semantics for shared hugetlb mapping with cpuset is | |
4732 | * undesirable. However, in order to preserve some of the semantics, | |
4733 | * we fall back to check against current free page availability as | |
4734 | * a best attempt and hopefully to minimize the impact of changing | |
4735 | * semantics that cpuset has. | |
8ca39e68 MS |
4736 | * |
4737 | * Apart from cpuset, we also have memory policy mechanism that | |
4738 | * also determines from which node the kernel will allocate memory | |
4739 | * in a NUMA system. So similar to cpuset, we also should consider | |
4740 | * the memory policy of the current task. Similar to the description | |
4741 | * above. | |
fc1b8a73 MG |
4742 | */ |
4743 | if (delta > 0) { | |
a5516438 | 4744 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
4745 | goto out; |
4746 | ||
8ca39e68 | 4747 | if (delta > allowed_mems_nr(h)) { |
a5516438 | 4748 | return_unused_surplus_pages(h, delta); |
fc1b8a73 MG |
4749 | goto out; |
4750 | } | |
4751 | } | |
4752 | ||
4753 | ret = 0; | |
4754 | if (delta < 0) | |
a5516438 | 4755 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
4756 | |
4757 | out: | |
db71ef79 | 4758 | spin_unlock_irq(&hugetlb_lock); |
fc1b8a73 MG |
4759 | return ret; |
4760 | } | |
4761 | ||
84afd99b AW |
4762 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
4763 | { | |
f522c3ac | 4764 | struct resv_map *resv = vma_resv_map(vma); |
84afd99b AW |
4765 | |
4766 | /* | |
612b8a31 | 4767 | * HPAGE_RESV_OWNER indicates a private mapping. |
84afd99b AW |
4768 | * This new VMA should share its siblings reservation map if present. |
4769 | * The VMA will only ever have a valid reservation map pointer where | |
4770 | * it is being copied for another still existing VMA. As that VMA | |
25985edc | 4771 | * has a reference to the reservation map it cannot disappear until |
84afd99b AW |
4772 | * after this open call completes. It is therefore safe to take a |
4773 | * new reference here without additional locking. | |
4774 | */ | |
09a26e83 MK |
4775 | if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
4776 | resv_map_dup_hugetlb_cgroup_uncharge_info(resv); | |
f522c3ac | 4777 | kref_get(&resv->refs); |
09a26e83 | 4778 | } |
8d9bfb26 | 4779 | |
131a79b4 MK |
4780 | /* |
4781 | * vma_lock structure for sharable mappings is vma specific. | |
612b8a31 MK |
4782 | * Clear old pointer (if copied via vm_area_dup) and allocate |
4783 | * new structure. Before clearing, make sure vma_lock is not | |
4784 | * for this vma. | |
131a79b4 MK |
4785 | */ |
4786 | if (vma->vm_flags & VM_MAYSHARE) { | |
612b8a31 MK |
4787 | struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; |
4788 | ||
4789 | if (vma_lock) { | |
4790 | if (vma_lock->vma != vma) { | |
4791 | vma->vm_private_data = NULL; | |
4792 | hugetlb_vma_lock_alloc(vma); | |
4793 | } else | |
4794 | pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); | |
4795 | } else | |
4796 | hugetlb_vma_lock_alloc(vma); | |
131a79b4 | 4797 | } |
84afd99b AW |
4798 | } |
4799 | ||
a1e78772 MG |
4800 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
4801 | { | |
a5516438 | 4802 | struct hstate *h = hstate_vma(vma); |
8d9bfb26 | 4803 | struct resv_map *resv; |
90481622 | 4804 | struct hugepage_subpool *spool = subpool_vma(vma); |
4e35f483 | 4805 | unsigned long reserve, start, end; |
1c5ecae3 | 4806 | long gbl_reserve; |
84afd99b | 4807 | |
8d9bfb26 MK |
4808 | hugetlb_vma_lock_free(vma); |
4809 | ||
4810 | resv = vma_resv_map(vma); | |
4e35f483 JK |
4811 | if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
4812 | return; | |
84afd99b | 4813 | |
4e35f483 JK |
4814 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
4815 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b | 4816 | |
4e35f483 | 4817 | reserve = (end - start) - region_count(resv, start, end); |
e9fe92ae | 4818 | hugetlb_cgroup_uncharge_counter(resv, start, end); |
4e35f483 | 4819 | if (reserve) { |
1c5ecae3 MK |
4820 | /* |
4821 | * Decrement reserve counts. The global reserve count may be | |
4822 | * adjusted if the subpool has a minimum size. | |
4823 | */ | |
4824 | gbl_reserve = hugepage_subpool_put_pages(spool, reserve); | |
4825 | hugetlb_acct_memory(h, -gbl_reserve); | |
84afd99b | 4826 | } |
e9fe92ae MA |
4827 | |
4828 | kref_put(&resv->refs, resv_map_release); | |
a1e78772 MG |
4829 | } |
4830 | ||
31383c68 DW |
4831 | static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) |
4832 | { | |
4833 | if (addr & ~(huge_page_mask(hstate_vma(vma)))) | |
4834 | return -EINVAL; | |
b30c14cd JH |
4835 | |
4836 | /* | |
4837 | * PMD sharing is only possible for PUD_SIZE-aligned address ranges | |
4838 | * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this | |
4839 | * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. | |
4840 | */ | |
4841 | if (addr & ~PUD_MASK) { | |
4842 | /* | |
4843 | * hugetlb_vm_op_split is called right before we attempt to | |
4844 | * split the VMA. We will need to unshare PMDs in the old and | |
4845 | * new VMAs, so let's unshare before we split. | |
4846 | */ | |
4847 | unsigned long floor = addr & PUD_MASK; | |
4848 | unsigned long ceil = floor + PUD_SIZE; | |
4849 | ||
4850 | if (floor >= vma->vm_start && ceil <= vma->vm_end) | |
4851 | hugetlb_unshare_pmds(vma, floor, ceil); | |
4852 | } | |
4853 | ||
31383c68 DW |
4854 | return 0; |
4855 | } | |
4856 | ||
05ea8860 DW |
4857 | static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) |
4858 | { | |
aca78307 | 4859 | return huge_page_size(hstate_vma(vma)); |
05ea8860 DW |
4860 | } |
4861 | ||
1da177e4 LT |
4862 | /* |
4863 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
4864 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
6c26d310 | 4865 | * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get |
1da177e4 LT |
4866 | * this far. |
4867 | */ | |
b3ec9f33 | 4868 | static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) |
1da177e4 LT |
4869 | { |
4870 | BUG(); | |
d0217ac0 | 4871 | return 0; |
1da177e4 LT |
4872 | } |
4873 | ||
eec3636a JC |
4874 | /* |
4875 | * When a new function is introduced to vm_operations_struct and added | |
4876 | * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. | |
4877 | * This is because under System V memory model, mappings created via | |
4878 | * shmget/shmat with "huge page" specified are backed by hugetlbfs files, | |
4879 | * their original vm_ops are overwritten with shm_vm_ops. | |
4880 | */ | |
f0f37e2f | 4881 | const struct vm_operations_struct hugetlb_vm_ops = { |
d0217ac0 | 4882 | .fault = hugetlb_vm_op_fault, |
84afd99b | 4883 | .open = hugetlb_vm_op_open, |
a1e78772 | 4884 | .close = hugetlb_vm_op_close, |
dd3b614f | 4885 | .may_split = hugetlb_vm_op_split, |
05ea8860 | 4886 | .pagesize = hugetlb_vm_op_pagesize, |
1da177e4 LT |
4887 | }; |
4888 | ||
1e8f889b DG |
4889 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
4890 | int writable) | |
63551ae0 DG |
4891 | { |
4892 | pte_t entry; | |
79c1c594 | 4893 | unsigned int shift = huge_page_shift(hstate_vma(vma)); |
63551ae0 | 4894 | |
1e8f889b | 4895 | if (writable) { |
106c992a GS |
4896 | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, |
4897 | vma->vm_page_prot))); | |
63551ae0 | 4898 | } else { |
106c992a GS |
4899 | entry = huge_pte_wrprotect(mk_huge_pte(page, |
4900 | vma->vm_page_prot)); | |
63551ae0 DG |
4901 | } |
4902 | entry = pte_mkyoung(entry); | |
79c1c594 | 4903 | entry = arch_make_huge_pte(entry, shift, vma->vm_flags); |
63551ae0 DG |
4904 | |
4905 | return entry; | |
4906 | } | |
4907 | ||
1e8f889b DG |
4908 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
4909 | unsigned long address, pte_t *ptep) | |
4910 | { | |
4911 | pte_t entry; | |
4912 | ||
106c992a | 4913 | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); |
32f84528 | 4914 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) |
4b3073e1 | 4915 | update_mmu_cache(vma, address, ptep); |
1e8f889b DG |
4916 | } |
4917 | ||
d5ed7444 | 4918 | bool is_hugetlb_entry_migration(pte_t pte) |
4a705fef NH |
4919 | { |
4920 | swp_entry_t swp; | |
4921 | ||
4922 | if (huge_pte_none(pte) || pte_present(pte)) | |
d5ed7444 | 4923 | return false; |
4a705fef | 4924 | swp = pte_to_swp_entry(pte); |
d79d176a | 4925 | if (is_migration_entry(swp)) |
d5ed7444 | 4926 | return true; |
4a705fef | 4927 | else |
d5ed7444 | 4928 | return false; |
4a705fef NH |
4929 | } |
4930 | ||
3e5c3600 | 4931 | static bool is_hugetlb_entry_hwpoisoned(pte_t pte) |
4a705fef NH |
4932 | { |
4933 | swp_entry_t swp; | |
4934 | ||
4935 | if (huge_pte_none(pte) || pte_present(pte)) | |
3e5c3600 | 4936 | return false; |
4a705fef | 4937 | swp = pte_to_swp_entry(pte); |
d79d176a | 4938 | if (is_hwpoison_entry(swp)) |
3e5c3600 | 4939 | return true; |
4a705fef | 4940 | else |
3e5c3600 | 4941 | return false; |
4a705fef | 4942 | } |
1e8f889b | 4943 | |
4eae4efa PX |
4944 | static void |
4945 | hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, | |
4946 | struct page *new_page) | |
4947 | { | |
4948 | __SetPageUptodate(new_page); | |
4eae4efa | 4949 | hugepage_add_new_anon_rmap(new_page, vma, addr); |
1eba86c0 | 4950 | set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); |
4eae4efa | 4951 | hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); |
4eae4efa PX |
4952 | SetHPageMigratable(new_page); |
4953 | } | |
4954 | ||
63551ae0 | 4955 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
bc70fbf2 PX |
4956 | struct vm_area_struct *dst_vma, |
4957 | struct vm_area_struct *src_vma) | |
63551ae0 | 4958 | { |
3aa4ed80 | 4959 | pte_t *src_pte, *dst_pte, entry; |
63551ae0 | 4960 | struct page *ptepage; |
1c59827d | 4961 | unsigned long addr; |
bc70fbf2 PX |
4962 | bool cow = is_cow_mapping(src_vma->vm_flags); |
4963 | struct hstate *h = hstate_vma(src_vma); | |
a5516438 | 4964 | unsigned long sz = huge_page_size(h); |
4eae4efa | 4965 | unsigned long npages = pages_per_huge_page(h); |
ac46d4f3 | 4966 | struct mmu_notifier_range range; |
e95a9851 | 4967 | unsigned long last_addr_mask; |
e8569dd2 | 4968 | int ret = 0; |
1e8f889b | 4969 | |
ac46d4f3 | 4970 | if (cow) { |
7d4a8be0 | 4971 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, |
bc70fbf2 PX |
4972 | src_vma->vm_start, |
4973 | src_vma->vm_end); | |
ac46d4f3 | 4974 | mmu_notifier_invalidate_range_start(&range); |
623a1ddf DH |
4975 | mmap_assert_write_locked(src); |
4976 | raw_write_seqcount_begin(&src->write_protect_seq); | |
40549ba8 MK |
4977 | } else { |
4978 | /* | |
4979 | * For shared mappings the vma lock must be held before | |
9c67a207 | 4980 | * calling hugetlb_walk() in the src vma. Otherwise, the |
40549ba8 MK |
4981 | * returned ptep could go away if part of a shared pmd and |
4982 | * another thread calls huge_pmd_unshare. | |
4983 | */ | |
4984 | hugetlb_vma_lock_read(src_vma); | |
ac46d4f3 | 4985 | } |
e8569dd2 | 4986 | |
e95a9851 | 4987 | last_addr_mask = hugetlb_mask_last_page(h); |
bc70fbf2 | 4988 | for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { |
cb900f41 | 4989 | spinlock_t *src_ptl, *dst_ptl; |
9c67a207 | 4990 | src_pte = hugetlb_walk(src_vma, addr, sz); |
e95a9851 MK |
4991 | if (!src_pte) { |
4992 | addr |= last_addr_mask; | |
c74df32c | 4993 | continue; |
e95a9851 | 4994 | } |
bc70fbf2 | 4995 | dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); |
e8569dd2 AS |
4996 | if (!dst_pte) { |
4997 | ret = -ENOMEM; | |
4998 | break; | |
4999 | } | |
c5c99429 | 5000 | |
5e41540c MK |
5001 | /* |
5002 | * If the pagetables are shared don't copy or take references. | |
5e41540c | 5003 | * |
3aa4ed80 | 5004 | * dst_pte == src_pte is the common case of src/dest sharing. |
5e41540c | 5005 | * However, src could have 'unshared' and dst shares with |
3aa4ed80 ML |
5006 | * another vma. So page_count of ptep page is checked instead |
5007 | * to reliably determine whether pte is shared. | |
5e41540c | 5008 | */ |
3aa4ed80 | 5009 | if (page_count(virt_to_page(dst_pte)) > 1) { |
e95a9851 | 5010 | addr |= last_addr_mask; |
c5c99429 | 5011 | continue; |
e95a9851 | 5012 | } |
c5c99429 | 5013 | |
cb900f41 KS |
5014 | dst_ptl = huge_pte_lock(h, dst, dst_pte); |
5015 | src_ptl = huge_pte_lockptr(h, src, src_pte); | |
5016 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
4a705fef | 5017 | entry = huge_ptep_get(src_pte); |
4eae4efa | 5018 | again: |
3aa4ed80 | 5019 | if (huge_pte_none(entry)) { |
5e41540c | 5020 | /* |
3aa4ed80 | 5021 | * Skip if src entry none. |
5e41540c | 5022 | */ |
4a705fef | 5023 | ; |
c2cb0dcc NH |
5024 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { |
5025 | bool uffd_wp = huge_pte_uffd_wp(entry); | |
5026 | ||
5027 | if (!userfaultfd_wp(dst_vma) && uffd_wp) | |
5028 | entry = huge_pte_clear_uffd_wp(entry); | |
5029 | set_huge_pte_at(dst, addr, dst_pte, entry); | |
5030 | } else if (unlikely(is_hugetlb_entry_migration(entry))) { | |
4a705fef | 5031 | swp_entry_t swp_entry = pte_to_swp_entry(entry); |
bc70fbf2 | 5032 | bool uffd_wp = huge_pte_uffd_wp(entry); |
4a705fef | 5033 | |
6c287605 | 5034 | if (!is_readable_migration_entry(swp_entry) && cow) { |
4a705fef NH |
5035 | /* |
5036 | * COW mappings require pages in both | |
5037 | * parent and child to be set to read. | |
5038 | */ | |
4dd845b5 AP |
5039 | swp_entry = make_readable_migration_entry( |
5040 | swp_offset(swp_entry)); | |
4a705fef | 5041 | entry = swp_entry_to_pte(swp_entry); |
bc70fbf2 PX |
5042 | if (userfaultfd_wp(src_vma) && uffd_wp) |
5043 | entry = huge_pte_mkuffd_wp(entry); | |
18f39629 | 5044 | set_huge_pte_at(src, addr, src_pte, entry); |
4a705fef | 5045 | } |
bc70fbf2 PX |
5046 | if (!userfaultfd_wp(dst_vma) && uffd_wp) |
5047 | entry = huge_pte_clear_uffd_wp(entry); | |
18f39629 | 5048 | set_huge_pte_at(dst, addr, dst_pte, entry); |
bc70fbf2 | 5049 | } else if (unlikely(is_pte_marker(entry))) { |
7e3ce3f8 PX |
5050 | /* No swap on hugetlb */ |
5051 | WARN_ON_ONCE( | |
5052 | is_swapin_error_entry(pte_to_swp_entry(entry))); | |
bc70fbf2 PX |
5053 | /* |
5054 | * We copy the pte marker only if the dst vma has | |
5055 | * uffd-wp enabled. | |
5056 | */ | |
5057 | if (userfaultfd_wp(dst_vma)) | |
5058 | set_huge_pte_at(dst, addr, dst_pte, entry); | |
4a705fef | 5059 | } else { |
4eae4efa PX |
5060 | entry = huge_ptep_get(src_pte); |
5061 | ptepage = pte_page(entry); | |
5062 | get_page(ptepage); | |
5063 | ||
5064 | /* | |
fb3d824d DH |
5065 | * Failing to duplicate the anon rmap is a rare case |
5066 | * where we see pinned hugetlb pages while they're | |
5067 | * prone to COW. We need to do the COW earlier during | |
5068 | * fork. | |
4eae4efa PX |
5069 | * |
5070 | * When pre-allocating the page or copying data, we | |
