]>
Commit | Line | Data |
---|---|---|
d41dee36 AW |
1 | /* |
2 | * sparse memory mappings. | |
3 | */ | |
d41dee36 AW |
4 | #include <linux/mm.h> |
5 | #include <linux/mmzone.h> | |
6 | #include <linux/bootmem.h> | |
0b0acbec | 7 | #include <linux/highmem.h> |
d41dee36 | 8 | #include <linux/module.h> |
28ae55c9 | 9 | #include <linux/spinlock.h> |
0b0acbec | 10 | #include <linux/vmalloc.h> |
0c0a4a51 | 11 | #include "internal.h" |
d41dee36 | 12 | #include <asm/dma.h> |
8f6aac41 CL |
13 | #include <asm/pgalloc.h> |
14 | #include <asm/pgtable.h> | |
d41dee36 AW |
15 | |
16 | /* | |
17 | * Permanent SPARSEMEM data: | |
18 | * | |
19 | * 1) mem_section - memory sections, mem_map's for valid memory | |
20 | */ | |
3e347261 | 21 | #ifdef CONFIG_SPARSEMEM_EXTREME |
802f192e | 22 | struct mem_section *mem_section[NR_SECTION_ROOTS] |
22fc6ecc | 23 | ____cacheline_internodealigned_in_smp; |
3e347261 BP |
24 | #else |
25 | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] | |
22fc6ecc | 26 | ____cacheline_internodealigned_in_smp; |
3e347261 BP |
27 | #endif |
28 | EXPORT_SYMBOL(mem_section); | |
29 | ||
89689ae7 CL |
30 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
31 | /* | |
32 | * If we did not store the node number in the page then we have to | |
33 | * do a lookup in the section_to_node_table in order to find which | |
34 | * node the page belongs to. | |
35 | */ | |
36 | #if MAX_NUMNODES <= 256 | |
37 | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | |
38 | #else | |
39 | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | |
40 | #endif | |
41 | ||
25ba77c1 | 42 | int page_to_nid(struct page *page) |
89689ae7 CL |
43 | { |
44 | return section_to_node_table[page_to_section(page)]; | |
45 | } | |
46 | EXPORT_SYMBOL(page_to_nid); | |
85770ffe AW |
47 | |
48 | static void set_section_nid(unsigned long section_nr, int nid) | |
49 | { | |
50 | section_to_node_table[section_nr] = nid; | |
51 | } | |
52 | #else /* !NODE_NOT_IN_PAGE_FLAGS */ | |
53 | static inline void set_section_nid(unsigned long section_nr, int nid) | |
54 | { | |
55 | } | |
89689ae7 CL |
56 | #endif |
57 | ||
3e347261 | 58 | #ifdef CONFIG_SPARSEMEM_EXTREME |
577a32f6 | 59 | static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) |
28ae55c9 DH |
60 | { |
61 | struct mem_section *section = NULL; | |
62 | unsigned long array_size = SECTIONS_PER_ROOT * | |
63 | sizeof(struct mem_section); | |
64 | ||
39d24e64 | 65 | if (slab_is_available()) |
46a66eec MK |
66 | section = kmalloc_node(array_size, GFP_KERNEL, nid); |
67 | else | |
68 | section = alloc_bootmem_node(NODE_DATA(nid), array_size); | |
28ae55c9 DH |
69 | |
70 | if (section) | |
71 | memset(section, 0, array_size); | |
72 | ||
73 | return section; | |
3e347261 | 74 | } |
802f192e | 75 | |
a3142c8e | 76 | static int __meminit sparse_index_init(unsigned long section_nr, int nid) |
802f192e | 77 | { |
34af946a | 78 | static DEFINE_SPINLOCK(index_init_lock); |
28ae55c9 DH |
79 | unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
80 | struct mem_section *section; | |
81 | int ret = 0; | |
802f192e BP |
82 | |
83 | if (mem_section[root]) | |
28ae55c9 | 84 | return -EEXIST; |
3e347261 | 85 | |
28ae55c9 | 86 | section = sparse_index_alloc(nid); |
af0cd5a7 WC |
87 | if (!section) |
88 | return -ENOMEM; | |
28ae55c9 DH |
89 | /* |
90 | * This lock keeps two different sections from | |
91 | * reallocating for the same index | |
92 | */ | |
93 | spin_lock(&index_init_lock); | |
3e347261 | 94 | |
28ae55c9 DH |
95 | if (mem_section[root]) { |
96 | ret = -EEXIST; | |
97 | goto out; | |
98 | } | |
99 | ||
100 | mem_section[root] = section; | |
101 | out: | |
102 | spin_unlock(&index_init_lock); | |
103 | return ret; | |
104 | } | |
105 | #else /* !SPARSEMEM_EXTREME */ | |
