tools/mm: allow users to provide additional cflags/ldflags
[linux.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
b958d4d0 36#include <linux/memory.h>
d6606683 37
63551ae0 38#include <asm/page.h>
ca15ca40 39#include <asm/pgalloc.h>
24669e58 40#include <asm/tlb.h>
63551ae0 41
24669e58 42#include <linux/io.h>
63551ae0 43#include <linux/hugetlb.h>
9dd540e2 44#include <linux/hugetlb_cgroup.h>
9a305230 45#include <linux/node.h>
ab5ac90a 46#include <linux/page_owner.h>
7835e98b 47#include "internal.h"
f41f2ed4 48#include "hugetlb_vmemmap.h"
1da177e4 49
c3f38a38 50int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 53
dbda8fea 54#ifdef CONFIG_CMA
cf11e85f 55static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
2f6c57d6 57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390 58{
2f6c57d6 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
a01f4390
MK
60 1 << order);
61}
62#else
2f6c57d6 63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390
MK
64{
65 return false;
66}
dbda8fea
BS
67#endif
68static unsigned long hugetlb_cma_size __initdata;
cf11e85f 69
53ba51d2
JT
70__initdata LIST_HEAD(huge_boot_pages);
71
e5ff2159
AK
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 75static bool __initdata parsed_valid_hugepagesz = true;
282f4214 76static bool __initdata parsed_default_hugepagesz;
b5389086 77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 78
3935baa9 79/*
31caf665
NH
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
3935baa9 82 */
c3f38a38 83DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 84
8382d914
DB
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
c672c7f2 90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 91
7ca02d0a
MK
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
8d9bfb26
MK
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
ecfbd733 96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
b30c14cd
JH
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
7ca02d0a 99
1d88433b 100static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 101{
1d88433b
ML
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
90481622 111
db71ef79
MK
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
1d88433b 114{
db71ef79 115 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
116
117 /* If no pages are used, and no other handles to the subpool
7c8de358 118 * remain, give up any reservations based on minimum size and
7ca02d0a 119 * free the subpool */
1d88433b 120 if (subpool_is_free(spool)) {
7ca02d0a
MK
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
90481622 124 kfree(spool);
7ca02d0a 125 }
90481622
DG
126}
127
7ca02d0a
MK
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
90481622
DG
130{
131 struct hugepage_subpool *spool;
132
c6a91820 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
7ca02d0a
MK
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
90481622
DG
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
db71ef79
MK
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
157 BUG_ON(!spool->count);
158 spool->count--;
db71ef79 159 unlock_or_release_subpool(spool, flags);
90481622
DG
160}
161
1c5ecae3
MK
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 165 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
7c8de358 168 * a subpool minimum size must be maintained.
1c5ecae3
MK
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
171 long delta)
172{
1c5ecae3 173 long ret = delta;
90481622
DG
174
175 if (!spool)
1c5ecae3 176 return ret;
90481622 177
db71ef79 178 spin_lock_irq(&spool->lock);
1c5ecae3
MK
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
90481622 187 }
90481622 188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
db71ef79 205 spin_unlock_irq(&spool->lock);
90481622
DG
206 return ret;
207}
208
1c5ecae3
MK
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
216 long delta)
217{
1c5ecae3 218 long ret = delta;
db71ef79 219 unsigned long flags;
1c5ecae3 220
90481622 221 if (!spool)
1c5ecae3 222 return delta;
90481622 223
db71ef79 224 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
09a95e29
MK
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
db71ef79 245 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
246
247 return ret;
90481622
DG
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
496ad9aa 257 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
258}
259
e700898f
MK
260/*
261 * hugetlb vma_lock helper routines
262 */
e700898f
MK
263void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264{
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268 down_read(&vma_lock->rw_sema);
269 }
270}
271
272void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273{
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277 up_read(&vma_lock->rw_sema);
278 }
279}
280
281void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282{
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286 down_write(&vma_lock->rw_sema);
287 }
288}
289
290void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291{
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295 up_write(&vma_lock->rw_sema);
296 }
297}
298
299int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300{
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303 if (!__vma_shareable_lock(vma))
304 return 1;
305
306 return down_write_trylock(&vma_lock->rw_sema);
307}
308
309void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310{
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314 lockdep_assert_held(&vma_lock->rw_sema);
315 }
316}
317
318void hugetlb_vma_lock_release(struct kref *kref)
319{
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
322
323 kfree(vma_lock);
324}
325
326static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327{
328 struct vm_area_struct *vma = vma_lock->vma;
329
330 /*
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
334 */
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339}
340
341static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342{
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346 __hugetlb_vma_unlock_write_put(vma_lock);
347 }
348}
349
350static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351{
352 /*
353 * Only present in sharable vmas.
354 */
355 if (!vma || !__vma_shareable_lock(vma))
356 return;
357
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
363 }
364}
365
366static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367{
368 struct hugetlb_vma_lock *vma_lock;
369
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 return;
373
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
376 return;
377
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 if (!vma_lock) {
380 /*
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
389 */
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 return;
392 }
393
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
396 vma_lock->vma = vma;
397 vma->vm_private_data = vma_lock;
398}
399
0db9d74e
MA
400/* Helper that removes a struct file_region from the resv_map cache and returns
401 * it for use.
402 */
403static struct file_region *
404get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405{
3259914f 406 struct file_region *nrg;
0db9d74e
MA
407
408 VM_BUG_ON(resv->region_cache_count <= 0);
409
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
412 list_del(&nrg->link);
413
414 nrg->from = from;
415 nrg->to = to;
416
417 return nrg;
418}
419
075a61d0
MA
420static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
422{
423#ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
425 nrg->css = rg->css;
426 if (rg->css)
427 css_get(rg->css);
428#endif
429}
430
431/* Helper that records hugetlb_cgroup uncharge info. */
432static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 struct hstate *h,
434 struct resv_map *resv,
435 struct file_region *nrg)
436{
437#ifdef CONFIG_CGROUP_HUGETLB
438 if (h_cg) {
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
d85aecf2
ML
442 /*
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
450 * untouched.
451 */
452 css_get(&h_cg->css);
075a61d0
MA
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
456 * a resv_map.
457 */
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 } else {
460 nrg->reservation_counter = NULL;
461 nrg->css = NULL;
462 }
463#endif
464}
465
d85aecf2
ML
466static void put_uncharge_info(struct file_region *rg)
467{
468#ifdef CONFIG_CGROUP_HUGETLB
469 if (rg->css)
470 css_put(rg->css);
471#endif
472}
473
a9b3f867
MA
474static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
476{
477#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 478 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
479 rg->css == org->css;
480
481#else
482 return true;
483#endif
484}
485
486static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487{
3259914f 488 struct file_region *nrg, *prg;
a9b3f867
MA
489
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
493 prg->to = rg->to;
494
495 list_del(&rg->link);
d85aecf2 496 put_uncharge_info(rg);
a9b3f867
MA
497 kfree(rg);
498
7db5e7b6 499 rg = prg;
a9b3f867
MA
500 }
501
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
506
507 list_del(&rg->link);
d85aecf2 508 put_uncharge_info(rg);
a9b3f867 509 kfree(rg);
a9b3f867
MA
510 }
511}
512
2103cf9c 513static inline long
84448c8e 514hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
517{
518 struct file_region *nrg;
519
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 523 list_add(&nrg->link, rg);
2103cf9c
PX
524 coalesce_file_region(map, nrg);
525 } else
526 *regions_needed += 1;
527
528 return to - from;
529}
530
972a3da3
WY
531/*
532 * Must be called with resv->lock held.
533 *
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
d75c6af9
MA
538 */
539static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 540 struct hugetlb_cgroup *h_cg,
972a3da3 541 struct hstate *h, long *regions_needed)
d75c6af9 542{
0db9d74e 543 long add = 0;
d75c6af9 544 struct list_head *head = &resv->regions;
0db9d74e 545 long last_accounted_offset = f;
84448c8e
JK
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
d75c6af9 548
0db9d74e
MA
549 if (regions_needed)
550 *regions_needed = 0;
d75c6af9 551
0db9d74e 552 /* In this loop, we essentially handle an entry for the range
84448c8e 553 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
554 * bounds checking.
555 */
84448c8e 556 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 557 /* Skip irrelevant regions that start before our range. */
84448c8e 558 if (iter->from < f) {
0db9d74e
MA
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
561 */
84448c8e
JK
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
0db9d74e
MA
564 continue;
565 }
d75c6af9 566
0db9d74e
MA
567 /* When we find a region that starts beyond our range, we've
568 * finished.
569 */
84448c8e
JK
570 if (iter->from >= t) {
571 rg = iter->link.prev;
d75c6af9 572 break;
84448c8e 573 }
d75c6af9 574
84448c8e 575 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
576 * update last_accounted_offset.
577 */
84448c8e
JK
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 580 last_accounted_offset,
84448c8e 581 iter->from, h, h_cg,
2103cf9c 582 regions_needed);
0db9d74e 583
84448c8e 584 last_accounted_offset = iter->to;
0db9d74e
MA
585 }
586
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
589 */
84448c8e
JK
590 if (!rg)
591 rg = head->prev;
2103cf9c
PX
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
0db9d74e 595
0db9d74e
MA
596 return add;
597}
598
599/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600 */
601static int allocate_file_region_entries(struct resv_map *resv,
602 int regions_needed)
603 __must_hold(&resv->lock)
604{
34665341 605 LIST_HEAD(allocated_regions);
0db9d74e
MA
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
608
609 VM_BUG_ON(regions_needed < 0);
610
0db9d74e
MA
611 /*
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
614 *
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
619 */
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
624
625 /* At this point, we should have enough entries in the cache
f0953a1b 626 * for all the existing adds_in_progress. We should only be
0db9d74e 627 * needing to allocate for regions_needed.
d75c6af9 628 */
0db9d74e
MA
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 if (!trg)
635 goto out_of_memory;
636 list_add(&trg->link, &allocated_regions);
d75c6af9 637 }
d75c6af9 638
0db9d74e
MA
639 spin_lock(&resv->lock);
640
d3ec7b6e
WY
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
d75c6af9
MA
643 }
644
0db9d74e 645 return 0;
d75c6af9 646
0db9d74e
MA
647out_of_memory:
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 list_del(&rg->link);
650 kfree(rg);
651 }
652 return -ENOMEM;
d75c6af9
MA
653}
654
1dd308a7
MK
655/*
656 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
cf3ad20b 662 *
0db9d74e
MA
663 * regions_needed is the out value provided by a previous call to region_chg.
664 *
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 667 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
1dd308a7 671 */
0db9d74e 672static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
96822904 675{
0db9d74e 676 long add = 0, actual_regions_needed = 0;
96822904 677
7b24d861 678 spin_lock(&resv->lock);
0db9d74e
MA
679retry:
680
681 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
96822904 684
5e911373 685 /*
0db9d74e
MA
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
692 * operation.
5e911373 693 */
0db9d74e
MA
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
700 */
701 VM_BUG_ON(t - f <= 1);
5e911373 702
0db9d74e
MA
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
705 return -ENOMEM;
706 }
5e911373 707
0db9d74e 708 goto retry;
5e911373
MK
709 }
710
972a3da3 711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
712
713 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 714
7b24d861 715 spin_unlock(&resv->lock);
cf3ad20b 716 return add;
96822904
AW
717}
718
1dd308a7
MK
719/*
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
0db9d74e
MA
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
729 *
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
5e911373
MK
733 *
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
1dd308a7 738 */
0db9d74e
MA
739static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
96822904 741{
96822904
AW
742 long chg = 0;
743
7b24d861 744 spin_lock(&resv->lock);
5e911373 745
972a3da3 746 /* Count how many hugepages in this range are NOT represented. */
075a61d0 747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 748 out_regions_needed);
5e911373 749
0db9d74e
MA
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
5e911373 752
0db9d74e
MA
753 if (allocate_file_region_entries(resv, *out_regions_needed))
754 return -ENOMEM;
5e911373 755
0db9d74e 756 resv->adds_in_progress += *out_regions_needed;
7b24d861 757
7b24d861 758 spin_unlock(&resv->lock);
96822904
AW
759 return chg;
760}
761
5e911373
MK
762/*
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
5e911373
MK
770 *
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
774 */
0db9d74e
MA
775static void region_abort(struct resv_map *resv, long f, long t,
776 long regions_needed)
5e911373
MK
777{
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 780 resv->adds_in_progress -= regions_needed;
5e911373
MK
781 spin_unlock(&resv->lock);
782}
783
1dd308a7 784/*
feba16e2
MK
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
789 *
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 797 */
feba16e2 798static long region_del(struct resv_map *resv, long f, long t)
96822904 799{
1406ec9b 800 struct list_head *head = &resv->regions;
96822904 801 struct file_region *rg, *trg;
feba16e2
MK
802 struct file_region *nrg = NULL;
803 long del = 0;
96822904 804
feba16e2 805retry:
7b24d861 806 spin_lock(&resv->lock);
feba16e2 807 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
808 /*
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
814 */
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 816 continue;
dbe409e4 817
feba16e2 818 if (rg->from >= t)
96822904 819 break;
96822904 820
feba16e2
MK
821 if (f > rg->from && t < rg->to) { /* Must split region */
822 /*
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
825 */
826 if (!nrg &&
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
829 struct file_region,
830 link);
831 list_del(&nrg->link);
832 resv->region_cache_count--;
833 }
96822904 834
feba16e2
MK
835 if (!nrg) {
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 if (!nrg)
839 return -ENOMEM;
840 goto retry;
841 }
842
843 del += t - f;
79aa925b 844 hugetlb_cgroup_uncharge_file_region(
d85aecf2 845 resv, rg, t - f, false);
feba16e2
MK
846
847 /* New entry for end of split region */
848 nrg->from = t;
849 nrg->to = rg->to;
075a61d0
MA
850
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
feba16e2
MK
853 INIT_LIST_HEAD(&nrg->link);
854
855 /* Original entry is trimmed */
856 rg->to = f;
857
858 list_add(&nrg->link, &rg->link);
859 nrg = NULL;
96822904 860 break;
feba16e2
MK
861 }
862
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
075a61d0 865 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 866 rg->to - rg->from, true);
feba16e2
MK
867 list_del(&rg->link);
868 kfree(rg);
869 continue;
870 }
871
872 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 873 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 874 t - rg->from, false);
075a61d0 875
79aa925b
MK
876 del += t - rg->from;
877 rg->from = t;
878 } else { /* Trim end of region */
075a61d0 879 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 880 rg->to - f, false);
79aa925b
MK
881
882 del += rg->to - f;
883 rg->to = f;
feba16e2 884 }
96822904 885 }
7b24d861 886
7b24d861 887 spin_unlock(&resv->lock);
feba16e2
MK
888 kfree(nrg);
889 return del;
96822904
AW
890}
891
b5cec28d
MK
892/*
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
899 * counts.
900 */
72e2936c 901void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
902{
903 struct hugepage_subpool *spool = subpool_inode(inode);
904 long rsv_adjust;
da56388c 905 bool reserved = false;
b5cec28d
MK
906
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 908 if (rsv_adjust > 0) {
b5cec28d
MK
909 struct hstate *h = hstate_inode(inode);
910
da56388c
ML
911 if (!hugetlb_acct_memory(h, 1))
912 reserved = true;
913 } else if (!rsv_adjust) {
914 reserved = true;
b5cec28d 915 }
da56388c
ML
916
917 if (!reserved)
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
919}
920
1dd308a7
MK
921/*
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
924 */
1406ec9b 925static long region_count(struct resv_map *resv, long f, long t)
84afd99b 926{
1406ec9b 927 struct list_head *head = &resv->regions;
84afd99b
AW
928 struct file_region *rg;
929 long chg = 0;
930
7b24d861 931 spin_lock(&resv->lock);
84afd99b
AW
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
934 long seg_from;
935 long seg_to;
84afd99b
AW
936
937 if (rg->to <= f)
938 continue;
939 if (rg->from >= t)
940 break;
941
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
944
945 chg += seg_to - seg_from;
946 }
7b24d861 947 spin_unlock(&resv->lock);
84afd99b
AW
948
949 return chg;
950}
951
e7c4b0bf
AW
952/*
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
955 */
a5516438
AK
956static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 958{
a5516438
AK
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
961}
962
0fe6e20b
NH
963pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
965{
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
967}
dee41079 968EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 969
08fba699
MG
970/*
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
973 */
974unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975{
05ea8860
DW
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
978 return PAGE_SIZE;
08fba699 979}
f340ca0f 980EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 981
3340289d
MG
982/*
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
3340289d 987 */
09135cc5 988__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
989{
990 return vma_kernel_pagesize(vma);
991}
3340289d 992
84afd99b
AW
993/*
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
996 * alignment.
997 */
998#define HPAGE_RESV_OWNER (1UL << 0)
999#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 1000#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 1001
a1e78772
MG
1002/*
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1006 *
8d9bfb26 1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
a1e78772
MG
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
1011 *
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
a1e78772 1020 */
e7c4b0bf
AW
1021static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022{
1023 return (unsigned long)vma->vm_private_data;
1024}
1025
1026static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1028{
1029 vma->vm_private_data = (void *)value;
1030}
1031
e9fe92ae
MA
1032static void
1033resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1035 struct hstate *h)
1036{
1037#ifdef CONFIG_CGROUP_HUGETLB
1038 if (!h_cg || !h) {
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1042 } else {
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1047 }
1048#endif
1049}
1050
9119a41e 1051struct resv_map *resv_map_alloc(void)
84afd99b
AW
1052{
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056 if (!resv_map || !rg) {
1057 kfree(resv_map);
1058 kfree(rg);
84afd99b 1059 return NULL;
5e911373 1060 }
84afd99b
AW
1061
1062 kref_init(&resv_map->refs);
7b24d861 1063 spin_lock_init(&resv_map->lock);
84afd99b
AW
1064 INIT_LIST_HEAD(&resv_map->regions);
1065
5e911373 1066 resv_map->adds_in_progress = 0;
e9fe92ae
MA
1067 /*
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1072 */
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
1074
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1078
84afd99b
AW
1079 return resv_map;
1080}
1081
9119a41e 1082void resv_map_release(struct kref *ref)
84afd99b
AW
1083{
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
84afd99b
AW
1087
1088 /* Clear out any active regions before we release the map. */
feba16e2 1089 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
1090
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1094 kfree(rg);
1095 }
1096
1097 VM_BUG_ON(resv_map->adds_in_progress);
1098
84afd99b
AW
1099 kfree(resv_map);
1100}
1101
4e35f483
JK
1102static inline struct resv_map *inode_resv_map(struct inode *inode)
1103{
f27a5136
MK
1104 /*
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1111 */
1112 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
1113}
1114
84afd99b 1115static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 1116{
81d1b09c 1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1121
1122 return inode_resv_map(inode);
1123
1124 } else {
84afd99b
AW
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1126 ~HPAGE_RESV_MASK);
4e35f483 1127 }
a1e78772
MG
1128}
1129
84afd99b 1130static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 1131{
81d1b09c
SL
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 1134
84afd99b
AW
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
1137}
1138
1139static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140{
81d1b09c
SL
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1143
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1145}
1146
1147static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148{
81d1b09c 1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1150
1151 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1152}
1153
8d9bfb26 1154void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772 1155{
81d1b09c 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
8d9bfb26
MK
1157 /*
1158 * Clear vm_private_data
612b8a31
MK
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
8d9bfb26
MK
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
8d9bfb26 1168 */
612b8a31
MK
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1174 } else
1175 vma->vm_private_data = NULL;
a1e78772
MG
1176}
1177
550a7d60
MA
1178/*
1179 * Reset and decrement one ref on hugepage private reservation.
8651a137 1180 * Called with mm->mmap_lock writer semaphore held.
550a7d60
MA
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1183 * reservation.
1184 */
1185void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186{
1187 /*
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1190 *
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1198 */
1199 struct resv_map *reservations = vma_resv_map(vma);
1200
afe041c2
BQM
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1203 kref_put(&reservations->refs, resv_map_release);
afe041c2 1204 }
550a7d60 1205
8d9bfb26 1206 hugetlb_dup_vma_private(vma);
550a7d60
MA
1207}
1208
a1e78772 1209/* Returns true if the VMA has associated reserve pages */
559ec2f8 1210static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1211{
af0ed73e
JK
1212 if (vma->vm_flags & VM_NORESERVE) {
1213 /*
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1221 */
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1223 return true;
af0ed73e 1224 else
559ec2f8 1225 return false;
af0ed73e 1226 }
a63884e9
JK
1227
1228 /* Shared mappings always use reserves */
1fb1b0e9
MK
1229 if (vma->vm_flags & VM_MAYSHARE) {
1230 /*
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
7c8de358 1234 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1235 * use. This situation is indicated if chg != 0.
1236 */
1237 if (chg)
1238 return false;
1239 else
1240 return true;
1241 }
a63884e9
JK
1242
1243 /*
1244 * Only the process that called mmap() has reserves for
1245 * private mappings.
1246 */
67961f9d
MK
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 /*
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1262 */
1263 if (chg)
1264 return false;
1265 else
1266 return true;
1267 }
a63884e9 1268
559ec2f8 1269 return false;
a1e78772
MG
1270}
1271
240d67a8 1272static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1da177e4 1273{
240d67a8 1274 int nid = folio_nid(folio);
9487ca60
MK
1275
1276 lockdep_assert_held(&hugetlb_lock);
240d67a8 1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
b65a4eda 1278
240d67a8 1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
240d67a8 1282 folio_set_hugetlb_freed(folio);
1da177e4
LT
1283}
1284
94310cbc 1285static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1286{
1287 struct page *page;
1a08ae36 1288 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1289
9487ca60 1290 lockdep_assert_held(&hugetlb_lock);
bbe88753 1291 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
6077c943 1292 if (pin && !is_longterm_pinnable_page(page))
bbe88753 1293 continue;
bf50bab2 1294
6664bfc8
WY
1295 if (PageHWPoison(page))
1296 continue;
1297
1298 list_move(&page->lru, &h->hugepage_activelist);
1299 set_page_refcounted(page);
6c037149 1300 ClearHPageFreed(page);
6664bfc8
WY
1301 h->free_huge_pages--;
1302 h->free_huge_pages_node[nid]--;
1303 return page;
bbe88753
JK
1304 }
1305
6664bfc8 1306 return NULL;
bf50bab2
NH
1307}
1308
3e59fcb0
MH
1309static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1310 nodemask_t *nmask)
94310cbc 1311{
3e59fcb0
MH
1312 unsigned int cpuset_mems_cookie;
1313 struct zonelist *zonelist;
1314 struct zone *zone;
1315 struct zoneref *z;
98fa15f3 1316 int node = NUMA_NO_NODE;
94310cbc 1317
3e59fcb0
MH
1318 zonelist = node_zonelist(nid, gfp_mask);
1319
1320retry_cpuset:
1321 cpuset_mems_cookie = read_mems_allowed_begin();
1322 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1323 struct page *page;
1324
1325 if (!cpuset_zone_allowed(zone, gfp_mask))
1326 continue;
1327 /*
1328 * no need to ask again on the same node. Pool is node rather than
1329 * zone aware
1330 */
1331 if (zone_to_nid(zone) == node)
1332 continue;
1333 node = zone_to_nid(zone);
94310cbc 1334
94310cbc
AK
1335 page = dequeue_huge_page_node_exact(h, node);
1336 if (page)
1337 return page;
1338 }
3e59fcb0
MH
1339 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1340 goto retry_cpuset;
1341
94310cbc
AK
1342 return NULL;
1343}
1344
8346d69d
XH
1345static unsigned long available_huge_pages(struct hstate *h)
1346{
1347 return h->free_huge_pages - h->resv_huge_pages;
1348}
1349
a5516438
AK
1350static struct page *dequeue_huge_page_vma(struct hstate *h,
1351 struct vm_area_struct *vma,
af0ed73e
JK
1352 unsigned long address, int avoid_reserve,
1353 long chg)
1da177e4 1354{
cfcaa66f 1355 struct page *page = NULL;
480eccf9 1356 struct mempolicy *mpol;
04ec6264 1357 gfp_t gfp_mask;
3e59fcb0 1358 nodemask_t *nodemask;
04ec6264 1359 int nid;
1da177e4 1360
a1e78772
MG
1361 /*
1362 * A child process with MAP_PRIVATE mappings created by their parent
1363 * have no page reserves. This check ensures that reservations are
1364 * not "stolen". The child may still get SIGKILLed
1365 */
8346d69d 1366 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
c0ff7453 1367 goto err;
a1e78772 1368
04f2cbe3 1369 /* If reserves cannot be used, ensure enough pages are in the pool */
8346d69d 1370 if (avoid_reserve && !available_huge_pages(h))
6eab04a8 1371 goto err;
04f2cbe3 1372
04ec6264
VB
1373 gfp_mask = htlb_alloc_mask(h);
1374 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1375
1376 if (mpol_is_preferred_many(mpol)) {
1377 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1378
1379 /* Fallback to all nodes if page==NULL */
1380 nodemask = NULL;
1381 }
1382
1383 if (!page)
1384 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1385
3e59fcb0 1386 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1387 SetHPageRestoreReserve(page);
3e59fcb0 1388 h->resv_huge_pages--;
1da177e4 1389 }
cc9a6c87 1390
52cd3b07 1391 mpol_cond_put(mpol);
1da177e4 1392 return page;
cc9a6c87
MG
1393
1394err:
cc9a6c87 1395 return NULL;
1da177e4
LT
1396}
1397
1cac6f2c
LC
1398/*
1399 * common helper functions for hstate_next_node_to_{alloc|free}.
1400 * We may have allocated or freed a huge page based on a different
1401 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1402 * be outside of *nodes_allowed. Ensure that we use an allowed
1403 * node for alloc or free.
1404 */
1405static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1406{
0edaf86c 1407 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1408 VM_BUG_ON(nid >= MAX_NUMNODES);
1409
1410 return nid;
1411}
1412
1413static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1414{
1415 if (!node_isset(nid, *nodes_allowed))
1416 nid = next_node_allowed(nid, nodes_allowed);
1417 return nid;
1418}
1419
1420/*
1421 * returns the previously saved node ["this node"] from which to
1422 * allocate a persistent huge page for the pool and advance the
1423 * next node from which to allocate, handling wrap at end of node
1424 * mask.
1425 */
1426static int hstate_next_node_to_alloc(struct hstate *h,
1427 nodemask_t *nodes_allowed)
1428{
1429 int nid;
1430
1431 VM_BUG_ON(!nodes_allowed);
1432
1433 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1434 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1435
1436 return nid;
1437}
1438
1439/*
10c6ec49 1440 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1441 * node ["this node"] from which to free a huge page. Advance the
1442 * next node id whether or not we find a free huge page to free so
1443 * that the next attempt to free addresses the next node.
1444 */
1445static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1446{
1447 int nid;
1448
1449 VM_BUG_ON(!nodes_allowed);
1450
1451 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1452 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1453
1454 return nid;
1455}
1456
1457#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1458 for (nr_nodes = nodes_weight(*mask); \
1459 nr_nodes > 0 && \
1460 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1461 nr_nodes--)
1462
1463#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1464 for (nr_nodes = nodes_weight(*mask); \
1465 nr_nodes > 0 && \
1466 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1467 nr_nodes--)
1468
8531fc6f 1469/* used to demote non-gigantic_huge pages as well */
911565b8 1470static void __destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b 1471 unsigned int order, bool demote)
944d9fec
LC
1472{
1473 int i;
1474 int nr_pages = 1 << order;
14455eab 1475 struct page *p;
944d9fec 1476
46f27228 1477 atomic_set(&folio->_entire_mapcount, 0);
eec20426 1478 atomic_set(&folio->_nr_pages_mapped, 0);
94688e8e 1479 atomic_set(&folio->_pincount, 0);
47e29d32 1480
14455eab 1481 for (i = 1; i < nr_pages; i++) {
911565b8 1482 p = folio_page(folio, i);
a01f4390 1483 p->mapping = NULL;
1d798ca3 1484 clear_compound_head(p);
34d9e35b
MK
1485 if (!demote)
1486 set_page_refcounted(p);
944d9fec
LC
1487 }
1488
04a42e72 1489 folio_set_order(folio, 0);
911565b8 1490 __folio_clear_head(folio);
944d9fec
LC
1491}
1492
911565b8 1493static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
8531fc6f
MK
1494 unsigned int order)
1495{
911565b8 1496 __destroy_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
1497}
1498
1499#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
911565b8 1500static void destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b
MK
1501 unsigned int order)
1502{
911565b8 1503 __destroy_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
1504}
1505
7f325a8d 1506static void free_gigantic_folio(struct folio *folio, unsigned int order)
944d9fec 1507{
cf11e85f
RG
1508 /*
1509 * If the page isn't allocated using the cma allocator,
1510 * cma_release() returns false.
1511 */
dbda8fea 1512#ifdef CONFIG_CMA
7f325a8d
SK
1513 int nid = folio_nid(folio);
1514
1515 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
cf11e85f 1516 return;
dbda8fea 1517#endif
cf11e85f 1518
7f325a8d 1519 free_contig_range(folio_pfn(folio), 1 << order);
944d9fec
LC
1520}
1521
4eb0716e 1522#ifdef CONFIG_CONTIG_ALLOC
19fc1a7e 1523static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
d9cc948f 1524 int nid, nodemask_t *nodemask)
944d9fec 1525{
19fc1a7e 1526 struct page *page;
04adbc3f 1527 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1528 if (nid == NUMA_NO_NODE)
1529 nid = numa_mem_id();
944d9fec 1530
dbda8fea
BS
1531#ifdef CONFIG_CMA
1532 {
cf11e85f
RG
1533 int node;
1534
953f064a
LX
1535 if (hugetlb_cma[nid]) {
1536 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1537 huge_page_order(h), true);
cf11e85f 1538 if (page)
19fc1a7e 1539 return page_folio(page);
cf11e85f 1540 }
953f064a
LX
1541
1542 if (!(gfp_mask & __GFP_THISNODE)) {
1543 for_each_node_mask(node, *nodemask) {
1544 if (node == nid || !hugetlb_cma[node])
1545 continue;
1546
1547 page = cma_alloc(hugetlb_cma[node], nr_pages,
1548 huge_page_order(h), true);
1549 if (page)
19fc1a7e 1550 return page_folio(page);
953f064a
LX
1551 }
1552 }
cf11e85f 1553 }
dbda8fea 1554#endif
cf11e85f 1555
19fc1a7e
SK
1556 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1557 return page ? page_folio(page) : NULL;
944d9fec
LC
1558}
1559
4eb0716e 1560#else /* !CONFIG_CONTIG_ALLOC */
19fc1a7e 1561static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1562 int nid, nodemask_t *nodemask)
1563{
1564 return NULL;
1565}
1566#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1567
e1073d1e 1568#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
19fc1a7e 1569static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1570 int nid, nodemask_t *nodemask)
1571{
1572 return NULL;
1573}
7f325a8d
SK
1574static inline void free_gigantic_folio(struct folio *folio,
1575 unsigned int order) { }
911565b8 1576static inline void destroy_compound_gigantic_folio(struct folio *folio,
d00181b9 1577 unsigned int order) { }
944d9fec
LC
1578#endif
1579
6eb4e88a 1580/*
cfd5082b 1581 * Remove hugetlb folio from lists, and update dtor so that the folio appears
34d9e35b
MK
1582 * as just a compound page.