5071 | * need to be without the pgtable locks since we could | |
5072 | * sleep during the process. | |
5073 | */ | |
fb3d824d DH |
5074 | if (!PageAnon(ptepage)) { |
5075 | page_dup_file_rmap(ptepage, true); | |
bc70fbf2 PX |
5076 | } else if (page_try_dup_anon_rmap(ptepage, true, |
5077 | src_vma)) { | |
4eae4efa PX |
5078 | pte_t src_pte_old = entry; |
5079 | struct page *new; | |
5080 | ||
5081 | spin_unlock(src_ptl); | |
5082 | spin_unlock(dst_ptl); | |
5083 | /* Do not use reserve as it's private owned */ | |
bc70fbf2 | 5084 | new = alloc_huge_page(dst_vma, addr, 1); |
4eae4efa PX |
5085 | if (IS_ERR(new)) { |
5086 | put_page(ptepage); | |
5087 | ret = PTR_ERR(new); | |
5088 | break; | |
5089 | } | |
bc70fbf2 | 5090 | copy_user_huge_page(new, ptepage, addr, dst_vma, |
4eae4efa PX |
5091 | npages); |
5092 | put_page(ptepage); | |
5093 | ||
5094 | /* Install the new huge page if src pte stable */ | |
5095 | dst_ptl = huge_pte_lock(h, dst, dst_pte); | |
5096 | src_ptl = huge_pte_lockptr(h, src, src_pte); | |
5097 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
5098 | entry = huge_ptep_get(src_pte); | |
5099 | if (!pte_same(src_pte_old, entry)) { | |
bc70fbf2 | 5100 | restore_reserve_on_error(h, dst_vma, addr, |
846be085 | 5101 | new); |
4eae4efa | 5102 | put_page(new); |
3aa4ed80 | 5103 | /* huge_ptep of dst_pte won't change as in child */ |
4eae4efa PX |
5104 | goto again; |
5105 | } | |
bc70fbf2 | 5106 | hugetlb_install_page(dst_vma, dst_pte, addr, new); |
4eae4efa PX |
5107 | spin_unlock(src_ptl); |
5108 | spin_unlock(dst_ptl); | |
5109 | continue; | |
5110 | } | |
5111 | ||
34ee645e | 5112 | if (cow) { |
0f10851e JG |
5113 | /* |
5114 | * No need to notify as we are downgrading page | |
5115 | * table protection not changing it to point | |
5116 | * to a new page. | |
5117 | * | |
ee65728e | 5118 | * See Documentation/mm/mmu_notifier.rst |
0f10851e | 5119 | */ |
7f2e9525 | 5120 | huge_ptep_set_wrprotect(src, addr, src_pte); |
84894e1c | 5121 | entry = huge_pte_wrprotect(entry); |
34ee645e | 5122 | } |
4eae4efa | 5123 | |
1c59827d | 5124 | set_huge_pte_at(dst, addr, dst_pte, entry); |
4eae4efa | 5125 | hugetlb_count_add(npages, dst); |
1c59827d | 5126 | } |
cb900f41 KS |
5127 | spin_unlock(src_ptl); |
5128 | spin_unlock(dst_ptl); | |
63551ae0 | 5129 | } |
63551ae0 | 5130 | |
623a1ddf DH |
5131 | if (cow) { |
5132 | raw_write_seqcount_end(&src->write_protect_seq); | |
ac46d4f3 | 5133 | mmu_notifier_invalidate_range_end(&range); |
40549ba8 MK |
5134 | } else { |
5135 | hugetlb_vma_unlock_read(src_vma); | |
623a1ddf | 5136 | } |
e8569dd2 AS |
5137 | |
5138 | return ret; | |
63551ae0 DG |
5139 | } |
5140 | ||
550a7d60 | 5141 | static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, |
db110a99 | 5142 | unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) |
550a7d60 MA |
5143 | { |
5144 | struct hstate *h = hstate_vma(vma); | |
5145 | struct mm_struct *mm = vma->vm_mm; | |
550a7d60 | 5146 | spinlock_t *src_ptl, *dst_ptl; |
db110a99 | 5147 | pte_t pte; |
550a7d60 | 5148 | |
550a7d60 MA |
5149 | dst_ptl = huge_pte_lock(h, mm, dst_pte); |
5150 | src_ptl = huge_pte_lockptr(h, mm, src_pte); | |
5151 | ||
5152 | /* | |
5153 | * We don't have to worry about the ordering of src and dst ptlocks | |
8651a137 | 5154 | * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. |
550a7d60 MA |
5155 | */ |
5156 | if (src_ptl != dst_ptl) | |
5157 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | |
5158 | ||
5159 | pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); | |
5160 | set_huge_pte_at(mm, new_addr, dst_pte, pte); | |
5161 | ||
5162 | if (src_ptl != dst_ptl) | |
5163 | spin_unlock(src_ptl); | |
5164 | spin_unlock(dst_ptl); | |
5165 | } | |
5166 | ||
5167 | int move_hugetlb_page_tables(struct vm_area_struct *vma, | |
5168 | struct vm_area_struct *new_vma, | |
5169 | unsigned long old_addr, unsigned long new_addr, | |
5170 | unsigned long len) | |
5171 | { | |
5172 | struct hstate *h = hstate_vma(vma); | |
5173 | struct address_space *mapping = vma->vm_file->f_mapping; | |
5174 | unsigned long sz = huge_page_size(h); | |
5175 | struct mm_struct *mm = vma->vm_mm; | |
5176 | unsigned long old_end = old_addr + len; | |
e95a9851 | 5177 | unsigned long last_addr_mask; |
550a7d60 MA |
5178 | pte_t *src_pte, *dst_pte; |
5179 | struct mmu_notifier_range range; | |
3d0b95cd | 5180 | bool shared_pmd = false; |
550a7d60 | 5181 | |
7d4a8be0 | 5182 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, |
550a7d60 MA |
5183 | old_end); |
5184 | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | |
3d0b95cd BW |
5185 | /* |
5186 | * In case of shared PMDs, we should cover the maximum possible | |
5187 | * range. | |
5188 | */ | |
5189 | flush_cache_range(vma, range.start, range.end); | |
5190 | ||
550a7d60 | 5191 | mmu_notifier_invalidate_range_start(&range); |
e95a9851 | 5192 | last_addr_mask = hugetlb_mask_last_page(h); |
550a7d60 | 5193 | /* Prevent race with file truncation */ |
40549ba8 | 5194 | hugetlb_vma_lock_write(vma); |
550a7d60 MA |
5195 | i_mmap_lock_write(mapping); |
5196 | for (; old_addr < old_end; old_addr += sz, new_addr += sz) { | |
9c67a207 | 5197 | src_pte = hugetlb_walk(vma, old_addr, sz); |
e95a9851 MK |
5198 | if (!src_pte) { |
5199 | old_addr |= last_addr_mask; | |
5200 | new_addr |= last_addr_mask; | |
550a7d60 | 5201 | continue; |
e95a9851 | 5202 | } |
550a7d60 MA |
5203 | if (huge_pte_none(huge_ptep_get(src_pte))) |
5204 | continue; | |
5205 | ||
4ddb4d91 | 5206 | if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { |
3d0b95cd | 5207 | shared_pmd = true; |
4ddb4d91 MK |
5208 | old_addr |= last_addr_mask; |
5209 | new_addr |= last_addr_mask; | |
550a7d60 | 5210 | continue; |
3d0b95cd | 5211 | } |
550a7d60 MA |
5212 | |
5213 | dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); | |
5214 | if (!dst_pte) | |
5215 | break; | |
5216 | ||
db110a99 | 5217 | move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); |
550a7d60 | 5218 | } |
3d0b95cd BW |
5219 | |
5220 | if (shared_pmd) | |
5221 | flush_tlb_range(vma, range.start, range.end); | |
5222 | else | |
5223 | flush_tlb_range(vma, old_end - len, old_end); | |
550a7d60 | 5224 | mmu_notifier_invalidate_range_end(&range); |
13e4ad2c | 5225 | i_mmap_unlock_write(mapping); |
40549ba8 | 5226 | hugetlb_vma_unlock_write(vma); |
550a7d60 MA |
5227 | |
5228 | return len + old_addr - old_end; | |
5229 | } | |
5230 | ||
73c54763 PX |
5231 | static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
5232 | unsigned long start, unsigned long end, | |
05e90bd0 | 5233 | struct page *ref_page, zap_flags_t zap_flags) |
63551ae0 DG |
5234 | { |
5235 | struct mm_struct *mm = vma->vm_mm; | |
5236 | unsigned long address; | |
c7546f8f | 5237 | pte_t *ptep; |
63551ae0 | 5238 | pte_t pte; |
cb900f41 | 5239 | spinlock_t *ptl; |
63551ae0 | 5240 | struct page *page; |
a5516438 AK |
5241 | struct hstate *h = hstate_vma(vma); |
5242 | unsigned long sz = huge_page_size(h); | |
e95a9851 | 5243 | unsigned long last_addr_mask; |
a4a118f2 | 5244 | bool force_flush = false; |
a5516438 | 5245 | |
63551ae0 | 5246 | WARN_ON(!is_vm_hugetlb_page(vma)); |
a5516438 AK |
5247 | BUG_ON(start & ~huge_page_mask(h)); |
5248 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 5249 | |
07e32661 AK |
5250 | /* |
5251 | * This is a hugetlb vma, all the pte entries should point | |
5252 | * to huge page. | |
5253 | */ | |
ed6a7935 | 5254 | tlb_change_page_size(tlb, sz); |
24669e58 | 5255 | tlb_start_vma(tlb, vma); |
dff11abe | 5256 | |
e95a9851 | 5257 | last_addr_mask = hugetlb_mask_last_page(h); |
569f48b8 | 5258 | address = start; |
569f48b8 | 5259 | for (; address < end; address += sz) { |
9c67a207 | 5260 | ptep = hugetlb_walk(vma, address, sz); |
e95a9851 MK |
5261 | if (!ptep) { |
5262 | address |= last_addr_mask; | |
c7546f8f | 5263 | continue; |
e95a9851 | 5264 | } |
c7546f8f | 5265 | |
cb900f41 | 5266 | ptl = huge_pte_lock(h, mm, ptep); |
4ddb4d91 | 5267 | if (huge_pmd_unshare(mm, vma, address, ptep)) { |
31d49da5 | 5268 | spin_unlock(ptl); |
a4a118f2 NA |
5269 | tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); |
5270 | force_flush = true; | |
4ddb4d91 | 5271 | address |= last_addr_mask; |
31d49da5 AK |
5272 | continue; |
5273 | } | |
39dde65c | 5274 | |
6629326b | 5275 | pte = huge_ptep_get(ptep); |
31d49da5 AK |
5276 | if (huge_pte_none(pte)) { |
5277 | spin_unlock(ptl); | |
5278 | continue; | |
5279 | } | |
6629326b HD |
5280 | |
5281 | /* | |
9fbc1f63 NH |
5282 | * Migrating hugepage or HWPoisoned hugepage is already |
5283 | * unmapped and its refcount is dropped, so just clear pte here. | |
6629326b | 5284 | */ |
9fbc1f63 | 5285 | if (unlikely(!pte_present(pte))) { |
05e90bd0 PX |
5286 | /* |
5287 | * If the pte was wr-protected by uffd-wp in any of the | |
5288 | * swap forms, meanwhile the caller does not want to | |
5289 | * drop the uffd-wp bit in this zap, then replace the | |
5290 | * pte with a marker. | |
5291 | */ | |
5292 | if (pte_swp_uffd_wp_any(pte) && | |
5293 | !(zap_flags & ZAP_FLAG_DROP_MARKER)) | |
5294 | set_huge_pte_at(mm, address, ptep, | |
5295 | make_pte_marker(PTE_MARKER_UFFD_WP)); | |
5296 | else | |
5297 | huge_pte_clear(mm, address, ptep, sz); | |
31d49da5 AK |
5298 | spin_unlock(ptl); |
5299 | continue; | |
8c4894c6 | 5300 | } |
6629326b HD |
5301 | |
5302 | page = pte_page(pte); | |
04f2cbe3 MG |
5303 | /* |
5304 | * If a reference page is supplied, it is because a specific | |
5305 | * page is being unmapped, not a range. Ensure the page we | |
5306 | * are about to unmap is the actual page of interest. | |
5307 | */ | |
5308 | if (ref_page) { | |
31d49da5 AK |
5309 | if (page != ref_page) { |
5310 | spin_unlock(ptl); | |
5311 | continue; | |
5312 | } | |
04f2cbe3 MG |
5313 | /* |
5314 | * Mark the VMA as having unmapped its page so that | |
5315 | * future faults in this VMA will fail rather than | |
5316 | * looking like data was lost | |
5317 | */ | |
5318 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
5319 | } | |
5320 | ||
c7546f8f | 5321 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
b528e4b6 | 5322 | tlb_remove_huge_tlb_entry(h, tlb, ptep, address); |
106c992a | 5323 | if (huge_pte_dirty(pte)) |
6649a386 | 5324 | set_page_dirty(page); |
05e90bd0 PX |
5325 | /* Leave a uffd-wp pte marker if needed */ |
5326 | if (huge_pte_uffd_wp(pte) && | |
5327 | !(zap_flags & ZAP_FLAG_DROP_MARKER)) | |
5328 | set_huge_pte_at(mm, address, ptep, | |
5329 | make_pte_marker(PTE_MARKER_UFFD_WP)); | |
5d317b2b | 5330 | hugetlb_count_sub(pages_per_huge_page(h), mm); |
cea86fe2 | 5331 | page_remove_rmap(page, vma, true); |
31d49da5 | 5332 | |
cb900f41 | 5333 | spin_unlock(ptl); |
e77b0852 | 5334 | tlb_remove_page_size(tlb, page, huge_page_size(h)); |
31d49da5 AK |
5335 | /* |
5336 | * Bail out after unmapping reference page if supplied | |
5337 | */ | |
5338 | if (ref_page) | |
5339 | break; | |
fe1668ae | 5340 | } |
24669e58 | 5341 | tlb_end_vma(tlb, vma); |
a4a118f2 NA |
5342 | |
5343 | /* | |
5344 | * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We | |
5345 | * could defer the flush until now, since by holding i_mmap_rwsem we | |
5346 | * guaranteed that the last refernece would not be dropped. But we must | |
5347 | * do the flushing before we return, as otherwise i_mmap_rwsem will be | |
5348 | * dropped and the last reference to the shared PMDs page might be | |
5349 | * dropped as well. | |
5350 | * | |
5351 | * In theory we could defer the freeing of the PMD pages as well, but | |
5352 | * huge_pmd_unshare() relies on the exact page_count for the PMD page to | |
5353 | * detect sharing, so we cannot defer the release of the page either. | |
5354 | * Instead, do flush now. | |
5355 | */ | |
5356 | if (force_flush) | |
5357 | tlb_flush_mmu_tlbonly(tlb); | |
1da177e4 | 5358 | } |
63551ae0 | 5359 | |
d833352a MG |
5360 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, |
5361 | struct vm_area_struct *vma, unsigned long start, | |
05e90bd0 PX |
5362 | unsigned long end, struct page *ref_page, |
5363 | zap_flags_t zap_flags) | |
d833352a | 5364 | { |
131a79b4 MK |
5365 | hugetlb_vma_lock_write(vma); |
5366 | i_mmap_lock_write(vma->vm_file->f_mapping); | |
5367 | ||
369258ce | 5368 | /* mmu notification performed in caller */ |
05e90bd0 | 5369 | __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); |
d833352a | 5370 | |
04ada095 MK |
5371 | if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ |
5372 | /* | |
5373 | * Unlock and free the vma lock before releasing i_mmap_rwsem. | |
5374 | * When the vma_lock is freed, this makes the vma ineligible | |
5375 | * for pmd sharing. And, i_mmap_rwsem is required to set up | |
5376 | * pmd sharing. This is important as page tables for this | |
5377 | * unmapped range will be asynchrously deleted. If the page | |
5378 | * tables are shared, there will be issues when accessed by | |
5379 | * someone else. | |
5380 | */ | |
5381 | __hugetlb_vma_unlock_write_free(vma); | |
5382 | i_mmap_unlock_write(vma->vm_file->f_mapping); | |
5383 | } else { | |
5384 | i_mmap_unlock_write(vma->vm_file->f_mapping); | |
5385 | hugetlb_vma_unlock_write(vma); | |
5386 | } | |
d833352a MG |
5387 | } |
5388 | ||
502717f4 | 5389 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
05e90bd0 PX |
5390 | unsigned long end, struct page *ref_page, |
5391 | zap_flags_t zap_flags) | |
502717f4 | 5392 | { |
369258ce | 5393 | struct mmu_notifier_range range; |
24669e58 | 5394 | struct mmu_gather tlb; |
dff11abe | 5395 | |
7d4a8be0 | 5396 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, |
369258ce MK |
5397 | start, end); |
5398 | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); | |
5399 | mmu_notifier_invalidate_range_start(&range); | |
a72afd87 | 5400 | tlb_gather_mmu(&tlb, vma->vm_mm); |
369258ce | 5401 | |
05e90bd0 | 5402 | __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); |
369258ce MK |
5403 | |
5404 | mmu_notifier_invalidate_range_end(&range); | |
ae8eba8b | 5405 | tlb_finish_mmu(&tlb); |
502717f4 KC |
5406 | } |
5407 | ||
04f2cbe3 MG |
5408 | /* |
5409 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
578b7725 | 5410 | * mapping it owns the reserve page for. The intention is to unmap the page |
04f2cbe3 MG |
5411 | * from other VMAs and let the children be SIGKILLed if they are faulting the |
5412 | * same region. | |
5413 | */ | |
2f4612af DB |
5414 | static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
5415 | struct page *page, unsigned long address) | |
04f2cbe3 | 5416 | { |
7526674d | 5417 | struct hstate *h = hstate_vma(vma); |
04f2cbe3 MG |
5418 | struct vm_area_struct *iter_vma; |
5419 | struct address_space *mapping; | |