106 | static inline int sparse_index_init(unsigned long section_nr, int nid) | |
107 | { | |
108 | return 0; | |
802f192e | 109 | } |
28ae55c9 DH |
110 | #endif |
111 | ||
4ca644d9 DH |
112 | /* |
113 | * Although written for the SPARSEMEM_EXTREME case, this happens | |
cd881a6b | 114 | * to also work for the flat array case because |
4ca644d9 DH |
115 | * NR_SECTION_ROOTS==NR_MEM_SECTIONS. |
116 | */ | |
117 | int __section_nr(struct mem_section* ms) | |
118 | { | |
119 | unsigned long root_nr; | |
120 | struct mem_section* root; | |
121 | ||
12783b00 MK |
122 | for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { |
123 | root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); | |
4ca644d9 DH |
124 | if (!root) |
125 | continue; | |
126 | ||
127 | if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) | |
128 | break; | |
129 | } | |
130 | ||
131 | return (root_nr * SECTIONS_PER_ROOT) + (ms - root); | |
132 | } | |
133 | ||
30c253e6 AW |
134 | /* |
135 | * During early boot, before section_mem_map is used for an actual | |
136 | * mem_map, we use section_mem_map to store the section's NUMA | |
137 | * node. This keeps us from having to use another data structure. The | |
138 | * node information is cleared just before we store the real mem_map. | |
139 | */ | |
140 | static inline unsigned long sparse_encode_early_nid(int nid) | |
141 | { | |
142 | return (nid << SECTION_NID_SHIFT); | |
143 | } | |
144 | ||
145 | static inline int sparse_early_nid(struct mem_section *section) | |
146 | { | |
147 | return (section->section_mem_map >> SECTION_NID_SHIFT); | |
148 | } | |
149 | ||
2dbb51c4 MG |
150 | /* Validate the physical addressing limitations of the model */ |
151 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, | |
152 | unsigned long *end_pfn) | |
d41dee36 | 153 | { |
2dbb51c4 | 154 | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
d41dee36 | 155 | |
bead9a3a IM |
156 | /* |
157 | * Sanity checks - do not allow an architecture to pass | |
158 | * in larger pfns than the maximum scope of sparsemem: | |
159 | */ | |
2dbb51c4 MG |
160 | if (*start_pfn > max_sparsemem_pfn) { |
161 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | |
162 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | |
163 | *start_pfn, *end_pfn, max_sparsemem_pfn); | |
164 | WARN_ON_ONCE(1); | |
165 | *start_pfn = max_sparsemem_pfn; | |
166 | *end_pfn = max_sparsemem_pfn; | |
167 | } | |
168 | ||
169 | if (*end_pfn > max_sparsemem_pfn) { | |
170 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | |
171 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | |
172 | *start_pfn, *end_pfn, max_sparsemem_pfn); | |
173 | WARN_ON_ONCE(1); | |
174 | *end_pfn = max_sparsemem_pfn; | |
175 | } | |
176 | } | |
177 | ||
178 | /* Record a memory area against a node. */ | |
179 | void __init memory_present(int nid, unsigned long start, unsigned long end) | |
180 | { | |
181 | unsigned long pfn; | |
bead9a3a | 182 | |
d41dee36 | 183 | start &= PAGE_SECTION_MASK; |
2dbb51c4 | 184 | mminit_validate_memmodel_limits(&start, &end); |
d41dee36 AW |
185 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
186 | unsigned long section = pfn_to_section_nr(pfn); | |
802f192e BP |
187 | struct mem_section *ms; |
188 | ||
189 | sparse_index_init(section, nid); | |
85770ffe | 190 | set_section_nid(section, nid); |
802f192e BP |
191 | |
192 | ms = __nr_to_section(section); | |
193 | if (!ms->section_mem_map) | |
30c253e6 AW |
194 | ms->section_mem_map = sparse_encode_early_nid(nid) | |
195 | SECTION_MARKED_PRESENT; | |
d41dee36 AW |
196 | } |
197 | } | |
198 | ||
199 | /* | |
200 | * Only used by the i386 NUMA architecures, but relatively | |
201 | * generic code. | |
202 | */ | |
203 | unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, | |