1583 *
cfd5082b 1584 * A reference is held on the folio, except in the case of demote.
6eb4e88a
MK
1585 *
1586 * Must be called with hugetlb lock held.
1587 */
cfd5082b 1588static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
34d9e35b
MK
1589 bool adjust_surplus,
1590 bool demote)
6eb4e88a 1591{
cfd5082b 1592 int nid = folio_nid(folio);
6eb4e88a 1593
f074732d
SK
1594 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
6eb4e88a 1596
9487ca60 1597 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1598 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1599 return;
1600
cfd5082b 1601 list_del(&folio->lru);
6eb4e88a 1602
cfd5082b 1603 if (folio_test_hugetlb_freed(folio)) {
6eb4e88a
MK
1604 h->free_huge_pages--;
1605 h->free_huge_pages_node[nid]--;
1606 }
1607 if (adjust_surplus) {
1608 h->surplus_huge_pages--;
1609 h->surplus_huge_pages_node[nid]--;
1610 }
1611
e32d20c0
MK
1612 /*
1613 * Very subtle
1614 *
1615 * For non-gigantic pages set the destructor to the normal compound
1616 * page dtor. This is needed in case someone takes an additional
1617 * temporary ref to the page, and freeing is delayed until they drop
1618 * their reference.
1619 *
1620 * For gigantic pages set the destructor to the null dtor. This
1621 * destructor will never be called. Before freeing the gigantic
911565b8
SK
1622 * page destroy_compound_gigantic_folio will turn the folio into a
1623 * simple group of pages. After this the destructor does not
e32d20c0
MK
1624 * apply.
1625 *
1626 * This handles the case where more than one ref is held when and
d6ef19e2 1627 * after update_and_free_hugetlb_folio is called.
34d9e35b
MK
1628 *
1629 * In the case of demote we do not ref count the page as it will soon
1630 * be turned into a page of smaller size.
e32d20c0 1631 */
34d9e35b 1632 if (!demote)
cfd5082b 1633 folio_ref_unfreeze(folio, 1);
e32d20c0 1634 if (hstate_is_gigantic(h))
cfd5082b 1635 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
e32d20c0 1636 else
cfd5082b 1637 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1638
1639 h->nr_huge_pages--;
1640 h->nr_huge_pages_node[nid]--;
1641}
1642
cfd5082b 1643static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
34d9e35b
MK
1644 bool adjust_surplus)
1645{
cfd5082b 1646 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
34d9e35b
MK
1647}
1648
cfd5082b 1649static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
8531fc6f
MK
1650 bool adjust_surplus)
1651{
cfd5082b 1652 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
8531fc6f
MK
1653}
1654
2f6c57d6 1655static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
ad2fa371
MS
1656 bool adjust_surplus)
1657{
1658 int zeroed;
2f6c57d6 1659 int nid = folio_nid(folio);
ad2fa371 1660
2f6c57d6 1661 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
ad2fa371
MS
1662
1663 lockdep_assert_held(&hugetlb_lock);
1664
2f6c57d6 1665 INIT_LIST_HEAD(&folio->lru);
ad2fa371
MS
1666 h->nr_huge_pages++;
1667 h->nr_huge_pages_node[nid]++;
1668
1669 if (adjust_surplus) {
1670 h->surplus_huge_pages++;
1671 h->surplus_huge_pages_node[nid]++;
1672 }
1673
2f6c57d6
SK
1674 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1675 folio_change_private(folio, NULL);
a9e1eab2 1676 /*
2f6c57d6
SK
1677 * We have to set hugetlb_vmemmap_optimized again as above
1678 * folio_change_private(folio, NULL) cleared it.
a9e1eab2 1679 */
2f6c57d6 1680 folio_set_hugetlb_vmemmap_optimized(folio);
ad2fa371
MS
1681
1682 /*
2f6c57d6 1683 * This folio is about to be managed by the hugetlb allocator and
b65a4eda
MK
1684 * should have no users. Drop our reference, and check for others
1685 * just in case.
ad2fa371 1686 */
2f6c57d6
SK
1687 zeroed = folio_put_testzero(folio);
1688 if (unlikely(!zeroed))
b65a4eda
MK
1689 /*
1690 * It is VERY unlikely soneone else has taken a ref on
1691 * the page. In this case, we simply return as the
1692 * hugetlb destructor (free_huge_page) will be called
1693 * when this other ref is dropped.
1694 */
1695 return;
1696
2f6c57d6 1697 arch_clear_hugepage_flags(&folio->page);
240d67a8 1698 enqueue_hugetlb_folio(h, folio);
ad2fa371
MS
1699}
1700
b65d4adb 1701static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1702{
1703 int i;
911565b8 1704 struct folio *folio = page_folio(page);
14455eab 1705 struct page *subpage;
a5516438 1706
4eb0716e 1707 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1708 return;
18229df5 1709
161df60e
NH
1710 /*
1711 * If we don't know which subpages are hwpoisoned, we can't free
1712 * the hugepage, so it's leaked intentionally.
1713 */
7f325a8d 1714 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e
NH
1715 return;
1716
6213834c 1717 if (hugetlb_vmemmap_restore(h, page)) {
ad2fa371
MS
1718 spin_lock_irq(&hugetlb_lock);
1719 /*
1720 * If we cannot allocate vmemmap pages, just refuse to free the
1721 * page and put the page back on the hugetlb free list and treat
1722 * as a surplus page.
1723 */
7f325a8d 1724 add_hugetlb_folio(h, folio, true);
ad2fa371
MS
1725 spin_unlock_irq(&hugetlb_lock);
1726 return;
1727 }
1728
161df60e
NH
1729 /*
1730 * Move PageHWPoison flag from head page to the raw error pages,
1731 * which makes any healthy subpages reusable.
1732 */
911565b8 1733 if (unlikely(folio_test_hwpoison(folio)))
2ff6cece 1734 folio_clear_hugetlb_hwpoison(folio);
161df60e 1735
14455eab 1736 for (i = 0; i < pages_per_huge_page(h); i++) {
7f325a8d 1737 subpage = folio_page(folio, i);
dbfee5ae 1738 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1739 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1740 1 << PG_active | 1 << PG_private |
1741 1 << PG_writeback);
6af2acb6 1742 }
a01f4390
MK
1743
1744 /*
1745 * Non-gigantic pages demoted from CMA allocated gigantic pages
7f325a8d 1746 * need to be given back to CMA in free_gigantic_folio.
a01f4390
MK
1747 */
1748 if (hstate_is_gigantic(h) ||
2f6c57d6 1749 hugetlb_cma_folio(folio, huge_page_order(h))) {
911565b8 1750 destroy_compound_gigantic_folio(folio, huge_page_order(h));
7f325a8d 1751 free_gigantic_folio(folio, huge_page_order(h));
944d9fec 1752 } else {
944d9fec
LC
1753 __free_pages(page, huge_page_order(h));
1754 }
6af2acb6
AL
1755}
1756
b65d4adb 1757/*
d6ef19e2 1758 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
b65d4adb
MS
1759 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1760 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1761 * the vmemmap pages.
1762 *
1763 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1764 * freed and frees them one-by-one. As the page->mapping pointer is going
1765 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1766 * structure of a lockless linked list of huge pages to be freed.
1767 */
1768static LLIST_HEAD(hpage_freelist);
1769
1770static void free_hpage_workfn(struct work_struct *work)
1771{
1772 struct llist_node *node;
1773
1774 node = llist_del_all(&hpage_freelist);
1775
1776 while (node) {
1777 struct page *page;
1778 struct hstate *h;
1779
1780 page = container_of((struct address_space **)node,
1781 struct page, mapping);
1782 node = node->next;
1783 page->mapping = NULL;
1784 /*
1785 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1786 * is going to trigger because a previous call to
cfd5082b
SK
1787 * remove_hugetlb_folio() will call folio_set_compound_dtor
1788 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1789 * directly.
b65d4adb
MS
1790 */
1791 h = size_to_hstate(page_size(page));
1792
1793 __update_and_free_page(h, page);
1794
1795 cond_resched();
1796 }
1797}
1798static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1799
1800static inline void flush_free_hpage_work(struct hstate *h)
1801{
6213834c 1802 if (hugetlb_vmemmap_optimizable(h))
b65d4adb
MS
1803 flush_work(&free_hpage_work);
1804}
1805
d6ef19e2 1806static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
b65d4adb
MS
1807 bool atomic)
1808{
d6ef19e2
SK
1809 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1810 __update_and_free_page(h, &folio->page);
b65d4adb
MS
1811 return;
1812 }
1813
1814 /*
1815 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1816 *
1817 * Only call schedule_work() if hpage_freelist is previously
1818 * empty. Otherwise, schedule_work() had been called but the workfn
1819 * hasn't retrieved the list yet.
1820 */
d6ef19e2 1821 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
b65d4adb
MS
1822 schedule_work(&free_hpage_work);
1823}
1824
10c6ec49
MK
1825static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1826{
1827 struct page *page, *t_page;
d6ef19e2 1828 struct folio *folio;
10c6ec49
MK
1829
1830 list_for_each_entry_safe(page, t_page, list, lru) {
d6ef19e2
SK
1831 folio = page_folio(page);
1832 update_and_free_hugetlb_folio(h, folio, false);
10c6ec49
MK
1833 cond_resched();
1834 }
1835}
1836
e5ff2159
AK
1837struct hstate *size_to_hstate(unsigned long size)
1838{
1839 struct hstate *h;
1840
1841 for_each_hstate(h) {
1842 if (huge_page_size(h) == size)
1843 return h;
1844 }
1845 return NULL;
1846}
1847
db71ef79 1848void free_huge_page(struct page *page)
27a85ef1 1849{
a5516438
AK
1850 /*
1851 * Can't pass hstate in here because it is called from the
1852 * compound page destructor.
1853 */
0356c4b9
SK
1854 struct folio *folio = page_folio(page);
1855 struct hstate *h = folio_hstate(folio);
1856 int nid = folio_nid(folio);
1857 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
07443a85 1858 bool restore_reserve;
db71ef79 1859 unsigned long flags;
27a85ef1 1860
0356c4b9
SK
1861 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1862 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
8ace22bc 1863
0356c4b9
SK
1864 hugetlb_set_folio_subpool(folio, NULL);
1865 if (folio_test_anon(folio))
1866 __ClearPageAnonExclusive(&folio->page);
1867 folio->mapping = NULL;
1868 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1869 folio_clear_hugetlb_restore_reserve(folio);
27a85ef1 1870
1c5ecae3 1871 /*
d6995da3 1872 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1873 * reservation. If the page was associated with a subpool, there
1874 * would have been a page reserved in the subpool before allocation
1875 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1876 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1877 * remove the reserved page from the subpool.
1c5ecae3 1878 */
0919e1b6
MK
1879 if (!restore_reserve) {
1880 /*
1881 * A return code of zero implies that the subpool will be
1882 * under its minimum size if the reservation is not restored
1883 * after page is free. Therefore, force restore_reserve
1884 * operation.
1885 */
1886 if (hugepage_subpool_put_pages(spool, 1) == 0)
1887 restore_reserve = true;
1888 }
1c5ecae3 1889
db71ef79 1890 spin_lock_irqsave(&hugetlb_lock, flags);
0356c4b9 1891 folio_clear_hugetlb_migratable(folio);
d4ab0316
SK
1892 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1893 pages_per_huge_page(h), folio);
1894 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1895 pages_per_huge_page(h), folio);
07443a85
JK
1896 if (restore_reserve)
1897 h->resv_huge_pages++;
1898
0356c4b9 1899 if (folio_test_hugetlb_temporary(folio)) {
cfd5082b 1900 remove_hugetlb_folio(h, folio, false);
db71ef79 1901 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1902 update_and_free_hugetlb_folio(h, folio, true);
ab5ac90a 1903 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1904 /* remove the page from active list */
cfd5082b 1905 remove_hugetlb_folio(h, folio, true);
db71ef79 1906 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1907 update_and_free_hugetlb_folio(h, folio, true);
7893d1d5 1908 } else {
5d3a551c 1909 arch_clear_hugepage_flags(page);
240d67a8 1910 enqueue_hugetlb_folio(h, folio);
db71ef79 1911 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1912 }
c77c0a8a
WL
1913}
1914
d3d99fcc
OS
1915/*
1916 * Must be called with the hugetlb lock held
1917 */
1918static void __prep_account_new_huge_page(struct hstate *h, int nid)
1919{
1920 lockdep_assert_held(&hugetlb_lock);
1921 h->nr_huge_pages++;
1922 h->nr_huge_pages_node[nid]++;
1923}
1924
de656ed3 1925static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
b7ba30c6 1926{
de656ed3
SK
1927 hugetlb_vmemmap_optimize(h, &folio->page);
1928 INIT_LIST_HEAD(&folio->lru);
9fd33058 1929 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
de656ed3
SK
1930 hugetlb_set_folio_subpool(folio, NULL);
1931 set_hugetlb_cgroup(folio, NULL);
1932 set_hugetlb_cgroup_rsvd(folio, NULL);
d3d99fcc
OS
1933}
1934
d1c60955 1935static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
d3d99fcc 1936{
de656ed3 1937 __prep_new_hugetlb_folio(h, folio);
db71ef79 1938 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1939 __prep_account_new_huge_page(h, nid);
db71ef79 1940 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1941}
1942
d1c60955
SK
1943static bool __prep_compound_gigantic_folio(struct folio *folio,
1944 unsigned int order, bool demote)
20a0307c 1945{
7118fc29 1946 int i, j;
20a0307c 1947 int nr_pages = 1 << order;
14455eab 1948 struct page *p;
20a0307c 1949
d1c60955
SK
1950 __folio_clear_reserved(folio);
1951 __folio_set_head(folio);
c45bc55a 1952 /* we rely on prep_new_hugetlb_folio to set the destructor */
04a42e72 1953 folio_set_order(folio, order);
2b21624f 1954 for (i = 0; i < nr_pages; i++) {
d1c60955 1955 p = folio_page(folio, i);
14455eab 1956
ef5a22be
AA
1957 /*
1958 * For gigantic hugepages allocated through bootmem at
1959 * boot, it's safer to be consistent with the not-gigantic
1960 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1961 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1962 * pages may get the reference counting wrong if they see
1963 * PG_reserved set on a tail page (despite the head page not
1964 * having PG_reserved set). Enforcing this consistency between
1965 * head and tail pages allows drivers to optimize away a check
1966 * on the head page when they need know if put_page() is needed
1967 * after get_user_pages().
1968 */
7fb0728a
MK
1969 if (i != 0) /* head page cleared above */
1970 __ClearPageReserved(p);
7118fc29
MK
1971 /*
1972 * Subtle and very unlikely
1973 *
1974 * Gigantic 'page allocators' such as memblock or cma will
1975 * return a set of pages with each page ref counted. We need
1976 * to turn this set of pages into a compound page with tail
1977 * page ref counts set to zero. Code such as speculative page
1978 * cache adding could take a ref on a 'to be' tail page.
1979 * We need to respect any increased ref count, and only set
1980 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1981 * is not 1, we return an error. An error return indicates
1982 * the set of pages can not be converted to a gigantic page.
1983 * The caller who allocated the pages should then discard the
1984 * pages using the appropriate free interface.
34d9e35b
MK
1985 *
1986 * In the case of demote, the ref count will be zero.
7118fc29 1987 */
34d9e35b
MK
1988 if (!demote) {
1989 if (!page_ref_freeze(p, 1)) {
1990 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991 goto out_error;
1992 }
1993 } else {
1994 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 1995 }
2b21624f 1996 if (i != 0)
d1c60955 1997 set_compound_head(p, &folio->page);
20a0307c 1998 }
46f27228 1999 atomic_set(&folio->_entire_mapcount, -1);
eec20426 2000 atomic_set(&folio->_nr_pages_mapped, 0);
94688e8e 2001 atomic_set(&folio->_pincount, 0);
7118fc29
MK
2002 return true;
2003
2004out_error:
2b21624f
MK
2005 /* undo page modifications made above */
2006 for (j = 0; j < i; j++) {
d1c60955 2007 p = folio_page(folio, j);
2b21624f
MK
2008 if (j != 0)
2009 clear_compound_head(p);
7118fc29
MK
2010 set_page_refcounted(p);
2011 }
2012 /* need to clear PG_reserved on remaining tail pages */
14455eab 2013 for (; j < nr_pages; j++) {
d1c60955 2014 p = folio_page(folio, j);
7118fc29 2015 __ClearPageReserved(p);
14455eab 2016 }
04a42e72 2017 folio_set_order(folio, 0);
d1c60955 2018 __folio_clear_head(folio);
7118fc29 2019 return false;
20a0307c
WF
2020}
2021
d1c60955
SK
2022static bool prep_compound_gigantic_folio(struct folio *folio,
2023 unsigned int order)
34d9e35b 2024{
d1c60955 2025 return __prep_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
2026}
2027
d1c60955 2028static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
8531fc6f
MK
2029 unsigned int order)
2030{
d1c60955 2031 return __prep_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
2032}
2033
7795912c
AM
2034/*
2035 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036 * transparent huge pages. See the PageTransHuge() documentation for more
2037 * details.
2038 */
20a0307c
WF
2039int PageHuge(struct page *page)
2040{
2d678c64
MWO
2041 struct folio *folio;
2042
20a0307c
WF
2043 if (!PageCompound(page))
2044 return 0;
2d678c64
MWO
2045 folio = page_folio(page);
2046 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
20a0307c 2047}
43131e14
NH
2048EXPORT_SYMBOL_GPL(PageHuge);
2049
27c73ae7
AA
2050/*
2051 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2052 * normal or transparent huge pages.
2053 */
2054int PageHeadHuge(struct page *page_head)
2055{
2d678c64
MWO
2056 struct folio *folio = (struct folio *)page_head;
2057 if (!folio_test_large(folio))
27c73ae7
AA
2058 return 0;
2059
2d678c64 2060 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 2061}
4e936ecc 2062EXPORT_SYMBOL_GPL(PageHeadHuge);
27c73ae7 2063
c0d0381a
MK
2064/*
2065 * Find and lock address space (mapping) in write mode.
2066 *
336bf30e
MK
2067 * Upon entry, the page is locked which means that page_mapping() is
2068 * stable. Due to locking order, we can only trylock_write. If we can
2069 * not get the lock, simply return NULL to caller.
c0d0381a
MK
2070 */
2071struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2072{
336bf30e 2073 struct address_space *mapping = page_mapping(hpage);
c0d0381a 2074
c0d0381a
MK
2075 if (!mapping)
2076 return mapping;
2077
c0d0381a
MK
2078 if (i_mmap_trylock_write(mapping))
2079 return mapping;
2080
336bf30e 2081 return NULL;
c0d0381a
MK
2082}
2083
fe19bd3d 2084pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
2085{
2086 struct page *page_head = compound_head(page);
2087 pgoff_t index = page_index(page_head);
2088 unsigned long compound_idx;
2089
13d60f4b
ZY
2090 if (compound_order(page_head) >= MAX_ORDER)
2091 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2092 else
2093 compound_idx = page - page_head;
2094
2095 return (index << compound_order(page_head)) + compound_idx;
2096}
2097
19fc1a7e 2098static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
f60858f9
MK
2099 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2100 nodemask_t *node_alloc_noretry)
1da177e4 2101{
af0fb9df 2102 int order = huge_page_order(h);
1da177e4 2103 struct page *page;
f60858f9 2104 bool alloc_try_hard = true;
2b21624f 2105 bool retry = true;
f96efd58 2106
f60858f9
MK
2107 /*
2108 * By default we always try hard to allocate the page with
2109 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2110 * a loop (to adjust global huge page counts) and previous allocation
2111 * failed, do not continue to try hard on the same node. Use the
2112 * node_alloc_noretry bitmap to manage this state information.
2113 */
2114 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2115 alloc_try_hard = false;
2116 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2117 if (alloc_try_hard)
2118 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
2119 if (nid == NUMA_NO_NODE)
2120 nid = numa_mem_id();
2b21624f 2121retry:
84172f4b 2122 page = __alloc_pages(gfp_mask, order, nid, nmask);
2b21624f
MK
2123
2124 /* Freeze head page */
2125 if (page && !page_ref_freeze(page, 1)) {
2126 __free_pages(page, order);
2127 if (retry) { /* retry once */
2128 retry = false;
2129 goto retry;
2130 }
2131 /* WOW! twice in a row. */
2132 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2133 page = NULL;
2134 }
2135
f60858f9
MK
2136 /*
2137 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2138 * indicates an overall state change. Clear bit so that we resume
2139 * normal 'try hard' allocations.
2140 */
2141 if (node_alloc_noretry && page && !alloc_try_hard)
2142 node_clear(nid, *node_alloc_noretry);
2143
2144 /*
2145 * If we tried hard to get a page but failed, set bit so that
2146 * subsequent attempts will not try as hard until there is an
2147 * overall state change.
2148 */
2149 if (node_alloc_noretry && !page && alloc_try_hard)
2150 node_set(nid, *node_alloc_noretry);
2151
19fc1a7e
SK
2152 if (!page) {
2153 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2154 return NULL;
2155 }
2156
2157 __count_vm_event(HTLB_BUDDY_PGALLOC);
2158 return page_folio(page);
63b4613c
NA
2159}
2160
0c397dae
MH
2161/*
2162 * Common helper to allocate a fresh hugetlb page. All specific allocators
2163 * should use this function to get new hugetlb pages
2b21624f
MK
2164 *
2165 * Note that returned page is 'frozen': ref count of head page and all tail
2166 * pages is zero.
0c397dae 2167 */
19fc1a7e 2168static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
f60858f9
MK
2169 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2170 nodemask_t *node_alloc_noretry)
0c397dae 2171{
7f325a8d 2172 struct folio *folio;
7118fc29 2173 bool retry = false;
0c397dae 2174
7118fc29 2175retry:
0c397dae 2176 if (hstate_is_gigantic(h))
19fc1a7e 2177 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
0c397dae 2178 else
19fc1a7e 2179 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
f60858f9 2180 nid, nmask, node_alloc_noretry);
19fc1a7e 2181 if (!folio)
0c397dae 2182 return NULL;
7118fc29 2183 if (hstate_is_gigantic(h)) {
d1c60955 2184 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
7118fc29
MK
2185 /*
2186 * Rare failure to convert pages to compound page.
2187 * Free pages and try again - ONCE!
2188 */
7f325a8d 2189 free_gigantic_folio(folio, huge_page_order(h));
7118fc29
MK
2190 if (!retry) {
2191 retry = true;
2192 goto retry;
2193 }
7118fc29
MK
2194 return NULL;
2195 }
2196 }
d1c60955 2197 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
0c397dae 2198
19fc1a7e 2199 return folio;
0c397dae
MH
2200}
2201
af0fb9df
MH
2202/*
2203 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2204 * manner.
2205 */
f60858f9
MK
2206static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2207 nodemask_t *node_alloc_noretry)
b2261026 2208{
19fc1a7e 2209 struct folio *folio;
b2261026 2210 int nr_nodes, node;
af0fb9df 2211 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
2212
2213 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
19fc1a7e
SK
2214 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2215 nodes_allowed, node_alloc_noretry);
2216 if (folio) {
2217 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2218 return 1;
2219 }
b2261026
JK
2220 }
2221
19fc1a7e 2222 return 0;
b2261026
JK
2223}
2224
e8c5c824 2225/*
10c6ec49
MK
2226 * Remove huge page from pool from next node to free. Attempt to keep
2227 * persistent huge pages more or less balanced over allowed nodes.
2228 * This routine only 'removes' the hugetlb page. The caller must make
2229 * an additional call to free the page to low level allocators.
e8c5c824
LS
2230 * Called with hugetlb_lock locked.
2231 */
10c6ec49
MK
2232static struct page *remove_pool_huge_page(struct hstate *h,
2233 nodemask_t *nodes_allowed,
2234 bool acct_surplus)
e8c5c824 2235{
b2261026 2236 int nr_nodes, node;
10c6ec49 2237 struct page *page = NULL;
cfd5082b 2238 struct folio *folio;
e8c5c824 2239
9487ca60 2240 lockdep_assert_held(&hugetlb_lock);
b2261026 2241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2242 /*
2243 * If we're returning unused surplus pages, only examine
2244 * nodes with surplus pages.
2245 */
b2261026
JK
2246 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2247 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 2248 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 2249 struct page, lru);
cfd5082b
SK
2250 folio = page_folio(page);
2251 remove_hugetlb_folio(h, folio, acct_surplus);
9a76db09 2252 break;
e8c5c824 2253 }
b2261026 2254 }
e8c5c824 2255
10c6ec49 2256 return page;
e8c5c824
LS
2257}
2258
c8721bbb
NH
2259/*
2260 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
2261 * nothing for in-use hugepages and non-hugepages.
2262 * This function returns values like below:
2263 *
ad2fa371
MS
2264 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2265 * when the system is under memory pressure and the feature of
2266 * freeing unused vmemmap pages associated with each hugetlb page
2267 * is enabled.
2268 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2269 * (allocated or reserved.)
2270 * 0: successfully dissolved free hugepages or the page is not a
2271 * hugepage (considered as already dissolved)
c8721bbb 2272 */
c3114a84 2273int dissolve_free_huge_page(struct page *page)
c8721bbb 2274{
6bc9b564 2275 int rc = -EBUSY;
1a7cdab5 2276 struct folio *folio = page_folio(page);
082d5b6b 2277
7ffddd49 2278retry:
faf53def 2279 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1a7cdab5 2280 if (!folio_test_hugetlb(folio))
faf53def
NH
2281 return 0;
2282
db71ef79 2283 spin_lock_irq(&hugetlb_lock);
1a7cdab5 2284 if (!folio_test_hugetlb(folio)) {
faf53def
NH
2285 rc = 0;
2286 goto out;
2287 }
2288
1a7cdab5
SK
2289 if (!folio_ref_count(folio)) {
2290 struct hstate *h = folio_hstate(folio);
8346d69d 2291 if (!available_huge_pages(h))
082d5b6b 2292 goto out;
7ffddd49
MS
2293
2294 /*
2295 * We should make sure that the page is already on the free list
2296 * when it is dissolved.
2297 */
1a7cdab5 2298 if (unlikely(!folio_test_hugetlb_freed(folio))) {
db71ef79 2299 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2300 cond_resched();
2301
2302 /*
2303 * Theoretically, we should return -EBUSY when we
2304 * encounter this race. In fact, we have a chance
2305 * to successfully dissolve the page if we do a
2306 * retry. Because the race window is quite small.
2307 * If we seize this opportunity, it is an optimization
2308 * for increasing the success rate of dissolving page.
2309 */
2310 goto retry;
2311 }
2312
cfd5082b 2313 remove_hugetlb_folio(h, folio, false);
c1470b33 2314 h->max_huge_pages--;
db71ef79 2315 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2316
2317 /*
d6ef19e2
SK
2318 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2319 * before freeing the page. update_and_free_hugtlb_folio will fail to
ad2fa371
MS
2320 * free the page if it can not allocate required vmemmap. We
2321 * need to adjust max_huge_pages if the page is not freed.
2322 * Attempt to allocate vmemmmap here so that we can take
2323 * appropriate action on failure.
2324 */
1a7cdab5 2325 rc = hugetlb_vmemmap_restore(h, &folio->page);
ad2fa371 2326 if (!rc) {
d6ef19e2 2327 update_and_free_hugetlb_folio(h, folio, false);
ad2fa371
MS
2328 } else {
2329 spin_lock_irq(&hugetlb_lock);
2f6c57d6 2330 add_hugetlb_folio(h, folio, false);
ad2fa371
MS
2331 h->max_huge_pages++;
2332 spin_unlock_irq(&hugetlb_lock);
2333 }
2334
2335 return rc;
c8721bbb 2336 }
082d5b6b 2337out:
db71ef79 2338 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2339 return rc;
c8721bbb
NH
2340}
2341
2342/*
2343 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2344 * make specified memory blocks removable from the system.
2247bb33
GS
2345 * Note that this will dissolve a free gigantic hugepage completely, if any
2346 * part of it lies within the given range.
082d5b6b
GS
2347 * Also note that if dissolve_free_huge_page() returns with an error, all
2348 * free hugepages that were dissolved before that error are lost.
c8721bbb 2349 */
082d5b6b 2350int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2351{
c8721bbb 2352 unsigned long pfn;
eb03aa00 2353 struct page *page;
082d5b6b 2354 int rc = 0;
dc2628f3
MS
2355 unsigned int order;
2356 struct hstate *h;
c8721bbb 2357
d0177639 2358 if (!hugepages_supported())
082d5b6b 2359 return rc;
d0177639 2360
dc2628f3
MS
2361 order = huge_page_order(&default_hstate);
2362 for_each_hstate(h)
2363 order = min(order, huge_page_order(h));
2364
2365 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
eb03aa00 2366 page = pfn_to_page(pfn);
faf53def
NH
2367 rc = dissolve_free_huge_page(page);
2368 if (rc)
2369 break;
eb03aa00 2370 }
082d5b6b
GS
2371
2372 return rc;
c8721bbb
NH
2373}
2374
ab5ac90a
MH
2375/*
2376 * Allocates a fresh surplus page from the page allocator.