04f2cbe3 MG |
5420 | pgoff_t pgoff; |
5421 | ||
5422 | /* | |
5423 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
5424 | * from page cache lookup which is in HPAGE_SIZE units. | |
5425 | */ | |
7526674d | 5426 | address = address & huge_page_mask(h); |
36e4f20a MH |
5427 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + |
5428 | vma->vm_pgoff; | |
93c76a3d | 5429 | mapping = vma->vm_file->f_mapping; |
04f2cbe3 | 5430 | |
4eb2b1dc MG |
5431 | /* |
5432 | * Take the mapping lock for the duration of the table walk. As | |
5433 | * this mapping should be shared between all the VMAs, | |
5434 | * __unmap_hugepage_range() is called as the lock is already held | |
5435 | */ | |
83cde9e8 | 5436 | i_mmap_lock_write(mapping); |
6b2dbba8 | 5437 | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { |
04f2cbe3 MG |
5438 | /* Do not unmap the current VMA */ |
5439 | if (iter_vma == vma) | |
5440 | continue; | |
5441 | ||
2f84a899 MG |
5442 | /* |
5443 | * Shared VMAs have their own reserves and do not affect | |
5444 | * MAP_PRIVATE accounting but it is possible that a shared | |
5445 | * VMA is using the same page so check and skip such VMAs. | |
5446 | */ | |
5447 | if (iter_vma->vm_flags & VM_MAYSHARE) | |
5448 | continue; | |
5449 | ||
04f2cbe3 MG |
5450 | /* |
5451 | * Unmap the page from other VMAs without their own reserves. | |
5452 | * They get marked to be SIGKILLed if they fault in these | |
5453 | * areas. This is because a future no-page fault on this VMA | |
5454 | * could insert a zeroed page instead of the data existing | |
5455 | * from the time of fork. This would look like data corruption | |
5456 | */ | |
5457 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
24669e58 | 5458 | unmap_hugepage_range(iter_vma, address, |
05e90bd0 | 5459 | address + huge_page_size(h), page, 0); |
04f2cbe3 | 5460 | } |
83cde9e8 | 5461 | i_mmap_unlock_write(mapping); |
04f2cbe3 MG |
5462 | } |
5463 | ||
0fe6e20b | 5464 | /* |
c89357e2 | 5465 | * hugetlb_wp() should be called with page lock of the original hugepage held. |
aa6d2e8c | 5466 | * Called with hugetlb_fault_mutex_table held and pte_page locked so we |
ef009b25 MH |
5467 | * cannot race with other handlers or page migration. |
5468 | * Keep the pte_same checks anyway to make transition from the mutex easier. | |
0fe6e20b | 5469 | */ |
c89357e2 DH |
5470 | static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, |
5471 | unsigned long address, pte_t *ptep, unsigned int flags, | |
3999f52e | 5472 | struct page *pagecache_page, spinlock_t *ptl) |
1e8f889b | 5473 | { |
c89357e2 | 5474 | const bool unshare = flags & FAULT_FLAG_UNSHARE; |
3999f52e | 5475 | pte_t pte; |
a5516438 | 5476 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 5477 | struct page *old_page, *new_page; |
2b740303 SJ |
5478 | int outside_reserve = 0; |
5479 | vm_fault_t ret = 0; | |
974e6d66 | 5480 | unsigned long haddr = address & huge_page_mask(h); |
ac46d4f3 | 5481 | struct mmu_notifier_range range; |
1e8f889b | 5482 | |
1d8d1464 DH |
5483 | /* |
5484 | * hugetlb does not support FOLL_FORCE-style write faults that keep the | |
5485 | * PTE mapped R/O such as maybe_mkwrite() would do. | |
5486 | */ | |
5487 | if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) | |
5488 | return VM_FAULT_SIGSEGV; | |
5489 | ||
5490 | /* Let's take out MAP_SHARED mappings first. */ | |
5491 | if (vma->vm_flags & VM_MAYSHARE) { | |
1d8d1464 DH |
5492 | set_huge_ptep_writable(vma, haddr, ptep); |
5493 | return 0; | |
5494 | } | |
5495 | ||
3999f52e | 5496 | pte = huge_ptep_get(ptep); |
1e8f889b DG |
5497 | old_page = pte_page(pte); |
5498 | ||
662ce1dc YY |
5499 | delayacct_wpcopy_start(); |
5500 | ||
04f2cbe3 | 5501 | retry_avoidcopy: |
c89357e2 DH |
5502 | /* |
5503 | * If no-one else is actually using this page, we're the exclusive | |
5504 | * owner and can reuse this page. | |
5505 | */ | |
37a2140d | 5506 | if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { |
c89357e2 DH |
5507 | if (!PageAnonExclusive(old_page)) |
5508 | page_move_anon_rmap(old_page, vma); | |
5509 | if (likely(!unshare)) | |
5510 | set_huge_ptep_writable(vma, haddr, ptep); | |
662ce1dc YY |
5511 | |
5512 | delayacct_wpcopy_end(); | |
83c54070 | 5513 | return 0; |
1e8f889b | 5514 | } |
6c287605 DH |
5515 | VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), |
5516 | old_page); | |
1e8f889b | 5517 | |
04f2cbe3 MG |
5518 | /* |
5519 | * If the process that created a MAP_PRIVATE mapping is about to | |
5520 | * perform a COW due to a shared page count, attempt to satisfy | |
5521 | * the allocation without using the existing reserves. The pagecache | |
5522 | * page is used to determine if the reserve at this address was | |
5523 | * consumed or not. If reserves were used, a partial faulted mapping | |
5524 | * at the time of fork() could consume its reserves on COW instead | |
5525 | * of the full address range. | |
5526 | */ | |
5944d011 | 5527 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
04f2cbe3 MG |
5528 | old_page != pagecache_page) |
5529 | outside_reserve = 1; | |
5530 | ||
09cbfeaf | 5531 | get_page(old_page); |
b76c8cfb | 5532 | |
ad4404a2 DB |
5533 | /* |
5534 | * Drop page table lock as buddy allocator may be called. It will | |
5535 | * be acquired again before returning to the caller, as expected. | |
5536 | */ | |
cb900f41 | 5537 | spin_unlock(ptl); |
5b7a1d40 | 5538 | new_page = alloc_huge_page(vma, haddr, outside_reserve); |
1e8f889b | 5539 | |
2fc39cec | 5540 | if (IS_ERR(new_page)) { |
04f2cbe3 MG |
5541 | /* |
5542 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
5543 | * it is due to references held by a child and an insufficient | |
5544 | * huge page pool. To guarantee the original mappers | |
5545 | * reliability, unmap the page from child processes. The child | |
5546 | * may get SIGKILLed if it later faults. | |
5547 | */ | |
5548 | if (outside_reserve) { | |
40549ba8 MK |
5549 | struct address_space *mapping = vma->vm_file->f_mapping; |
5550 | pgoff_t idx; | |
5551 | u32 hash; | |
5552 | ||
09cbfeaf | 5553 | put_page(old_page); |
40549ba8 MK |
5554 | /* |
5555 | * Drop hugetlb_fault_mutex and vma_lock before | |
5556 | * unmapping. unmapping needs to hold vma_lock | |
5557 | * in write mode. Dropping vma_lock in read mode | |
5558 | * here is OK as COW mappings do not interact with | |
5559 | * PMD sharing. | |
5560 | * | |
5561 | * Reacquire both after unmap operation. | |
5562 | */ | |
5563 | idx = vma_hugecache_offset(h, vma, haddr); | |
5564 | hash = hugetlb_fault_mutex_hash(mapping, idx); | |
5565 | hugetlb_vma_unlock_read(vma); | |
5566 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | |
5567 | ||
5b7a1d40 | 5568 | unmap_ref_private(mm, vma, old_page, haddr); |
40549ba8 MK |
5569 | |
5570 | mutex_lock(&hugetlb_fault_mutex_table[hash]); | |
5571 | hugetlb_vma_lock_read(vma); | |
2f4612af | 5572 | spin_lock(ptl); |
9c67a207 | 5573 | ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); |
2f4612af DB |
5574 | if (likely(ptep && |
5575 | pte_same(huge_ptep_get(ptep), pte))) | |
5576 | goto retry_avoidcopy; | |
5577 | /* | |
5578 | * race occurs while re-acquiring page table | |
5579 | * lock, and our job is done. | |
5580 | */ | |
662ce1dc | 5581 | delayacct_wpcopy_end(); |
2f4612af | 5582 | return 0; |
04f2cbe3 MG |
5583 | } |
5584 | ||
2b740303 | 5585 | ret = vmf_error(PTR_ERR(new_page)); |
ad4404a2 | 5586 | goto out_release_old; |
1e8f889b DG |
5587 | } |
5588 | ||
0fe6e20b NH |
5589 | /* |
5590 | * When the original hugepage is shared one, it does not have | |
5591 | * anon_vma prepared. | |
5592 | */ | |
44e2aa93 | 5593 | if (unlikely(anon_vma_prepare(vma))) { |
ad4404a2 DB |
5594 | ret = VM_FAULT_OOM; |
5595 | goto out_release_all; | |
44e2aa93 | 5596 | } |
0fe6e20b | 5597 | |
974e6d66 | 5598 | copy_user_huge_page(new_page, old_page, address, vma, |
47ad8475 | 5599 | pages_per_huge_page(h)); |
0ed361de | 5600 | __SetPageUptodate(new_page); |
1e8f889b | 5601 | |
7d4a8be0 | 5602 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, |
6f4f13e8 | 5603 | haddr + huge_page_size(h)); |
ac46d4f3 | 5604 | mmu_notifier_invalidate_range_start(&range); |
ad4404a2 | 5605 | |
b76c8cfb | 5606 | /* |
cb900f41 | 5607 | * Retake the page table lock to check for racing updates |
b76c8cfb LW |
5608 | * before the page tables are altered |
5609 | */ | |
cb900f41 | 5610 | spin_lock(ptl); |
9c67a207 | 5611 | ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); |
a9af0c5d | 5612 | if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { |
c89357e2 | 5613 | /* Break COW or unshare */ |
5b7a1d40 | 5614 | huge_ptep_clear_flush(vma, haddr, ptep); |
ac46d4f3 | 5615 | mmu_notifier_invalidate_range(mm, range.start, range.end); |
cea86fe2 | 5616 | page_remove_rmap(old_page, vma, true); |
5b7a1d40 | 5617 | hugepage_add_new_anon_rmap(new_page, vma, haddr); |
1eba86c0 | 5618 | set_huge_pte_at(mm, haddr, ptep, |
c89357e2 | 5619 | make_huge_pte(vma, new_page, !unshare)); |
8f251a3d | 5620 | SetHPageMigratable(new_page); |
1e8f889b DG |
5621 | /* Make the old page be freed below */ |
5622 | new_page = old_page; | |
5623 | } | |
cb900f41 | 5624 | spin_unlock(ptl); |
ac46d4f3 | 5625 | mmu_notifier_invalidate_range_end(&range); |
ad4404a2 | 5626 | out_release_all: |
c89357e2 DH |
5627 | /* |
5628 | * No restore in case of successful pagetable update (Break COW or | |
5629 | * unshare) | |
5630 | */ | |
c7b1850d MK |
5631 | if (new_page != old_page) |
5632 | restore_reserve_on_error(h, vma, haddr, new_page); | |
09cbfeaf | 5633 | put_page(new_page); |
ad4404a2 | 5634 | out_release_old: |
09cbfeaf | 5635 | put_page(old_page); |
8312034f | 5636 | |
ad4404a2 | 5637 | spin_lock(ptl); /* Caller expects lock to be held */ |
662ce1dc YY |
5638 | |
5639 | delayacct_wpcopy_end(); | |
ad4404a2 | 5640 | return ret; |
1e8f889b DG |
5641 | } |
5642 | ||
3ae77f43 HD |
5643 | /* |
5644 | * Return whether there is a pagecache page to back given address within VMA. | |
5645 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | |
5646 | */ | |
5647 | static bool hugetlbfs_pagecache_present(struct hstate *h, | |
2a15efc9 HD |
5648 | struct vm_area_struct *vma, unsigned long address) |
5649 | { | |
5650 | struct address_space *mapping; | |
5651 | pgoff_t idx; | |
5652 | struct page *page; | |
5653 | ||
5654 | mapping = vma->vm_file->f_mapping; | |
5655 | idx = vma_hugecache_offset(h, vma, address); | |
5656 | ||
5657 | page = find_get_page(mapping, idx); | |
5658 | if (page) | |
5659 | put_page(page); | |
5660 | return page != NULL; | |
5661 | } | |
5662 | ||
7e1813d4 | 5663 | int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, |
ab76ad54 MK |
5664 | pgoff_t idx) |
5665 | { | |
d9ef44de | 5666 | struct folio *folio = page_folio(page); |
ab76ad54 MK |
5667 | struct inode *inode = mapping->host; |
5668 | struct hstate *h = hstate_inode(inode); | |
d9ef44de | 5669 | int err; |
ab76ad54 | 5670 | |
d9ef44de MWO |
5671 | __folio_set_locked(folio); |
5672 | err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); | |
5673 | ||
5674 | if (unlikely(err)) { | |
5675 | __folio_clear_locked(folio); | |
ab76ad54 | 5676 | return err; |
d9ef44de | 5677 | } |
d6995da3 | 5678 | ClearHPageRestoreReserve(page); |
ab76ad54 | 5679 | |
22146c3c | 5680 | /* |
d9ef44de | 5681 | * mark folio dirty so that it will not be removed from cache/file |
22146c3c MK |
5682 | * by non-hugetlbfs specific code paths. |
5683 | */ | |
d9ef44de | 5684 | folio_mark_dirty(folio); |
22146c3c | 5685 | |
ab76ad54 MK |
5686 | spin_lock(&inode->i_lock); |
5687 | inode->i_blocks += blocks_per_huge_page(h); | |
5688 | spin_unlock(&inode->i_lock); | |
5689 | return 0; | |
5690 | } | |
5691 | ||
7677f7fd AR |
5692 | static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, |
5693 | struct address_space *mapping, | |
5694 | pgoff_t idx, | |
5695 | unsigned int flags, | |
5696 | unsigned long haddr, | |
824ddc60 | 5697 | unsigned long addr, |
7677f7fd AR |
5698 | unsigned long reason) |
5699 | { | |
7677f7fd AR |
5700 | u32 hash; |
5701 | struct vm_fault vmf = { | |
5702 | .vma = vma, | |
5703 | .address = haddr, | |
824ddc60 | 5704 | .real_address = addr, |
7677f7fd AR |
5705 | .flags = flags, |
5706 | ||
5707 | /* | |
5708 | * Hard to debug if it ends up being | |
5709 | * used by a callee that assumes | |
5710 | * something about the other | |
5711 | * uninitialized fields... same as in | |
5712 | * memory.c | |
5713 | */ | |
5714 | }; | |
5715 | ||
5716 | /* | |
958f32ce LS |
5717 | * vma_lock and hugetlb_fault_mutex must be dropped before handling |
5718 | * userfault. Also mmap_lock could be dropped due to handling | |
5719 | * userfault, any vma operation should be careful from here. | |
7677f7fd | 5720 | */ |
40549ba8 | 5721 | hugetlb_vma_unlock_read(vma); |
7677f7fd AR |
5722 | hash = hugetlb_fault_mutex_hash(mapping, idx); |
5723 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | |
958f32ce | 5724 | return handle_userfault(&vmf, reason); |
7677f7fd AR |
5725 | } |
5726 | ||
2ea7ff1e PX |
5727 | /* |
5728 | * Recheck pte with pgtable lock. Returns true if pte didn't change, or | |
5729 | * false if pte changed or is changing. | |
5730 | */ | |
5731 | static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, | |
5732 | pte_t *ptep, pte_t old_pte) | |
5733 | { | |
5734 | spinlock_t *ptl; | |
5735 | bool same; | |
5736 | ||
5737 | ptl = huge_pte_lock(h, mm, ptep); | |
5738 | same = pte_same(huge_ptep_get(ptep), old_pte); | |
5739 | spin_unlock(ptl); | |
5740 | ||
5741 | return same; | |
5742 | } | |
5743 | ||
2b740303 SJ |
5744 | static vm_fault_t hugetlb_no_page(struct mm_struct *mm, |
5745 | struct vm_area_struct *vma, | |
5746 | struct address_space *mapping, pgoff_t idx, | |
c64e912c PX |
5747 | unsigned long address, pte_t *ptep, |
5748 | pte_t old_pte, unsigned int flags) | |
ac9b9c66 | 5749 | { |
a5516438 | 5750 | struct hstate *h = hstate_vma(vma); |
2b740303 | 5751 | vm_fault_t ret = VM_FAULT_SIGBUS; |
409eb8c2 | 5752 | int anon_rmap = 0; |
4c887265 | 5753 | unsigned long size; |
4c887265 | 5754 | struct page *page; |
1e8f889b | 5755 | pte_t new_pte; |
cb900f41 | 5756 | spinlock_t *ptl; |
285b8dca | 5757 | unsigned long haddr = address & huge_page_mask(h); |
c7b1850d | 5758 | bool new_page, new_pagecache_page = false; |
958f32ce | 5759 | u32 hash = hugetlb_fault_mutex_hash(mapping, idx); |
4c887265 | 5760 | |
04f2cbe3 MG |
5761 | /* |
5762 | * Currently, we are forced to kill the process in the event the | |
5763 | * original mapper has unmapped pages from the child due to a failed | |
c89357e2 DH |
5764 | * COW/unsharing. Warn that such a situation has occurred as it may not |