204 | unsigned long end_pfn) | |
205 | { | |
206 | unsigned long pfn; | |
207 | unsigned long nr_pages = 0; | |
208 | ||
2dbb51c4 | 209 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); |
d41dee36 AW |
210 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
211 | if (nid != early_pfn_to_nid(pfn)) | |
212 | continue; | |
213 | ||
540557b9 | 214 | if (pfn_present(pfn)) |
d41dee36 AW |
215 | nr_pages += PAGES_PER_SECTION; |
216 | } | |
217 | ||
218 | return nr_pages * sizeof(struct page); | |
219 | } | |
220 | ||
29751f69 AW |
221 | /* |
222 | * Subtle, we encode the real pfn into the mem_map such that | |
223 | * the identity pfn - section_mem_map will return the actual | |
224 | * physical page frame number. | |
225 | */ | |
226 | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) | |
227 | { | |
228 | return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); | |
229 | } | |
230 | ||
231 | /* | |
ea01ea93 | 232 | * Decode mem_map from the coded memmap |
29751f69 | 233 | */ |
29751f69 AW |
234 | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
235 | { | |
ea01ea93 BP |
236 | /* mask off the extra low bits of information */ |
237 | coded_mem_map &= SECTION_MAP_MASK; | |
29751f69 AW |
238 | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
239 | } | |
240 | ||
a3142c8e | 241 | static int __meminit sparse_init_one_section(struct mem_section *ms, |
5c0e3066 MG |
242 | unsigned long pnum, struct page *mem_map, |
243 | unsigned long *pageblock_bitmap) | |
29751f69 | 244 | { |
540557b9 | 245 | if (!present_section(ms)) |
29751f69 AW |
246 | return -EINVAL; |
247 | ||
30c253e6 | 248 | ms->section_mem_map &= ~SECTION_MAP_MASK; |
540557b9 AW |
249 | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | |
250 | SECTION_HAS_MEM_MAP; | |
5c0e3066 | 251 | ms->pageblock_flags = pageblock_bitmap; |
29751f69 AW |
252 | |
253 | return 1; | |
254 | } | |
255 | ||
04753278 | 256 | unsigned long usemap_size(void) |
5c0e3066 MG |
257 | { |
258 | unsigned long size_bytes; | |
259 | size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; | |
260 | size_bytes = roundup(size_bytes, sizeof(unsigned long)); | |
261 | return size_bytes; | |
262 | } | |
263 | ||
264 | #ifdef CONFIG_MEMORY_HOTPLUG | |
265 | static unsigned long *__kmalloc_section_usemap(void) | |
266 | { | |
267 | return kmalloc(usemap_size(), GFP_KERNEL); | |
268 | } | |
269 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
270 | ||
48c90682 YG |
271 | #ifdef CONFIG_MEMORY_HOTREMOVE |
272 | static unsigned long * __init | |
273 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | |
274 | { | |
275 | unsigned long section_nr; | |
276 | ||
277 | /* | |
278 | * A page may contain usemaps for other sections preventing the | |
279 | * page being freed and making a section unremovable while | |
280 | * other sections referencing the usemap retmain active. Similarly, | |
281 | * a pgdat can prevent a section being removed. If section A | |
282 | * contains a pgdat and section B contains the usemap, both | |
283 | * sections become inter-dependent. This allocates usemaps | |
284 | * from the same section as the pgdat where possible to avoid | |
285 | * this problem. | |
286 | */ | |
287 | section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | |
288 | return alloc_bootmem_section(usemap_size(), section_nr); | |
289 | } | |
290 | ||
291 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | |
292 | { | |
293 | unsigned long usemap_snr, pgdat_snr; | |
294 | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; | |
295 | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; | |
296 | struct pglist_data *pgdat = NODE_DATA(nid); | |
297 | int usemap_nid; | |
298 | ||
299 | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); | |