2377 */
0c397dae 2378static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2b21624f 2379 int nid, nodemask_t *nmask)
7893d1d5 2380{
19fc1a7e 2381 struct folio *folio = NULL;
7893d1d5 2382
bae7f4ae 2383 if (hstate_is_gigantic(h))
aa888a74
AK
2384 return NULL;
2385
db71ef79 2386 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2387 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2388 goto out_unlock;
db71ef79 2389 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2390
19fc1a7e
SK
2391 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2392 if (!folio)
0c397dae 2393 return NULL;
d1c3fb1f 2394
db71ef79 2395 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2396 /*
2397 * We could have raced with the pool size change.
2398 * Double check that and simply deallocate the new page
2399 * if we would end up overcommiting the surpluses. Abuse
2400 * temporary page to workaround the nasty free_huge_page
2401 * codeflow
2402 */
2403 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
19fc1a7e 2404 folio_set_hugetlb_temporary(folio);
db71ef79 2405 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2406 free_huge_page(&folio->page);
2bf753e6 2407 return NULL;
7893d1d5 2408 }
9980d744 2409
b65a4eda 2410 h->surplus_huge_pages++;
19fc1a7e 2411 h->surplus_huge_pages_node[folio_nid(folio)]++;
b65a4eda 2412
9980d744 2413out_unlock:
db71ef79 2414 spin_unlock_irq(&hugetlb_lock);
7893d1d5 2415
19fc1a7e 2416 return &folio->page;
7893d1d5
AL
2417}
2418
bbe88753 2419static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2420 int nid, nodemask_t *nmask)
ab5ac90a 2421{
19fc1a7e 2422 struct folio *folio;
ab5ac90a
MH
2423
2424 if (hstate_is_gigantic(h))
2425 return NULL;
2426
19fc1a7e
SK
2427 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2428 if (!folio)
ab5ac90a
MH
2429 return NULL;
2430
2b21624f 2431 /* fresh huge pages are frozen */
19fc1a7e 2432 folio_ref_unfreeze(folio, 1);
ab5ac90a
MH
2433 /*
2434 * We do not account these pages as surplus because they are only
2435 * temporary and will be released properly on the last reference
2436 */
19fc1a7e 2437 folio_set_hugetlb_temporary(folio);
ab5ac90a 2438
19fc1a7e 2439 return &folio->page;
ab5ac90a
MH
2440}
2441
099730d6
DH
2442/*
2443 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2444 */
e0ec90ee 2445static
0c397dae 2446struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2447 struct vm_area_struct *vma, unsigned long addr)
2448{
cfcaa66f 2449 struct page *page = NULL;
aaf14e40
MH
2450 struct mempolicy *mpol;
2451 gfp_t gfp_mask = htlb_alloc_mask(h);
2452 int nid;
2453 nodemask_t *nodemask;
2454
2455 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2456 if (mpol_is_preferred_many(mpol)) {
2457 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2458
2459 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2b21624f 2460 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
aaf14e40 2461
cfcaa66f
BW
2462 /* Fallback to all nodes if page==NULL */
2463 nodemask = NULL;
2464 }
2465
2466 if (!page)
2b21624f 2467 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
cfcaa66f 2468 mpol_cond_put(mpol);
aaf14e40 2469 return page;
099730d6
DH
2470}
2471
ab5ac90a 2472/* page migration callback function */
3e59fcb0 2473struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2474 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2475{
db71ef79 2476 spin_lock_irq(&hugetlb_lock);
8346d69d 2477 if (available_huge_pages(h)) {
3e59fcb0
MH
2478 struct page *page;
2479
2480 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2481 if (page) {
db71ef79 2482 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2483 return page;
4db9b2ef
MH
2484 }
2485 }
db71ef79 2486 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2487
0c397dae 2488 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2489}
2490
ebd63723 2491/* mempolicy aware migration callback */
389c8178
MH
2492struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2493 unsigned long address)
ebd63723
MH
2494{
2495 struct mempolicy *mpol;
2496 nodemask_t *nodemask;
2497 struct page *page;
ebd63723
MH
2498 gfp_t gfp_mask;
2499 int node;
2500
ebd63723
MH
2501 gfp_mask = htlb_alloc_mask(h);
2502 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2503 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2504 mpol_cond_put(mpol);
2505
2506 return page;
2507}
2508
e4e574b7 2509/*
25985edc 2510 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2511 * of size 'delta'.
2512 */
0a4f3d1b 2513static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2514 __must_hold(&hugetlb_lock)
e4e574b7 2515{
34665341 2516 LIST_HEAD(surplus_list);
e4e574b7 2517 struct page *page, *tmp;
0a4f3d1b
LX
2518 int ret;
2519 long i;
2520 long needed, allocated;
28073b02 2521 bool alloc_ok = true;
e4e574b7 2522
9487ca60 2523 lockdep_assert_held(&hugetlb_lock);
a5516438 2524 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2525 if (needed <= 0) {
a5516438 2526 h->resv_huge_pages += delta;
e4e574b7 2527 return 0;
ac09b3a1 2528 }
e4e574b7
AL
2529
2530 allocated = 0;
e4e574b7
AL
2531
2532 ret = -ENOMEM;
2533retry:
db71ef79 2534 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2535 for (i = 0; i < needed; i++) {
0c397dae 2536 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2b21624f 2537 NUMA_NO_NODE, NULL);
28073b02
HD
2538 if (!page) {
2539 alloc_ok = false;
2540 break;
2541 }
e4e574b7 2542 list_add(&page->lru, &surplus_list);
69ed779a 2543 cond_resched();
e4e574b7 2544 }
28073b02 2545 allocated += i;
e4e574b7
AL
2546
2547 /*
2548 * After retaking hugetlb_lock, we need to recalculate 'needed'
2549 * because either resv_huge_pages or free_huge_pages may have changed.
2550 */
db71ef79 2551 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2552 needed = (h->resv_huge_pages + delta) -
2553 (h->free_huge_pages + allocated);
28073b02
HD
2554 if (needed > 0) {
2555 if (alloc_ok)
2556 goto retry;
2557 /*
2558 * We were not able to allocate enough pages to
2559 * satisfy the entire reservation so we free what
2560 * we've allocated so far.
2561 */
2562 goto free;
2563 }
e4e574b7
AL
2564 /*
2565 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2566 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2567 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2568 * allocator. Commit the entire reservation here to prevent another
2569 * process from stealing the pages as they are added to the pool but
2570 * before they are reserved.
e4e574b7
AL
2571 */
2572 needed += allocated;
a5516438 2573 h->resv_huge_pages += delta;
e4e574b7 2574 ret = 0;
a9869b83 2575
19fc3f0a 2576 /* Free the needed pages to the hugetlb pool */
e4e574b7 2577 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2578 if ((--needed) < 0)
2579 break;
b65a4eda 2580 /* Add the page to the hugetlb allocator */
240d67a8 2581 enqueue_hugetlb_folio(h, page_folio(page));
19fc3f0a 2582 }
28073b02 2583free:
db71ef79 2584 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2585
b65a4eda
MK
2586 /*
2587 * Free unnecessary surplus pages to the buddy allocator.
2588 * Pages have no ref count, call free_huge_page directly.
2589 */
c0d934ba 2590 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2591 free_huge_page(page);
db71ef79 2592 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2593
2594 return ret;
2595}
2596
2597/*
e5bbc8a6
MK
2598 * This routine has two main purposes:
2599 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2600 * in unused_resv_pages. This corresponds to the prior adjustments made
2601 * to the associated reservation map.
2602 * 2) Free any unused surplus pages that may have been allocated to satisfy
2603 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2604 */
a5516438
AK
2605static void return_unused_surplus_pages(struct hstate *h,
2606 unsigned long unused_resv_pages)
e4e574b7 2607{
e4e574b7 2608 unsigned long nr_pages;
10c6ec49
MK
2609 struct page *page;
2610 LIST_HEAD(page_list);
2611
9487ca60 2612 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2613 /* Uncommit the reservation */
2614 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2615
c0531714 2616 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
e5bbc8a6 2617 goto out;
aa888a74 2618
e5bbc8a6
MK
2619 /*
2620 * Part (or even all) of the reservation could have been backed
2621 * by pre-allocated pages. Only free surplus pages.
2622 */
a5516438 2623 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2624
685f3457
LS
2625 /*
2626 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2627 * evenly across all nodes with memory. Iterate across these nodes
2628 * until we can no longer free unreserved surplus pages. This occurs
2629 * when the nodes with surplus pages have no free pages.
10c6ec49 2630 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2631 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2632 */
2633 while (nr_pages--) {
10c6ec49
MK
2634 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2635 if (!page)
e5bbc8a6 2636 goto out;
10c6ec49
MK
2637
2638 list_add(&page->lru, &page_list);
e4e574b7 2639 }
e5bbc8a6
MK
2640
2641out:
db71ef79 2642 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2643 update_and_free_pages_bulk(h, &page_list);
db71ef79 2644 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2645}
2646
5e911373 2647
c37f9fb1 2648/*
feba16e2 2649 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2650 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2651 *
2652 * vma_needs_reservation is called to determine if the huge page at addr
2653 * within the vma has an associated reservation. If a reservation is
2654 * needed, the value 1 is returned. The caller is then responsible for
2655 * managing the global reservation and subpool usage counts. After
2656 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2657 * to add the page to the reservation map. If the page allocation fails,
2658 * the reservation must be ended instead of committed. vma_end_reservation
2659 * is called in such cases.
cf3ad20b
MK
2660 *
2661 * In the normal case, vma_commit_reservation returns the same value
2662 * as the preceding vma_needs_reservation call. The only time this
2663 * is not the case is if a reserve map was changed between calls. It
2664 * is the responsibility of the caller to notice the difference and
2665 * take appropriate action.
96b96a96
MK
2666 *
2667 * vma_add_reservation is used in error paths where a reservation must
2668 * be restored when a newly allocated huge page must be freed. It is
2669 * to be called after calling vma_needs_reservation to determine if a
2670 * reservation exists.
846be085
MK
2671 *
2672 * vma_del_reservation is used in error paths where an entry in the reserve
2673 * map was created during huge page allocation and must be removed. It is to
2674 * be called after calling vma_needs_reservation to determine if a reservation
2675 * exists.
c37f9fb1 2676 */
5e911373
MK
2677enum vma_resv_mode {
2678 VMA_NEEDS_RESV,
2679 VMA_COMMIT_RESV,
feba16e2 2680 VMA_END_RESV,
96b96a96 2681 VMA_ADD_RESV,
846be085 2682 VMA_DEL_RESV,
5e911373 2683};
cf3ad20b
MK
2684static long __vma_reservation_common(struct hstate *h,
2685 struct vm_area_struct *vma, unsigned long addr,
5e911373 2686 enum vma_resv_mode mode)
c37f9fb1 2687{
4e35f483
JK
2688 struct resv_map *resv;
2689 pgoff_t idx;
cf3ad20b 2690 long ret;
0db9d74e 2691 long dummy_out_regions_needed;
c37f9fb1 2692
4e35f483
JK
2693 resv = vma_resv_map(vma);
2694 if (!resv)
84afd99b 2695 return 1;
c37f9fb1 2696
4e35f483 2697 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2698 switch (mode) {
2699 case VMA_NEEDS_RESV:
0db9d74e
MA
2700 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2701 /* We assume that vma_reservation_* routines always operate on
2702 * 1 page, and that adding to resv map a 1 page entry can only
2703 * ever require 1 region.
2704 */
2705 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2706 break;
2707 case VMA_COMMIT_RESV:
075a61d0 2708 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2709 /* region_add calls of range 1 should never fail. */
2710 VM_BUG_ON(ret < 0);
5e911373 2711 break;
feba16e2 2712 case VMA_END_RESV:
0db9d74e 2713 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2714 ret = 0;
2715 break;
96b96a96 2716 case VMA_ADD_RESV:
0db9d74e 2717 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2718 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2719 /* region_add calls of range 1 should never fail. */
2720 VM_BUG_ON(ret < 0);
2721 } else {
2722 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2723 ret = region_del(resv, idx, idx + 1);
2724 }
2725 break;
846be085
MK
2726 case VMA_DEL_RESV:
2727 if (vma->vm_flags & VM_MAYSHARE) {
2728 region_abort(resv, idx, idx + 1, 1);
2729 ret = region_del(resv, idx, idx + 1);
2730 } else {
2731 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2732 /* region_add calls of range 1 should never fail. */
2733 VM_BUG_ON(ret < 0);
2734 }
2735 break;
5e911373
MK
2736 default:
2737 BUG();
2738 }
84afd99b 2739
846be085 2740 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2741 return ret;
bf3d12b9
ML
2742 /*
2743 * We know private mapping must have HPAGE_RESV_OWNER set.
2744 *
2745 * In most cases, reserves always exist for private mappings.
2746 * However, a file associated with mapping could have been
2747 * hole punched or truncated after reserves were consumed.
2748 * As subsequent fault on such a range will not use reserves.
2749 * Subtle - The reserve map for private mappings has the
2750 * opposite meaning than that of shared mappings. If NO
2751 * entry is in the reserve map, it means a reservation exists.
2752 * If an entry exists in the reserve map, it means the
2753 * reservation has already been consumed. As a result, the
2754 * return value of this routine is the opposite of the
2755 * value returned from reserve map manipulation routines above.
2756 */
2757 if (ret > 0)
2758 return 0;
2759 if (ret == 0)
2760 return 1;
2761 return ret;
c37f9fb1 2762}
cf3ad20b
MK
2763
2764static long vma_needs_reservation(struct hstate *h,
a5516438 2765 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2766{
5e911373 2767 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2768}
84afd99b 2769
cf3ad20b
MK
2770static long vma_commit_reservation(struct hstate *h,
2771 struct vm_area_struct *vma, unsigned long addr)
2772{
5e911373
MK
2773 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2774}
2775
feba16e2 2776static void vma_end_reservation(struct hstate *h,
5e911373
MK
2777 struct vm_area_struct *vma, unsigned long addr)
2778{
feba16e2 2779 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2780}
2781
96b96a96
MK
2782static long vma_add_reservation(struct hstate *h,
2783 struct vm_area_struct *vma, unsigned long addr)
2784{
2785 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2786}
2787
846be085
MK
2788static long vma_del_reservation(struct hstate *h,
2789 struct vm_area_struct *vma, unsigned long addr)
2790{
2791 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2792}
2793
96b96a96 2794/*
846be085
MK
2795 * This routine is called to restore reservation information on error paths.
2796 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2797 * the hugetlb mutex should remain held when calling this routine.
2798 *
2799 * It handles two specific cases:
2800 * 1) A reservation was in place and the page consumed the reservation.
2801 * HPageRestoreReserve is set in the page.
2802 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2803 * not set. However, alloc_huge_page always updates the reserve map.
2804 *
2805 * In case 1, free_huge_page later in the error path will increment the
2806 * global reserve count. But, free_huge_page does not have enough context
2807 * to adjust the reservation map. This case deals primarily with private
2808 * mappings. Adjust the reserve map here to be consistent with global
2809 * reserve count adjustments to be made by free_huge_page. Make sure the
2810 * reserve map indicates there is a reservation present.
2811 *
2812 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2813 */
846be085
MK
2814void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2815 unsigned long address, struct page *page)
96b96a96 2816{
846be085 2817 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2818
846be085
MK
2819 if (HPageRestoreReserve(page)) {
2820 if (unlikely(rc < 0))
96b96a96
MK
2821 /*
2822 * Rare out of memory condition in reserve map
d6995da3 2823 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2824 * global reserve count will not be incremented
2825 * by free_huge_page. This will make it appear
2826 * as though the reservation for this page was
2827 * consumed. This may prevent the task from
2828 * faulting in the page at a later time. This
2829 * is better than inconsistent global huge page
2830 * accounting of reserve counts.
2831 */
d6995da3 2832 ClearHPageRestoreReserve(page);
846be085
MK
2833 else if (rc)
2834 (void)vma_add_reservation(h, vma, address);
2835 else
2836 vma_end_reservation(h, vma, address);
2837 } else {
2838 if (!rc) {
2839 /*
2840 * This indicates there is an entry in the reserve map
c7b1850d 2841 * not added by alloc_huge_page. We know it was added
846be085
MK
2842 * before the alloc_huge_page call, otherwise
2843 * HPageRestoreReserve would be set on the page.
2844 * Remove the entry so that a subsequent allocation
2845 * does not consume a reservation.
2846 */
2847 rc = vma_del_reservation(h, vma, address);
2848 if (rc < 0)
96b96a96 2849 /*
846be085
MK
2850 * VERY rare out of memory condition. Since
2851 * we can not delete the entry, set
2852 * HPageRestoreReserve so that the reserve
2853 * count will be incremented when the page
2854 * is freed. This reserve will be consumed
2855 * on a subsequent allocation.
96b96a96 2856 */
846be085
MK
2857 SetHPageRestoreReserve(page);
2858 } else if (rc < 0) {
2859 /*
2860 * Rare out of memory condition from
2861 * vma_needs_reservation call. Memory allocation is
2862 * only attempted if a new entry is needed. Therefore,
2863 * this implies there is not an entry in the
2864 * reserve map.
2865 *
2866 * For shared mappings, no entry in the map indicates
2867 * no reservation. We are done.
2868 */
2869 if (!(vma->vm_flags & VM_MAYSHARE))
2870 /*
2871 * For private mappings, no entry indicates
2872 * a reservation is present. Since we can
2873 * not add an entry, set SetHPageRestoreReserve
2874 * on the page so reserve count will be
2875 * incremented when freed. This reserve will
2876 * be consumed on a subsequent allocation.
2877 */
2878 SetHPageRestoreReserve(page);
96b96a96 2879 } else
846be085
MK
2880 /*
2881 * No reservation present, do nothing
2882 */
2883 vma_end_reservation(h, vma, address);
96b96a96
MK
2884 }
2885}
2886
369fa227 2887/*
19fc1a7e
SK
2888 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2889 * the old one
369fa227 2890 * @h: struct hstate old page belongs to
19fc1a7e 2891 * @old_folio: Old folio to dissolve
ae37c7ff 2892 * @list: List to isolate the page in case we need to
369fa227
OS
2893 * Returns 0 on success, otherwise negated error.
2894 */
19fc1a7e
SK
2895static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2896 struct folio *old_folio, struct list_head *list)
369fa227
OS
2897{
2898 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
de656ed3 2899 int nid = folio_nid(old_folio);
de656ed3 2900 struct folio *new_folio;
369fa227
OS
2901 int ret = 0;
2902
2903 /*
19fc1a7e
SK
2904 * Before dissolving the folio, we need to allocate a new one for the
2905 * pool to remain stable. Here, we allocate the folio and 'prep' it
f41f2ed4
MS
2906 * by doing everything but actually updating counters and adding to
2907 * the pool. This simplifies and let us do most of the processing
2908 * under the lock.
369fa227 2909 */
19fc1a7e
SK
2910 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2911 if (!new_folio)
369fa227 2912 return -ENOMEM;
de656ed3 2913 __prep_new_hugetlb_folio(h, new_folio);
369fa227
OS
2914
2915retry:
2916 spin_lock_irq(&hugetlb_lock);
de656ed3 2917 if (!folio_test_hugetlb(old_folio)) {
369fa227 2918 /*
19fc1a7e 2919 * Freed from under us. Drop new_folio too.
369fa227
OS
2920 */
2921 goto free_new;
de656ed3 2922 } else if (folio_ref_count(old_folio)) {
369fa227 2923 /*
19fc1a7e 2924 * Someone has grabbed the folio, try to isolate it here.
ae37c7ff 2925 * Fail with -EBUSY if not possible.
369fa227 2926 */
ae37c7ff 2927 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2928 ret = isolate_hugetlb(&old_folio->page, list);
ae37c7ff 2929 spin_lock_irq(&hugetlb_lock);
369fa227 2930 goto free_new;
de656ed3 2931 } else if (!folio_test_hugetlb_freed(old_folio)) {
369fa227 2932 /*
19fc1a7e 2933 * Folio's refcount is 0 but it has not been enqueued in the
369fa227
OS
2934 * freelist yet. Race window is small, so we can succeed here if
2935 * we retry.
2936 */
2937 spin_unlock_irq(&hugetlb_lock);
2938 cond_resched();
2939 goto retry;
2940 } else {
2941 /*
19fc1a7e 2942 * Ok, old_folio is still a genuine free hugepage. Remove it from
369fa227
OS
2943 * the freelist and decrease the counters. These will be
2944 * incremented again when calling __prep_account_new_huge_page()
240d67a8
SK
2945 * and enqueue_hugetlb_folio() for new_folio. The counters will
2946 * remain stable since this happens under the lock.
369fa227 2947 */
cfd5082b 2948 remove_hugetlb_folio(h, old_folio, false);
369fa227
OS
2949
2950 /*
19fc1a7e 2951 * Ref count on new_folio is already zero as it was dropped
b65a4eda 2952 * earlier. It can be directly added to the pool free list.
369fa227 2953 */
369fa227 2954 __prep_account_new_huge_page(h, nid);
240d67a8 2955 enqueue_hugetlb_folio(h, new_folio);
369fa227
OS
2956
2957 /*
19fc1a7e 2958 * Folio has been replaced, we can safely free the old one.
369fa227
OS
2959 */
2960 spin_unlock_irq(&hugetlb_lock);
d6ef19e2 2961 update_and_free_hugetlb_folio(h, old_folio, false);
369fa227
OS
2962 }
2963
2964 return ret;
2965
2966free_new:
2967 spin_unlock_irq(&hugetlb_lock);
19fc1a7e 2968 /* Folio has a zero ref count, but needs a ref to be freed */
de656ed3 2969 folio_ref_unfreeze(new_folio, 1);
d6ef19e2 2970 update_and_free_hugetlb_folio(h, new_folio, false);
369fa227
OS
2971
2972 return ret;
2973}
2974
ae37c7ff 2975int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2976{
2977 struct hstate *h;
d5e33bd8 2978 struct folio *folio = page_folio(page);
ae37c7ff 2979 int ret = -EBUSY;
369fa227
OS
2980
2981 /*
2982 * The page might have been dissolved from under our feet, so make sure
2983 * to carefully check the state under the lock.
2984 * Return success when racing as if we dissolved the page ourselves.
2985 */
2986 spin_lock_irq(&hugetlb_lock);
d5e33bd8
SK
2987 if (folio_test_hugetlb(folio)) {
2988 h = folio_hstate(folio);
369fa227
OS
2989 } else {
2990 spin_unlock_irq(&hugetlb_lock);
2991 return 0;
2992 }
2993 spin_unlock_irq(&hugetlb_lock);
2994
2995 /*
2996 * Fence off gigantic pages as there is a cyclic dependency between
2997 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2998 * of bailing out right away without further retrying.
2999 */
3000 if (hstate_is_gigantic(h))
3001 return -ENOMEM;
3002
d5e33bd8 3003 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
ae37c7ff 3004 ret = 0;
d5e33bd8 3005 else if (!folio_ref_count(folio))
19fc1a7e 3006 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
ae37c7ff
OS
3007
3008 return ret;
369fa227
OS
3009}
3010
70c3547e 3011struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 3012 unsigned long addr, int avoid_reserve)
1da177e4 3013{
90481622 3014 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 3015 struct hstate *h = hstate_vma(vma);
348ea204 3016 struct page *page;
d4ab0316 3017 struct folio *folio;
d85f69b0
MK
3018 long map_chg, map_commit;
3019 long gbl_chg;
6d76dcf4
AK
3020 int ret, idx;
3021 struct hugetlb_cgroup *h_cg;
08cf9faf 3022 bool deferred_reserve;
a1e78772 3023
6d76dcf4 3024 idx = hstate_index(h);
a1e78772 3025 /*
d85f69b0
MK
3026 * Examine the region/reserve map to determine if the process
3027 * has a reservation for the page to be allocated. A return
3028 * code of zero indicates a reservation exists (no change).
a1e78772 3029 */
d85f69b0
MK
3030 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3031 if (map_chg < 0)
76dcee75 3032 return ERR_PTR(-ENOMEM);
d85f69b0
MK
3033
3034 /*
3035 * Processes that did not create the mapping will have no
3036 * reserves as indicated by the region/reserve map. Check
3037 * that the allocation will not exceed the subpool limit.
3038 * Allocations for MAP_NORESERVE mappings also need to be
3039 * checked against any subpool limit.
3040 */
3041 if (map_chg || avoid_reserve) {
3042 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3043 if (gbl_chg < 0) {
feba16e2 3044 vma_end_reservation(h, vma, addr);
76dcee75 3045 return ERR_PTR(-ENOSPC);
5e911373 3046 }
1da177e4 3047
d85f69b0
MK
3048 /*
3049 * Even though there was no reservation in the region/reserve
3050 * map, there could be reservations associated with the
3051 * subpool that can be used. This would be indicated if the
3052 * return value of hugepage_subpool_get_pages() is zero.
3053 * However, if avoid_reserve is specified we still avoid even
3054 * the subpool reservations.
3055 */
3056 if (avoid_reserve)
3057 gbl_chg = 1;
3058 }
3059
08cf9faf
MA
3060 /* If this allocation is not consuming a reservation, charge it now.
3061 */
6501fe5f 3062 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
3063 if (deferred_reserve) {
3064 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3065 idx, pages_per_huge_page(h), &h_cg);
3066 if (ret)
3067 goto out_subpool_put;
3068 }
3069
6d76dcf4 3070 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 3071 if (ret)
08cf9faf 3072 goto out_uncharge_cgroup_reservation;
8f34af6f 3073
db71ef79 3074 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
3075 /*
3076 * glb_chg is passed to indicate whether or not a page must be taken
3077 * from the global free pool (global change). gbl_chg == 0 indicates
3078 * a reservation exists for the allocation.
3079 */
3080 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 3081 if (!page) {
db71ef79 3082 spin_unlock_irq(&hugetlb_lock);
0c397dae 3083 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
3084 if (!page)
3085 goto out_uncharge_cgroup;
12df140f 3086 spin_lock_irq(&hugetlb_lock);
a88c7695 3087 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 3088 SetHPageRestoreReserve(page);
a88c7695
NH
3089 h->resv_huge_pages--;
3090 }
15a8d68e 3091 list_add(&page->lru, &h->hugepage_activelist);
2b21624f 3092 set_page_refcounted(page);
81a6fcae 3093 /* Fall through */
68842c9b 3094 }
d4ab0316 3095 folio = page_folio(page);
81a6fcae 3096 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
3097 /* If allocation is not consuming a reservation, also store the
3098 * hugetlb_cgroup pointer on the page.
3099 */
3100 if (deferred_reserve) {
3101 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3102 h_cg, page);
3103 }
3104
db71ef79 3105 spin_unlock_irq(&hugetlb_lock);
348ea204 3106
d6995da3 3107 hugetlb_set_page_subpool(page, spool);
90d8b7e6 3108
d85f69b0
MK
3109 map_commit = vma_commit_reservation(h, vma, addr);
3110 if (unlikely(map_chg > map_commit)) {
33039678
MK
3111 /*
3112 * The page was added to the reservation map between
3113 * vma_needs_reservation and vma_commit_reservation.
3114 * This indicates a race with hugetlb_reserve_pages.
3115 * Adjust for the subpool count incremented above AND
3116 * in hugetlb_reserve_pages for the same page. Also,
3117 * the reservation count added in hugetlb_reserve_pages
3118 * no longer applies.
3119 */
3120 long rsv_adjust;
3121
3122 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3123 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b 3124 if (deferred_reserve)
d4ab0316
SK
3125 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3126 pages_per_huge_page(h), folio);
33039678 3127 }
90d8b7e6 3128 return page;
8f34af6f
JZ
3129
3130out_uncharge_cgroup:
3131 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
3132out_uncharge_cgroup_reservation:
3133 if (deferred_reserve)
3134 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3135 h_cg);
8f34af6f 3136out_subpool_put:
d85f69b0 3137 if (map_chg || avoid_reserve)
8f34af6f 3138 hugepage_subpool_put_pages(spool, 1);
feba16e2 3139 vma_end_reservation(h, vma, addr);
8f34af6f 3140 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
3141}
3142
b5389086 3143int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 3144 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 3145int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 3146{
b5389086 3147 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b2261026 3148 int nr_nodes, node;
aa888a74 3149
b5389086
ZY
3150 /* do node specific alloc */
3151 if (nid != NUMA_NO_NODE) {
3152 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3153 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3154 if (!m)
3155 return 0;
3156 goto found;
3157 }
3158 /* allocate from next node when distributing huge pages */
b2261026 3159 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3160 m = memblock_alloc_try_nid_raw(
8b89a116 3161 huge_page_size(h), huge_page_size(h),
97ad1087 3162 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3163 /*
3164 * Use the beginning of the huge page to store the
3165 * huge_bootmem_page struct (until gather_bootmem
3166 * puts them into the mem_map).
3167 */
3168 if (!m)
3169 return 0;
3170 goto found;
aa888a74 3171 }
aa888a74
AK
3172
3173found:
aa888a74 3174 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3175 INIT_LIST_HEAD(&m->list);
aa888a74
AK
3176 list_add(&m->list, &huge_boot_pages);
3177 m->hstate = h;
3178 return 1;
3179}
3180
48b8d744
MK
3181/*
3182 * Put bootmem huge pages into the standard lists after mem_map is up.