5765 | * be obvious. | |
04f2cbe3 MG |
5766 | */ |
5767 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
910154d5 | 5768 | pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", |
ffb22af5 | 5769 | current->pid); |
958f32ce | 5770 | goto out; |
04f2cbe3 MG |
5771 | } |
5772 | ||
4c887265 | 5773 | /* |
188a3972 MK |
5774 | * Use page lock to guard against racing truncation |
5775 | * before we get page_table_lock. | |
4c887265 | 5776 | */ |
c7b1850d | 5777 | new_page = false; |
6bda666a CL |
5778 | page = find_lock_page(mapping, idx); |
5779 | if (!page) { | |
188a3972 MK |
5780 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
5781 | if (idx >= size) | |
5782 | goto out; | |
7677f7fd | 5783 | /* Check for page in userfault range */ |
2ea7ff1e PX |
5784 | if (userfaultfd_missing(vma)) { |
5785 | /* | |
5786 | * Since hugetlb_no_page() was examining pte | |
5787 | * without pgtable lock, we need to re-test under | |
5788 | * lock because the pte may not be stable and could | |
5789 | * have changed from under us. Try to detect | |
5790 | * either changed or during-changing ptes and retry | |
5791 | * properly when needed. | |
5792 | * | |
5793 | * Note that userfaultfd is actually fine with | |
5794 | * false positives (e.g. caused by pte changed), | |
5795 | * but not wrong logical events (e.g. caused by | |
5796 | * reading a pte during changing). The latter can | |
5797 | * confuse the userspace, so the strictness is very | |
5798 | * much preferred. E.g., MISSING event should | |
5799 | * never happen on the page after UFFDIO_COPY has | |
5800 | * correctly installed the page and returned. | |
5801 | */ | |
5802 | if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { | |
5803 | ret = 0; | |
5804 | goto out; | |
5805 | } | |
5806 | ||
5807 | return hugetlb_handle_userfault(vma, mapping, idx, flags, | |
5808 | haddr, address, | |
5809 | VM_UFFD_MISSING); | |
5810 | } | |
1a1aad8a | 5811 | |
285b8dca | 5812 | page = alloc_huge_page(vma, haddr, 0); |
2fc39cec | 5813 | if (IS_ERR(page)) { |
4643d67e MK |
5814 | /* |
5815 | * Returning error will result in faulting task being | |
5816 | * sent SIGBUS. The hugetlb fault mutex prevents two | |
5817 | * tasks from racing to fault in the same page which | |
5818 | * could result in false unable to allocate errors. | |
5819 | * Page migration does not take the fault mutex, but | |
5820 | * does a clear then write of pte's under page table | |
5821 | * lock. Page fault code could race with migration, | |
5822 | * notice the clear pte and try to allocate a page | |
5823 | * here. Before returning error, get ptl and make | |
5824 | * sure there really is no pte entry. | |
5825 | */ | |
f9bf6c03 | 5826 | if (hugetlb_pte_stable(h, mm, ptep, old_pte)) |
d83e6c8a | 5827 | ret = vmf_error(PTR_ERR(page)); |
f9bf6c03 PX |
5828 | else |
5829 | ret = 0; | |
6bda666a CL |
5830 | goto out; |
5831 | } | |
47ad8475 | 5832 | clear_huge_page(page, address, pages_per_huge_page(h)); |
0ed361de | 5833 | __SetPageUptodate(page); |
cb6acd01 | 5834 | new_page = true; |
ac9b9c66 | 5835 | |
f83a275d | 5836 | if (vma->vm_flags & VM_MAYSHARE) { |
7e1813d4 | 5837 | int err = hugetlb_add_to_page_cache(page, mapping, idx); |
6bda666a | 5838 | if (err) { |
3a5497a2 ML |
5839 | /* |
5840 | * err can't be -EEXIST which implies someone | |
5841 | * else consumed the reservation since hugetlb | |
5842 | * fault mutex is held when add a hugetlb page | |
5843 | * to the page cache. So it's safe to call | |
5844 | * restore_reserve_on_error() here. | |
5845 | */ | |
5846 | restore_reserve_on_error(h, vma, haddr, page); | |
6bda666a | 5847 | put_page(page); |
6bda666a CL |
5848 | goto out; |
5849 | } | |
c7b1850d | 5850 | new_pagecache_page = true; |
23be7468 | 5851 | } else { |
6bda666a | 5852 | lock_page(page); |
0fe6e20b NH |
5853 | if (unlikely(anon_vma_prepare(vma))) { |
5854 | ret = VM_FAULT_OOM; | |
5855 | goto backout_unlocked; | |
5856 | } | |
409eb8c2 | 5857 | anon_rmap = 1; |
23be7468 | 5858 | } |
0fe6e20b | 5859 | } else { |
998b4382 NH |
5860 | /* |
5861 | * If memory error occurs between mmap() and fault, some process | |
5862 | * don't have hwpoisoned swap entry for errored virtual address. | |
5863 | * So we need to block hugepage fault by PG_hwpoison bit check. | |
5864 | */ | |
5865 | if (unlikely(PageHWPoison(page))) { | |
0eb98f15 | 5866 | ret = VM_FAULT_HWPOISON_LARGE | |
972dc4de | 5867 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
998b4382 NH |
5868 | goto backout_unlocked; |
5869 | } | |
7677f7fd AR |
5870 | |
5871 | /* Check for page in userfault range. */ | |
5872 | if (userfaultfd_minor(vma)) { | |
5873 | unlock_page(page); | |
5874 | put_page(page); | |
2ea7ff1e PX |
5875 | /* See comment in userfaultfd_missing() block above */ |
5876 | if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { | |
5877 | ret = 0; | |
5878 | goto out; | |
5879 | } | |
5880 | return hugetlb_handle_userfault(vma, mapping, idx, flags, | |
5881 | haddr, address, | |
5882 | VM_UFFD_MINOR); | |
7677f7fd | 5883 | } |
6bda666a | 5884 | } |
1e8f889b | 5885 | |
57303d80 AW |
5886 | /* |
5887 | * If we are going to COW a private mapping later, we examine the | |
5888 | * pending reservations for this page now. This will ensure that | |
5889 | * any allocations necessary to record that reservation occur outside | |
5890 | * the spinlock. | |
5891 | */ | |
5e911373 | 5892 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
285b8dca | 5893 | if (vma_needs_reservation(h, vma, haddr) < 0) { |
2b26736c AW |
5894 | ret = VM_FAULT_OOM; |
5895 | goto backout_unlocked; | |
5896 | } | |
5e911373 | 5897 | /* Just decrements count, does not deallocate */ |
285b8dca | 5898 | vma_end_reservation(h, vma, haddr); |
5e911373 | 5899 | } |
57303d80 | 5900 | |
8bea8052 | 5901 | ptl = huge_pte_lock(h, mm, ptep); |
83c54070 | 5902 | ret = 0; |
c64e912c PX |
5903 | /* If pte changed from under us, retry */ |
5904 | if (!pte_same(huge_ptep_get(ptep), old_pte)) | |
4c887265 AL |
5905 | goto backout; |
5906 | ||
4781593d | 5907 | if (anon_rmap) |
285b8dca | 5908 | hugepage_add_new_anon_rmap(page, vma, haddr); |
4781593d | 5909 | else |
fb3d824d | 5910 | page_dup_file_rmap(page, true); |
1e8f889b DG |
5911 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
5912 | && (vma->vm_flags & VM_SHARED))); | |
c64e912c PX |
5913 | /* |
5914 | * If this pte was previously wr-protected, keep it wr-protected even | |
5915 | * if populated. | |
5916 | */ | |
5917 | if (unlikely(pte_marker_uffd_wp(old_pte))) | |
f1eb1bac | 5918 | new_pte = huge_pte_mkuffd_wp(new_pte); |
285b8dca | 5919 | set_huge_pte_at(mm, haddr, ptep, new_pte); |
1e8f889b | 5920 | |
5d317b2b | 5921 | hugetlb_count_add(pages_per_huge_page(h), mm); |
788c7df4 | 5922 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
1e8f889b | 5923 | /* Optimization, do the COW without a second fault */ |
c89357e2 | 5924 | ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); |
1e8f889b DG |
5925 | } |
5926 | ||
cb900f41 | 5927 | spin_unlock(ptl); |
cb6acd01 MK |
5928 | |
5929 | /* | |
8f251a3d MK |
5930 | * Only set HPageMigratable in newly allocated pages. Existing pages |
5931 | * found in the pagecache may not have HPageMigratableset if they have | |
5932 | * been isolated for migration. | |
cb6acd01 MK |
5933 | */ |
5934 | if (new_page) | |
8f251a3d | 5935 | SetHPageMigratable(page); |
cb6acd01 | 5936 | |
4c887265 AL |
5937 | unlock_page(page); |
5938 | out: | |
958f32ce LS |
5939 | hugetlb_vma_unlock_read(vma); |
5940 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | |
ac9b9c66 | 5941 | return ret; |
4c887265 AL |
5942 | |
5943 | backout: | |
cb900f41 | 5944 | spin_unlock(ptl); |
2b26736c | 5945 | backout_unlocked: |
c7b1850d MK |
5946 | if (new_page && !new_pagecache_page) |
5947 | restore_reserve_on_error(h, vma, haddr, page); | |
fa27759a MK |
5948 | |
5949 | unlock_page(page); | |
4c887265 AL |
5950 | put_page(page); |
5951 | goto out; | |
ac9b9c66 HD |
5952 | } |
5953 | ||
8382d914 | 5954 | #ifdef CONFIG_SMP |
188b04a7 | 5955 | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) |
8382d914 DB |
5956 | { |
5957 | unsigned long key[2]; | |
5958 | u32 hash; | |
5959 | ||
1b426bac MK |
5960 | key[0] = (unsigned long) mapping; |
5961 | key[1] = idx; | |
8382d914 | 5962 | |
55254636 | 5963 | hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); |
8382d914 DB |
5964 | |
5965 | return hash & (num_fault_mutexes - 1); | |
5966 | } | |
5967 | #else | |
5968 | /* | |
6c26d310 | 5969 | * For uniprocessor systems we always use a single mutex, so just |
8382d914 DB |
5970 | * return 0 and avoid the hashing overhead. |
5971 | */ | |
188b04a7 | 5972 | u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) |
8382d914 DB |
5973 | { |
5974 | return 0; | |
5975 | } | |
5976 | #endif | |
5977 | ||
2b740303 | 5978 | vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 5979 | unsigned long address, unsigned int flags) |
86e5216f | 5980 | { |
8382d914 | 5981 | pte_t *ptep, entry; |
cb900f41 | 5982 | spinlock_t *ptl; |
2b740303 | 5983 | vm_fault_t ret; |
8382d914 DB |
5984 | u32 hash; |
5985 | pgoff_t idx; | |
0fe6e20b | 5986 | struct page *page = NULL; |
57303d80 | 5987 | struct page *pagecache_page = NULL; |
a5516438 | 5988 | struct hstate *h = hstate_vma(vma); |
8382d914 | 5989 | struct address_space *mapping; |
0f792cf9 | 5990 | int need_wait_lock = 0; |
285b8dca | 5991 | unsigned long haddr = address & huge_page_mask(h); |
86e5216f | 5992 | |
3935baa9 DG |
5993 | /* |
5994 | * Serialize hugepage allocation and instantiation, so that we don't | |
5995 | * get spurious allocation failures if two CPUs race to instantiate | |
5996 | * the same page in the page cache. | |
5997 | */ | |
40549ba8 MK |
5998 | mapping = vma->vm_file->f_mapping; |
5999 | idx = vma_hugecache_offset(h, vma, haddr); | |
188b04a7 | 6000 | hash = hugetlb_fault_mutex_hash(mapping, idx); |
c672c7f2 | 6001 | mutex_lock(&hugetlb_fault_mutex_table[hash]); |
8382d914 | 6002 | |
40549ba8 MK |
6003 | /* |
6004 | * Acquire vma lock before calling huge_pte_alloc and hold | |
6005 | * until finished with ptep. This prevents huge_pmd_unshare from | |
6006 | * being called elsewhere and making the ptep no longer valid. | |
40549ba8 MK |
6007 | */ |
6008 | hugetlb_vma_lock_read(vma); | |
6009 | ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); | |
6010 | if (!ptep) { | |
6011 | hugetlb_vma_unlock_read(vma); | |
6012 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | |
6013 | return VM_FAULT_OOM; | |
6014 | } | |
6015 | ||
7f2e9525 | 6016 | entry = huge_ptep_get(ptep); |
c64e912c | 6017 | /* PTE markers should be handled the same way as none pte */ |
958f32ce LS |
6018 | if (huge_pte_none_mostly(entry)) |
6019 | /* | |
6020 | * hugetlb_no_page will drop vma lock and hugetlb fault | |
6021 | * mutex internally, which make us return immediately. | |
6022 | */ | |
6023 | return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, | |
c64e912c | 6024 | entry, flags); |
86e5216f | 6025 | |
83c54070 | 6026 | ret = 0; |
1e8f889b | 6027 | |
0f792cf9 NH |
6028 | /* |
6029 | * entry could be a migration/hwpoison entry at this point, so this | |
6030 | * check prevents the kernel from going below assuming that we have | |
7c8de358 EP |
6031 | * an active hugepage in pagecache. This goto expects the 2nd page |
6032 | * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will | |
6033 | * properly handle it. | |
0f792cf9 | 6034 | */ |
fcd48540 PX |
6035 | if (!pte_present(entry)) { |
6036 | if (unlikely(is_hugetlb_entry_migration(entry))) { | |
6037 | /* | |
6038 | * Release the hugetlb fault lock now, but retain | |
6039 | * the vma lock, because it is needed to guard the | |
6040 | * huge_pte_lockptr() later in | |
6041 | * migration_entry_wait_huge(). The vma lock will | |
6042 | * be released there. | |
6043 | */ | |
6044 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); | |
6045 | migration_entry_wait_huge(vma, ptep); | |
6046 | return 0; | |
6047 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | |
6048 | ret = VM_FAULT_HWPOISON_LARGE | | |
6049 | VM_FAULT_SET_HINDEX(hstate_index(h)); | |
0f792cf9 | 6050 | goto out_mutex; |
fcd48540 | 6051 | } |
0f792cf9 | 6052 | |
57303d80 | 6053 | /* |
c89357e2 DH |
6054 | * If we are going to COW/unshare the mapping later, we examine the |
6055 | * pending reservations for this page now. This will ensure that any | |
57303d80 | 6056 | * allocations necessary to record that reservation occur outside the |
1d8d1464 DH |
6057 | * spinlock. Also lookup the pagecache page now as it is used to |
6058 | * determine if a reservation has been consumed. | |
57303d80 | 6059 | */ |
c89357e2 | 6060 | if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && |
1d8d1464 | 6061 | !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { |
285b8dca | 6062 | if (vma_needs_reservation(h, vma, haddr) < 0) { |
2b26736c | 6063 | ret = VM_FAULT_OOM; |
b4d1d99f | 6064 | goto out_mutex; |
2b26736c | 6065 | } |
5e911373 | 6066 | /* Just decrements count, does not deallocate */ |
285b8dca | 6067 | vma_end_reservation(h, vma, haddr); |
57303d80 | 6068 | |
29be8426 | 6069 | pagecache_page = find_lock_page(mapping, idx); |
57303d80 AW |
6070 | } |
6071 | ||
0f792cf9 NH |
6072 | ptl = huge_pte_lock(h, mm, ptep); |
6073 | ||
c89357e2 | 6074 | /* Check for a racing update before calling hugetlb_wp() */ |
0f792cf9 NH |
6075 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
6076 | goto out_ptl; | |
6077 | ||
166f3ecc PX |
6078 | /* Handle userfault-wp first, before trying to lock more pages */ |
6079 | if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && | |
6080 | (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { | |
6081 | struct vm_fault vmf = { | |
6082 | .vma = vma, | |
6083 | .address = haddr, | |
6084 | .real_address = address, | |
6085 | .flags = flags, | |
6086 | }; | |
6087 | ||
6088 | spin_unlock(ptl); | |
6089 | if (pagecache_page) { | |
6090 | unlock_page(pagecache_page); | |
6091 | put_page(pagecache_page); | |
6092 | } | |
40549ba8 | 6093 | hugetlb_vma_unlock_read(vma); |
166f3ecc | 6094 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
166f3ecc PX |
6095 | return handle_userfault(&vmf, VM_UFFD_WP); |
6096 | } | |
6097 | ||
56c9cfb1 | 6098 | /* |
c89357e2 | 6099 | * hugetlb_wp() requires page locks of pte_page(entry) and |
56c9cfb1 NH |
6100 | * pagecache_page, so here we need take the former one |
6101 | * when page != pagecache_page or !pagecache_page. | |
56c9cfb1 NH |
6102 | */ |
6103 | page = pte_page(entry); | |
6104 | if (page != pagecache_page) | |
0f792cf9 NH |
6105 | if (!trylock_page(page)) { |