300 | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | |
301 | if (usemap_snr == pgdat_snr) | |
302 | return; | |
303 | ||
304 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | |
305 | /* skip redundant message */ | |
306 | return; | |
307 | ||
308 | old_usemap_snr = usemap_snr; | |
309 | old_pgdat_snr = pgdat_snr; | |
310 | ||
311 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | |
312 | if (usemap_nid != nid) { | |
313 | printk(KERN_INFO | |
314 | "node %d must be removed before remove section %ld\n", | |
315 | nid, usemap_snr); | |
316 | return; | |
317 | } | |
318 | /* | |
319 | * There is a circular dependency. | |
320 | * Some platforms allow un-removable section because they will just | |
321 | * gather other removable sections for dynamic partitioning. | |
322 | * Just notify un-removable section's number here. | |
323 | */ | |
324 | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, | |
325 | pgdat_snr, nid); | |
326 | printk(KERN_CONT | |
327 | " have a circular dependency on usemap and pgdat allocations\n"); | |
328 | } | |
329 | #else | |
330 | static unsigned long * __init | |
331 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | |
332 | { | |
333 | return NULL; | |
334 | } | |
335 | ||
336 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | |
337 | { | |
338 | } | |
339 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | |
340 | ||
a322f8ab | 341 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) |
5c0e3066 | 342 | { |
51674644 | 343 | unsigned long *usemap; |
5c0e3066 MG |
344 | struct mem_section *ms = __nr_to_section(pnum); |
345 | int nid = sparse_early_nid(ms); | |
346 | ||
48c90682 | 347 | usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid)); |
5c0e3066 MG |
348 | if (usemap) |
349 | return usemap; | |
350 | ||
48c90682 YG |
351 | usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); |
352 | if (usemap) { | |
353 | check_usemap_section_nr(nid, usemap); | |
354 | return usemap; | |
355 | } | |
356 | ||
5c0e3066 MG |
357 | /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ |
358 | nid = 0; | |
359 | ||
d40cee24 | 360 | printk(KERN_WARNING "%s: allocation failed\n", __func__); |
5c0e3066 MG |
361 | return NULL; |
362 | } | |
363 | ||
8f6aac41 | 364 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
98f3cfc1 | 365 | struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) |
29751f69 AW |
366 | { |
367 | struct page *map; | |
29751f69 AW |
368 | |
369 | map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); | |
370 | if (map) | |
371 | return map; | |
372 | ||
9d99217a YG |
373 | map = alloc_bootmem_pages_node(NODE_DATA(nid), |
374 | PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION)); | |
8f6aac41 CL |
375 | return map; |
376 | } | |
377 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | |
378 | ||
9e5c6da7 | 379 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
8f6aac41 CL |
380 | { |
381 | struct page *map; | |
382 | struct mem_section *ms = __nr_to_section(pnum); | |
383 | int nid = sparse_early_nid(ms); | |
384 | ||
98f3cfc1 | 385 | map = sparse_mem_map_populate(pnum, nid); |
29751f69 AW |
386 | if (map) |
387 | return map; | |
388 | ||
8f6aac41 | 389 | printk(KERN_ERR "%s: sparsemem memory map backing failed " |
d40cee24 | 390 | "some memory will not be available.\n", __func__); |
802f192e | 391 | ms->section_mem_map = 0; |
29751f69 AW |
392 | return NULL; |
393 | } | |
394 | ||
c2b91e2e YL |
395 | void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) |
396 | { | |
397 | } | |
193faea9 SR |
398 | /* |
399 | * Allocate the accumulated non-linear sections, allocate a mem_map | |
400 | * for each and record the physical to section mapping. | |
401 | */ | |
402 | void __init sparse_init(void) | |
403 | { | |