3183 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3184 */
aa888a74
AK
3185static void __init gather_bootmem_prealloc(void)
3186{
3187 struct huge_bootmem_page *m;
3188
3189 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 3190 struct page *page = virt_to_page(m);
7f325a8d 3191 struct folio *folio = page_folio(page);
aa888a74 3192 struct hstate *h = m->hstate;
ee8f248d 3193
48b8d744 3194 VM_BUG_ON(!hstate_is_gigantic(h));
d1c60955
SK
3195 WARN_ON(folio_ref_count(folio) != 1);
3196 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3197 WARN_ON(folio_test_reserved(folio));
3198 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2b21624f 3199 free_huge_page(page); /* add to the hugepage allocator */
7118fc29 3200 } else {
416d85ed 3201 /* VERY unlikely inflated ref count on a tail page */
7f325a8d 3202 free_gigantic_folio(folio, huge_page_order(h));
7118fc29 3203 }
af0fb9df 3204
b0320c7b 3205 /*
48b8d744
MK
3206 * We need to restore the 'stolen' pages to totalram_pages
3207 * in order to fix confusing memory reports from free(1) and
3208 * other side-effects, like CommitLimit going negative.
b0320c7b 3209 */
48b8d744 3210 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3211 cond_resched();
aa888a74
AK
3212 }
3213}
b5389086
ZY
3214static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3215{
3216 unsigned long i;
3217 char buf[32];
3218
3219 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3220 if (hstate_is_gigantic(h)) {
3221 if (!alloc_bootmem_huge_page(h, nid))
3222 break;
3223 } else {
19fc1a7e 3224 struct folio *folio;
b5389086
ZY
3225 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3226
19fc1a7e 3227 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
b5389086 3228 &node_states[N_MEMORY], NULL);
19fc1a7e 3229 if (!folio)
b5389086 3230 break;
19fc1a7e 3231 free_huge_page(&folio->page); /* free it into the hugepage allocator */
b5389086
ZY
3232 }
3233 cond_resched();
3234 }
3235 if (i == h->max_huge_pages_node[nid])
3236 return;
3237
3238 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3239 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3240 h->max_huge_pages_node[nid], buf, nid, i);
3241 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3242 h->max_huge_pages_node[nid] = i;
3243}
aa888a74 3244
8faa8b07 3245static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
3246{
3247 unsigned long i;
f60858f9 3248 nodemask_t *node_alloc_noretry;
b5389086
ZY
3249 bool node_specific_alloc = false;
3250
3251 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3252 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3253 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3254 return;
3255 }
3256
3257 /* do node specific alloc */
0a7a0f6f 3258 for_each_online_node(i) {
b5389086
ZY
3259 if (h->max_huge_pages_node[i] > 0) {
3260 hugetlb_hstate_alloc_pages_onenode(h, i);
3261 node_specific_alloc = true;
3262 }
3263 }
f60858f9 3264
b5389086
ZY
3265 if (node_specific_alloc)
3266 return;
3267
3268 /* below will do all node balanced alloc */
f60858f9
MK
3269 if (!hstate_is_gigantic(h)) {
3270 /*
3271 * Bit mask controlling how hard we retry per-node allocations.
3272 * Ignore errors as lower level routines can deal with
3273 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3274 * time, we are likely in bigger trouble.
3275 */
3276 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3277 GFP_KERNEL);
3278 } else {
3279 /* allocations done at boot time */
3280 node_alloc_noretry = NULL;
3281 }
3282
3283 /* bit mask controlling how hard we retry per-node allocations */
3284 if (node_alloc_noretry)
3285 nodes_clear(*node_alloc_noretry);
a5516438 3286
e5ff2159 3287 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 3288 if (hstate_is_gigantic(h)) {
b5389086 3289 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
aa888a74 3290 break;
0c397dae 3291 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
3292 &node_states[N_MEMORY],
3293 node_alloc_noretry))
1da177e4 3294 break;
69ed779a 3295 cond_resched();
1da177e4 3296 }
d715cf80
LH
3297 if (i < h->max_huge_pages) {
3298 char buf[32];
3299
c6247f72 3300 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
3301 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3302 h->max_huge_pages, buf, i);
3303 h->max_huge_pages = i;
3304 }
f60858f9 3305 kfree(node_alloc_noretry);
e5ff2159
AK
3306}
3307
3308static void __init hugetlb_init_hstates(void)
3309{
79dfc695 3310 struct hstate *h, *h2;
e5ff2159
AK
3311
3312 for_each_hstate(h) {
8faa8b07 3313 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3314 if (!hstate_is_gigantic(h))
8faa8b07 3315 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3316
3317 /*
3318 * Set demote order for each hstate. Note that
3319 * h->demote_order is initially 0.
3320 * - We can not demote gigantic pages if runtime freeing
3321 * is not supported, so skip this.
a01f4390
MK
3322 * - If CMA allocation is possible, we can not demote
3323 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3324 */
3325 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3326 continue;
a01f4390
MK
3327 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3328 continue;
79dfc695
MK
3329 for_each_hstate(h2) {
3330 if (h2 == h)
3331 continue;
3332 if (h2->order < h->order &&
3333 h2->order > h->demote_order)
3334 h->demote_order = h2->order;
3335 }
e5ff2159
AK
3336 }
3337}
3338
3339static void __init report_hugepages(void)
3340{
3341 struct hstate *h;
3342
3343 for_each_hstate(h) {
4abd32db 3344 char buf[32];
c6247f72
MW
3345
3346 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
6213834c 3347 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
c6247f72 3348 buf, h->free_huge_pages);
6213834c
MS
3349 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3350 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
e5ff2159
AK
3351 }
3352}
3353
1da177e4 3354#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3355static void try_to_free_low(struct hstate *h, unsigned long count,
3356 nodemask_t *nodes_allowed)
1da177e4 3357{
4415cc8d 3358 int i;
1121828a 3359 LIST_HEAD(page_list);
4415cc8d 3360
9487ca60 3361 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3362 if (hstate_is_gigantic(h))
aa888a74
AK
3363 return;
3364
1121828a
MK
3365 /*
3366 * Collect pages to be freed on a list, and free after dropping lock
3367 */
6ae11b27 3368 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3369 struct page *page, *next;
a5516438
AK
3370 struct list_head *freel = &h->hugepage_freelists[i];
3371 list_for_each_entry_safe(page, next, freel, lru) {
3372 if (count >= h->nr_huge_pages)
1121828a 3373 goto out;
1da177e4
LT
3374 if (PageHighMem(page))
3375 continue;
cfd5082b 3376 remove_hugetlb_folio(h, page_folio(page), false);
1121828a 3377 list_add(&page->lru, &page_list);
1da177e4
LT
3378 }
3379 }
1121828a
MK
3380
3381out:
db71ef79 3382 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3383 update_and_free_pages_bulk(h, &page_list);
db71ef79 3384 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3385}
3386#else
6ae11b27
LS
3387static inline void try_to_free_low(struct hstate *h, unsigned long count,
3388 nodemask_t *nodes_allowed)
1da177e4
LT
3389{
3390}
3391#endif
3392
20a0307c
WF
3393/*
3394 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3395 * balanced by operating on them in a round-robin fashion.
3396 * Returns 1 if an adjustment was made.
3397 */
6ae11b27
LS
3398static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3399 int delta)
20a0307c 3400{
b2261026 3401 int nr_nodes, node;
20a0307c 3402
9487ca60 3403 lockdep_assert_held(&hugetlb_lock);
20a0307c 3404 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3405
b2261026
JK
3406 if (delta < 0) {
3407 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3408 if (h->surplus_huge_pages_node[node])
3409 goto found;
e8c5c824 3410 }
b2261026
JK
3411 } else {
3412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3413 if (h->surplus_huge_pages_node[node] <
3414 h->nr_huge_pages_node[node])
3415 goto found;
e8c5c824 3416 }
b2261026
JK
3417 }
3418 return 0;
20a0307c 3419
b2261026
JK
3420found:
3421 h->surplus_huge_pages += delta;
3422 h->surplus_huge_pages_node[node] += delta;
3423 return 1;
20a0307c
WF
3424}
3425
a5516438 3426#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3427static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3428 nodemask_t *nodes_allowed)
1da177e4 3429{
7893d1d5 3430 unsigned long min_count, ret;
10c6ec49
MK
3431 struct page *page;
3432 LIST_HEAD(page_list);
f60858f9
MK
3433 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3434
3435 /*
3436 * Bit mask controlling how hard we retry per-node allocations.
3437 * If we can not allocate the bit mask, do not attempt to allocate
3438 * the requested huge pages.
3439 */
3440 if (node_alloc_noretry)
3441 nodes_clear(*node_alloc_noretry);
3442 else
3443 return -ENOMEM;
1da177e4 3444
29383967
MK
3445 /*
3446 * resize_lock mutex prevents concurrent adjustments to number of
3447 * pages in hstate via the proc/sysfs interfaces.
3448 */
3449 mutex_lock(&h->resize_lock);
b65d4adb 3450 flush_free_hpage_work(h);
db71ef79 3451 spin_lock_irq(&hugetlb_lock);
4eb0716e 3452
fd875dca
MK
3453 /*
3454 * Check for a node specific request.
3455 * Changing node specific huge page count may require a corresponding
3456 * change to the global count. In any case, the passed node mask
3457 * (nodes_allowed) will restrict alloc/free to the specified node.
3458 */
3459 if (nid != NUMA_NO_NODE) {
3460 unsigned long old_count = count;
3461
3462 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3463 /*
3464 * User may have specified a large count value which caused the
3465 * above calculation to overflow. In this case, they wanted
3466 * to allocate as many huge pages as possible. Set count to
3467 * largest possible value to align with their intention.
3468 */
3469 if (count < old_count)
3470 count = ULONG_MAX;
3471 }
3472
4eb0716e
AG
3473 /*
3474 * Gigantic pages runtime allocation depend on the capability for large
3475 * page range allocation.
3476 * If the system does not provide this feature, return an error when
3477 * the user tries to allocate gigantic pages but let the user free the
3478 * boottime allocated gigantic pages.
3479 */
3480 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3481 if (count > persistent_huge_pages(h)) {
db71ef79 3482 spin_unlock_irq(&hugetlb_lock);
29383967 3483 mutex_unlock(&h->resize_lock);
f60858f9 3484 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3485 return -EINVAL;
3486 }
3487 /* Fall through to decrease pool */
3488 }
aa888a74 3489
7893d1d5
AL
3490 /*
3491 * Increase the pool size
3492 * First take pages out of surplus state. Then make up the
3493 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3494 *
0c397dae 3495 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3496 * to convert a surplus huge page to a normal huge page. That is
3497 * not critical, though, it just means the overall size of the
3498 * pool might be one hugepage larger than it needs to be, but
3499 * within all the constraints specified by the sysctls.
7893d1d5 3500 */
a5516438 3501 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3502 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3503 break;
3504 }
3505
a5516438 3506 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3507 /*
3508 * If this allocation races such that we no longer need the
3509 * page, free_huge_page will handle it by freeing the page
3510 * and reducing the surplus.
3511 */
db71ef79 3512 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3513
3514 /* yield cpu to avoid soft lockup */
3515 cond_resched();
3516
f60858f9
MK
3517 ret = alloc_pool_huge_page(h, nodes_allowed,
3518 node_alloc_noretry);
db71ef79 3519 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3520 if (!ret)
3521 goto out;
3522
536240f2
MG
3523 /* Bail for signals. Probably ctrl-c from user */
3524 if (signal_pending(current))
3525 goto out;
7893d1d5 3526 }
7893d1d5
AL
3527
3528 /*
3529 * Decrease the pool size
3530 * First return free pages to the buddy allocator (being careful
3531 * to keep enough around to satisfy reservations). Then place
3532 * pages into surplus state as needed so the pool will shrink
3533 * to the desired size as pages become free.
d1c3fb1f
NA
3534 *
3535 * By placing pages into the surplus state independent of the
3536 * overcommit value, we are allowing the surplus pool size to
3537 * exceed overcommit. There are few sane options here. Since
0c397dae 3538 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3539 * though, we'll note that we're not allowed to exceed surplus
3540 * and won't grow the pool anywhere else. Not until one of the
3541 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3542 */
a5516438 3543 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3544 min_count = max(count, min_count);
6ae11b27 3545 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3546
3547 /*
3548 * Collect pages to be removed on list without dropping lock
3549 */
a5516438 3550 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3551 page = remove_pool_huge_page(h, nodes_allowed, 0);
3552 if (!page)
1da177e4 3553 break;
10c6ec49
MK
3554
3555 list_add(&page->lru, &page_list);
1da177e4 3556 }
10c6ec49 3557 /* free the pages after dropping lock */
db71ef79 3558 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3559 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3560 flush_free_hpage_work(h);
db71ef79 3561 spin_lock_irq(&hugetlb_lock);
10c6ec49 3562
a5516438 3563 while (count < persistent_huge_pages(h)) {
6ae11b27 3564 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3565 break;
3566 }
3567out:
4eb0716e 3568 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3569 spin_unlock_irq(&hugetlb_lock);
29383967 3570 mutex_unlock(&h->resize_lock);
4eb0716e 3571
f60858f9
MK
3572 NODEMASK_FREE(node_alloc_noretry);
3573
4eb0716e 3574 return 0;
1da177e4
LT
3575}
3576
8531fc6f
MK
3577static int demote_free_huge_page(struct hstate *h, struct page *page)
3578{
3579 int i, nid = page_to_nid(page);
3580 struct hstate *target_hstate;
911565b8 3581 struct folio *folio = page_folio(page);
31731452 3582 struct page *subpage;
8531fc6f
MK
3583 int rc = 0;
3584
3585 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3586
cfd5082b 3587 remove_hugetlb_folio_for_demote(h, folio, false);
8531fc6f
MK
3588 spin_unlock_irq(&hugetlb_lock);
3589
6213834c 3590 rc = hugetlb_vmemmap_restore(h, page);
8531fc6f
MK
3591 if (rc) {
3592 /* Allocation of vmemmmap failed, we can not demote page */
3593 spin_lock_irq(&hugetlb_lock);
3594 set_page_refcounted(page);
2f6c57d6 3595 add_hugetlb_folio(h, page_folio(page), false);
8531fc6f
MK
3596 return rc;
3597 }
3598
3599 /*
911565b8 3600 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
8531fc6f
MK
3601 * sizes as it will not ref count pages.
3602 */
911565b8 3603 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
8531fc6f
MK
3604
3605 /*
3606 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3607 * Without the mutex, pages added to target hstate could be marked
3608 * as surplus.
3609 *
3610 * Note that we already hold h->resize_lock. To prevent deadlock,
3611 * use the convention of always taking larger size hstate mutex first.
3612 */
3613 mutex_lock(&target_hstate->resize_lock);
3614 for (i = 0; i < pages_per_huge_page(h);
3615 i += pages_per_huge_page(target_hstate)) {
31731452 3616 subpage = nth_page(page, i);
d1c60955 3617 folio = page_folio(subpage);
8531fc6f 3618 if (hstate_is_gigantic(target_hstate))
d1c60955 3619 prep_compound_gigantic_folio_for_demote(folio,
8531fc6f
MK
3620 target_hstate->order);
3621 else
31731452
DB
3622 prep_compound_page(subpage, target_hstate->order);
3623 set_page_private(subpage, 0);
d1c60955 3624 prep_new_hugetlb_folio(target_hstate, folio, nid);
2b21624f 3625 free_huge_page(subpage);
8531fc6f
MK
3626 }
3627 mutex_unlock(&target_hstate->resize_lock);
3628
3629 spin_lock_irq(&hugetlb_lock);
3630
3631 /*
3632 * Not absolutely necessary, but for consistency update max_huge_pages
3633 * based on pool changes for the demoted page.
3634 */
3635 h->max_huge_pages--;
a43a83c7
ML
3636 target_hstate->max_huge_pages +=
3637 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
8531fc6f
MK
3638
3639 return rc;
3640}
3641
79dfc695
MK
3642static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3643 __must_hold(&hugetlb_lock)
3644{
8531fc6f
MK
3645 int nr_nodes, node;
3646 struct page *page;
79dfc695
MK
3647
3648 lockdep_assert_held(&hugetlb_lock);
3649
3650 /* We should never get here if no demote order */
3651 if (!h->demote_order) {
3652 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3653 return -EINVAL; /* internal error */
3654 }
3655
8531fc6f 3656 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
5a317412
MK
3657 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3658 if (PageHWPoison(page))
3659 continue;
3660
3661 return demote_free_huge_page(h, page);
8531fc6f
MK
3662 }
3663 }
3664
5a317412
MK
3665 /*
3666 * Only way to get here is if all pages on free lists are poisoned.
3667 * Return -EBUSY so that caller will not retry.
3668 */
3669 return -EBUSY;
79dfc695
MK
3670}
3671
a3437870
NA
3672#define HSTATE_ATTR_RO(_name) \
3673 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3674
79dfc695
MK
3675#define HSTATE_ATTR_WO(_name) \
3676 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3677
a3437870 3678#define HSTATE_ATTR(_name) \
98bc26ac 3679 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
3680
3681static struct kobject *hugepages_kobj;
3682static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3683
9a305230
LS
3684static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3685
3686static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3687{
3688 int i;
9a305230 3689
a3437870 3690 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3691 if (hstate_kobjs[i] == kobj) {
3692 if (nidp)
3693 *nidp = NUMA_NO_NODE;
a3437870 3694 return &hstates[i];
9a305230
LS
3695 }
3696
3697 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3698}
3699
06808b08 3700static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3701 struct kobj_attribute *attr, char *buf)
3702{
9a305230
LS
3703 struct hstate *h;
3704 unsigned long nr_huge_pages;
3705 int nid;
3706
3707 h = kobj_to_hstate(kobj, &nid);
3708 if (nid == NUMA_NO_NODE)
3709 nr_huge_pages = h->nr_huge_pages;
3710 else
3711 nr_huge_pages = h->nr_huge_pages_node[nid];
3712
ae7a927d 3713 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3714}
adbe8726 3715
238d3c13
DR
3716static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3717 struct hstate *h, int nid,
3718 unsigned long count, size_t len)
a3437870
NA
3719{
3720 int err;
2d0adf7e 3721 nodemask_t nodes_allowed, *n_mask;
a3437870 3722
2d0adf7e
OS
3723 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3724 return -EINVAL;
adbe8726 3725
9a305230
LS
3726 if (nid == NUMA_NO_NODE) {
3727 /*
3728 * global hstate attribute
3729 */
3730 if (!(obey_mempolicy &&
2d0adf7e
OS
3731 init_nodemask_of_mempolicy(&nodes_allowed)))
3732 n_mask = &node_states[N_MEMORY];
3733 else
3734 n_mask = &nodes_allowed;
3735 } else {
9a305230 3736 /*
fd875dca
MK
3737 * Node specific request. count adjustment happens in
3738 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3739 */
2d0adf7e
OS
3740 init_nodemask_of_node(&nodes_allowed, nid);
3741 n_mask = &nodes_allowed;
fd875dca 3742 }
9a305230 3743
2d0adf7e 3744 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3745
4eb0716e 3746 return err ? err : len;
06808b08
LS
3747}
3748
238d3c13
DR
3749static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3750 struct kobject *kobj, const char *buf,
3751 size_t len)
3752{
3753 struct hstate *h;
3754 unsigned long count;
3755 int nid;
3756 int err;
3757
3758 err = kstrtoul(buf, 10, &count);
3759 if (err)
3760 return err;
3761
3762 h = kobj_to_hstate(kobj, &nid);
3763 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3764}
3765
06808b08
LS
3766static ssize_t nr_hugepages_show(struct kobject *kobj,
3767 struct kobj_attribute *attr, char *buf)
3768{
3769 return nr_hugepages_show_common(kobj, attr, buf);
3770}
3771
3772static ssize_t nr_hugepages_store(struct kobject *kobj,
3773 struct kobj_attribute *attr, const char *buf, size_t len)
3774{
238d3c13 3775 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3776}
3777HSTATE_ATTR(nr_hugepages);
3778
06808b08
LS
3779#ifdef CONFIG_NUMA
3780
3781/*
3782 * hstate attribute for optionally mempolicy-based constraint on persistent
3783 * huge page alloc/free.
3784 */
3785static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3786 struct kobj_attribute *attr,
3787 char *buf)
06808b08
LS
3788{
3789 return nr_hugepages_show_common(kobj, attr, buf);
3790}
3791
3792static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3793 struct kobj_attribute *attr, const char *buf, size_t len)
3794{
238d3c13 3795 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3796}
3797HSTATE_ATTR(nr_hugepages_mempolicy);
3798#endif
3799
3800
a3437870
NA
3801static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3802 struct kobj_attribute *attr, char *buf)
3803{
9a305230 3804 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3805 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3806}
adbe8726 3807
a3437870
NA
3808static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3809 struct kobj_attribute *attr, const char *buf, size_t count)
3810{
3811 int err;
3812 unsigned long input;
9a305230 3813 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3814
bae7f4ae 3815 if (hstate_is_gigantic(h))
adbe8726
EM
3816 return -EINVAL;
3817
3dbb95f7 3818 err = kstrtoul(buf, 10, &input);
a3437870 3819 if (err)
73ae31e5 3820 return err;
a3437870 3821
db71ef79 3822 spin_lock_irq(&hugetlb_lock);
a3437870 3823 h->nr_overcommit_huge_pages = input;
db71ef79 3824 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3825
3826 return count;
3827}
3828HSTATE_ATTR(nr_overcommit_hugepages);
3829
3830static ssize_t free_hugepages_show(struct kobject *kobj,
3831 struct kobj_attribute *attr, char *buf)
3832{
9a305230
LS
3833 struct hstate *h;
3834 unsigned long free_huge_pages;
3835 int nid;
3836
3837 h = kobj_to_hstate(kobj, &nid);
3838 if (nid == NUMA_NO_NODE)
3839 free_huge_pages = h->free_huge_pages;
3840 else
3841 free_huge_pages = h->free_huge_pages_node[nid];
3842
ae7a927d 3843 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3844}
3845HSTATE_ATTR_RO(free_hugepages);
3846
3847static ssize_t resv_hugepages_show(struct kobject *kobj,
3848 struct kobj_attribute *attr, char *buf)
3849{
9a305230 3850 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3851 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3852}
3853HSTATE_ATTR_RO(resv_hugepages);
3854
3855static ssize_t surplus_hugepages_show(struct kobject *kobj,
3856 struct kobj_attribute *attr, char *buf)
3857{
9a305230
LS
3858 struct hstate *h;
3859 unsigned long surplus_huge_pages;
3860 int nid;
3861
3862 h = kobj_to_hstate(kobj, &nid);
3863 if (nid == NUMA_NO_NODE)
3864 surplus_huge_pages = h->surplus_huge_pages;
3865 else
3866 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3867
ae7a927d 3868 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3869}
3870HSTATE_ATTR_RO(surplus_hugepages);
3871
79dfc695
MK
3872static ssize_t demote_store(struct kobject *kobj,
3873 struct kobj_attribute *attr, const char *buf, size_t len)
3874{
3875 unsigned long nr_demote;
3876 unsigned long nr_available;
3877 nodemask_t nodes_allowed, *n_mask;
3878 struct hstate *h;
8eeda55f 3879 int err;
79dfc695
MK
3880 int nid;
3881
3882 err = kstrtoul(buf, 10, &nr_demote);
3883 if (err)
3884 return err;
3885 h = kobj_to_hstate(kobj, &nid);
3886
3887 if (nid != NUMA_NO_NODE) {
3888 init_nodemask_of_node(&nodes_allowed, nid);
3889 n_mask = &nodes_allowed;
3890 } else {
3891 n_mask = &node_states[N_MEMORY];
3892 }
3893
3894 /* Synchronize with other sysfs operations modifying huge pages */
3895 mutex_lock(&h->resize_lock);
3896 spin_lock_irq(&hugetlb_lock);
3897
3898 while (nr_demote) {
3899 /*
3900 * Check for available pages to demote each time thorough the
3901 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
3902 */
3903 if (nid != NUMA_NO_NODE)
3904 nr_available = h->free_huge_pages_node[nid];
3905 else
3906 nr_available = h->free_huge_pages;
3907 nr_available -= h->resv_huge_pages;
3908 if (!nr_available)
3909 break;
3910
3911 err = demote_pool_huge_page(h, n_mask);
3912 if (err)
3913 break;
3914
3915 nr_demote--;
3916 }
3917
3918 spin_unlock_irq(&hugetlb_lock);
3919 mutex_unlock(&h->resize_lock);
3920
3921 if (err)
3922 return err;
3923 return len;
3924}
3925HSTATE_ATTR_WO(demote);
3926
3927static ssize_t demote_size_show(struct kobject *kobj,
3928 struct kobj_attribute *attr, char *buf)
3929{
12658abf 3930 struct hstate *h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3931 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3932
3933 return sysfs_emit(buf, "%lukB\n", demote_size);
3934}
3935
3936static ssize_t demote_size_store(struct kobject *kobj,
3937 struct kobj_attribute *attr,
3938 const char *buf, size_t count)
3939{
3940 struct hstate *h, *demote_hstate;
3941 unsigned long demote_size;
3942 unsigned int demote_order;
79dfc695
MK
3943
3944 demote_size = (unsigned long)memparse(buf, NULL);
3945
3946 demote_hstate = size_to_hstate(demote_size);
3947 if (!demote_hstate)
3948 return -EINVAL;
3949 demote_order = demote_hstate->order;
a01f4390
MK
3950 if (demote_order < HUGETLB_PAGE_ORDER)
3951 return -EINVAL;
79dfc695
MK
3952
3953 /* demote order must be smaller than hstate order */
12658abf 3954 h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
3955 if (demote_order >= h->order)
3956 return -EINVAL;
3957
3958 /* resize_lock synchronizes access to demote size and writes */
3959 mutex_lock(&h->resize_lock);
3960 h->demote_order = demote_order;
3961 mutex_unlock(&h->resize_lock);
3962
3963 return count;
3964}
3965HSTATE_ATTR(demote_size);
3966
a3437870
NA
3967static struct attribute *hstate_attrs[] = {
3968 &nr_hugepages_attr.attr,
3969 &nr_overcommit_hugepages_attr.attr,
3970 &free_hugepages_attr.attr,
3971 &resv_hugepages_attr.attr,
3972 &surplus_hugepages_attr.attr,
06808b08
LS
3973#ifdef CONFIG_NUMA
3974 &nr_hugepages_mempolicy_attr.attr,
3975#endif
a3437870
NA
3976 NULL,
3977};
3978
67e5ed96 3979static const struct attribute_group hstate_attr_group = {
a3437870
NA
3980 .attrs = hstate_attrs,
3981};
3982
79dfc695
MK
3983static struct attribute *hstate_demote_attrs[] = {
3984 &demote_size_attr.attr,
3985 &demote_attr.attr,
3986 NULL,
3987};
3988
3989static const struct attribute_group hstate_demote_attr_group = {
3990 .attrs = hstate_demote_attrs,
3991};
3992
094e9539
JM
3993static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3994 struct kobject **hstate_kobjs,
67e5ed96 3995 const struct attribute_group *hstate_attr_group)
a3437870
NA
3996{
3997 int retval;
972dc4de 3998 int hi = hstate_index(h);
a3437870 3999
9a305230
LS
4000 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4001 if (!hstate_kobjs[hi])
a3437870
NA
4002 return -ENOMEM;
4003
9a305230 4004 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 4005 if (retval) {
9a305230 4006 kobject_put(hstate_kobjs[hi]);
cc2205a6 4007 hstate_kobjs[hi] = NULL;
3a6bdda0 4008 return retval;
cc2205a6 4009 }
a3437870 4010
79dfc695 4011 if (h->demote_order) {
01088a60
ML
4012 retval = sysfs_create_group(hstate_kobjs[hi],
4013 &hstate_demote_attr_group);
4014 if (retval) {
79dfc695 4015 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
01088a60
ML
4016 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4017 kobject_put(hstate_kobjs[hi]);
4018 hstate_kobjs[hi] = NULL;
4019 return retval;
4020 }
79dfc695
MK
4021 }
4022
01088a60 4023 return 0;
a3437870
NA
4024}
4025
9a305230 4026#ifdef CONFIG_NUMA
a4a00b45 4027static bool hugetlb_sysfs_initialized __ro_after_init;
9a305230
LS
4028
4029/*
4030 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
4031 * with node devices in node_devices[] using a parallel array. The array
4032 * index of a node device or _hstate == node id.
4033 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
4034 * the base kernel, on the hugetlb module.
4035 */
4036struct node_hstate {
4037 struct kobject *hugepages_kobj;
4038 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4039};
b4e289a6 4040static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
4041
4042/*
10fbcf4c 4043 * A subset of global hstate attributes for node devices
9a305230
LS
4044 */
4045static struct attribute *per_node_hstate_attrs[] = {
4046 &nr_hugepages_attr.attr,
4047 &free_hugepages_attr.attr,
4048 &surplus_hugepages_attr.attr,
4049 NULL,
4050};
4051
67e5ed96 4052static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
4053 .attrs = per_node_hstate_attrs,
4054};
4055
4056/*
10fbcf4c 4057 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
4058 * Returns node id via non-NULL nidp.
4059 */
4060static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4061{
4062 int nid;
4063
4064 for (nid = 0; nid < nr_node_ids; nid++) {
4065 struct node_hstate *nhs = &node_hstates[nid];
4066 int i;
4067 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4068 if (nhs->hstate_kobjs[i] == kobj) {
4069 if (nidp)
4070 *nidp = nid;
4071 return &hstates[i];
4072 }
4073 }
4074
4075 BUG();
4076 return NULL;
4077}
4078
4079/*
10fbcf4c 4080 * Unregister hstate attributes from a single node device.
9a305230
LS
4081 * No-op if no hstate attributes attached.
4082 */
a4a00b45 4083void hugetlb_unregister_node(struct node *node)
9a305230
LS
4084{
4085 struct hstate *h;
10fbcf4c 4086 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4087
4088 if (!nhs->hugepages_kobj)
9b5e5d0f 4089 return; /* no hstate attributes */
9a305230 4090
972dc4de
AK
4091 for_each_hstate(h) {
4092 int idx = hstate_index(h);
01088a60
ML
4093 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4094
4095 if (!hstate_kobj)
4096 continue;
4097 if (h->demote_order)
4098 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4099 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4100 kobject_put(hstate_kobj);
4101 nhs->hstate_kobjs[idx] = NULL;
972dc4de 4102 }
9a305230
LS
4103
4104 kobject_put(nhs->hugepages_kobj);
4105 nhs->hugepages_kobj = NULL;
4106}
4107
9a305230
LS
4108
4109/*
10fbcf4c 4110 * Register hstate attributes for a single node device.
9a305230
LS
4111 * No-op if attributes already registered.