6106 | need_wait_lock = 1; | |
6107 | goto out_ptl; | |
6108 | } | |
b4d1d99f | 6109 | |
0f792cf9 | 6110 | get_page(page); |
b4d1d99f | 6111 | |
c89357e2 | 6112 | if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { |
106c992a | 6113 | if (!huge_pte_write(entry)) { |
c89357e2 DH |
6114 | ret = hugetlb_wp(mm, vma, address, ptep, flags, |
6115 | pagecache_page, ptl); | |
0f792cf9 | 6116 | goto out_put_page; |
c89357e2 DH |
6117 | } else if (likely(flags & FAULT_FLAG_WRITE)) { |
6118 | entry = huge_pte_mkdirty(entry); | |
b4d1d99f | 6119 | } |
b4d1d99f DG |
6120 | } |
6121 | entry = pte_mkyoung(entry); | |
285b8dca | 6122 | if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, |
788c7df4 | 6123 | flags & FAULT_FLAG_WRITE)) |
285b8dca | 6124 | update_mmu_cache(vma, haddr, ptep); |
0f792cf9 NH |
6125 | out_put_page: |
6126 | if (page != pagecache_page) | |
6127 | unlock_page(page); | |
6128 | put_page(page); | |
cb900f41 KS |
6129 | out_ptl: |
6130 | spin_unlock(ptl); | |
57303d80 AW |
6131 | |
6132 | if (pagecache_page) { | |
6133 | unlock_page(pagecache_page); | |
6134 | put_page(pagecache_page); | |
6135 | } | |
b4d1d99f | 6136 | out_mutex: |
40549ba8 | 6137 | hugetlb_vma_unlock_read(vma); |
c672c7f2 | 6138 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
0f792cf9 NH |
6139 | /* |
6140 | * Generally it's safe to hold refcount during waiting page lock. But | |
6141 | * here we just wait to defer the next page fault to avoid busy loop and | |
6142 | * the page is not used after unlocked before returning from the current | |
6143 | * page fault. So we are safe from accessing freed page, even if we wait | |
6144 | * here without taking refcount. | |
6145 | */ | |
6146 | if (need_wait_lock) | |
6147 | wait_on_page_locked(page); | |
1e8f889b | 6148 | return ret; |
86e5216f AL |
6149 | } |
6150 | ||
714c1891 | 6151 | #ifdef CONFIG_USERFAULTFD |
8fb5debc MK |
6152 | /* |
6153 | * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with | |
6154 | * modifications for huge pages. | |
6155 | */ | |
6156 | int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, | |
6157 | pte_t *dst_pte, | |
6158 | struct vm_area_struct *dst_vma, | |
6159 | unsigned long dst_addr, | |
6160 | unsigned long src_addr, | |
f6191471 | 6161 | enum mcopy_atomic_mode mode, |
6041c691 PX |
6162 | struct page **pagep, |
6163 | bool wp_copy) | |
8fb5debc | 6164 | { |
f6191471 | 6165 | bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); |
8cc5fcbb MA |
6166 | struct hstate *h = hstate_vma(dst_vma); |
6167 | struct address_space *mapping = dst_vma->vm_file->f_mapping; | |
6168 | pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); | |
1e392147 | 6169 | unsigned long size; |
1c9e8def | 6170 | int vm_shared = dst_vma->vm_flags & VM_SHARED; |
8fb5debc MK |
6171 | pte_t _dst_pte; |
6172 | spinlock_t *ptl; | |
8cc5fcbb | 6173 | int ret = -ENOMEM; |
8fb5debc | 6174 | struct page *page; |
f6191471 | 6175 | int writable; |
cc30042d | 6176 | bool page_in_pagecache = false; |
8fb5debc | 6177 | |
f6191471 AR |
6178 | if (is_continue) { |
6179 | ret = -EFAULT; | |
6180 | page = find_lock_page(mapping, idx); | |
6181 | if (!page) | |
6182 | goto out; | |
cc30042d | 6183 | page_in_pagecache = true; |
f6191471 | 6184 | } else if (!*pagep) { |
d84cf06e MA |
6185 | /* If a page already exists, then it's UFFDIO_COPY for |
6186 | * a non-missing case. Return -EEXIST. | |
6187 | */ | |
6188 | if (vm_shared && | |
6189 | hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { | |
6190 | ret = -EEXIST; | |
6191 | goto out; | |
6192 | } | |
6193 | ||
8fb5debc | 6194 | page = alloc_huge_page(dst_vma, dst_addr, 0); |
d84cf06e MA |
6195 | if (IS_ERR(page)) { |
6196 | ret = -ENOMEM; | |
8fb5debc | 6197 | goto out; |
d84cf06e | 6198 | } |
8fb5debc MK |
6199 | |
6200 | ret = copy_huge_page_from_user(page, | |
6201 | (const void __user *) src_addr, | |
810a56b9 | 6202 | pages_per_huge_page(h), false); |
8fb5debc | 6203 | |
c1e8d7c6 | 6204 | /* fallback to copy_from_user outside mmap_lock */ |
8fb5debc | 6205 | if (unlikely(ret)) { |
9e368259 | 6206 | ret = -ENOENT; |
8cc5fcbb MA |
6207 | /* Free the allocated page which may have |
6208 | * consumed a reservation. | |
6209 | */ | |
6210 | restore_reserve_on_error(h, dst_vma, dst_addr, page); | |
6211 | put_page(page); | |
6212 | ||
6213 | /* Allocate a temporary page to hold the copied | |
6214 | * contents. | |
6215 | */ | |
6216 | page = alloc_huge_page_vma(h, dst_vma, dst_addr); | |
6217 | if (!page) { | |
6218 | ret = -ENOMEM; | |
6219 | goto out; | |
6220 | } | |
8fb5debc | 6221 | *pagep = page; |
8cc5fcbb MA |
6222 | /* Set the outparam pagep and return to the caller to |
6223 | * copy the contents outside the lock. Don't free the | |
6224 | * page. | |
6225 | */ | |
8fb5debc MK |
6226 | goto out; |
6227 | } | |
6228 | } else { | |
8cc5fcbb MA |
6229 | if (vm_shared && |
6230 | hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { | |
6231 | put_page(*pagep); | |
6232 | ret = -EEXIST; | |
6233 | *pagep = NULL; | |
6234 | goto out; | |
6235 | } | |
6236 | ||
6237 | page = alloc_huge_page(dst_vma, dst_addr, 0); | |
6238 | if (IS_ERR(page)) { | |
da9a298f | 6239 | put_page(*pagep); |
8cc5fcbb MA |
6240 | ret = -ENOMEM; |
6241 | *pagep = NULL; | |
6242 | goto out; | |
6243 | } | |
34892366 MS |
6244 | copy_user_huge_page(page, *pagep, dst_addr, dst_vma, |
6245 | pages_per_huge_page(h)); | |
8cc5fcbb | 6246 | put_page(*pagep); |
8fb5debc MK |
6247 | *pagep = NULL; |
6248 | } | |
6249 | ||
6250 | /* | |
6251 | * The memory barrier inside __SetPageUptodate makes sure that | |
6252 | * preceding stores to the page contents become visible before | |
6253 | * the set_pte_at() write. | |
6254 | */ | |
6255 | __SetPageUptodate(page); | |
8fb5debc | 6256 | |
f6191471 AR |
6257 | /* Add shared, newly allocated pages to the page cache. */ |
6258 | if (vm_shared && !is_continue) { | |
1e392147 AA |
6259 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
6260 | ret = -EFAULT; | |
6261 | if (idx >= size) | |
6262 | goto out_release_nounlock; | |
1c9e8def | 6263 | |
1e392147 AA |
6264 | /* |
6265 | * Serialization between remove_inode_hugepages() and | |
7e1813d4 | 6266 | * hugetlb_add_to_page_cache() below happens through the |
1e392147 AA |
6267 | * hugetlb_fault_mutex_table that here must be hold by |
6268 | * the caller. | |
6269 | */ | |
7e1813d4 | 6270 | ret = hugetlb_add_to_page_cache(page, mapping, idx); |
1c9e8def MK |
6271 | if (ret) |
6272 | goto out_release_nounlock; | |
cc30042d | 6273 | page_in_pagecache = true; |
1c9e8def MK |
6274 | } |
6275 | ||
bcc66543 | 6276 | ptl = huge_pte_lock(h, dst_mm, dst_pte); |
8fb5debc | 6277 | |
8625147c JH |
6278 | ret = -EIO; |
6279 | if (PageHWPoison(page)) | |
6280 | goto out_release_unlock; | |
6281 | ||
6041c691 PX |
6282 | /* |
6283 | * We allow to overwrite a pte marker: consider when both MISSING|WP | |
6284 | * registered, we firstly wr-protect a none pte which has no page cache | |
6285 | * page backing it, then access the page. | |
6286 | */ | |
fa27759a | 6287 | ret = -EEXIST; |
6041c691 | 6288 | if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) |
8fb5debc MK |
6289 | goto out_release_unlock; |
6290 | ||
4781593d | 6291 | if (page_in_pagecache) |
fb3d824d | 6292 | page_dup_file_rmap(page, true); |
4781593d | 6293 | else |
1c9e8def | 6294 | hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); |
8fb5debc | 6295 | |
6041c691 PX |
6296 | /* |
6297 | * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY | |
6298 | * with wp flag set, don't set pte write bit. | |
6299 | */ | |
6300 | if (wp_copy || (is_continue && !vm_shared)) | |
f6191471 AR |
6301 | writable = 0; |
6302 | else | |
6303 | writable = dst_vma->vm_flags & VM_WRITE; | |
6304 | ||
6305 | _dst_pte = make_huge_pte(dst_vma, page, writable); | |
6041c691 PX |
6306 | /* |
6307 | * Always mark UFFDIO_COPY page dirty; note that this may not be | |
6308 | * extremely important for hugetlbfs for now since swapping is not | |
6309 | * supported, but we should still be clear in that this page cannot be | |
6310 | * thrown away at will, even if write bit not set. | |
6311 | */ | |
6312 | _dst_pte = huge_pte_mkdirty(_dst_pte); | |
8fb5debc MK |
6313 | _dst_pte = pte_mkyoung(_dst_pte); |
6314 | ||
6041c691 PX |
6315 | if (wp_copy) |
6316 | _dst_pte = huge_pte_mkuffd_wp(_dst_pte); | |
6317 | ||
8fb5debc MK |
6318 | set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); |
6319 | ||
8fb5debc MK |
6320 | hugetlb_count_add(pages_per_huge_page(h), dst_mm); |
6321 | ||
6322 | /* No need to invalidate - it was non-present before */ | |
6323 | update_mmu_cache(dst_vma, dst_addr, dst_pte); | |
6324 | ||
6325 | spin_unlock(ptl); | |
f6191471 AR |
6326 | if (!is_continue) |
6327 | SetHPageMigratable(page); | |
6328 | if (vm_shared || is_continue) | |
1c9e8def | 6329 | unlock_page(page); |
8fb5debc MK |
6330 | ret = 0; |
6331 | out: | |
6332 | return ret; | |
6333 | out_release_unlock: | |
6334 | spin_unlock(ptl); | |
f6191471 | 6335 | if (vm_shared || is_continue) |
1c9e8def | 6336 | unlock_page(page); |
5af10dfd | 6337 | out_release_nounlock: |
cc30042d | 6338 | if (!page_in_pagecache) |
c7b1850d | 6339 | restore_reserve_on_error(h, dst_vma, dst_addr, page); |
8fb5debc MK |
6340 | put_page(page); |
6341 | goto out; | |
6342 | } | |
714c1891 | 6343 | #endif /* CONFIG_USERFAULTFD */ |
8fb5debc | 6344 | |
82e5d378 JM |
6345 | static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, |
6346 | int refs, struct page **pages, | |
6347 | struct vm_area_struct **vmas) | |
6348 | { | |
6349 | int nr; | |
6350 | ||
6351 | for (nr = 0; nr < refs; nr++) { | |
6352 | if (likely(pages)) | |
14455eab | 6353 | pages[nr] = nth_page(page, nr); |
82e5d378 JM |
6354 | if (vmas) |
6355 | vmas[nr] = vma; | |
6356 | } | |
6357 | } | |
6358 | ||
84209e87 DH |
6359 | static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, |
6360 | unsigned int flags, pte_t *pte, | |
a7f22660 DH |
6361 | bool *unshare) |
6362 | { | |
6363 | pte_t pteval = huge_ptep_get(pte); | |
6364 | ||
6365 | *unshare = false; | |
6366 | if (is_swap_pte(pteval)) | |
6367 | return true; | |
6368 | if (huge_pte_write(pteval)) | |
6369 | return false; | |
6370 | if (flags & FOLL_WRITE) | |
6371 | return true; | |
84209e87 | 6372 | if (gup_must_unshare(vma, flags, pte_page(pteval))) { |
a7f22660 DH |
6373 | *unshare = true; |
6374 | return true; | |
6375 | } | |
6376 | return false; | |
6377 | } | |
6378 | ||
57a196a5 MK |
6379 | struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, |
6380 | unsigned long address, unsigned int flags) | |
6381 | { | |
6382 | struct hstate *h = hstate_vma(vma); | |
6383 | struct mm_struct *mm = vma->vm_mm; | |
6384 | unsigned long haddr = address & huge_page_mask(h); | |
6385 | struct page *page = NULL; | |
6386 | spinlock_t *ptl; | |
6387 | pte_t *pte, entry; | |
6388 | ||
6389 | /* | |
6390 | * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via | |
6391 | * follow_hugetlb_page(). | |
6392 | */ | |
6393 | if (WARN_ON_ONCE(flags & FOLL_PIN)) | |
6394 | return NULL; | |
6395 | ||
7d049f3a | 6396 | hugetlb_vma_lock_read(vma); |
9c67a207 | 6397 | pte = hugetlb_walk(vma, haddr, huge_page_size(h)); |
57a196a5 | 6398 | if (!pte) |
7d049f3a | 6399 | goto out_unlock; |
57a196a5 MK |
6400 | |
6401 | ptl = huge_pte_lock(h, mm, pte); | |
6402 | entry = huge_ptep_get(pte); | |
6403 | if (pte_present(entry)) { | |
6404 | page = pte_page(entry) + | |
6405 | ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); | |
6406 | /* | |
6407 | * Note that page may be a sub-page, and with vmemmap | |
6408 | * optimizations the page struct may be read only. | |
6409 | * try_grab_page() will increase the ref count on the | |
6410 | * head page, so this will be OK. | |
6411 | * | |
e2ca6ba6 LT |
6412 | * try_grab_page() should always be able to get the page here, |
6413 | * because we hold the ptl lock and have verified pte_present(). | |
57a196a5 | 6414 | */ |
e2ca6ba6 | 6415 | if (try_grab_page(page, flags)) { |
57a196a5 MK |
6416 | page = NULL; |
6417 | goto out; | |
6418 | } | |
57a196a5 MK |
6419 | } |
6420 | out: | |
6421 | spin_unlock(ptl); | |
7d049f3a PX |
6422 | out_unlock: |
6423 | hugetlb_vma_unlock_read(vma); | |
57a196a5 MK |
6424 | return page; |
6425 | } | |
6426 | ||
28a35716 ML |
6427 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
6428 | struct page **pages, struct vm_area_struct **vmas, | |
6429 | unsigned long *position, unsigned long *nr_pages, | |
4f6da934 | 6430 | long i, unsigned int flags, int *locked) |
63551ae0 | 6431 | { |
d5d4b0aa KC |
6432 | unsigned long pfn_offset; |
6433 | unsigned long vaddr = *position; | |
28a35716 | 6434 | unsigned long remainder = *nr_pages; |
a5516438 | 6435 | struct hstate *h = hstate_vma(vma); |
0fa5bc40 | 6436 | int err = -EFAULT, refs; |
63551ae0 | 6437 | |
63551ae0 | 6438 | while (vaddr < vma->vm_end && remainder) { |
4c887265 | 6439 | pte_t *pte; |
cb900f41 | 6440 | spinlock_t *ptl = NULL; |
a7f22660 | 6441 | bool unshare = false; |
2a15efc9 | 6442 | int absent; |
4c887265 | 6443 | struct page *page; |
63551ae0 | 6444 | |
02057967 DR |
6445 | /* |
6446 | * If we have a pending SIGKILL, don't keep faulting pages and | |
6447 | * potentially allocating memory. | |
6448 | */ | |
fa45f116 | 6449 | if (fatal_signal_pending(current)) { |
02057967 DR |
6450 | remainder = 0; |
6451 | break; | |
6452 | } | |
6453 | ||
eefc7fa5 | 6454 | hugetlb_vma_lock_read(vma); |
4c887265 AL |
6455 | /* |
6456 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2a15efc9 | 6457 | * each hugepage. We have to make sure we get the |
4c887265 | 6458 | * first, for the page indexing below to work. |
cb900f41 KS |
6459 | * |
6460 | * Note that page table lock is not held when pte is null. | |
4c887265 | 6461 | */ |
9c67a207 PX |
6462 | pte = hugetlb_walk(vma, vaddr & huge_page_mask(h), |
6463 | huge_page_size(h)); | |
cb900f41 KS |
6464 | if (pte) |
6465 | ptl = huge_pte_lock(h, mm, pte); | |
2a15efc9 HD |
6466 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
6467 | ||
6468 | /* | |
6469 | * When coredumping, it suits get_dump_page if we just return | |
3ae77f43 HD |
6470 | * an error where there's an empty slot with no huge pagecache |
6471 | * to back it. This way, we avoid allocating a hugepage, and | |
6472 | * the sparse dumpfile avoids allocating disk blocks, but its | |
6473 | * huge holes still show up with zeroes where they need to be. | |
2a15efc9 | 6474 | */ |
3ae77f43 HD |
6475 | if (absent && (flags & FOLL_DUMP) && |
6476 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | |
cb900f41 KS |
6477 | if (pte) |
6478 | spin_unlock(ptl); | |
eefc7fa5 | 6479 | hugetlb_vma_unlock_read(vma); |
2a15efc9 HD |
6480 | remainder = 0; |
6481 | break; | |
6482 | } | |
63551ae0 | 6483 | |
9cc3a5bd NH |
6484 | /* |
6485 | * We need call hugetlb_fault for both hugepages under migration | |
6486 | * (in which case hugetlb_fault waits for the migration,) and | |
6487 | * hwpoisoned hugepages (in which case we need to prevent the | |
6488 | * caller from accessing to them.) In order to do this, we use | |
6489 | * here is_swap_pte instead of is_hugetlb_entry_migration and | |
6490 | * is_hugetlb_entry_hwpoisoned. This is because it simply covers | |
6491 | * both cases, and because we can't follow correct pages | |
6492 | * directly from any kind of swap entries. | |
6493 | */ | |
a7f22660 | 6494 | if (absent || |
84209e87 | 6495 | __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { |
2b740303 | 6496 | vm_fault_t ret; |
87ffc118 | 6497 | unsigned int fault_flags = 0; |
63551ae0 | 6498 | |
cb900f41 KS |
6499 | if (pte) |
6500 | spin_unlock(ptl); | |
eefc7fa5 PX |
6501 | hugetlb_vma_unlock_read(vma); |
6502 | ||
87ffc118 AA |
6503 | if (flags & FOLL_WRITE) |
6504 | fault_flags |= FAULT_FLAG_WRITE; | |
a7f22660 DH |
6505 | else if (unshare) |
6506 | fault_flags |= FAULT_FLAG_UNSHARE; | |
93c5c61d | 6507 | if (locked) { |
71335f37 PX |
6508 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | |
6509 | FAULT_FLAG_KILLABLE; | |
93c5c61d PX |
6510 | if (flags & FOLL_INTERRUPTIBLE) |
6511 | fault_flags |= FAULT_FLAG_INTERRUPTIBLE; | |
6512 | } | |
87ffc118 AA |
6513 | if (flags & FOLL_NOWAIT) |
6514 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | | |
6515 | FAULT_FLAG_RETRY_NOWAIT; | |
6516 | if (flags & FOLL_TRIED) { | |
4426e945 PX |
6517 | /* |
6518 | * Note: FAULT_FLAG_ALLOW_RETRY and | |
6519 | * FAULT_FLAG_TRIED can co-exist | |
6520 | */ | |
87ffc118 AA |
6521 | fault_flags |= FAULT_FLAG_TRIED; |
6522 | } | |
6523 | ret = hugetlb_fault(mm, vma, vaddr, fault_flags); | |
6524 | if (ret & VM_FAULT_ERROR) { | |
2be7cfed | 6525 | err = vm_fault_to_errno(ret, flags); |
87ffc118 AA |
6526 | remainder = 0; |
6527 | break; | |
6528 | } | |
6529 | if (ret & VM_FAULT_RETRY) { | |
4f6da934 | 6530 | if (locked && |
1ac25013 | 6531 | !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
4f6da934 | 6532 | *locked = 0; |
87ffc118 AA |
6533 | *nr_pages = 0; |
6534 | /* | |
6535 | * VM_FAULT_RETRY must not return an | |
6536 | * error, it will return zero | |
6537 | * instead. | |
6538 | * | |
6539 | * No need to update "position" as the | |
6540 | * caller will not check it after | |
6541 | * *nr_pages is set to 0. | |
6542 | */ | |
6543 | return i; | |
6544 | } | |
6545 | continue; | |
4c887265 AL |
6546 | } |
6547 | ||
a5516438 | 6548 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 6549 | page = pte_page(huge_ptep_get(pte)); |
8fde12ca | 6550 | |
b6a2619c DH |
6551 | VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && |
6552 | !PageAnonExclusive(page), page); | |
6553 | ||
acbfb087 ZL |
6554 | /* |
6555 | * If subpage information not requested, update counters | |
6556 | * and skip the same_page loop below. | |
6557 | */ | |
6558 | if (!pages && !vmas && !pfn_offset && | |
6559 | (vaddr + huge_page_size(h) < vma->vm_end) && | |
6560 | (remainder >= pages_per_huge_page(h))) { | |
6561 | vaddr += huge_page_size(h); | |
6562 | remainder -= pages_per_huge_page(h); | |
6563 | i += pages_per_huge_page(h); | |
6564 | spin_unlock(ptl); | |
eefc7fa5 | 6565 | hugetlb_vma_unlock_read(vma); |
acbfb087 ZL |
6566 | continue; |
6567 | } | |
6568 | ||
d08af0a5 JM |
6569 | /* vaddr may not be aligned to PAGE_SIZE */ |
6570 | refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, | |
6571 | (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); | |
0fa5bc40 | 6572 | |
82e5d378 | 6573 | if (pages || vmas) |
14455eab | 6574 | record_subpages_vmas(nth_page(page, pfn_offset), |
82e5d378 JM |
6575 | vma, refs, |
6576 | likely(pages) ? pages + i : NULL, | |
6577 | vmas ? vmas + i : NULL); | |
63551ae0 | 6578 | |
82e5d378 | 6579 | if (pages) { |
0fa5bc40 | 6580 | /* |
822951d8 | 6581 | * try_grab_folio() should always succeed here, |
0fa5bc40 JM |
6582 | * because: a) we hold the ptl lock, and b) we've just |
6583 | * checked that the huge page is present in the page | |
6584 | * tables. If the huge page is present, then the tail | |
6585 | * pages must also be present. The ptl prevents the | |
6586 | * head page and tail pages from being rearranged in | |
4003f107 LG |
6587 | * any way. As this is hugetlb, the pages will never |
6588 | * be p2pdma or not longterm pinable. So this page | |
6589 | * must be available at this point, unless the page | |
6590 | * refcount overflowed: | |
0fa5bc40 | 6591 | */ |
822951d8 MWO |
6592 | if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, |
6593 | flags))) { | |
0fa5bc40 | 6594 | spin_unlock(ptl); |
eefc7fa5 | 6595 | hugetlb_vma_unlock_read(vma); |
0fa5bc40 JM |
6596 | remainder = 0; |
6597 | err = -ENOMEM; | |
6598 | break; | |
6599 | } | |
d5d4b0aa | 6600 | } |
82e5d378 JM |
6601 | |
6602 | vaddr += (refs << PAGE_SHIFT); | |
6603 | remainder -= refs; | |
6604 | i += refs; | |
6605 | ||
cb900f41 | 6606 | spin_unlock(ptl); |
eefc7fa5 | 6607 | hugetlb_vma_unlock_read(vma); |
63551ae0 | 6608 | } |
28a35716 | 6609 | *nr_pages = remainder; |
87ffc118 AA |
6610 | /* |
6611 | * setting position is actually required only if remainder is | |
6612 | * not zero but it's faster not to add a "if (remainder)" | |
6613 | * branch. | |
6614 | */ | |
63551ae0 DG |
6615 | *position = vaddr; |
6616 | ||
2be7cfed | 6617 | return i ? i : err; |
63551ae0 | 6618 | } |
8f860591 | 6619 | |
a79390f5 | 6620 | long hugetlb_change_protection(struct vm_area_struct *vma, |
5a90d5a1 PX |
6621 | unsigned long address, unsigned long end, |
6622 | pgprot_t newprot, unsigned long cp_flags) | |
8f860591 ZY |
6623 | { |
6624 | struct mm_struct *mm = vma->vm_mm; | |
6625 | unsigned long start = address; | |
6626 | pte_t *ptep; | |
6627 | pte_t pte; | |
a5516438 | 6628 | struct hstate *h = hstate_vma(vma); |
a79390f5 | 6629 | long pages = 0, psize = huge_page_size(h); |
dff11abe | 6630 | bool shared_pmd = false; |
ac46d4f3 | 6631 | struct mmu_notifier_range range; |
e95a9851 | 6632 | unsigned long last_addr_mask; |
5a90d5a1 PX |
6633 | bool uffd_wp = cp_flags & MM_CP_UFFD_WP; |
6634 | bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; | |
dff11abe MK |
6635 | |
6636 | /* | |
6637 | * In the case of shared PMDs, the area to flush could be beyond | |
ac46d4f3 | 6638 | * start/end. Set range.start/range.end to cover the maximum possible |
dff11abe MK |
6639 | * range if PMD sharing is possible. |
6640 | */ | |
7269f999 | 6641 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, |
7d4a8be0 | 6642 | 0, mm, start, end); |
ac46d4f3 | 6643 | adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); |
8f860591 ZY |
6644 | |
6645 | BUG_ON(address >= end); | |
ac46d4f3 | 6646 | flush_cache_range(vma, range.start, range.end); |
8f860591 | 6647 | |
ac46d4f3 | 6648 | mmu_notifier_invalidate_range_start(&range); |
40549ba8 | 6649 | hugetlb_vma_lock_write(vma); |
83cde9e8 | 6650 | i_mmap_lock_write(vma->vm_file->f_mapping); |
40549ba8 | 6651 | last_addr_mask = hugetlb_mask_last_page(h); |
60dfaad6 | 6652 | for (; address < end; address += psize) { |
cb900f41 | 6653 | spinlock_t *ptl; |
9c67a207 | 6654 | ptep = hugetlb_walk(vma, address, psize); |
e95a9851 | 6655 | if (!ptep) { |
fed15f13 PX |
6656 | if (!uffd_wp) { |
6657 | address |= last_addr_mask; | |
6658 | continue; | |
6659 | } | |
6660 | /* | |
6661 | * Userfaultfd wr-protect requires pgtable | |
6662 | * pre-allocations to install pte markers. | |
6663 | */ | |
6664 | ptep = huge_pte_alloc(mm, vma, address, psize); | |
d1751118 PX |
6665 | if (!ptep) { |
6666 | pages = -ENOMEM; | |
fed15f13 | 6667 | break; |
d1751118 | 6668 | } |
e95a9851 | 6669 | } |
cb900f41 | 6670 | ptl = huge_pte_lock(h, mm, ptep); |
4ddb4d91 | 6671 | if (huge_pmd_unshare(mm, vma, address, ptep)) { |
60dfaad6 PX |
6672 | /* |
6673 | * When uffd-wp is enabled on the vma, unshare | |
6674 | * shouldn't happen at all. Warn about it if it | |
6675 | * happened due to some reason. | |
6676 | */ | |
6677 | WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); | |
7da4d641 | 6678 | pages++; |
cb900f41 | 6679 | spin_unlock(ptl); |
dff11abe | 6680 | shared_pmd = true; |
4ddb4d91 | 6681 | address |= last_addr_mask; |
39dde65c | 6682 | continue; |
7da4d641 | 6683 | } |
a8bda28d NH |
6684 | pte = huge_ptep_get(ptep); |
6685 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { | |
0e678153 DH |
6686 | /* Nothing to do. */ |
6687 | } else if (unlikely(is_hugetlb_entry_migration(pte))) { | |
a8bda28d | 6688 | swp_entry_t entry = pte_to_swp_entry(pte); |
6c287605 | 6689 | struct page *page = pfn_swap_entry_to_page(entry); |
44f86392 | 6690 | pte_t newpte = pte; |
a8bda28d | 6691 | |
44f86392 | 6692 | if (is_writable_migration_entry(entry)) { |
6c287605 DH |
6693 | if (PageAnon(page)) |
6694 | entry = make_readable_exclusive_migration_entry( | |
6695 | swp_offset(entry)); | |
6696 | else | |
6697 | entry = make_readable_migration_entry( | |
6698 | swp_offset(entry)); | |
a8bda28d | 6699 | newpte = swp_entry_to_pte(entry); |
a8bda28d NH |
6700 | pages++; |
6701 | } | |
44f86392 DH |
6702 | |
6703 | if (uffd_wp) | |
6704 | newpte = pte_swp_mkuffd_wp(newpte); | |
6705 | else if (uffd_wp_resolve) | |
6706 | newpte = pte_swp_clear_uffd_wp(newpte); | |
6707 | if (!pte_same(pte, newpte)) | |
6708 | set_huge_pte_at(mm, address, ptep, newpte); | |
0e678153 DH |
6709 | } else if (unlikely(is_pte_marker(pte))) { |
6710 | /* No other markers apply for now. */ | |
6711 | WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); | |
60dfaad6 | 6712 | if (uffd_wp_resolve) |
0e678153 | 6713 | /* Safe to modify directly (non-present->none). */ |
60dfaad6 | 6714 | huge_pte_clear(mm, address, ptep, psize); |
0e678153 | 6715 | } else if (!huge_pte_none(pte)) { |
023bdd00 | 6716 | pte_t old_pte; |
79c1c594 | 6717 | unsigned int shift = huge_page_shift(hstate_vma(vma)); |
023bdd00 AK |
6718 | |
6719 | old_pte = huge_ptep_modify_prot_start(vma, address, ptep); | |
16785bd7 | 6720 | pte = huge_pte_modify(old_pte, newprot); |
79c1c594 | 6721 | pte = arch_make_huge_pte(pte, shift, vma->vm_flags); |
5a90d5a1 | 6722 | if (uffd_wp) |
f1eb1bac | 6723 | pte = huge_pte_mkuffd_wp(pte); |
5a90d5a1 PX |
6724 | else if (uffd_wp_resolve) |
6725 | pte = huge_pte_clear_uffd_wp(pte); | |
023bdd00 | 6726 | huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); |
7da4d641 | 6727 | pages++; |
60dfaad6 PX |
6728 | } else { |
6729 | /* None pte */ | |
6730 | if (unlikely(uffd_wp)) | |
6731 | /* Safe to modify directly (none->non-present). */ | |
6732 | set_huge_pte_at(mm, address, ptep, | |
6733 | make_pte_marker(PTE_MARKER_UFFD_WP)); | |
8f860591 | 6734 | } |
cb900f41 | 6735 | spin_unlock(ptl); |
8f860591 | 6736 | } |
d833352a | 6737 | /* |
c8c06efa | 6738 | * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare |
d833352a | 6739 | * may have cleared our pud entry and done put_page on the page table: |
c8c06efa | 6740 | * once we release i_mmap_rwsem, another task can do the final put_page |
dff11abe MK |
6741 | * and that page table be reused and filled with junk. If we actually |
6742 | * did unshare a page of pmds, flush the range corresponding to the pud. | |
d833352a | 6743 | */ |
dff11abe | 6744 | if (shared_pmd) |
ac46d4f3 | 6745 | flush_hugetlb_tlb_range(vma, range.start, range.end); |
dff11abe MK |
6746 | else |
6747 | flush_hugetlb_tlb_range(vma, start, end); | |
0f10851e JG |
6748 | /* |
6749 | * No need to call mmu_notifier_invalidate_range() we are downgrading | |
6750 | * page table protection not changing it to point to a new page. | |
6751 | * | |
ee65728e | 6752 | * See Documentation/mm/mmu_notifier.rst |
0f10851e | 6753 | */ |
83cde9e8 | 6754 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
40549ba8 | 6755 | hugetlb_vma_unlock_write(vma); |
ac46d4f3 | 6756 | mmu_notifier_invalidate_range_end(&range); |
7da4d641 | 6757 | |
d1751118 | 6758 | return pages > 0 ? (pages << h->order) : pages; |
8f860591 ZY |
6759 | } |
6760 | ||
33b8f84a MK |
6761 | /* Return true if reservation was successful, false otherwise. */ |
6762 | bool hugetlb_reserve_pages(struct inode *inode, | |
a1e78772 | 6763 | long from, long to, |
5a6fe125 | 6764 | struct vm_area_struct *vma, |
ca16d140 | 6765 | vm_flags_t vm_flags) |
e4e574b7 | 6766 | { |
c5094ec7 | 6767 | long chg = -1, add = -1; |
a5516438 | 6768 | struct hstate *h = hstate_inode(inode); |
90481622 | 6769 | struct hugepage_subpool *spool = subpool_inode(inode); |
9119a41e | 6770 | struct resv_map *resv_map; |
075a61d0 | 6771 | struct hugetlb_cgroup *h_cg = NULL; |
0db9d74e | 6772 | long gbl_reserve, regions_needed = 0; |
e4e574b7 | 6773 | |
63489f8e MK |
6774 | /* This should never happen */ |
6775 | if (from > to) { | |
6776 | VM_WARN(1, "%s called with a negative range\n", __func__); | |
33b8f84a | 6777 | return false; |
63489f8e MK |
6778 | } |
6779 | ||
8d9bfb26 | 6780 | /* |
e700898f MK |
6781 | * vma specific semaphore used for pmd sharing and fault/truncation |
6782 | * synchronization | |
8d9bfb26 MK |
6783 | */ |
6784 | hugetlb_vma_lock_alloc(vma); | |
6785 | ||
17c9d12e MG |
6786 | /* |
6787 | * Only apply hugepage reservation if asked. At fault time, an | |
6788 | * attempt will be made for VM_NORESERVE to allocate a page | |
90481622 | 6789 | * without using reserves |
17c9d12e | 6790 | */ |
ca16d140 | 6791 | if (vm_flags & VM_NORESERVE) |
33b8f84a | 6792 | return true; |
17c9d12e | 6793 | |
a1e78772 MG |
6794 | /* |
6795 | * Shared mappings base their reservation on the number of pages that | |
6796 | * are already allocated on behalf of the file. Private mappings need | |
6797 | * to reserve the full area even if read-only as mprotect() may be | |
6798 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
6799 | */ | |
9119a41e | 6800 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
f27a5136 MK |
6801 | /* |
6802 | * resv_map can not be NULL as hugetlb_reserve_pages is only | |
6803 | * called for inodes for which resv_maps were created (see | |
6804 | * hugetlbfs_get_inode). | |
6805 | */ | |
4e35f483 | 6806 | resv_map = inode_resv_map(inode); |
9119a41e | 6807 | |
0db9d74e | 6808 | chg = region_chg(resv_map, from, to, ®ions_needed); |
9119a41e | 6809 | } else { |
e9fe92ae | 6810 | /* Private mapping. */ |
9119a41e | 6811 | resv_map = resv_map_alloc(); |
17c9d12e | 6812 | if (!resv_map) |
8d9bfb26 | 6813 | goto out_err; |
17c9d12e | 6814 | |