4112 */
a4a00b45 4113void hugetlb_register_node(struct node *node)
9a305230
LS
4114{
4115 struct hstate *h;
10fbcf4c 4116 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4117 int err;
4118
a4a00b45
MS
4119 if (!hugetlb_sysfs_initialized)
4120 return;
4121
9a305230
LS
4122 if (nhs->hugepages_kobj)
4123 return; /* already allocated */
4124
4125 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 4126 &node->dev.kobj);
9a305230
LS
4127 if (!nhs->hugepages_kobj)
4128 return;
4129
4130 for_each_hstate(h) {
4131 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4132 nhs->hstate_kobjs,
4133 &per_node_hstate_attr_group);
4134 if (err) {
282f4214 4135 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 4136 h->name, node->dev.id);
9a305230
LS
4137 hugetlb_unregister_node(node);
4138 break;
4139 }
4140 }
4141}
4142
4143/*
9b5e5d0f 4144 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
4145 * devices of nodes that have memory. All on-line nodes should have
4146 * registered their associated device by this time.
9a305230 4147 */
7d9ca000 4148static void __init hugetlb_register_all_nodes(void)
9a305230
LS
4149{
4150 int nid;
4151
a4a00b45 4152 for_each_online_node(nid)
b958d4d0 4153 hugetlb_register_node(node_devices[nid]);
9a305230
LS
4154}
4155#else /* !CONFIG_NUMA */
4156
4157static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4158{
4159 BUG();
4160 if (nidp)
4161 *nidp = -1;
4162 return NULL;
4163}
4164
9a305230
LS
4165static void hugetlb_register_all_nodes(void) { }
4166
4167#endif
4168
263b8998
ML
4169#ifdef CONFIG_CMA
4170static void __init hugetlb_cma_check(void);
4171#else
4172static inline __init void hugetlb_cma_check(void)
4173{
4174}
4175#endif
4176
a4a00b45
MS
4177static void __init hugetlb_sysfs_init(void)
4178{
4179 struct hstate *h;
4180 int err;
4181
4182 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4183 if (!hugepages_kobj)
4184 return;
4185
4186 for_each_hstate(h) {
4187 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4188 hstate_kobjs, &hstate_attr_group);
4189 if (err)
4190 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4191 }
4192
4193#ifdef CONFIG_NUMA
4194 hugetlb_sysfs_initialized = true;
4195#endif
4196 hugetlb_register_all_nodes();
4197}
4198
a3437870
NA
4199static int __init hugetlb_init(void)
4200{
8382d914
DB
4201 int i;
4202
d6995da3
MK
4203 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4204 __NR_HPAGEFLAGS);
4205
c2833a5b
MK
4206 if (!hugepages_supported()) {
4207 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4208 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4209 return 0;
c2833a5b 4210 }
a3437870 4211
282f4214
MK
4212 /*
4213 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4214 * architectures depend on setup being done here.
4215 */
4216 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4217 if (!parsed_default_hugepagesz) {
4218 /*
4219 * If we did not parse a default huge page size, set
4220 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4221 * number of huge pages for this default size was implicitly
4222 * specified, set that here as well.
4223 * Note that the implicit setting will overwrite an explicit
4224 * setting. A warning will be printed in this case.
4225 */
4226 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4227 if (default_hstate_max_huge_pages) {
4228 if (default_hstate.max_huge_pages) {
4229 char buf[32];
4230
4231 string_get_size(huge_page_size(&default_hstate),
4232 1, STRING_UNITS_2, buf, 32);
4233 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4234 default_hstate.max_huge_pages, buf);
4235 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4236 default_hstate_max_huge_pages);
4237 }
4238 default_hstate.max_huge_pages =
4239 default_hstate_max_huge_pages;
b5389086 4240
0a7a0f6f 4241 for_each_online_node(i)
b5389086
ZY
4242 default_hstate.max_huge_pages_node[i] =
4243 default_hugepages_in_node[i];
d715cf80 4244 }
f8b74815 4245 }
a3437870 4246
cf11e85f 4247 hugetlb_cma_check();
a3437870 4248 hugetlb_init_hstates();
aa888a74 4249 gather_bootmem_prealloc();
a3437870
NA
4250 report_hugepages();
4251
4252 hugetlb_sysfs_init();
7179e7bf 4253 hugetlb_cgroup_file_init();
9a305230 4254
8382d914
DB
4255#ifdef CONFIG_SMP
4256 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4257#else
4258 num_fault_mutexes = 1;
4259#endif
c672c7f2 4260 hugetlb_fault_mutex_table =
6da2ec56
KC
4261 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4262 GFP_KERNEL);
c672c7f2 4263 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4264
4265 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4266 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4267 return 0;
4268}
3e89e1c5 4269subsys_initcall(hugetlb_init);
a3437870 4270
ae94da89
MK
4271/* Overwritten by architectures with more huge page sizes */
4272bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4273{
ae94da89 4274 return size == HPAGE_SIZE;
9fee021d
VT
4275}
4276
d00181b9 4277void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4278{
4279 struct hstate *h;
8faa8b07
AK
4280 unsigned long i;
4281
a3437870 4282 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4283 return;
4284 }
47d38344 4285 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 4286 BUG_ON(order == 0);
47d38344 4287 h = &hstates[hugetlb_max_hstate++];
29383967 4288 mutex_init(&h->resize_lock);
a3437870 4289 h->order = order;
aca78307 4290 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4291 for (i = 0; i < MAX_NUMNODES; ++i)
4292 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4293 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4294 h->next_nid_to_alloc = first_memory_node;
4295 h->next_nid_to_free = first_memory_node;
a3437870 4296 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
c2c3a60a 4297 huge_page_size(h)/SZ_1K);
8faa8b07 4298
a3437870
NA
4299 parsed_hstate = h;
4300}
4301
b5389086
ZY
4302bool __init __weak hugetlb_node_alloc_supported(void)
4303{
4304 return true;
4305}
f87442f4
PL
4306
4307static void __init hugepages_clear_pages_in_node(void)
4308{
4309 if (!hugetlb_max_hstate) {
4310 default_hstate_max_huge_pages = 0;
4311 memset(default_hugepages_in_node, 0,
10395680 4312 sizeof(default_hugepages_in_node));
f87442f4
PL
4313 } else {
4314 parsed_hstate->max_huge_pages = 0;
4315 memset(parsed_hstate->max_huge_pages_node, 0,
10395680 4316 sizeof(parsed_hstate->max_huge_pages_node));
f87442f4
PL
4317 }
4318}
4319
282f4214
MK
4320/*
4321 * hugepages command line processing
4322 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4323 * specification. If not, ignore the hugepages value. hugepages can also
4324 * be the first huge page command line option in which case it implicitly
4325 * specifies the number of huge pages for the default size.
4326 */
4327static int __init hugepages_setup(char *s)
a3437870
NA
4328{
4329 unsigned long *mhp;
8faa8b07 4330 static unsigned long *last_mhp;
b5389086
ZY
4331 int node = NUMA_NO_NODE;
4332 int count;
4333 unsigned long tmp;
4334 char *p = s;
a3437870 4335
9fee021d 4336 if (!parsed_valid_hugepagesz) {
282f4214 4337 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4338 parsed_valid_hugepagesz = true;
f81f6e4b 4339 return 1;
9fee021d 4340 }
282f4214 4341
a3437870 4342 /*
282f4214
MK
4343 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4344 * yet, so this hugepages= parameter goes to the "default hstate".
4345 * Otherwise, it goes with the previously parsed hugepagesz or
4346 * default_hugepagesz.
a3437870 4347 */
9fee021d 4348 else if (!hugetlb_max_hstate)
a3437870
NA
4349 mhp = &default_hstate_max_huge_pages;
4350 else
4351 mhp = &parsed_hstate->max_huge_pages;
4352
8faa8b07 4353 if (mhp == last_mhp) {
282f4214 4354 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4355 return 1;
8faa8b07
AK
4356 }
4357
b5389086
ZY
4358 while (*p) {
4359 count = 0;
4360 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4361 goto invalid;
4362 /* Parameter is node format */
4363 if (p[count] == ':') {
4364 if (!hugetlb_node_alloc_supported()) {
4365 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4366 return 1;
b5389086 4367 }
0a7a0f6f 4368 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4369 goto invalid;
0a7a0f6f 4370 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4371 p += count + 1;
b5389086
ZY
4372 /* Parse hugepages */
4373 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4374 goto invalid;
4375 if (!hugetlb_max_hstate)
4376 default_hugepages_in_node[node] = tmp;
4377 else
4378 parsed_hstate->max_huge_pages_node[node] = tmp;
4379 *mhp += tmp;
4380 /* Go to parse next node*/
4381 if (p[count] == ',')
4382 p += count + 1;
4383 else
4384 break;
4385 } else {
4386 if (p != s)
4387 goto invalid;
4388 *mhp = tmp;
4389 break;
4390 }
4391 }
a3437870 4392
8faa8b07
AK
4393 /*
4394 * Global state is always initialized later in hugetlb_init.
04adbc3f 4395 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4396 * use the bootmem allocator.
4397 */
04adbc3f 4398 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4399 hugetlb_hstate_alloc_pages(parsed_hstate);
4400
4401 last_mhp = mhp;
4402
a3437870 4403 return 1;
b5389086
ZY
4404
4405invalid:
4406 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4407 hugepages_clear_pages_in_node();
f81f6e4b 4408 return 1;
a3437870 4409}
282f4214 4410__setup("hugepages=", hugepages_setup);
e11bfbfc 4411
282f4214
MK
4412/*
4413 * hugepagesz command line processing
4414 * A specific huge page size can only be specified once with hugepagesz.
4415 * hugepagesz is followed by hugepages on the command line. The global
4416 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4417 * hugepagesz argument was valid.
4418 */
359f2544 4419static int __init hugepagesz_setup(char *s)
e11bfbfc 4420{
359f2544 4421 unsigned long size;
282f4214
MK
4422 struct hstate *h;
4423
4424 parsed_valid_hugepagesz = false;
359f2544
MK
4425 size = (unsigned long)memparse(s, NULL);
4426
4427 if (!arch_hugetlb_valid_size(size)) {
282f4214 4428 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4429 return 1;
359f2544
MK
4430 }
4431
282f4214
MK
4432 h = size_to_hstate(size);
4433 if (h) {
4434 /*
4435 * hstate for this size already exists. This is normally
4436 * an error, but is allowed if the existing hstate is the
4437 * default hstate. More specifically, it is only allowed if
4438 * the number of huge pages for the default hstate was not
4439 * previously specified.
4440 */
4441 if (!parsed_default_hugepagesz || h != &default_hstate ||
4442 default_hstate.max_huge_pages) {
4443 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4444 return 1;
282f4214
MK
4445 }
4446
4447 /*
4448 * No need to call hugetlb_add_hstate() as hstate already
4449 * exists. But, do set parsed_hstate so that a following
4450 * hugepages= parameter will be applied to this hstate.
4451 */
4452 parsed_hstate = h;
4453 parsed_valid_hugepagesz = true;
4454 return 1;
38237830
MK
4455 }
4456
359f2544 4457 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4458 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4459 return 1;
4460}
359f2544
MK
4461__setup("hugepagesz=", hugepagesz_setup);
4462
282f4214
MK
4463/*
4464 * default_hugepagesz command line input
4465 * Only one instance of default_hugepagesz allowed on command line.
4466 */
ae94da89 4467static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4468{
ae94da89 4469 unsigned long size;
b5389086 4470 int i;
ae94da89 4471
282f4214 4472 parsed_valid_hugepagesz = false;
282f4214
MK
4473 if (parsed_default_hugepagesz) {
4474 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4475 return 1;
282f4214
MK
4476 }
4477
ae94da89
MK
4478 size = (unsigned long)memparse(s, NULL);
4479
4480 if (!arch_hugetlb_valid_size(size)) {
282f4214 4481 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4482 return 1;
ae94da89
MK
4483 }
4484
282f4214
MK
4485 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4486 parsed_valid_hugepagesz = true;
4487 parsed_default_hugepagesz = true;
4488 default_hstate_idx = hstate_index(size_to_hstate(size));
4489
4490 /*
4491 * The number of default huge pages (for this size) could have been
4492 * specified as the first hugetlb parameter: hugepages=X. If so,
4493 * then default_hstate_max_huge_pages is set. If the default huge
4494 * page size is gigantic (>= MAX_ORDER), then the pages must be
4495 * allocated here from bootmem allocator.
4496 */
4497 if (default_hstate_max_huge_pages) {
4498 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4499 for_each_online_node(i)
b5389086
ZY
4500 default_hstate.max_huge_pages_node[i] =
4501 default_hugepages_in_node[i];
282f4214
MK
4502 if (hstate_is_gigantic(&default_hstate))
4503 hugetlb_hstate_alloc_pages(&default_hstate);
4504 default_hstate_max_huge_pages = 0;
4505 }
4506
e11bfbfc
NP
4507 return 1;
4508}
ae94da89 4509__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4510
d2226ebd
FT
4511static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4512{
4513#ifdef CONFIG_NUMA
4514 struct mempolicy *mpol = get_task_policy(current);
4515
4516 /*
4517 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4518 * (from policy_nodemask) specifically for hugetlb case
4519 */
4520 if (mpol->mode == MPOL_BIND &&
4521 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4522 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4523 return &mpol->nodes;
4524#endif
4525 return NULL;
4526}
4527
8ca39e68 4528static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4529{
4530 int node;
4531 unsigned int nr = 0;
d2226ebd 4532 nodemask_t *mbind_nodemask;
8ca39e68
MS
4533 unsigned int *array = h->free_huge_pages_node;
4534 gfp_t gfp_mask = htlb_alloc_mask(h);
4535
d2226ebd 4536 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
8ca39e68 4537 for_each_node_mask(node, cpuset_current_mems_allowed) {
d2226ebd 4538 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
8ca39e68
MS
4539 nr += array[node];
4540 }
8a213460
NA
4541
4542 return nr;
4543}
4544
4545#ifdef CONFIG_SYSCTL
17743798
MS
4546static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4547 void *buffer, size_t *length,
4548 loff_t *ppos, unsigned long *out)
4549{
4550 struct ctl_table dup_table;
4551
4552 /*
4553 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4554 * can duplicate the @table and alter the duplicate of it.
4555 */
4556 dup_table = *table;
4557 dup_table.data = out;
4558
4559 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4560}
4561
06808b08
LS
4562static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4563 struct ctl_table *table, int write,
32927393 4564 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4565{
e5ff2159 4566 struct hstate *h = &default_hstate;
238d3c13 4567 unsigned long tmp = h->max_huge_pages;
08d4a246 4568 int ret;
e5ff2159 4569
457c1b27 4570 if (!hugepages_supported())
86613628 4571 return -EOPNOTSUPP;
457c1b27 4572
17743798
MS
4573 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4574 &tmp);
08d4a246
MH
4575 if (ret)
4576 goto out;
e5ff2159 4577
238d3c13
DR
4578 if (write)
4579 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4580 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4581out:
4582 return ret;
1da177e4 4583}
396faf03 4584
06808b08 4585int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4586 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4587{
4588
4589 return hugetlb_sysctl_handler_common(false, table, write,
4590 buffer, length, ppos);
4591}
4592
4593#ifdef CONFIG_NUMA
4594int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4595 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4596{
4597 return hugetlb_sysctl_handler_common(true, table, write,
4598 buffer, length, ppos);
4599}
4600#endif /* CONFIG_NUMA */
4601
a3d0c6aa 4602int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4603 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4604{
a5516438 4605 struct hstate *h = &default_hstate;
e5ff2159 4606 unsigned long tmp;
08d4a246 4607 int ret;
e5ff2159 4608
457c1b27 4609 if (!hugepages_supported())
86613628 4610 return -EOPNOTSUPP;
457c1b27 4611
c033a93c 4612 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4613
bae7f4ae 4614 if (write && hstate_is_gigantic(h))
adbe8726
EM
4615 return -EINVAL;
4616
17743798
MS
4617 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4618 &tmp);
08d4a246
MH
4619 if (ret)
4620 goto out;
e5ff2159
AK
4621
4622 if (write) {
db71ef79 4623 spin_lock_irq(&hugetlb_lock);
e5ff2159 4624 h->nr_overcommit_huge_pages = tmp;
db71ef79 4625 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4626 }
08d4a246
MH
4627out:
4628 return ret;
a3d0c6aa
NA
4629}
4630
1da177e4
LT
4631#endif /* CONFIG_SYSCTL */
4632
e1759c21 4633void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 4634{
fcb2b0c5
RG
4635 struct hstate *h;
4636 unsigned long total = 0;
4637
457c1b27
NA
4638 if (!hugepages_supported())
4639 return;
fcb2b0c5
RG
4640
4641 for_each_hstate(h) {
4642 unsigned long count = h->nr_huge_pages;
4643
aca78307 4644 total += huge_page_size(h) * count;
fcb2b0c5
RG
4645
4646 if (h == &default_hstate)
4647 seq_printf(m,
4648 "HugePages_Total: %5lu\n"
4649 "HugePages_Free: %5lu\n"
4650 "HugePages_Rsvd: %5lu\n"
4651 "HugePages_Surp: %5lu\n"
4652 "Hugepagesize: %8lu kB\n",
4653 count,
4654 h->free_huge_pages,
4655 h->resv_huge_pages,
4656 h->surplus_huge_pages,
aca78307 4657 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
4658 }
4659
aca78307 4660 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
4661}
4662
7981593b 4663int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 4664{
a5516438 4665 struct hstate *h = &default_hstate;
7981593b 4666
457c1b27
NA
4667 if (!hugepages_supported())
4668 return 0;
7981593b
JP
4669
4670 return sysfs_emit_at(buf, len,
4671 "Node %d HugePages_Total: %5u\n"
4672 "Node %d HugePages_Free: %5u\n"
4673 "Node %d HugePages_Surp: %5u\n",
4674 nid, h->nr_huge_pages_node[nid],
4675 nid, h->free_huge_pages_node[nid],
4676 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4677}
4678
dcadcf1c 4679void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
4680{
4681 struct hstate *h;
949f7ec5 4682
457c1b27
NA
4683 if (!hugepages_supported())
4684 return;
4685
dcadcf1c
GL
4686 for_each_hstate(h)
4687 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4688 nid,
4689 h->nr_huge_pages_node[nid],
4690 h->free_huge_pages_node[nid],
4691 h->surplus_huge_pages_node[nid],
4692 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4693}
4694
5d317b2b
NH
4695void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4696{
4697 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4698 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4699}
4700
1da177e4
LT
4701/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4702unsigned long hugetlb_total_pages(void)
4703{
d0028588
WL
4704 struct hstate *h;
4705 unsigned long nr_total_pages = 0;
4706
4707 for_each_hstate(h)
4708 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4709 return nr_total_pages;
1da177e4 4710}
1da177e4 4711
a5516438 4712static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4713{
4714 int ret = -ENOMEM;
4715
0aa7f354
ML
4716 if (!delta)
4717 return 0;
4718
db71ef79 4719 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4720 /*
4721 * When cpuset is configured, it breaks the strict hugetlb page
4722 * reservation as the accounting is done on a global variable. Such
4723 * reservation is completely rubbish in the presence of cpuset because
4724 * the reservation is not checked against page availability for the
4725 * current cpuset. Application can still potentially OOM'ed by kernel
4726 * with lack of free htlb page in cpuset that the task is in.
4727 * Attempt to enforce strict accounting with cpuset is almost
4728 * impossible (or too ugly) because cpuset is too fluid that
4729 * task or memory node can be dynamically moved between cpusets.
4730 *
4731 * The change of semantics for shared hugetlb mapping with cpuset is
4732 * undesirable. However, in order to preserve some of the semantics,
4733 * we fall back to check against current free page availability as
4734 * a best attempt and hopefully to minimize the impact of changing
4735 * semantics that cpuset has.
8ca39e68
MS
4736 *
4737 * Apart from cpuset, we also have memory policy mechanism that
4738 * also determines from which node the kernel will allocate memory
4739 * in a NUMA system. So similar to cpuset, we also should consider
4740 * the memory policy of the current task. Similar to the description
4741 * above.
fc1b8a73
MG
4742 */
4743 if (delta > 0) {
a5516438 4744 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4745 goto out;
4746
8ca39e68 4747 if (delta > allowed_mems_nr(h)) {
a5516438 4748 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4749 goto out;
4750 }
4751 }
4752
4753 ret = 0;
4754 if (delta < 0)
a5516438 4755 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4756
4757out:
db71ef79 4758 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4759 return ret;
4760}
4761
84afd99b
AW
4762static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4763{
f522c3ac 4764 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4765
4766 /*
612b8a31 4767 * HPAGE_RESV_OWNER indicates a private mapping.
84afd99b
AW
4768 * This new VMA should share its siblings reservation map if present.
4769 * The VMA will only ever have a valid reservation map pointer where
4770 * it is being copied for another still existing VMA. As that VMA
25985edc 4771 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4772 * after this open call completes. It is therefore safe to take a
4773 * new reference here without additional locking.
4774 */
09a26e83
MK
4775 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4776 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4777 kref_get(&resv->refs);
09a26e83 4778 }
8d9bfb26 4779
131a79b4
MK
4780 /*
4781 * vma_lock structure for sharable mappings is vma specific.
612b8a31
MK
4782 * Clear old pointer (if copied via vm_area_dup) and allocate
4783 * new structure. Before clearing, make sure vma_lock is not
4784 * for this vma.
131a79b4
MK
4785 */
4786 if (vma->vm_flags & VM_MAYSHARE) {
612b8a31
MK
4787 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4788
4789 if (vma_lock) {
4790 if (vma_lock->vma != vma) {
4791 vma->vm_private_data = NULL;
4792 hugetlb_vma_lock_alloc(vma);
4793 } else
4794 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4795 } else
4796 hugetlb_vma_lock_alloc(vma);
131a79b4 4797 }
84afd99b
AW
4798}
4799
a1e78772
MG
4800static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4801{
a5516438 4802 struct hstate *h = hstate_vma(vma);
8d9bfb26 4803 struct resv_map *resv;
90481622 4804 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4805 unsigned long reserve, start, end;
1c5ecae3 4806 long gbl_reserve;
84afd99b 4807
8d9bfb26
MK
4808 hugetlb_vma_lock_free(vma);
4809
4810 resv = vma_resv_map(vma);
4e35f483
JK
4811 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4812 return;
84afd99b 4813
4e35f483
JK
4814 start = vma_hugecache_offset(h, vma, vma->vm_start);
4815 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4816
4e35f483 4817 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4818 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4819 if (reserve) {
1c5ecae3
MK
4820 /*
4821 * Decrement reserve counts. The global reserve count may be
4822 * adjusted if the subpool has a minimum size.
4823 */
4824 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4825 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4826 }
e9fe92ae
MA
4827
4828 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4829}
4830
31383c68
DW
4831static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4832{
4833 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4834 return -EINVAL;
b30c14cd
JH
4835
4836 /*
4837 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4838 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4839 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4840 */
4841 if (addr & ~PUD_MASK) {
4842 /*
4843 * hugetlb_vm_op_split is called right before we attempt to
4844 * split the VMA. We will need to unshare PMDs in the old and
4845 * new VMAs, so let's unshare before we split.
4846 */
4847 unsigned long floor = addr & PUD_MASK;
4848 unsigned long ceil = floor + PUD_SIZE;
4849
4850 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4851 hugetlb_unshare_pmds(vma, floor, ceil);
4852 }
4853
31383c68
DW
4854 return 0;
4855}
4856
05ea8860
DW
4857static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4858{
aca78307 4859 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4860}
4861
1da177e4
LT
4862/*
4863 * We cannot handle pagefaults against hugetlb pages at all. They cause
4864 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4865 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4866 * this far.
4867 */
b3ec9f33 4868static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4869{
4870 BUG();
d0217ac0 4871 return 0;
1da177e4
LT
4872}
4873
eec3636a
JC
4874/*
4875 * When a new function is introduced to vm_operations_struct and added
4876 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4877 * This is because under System V memory model, mappings created via
4878 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4879 * their original vm_ops are overwritten with shm_vm_ops.
4880 */
f0f37e2f 4881const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4882 .fault = hugetlb_vm_op_fault,
84afd99b 4883 .open = hugetlb_vm_op_open,
a1e78772 4884 .close = hugetlb_vm_op_close,
dd3b614f 4885 .may_split = hugetlb_vm_op_split,
05ea8860 4886 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4887};
4888
1e8f889b
DG
4889static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4890 int writable)
63551ae0
DG
4891{
4892 pte_t entry;
79c1c594 4893 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4894
1e8f889b 4895 if (writable) {
106c992a
GS
4896 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4897 vma->vm_page_prot)));
63551ae0 4898 } else {
106c992a
GS
4899 entry = huge_pte_wrprotect(mk_huge_pte(page,
4900 vma->vm_page_prot));
63551ae0
DG
4901 }
4902 entry = pte_mkyoung(entry);
79c1c594 4903 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4904
4905 return entry;
4906}
4907
1e8f889b
DG
4908static void set_huge_ptep_writable(struct vm_area_struct *vma,
4909 unsigned long address, pte_t *ptep)
4910{
4911 pte_t entry;
4912
106c992a 4913 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4914 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4915 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4916}
4917
d5ed7444 4918bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4919{
4920 swp_entry_t swp;
4921
4922 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4923 return false;
4a705fef 4924 swp = pte_to_swp_entry(pte);
d79d176a 4925 if (is_migration_entry(swp))
d5ed7444 4926 return true;
4a705fef 4927 else
d5ed7444 4928 return false;
4a705fef
NH
4929}
4930
3e5c3600 4931static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4932{
4933 swp_entry_t swp;
4934
4935 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4936 return false;
4a705fef 4937 swp = pte_to_swp_entry(pte);
d79d176a 4938 if (is_hwpoison_entry(swp))
3e5c3600 4939 return true;
4a705fef 4940 else
3e5c3600 4941 return false;
4a705fef 4942}
1e8f889b 4943
4eae4efa
PX
4944static void
4945hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4946 struct page *new_page)
4947{
4948 __SetPageUptodate(new_page);
4eae4efa 4949 hugepage_add_new_anon_rmap(new_page, vma, addr);
1eba86c0 4950 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4eae4efa 4951 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4eae4efa
PX
4952 SetHPageMigratable(new_page);
4953}
4954
63551ae0 4955int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
4956 struct vm_area_struct *dst_vma,
4957 struct vm_area_struct *src_vma)
63551ae0 4958{
3aa4ed80 4959 pte_t *src_pte, *dst_pte, entry;
63551ae0 4960 struct page *ptepage;
1c59827d 4961 unsigned long addr;
bc70fbf2
PX
4962 bool cow = is_cow_mapping(src_vma->vm_flags);
4963 struct hstate *h = hstate_vma(src_vma);
a5516438 4964 unsigned long sz = huge_page_size(h);
4eae4efa 4965 unsigned long npages = pages_per_huge_page(h);
ac46d4f3 4966 struct mmu_notifier_range range;
e95a9851 4967 unsigned long last_addr_mask;
e8569dd2 4968 int ret = 0;
1e8f889b 4969
ac46d4f3 4970 if (cow) {
7d4a8be0 4971 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
bc70fbf2
PX
4972 src_vma->vm_start,
4973 src_vma->vm_end);
ac46d4f3 4974 mmu_notifier_invalidate_range_start(&range);
623a1ddf
DH
4975 mmap_assert_write_locked(src);
4976 raw_write_seqcount_begin(&src->write_protect_seq);
40549ba8
MK
4977 } else {
4978 /*
4979 * For shared mappings the vma lock must be held before
9c67a207 4980 * calling hugetlb_walk() in the src vma. Otherwise, the
40549ba8
MK
4981 * returned ptep could go away if part of a shared pmd and
4982 * another thread calls huge_pmd_unshare.
4983 */
4984 hugetlb_vma_lock_read(src_vma);
ac46d4f3 4985 }
e8569dd2 4986
e95a9851 4987 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 4988 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 4989 spinlock_t *src_ptl, *dst_ptl;
9c67a207 4990 src_pte = hugetlb_walk(src_vma, addr, sz);
e95a9851
MK
4991 if (!src_pte) {
4992 addr |= last_addr_mask;
c74df32c 4993 continue;
e95a9851 4994 }
bc70fbf2 4995 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
4996 if (!dst_pte) {
4997 ret = -ENOMEM;
4998 break;
4999 }
c5c99429 5000
5e41540c
MK
5001 /*
5002 * If the pagetables are shared don't copy or take references.
5e41540c 5003 *
3aa4ed80 5004 * dst_pte == src_pte is the common case of src/dest sharing.
5e41540c 5005 * However, src could have 'unshared' and dst shares with
3aa4ed80
ML
5006 * another vma. So page_count of ptep page is checked instead
5007 * to reliably determine whether pte is shared.
5e41540c 5008 */
3aa4ed80 5009 if (page_count(virt_to_page(dst_pte)) > 1) {
e95a9851 5010 addr |= last_addr_mask;
c5c99429 5011 continue;
e95a9851 5012 }
c5c99429 5013
cb900f41
KS
5014 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5015 src_ptl = huge_pte_lockptr(h, src, src_pte);
5016 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 5017 entry = huge_ptep_get(src_pte);
4eae4efa 5018again:
3aa4ed80 5019 if (huge_pte_none(entry)) {
5e41540c 5020 /*
3aa4ed80 5021 * Skip if src entry none.
5e41540c 5022 */
4a705fef 5023 ;
c2cb0dcc
NH
5024 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5025 bool uffd_wp = huge_pte_uffd_wp(entry);
5026
5027 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5028 entry = huge_pte_clear_uffd_wp(entry);
5029 set_huge_pte_at(dst, addr, dst_pte, entry);
5030 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 5031 swp_entry_t swp_entry = pte_to_swp_entry(entry);
bc70fbf2 5032 bool uffd_wp = huge_pte_uffd_wp(entry);
4a705fef 5033
6c287605 5034 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
5035 /*
5036 * COW mappings require pages in both
5037 * parent and child to be set to read.