a1e78772 | 6815 | chg = to - from; |
84afd99b | 6816 | |
17c9d12e MG |
6817 | set_vma_resv_map(vma, resv_map); |
6818 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | |
6819 | } | |
6820 | ||
33b8f84a | 6821 | if (chg < 0) |
c50ac050 | 6822 | goto out_err; |
8a630112 | 6823 | |
33b8f84a MK |
6824 | if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), |
6825 | chg * pages_per_huge_page(h), &h_cg) < 0) | |
075a61d0 | 6826 | goto out_err; |
075a61d0 MA |
6827 | |
6828 | if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { | |
6829 | /* For private mappings, the hugetlb_cgroup uncharge info hangs | |
6830 | * of the resv_map. | |
6831 | */ | |
6832 | resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); | |
6833 | } | |
6834 | ||
1c5ecae3 MK |
6835 | /* |
6836 | * There must be enough pages in the subpool for the mapping. If | |
6837 | * the subpool has a minimum size, there may be some global | |
6838 | * reservations already in place (gbl_reserve). | |
6839 | */ | |
6840 | gbl_reserve = hugepage_subpool_get_pages(spool, chg); | |
33b8f84a | 6841 | if (gbl_reserve < 0) |
075a61d0 | 6842 | goto out_uncharge_cgroup; |
5a6fe125 MG |
6843 | |
6844 | /* | |
17c9d12e | 6845 | * Check enough hugepages are available for the reservation. |
90481622 | 6846 | * Hand the pages back to the subpool if there are not |
5a6fe125 | 6847 | */ |
33b8f84a | 6848 | if (hugetlb_acct_memory(h, gbl_reserve) < 0) |
075a61d0 | 6849 | goto out_put_pages; |
17c9d12e MG |
6850 | |
6851 | /* | |
6852 | * Account for the reservations made. Shared mappings record regions | |
6853 | * that have reservations as they are shared by multiple VMAs. | |
6854 | * When the last VMA disappears, the region map says how much | |
6855 | * the reservation was and the page cache tells how much of | |
6856 | * the reservation was consumed. Private mappings are per-VMA and | |
6857 | * only the consumed reservations are tracked. When the VMA | |
6858 | * disappears, the original reservation is the VMA size and the | |
6859 | * consumed reservations are stored in the map. Hence, nothing | |
6860 | * else has to be done for private mappings here | |
6861 | */ | |
33039678 | 6862 | if (!vma || vma->vm_flags & VM_MAYSHARE) { |
075a61d0 | 6863 | add = region_add(resv_map, from, to, regions_needed, h, h_cg); |
0db9d74e MA |
6864 | |
6865 | if (unlikely(add < 0)) { | |
6866 | hugetlb_acct_memory(h, -gbl_reserve); | |
075a61d0 | 6867 | goto out_put_pages; |
0db9d74e | 6868 | } else if (unlikely(chg > add)) { |
33039678 MK |
6869 | /* |
6870 | * pages in this range were added to the reserve | |
6871 | * map between region_chg and region_add. This | |
6872 | * indicates a race with alloc_huge_page. Adjust | |
6873 | * the subpool and reserve counts modified above | |
6874 | * based on the difference. | |
6875 | */ | |
6876 | long rsv_adjust; | |
6877 | ||
d85aecf2 ML |
6878 | /* |
6879 | * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the | |
6880 | * reference to h_cg->css. See comment below for detail. | |
6881 | */ | |
075a61d0 MA |
6882 | hugetlb_cgroup_uncharge_cgroup_rsvd( |
6883 | hstate_index(h), | |
6884 | (chg - add) * pages_per_huge_page(h), h_cg); | |
6885 | ||
33039678 MK |
6886 | rsv_adjust = hugepage_subpool_put_pages(spool, |
6887 | chg - add); | |
6888 | hugetlb_acct_memory(h, -rsv_adjust); | |
d85aecf2 ML |
6889 | } else if (h_cg) { |
6890 | /* | |
6891 | * The file_regions will hold their own reference to | |
6892 | * h_cg->css. So we should release the reference held | |
6893 | * via hugetlb_cgroup_charge_cgroup_rsvd() when we are | |
6894 | * done. | |
6895 | */ | |
6896 | hugetlb_cgroup_put_rsvd_cgroup(h_cg); | |
33039678 MK |
6897 | } |
6898 | } | |
33b8f84a MK |
6899 | return true; |
6900 | ||
075a61d0 MA |
6901 | out_put_pages: |
6902 | /* put back original number of pages, chg */ | |
6903 | (void)hugepage_subpool_put_pages(spool, chg); | |
6904 | out_uncharge_cgroup: | |
6905 | hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), | |
6906 | chg * pages_per_huge_page(h), h_cg); | |
c50ac050 | 6907 | out_err: |
8d9bfb26 | 6908 | hugetlb_vma_lock_free(vma); |
5e911373 | 6909 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
0db9d74e MA |
6910 | /* Only call region_abort if the region_chg succeeded but the |
6911 | * region_add failed or didn't run. | |
6912 | */ | |
6913 | if (chg >= 0 && add < 0) | |
6914 | region_abort(resv_map, from, to, regions_needed); | |
f031dd27 JK |
6915 | if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
6916 | kref_put(&resv_map->refs, resv_map_release); | |
33b8f84a | 6917 | return false; |
a43a8c39 KC |
6918 | } |
6919 | ||
b5cec28d MK |
6920 | long hugetlb_unreserve_pages(struct inode *inode, long start, long end, |
6921 | long freed) | |
a43a8c39 | 6922 | { |
a5516438 | 6923 | struct hstate *h = hstate_inode(inode); |
4e35f483 | 6924 | struct resv_map *resv_map = inode_resv_map(inode); |
9119a41e | 6925 | long chg = 0; |
90481622 | 6926 | struct hugepage_subpool *spool = subpool_inode(inode); |
1c5ecae3 | 6927 | long gbl_reserve; |
45c682a6 | 6928 | |
f27a5136 MK |
6929 | /* |
6930 | * Since this routine can be called in the evict inode path for all | |
6931 | * hugetlbfs inodes, resv_map could be NULL. | |
6932 | */ | |
b5cec28d MK |
6933 | if (resv_map) { |
6934 | chg = region_del(resv_map, start, end); | |
6935 | /* | |
6936 | * region_del() can fail in the rare case where a region | |
6937 | * must be split and another region descriptor can not be | |
6938 | * allocated. If end == LONG_MAX, it will not fail. | |
6939 | */ | |
6940 | if (chg < 0) | |
6941 | return chg; | |
6942 | } | |
6943 | ||
45c682a6 | 6944 | spin_lock(&inode->i_lock); |
e4c6f8be | 6945 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
45c682a6 KC |
6946 | spin_unlock(&inode->i_lock); |
6947 | ||
1c5ecae3 MK |
6948 | /* |
6949 | * If the subpool has a minimum size, the number of global | |
6950 | * reservations to be released may be adjusted. | |
dddf31a4 ML |
6951 | * |
6952 | * Note that !resv_map implies freed == 0. So (chg - freed) | |
6953 | * won't go negative. | |
1c5ecae3 MK |
6954 | */ |
6955 | gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); | |
6956 | hugetlb_acct_memory(h, -gbl_reserve); | |
b5cec28d MK |
6957 | |
6958 | return 0; | |
a43a8c39 | 6959 | } |
93f70f90 | 6960 | |
3212b535 SC |
6961 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
6962 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | |
6963 | struct vm_area_struct *vma, | |
6964 | unsigned long addr, pgoff_t idx) | |
6965 | { | |
6966 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | |
6967 | svma->vm_start; | |
6968 | unsigned long sbase = saddr & PUD_MASK; | |
6969 | unsigned long s_end = sbase + PUD_SIZE; | |
6970 | ||
6971 | /* Allow segments to share if only one is marked locked */ | |
de60f5f1 EM |
6972 | unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
6973 | unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; | |
3212b535 SC |
6974 | |
6975 | /* | |
6976 | * match the virtual addresses, permission and the alignment of the | |
6977 | * page table page. | |
131a79b4 MK |
6978 | * |
6979 | * Also, vma_lock (vm_private_data) is required for sharing. | |
3212b535 SC |
6980 | */ |
6981 | if (pmd_index(addr) != pmd_index(saddr) || | |
6982 | vm_flags != svm_flags || | |
131a79b4 MK |
6983 | !range_in_vma(svma, sbase, s_end) || |
6984 | !svma->vm_private_data) | |
3212b535 SC |
6985 | return 0; |
6986 | ||
6987 | return saddr; | |
6988 | } | |
6989 | ||
bbff39cc | 6990 | bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) |
3212b535 | 6991 | { |
bbff39cc MK |
6992 | unsigned long start = addr & PUD_MASK; |
6993 | unsigned long end = start + PUD_SIZE; | |
6994 | ||
8d9bfb26 MK |
6995 | #ifdef CONFIG_USERFAULTFD |
6996 | if (uffd_disable_huge_pmd_share(vma)) | |
6997 | return false; | |
6998 | #endif | |
3212b535 SC |
6999 | /* |
7000 | * check on proper vm_flags and page table alignment | |
7001 | */ | |
8d9bfb26 MK |
7002 | if (!(vma->vm_flags & VM_MAYSHARE)) |
7003 | return false; | |
bbff39cc | 7004 | if (!vma->vm_private_data) /* vma lock required for sharing */ |
8d9bfb26 MK |
7005 | return false; |
7006 | if (!range_in_vma(vma, start, end)) | |
7007 | return false; | |
7008 | return true; | |
7009 | } | |
7010 | ||
017b1660 MK |
7011 | /* |
7012 | * Determine if start,end range within vma could be mapped by shared pmd. | |
7013 | * If yes, adjust start and end to cover range associated with possible | |
7014 | * shared pmd mappings. | |
7015 | */ | |
7016 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | |
7017 | unsigned long *start, unsigned long *end) | |
7018 | { | |
a1ba9da8 LX |
7019 | unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), |
7020 | v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); | |
017b1660 | 7021 | |
a1ba9da8 | 7022 | /* |
f0953a1b IM |
7023 | * vma needs to span at least one aligned PUD size, and the range |
7024 | * must be at least partially within in. | |
a1ba9da8 LX |
7025 | */ |
7026 | if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || | |
7027 | (*end <= v_start) || (*start >= v_end)) | |
017b1660 MK |
7028 | return; |
7029 | ||
75802ca6 | 7030 | /* Extend the range to be PUD aligned for a worst case scenario */ |
a1ba9da8 LX |
7031 | if (*start > v_start) |
7032 | *start = ALIGN_DOWN(*start, PUD_SIZE); | |
017b1660 | 7033 | |
a1ba9da8 LX |
7034 | if (*end < v_end) |
7035 | *end = ALIGN(*end, PUD_SIZE); | |
017b1660 MK |
7036 | } |
7037 | ||
3212b535 SC |
7038 | /* |
7039 | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | |
7040 | * and returns the corresponding pte. While this is not necessary for the | |
7041 | * !shared pmd case because we can allocate the pmd later as well, it makes the | |
3a47c54f MK |
7042 | * code much cleaner. pmd allocation is essential for the shared case because |
7043 | * pud has to be populated inside the same i_mmap_rwsem section - otherwise | |
7044 | * racing tasks could either miss the sharing (see huge_pte_offset) or select a | |
7045 | * bad pmd for sharing. | |
3212b535 | 7046 | */ |
aec44e0f PX |
7047 | pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, |
7048 | unsigned long addr, pud_t *pud) | |
3212b535 | 7049 | { |
3212b535 SC |
7050 | struct address_space *mapping = vma->vm_file->f_mapping; |
7051 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | |
7052 | vma->vm_pgoff; | |
7053 | struct vm_area_struct *svma; | |
7054 | unsigned long saddr; | |
7055 | pte_t *spte = NULL; | |
7056 | pte_t *pte; | |
cb900f41 | 7057 | spinlock_t *ptl; |
3212b535 | 7058 | |
3a47c54f | 7059 | i_mmap_lock_read(mapping); |
3212b535 SC |
7060 | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { |
7061 | if (svma == vma) | |
7062 | continue; | |
7063 | ||
7064 | saddr = page_table_shareable(svma, vma, addr, idx); | |
7065 | if (saddr) { | |
9c67a207 PX |
7066 | spte = hugetlb_walk(svma, saddr, |
7067 | vma_mmu_pagesize(svma)); | |
3212b535 SC |
7068 | if (spte) { |
7069 | get_page(virt_to_page(spte)); | |
7070 | break; | |
7071 | } | |
7072 | } | |
7073 | } | |
7074 | ||
7075 | if (!spte) | |
7076 | goto out; | |
7077 | ||
8bea8052 | 7078 | ptl = huge_pte_lock(hstate_vma(vma), mm, spte); |
dc6c9a35 | 7079 | if (pud_none(*pud)) { |
3212b535 SC |
7080 | pud_populate(mm, pud, |
7081 | (pmd_t *)((unsigned long)spte & PAGE_MASK)); | |
c17b1f42 | 7082 | mm_inc_nr_pmds(mm); |
dc6c9a35 | 7083 | } else { |
3212b535 | 7084 | put_page(virt_to_page(spte)); |
dc6c9a35 | 7085 | } |
cb900f41 | 7086 | spin_unlock(ptl); |
3212b535 SC |
7087 | out: |
7088 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
3a47c54f | 7089 | i_mmap_unlock_read(mapping); |
3212b535 SC |
7090 | return pte; |
7091 | } | |
7092 | ||
7093 | /* | |
7094 | * unmap huge page backed by shared pte. | |
7095 | * | |
7096 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared | |
7097 | * indicated by page_count > 1, unmap is achieved by clearing pud and | |
7098 | * decrementing the ref count. If count == 1, the pte page is not shared. | |
7099 | * | |
3a47c54f | 7100 | * Called with page table lock held. |
3212b535 SC |
7101 | * |
7102 | * returns: 1 successfully unmapped a shared pte page | |
7103 | * 0 the underlying pte page is not shared, or it is the last user | |
7104 | */ | |
34ae204f | 7105 | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, |
4ddb4d91 | 7106 | unsigned long addr, pte_t *ptep) |
3212b535 | 7107 | { |
4ddb4d91 MK |
7108 | pgd_t *pgd = pgd_offset(mm, addr); |
7109 | p4d_t *p4d = p4d_offset(pgd, addr); | |
7110 | pud_t *pud = pud_offset(p4d, addr); | |
3212b535 | 7111 | |
34ae204f | 7112 | i_mmap_assert_write_locked(vma->vm_file->f_mapping); |
40549ba8 | 7113 | hugetlb_vma_assert_locked(vma); |
3212b535 SC |
7114 | BUG_ON(page_count(virt_to_page(ptep)) == 0); |
7115 | if (page_count(virt_to_page(ptep)) == 1) | |
7116 | return 0; | |
7117 | ||
7118 | pud_clear(pud); | |
7119 | put_page(virt_to_page(ptep)); | |
dc6c9a35 | 7120 | mm_dec_nr_pmds(mm); |
3212b535 SC |
7121 | return 1; |
7122 | } | |
c1991e07 | 7123 | |
9e5fc74c | 7124 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
8d9bfb26 | 7125 | |
aec44e0f PX |
7126 | pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, |
7127 | unsigned long addr, pud_t *pud) | |
9e5fc74c SC |
7128 | { |
7129 | return NULL; | |
7130 | } | |
e81f2d22 | 7131 | |
34ae204f | 7132 | int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, |
4ddb4d91 | 7133 | unsigned long addr, pte_t *ptep) |
e81f2d22 ZZ |
7134 | { |
7135 | return 0; | |
7136 | } | |
017b1660 MK |
7137 | |
7138 | void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, | |
7139 | unsigned long *start, unsigned long *end) | |
7140 | { | |
7141 | } | |
c1991e07 PX |
7142 | |
7143 | bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) | |
7144 | { | |
7145 | return false; | |
7146 | } | |
3212b535 SC |
7147 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
7148 | ||
9e5fc74c | 7149 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB |
aec44e0f | 7150 | pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, |
9e5fc74c SC |
7151 | unsigned long addr, unsigned long sz) |
7152 | { | |
7153 | pgd_t *pgd; | |
c2febafc | 7154 | p4d_t *p4d; |
9e5fc74c SC |
7155 | pud_t *pud; |
7156 | pte_t *pte = NULL; | |
7157 | ||
7158 | pgd = pgd_offset(mm, addr); | |
f4f0a3d8 KS |
7159 | p4d = p4d_alloc(mm, pgd, addr); |
7160 | if (!p4d) | |
7161 | return NULL; | |
c2febafc | 7162 | pud = pud_alloc(mm, p4d, addr); |
9e5fc74c SC |
7163 | if (pud) { |
7164 | if (sz == PUD_SIZE) { | |
7165 | pte = (pte_t *)pud; | |
7166 | } else { | |
7167 | BUG_ON(sz != PMD_SIZE); | |
c1991e07 | 7168 | if (want_pmd_share(vma, addr) && pud_none(*pud)) |
aec44e0f | 7169 | pte = huge_pmd_share(mm, vma, addr, pud); |
9e5fc74c SC |
7170 | else |
7171 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
7172 | } | |
7173 | } | |
4e666314 | 7174 | BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); |
9e5fc74c SC |
7175 | |
7176 | return pte; | |
7177 | } | |
7178 | ||
9b19df29 PA |
7179 | /* |
7180 | * huge_pte_offset() - Walk the page table to resolve the hugepage | |
7181 | * entry at address @addr | |
7182 | * | |
8ac0b81a LX |
7183 | * Return: Pointer to page table entry (PUD or PMD) for |
7184 | * address @addr, or NULL if a !p*d_present() entry is encountered and the | |
9b19df29 PA |
7185 | * size @sz doesn't match the hugepage size at this level of the page |
7186 | * table. | |
7187 | */ | |
7868a208 PA |
7188 | pte_t *huge_pte_offset(struct mm_struct *mm, |
7189 | unsigned long addr, unsigned long sz) | |
9e5fc74c SC |
7190 | { |
7191 | pgd_t *pgd; | |
c2febafc | 7192 | p4d_t *p4d; |
8ac0b81a LX |
7193 | pud_t *pud; |
7194 | pmd_t *pmd; | |
9e5fc74c SC |
7195 | |
7196 | pgd = pgd_offset(mm, addr); | |
c2febafc KS |
7197 | if (!pgd_present(*pgd)) |
7198 | return NULL; | |
7199 | p4d = p4d_offset(pgd, addr); | |
7200 | if (!p4d_present(*p4d)) | |
7201 | return NULL; | |
9b19df29 | 7202 | |
c2febafc | 7203 | pud = pud_offset(p4d, addr); |
8ac0b81a LX |
7204 | if (sz == PUD_SIZE) |
7205 | /* must be pud huge, non-present or none */ | |
c2febafc | 7206 | return (pte_t *)pud; |
8ac0b81a | 7207 | if (!pud_present(*pud)) |
9b19df29 | 7208 | return NULL; |
8ac0b81a | 7209 | /* must have a valid entry and size to go further */ |
9b19df29 | 7210 | |
8ac0b81a LX |
7211 | pmd = pmd_offset(pud, addr); |
7212 | /* must be pmd huge, non-present or none */ | |
7213 | return (pte_t *)pmd; | |
9e5fc74c SC |
7214 | } |
7215 | ||
e95a9851 MK |
7216 | /* |
7217 | * Return a mask that can be used to update an address to the last huge | |
7218 | * page in a page table page mapping size. Used to skip non-present | |
7219 | * page table entries when linearly scanning address ranges. Architectures | |
7220 | * with unique huge page to page table relationships can define their own | |
7221 | * version of this routine. | |
7222 | */ | |
7223 | unsigned long hugetlb_mask_last_page(struct hstate *h) | |
7224 | { | |
7225 | unsigned long hp_size = huge_page_size(h); | |
7226 | ||
7227 | if (hp_size == PUD_SIZE) | |
7228 | return P4D_SIZE - PUD_SIZE; | |
7229 | else if (hp_size == PMD_SIZE) | |
7230 | return PUD_SIZE - PMD_SIZE; | |
7231 | else | |
7232 | return 0UL; | |
7233 | } | |
7234 | ||
7235 | #else | |
7236 | ||
7237 | /* See description above. Architectures can provide their own version. */ | |
7238 | __weak unsigned long hugetlb_mask_last_page(struct hstate *h) | |
7239 | { | |
4ddb4d91 MK |
7240 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
7241 | if (huge_page_size(h) == PMD_SIZE) | |
7242 | return PUD_SIZE - PMD_SIZE; | |
7243 | #endif | |
e95a9851 MK |
7244 | return 0UL; |
7245 | } | |
7246 | ||
61f77eda NH |
7247 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ |
7248 | ||
7249 | /* | |
7250 | * These functions are overwritable if your architecture needs its own | |
7251 | * behavior. | |
7252 | */ | |
7ce82f4c | 7253 | int isolate_hugetlb(struct page *page, struct list_head *list) |
31caf665 | 7254 | { |
7ce82f4c | 7255 | int ret = 0; |
bcc54222 | 7256 | |
db71ef79 | 7257 | spin_lock_irq(&hugetlb_lock); |
8f251a3d MK |
7258 | if (!PageHeadHuge(page) || |
7259 | !HPageMigratable(page) || | |
0eb2df2b | 7260 | !get_page_unless_zero(page)) { |
7ce82f4c | 7261 | ret = -EBUSY; |
bcc54222 NH |
7262 | goto unlock; |
7263 | } | |
8f251a3d | 7264 | ClearHPageMigratable(page); |
31caf665 | 7265 | list_move_tail(&page->lru, list); |
bcc54222 | 7266 | unlock: |
db71ef79 | 7267 | spin_unlock_irq(&hugetlb_lock); |
bcc54222 | 7268 | return ret; |
31caf665 NH |
7269 | } |
7270 | ||
04bac040 | 7271 | int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) |
25182f05 NH |
7272 | { |
7273 | int ret = 0; | |
7274 | ||
7275 | *hugetlb = false; | |
7276 | spin_lock_irq(&hugetlb_lock); | |
04bac040 | 7277 | if (folio_test_hugetlb(folio)) { |
25182f05 | 7278 | *hugetlb = true; |
04bac040 | 7279 | if (folio_test_hugetlb_freed(folio)) |
b283d983 | 7280 | ret = 0; |
04bac040 SK |
7281 | else if (folio_test_hugetlb_migratable(folio) || unpoison) |
7282 | ret = folio_try_get(folio); | |
0ed950d1 NH |
7283 | else |
7284 | ret = -EBUSY; | |
25182f05 NH |
7285 | } |
7286 | spin_unlock_irq(&hugetlb_lock); | |
7287 | return ret; | |
7288 | } | |
7289 | ||
e591ef7d NH |
7290 | int get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
7291 | bool *migratable_cleared) | |
405ce051 NH |
7292 | { |
7293 | int ret; | |
7294 | ||
7295 | spin_lock_irq(&hugetlb_lock); | |
e591ef7d | 7296 | ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); |
405ce051 NH |
7297 | spin_unlock_irq(&hugetlb_lock); |
7298 | return ret; | |
7299 | } | |
7300 | ||
31caf665 NH |
7301 | void putback_active_hugepage(struct page *page) |
7302 | { | |
db71ef79 | 7303 | spin_lock_irq(&hugetlb_lock); |
8f251a3d | 7304 | SetHPageMigratable(page); |
31caf665 | 7305 | list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); |
db71ef79 | 7306 | spin_unlock_irq(&hugetlb_lock); |
31caf665 NH |
7307 | put_page(page); |
7308 | } | |
ab5ac90a | 7309 | |
345c62d1 | 7310 | void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) |
ab5ac90a | 7311 | { |
345c62d1 | 7312 | struct hstate *h = folio_hstate(old_folio); |
ab5ac90a | 7313 | |
345c62d1 SK |
7314 | hugetlb_cgroup_migrate(old_folio, new_folio); |
7315 | set_page_owner_migrate_reason(&new_folio->page, reason); | |
ab5ac90a MH |
7316 | |
7317 | /* | |
345c62d1 | 7318 | * transfer temporary state of the new hugetlb folio. This is |
ab5ac90a MH |
7319 | * reverse to other transitions because the newpage is going to |
7320 | * be final while the old one will be freed so it takes over | |
7321 | * the temporary status. | |
7322 | * | |
7323 | * Also note that we have to transfer the per-node surplus state | |
7324 | * here as well otherwise the global surplus count will not match | |
7325 | * the per-node's. | |
7326 | */ | |
345c62d1 SK |
7327 | if (folio_test_hugetlb_temporary(new_folio)) { |
7328 | int old_nid = folio_nid(old_folio); | |
7329 | int new_nid = folio_nid(new_folio); | |
7330 | ||
345c62d1 SK |
7331 | folio_set_hugetlb_temporary(old_folio); |
7332 | folio_clear_hugetlb_temporary(new_folio); | |
ab5ac90a | 7333 | |
ab5ac90a | 7334 | |
5af1ab1d ML |
7335 | /* |
7336 | * There is no need to transfer the per-node surplus state | |
7337 | * when we do not cross the node. | |
7338 | */ | |
7339 | if (new_nid == old_nid) | |
7340 | return; | |
db71ef79 | 7341 | spin_lock_irq(&hugetlb_lock); |
ab5ac90a MH |
7342 | if (h->surplus_huge_pages_node[old_nid]) { |
7343 | h->surplus_huge_pages_node[old_nid]--; | |
7344 | h->surplus_huge_pages_node[new_nid]++; | |
7345 | } | |
db71ef79 | 7346 | spin_unlock_irq(&hugetlb_lock); |
ab5ac90a MH |
7347 | } |
7348 | } | |
cf11e85f | 7349 | |
b30c14cd JH |
7350 | static void hugetlb_unshare_pmds(struct vm_area_struct *vma, |
7351 | unsigned long start, | |
7352 | unsigned long end) | |
6dfeaff9 PX |
7353 | { |
7354 | struct hstate *h = hstate_vma(vma); | |
7355 | unsigned long sz = huge_page_size(h); | |
7356 | struct mm_struct *mm = vma->vm_mm; | |
7357 | struct mmu_notifier_range range; | |
b30c14cd | 7358 | unsigned long address; |
6dfeaff9 PX |
7359 | spinlock_t *ptl; |
7360 | pte_t *ptep; | |
7361 | ||
7362 | if (!(vma->vm_flags & VM_MAYSHARE)) | |
7363 | return; | |
7364 | ||
6dfeaff9 PX |
7365 | if (start >= end) |
7366 | return; | |
7367 | ||
9c8bbfac | 7368 | flush_cache_range(vma, start, end); |
6dfeaff9 PX |
7369 | /* |
7370 | * No need to call adjust_range_if_pmd_sharing_possible(), because | |
7371 | * we have already done the PUD_SIZE alignment. | |
7372 | */ | |
7d4a8be0 | 7373 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, |
6dfeaff9 PX |
7374 | start, end); |
7375 | mmu_notifier_invalidate_range_start(&range); | |
40549ba8 | 7376 | hugetlb_vma_lock_write(vma); |
6dfeaff9 PX |
7377 | i_mmap_lock_write(vma->vm_file->f_mapping); |
7378 | for (address = start; address < end; address += PUD_SIZE) { | |
9c67a207 | 7379 | ptep = hugetlb_walk(vma, address, sz); |
6dfeaff9 PX |
7380 | if (!ptep) |
7381 | continue; | |
7382 | ptl = huge_pte_lock(h, mm, ptep); | |
4ddb4d91 | 7383 | huge_pmd_unshare(mm, vma, address, ptep); |
6dfeaff9 PX |
7384 | spin_unlock(ptl); |
7385 | } | |
7386 | flush_hugetlb_tlb_range(vma, start, end); | |
7387 | i_mmap_unlock_write(vma->vm_file->f_mapping); | |
40549ba8 | 7388 | hugetlb_vma_unlock_write(vma); |
6dfeaff9 PX |
7389 | /* |
7390 | * No need to call mmu_notifier_invalidate_range(), see | |
ee65728e | 7391 | * Documentation/mm/mmu_notifier.rst. |
6dfeaff9 PX |
7392 | */ |
7393 | mmu_notifier_invalidate_range_end(&range); | |
7394 | } | |
7395 | ||
b30c14cd JH |
7396 | /* |
7397 | * This function will unconditionally remove all the shared pmd pgtable entries | |
7398 | * within the specific vma for a hugetlbfs memory range. | |
7399 | */ | |
7400 | void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) | |
7401 | { | |
7402 | hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), | |
7403 | ALIGN_DOWN(vma->vm_end, PUD_SIZE)); | |
7404 | } | |
7405 | ||
cf11e85f | 7406 | #ifdef CONFIG_CMA |
cf11e85f RG |
7407 | static bool cma_reserve_called __initdata; |
7408 | ||
7409 | static int __init cmdline_parse_hugetlb_cma(char *p) | |
7410 | { | |
38e719ab BW |
7411 | int nid, count = 0; |
7412 | unsigned long tmp; | |
7413 | char *s = p; | |
7414 | ||
7415 | while (*s) { | |
7416 | if (sscanf(s, "%lu%n", &tmp, &count) != 1) | |
7417 | break; | |
7418 | ||
7419 | if (s[count] == ':') { | |
f9317f77 | 7420 | if (tmp >= MAX_NUMNODES) |
38e719ab | 7421 | break; |
f9317f77 | 7422 | nid = array_index_nospec(tmp, MAX_NUMNODES); |
38e719ab BW |
7423 | |
7424 | s += count + 1; | |
7425 | tmp = memparse(s, &s); | |
7426 | hugetlb_cma_size_in_node[nid] = tmp; | |
7427 | hugetlb_cma_size += tmp; | |
7428 | ||
7429 | /* | |
7430 | * Skip the separator if have one, otherwise | |
7431 | * break the parsing. | |
7432 | */ | |
7433 | if (*s == ',') | |
7434 | s++; | |
7435 | else | |
7436 | break; | |
7437 | } else { | |
7438 | hugetlb_cma_size = memparse(p, &p); | |
7439 | break; | |
7440 | } | |
7441 | } | |
7442 | ||
cf11e85f RG |
7443 | return 0; |
7444 | } | |
7445 | ||
7446 | early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); | |
7447 | ||
7448 | void __init hugetlb_cma_reserve(int order) | |
7449 | { | |
7450 | unsigned long size, reserved, per_node; | |
38e719ab | 7451 | bool node_specific_cma_alloc = false; |
cf11e85f RG |
7452 | int nid; |
7453 | ||
7454 | cma_reserve_called = true; | |
7455 | ||
38e719ab BW |
7456 | if (!hugetlb_cma_size) |
7457 | return; | |
7458 | ||
7459 | for (nid = 0; nid < MAX_NUMNODES; nid++) { | |
7460 | if (hugetlb_cma_size_in_node[nid] == 0) | |
7461 | continue; | |
7462 | ||
30a51400 | 7463 | if (!node_online(nid)) { |
38e719ab BW |
7464 | pr_warn("hugetlb_cma: invalid node %d specified\n", nid); |
7465 | hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; | |
7466 | hugetlb_cma_size_in_node[nid] = 0; | |
7467 | continue; | |
7468 | } | |
7469 | ||
7470 | if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { | |
7471 | pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", | |
7472 | nid, (PAGE_SIZE << order) / SZ_1M); | |
7473 | hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; | |
7474 | hugetlb_cma_size_in_node[nid] = 0; | |
7475 | } else { | |
7476 | node_specific_cma_alloc = true; | |
7477 | } | |
7478 | } | |
7479 | ||
7480 | /* Validate the CMA size again in case some invalid nodes specified. */ | |
cf11e85f RG |
7481 | if (!hugetlb_cma_size) |
7482 | return; | |
7483 | ||
7484 | if (hugetlb_cma_size < (PAGE_SIZE << order)) { | |
7485 | pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", | |
7486 | (PAGE_SIZE << order) / SZ_1M); | |
a01f4390 | 7487 | hugetlb_cma_size = 0; |
cf11e85f RG |
7488 | return; |
7489 | } | |
7490 | ||
38e719ab BW |
7491 | if (!node_specific_cma_alloc) { |
7492 | /* | |
7493 | * If 3 GB area is requested on a machine with 4 numa nodes, | |
7494 | * let's allocate 1 GB on first three nodes and ignore the last one. | |
7495 | */ | |
7496 | per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); | |
7497 | pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", | |
7498 | hugetlb_cma_size / SZ_1M, per_node / SZ_1M); | |
7499 | } | |
cf11e85f RG |
7500 | |
7501 | reserved = 0; | |
30a51400 | 7502 | for_each_online_node(nid) { |
cf11e85f | 7503 | int res; |
2281f797 | 7504 | char name[CMA_MAX_NAME]; |
cf11e85f | 7505 | |
38e719ab BW |
7506 | if (node_specific_cma_alloc) { |
7507 | if (hugetlb_cma_size_in_node[nid] == 0) | |
7508 | continue; | |
7509 | ||
7510 | size = hugetlb_cma_size_in_node[nid]; | |
7511 | } else { | |
7512 | size = min(per_node, hugetlb_cma_size - reserved); | |
7513 | } | |
7514 | ||
cf11e85f RG |
7515 | size = round_up(size, PAGE_SIZE << order); |
7516 | ||
2281f797 | 7517 | snprintf(name, sizeof(name), "hugetlb%d", nid); |
a01f4390 MK |
7518 | /* |
7519 | * Note that 'order per bit' is based on smallest size that | |
7520 | * may be returned to CMA allocator in the case of | |
7521 | * huge page demotion. | |
7522 | */ | |
7523 | res = cma_declare_contiguous_nid(0, size, 0, | |
7524 | PAGE_SIZE << HUGETLB_PAGE_ORDER, | |
29d0f41d | 7525 | 0, false, name, |
cf11e85f RG |
7526 | &hugetlb_cma[nid], nid); |
7527 | if (res) { | |
7528 | pr_warn("hugetlb_cma: reservation failed: err %d, node %d", | |
7529 | res, nid); | |
7530 | continue; | |
7531 | } | |
7532 | ||
7533 | reserved += size; | |
7534 | pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", | |
7535 | size / SZ_1M, nid); | |
7536 | ||
7537 | if (reserved >= hugetlb_cma_size) | |
7538 | break; | |
7539 | } | |
a01f4390 MK |
7540 | |
7541 | if (!reserved) | |
7542 | /* | |
7543 | * hugetlb_cma_size is used to determine if allocations from | |
7544 | * cma are possible. Set to zero if no cma regions are set up. | |
7545 | */ | |
7546 | hugetlb_cma_size = 0; | |
cf11e85f RG |
7547 | } |
7548 | ||
263b8998 | 7549 | static void __init hugetlb_cma_check(void) |
cf11e85f RG |
7550 | { |
7551 | if (!hugetlb_cma_size || cma_reserve_called) | |
7552 | return; | |
7553 | ||
7554 | pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); | |
7555 | } | |
7556 | ||
7557 | #endif /* CONFIG_CMA */ |