5038 */
4dd845b5
AP
5039 swp_entry = make_readable_migration_entry(
5040 swp_offset(swp_entry));
4a705fef 5041 entry = swp_entry_to_pte(swp_entry);
bc70fbf2
PX
5042 if (userfaultfd_wp(src_vma) && uffd_wp)
5043 entry = huge_pte_mkuffd_wp(entry);
18f39629 5044 set_huge_pte_at(src, addr, src_pte, entry);
4a705fef 5045 }
bc70fbf2
PX
5046 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5047 entry = huge_pte_clear_uffd_wp(entry);
18f39629 5048 set_huge_pte_at(dst, addr, dst_pte, entry);
bc70fbf2 5049 } else if (unlikely(is_pte_marker(entry))) {
7e3ce3f8
PX
5050 /* No swap on hugetlb */
5051 WARN_ON_ONCE(
5052 is_swapin_error_entry(pte_to_swp_entry(entry)));
bc70fbf2
PX
5053 /*
5054 * We copy the pte marker only if the dst vma has
5055 * uffd-wp enabled.
5056 */
5057 if (userfaultfd_wp(dst_vma))
5058 set_huge_pte_at(dst, addr, dst_pte, entry);
4a705fef 5059 } else {
4eae4efa
PX
5060 entry = huge_ptep_get(src_pte);
5061 ptepage = pte_page(entry);
5062 get_page(ptepage);
5063
5064 /*
fb3d824d
DH
5065 * Failing to duplicate the anon rmap is a rare case
5066 * where we see pinned hugetlb pages while they're
5067 * prone to COW. We need to do the COW earlier during
5068 * fork.
4eae4efa
PX
5069 *
5070 * When pre-allocating the page or copying data, we
5071 * need to be without the pgtable locks since we could
5072 * sleep during the process.
5073 */
fb3d824d
DH
5074 if (!PageAnon(ptepage)) {
5075 page_dup_file_rmap(ptepage, true);
bc70fbf2
PX
5076 } else if (page_try_dup_anon_rmap(ptepage, true,
5077 src_vma)) {
4eae4efa
PX
5078 pte_t src_pte_old = entry;
5079 struct page *new;
5080
5081 spin_unlock(src_ptl);
5082 spin_unlock(dst_ptl);
5083 /* Do not use reserve as it's private owned */
bc70fbf2 5084 new = alloc_huge_page(dst_vma, addr, 1);
4eae4efa
PX
5085 if (IS_ERR(new)) {
5086 put_page(ptepage);
5087 ret = PTR_ERR(new);
5088 break;
5089 }
bc70fbf2 5090 copy_user_huge_page(new, ptepage, addr, dst_vma,
4eae4efa
PX
5091 npages);
5092 put_page(ptepage);
5093
5094 /* Install the new huge page if src pte stable */
5095 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5096 src_ptl = huge_pte_lockptr(h, src, src_pte);
5097 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5098 entry = huge_ptep_get(src_pte);
5099 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 5100 restore_reserve_on_error(h, dst_vma, addr,
846be085 5101 new);
4eae4efa 5102 put_page(new);
3aa4ed80 5103 /* huge_ptep of dst_pte won't change as in child */
4eae4efa
PX
5104 goto again;
5105 }
bc70fbf2 5106 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4eae4efa
PX
5107 spin_unlock(src_ptl);
5108 spin_unlock(dst_ptl);
5109 continue;
5110 }
5111
34ee645e 5112 if (cow) {
0f10851e
JG
5113 /*
5114 * No need to notify as we are downgrading page
5115 * table protection not changing it to point
5116 * to a new page.
5117 *
ee65728e 5118 * See Documentation/mm/mmu_notifier.rst
0f10851e 5119 */
7f2e9525 5120 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 5121 entry = huge_pte_wrprotect(entry);
34ee645e 5122 }
4eae4efa 5123
1c59827d 5124 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 5125 hugetlb_count_add(npages, dst);
1c59827d 5126 }
cb900f41
KS
5127 spin_unlock(src_ptl);
5128 spin_unlock(dst_ptl);
63551ae0 5129 }
63551ae0 5130
623a1ddf
DH
5131 if (cow) {
5132 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 5133 mmu_notifier_invalidate_range_end(&range);
40549ba8
MK
5134 } else {
5135 hugetlb_vma_unlock_read(src_vma);
623a1ddf 5136 }
e8569dd2
AS
5137
5138 return ret;
63551ae0
DG
5139}
5140
550a7d60 5141static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
db110a99 5142 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
550a7d60
MA
5143{
5144 struct hstate *h = hstate_vma(vma);
5145 struct mm_struct *mm = vma->vm_mm;
550a7d60 5146 spinlock_t *src_ptl, *dst_ptl;
db110a99 5147 pte_t pte;
550a7d60 5148
550a7d60
MA
5149 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5150 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5151
5152 /*
5153 * We don't have to worry about the ordering of src and dst ptlocks
8651a137 5154 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
550a7d60
MA
5155 */
5156 if (src_ptl != dst_ptl)
5157 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5158
5159 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5160 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5161
5162 if (src_ptl != dst_ptl)
5163 spin_unlock(src_ptl);
5164 spin_unlock(dst_ptl);
5165}
5166
5167int move_hugetlb_page_tables(struct vm_area_struct *vma,
5168 struct vm_area_struct *new_vma,
5169 unsigned long old_addr, unsigned long new_addr,
5170 unsigned long len)
5171{
5172 struct hstate *h = hstate_vma(vma);
5173 struct address_space *mapping = vma->vm_file->f_mapping;
5174 unsigned long sz = huge_page_size(h);
5175 struct mm_struct *mm = vma->vm_mm;
5176 unsigned long old_end = old_addr + len;
e95a9851 5177 unsigned long last_addr_mask;
550a7d60
MA
5178 pte_t *src_pte, *dst_pte;
5179 struct mmu_notifier_range range;
3d0b95cd 5180 bool shared_pmd = false;
550a7d60 5181
7d4a8be0 5182 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
550a7d60
MA
5183 old_end);
5184 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
5185 /*
5186 * In case of shared PMDs, we should cover the maximum possible
5187 * range.
5188 */
5189 flush_cache_range(vma, range.start, range.end);
5190
550a7d60 5191 mmu_notifier_invalidate_range_start(&range);
e95a9851 5192 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60 5193 /* Prevent race with file truncation */
40549ba8 5194 hugetlb_vma_lock_write(vma);
550a7d60
MA
5195 i_mmap_lock_write(mapping);
5196 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
9c67a207 5197 src_pte = hugetlb_walk(vma, old_addr, sz);
e95a9851
MK
5198 if (!src_pte) {
5199 old_addr |= last_addr_mask;
5200 new_addr |= last_addr_mask;
550a7d60 5201 continue;
e95a9851 5202 }
550a7d60
MA
5203 if (huge_pte_none(huge_ptep_get(src_pte)))
5204 continue;
5205
4ddb4d91 5206 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 5207 shared_pmd = true;
4ddb4d91
MK
5208 old_addr |= last_addr_mask;
5209 new_addr |= last_addr_mask;
550a7d60 5210 continue;
3d0b95cd 5211 }
550a7d60
MA
5212
5213 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5214 if (!dst_pte)
5215 break;
5216
db110a99 5217 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
550a7d60 5218 }
3d0b95cd
BW
5219
5220 if (shared_pmd)
5221 flush_tlb_range(vma, range.start, range.end);
5222 else
5223 flush_tlb_range(vma, old_end - len, old_end);
550a7d60 5224 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 5225 i_mmap_unlock_write(mapping);
40549ba8 5226 hugetlb_vma_unlock_write(vma);
550a7d60
MA
5227
5228 return len + old_addr - old_end;
5229}
5230
73c54763
PX
5231static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5232 unsigned long start, unsigned long end,
05e90bd0 5233 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
5234{
5235 struct mm_struct *mm = vma->vm_mm;
5236 unsigned long address;
c7546f8f 5237 pte_t *ptep;
63551ae0 5238 pte_t pte;
cb900f41 5239 spinlock_t *ptl;
63551ae0 5240 struct page *page;
a5516438
AK
5241 struct hstate *h = hstate_vma(vma);
5242 unsigned long sz = huge_page_size(h);
e95a9851 5243 unsigned long last_addr_mask;
a4a118f2 5244 bool force_flush = false;
a5516438 5245
63551ae0 5246 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5247 BUG_ON(start & ~huge_page_mask(h));
5248 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5249
07e32661
AK
5250 /*
5251 * This is a hugetlb vma, all the pte entries should point
5252 * to huge page.
5253 */
ed6a7935 5254 tlb_change_page_size(tlb, sz);
24669e58 5255 tlb_start_vma(tlb, vma);
dff11abe 5256
e95a9851 5257 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5258 address = start;
569f48b8 5259 for (; address < end; address += sz) {
9c67a207 5260 ptep = hugetlb_walk(vma, address, sz);
e95a9851
MK
5261 if (!ptep) {
5262 address |= last_addr_mask;
c7546f8f 5263 continue;
e95a9851 5264 }
c7546f8f 5265
cb900f41 5266 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5267 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5268 spin_unlock(ptl);
a4a118f2
NA
5269 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5270 force_flush = true;
4ddb4d91 5271 address |= last_addr_mask;
31d49da5
AK
5272 continue;
5273 }
39dde65c 5274
6629326b 5275 pte = huge_ptep_get(ptep);
31d49da5
AK
5276 if (huge_pte_none(pte)) {
5277 spin_unlock(ptl);
5278 continue;
5279 }
6629326b
HD
5280
5281 /*
9fbc1f63
NH
5282 * Migrating hugepage or HWPoisoned hugepage is already
5283 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5284 */
9fbc1f63 5285 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5286 /*
5287 * If the pte was wr-protected by uffd-wp in any of the
5288 * swap forms, meanwhile the caller does not want to
5289 * drop the uffd-wp bit in this zap, then replace the
5290 * pte with a marker.
5291 */
5292 if (pte_swp_uffd_wp_any(pte) &&
5293 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5294 set_huge_pte_at(mm, address, ptep,
5295 make_pte_marker(PTE_MARKER_UFFD_WP));
5296 else
5297 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5298 spin_unlock(ptl);
5299 continue;
8c4894c6 5300 }
6629326b
HD
5301
5302 page = pte_page(pte);
04f2cbe3
MG
5303 /*
5304 * If a reference page is supplied, it is because a specific
5305 * page is being unmapped, not a range. Ensure the page we
5306 * are about to unmap is the actual page of interest.
5307 */
5308 if (ref_page) {
31d49da5
AK
5309 if (page != ref_page) {
5310 spin_unlock(ptl);
5311 continue;
5312 }
04f2cbe3
MG
5313 /*
5314 * Mark the VMA as having unmapped its page so that
5315 * future faults in this VMA will fail rather than
5316 * looking like data was lost
5317 */
5318 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5319 }
5320
c7546f8f 5321 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5322 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5323 if (huge_pte_dirty(pte))
6649a386 5324 set_page_dirty(page);
05e90bd0
PX
5325 /* Leave a uffd-wp pte marker if needed */
5326 if (huge_pte_uffd_wp(pte) &&
5327 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5328 set_huge_pte_at(mm, address, ptep,
5329 make_pte_marker(PTE_MARKER_UFFD_WP));
5d317b2b 5330 hugetlb_count_sub(pages_per_huge_page(h), mm);
cea86fe2 5331 page_remove_rmap(page, vma, true);
31d49da5 5332
cb900f41 5333 spin_unlock(ptl);
e77b0852 5334 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5335 /*
5336 * Bail out after unmapping reference page if supplied
5337 */
5338 if (ref_page)
5339 break;
fe1668ae 5340 }
24669e58 5341 tlb_end_vma(tlb, vma);
a4a118f2
NA
5342
5343 /*
5344 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5345 * could defer the flush until now, since by holding i_mmap_rwsem we
5346 * guaranteed that the last refernece would not be dropped. But we must
5347 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5348 * dropped and the last reference to the shared PMDs page might be
5349 * dropped as well.
5350 *
5351 * In theory we could defer the freeing of the PMD pages as well, but
5352 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5353 * detect sharing, so we cannot defer the release of the page either.
5354 * Instead, do flush now.
5355 */
5356 if (force_flush)
5357 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5358}
63551ae0 5359
d833352a
MG
5360void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5361 struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5362 unsigned long end, struct page *ref_page,
5363 zap_flags_t zap_flags)
d833352a 5364{
131a79b4
MK
5365 hugetlb_vma_lock_write(vma);
5366 i_mmap_lock_write(vma->vm_file->f_mapping);
5367
369258ce 5368 /* mmu notification performed in caller */
05e90bd0 5369 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
d833352a 5370
04ada095
MK
5371 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5372 /*
5373 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5374 * When the vma_lock is freed, this makes the vma ineligible
5375 * for pmd sharing. And, i_mmap_rwsem is required to set up
5376 * pmd sharing. This is important as page tables for this
5377 * unmapped range will be asynchrously deleted. If the page
5378 * tables are shared, there will be issues when accessed by
5379 * someone else.
5380 */
5381 __hugetlb_vma_unlock_write_free(vma);
5382 i_mmap_unlock_write(vma->vm_file->f_mapping);
5383 } else {
5384 i_mmap_unlock_write(vma->vm_file->f_mapping);
5385 hugetlb_vma_unlock_write(vma);
5386 }
d833352a
MG
5387}
5388
502717f4 5389void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5390 unsigned long end, struct page *ref_page,
5391 zap_flags_t zap_flags)
502717f4 5392{
369258ce 5393 struct mmu_notifier_range range;
24669e58 5394 struct mmu_gather tlb;
dff11abe 5395
7d4a8be0 5396 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
369258ce
MK
5397 start, end);
5398 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5399 mmu_notifier_invalidate_range_start(&range);
a72afd87 5400 tlb_gather_mmu(&tlb, vma->vm_mm);
369258ce 5401
05e90bd0 5402 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
369258ce
MK
5403
5404 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 5405 tlb_finish_mmu(&tlb);
502717f4
KC
5406}
5407
04f2cbe3
MG
5408/*
5409 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5410 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5411 * from other VMAs and let the children be SIGKILLed if they are faulting the
5412 * same region.
5413 */
2f4612af
DB
5414static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5415 struct page *page, unsigned long address)
04f2cbe3 5416{
7526674d 5417 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5418 struct vm_area_struct *iter_vma;
5419 struct address_space *mapping;
04f2cbe3
MG
5420 pgoff_t pgoff;
5421
5422 /*
5423 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5424 * from page cache lookup which is in HPAGE_SIZE units.
5425 */
7526674d 5426 address = address & huge_page_mask(h);
36e4f20a
MH
5427 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5428 vma->vm_pgoff;
93c76a3d 5429 mapping = vma->vm_file->f_mapping;
04f2cbe3 5430
4eb2b1dc
MG
5431 /*
5432 * Take the mapping lock for the duration of the table walk. As
5433 * this mapping should be shared between all the VMAs,
5434 * __unmap_hugepage_range() is called as the lock is already held
5435 */
83cde9e8 5436 i_mmap_lock_write(mapping);
6b2dbba8 5437 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5438 /* Do not unmap the current VMA */
5439 if (iter_vma == vma)
5440 continue;
5441
2f84a899
MG
5442 /*
5443 * Shared VMAs have their own reserves and do not affect
5444 * MAP_PRIVATE accounting but it is possible that a shared
5445 * VMA is using the same page so check and skip such VMAs.
5446 */
5447 if (iter_vma->vm_flags & VM_MAYSHARE)
5448 continue;
5449
04f2cbe3
MG
5450 /*
5451 * Unmap the page from other VMAs without their own reserves.
5452 * They get marked to be SIGKILLed if they fault in these
5453 * areas. This is because a future no-page fault on this VMA
5454 * could insert a zeroed page instead of the data existing
5455 * from the time of fork. This would look like data corruption
5456 */
5457 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5458 unmap_hugepage_range(iter_vma, address,
05e90bd0 5459 address + huge_page_size(h), page, 0);
04f2cbe3 5460 }
83cde9e8 5461 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5462}
5463
0fe6e20b 5464/*
c89357e2 5465 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5466 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5467 * cannot race with other handlers or page migration.
5468 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5469 */
c89357e2
DH
5470static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5471 unsigned long address, pte_t *ptep, unsigned int flags,
3999f52e 5472 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 5473{
c89357e2 5474 const bool unshare = flags & FAULT_FLAG_UNSHARE;
3999f52e 5475 pte_t pte;
a5516438 5476 struct hstate *h = hstate_vma(vma);
1e8f889b 5477 struct page *old_page, *new_page;
2b740303
SJ
5478 int outside_reserve = 0;
5479 vm_fault_t ret = 0;
974e6d66 5480 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 5481 struct mmu_notifier_range range;
1e8f889b 5482
1d8d1464
DH
5483 /*
5484 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5485 * PTE mapped R/O such as maybe_mkwrite() would do.
5486 */
5487 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5488 return VM_FAULT_SIGSEGV;
5489
5490 /* Let's take out MAP_SHARED mappings first. */
5491 if (vma->vm_flags & VM_MAYSHARE) {
1d8d1464
DH
5492 set_huge_ptep_writable(vma, haddr, ptep);
5493 return 0;
5494 }
5495
3999f52e 5496 pte = huge_ptep_get(ptep);
1e8f889b
DG
5497 old_page = pte_page(pte);
5498
662ce1dc
YY
5499 delayacct_wpcopy_start();
5500
04f2cbe3 5501retry_avoidcopy:
c89357e2
DH
5502 /*
5503 * If no-one else is actually using this page, we're the exclusive
5504 * owner and can reuse this page.
5505 */
37a2140d 5506 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
c89357e2
DH
5507 if (!PageAnonExclusive(old_page))
5508 page_move_anon_rmap(old_page, vma);
5509 if (likely(!unshare))
5510 set_huge_ptep_writable(vma, haddr, ptep);
662ce1dc
YY
5511
5512 delayacct_wpcopy_end();
83c54070 5513 return 0;
1e8f889b 5514 }
6c287605
DH
5515 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5516 old_page);
1e8f889b 5517
04f2cbe3
MG
5518 /*
5519 * If the process that created a MAP_PRIVATE mapping is about to
5520 * perform a COW due to a shared page count, attempt to satisfy
5521 * the allocation without using the existing reserves. The pagecache
5522 * page is used to determine if the reserve at this address was
5523 * consumed or not. If reserves were used, a partial faulted mapping
5524 * at the time of fork() could consume its reserves on COW instead
5525 * of the full address range.
5526 */
5944d011 5527 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
5528 old_page != pagecache_page)
5529 outside_reserve = 1;
5530
09cbfeaf 5531 get_page(old_page);
b76c8cfb 5532
ad4404a2
DB
5533 /*
5534 * Drop page table lock as buddy allocator may be called. It will
5535 * be acquired again before returning to the caller, as expected.
5536 */
cb900f41 5537 spin_unlock(ptl);
5b7a1d40 5538 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 5539
2fc39cec 5540 if (IS_ERR(new_page)) {
04f2cbe3
MG
5541 /*
5542 * If a process owning a MAP_PRIVATE mapping fails to COW,
5543 * it is due to references held by a child and an insufficient
5544 * huge page pool. To guarantee the original mappers
5545 * reliability, unmap the page from child processes. The child
5546 * may get SIGKILLed if it later faults.
5547 */
5548 if (outside_reserve) {
40549ba8
MK
5549 struct address_space *mapping = vma->vm_file->f_mapping;
5550 pgoff_t idx;
5551 u32 hash;
5552
09cbfeaf 5553 put_page(old_page);
40549ba8
MK
5554 /*
5555 * Drop hugetlb_fault_mutex and vma_lock before
5556 * unmapping. unmapping needs to hold vma_lock
5557 * in write mode. Dropping vma_lock in read mode
5558 * here is OK as COW mappings do not interact with
5559 * PMD sharing.
5560 *
5561 * Reacquire both after unmap operation.
5562 */
5563 idx = vma_hugecache_offset(h, vma, haddr);
5564 hash = hugetlb_fault_mutex_hash(mapping, idx);
5565 hugetlb_vma_unlock_read(vma);
5566 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5567
5b7a1d40 5568 unmap_ref_private(mm, vma, old_page, haddr);
40549ba8
MK
5569
5570 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5571 hugetlb_vma_lock_read(vma);
2f4612af 5572 spin_lock(ptl);
9c67a207 5573 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
2f4612af
DB
5574 if (likely(ptep &&
5575 pte_same(huge_ptep_get(ptep), pte)))
5576 goto retry_avoidcopy;
5577 /*
5578 * race occurs while re-acquiring page table
5579 * lock, and our job is done.
5580 */
662ce1dc 5581 delayacct_wpcopy_end();
2f4612af 5582 return 0;
04f2cbe3
MG
5583 }
5584
2b740303 5585 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 5586 goto out_release_old;
1e8f889b
DG
5587 }
5588
0fe6e20b
NH
5589 /*
5590 * When the original hugepage is shared one, it does not have
5591 * anon_vma prepared.
5592 */
44e2aa93 5593 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
5594 ret = VM_FAULT_OOM;
5595 goto out_release_all;
44e2aa93 5596 }
0fe6e20b 5597
974e6d66 5598 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 5599 pages_per_huge_page(h));
0ed361de 5600 __SetPageUptodate(new_page);
1e8f889b 5601
7d4a8be0 5602 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6f4f13e8 5603 haddr + huge_page_size(h));
ac46d4f3 5604 mmu_notifier_invalidate_range_start(&range);
ad4404a2 5605
b76c8cfb 5606 /*
cb900f41 5607 * Retake the page table lock to check for racing updates
b76c8cfb
LW
5608 * before the page tables are altered
5609 */
cb900f41 5610 spin_lock(ptl);
9c67a207 5611 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
a9af0c5d 5612 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
c89357e2 5613 /* Break COW or unshare */
5b7a1d40 5614 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 5615 mmu_notifier_invalidate_range(mm, range.start, range.end);
cea86fe2 5616 page_remove_rmap(old_page, vma, true);
5b7a1d40 5617 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1eba86c0 5618 set_huge_pte_at(mm, haddr, ptep,
c89357e2 5619 make_huge_pte(vma, new_page, !unshare));
8f251a3d 5620 SetHPageMigratable(new_page);
1e8f889b
DG
5621 /* Make the old page be freed below */
5622 new_page = old_page;
5623 }
cb900f41 5624 spin_unlock(ptl);
ac46d4f3 5625 mmu_notifier_invalidate_range_end(&range);
ad4404a2 5626out_release_all:
c89357e2
DH
5627 /*
5628 * No restore in case of successful pagetable update (Break COW or
5629 * unshare)
5630 */
c7b1850d
MK
5631 if (new_page != old_page)
5632 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 5633 put_page(new_page);
ad4404a2 5634out_release_old:
09cbfeaf 5635 put_page(old_page);
8312034f 5636
ad4404a2 5637 spin_lock(ptl); /* Caller expects lock to be held */
662ce1dc
YY
5638
5639 delayacct_wpcopy_end();
ad4404a2 5640 return ret;
1e8f889b
DG
5641}
5642
3ae77f43
HD
5643/*
5644 * Return whether there is a pagecache page to back given address within VMA.
5645 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5646 */
5647static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
5648 struct vm_area_struct *vma, unsigned long address)
5649{
5650 struct address_space *mapping;
5651 pgoff_t idx;
5652 struct page *page;
5653
5654 mapping = vma->vm_file->f_mapping;
5655 idx = vma_hugecache_offset(h, vma, address);
5656
5657 page = find_get_page(mapping, idx);
5658 if (page)
5659 put_page(page);
5660 return page != NULL;
5661}
5662
7e1813d4 5663int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
ab76ad54
MK
5664 pgoff_t idx)
5665{
d9ef44de 5666 struct folio *folio = page_folio(page);
ab76ad54
MK
5667 struct inode *inode = mapping->host;
5668 struct hstate *h = hstate_inode(inode);
d9ef44de 5669 int err;
ab76ad54 5670
d9ef44de
MWO
5671 __folio_set_locked(folio);
5672 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5673
5674 if (unlikely(err)) {
5675 __folio_clear_locked(folio);
ab76ad54 5676 return err;
d9ef44de 5677 }
d6995da3 5678 ClearHPageRestoreReserve(page);
ab76ad54 5679
22146c3c 5680 /*
d9ef44de 5681 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
5682 * by non-hugetlbfs specific code paths.
5683 */
d9ef44de 5684 folio_mark_dirty(folio);
22146c3c 5685
ab76ad54
MK
5686 spin_lock(&inode->i_lock);
5687 inode->i_blocks += blocks_per_huge_page(h);
5688 spin_unlock(&inode->i_lock);
5689 return 0;
5690}
5691
7677f7fd
AR
5692static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5693 struct address_space *mapping,
5694 pgoff_t idx,
5695 unsigned int flags,
5696 unsigned long haddr,
824ddc60 5697 unsigned long addr,
7677f7fd
AR
5698 unsigned long reason)
5699{
7677f7fd
AR
5700 u32 hash;
5701 struct vm_fault vmf = {
5702 .vma = vma,
5703 .address = haddr,
824ddc60 5704 .real_address = addr,
7677f7fd
AR
5705 .flags = flags,
5706
5707 /*
5708 * Hard to debug if it ends up being
5709 * used by a callee that assumes
5710 * something about the other
5711 * uninitialized fields... same as in
5712 * memory.c
5713 */
5714 };
5715
5716 /*
958f32ce
LS
5717 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5718 * userfault. Also mmap_lock could be dropped due to handling
5719 * userfault, any vma operation should be careful from here.
7677f7fd 5720 */
40549ba8 5721 hugetlb_vma_unlock_read(vma);
7677f7fd
AR
5722 hash = hugetlb_fault_mutex_hash(mapping, idx);
5723 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
958f32ce 5724 return handle_userfault(&vmf, reason);
7677f7fd
AR
5725}
5726
2ea7ff1e
PX
5727/*
5728 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5729 * false if pte changed or is changing.
5730 */
5731static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5732 pte_t *ptep, pte_t old_pte)
5733{
5734 spinlock_t *ptl;
5735 bool same;
5736
5737 ptl = huge_pte_lock(h, mm, ptep);
5738 same = pte_same(huge_ptep_get(ptep), old_pte);
5739 spin_unlock(ptl);
5740
5741 return same;
5742}
5743
2b740303
SJ
5744static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5745 struct vm_area_struct *vma,
5746 struct address_space *mapping, pgoff_t idx,
c64e912c
PX
5747 unsigned long address, pte_t *ptep,
5748 pte_t old_pte, unsigned int flags)
ac9b9c66 5749{
a5516438 5750 struct hstate *h = hstate_vma(vma);
2b740303 5751 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 5752 int anon_rmap = 0;
4c887265 5753 unsigned long size;
4c887265 5754 struct page *page;
1e8f889b 5755 pte_t new_pte;
cb900f41 5756 spinlock_t *ptl;
285b8dca 5757 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 5758 bool new_page, new_pagecache_page = false;
958f32ce 5759 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4c887265 5760
04f2cbe3
MG
5761 /*
5762 * Currently, we are forced to kill the process in the event the
5763 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
5764 * COW/unsharing. Warn that such a situation has occurred as it may not
5765 * be obvious.
04f2cbe3
MG
5766 */
5767 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 5768 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 5769 current->pid);
958f32ce 5770 goto out;
04f2cbe3
MG
5771 }
5772
4c887265 5773 /*
188a3972
MK
5774 * Use page lock to guard against racing truncation
5775 * before we get page_table_lock.
4c887265 5776 */
c7b1850d 5777 new_page = false;
6bda666a
CL
5778 page = find_lock_page(mapping, idx);
5779 if (!page) {
188a3972
MK
5780 size = i_size_read(mapping->host) >> huge_page_shift(h);
5781 if (idx >= size)
5782 goto out;
7677f7fd 5783 /* Check for page in userfault range */
2ea7ff1e
PX
5784 if (userfaultfd_missing(vma)) {
5785 /*
5786 * Since hugetlb_no_page() was examining pte
5787 * without pgtable lock, we need to re-test under
5788 * lock because the pte may not be stable and could
5789 * have changed from under us. Try to detect
5790 * either changed or during-changing ptes and retry
5791 * properly when needed.
5792 *
5793 * Note that userfaultfd is actually fine with
5794 * false positives (e.g. caused by pte changed),
5795 * but not wrong logical events (e.g. caused by
5796 * reading a pte during changing). The latter can
5797 * confuse the userspace, so the strictness is very
5798 * much preferred. E.g., MISSING event should
5799 * never happen on the page after UFFDIO_COPY has
5800 * correctly installed the page and returned.
5801 */
5802 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5803 ret = 0;
5804 goto out;
5805 }
5806
5807 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5808 haddr, address,
5809 VM_UFFD_MISSING);
5810 }
1a1aad8a 5811
285b8dca 5812 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 5813 if (IS_ERR(page)) {
4643d67e
MK
5814 /*
5815 * Returning error will result in faulting task being
5816 * sent SIGBUS. The hugetlb fault mutex prevents two
5817 * tasks from racing to fault in the same page which
5818 * could result in false unable to allocate errors.
5819 * Page migration does not take the fault mutex, but
5820 * does a clear then write of pte's under page table
5821 * lock. Page fault code could race with migration,
5822 * notice the clear pte and try to allocate a page
5823 * here. Before returning error, get ptl and make
5824 * sure there really is no pte entry.
5825 */
f9bf6c03 5826 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
d83e6c8a 5827 ret = vmf_error(PTR_ERR(page));
f9bf6c03
PX
5828 else
5829 ret = 0;
6bda666a
CL
5830 goto out;
5831 }
47ad8475 5832 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 5833 __SetPageUptodate(page);
cb6acd01 5834 new_page = true;
ac9b9c66 5835
f83a275d 5836 if (vma->vm_flags & VM_MAYSHARE) {
7e1813d4 5837 int err = hugetlb_add_to_page_cache(page, mapping, idx);
6bda666a 5838 if (err) {
3a5497a2
ML
5839 /*
5840 * err can't be -EEXIST which implies someone
5841 * else consumed the reservation since hugetlb
5842 * fault mutex is held when add a hugetlb page
5843 * to the page cache. So it's safe to call
5844 * restore_reserve_on_error() here.
5845 */
5846 restore_reserve_on_error(h, vma, haddr, page);
6bda666a 5847 put_page(page);
6bda666a
CL
5848 goto out;
5849 }
c7b1850d 5850 new_pagecache_page = true;
23be7468 5851 } else {
6bda666a 5852 lock_page(page);
0fe6e20b
NH
5853 if (unlikely(anon_vma_prepare(vma))) {
5854 ret = VM_FAULT_OOM;
5855 goto backout_unlocked;
5856 }
409eb8c2 5857 anon_rmap = 1;
23be7468 5858 }
0fe6e20b 5859 } else {
998b4382
NH
5860 /*
5861 * If memory error occurs between mmap() and fault, some process
5862 * don't have hwpoisoned swap entry for errored virtual address.
5863 * So we need to block hugepage fault by PG_hwpoison bit check.
5864 */
5865 if (unlikely(PageHWPoison(page))) {
0eb98f15 5866 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 5867 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
5868 goto backout_unlocked;
5869 }
7677f7fd
AR
5870
5871 /* Check for page in userfault range. */
5872 if (userfaultfd_minor(vma)) {
5873 unlock_page(page);
5874 put_page(page);
2ea7ff1e
PX
5875 /* See comment in userfaultfd_missing() block above */
5876 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5877 ret = 0;
5878 goto out;
5879 }
5880 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5881 haddr, address,
5882 VM_UFFD_MINOR);
7677f7fd 5883 }
6bda666a 5884 }
1e8f889b 5885
57303d80
AW
5886 /*
5887 * If we are going to COW a private mapping later, we examine the
5888 * pending reservations for this page now. This will ensure that
5889 * any allocations necessary to record that reservation occur outside
5890 * the spinlock.
5891 */
5e911373 5892 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 5893 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
5894 ret = VM_FAULT_OOM;
5895 goto backout_unlocked;
5896 }
5e911373 5897 /* Just decrements count, does not deallocate */
285b8dca 5898 vma_end_reservation(h, vma, haddr);
5e911373 5899 }
57303d80 5900
8bea8052 5901 ptl = huge_pte_lock(h, mm, ptep);
83c54070 5902 ret = 0;
c64e912c
PX
5903 /* If pte changed from under us, retry */
5904 if (!pte_same(huge_ptep_get(ptep), old_pte))
4c887265
AL
5905 goto backout;
5906
4781593d 5907 if (anon_rmap)
285b8dca 5908 hugepage_add_new_anon_rmap(page, vma, haddr);
4781593d 5909 else
fb3d824d 5910 page_dup_file_rmap(page, true);
1e8f889b
DG
5911 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5912 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
5913 /*
5914 * If this pte was previously wr-protected, keep it wr-protected even
5915 * if populated.
5916 */
5917 if (unlikely(pte_marker_uffd_wp(old_pte)))
f1eb1bac 5918 new_pte = huge_pte_mkuffd_wp(new_pte);
285b8dca 5919 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 5920
5d317b2b 5921 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 5922 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 5923 /* Optimization, do the COW without a second fault */
c89357e2 5924 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
1e8f889b
DG
5925 }
5926
cb900f41 5927 spin_unlock(ptl);
cb6acd01
MK
5928
5929 /*
8f251a3d
MK
5930 * Only set HPageMigratable in newly allocated pages. Existing pages
5931 * found in the pagecache may not have HPageMigratableset if they have
5932 * been isolated for migration.
cb6acd01
MK
5933 */
5934 if (new_page)
8f251a3d 5935 SetHPageMigratable(page);
cb6acd01 5936
4c887265
AL
5937 unlock_page(page);
5938out:
958f32ce
LS
5939 hugetlb_vma_unlock_read(vma);
5940 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
ac9b9c66 5941 return ret;
4c887265
AL
5942
5943backout:
cb900f41 5944 spin_unlock(ptl);
2b26736c 5945backout_unlocked:
c7b1850d
MK
5946 if (new_page && !new_pagecache_page)
5947 restore_reserve_on_error(h, vma, haddr, page);
fa27759a
MK
5948
5949 unlock_page(page);
4c887265
AL
5950 put_page(page);
5951 goto out;
ac9b9c66
HD
5952}
5953
8382d914 5954#ifdef CONFIG_SMP
188b04a7 5955u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5956{
5957 unsigned long key[2];
5958 u32 hash;
5959
1b426bac
MK
5960 key[0] = (unsigned long) mapping;
5961 key[1] = idx;
8382d914 5962
55254636 5963 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5964
5965 return hash & (num_fault_mutexes - 1);
5966}
5967#else
5968/*
6c26d310 5969 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5970 * return 0 and avoid the hashing overhead.
5971 */
188b04a7 5972u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5973{
5974 return 0;
5975}
5976#endif
5977
2b740303 5978vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5979 unsigned long address, unsigned int flags)
86e5216f 5980{
8382d914 5981 pte_t *ptep, entry;
cb900f41 5982 spinlock_t *ptl;
2b740303 5983 vm_fault_t ret;
8382d914
DB
5984 u32 hash;
5985 pgoff_t idx;
0fe6e20b 5986 struct page *page = NULL;
57303d80 5987 struct page *pagecache_page = NULL;
a5516438 5988 struct hstate *h = hstate_vma(vma);
8382d914 5989 struct address_space *mapping;
0f792cf9 5990 int need_wait_lock = 0;
285b8dca 5991 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5992
3935baa9
DG
5993 /*
5994 * Serialize hugepage allocation and instantiation, so that we don't
5995 * get spurious allocation failures if two CPUs race to instantiate
5996 * the same page in the page cache.
5997 */
40549ba8
MK
5998 mapping = vma->vm_file->f_mapping;
5999 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 6000 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 6001 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 6002
40549ba8
MK
6003 /*
6004 * Acquire vma lock before calling huge_pte_alloc and hold
6005 * until finished with ptep. This prevents huge_pmd_unshare from
6006 * being called elsewhere and making the ptep no longer valid.
40549ba8
MK
6007 */
6008 hugetlb_vma_lock_read(vma);
6009 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6010 if (!ptep) {
6011 hugetlb_vma_unlock_read(vma);
6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 return VM_FAULT_OOM;
6014 }
6015
7f2e9525 6016 entry = huge_ptep_get(ptep);
c64e912c 6017 /* PTE markers should be handled the same way as none pte */
958f32ce
LS
6018 if (huge_pte_none_mostly(entry))
6019 /*
6020 * hugetlb_no_page will drop vma lock and hugetlb fault
6021 * mutex internally, which make us return immediately.
6022 */
6023 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
c64e912c 6024 entry, flags);
86e5216f 6025
83c54070 6026 ret = 0;
1e8f889b 6027
0f792cf9
NH
6028 /*
6029 * entry could be a migration/hwpoison entry at this point, so this
6030 * check prevents the kernel from going below assuming that we have
7c8de358
EP
6031 * an active hugepage in pagecache. This goto expects the 2nd page
6032 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033 * properly handle it.
0f792cf9 6034 */
fcd48540
PX
6035 if (!pte_present(entry)) {
6036 if (unlikely(is_hugetlb_entry_migration(entry))) {
6037 /*
6038 * Release the hugetlb fault lock now, but retain
6039 * the vma lock, because it is needed to guard the
6040 * huge_pte_lockptr() later in
6041 * migration_entry_wait_huge(). The vma lock will
6042 * be released there.
6043 */
6044 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6045 migration_entry_wait_huge(vma, ptep);
6046 return 0;
6047 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6048 ret = VM_FAULT_HWPOISON_LARGE |
6049 VM_FAULT_SET_HINDEX(hstate_index(h));
0f792cf9 6050 goto out_mutex;
fcd48540 6051 }
0f792cf9 6052
57303d80 6053 /*
c89357e2
DH
6054 * If we are going to COW/unshare the mapping later, we examine the
6055 * pending reservations for this page now. This will ensure that any
57303d80 6056 * allocations necessary to record that reservation occur outside the
1d8d1464
DH
6057 * spinlock. Also lookup the pagecache page now as it is used to
6058 * determine if a reservation has been consumed.
57303d80 6059 */
c89357e2 6060 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
1d8d1464 6061 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
285b8dca 6062 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 6063 ret = VM_FAULT_OOM;
b4d1d99f 6064 goto out_mutex;
2b26736c 6065 }
5e911373 6066 /* Just decrements count, does not deallocate */
285b8dca 6067 vma_end_reservation(h, vma, haddr);
57303d80 6068
29be8426 6069 pagecache_page = find_lock_page(mapping, idx);
57303d80
AW
6070 }
6071
0f792cf9
NH
6072 ptl = huge_pte_lock(h, mm, ptep);
6073
c89357e2 6074 /* Check for a racing update before calling hugetlb_wp() */
0f792cf9
NH
6075 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6076 goto out_ptl;
6077
166f3ecc
PX
6078 /* Handle userfault-wp first, before trying to lock more pages */
6079 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6080 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6081 struct vm_fault vmf = {
6082 .vma = vma,
6083 .address = haddr,
6084 .real_address = address,
6085 .flags = flags,
6086 };
6087
6088 spin_unlock(ptl);
6089 if (pagecache_page) {
6090 unlock_page(pagecache_page);
6091 put_page(pagecache_page);
6092 }
40549ba8 6093 hugetlb_vma_unlock_read(vma);
166f3ecc 6094 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
166f3ecc
PX
6095 return handle_userfault(&vmf, VM_UFFD_WP);
6096 }
6097
56c9cfb1 6098 /*
c89357e2 6099 * hugetlb_wp() requires page locks of pte_page(entry) and
56c9cfb1
NH
6100 * pagecache_page, so here we need take the former one
6101 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
6102 */
6103 page = pte_page(entry);
6104 if (page != pagecache_page)
0f792cf9
NH
6105 if (!trylock_page(page)) {
6106 need_wait_lock = 1;
6107 goto out_ptl;
6108 }
b4d1d99f 6109
0f792cf9 6110 get_page(page);
b4d1d99f 6111
c89357e2 6112 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
106c992a 6113 if (!huge_pte_write(entry)) {
c89357e2
DH
6114 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6115 pagecache_page, ptl);
0f792cf9 6116 goto out_put_page;
c89357e2
DH
6117 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6118 entry = huge_pte_mkdirty(entry);
b4d1d99f 6119 }
b4d1d99f
DG
6120 }
6121 entry = pte_mkyoung(entry);
285b8dca 6122 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 6123 flags & FAULT_FLAG_WRITE))
285b8dca 6124 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
6125out_put_page:
6126 if (page != pagecache_page)
6127 unlock_page(page);
6128 put_page(page);
cb900f41
KS
6129out_ptl:
6130 spin_unlock(ptl);
57303d80
AW
6131
6132 if (pagecache_page) {
6133 unlock_page(pagecache_page);
6134 put_page(pagecache_page);
6135 }
b4d1d99f 6136out_mutex:
40549ba8 6137 hugetlb_vma_unlock_read(vma);
c672c7f2 6138 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
6139 /*
6140 * Generally it's safe to hold refcount during waiting page lock. But
6141 * here we just wait to defer the next page fault to avoid busy loop and
6142 * the page is not used after unlocked before returning from the current
6143 * page fault. So we are safe from accessing freed page, even if we wait
6144 * here without taking refcount.
6145 */
6146 if (need_wait_lock)
6147 wait_on_page_locked(page);
1e8f889b 6148 return ret;
86e5216f
AL
6149}
6150
714c1891 6151#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
6152/*
6153 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6154 * modifications for huge pages.
6155 */
6156int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6157 pte_t *dst_pte,
6158 struct vm_area_struct *dst_vma,
6159 unsigned long dst_addr,
6160 unsigned long src_addr,
f6191471 6161 enum mcopy_atomic_mode mode,
6041c691
PX
6162 struct page **pagep,
6163 bool wp_copy)
8fb5debc 6164{
f6191471 6165 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
6166 struct hstate *h = hstate_vma(dst_vma);
6167 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6168 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 6169 unsigned long size;
1c9e8def 6170 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
6171 pte_t _dst_pte;
6172 spinlock_t *ptl;
8cc5fcbb 6173 int ret = -ENOMEM;
8fb5debc 6174 struct page *page;
f6191471 6175 int writable;
cc30042d 6176 bool page_in_pagecache = false;
8fb5debc 6177
f6191471
AR
6178 if (is_continue) {
6179 ret = -EFAULT;
6180 page = find_lock_page(mapping, idx);
6181 if (!page)
6182 goto out;
cc30042d 6183 page_in_pagecache = true;
f6191471 6184 } else if (!*pagep) {
d84cf06e
MA
6185 /* If a page already exists, then it's UFFDIO_COPY for
6186 * a non-missing case. Return -EEXIST.
6187 */
6188 if (vm_shared &&
6189 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6190 ret = -EEXIST;
6191 goto out;
6192 }
6193
8fb5debc 6194 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
6195 if (IS_ERR(page)) {
6196 ret = -ENOMEM;
8fb5debc 6197 goto out;
d84cf06e 6198 }
8fb5debc
MK
6199
6200 ret = copy_huge_page_from_user(page,
6201 (const void __user *) src_addr,
810a56b9 6202 pages_per_huge_page(h), false);
8fb5debc 6203
c1e8d7c6 6204 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 6205 if (unlikely(ret)) {
9e368259 6206 ret = -ENOENT;
8cc5fcbb
MA
6207 /* Free the allocated page which may have
6208 * consumed a reservation.
6209 */
6210 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6211 put_page(page);
6212
6213 /* Allocate a temporary page to hold the copied
6214 * contents.
6215 */
6216 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6217 if (!page) {
6218 ret = -ENOMEM;
6219 goto out;
6220 }
8fb5debc 6221 *pagep = page;
8cc5fcbb
MA
6222 /* Set the outparam pagep and return to the caller to
6223 * copy the contents outside the lock. Don't free the
6224 * page.
6225 */
8fb5debc
MK
6226 goto out;
6227 }
6228 } else {
8cc5fcbb
MA
6229 if (vm_shared &&
6230 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6231 put_page(*pagep);
6232 ret = -EEXIST;
6233 *pagep = NULL;
6234 goto out;
6235 }
6236
6237 page = alloc_huge_page(dst_vma, dst_addr, 0);
6238 if (IS_ERR(page)) {
da9a298f 6239 put_page(*pagep);
8cc5fcbb
MA
6240 ret = -ENOMEM;
6241 *pagep = NULL;
6242 goto out;
6243 }
34892366
MS
6244 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6245 pages_per_huge_page(h));
8cc5fcbb 6246 put_page(*pagep);
8fb5debc
MK
6247 *pagep = NULL;
6248 }
6249
6250 /*
6251 * The memory barrier inside __SetPageUptodate makes sure that
6252 * preceding stores to the page contents become visible before
6253 * the set_pte_at() write.
6254 */
6255 __SetPageUptodate(page);
8fb5debc 6256
f6191471
AR
6257 /* Add shared, newly allocated pages to the page cache. */
6258 if (vm_shared && !is_continue) {
1e392147
AA
6259 size = i_size_read(mapping->host) >> huge_page_shift(h);
6260 ret = -EFAULT;
6261 if (idx >= size)
6262 goto out_release_nounlock;
1c9e8def 6263
1e392147
AA
6264 /*
6265 * Serialization between remove_inode_hugepages() and
7e1813d4 6266 * hugetlb_add_to_page_cache() below happens through the
1e392147
AA
6267 * hugetlb_fault_mutex_table that here must be hold by
6268 * the caller.
6269 */
7e1813d4 6270 ret = hugetlb_add_to_page_cache(page, mapping, idx);
1c9e8def
MK
6271 if (ret)
6272 goto out_release_nounlock;
cc30042d 6273 page_in_pagecache = true;
1c9e8def
MK
6274 }
6275
bcc66543 6276 ptl = huge_pte_lock(h, dst_mm, dst_pte);
8fb5debc 6277
8625147c
JH
6278 ret = -EIO;
6279 if (PageHWPoison(page))
6280 goto out_release_unlock;
6281
6041c691
PX
6282 /*
6283 * We allow to overwrite a pte marker: consider when both MISSING|WP
6284 * registered, we firstly wr-protect a none pte which has no page cache
6285 * page backing it, then access the page.
6286 */
fa27759a 6287 ret = -EEXIST;
6041c691 6288 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6289 goto out_release_unlock;
6290
4781593d 6291 if (page_in_pagecache)
fb3d824d 6292 page_dup_file_rmap(page, true);
4781593d 6293 else
1c9e8def 6294 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
8fb5debc 6295
6041c691
PX
6296 /*
6297 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6298 * with wp flag set, don't set pte write bit.
6299 */
6300 if (wp_copy || (is_continue && !vm_shared))
f6191471
AR
6301 writable = 0;
6302 else
6303 writable = dst_vma->vm_flags & VM_WRITE;
6304
6305 _dst_pte = make_huge_pte(dst_vma, page, writable);
6041c691
PX
6306 /*
6307 * Always mark UFFDIO_COPY page dirty; note that this may not be
6308 * extremely important for hugetlbfs for now since swapping is not
6309 * supported, but we should still be clear in that this page cannot be
6310 * thrown away at will, even if write bit not set.
6311 */
6312 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6313 _dst_pte = pte_mkyoung(_dst_pte);
6314
6041c691
PX
6315 if (wp_copy)
6316 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6317
8fb5debc
MK
6318 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6319
8fb5debc
MK
6320 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6321
6322 /* No need to invalidate - it was non-present before */
6323 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6324
6325 spin_unlock(ptl);
f6191471
AR
6326 if (!is_continue)
6327 SetHPageMigratable(page);
6328 if (vm_shared || is_continue)
1c9e8def 6329 unlock_page(page);
8fb5debc
MK
6330 ret = 0;
6331out:
6332 return ret;
6333out_release_unlock:
6334 spin_unlock(ptl);
f6191471 6335 if (vm_shared || is_continue)
1c9e8def 6336 unlock_page(page);
5af10dfd 6337out_release_nounlock:
cc30042d 6338 if (!page_in_pagecache)
c7b1850d 6339 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
6340 put_page(page);
6341 goto out;
6342}
714c1891 6343#endif /* CONFIG_USERFAULTFD */
8fb5debc 6344
82e5d378
JM
6345static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6346 int refs, struct page **pages,
6347 struct vm_area_struct **vmas)
6348{
6349 int nr;
6350
6351 for (nr = 0; nr < refs; nr++) {
6352 if (likely(pages))
14455eab 6353 pages[nr] = nth_page(page, nr);
82e5d378
JM
6354 if (vmas)
6355 vmas[nr] = vma;
6356 }
6357}
6358
84209e87
DH
6359static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6360 unsigned int flags, pte_t *pte,
a7f22660
DH
6361 bool *unshare)
6362{
6363 pte_t pteval = huge_ptep_get(pte);
6364
6365 *unshare = false;
6366 if (is_swap_pte(pteval))
6367 return true;
6368 if (huge_pte_write(pteval))
6369 return false;
6370 if (flags & FOLL_WRITE)
6371 return true;
84209e87 6372 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
a7f22660
DH
6373 *unshare = true;
6374 return true;
6375 }
6376 return false;
6377}
6378
57a196a5
MK
6379struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6380 unsigned long address, unsigned int flags)
6381{
6382 struct hstate *h = hstate_vma(vma);
6383 struct mm_struct *mm = vma->vm_mm;
6384 unsigned long haddr = address & huge_page_mask(h);
6385 struct page *page = NULL;
6386 spinlock_t *ptl;
6387 pte_t *pte, entry;
6388
6389 /*
6390 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6391 * follow_hugetlb_page().
6392 */
6393 if (WARN_ON_ONCE(flags & FOLL_PIN))
6394 return NULL;
6395
7d049f3a 6396 hugetlb_vma_lock_read(vma);
9c67a207 6397 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
57a196a5 6398 if (!pte)
7d049f3a 6399 goto out_unlock;
57a196a5
MK
6400
6401 ptl = huge_pte_lock(h, mm, pte);
6402 entry = huge_ptep_get(pte);
6403 if (pte_present(entry)) {
6404 page = pte_page(entry) +
6405 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6406 /*
6407 * Note that page may be a sub-page, and with vmemmap
6408 * optimizations the page struct may be read only.
6409 * try_grab_page() will increase the ref count on the
6410 * head page, so this will be OK.
6411 *
e2ca6ba6
LT
6412 * try_grab_page() should always be able to get the page here,
6413 * because we hold the ptl lock and have verified pte_present().
57a196a5 6414 */
e2ca6ba6 6415 if (try_grab_page(page, flags)) {
57a196a5
MK
6416 page = NULL;
6417 goto out;
6418 }
57a196a5
MK
6419 }
6420out:
6421 spin_unlock(ptl);
7d049f3a
PX
6422out_unlock:
6423 hugetlb_vma_unlock_read(vma);
57a196a5
MK
6424 return page;
6425}
6426
28a35716
ML
6427long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6428 struct page **pages, struct vm_area_struct **vmas,
6429 unsigned long *position, unsigned long *nr_pages,
4f6da934 6430 long i, unsigned int flags, int *locked)
63551ae0 6431{
d5d4b0aa
KC
6432 unsigned long pfn_offset;
6433 unsigned long vaddr = *position;
28a35716 6434 unsigned long remainder = *nr_pages;
a5516438 6435 struct hstate *h = hstate_vma(vma);
0fa5bc40 6436 int err = -EFAULT, refs;
63551ae0 6437
63551ae0 6438 while (vaddr < vma->vm_end && remainder) {
4c887265 6439 pte_t *pte;
cb900f41 6440 spinlock_t *ptl = NULL;
a7f22660 6441 bool unshare = false;
2a15efc9 6442 int absent;
4c887265 6443 struct page *page;
63551ae0 6444
02057967
DR
6445 /*
6446 * If we have a pending SIGKILL, don't keep faulting pages and
6447 * potentially allocating memory.
6448 */
fa45f116 6449 if (fatal_signal_pending(current)) {
02057967
DR
6450 remainder = 0;
6451 break;
6452 }
6453
eefc7fa5 6454 hugetlb_vma_lock_read(vma);
4c887265
AL
6455 /*
6456 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 6457 * each hugepage. We have to make sure we get the
4c887265 6458 * first, for the page indexing below to work.
cb900f41
KS
6459 *
6460 * Note that page table lock is not held when pte is null.
4c887265 6461 */
9c67a207
PX
6462 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6463 huge_page_size(h));
cb900f41
KS
6464 if (pte)
6465 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
6466 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6467
6468 /*
6469 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
6470 * an error where there's an empty slot with no huge pagecache
6471 * to back it. This way, we avoid allocating a hugepage, and
6472 * the sparse dumpfile avoids allocating disk blocks, but its
6473 * huge holes still show up with zeroes where they need to be.
2a15efc9 6474 */
3ae77f43
HD
6475 if (absent && (flags & FOLL_DUMP) &&
6476 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
6477 if (pte)
6478 spin_unlock(ptl);
eefc7fa5 6479 hugetlb_vma_unlock_read(vma);
2a15efc9
HD
6480 remainder = 0;
6481 break;
6482 }
63551ae0 6483
9cc3a5bd
NH
6484 /*
6485 * We need call hugetlb_fault for both hugepages under migration
6486 * (in which case hugetlb_fault waits for the migration,) and
6487 * hwpoisoned hugepages (in which case we need to prevent the
6488 * caller from accessing to them.) In order to do this, we use
6489 * here is_swap_pte instead of is_hugetlb_entry_migration and
6490 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6491 * both cases, and because we can't follow correct pages
6492 * directly from any kind of swap entries.
6493 */
a7f22660 6494 if (absent ||
84209e87 6495 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
2b740303 6496 vm_fault_t ret;
87ffc118 6497 unsigned int fault_flags = 0;
63551ae0 6498
cb900f41
KS
6499 if (pte)
6500 spin_unlock(ptl);
eefc7fa5
PX
6501 hugetlb_vma_unlock_read(vma);
6502
87ffc118
AA
6503 if (flags & FOLL_WRITE)
6504 fault_flags |= FAULT_FLAG_WRITE;
a7f22660
DH
6505 else if (unshare)
6506 fault_flags |= FAULT_FLAG_UNSHARE;
93c5c61d 6507 if (locked) {
71335f37
PX
6508 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6509 FAULT_FLAG_KILLABLE;
93c5c61d
PX
6510 if (flags & FOLL_INTERRUPTIBLE)
6511 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6512 }
87ffc118
AA
6513 if (flags & FOLL_NOWAIT)
6514 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6515 FAULT_FLAG_RETRY_NOWAIT;
6516 if (flags & FOLL_TRIED) {
4426e945
PX
6517 /*
6518 * Note: FAULT_FLAG_ALLOW_RETRY and
6519 * FAULT_FLAG_TRIED can co-exist
6520 */
87ffc118
AA
6521 fault_flags |= FAULT_FLAG_TRIED;
6522 }
6523 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6524 if (ret & VM_FAULT_ERROR) {
2be7cfed 6525 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
6526 remainder = 0;
6527 break;
6528 }
6529 if (ret & VM_FAULT_RETRY) {
4f6da934 6530 if (locked &&
1ac25013 6531 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 6532 *locked = 0;
87ffc118
AA
6533 *nr_pages = 0;
6534 /*
6535 * VM_FAULT_RETRY must not return an
6536 * error, it will return zero
6537 * instead.
6538 *
6539 * No need to update "position" as the
6540 * caller will not check it after
6541 * *nr_pages is set to 0.
6542 */
6543 return i;
6544 }
6545 continue;
4c887265
AL
6546 }
6547
a5516438 6548 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 6549 page = pte_page(huge_ptep_get(pte));
8fde12ca 6550
b6a2619c
DH
6551 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6552 !PageAnonExclusive(page), page);
6553
acbfb087
ZL
6554 /*
6555 * If subpage information not requested, update counters
6556 * and skip the same_page loop below.
6557 */
6558 if (!pages && !vmas && !pfn_offset &&
6559 (vaddr + huge_page_size(h) < vma->vm_end) &&
6560 (remainder >= pages_per_huge_page(h))) {
6561 vaddr += huge_page_size(h);
6562 remainder -= pages_per_huge_page(h);
6563 i += pages_per_huge_page(h);
6564 spin_unlock(ptl);
eefc7fa5 6565 hugetlb_vma_unlock_read(vma);
acbfb087
ZL
6566 continue;
6567 }
6568
d08af0a5
JM
6569 /* vaddr may not be aligned to PAGE_SIZE */
6570 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6571 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 6572
82e5d378 6573 if (pages || vmas)
14455eab 6574 record_subpages_vmas(nth_page(page, pfn_offset),
82e5d378
JM
6575 vma, refs,
6576 likely(pages) ? pages + i : NULL,
6577 vmas ? vmas + i : NULL);
63551ae0 6578
82e5d378 6579 if (pages) {
0fa5bc40 6580 /*
822951d8 6581 * try_grab_folio() should always succeed here,
0fa5bc40
JM
6582 * because: a) we hold the ptl lock, and b) we've just
6583 * checked that the huge page is present in the page
6584 * tables. If the huge page is present, then the tail
6585 * pages must also be present. The ptl prevents the
6586 * head page and tail pages from being rearranged in
4003f107
LG
6587 * any way. As this is hugetlb, the pages will never
6588 * be p2pdma or not longterm pinable. So this page
6589 * must be available at this point, unless the page
6590 * refcount overflowed:
0fa5bc40 6591 */
822951d8
MWO
6592 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6593 flags))) {
0fa5bc40 6594 spin_unlock(ptl);
eefc7fa5 6595 hugetlb_vma_unlock_read(vma);
0fa5bc40
JM
6596 remainder = 0;
6597 err = -ENOMEM;
6598 break;
6599 }
d5d4b0aa 6600 }
82e5d378
JM
6601
6602 vaddr += (refs << PAGE_SHIFT);
6603 remainder -= refs;
6604 i += refs;
6605
cb900f41 6606 spin_unlock(ptl);
eefc7fa5 6607 hugetlb_vma_unlock_read(vma);
63551ae0 6608 }
28a35716 6609 *nr_pages = remainder;
87ffc118
AA
6610 /*
6611 * setting position is actually required only if remainder is
6612 * not zero but it's faster not to add a "if (remainder)"
6613 * branch.
6614 */
63551ae0
DG
6615 *position = vaddr;
6616
2be7cfed 6617 return i ? i : err;
63551ae0 6618}
8f860591 6619
a79390f5 6620long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6621 unsigned long address, unsigned long end,
6622 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6623{
6624 struct mm_struct *mm = vma->vm_mm;
6625 unsigned long start = address;
6626 pte_t *ptep;
6627 pte_t pte;
a5516438 6628 struct hstate *h = hstate_vma(vma);
a79390f5 6629 long pages = 0, psize = huge_page_size(h);
dff11abe 6630 bool shared_pmd = false;
ac46d4f3 6631 struct mmu_notifier_range range;
e95a9851 6632 unsigned long last_addr_mask;
5a90d5a1
PX
6633 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6634 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6635
6636 /*
6637 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6638 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6639 * range if PMD sharing is possible.
6640 */
7269f999 6641 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7d4a8be0 6642 0, mm, start, end);
ac46d4f3 6643 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6644
6645 BUG_ON(address >= end);
ac46d4f3 6646 flush_cache_range(vma, range.start, range.end);
8f860591 6647
ac46d4f3 6648 mmu_notifier_invalidate_range_start(&range);
40549ba8 6649 hugetlb_vma_lock_write(vma);
83cde9e8 6650 i_mmap_lock_write(vma->vm_file->f_mapping);
40549ba8 6651 last_addr_mask = hugetlb_mask_last_page(h);
60dfaad6 6652 for (; address < end; address += psize) {
cb900f41 6653 spinlock_t *ptl;
9c67a207 6654 ptep = hugetlb_walk(vma, address, psize);
e95a9851 6655 if (!ptep) {
fed15f13
PX
6656 if (!uffd_wp) {
6657 address |= last_addr_mask;
6658 continue;
6659 }
6660 /*
6661 * Userfaultfd wr-protect requires pgtable
6662 * pre-allocations to install pte markers.
6663 */
6664 ptep = huge_pte_alloc(mm, vma, address, psize);
d1751118
PX
6665 if (!ptep) {
6666 pages = -ENOMEM;
fed15f13 6667 break;
d1751118 6668 }
e95a9851 6669 }
cb900f41 6670 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6671 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6672 /*
6673 * When uffd-wp is enabled on the vma, unshare
6674 * shouldn't happen at all. Warn about it if it
6675 * happened due to some reason.
6676 */
6677 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6678 pages++;
cb900f41 6679 spin_unlock(ptl);
dff11abe 6680 shared_pmd = true;
4ddb4d91 6681 address |= last_addr_mask;
39dde65c 6682 continue;
7da4d641 6683 }
a8bda28d
NH
6684 pte = huge_ptep_get(ptep);
6685 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
0e678153
DH
6686 /* Nothing to do. */
6687 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
a8bda28d 6688 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6689 struct page *page = pfn_swap_entry_to_page(entry);
44f86392 6690 pte_t newpte = pte;
a8bda28d 6691
44f86392 6692 if (is_writable_migration_entry(entry)) {
6c287605
DH
6693 if (PageAnon(page))
6694 entry = make_readable_exclusive_migration_entry(
6695 swp_offset(entry));
6696 else
6697 entry = make_readable_migration_entry(
6698 swp_offset(entry));
a8bda28d 6699 newpte = swp_entry_to_pte(entry);
a8bda28d
NH
6700 pages++;
6701 }
44f86392
DH
6702
6703 if (uffd_wp)
6704 newpte = pte_swp_mkuffd_wp(newpte);
6705 else if (uffd_wp_resolve)
6706 newpte = pte_swp_clear_uffd_wp(newpte);
6707 if (!pte_same(pte, newpte))
6708 set_huge_pte_at(mm, address, ptep, newpte);
0e678153
DH
6709 } else if (unlikely(is_pte_marker(pte))) {
6710 /* No other markers apply for now. */
6711 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
60dfaad6 6712 if (uffd_wp_resolve)
0e678153 6713 /* Safe to modify directly (non-present->none). */
60dfaad6 6714 huge_pte_clear(mm, address, ptep, psize);
0e678153 6715 } else if (!huge_pte_none(pte)) {
023bdd00 6716 pte_t old_pte;
79c1c594 6717 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6718
6719 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6720 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6721 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1 6722 if (uffd_wp)
f1eb1bac 6723 pte = huge_pte_mkuffd_wp(pte);
5a90d5a1
PX
6724 else if (uffd_wp_resolve)
6725 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6726 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6727 pages++;
60dfaad6
PX
6728 } else {
6729 /* None pte */
6730 if (unlikely(uffd_wp))
6731 /* Safe to modify directly (none->non-present). */
6732 set_huge_pte_at(mm, address, ptep,
6733 make_pte_marker(PTE_MARKER_UFFD_WP));
8f860591 6734 }
cb900f41 6735 spin_unlock(ptl);
8f860591 6736 }
d833352a 6737 /*
c8c06efa 6738 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6739 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6740 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6741 * and that page table be reused and filled with junk. If we actually
6742 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6743 */
dff11abe 6744 if (shared_pmd)
ac46d4f3 6745 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6746 else
6747 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
6748 /*
6749 * No need to call mmu_notifier_invalidate_range() we are downgrading
6750 * page table protection not changing it to point to a new page.
6751 *
ee65728e 6752 * See Documentation/mm/mmu_notifier.rst
0f10851e 6753 */
83cde9e8 6754 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 6755 hugetlb_vma_unlock_write(vma);
ac46d4f3 6756 mmu_notifier_invalidate_range_end(&range);
7da4d641 6757
d1751118 6758 return pages > 0 ? (pages << h->order) : pages;
8f860591
ZY
6759}
6760
33b8f84a
MK
6761/* Return true if reservation was successful, false otherwise. */
6762bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 6763 long from, long to,
5a6fe125 6764 struct vm_area_struct *vma,
ca16d140 6765 vm_flags_t vm_flags)
e4e574b7 6766{
c5094ec7 6767 long chg = -1, add = -1;
a5516438 6768 struct hstate *h = hstate_inode(inode);
90481622 6769 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 6770 struct resv_map *resv_map;
075a61d0 6771 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 6772 long gbl_reserve, regions_needed = 0;
e4e574b7 6773
63489f8e
MK
6774 /* This should never happen */
6775 if (from > to) {
6776 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 6777 return false;
63489f8e
MK
6778 }
6779
8d9bfb26 6780 /*
e700898f
MK
6781 * vma specific semaphore used for pmd sharing and fault/truncation
6782 * synchronization
8d9bfb26
MK
6783 */
6784 hugetlb_vma_lock_alloc(vma);
6785
17c9d12e
MG
6786 /*
6787 * Only apply hugepage reservation if asked. At fault time, an
6788 * attempt will be made for VM_NORESERVE to allocate a page
90481622 6789 * without using reserves
17c9d12e 6790 */
ca16d140 6791 if (vm_flags & VM_NORESERVE)
33b8f84a 6792 return true;
17c9d12e 6793
a1e78772
MG
6794 /*
6795 * Shared mappings base their reservation on the number of pages that
6796 * are already allocated on behalf of the file. Private mappings need
6797 * to reserve the full area even if read-only as mprotect() may be
6798 * called to make the mapping read-write. Assume !vma is a shm mapping
6799 */
9119a41e 6800 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
6801 /*
6802 * resv_map can not be NULL as hugetlb_reserve_pages is only
6803 * called for inodes for which resv_maps were created (see
6804 * hugetlbfs_get_inode).
6805 */
4e35f483 6806 resv_map = inode_resv_map(inode);
9119a41e 6807
0db9d74e 6808 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e 6809 } else {
e9fe92ae 6810 /* Private mapping. */
9119a41e 6811 resv_map = resv_map_alloc();
17c9d12e 6812 if (!resv_map)
8d9bfb26 6813 goto out_err;
17c9d12e 6814
a1e78772 6815 chg = to - from;
84afd99b 6816
17c9d12e
MG
6817 set_vma_resv_map(vma, resv_map);
6818 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6819 }
6820
33b8f84a 6821 if (chg < 0)
c50ac050 6822 goto out_err;
8a630112 6823
33b8f84a
MK
6824 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6825 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 6826 goto out_err;
075a61d0
MA
6827
6828 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6829 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6830 * of the resv_map.
6831 */
6832 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6833 }
6834
1c5ecae3
MK
6835 /*
6836 * There must be enough pages in the subpool for the mapping. If
6837 * the subpool has a minimum size, there may be some global
6838 * reservations already in place (gbl_reserve).
6839 */
6840 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 6841 if (gbl_reserve < 0)
075a61d0 6842 goto out_uncharge_cgroup;
5a6fe125
MG
6843
6844 /*
17c9d12e 6845 * Check enough hugepages are available for the reservation.
90481622 6846 * Hand the pages back to the subpool if there are not
5a6fe125 6847 */
33b8f84a 6848 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 6849 goto out_put_pages;
17c9d12e
MG
6850
6851 /*
6852 * Account for the reservations made. Shared mappings record regions
6853 * that have reservations as they are shared by multiple VMAs.
6854 * When the last VMA disappears, the region map says how much
6855 * the reservation was and the page cache tells how much of
6856 * the reservation was consumed. Private mappings are per-VMA and
6857 * only the consumed reservations are tracked. When the VMA
6858 * disappears, the original reservation is the VMA size and the
6859 * consumed reservations are stored in the map. Hence, nothing
6860 * else has to be done for private mappings here
6861 */
33039678 6862 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 6863 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
6864
6865 if (unlikely(add < 0)) {
6866 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 6867 goto out_put_pages;
0db9d74e 6868 } else if (unlikely(chg > add)) {
33039678
MK
6869 /*
6870 * pages in this range were added to the reserve
6871 * map between region_chg and region_add. This
6872 * indicates a race with alloc_huge_page. Adjust
6873 * the subpool and reserve counts modified above
6874 * based on the difference.
6875 */
6876 long rsv_adjust;
6877
d85aecf2
ML
6878 /*
6879 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6880 * reference to h_cg->css. See comment below for detail.
6881 */
075a61d0
MA
6882 hugetlb_cgroup_uncharge_cgroup_rsvd(
6883 hstate_index(h),
6884 (chg - add) * pages_per_huge_page(h), h_cg);
6885
33039678
MK
6886 rsv_adjust = hugepage_subpool_put_pages(spool,
6887 chg - add);
6888 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
6889 } else if (h_cg) {
6890 /*
6891 * The file_regions will hold their own reference to
6892 * h_cg->css. So we should release the reference held
6893 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6894 * done.
6895 */
6896 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
6897 }
6898 }
33b8f84a
MK
6899 return true;
6900
075a61d0
MA
6901out_put_pages:
6902 /* put back original number of pages, chg */
6903 (void)hugepage_subpool_put_pages(spool, chg);
6904out_uncharge_cgroup:
6905 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6906 chg * pages_per_huge_page(h), h_cg);
c50ac050 6907out_err:
8d9bfb26 6908 hugetlb_vma_lock_free(vma);
5e911373 6909 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
6910 /* Only call region_abort if the region_chg succeeded but the
6911 * region_add failed or didn't run.
6912 */
6913 if (chg >= 0 && add < 0)
6914 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
6915 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6916 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 6917 return false;
a43a8c39
KC
6918}
6919
b5cec28d
MK
6920long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6921 long freed)
a43a8c39 6922{
a5516438 6923 struct hstate *h = hstate_inode(inode);
4e35f483 6924 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 6925 long chg = 0;
90481622 6926 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 6927 long gbl_reserve;
45c682a6 6928
f27a5136
MK
6929 /*
6930 * Since this routine can be called in the evict inode path for all
6931 * hugetlbfs inodes, resv_map could be NULL.
6932 */
b5cec28d
MK
6933 if (resv_map) {
6934 chg = region_del(resv_map, start, end);
6935 /*
6936 * region_del() can fail in the rare case where a region
6937 * must be split and another region descriptor can not be
6938 * allocated. If end == LONG_MAX, it will not fail.
6939 */
6940 if (chg < 0)
6941 return chg;
6942 }
6943
45c682a6 6944 spin_lock(&inode->i_lock);
e4c6f8be 6945 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
6946 spin_unlock(&inode->i_lock);
6947
1c5ecae3
MK
6948 /*
6949 * If the subpool has a minimum size, the number of global
6950 * reservations to be released may be adjusted.
dddf31a4
ML
6951 *
6952 * Note that !resv_map implies freed == 0. So (chg - freed)
6953 * won't go negative.
1c5ecae3
MK
6954 */
6955 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6956 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
6957
6958 return 0;
a43a8c39 6959}
93f70f90 6960
3212b535
SC
6961#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6962static unsigned long page_table_shareable(struct vm_area_struct *svma,
6963 struct vm_area_struct *vma,
6964 unsigned long addr, pgoff_t idx)
6965{
6966 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6967 svma->vm_start;
6968 unsigned long sbase = saddr & PUD_MASK;
6969 unsigned long s_end = sbase + PUD_SIZE;
6970
6971 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
6972 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6973 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
6974
6975 /*
6976 * match the virtual addresses, permission and the alignment of the
6977 * page table page.
131a79b4
MK
6978 *
6979 * Also, vma_lock (vm_private_data) is required for sharing.
3212b535
SC
6980 */
6981 if (pmd_index(addr) != pmd_index(saddr) ||
6982 vm_flags != svm_flags ||
131a79b4
MK
6983 !range_in_vma(svma, sbase, s_end) ||
6984 !svma->vm_private_data)
3212b535
SC
6985 return 0;
6986
6987 return saddr;
6988}
6989
bbff39cc 6990bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
3212b535 6991{
bbff39cc
MK
6992 unsigned long start = addr & PUD_MASK;
6993 unsigned long end = start + PUD_SIZE;
6994
8d9bfb26
MK
6995#ifdef CONFIG_USERFAULTFD
6996 if (uffd_disable_huge_pmd_share(vma))
6997 return false;
6998#endif
3212b535
SC
6999 /*
7000 * check on proper vm_flags and page table alignment
7001 */
8d9bfb26
MK
7002 if (!(vma->vm_flags & VM_MAYSHARE))
7003 return false;
bbff39cc 7004 if (!vma->vm_private_data) /* vma lock required for sharing */
8d9bfb26
MK
7005 return false;
7006 if (!range_in_vma(vma, start, end))
7007 return false;
7008 return true;
7009}
7010
017b1660
MK
7011/*
7012 * Determine if start,end range within vma could be mapped by shared pmd.
7013 * If yes, adjust start and end to cover range associated with possible
7014 * shared pmd mappings.
7015 */
7016void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7017 unsigned long *start, unsigned long *end)
7018{
a1ba9da8
LX
7019 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7020 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 7021
a1ba9da8 7022 /*
f0953a1b
IM
7023 * vma needs to span at least one aligned PUD size, and the range
7024 * must be at least partially within in.
a1ba9da8
LX
7025 */
7026 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7027 (*end <= v_start) || (*start >= v_end))
017b1660
MK
7028 return;
7029
75802ca6 7030 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
7031 if (*start > v_start)
7032 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 7033
a1ba9da8
LX
7034 if (*end < v_end)
7035 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
7036}
7037
3212b535
SC
7038/*
7039 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7040 * and returns the corresponding pte. While this is not necessary for the
7041 * !shared pmd case because we can allocate the pmd later as well, it makes the
3a47c54f
MK
7042 * code much cleaner. pmd allocation is essential for the shared case because
7043 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7044 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7045 * bad pmd for sharing.
3212b535 7046 */
aec44e0f
PX
7047pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7048 unsigned long addr, pud_t *pud)
3212b535 7049{
3212b535
SC
7050 struct address_space *mapping = vma->vm_file->f_mapping;
7051 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7052 vma->vm_pgoff;
7053 struct vm_area_struct *svma;
7054 unsigned long saddr;
7055 pte_t *spte = NULL;
7056 pte_t *pte;
cb900f41 7057 spinlock_t *ptl;
3212b535 7058
3a47c54f 7059 i_mmap_lock_read(mapping);
3212b535
SC
7060 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7061 if (svma == vma)
7062 continue;
7063
7064 saddr = page_table_shareable(svma, vma, addr, idx);
7065 if (saddr) {
9c67a207
PX
7066 spte = hugetlb_walk(svma, saddr,
7067 vma_mmu_pagesize(svma));
3212b535
SC
7068 if (spte) {
7069 get_page(virt_to_page(spte));
7070 break;
7071 }
7072 }
7073 }
7074
7075 if (!spte)
7076 goto out;
7077
8bea8052 7078 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 7079 if (pud_none(*pud)) {
3212b535
SC
7080 pud_populate(mm, pud,
7081 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 7082 mm_inc_nr_pmds(mm);
dc6c9a35 7083 } else {
3212b535 7084 put_page(virt_to_page(spte));
dc6c9a35 7085 }
cb900f41 7086 spin_unlock(ptl);
3212b535
SC
7087out:
7088 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3a47c54f 7089 i_mmap_unlock_read(mapping);
3212b535
SC
7090 return pte;
7091}
7092
7093/*
7094 * unmap huge page backed by shared pte.
7095 *
7096 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7097 * indicated by page_count > 1, unmap is achieved by clearing pud and
7098 * decrementing the ref count. If count == 1, the pte page is not shared.
7099 *
3a47c54f 7100 * Called with page table lock held.
3212b535
SC
7101 *
7102 * returns: 1 successfully unmapped a shared pte page
7103 * 0 the underlying pte page is not shared, or it is the last user
7104 */
34ae204f 7105int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7106 unsigned long addr, pte_t *ptep)
3212b535 7107{
4ddb4d91
MK
7108 pgd_t *pgd = pgd_offset(mm, addr);
7109 p4d_t *p4d = p4d_offset(pgd, addr);
7110 pud_t *pud = pud_offset(p4d, addr);
3212b535 7111
34ae204f 7112 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
40549ba8 7113 hugetlb_vma_assert_locked(vma);
3212b535
SC
7114 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7115 if (page_count(virt_to_page(ptep)) == 1)
7116 return 0;
7117
7118 pud_clear(pud);
7119 put_page(virt_to_page(ptep));
dc6c9a35 7120 mm_dec_nr_pmds(mm);
3212b535
SC
7121 return 1;
7122}
c1991e07 7123
9e5fc74c 7124#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
8d9bfb26 7125
aec44e0f
PX
7126pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7127 unsigned long addr, pud_t *pud)
9e5fc74c
SC
7128{
7129 return NULL;
7130}
e81f2d22 7131
34ae204f 7132int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7133 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
7134{
7135 return 0;
7136}
017b1660
MK
7137
7138void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7139 unsigned long *start, unsigned long *end)
7140{
7141}
c1991e07
PX
7142
7143bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7144{
7145 return false;
7146}
3212b535
SC
7147#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7148
9e5fc74c 7149#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 7150pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
7151 unsigned long addr, unsigned long sz)
7152{
7153 pgd_t *pgd;
c2febafc 7154 p4d_t *p4d;
9e5fc74c
SC
7155 pud_t *pud;
7156 pte_t *pte = NULL;
7157
7158 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
7159 p4d = p4d_alloc(mm, pgd, addr);
7160 if (!p4d)
7161 return NULL;
c2febafc 7162 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
7163 if (pud) {
7164 if (sz == PUD_SIZE) {
7165 pte = (pte_t *)pud;
7166 } else {
7167 BUG_ON(sz != PMD_SIZE);
c1991e07 7168 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 7169 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
7170 else
7171 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7172 }
7173 }
4e666314 7174 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
7175
7176 return pte;
7177}
7178
9b19df29
PA
7179/*
7180 * huge_pte_offset() - Walk the page table to resolve the hugepage
7181 * entry at address @addr
7182 *
8ac0b81a
LX
7183 * Return: Pointer to page table entry (PUD or PMD) for
7184 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
7185 * size @sz doesn't match the hugepage size at this level of the page
7186 * table.
7187 */
7868a208
PA
7188pte_t *huge_pte_offset(struct mm_struct *mm,
7189 unsigned long addr, unsigned long sz)
9e5fc74c
SC
7190{
7191 pgd_t *pgd;
c2febafc 7192 p4d_t *p4d;
8ac0b81a
LX
7193 pud_t *pud;
7194 pmd_t *pmd;
9e5fc74c
SC
7195
7196 pgd = pgd_offset(mm, addr);
c2febafc
KS
7197 if (!pgd_present(*pgd))
7198 return NULL;
7199 p4d = p4d_offset(pgd, addr);
7200 if (!p4d_present(*p4d))
7201 return NULL;
9b19df29 7202
c2febafc 7203 pud = pud_offset(p4d, addr);
8ac0b81a
LX
7204 if (sz == PUD_SIZE)
7205 /* must be pud huge, non-present or none */
c2febafc 7206 return (pte_t *)pud;
8ac0b81a 7207 if (!pud_present(*pud))
9b19df29 7208 return NULL;
8ac0b81a 7209 /* must have a valid entry and size to go further */
9b19df29 7210
8ac0b81a
LX
7211 pmd = pmd_offset(pud, addr);
7212 /* must be pmd huge, non-present or none */
7213 return (pte_t *)pmd;
9e5fc74c
SC
7214}
7215
e95a9851
MK
7216/*
7217 * Return a mask that can be used to update an address to the last huge
7218 * page in a page table page mapping size. Used to skip non-present
7219 * page table entries when linearly scanning address ranges. Architectures
7220 * with unique huge page to page table relationships can define their own
7221 * version of this routine.
7222 */
7223unsigned long hugetlb_mask_last_page(struct hstate *h)
7224{
7225 unsigned long hp_size = huge_page_size(h);
7226
7227 if (hp_size == PUD_SIZE)
7228 return P4D_SIZE - PUD_SIZE;
7229 else if (hp_size == PMD_SIZE)
7230 return PUD_SIZE - PMD_SIZE;
7231 else
7232 return 0UL;
7233}
7234
7235#else
7236
7237/* See description above. Architectures can provide their own version. */
7238__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7239{
4ddb4d91
MK
7240#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7241 if (huge_page_size(h) == PMD_SIZE)
7242 return PUD_SIZE - PMD_SIZE;
7243#endif
e95a9851
MK
7244 return 0UL;
7245}
7246
61f77eda
NH
7247#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7248
7249/*
7250 * These functions are overwritable if your architecture needs its own
7251 * behavior.
7252 */
7ce82f4c 7253int isolate_hugetlb(struct page *page, struct list_head *list)
31caf665 7254{
7ce82f4c 7255 int ret = 0;
bcc54222 7256
db71ef79 7257 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
7258 if (!PageHeadHuge(page) ||
7259 !HPageMigratable(page) ||
0eb2df2b 7260 !get_page_unless_zero(page)) {
7ce82f4c 7261 ret = -EBUSY;
bcc54222
NH
7262 goto unlock;
7263 }
8f251a3d 7264 ClearHPageMigratable(page);
31caf665 7265 list_move_tail(&page->lru, list);
bcc54222 7266unlock:
db71ef79 7267 spin_unlock_irq(&hugetlb_lock);
bcc54222 7268 return ret;
31caf665
NH
7269}
7270
04bac040 7271int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
25182f05
NH
7272{
7273 int ret = 0;
7274
7275 *hugetlb = false;
7276 spin_lock_irq(&hugetlb_lock);
04bac040 7277 if (folio_test_hugetlb(folio)) {
25182f05 7278 *hugetlb = true;
04bac040 7279 if (folio_test_hugetlb_freed(folio))
b283d983 7280 ret = 0;
04bac040
SK
7281 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7282 ret = folio_try_get(folio);
0ed950d1
NH
7283 else
7284 ret = -EBUSY;
25182f05
NH
7285 }
7286 spin_unlock_irq(&hugetlb_lock);
7287 return ret;
7288}
7289
e591ef7d
NH
7290int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7291 bool *migratable_cleared)
405ce051
NH
7292{
7293 int ret;
7294
7295 spin_lock_irq(&hugetlb_lock);
e591ef7d 7296 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
405ce051
NH
7297 spin_unlock_irq(&hugetlb_lock);
7298 return ret;
7299}
7300
31caf665
NH
7301void putback_active_hugepage(struct page *page)
7302{
db71ef79 7303 spin_lock_irq(&hugetlb_lock);
8f251a3d 7304 SetHPageMigratable(page);
31caf665 7305 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 7306 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
7307 put_page(page);
7308}
ab5ac90a 7309
345c62d1 7310void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
ab5ac90a 7311{
345c62d1 7312 struct hstate *h = folio_hstate(old_folio);
ab5ac90a 7313
345c62d1
SK
7314 hugetlb_cgroup_migrate(old_folio, new_folio);
7315 set_page_owner_migrate_reason(&new_folio->page, reason);
ab5ac90a
MH
7316
7317 /*
345c62d1 7318 * transfer temporary state of the new hugetlb folio. This is
ab5ac90a
MH
7319 * reverse to other transitions because the newpage is going to
7320 * be final while the old one will be freed so it takes over
7321 * the temporary status.
7322 *
7323 * Also note that we have to transfer the per-node surplus state
7324 * here as well otherwise the global surplus count will not match
7325 * the per-node's.
7326 */
345c62d1
SK
7327 if (folio_test_hugetlb_temporary(new_folio)) {
7328 int old_nid = folio_nid(old_folio);
7329 int new_nid = folio_nid(new_folio);
7330
345c62d1
SK
7331 folio_set_hugetlb_temporary(old_folio);
7332 folio_clear_hugetlb_temporary(new_folio);
ab5ac90a 7333
ab5ac90a 7334
5af1ab1d
ML
7335 /*
7336 * There is no need to transfer the per-node surplus state
7337 * when we do not cross the node.
7338 */
7339 if (new_nid == old_nid)
7340 return;
db71ef79 7341 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7342 if (h->surplus_huge_pages_node[old_nid]) {
7343 h->surplus_huge_pages_node[old_nid]--;
7344 h->surplus_huge_pages_node[new_nid]++;
7345 }
db71ef79 7346 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7347 }
7348}
cf11e85f 7349
b30c14cd
JH
7350static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7351 unsigned long start,
7352 unsigned long end)
6dfeaff9
PX
7353{
7354 struct hstate *h = hstate_vma(vma);
7355 unsigned long sz = huge_page_size(h);
7356 struct mm_struct *mm = vma->vm_mm;
7357 struct mmu_notifier_range range;
b30c14cd 7358 unsigned long address;
6dfeaff9
PX
7359 spinlock_t *ptl;
7360 pte_t *ptep;
7361
7362 if (!(vma->vm_flags & VM_MAYSHARE))
7363 return;
7364
6dfeaff9
PX
7365 if (start >= end)
7366 return;
7367
9c8bbfac 7368 flush_cache_range(vma, start, end);
6dfeaff9
PX
7369 /*
7370 * No need to call adjust_range_if_pmd_sharing_possible(), because
7371 * we have already done the PUD_SIZE alignment.
7372 */
7d4a8be0 7373 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6dfeaff9
PX
7374 start, end);
7375 mmu_notifier_invalidate_range_start(&range);
40549ba8 7376 hugetlb_vma_lock_write(vma);
6dfeaff9
PX
7377 i_mmap_lock_write(vma->vm_file->f_mapping);
7378 for (address = start; address < end; address += PUD_SIZE) {
9c67a207 7379 ptep = hugetlb_walk(vma, address, sz);
6dfeaff9
PX
7380 if (!ptep)
7381 continue;
7382 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7383 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7384 spin_unlock(ptl);
7385 }
7386 flush_hugetlb_tlb_range(vma, start, end);
7387 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 7388 hugetlb_vma_unlock_write(vma);
6dfeaff9
PX
7389 /*
7390 * No need to call mmu_notifier_invalidate_range(), see
ee65728e 7391 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7392 */
7393 mmu_notifier_invalidate_range_end(&range);
7394}
7395
b30c14cd
JH
7396/*
7397 * This function will unconditionally remove all the shared pmd pgtable entries
7398 * within the specific vma for a hugetlbfs memory range.
7399 */
7400void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7401{
7402 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7403 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7404}
7405
cf11e85f 7406#ifdef CONFIG_CMA
cf11e85f
RG
7407static bool cma_reserve_called __initdata;
7408
7409static int __init cmdline_parse_hugetlb_cma(char *p)
7410{
38e719ab
BW
7411 int nid, count = 0;
7412 unsigned long tmp;
7413 char *s = p;
7414
7415 while (*s) {
7416 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7417 break;
7418
7419 if (s[count] == ':') {
f9317f77 7420 if (tmp >= MAX_NUMNODES)
38e719ab 7421 break;
f9317f77 7422 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7423
7424 s += count + 1;
7425 tmp = memparse(s, &s);
7426 hugetlb_cma_size_in_node[nid] = tmp;
7427 hugetlb_cma_size += tmp;
7428
7429 /*
7430 * Skip the separator if have one, otherwise
7431 * break the parsing.
7432 */
7433 if (*s == ',')
7434 s++;
7435 else
7436 break;
7437 } else {
7438 hugetlb_cma_size = memparse(p, &p);
7439 break;
7440 }
7441 }
7442
cf11e85f
RG
7443 return 0;
7444}
7445
7446early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7447
7448void __init hugetlb_cma_reserve(int order)
7449{
7450 unsigned long size, reserved, per_node;
38e719ab 7451 bool node_specific_cma_alloc = false;
cf11e85f
RG
7452 int nid;
7453
7454 cma_reserve_called = true;
7455
38e719ab
BW
7456 if (!hugetlb_cma_size)
7457 return;
7458
7459 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7460 if (hugetlb_cma_size_in_node[nid] == 0)
7461 continue;
7462
30a51400 7463 if (!node_online(nid)) {
38e719ab
BW
7464 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7465 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7466 hugetlb_cma_size_in_node[nid] = 0;
7467 continue;
7468 }
7469
7470 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7471 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7472 nid, (PAGE_SIZE << order) / SZ_1M);
7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7474 hugetlb_cma_size_in_node[nid] = 0;
7475 } else {
7476 node_specific_cma_alloc = true;
7477 }
7478 }
7479
7480 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7481 if (!hugetlb_cma_size)
7482 return;
7483
7484 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7485 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7486 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7487 hugetlb_cma_size = 0;
cf11e85f
RG
7488 return;
7489 }
7490
38e719ab
BW
7491 if (!node_specific_cma_alloc) {
7492 /*
7493 * If 3 GB area is requested on a machine with 4 numa nodes,
7494 * let's allocate 1 GB on first three nodes and ignore the last one.
7495 */
7496 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7497 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7498 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7499 }
cf11e85f
RG
7500
7501 reserved = 0;
30a51400 7502 for_each_online_node(nid) {
cf11e85f 7503 int res;
2281f797 7504 char name[CMA_MAX_NAME];
cf11e85f 7505
38e719ab
BW
7506 if (node_specific_cma_alloc) {
7507 if (hugetlb_cma_size_in_node[nid] == 0)
7508 continue;
7509
7510 size = hugetlb_cma_size_in_node[nid];
7511 } else {
7512 size = min(per_node, hugetlb_cma_size - reserved);
7513 }
7514
cf11e85f
RG
7515 size = round_up(size, PAGE_SIZE << order);
7516
2281f797 7517 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7518 /*
7519 * Note that 'order per bit' is based on smallest size that
7520 * may be returned to CMA allocator in the case of
7521 * huge page demotion.
7522 */
7523 res = cma_declare_contiguous_nid(0, size, 0,
7524 PAGE_SIZE << HUGETLB_PAGE_ORDER,
29d0f41d 7525 0, false, name,
cf11e85f
RG
7526 &hugetlb_cma[nid], nid);
7527 if (res) {
7528 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7529 res, nid);
7530 continue;
7531 }
7532
7533 reserved += size;
7534 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7535 size / SZ_1M, nid);
7536
7537 if (reserved >= hugetlb_cma_size)
7538 break;
7539 }
a01f4390
MK
7540
7541 if (!reserved)
7542 /*
7543 * hugetlb_cma_size is used to determine if allocations from
7544 * cma are possible. Set to zero if no cma regions are set up.
7545 */
7546 hugetlb_cma_size = 0;
cf11e85f
RG
7547}
7548
263b8998 7549static void __init hugetlb_cma_check(void)
cf11e85f
RG
7550{
7551 if (!hugetlb_cma_size || cma_reserve_called)
7552 return;
7553
7554 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7555}
7556
7557#endif /* CONFIG_CMA */
This page took 3.173914 seconds and 4 git commands to generate.