404 | unsigned long pnum; | |
405 | struct page *map; | |
5c0e3066 | 406 | unsigned long *usemap; |
e123dd3f YL |
407 | unsigned long **usemap_map; |
408 | int size; | |
409 | ||
410 | /* | |
411 | * map is using big page (aka 2M in x86 64 bit) | |
412 | * usemap is less one page (aka 24 bytes) | |
413 | * so alloc 2M (with 2M align) and 24 bytes in turn will | |
414 | * make next 2M slip to one more 2M later. | |
415 | * then in big system, the memory will have a lot of holes... | |
416 | * here try to allocate 2M pages continously. | |
417 | * | |
418 | * powerpc need to call sparse_init_one_section right after each | |
419 | * sparse_early_mem_map_alloc, so allocate usemap_map at first. | |
420 | */ | |
421 | size = sizeof(unsigned long *) * NR_MEM_SECTIONS; | |
422 | usemap_map = alloc_bootmem(size); | |
423 | if (!usemap_map) | |
424 | panic("can not allocate usemap_map\n"); | |
193faea9 SR |
425 | |
426 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | |
540557b9 | 427 | if (!present_section_nr(pnum)) |
193faea9 | 428 | continue; |
e123dd3f YL |
429 | usemap_map[pnum] = sparse_early_usemap_alloc(pnum); |
430 | } | |
193faea9 | 431 | |
e123dd3f YL |
432 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
433 | if (!present_section_nr(pnum)) | |
193faea9 | 434 | continue; |
5c0e3066 | 435 | |
e123dd3f | 436 | usemap = usemap_map[pnum]; |
5c0e3066 MG |
437 | if (!usemap) |
438 | continue; | |
439 | ||
e123dd3f YL |
440 | map = sparse_early_mem_map_alloc(pnum); |
441 | if (!map) | |
442 | continue; | |
443 | ||
5c0e3066 MG |
444 | sparse_init_one_section(__nr_to_section(pnum), pnum, map, |
445 | usemap); | |
193faea9 | 446 | } |
e123dd3f | 447 | |
c2b91e2e YL |
448 | vmemmap_populate_print_last(); |
449 | ||
e123dd3f | 450 | free_bootmem(__pa(usemap_map), size); |
193faea9 SR |
451 | } |
452 | ||
453 | #ifdef CONFIG_MEMORY_HOTPLUG | |
98f3cfc1 YG |
454 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
455 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, | |
456 | unsigned long nr_pages) | |
457 | { | |
458 | /* This will make the necessary allocations eventually. */ | |
459 | return sparse_mem_map_populate(pnum, nid); | |
460 | } | |
461 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) | |
462 | { | |
463 | return; /* XXX: Not implemented yet */ | |
464 | } | |
0c0a4a51 YG |
465 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) |
466 | { | |
467 | } | |
98f3cfc1 | 468 | #else |
0b0acbec DH |
469 | static struct page *__kmalloc_section_memmap(unsigned long nr_pages) |
470 | { | |
471 | struct page *page, *ret; | |
472 | unsigned long memmap_size = sizeof(struct page) * nr_pages; | |
473 | ||
f2d0aa5b | 474 | page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); |
0b0acbec DH |
475 | if (page) |
476 | goto got_map_page; | |
477 | ||
478 | ret = vmalloc(memmap_size); | |
479 | if (ret) | |
480 | goto got_map_ptr; | |
481 | ||
482 | return NULL; | |
483 | got_map_page: | |
484 | ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); | |
485 | got_map_ptr: | |
486 | memset(ret, 0, memmap_size); | |
487 | ||
488 | return ret; | |
489 | } | |
490 | ||
98f3cfc1 YG |
491 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
492 | unsigned long nr_pages) | |
493 | { | |
494 | return __kmalloc_section_memmap(nr_pages); | |
495 | } | |
496 | ||
0b0acbec DH |
497 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
498 | { | |
9e2779fa | 499 | if (is_vmalloc_addr(memmap)) |
0b0acbec DH |
500 | vfree(memmap); |
501 | else | |
502 | free_pages((unsigned long)memmap, | |
503 | get_order(sizeof(struct page) * nr_pages)); | |
504 | } | |
0c0a4a51 YG |
505 | |
506 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) | |
507 | { | |
508 | unsigned long maps_section_nr, removing_section_nr, i; | |
509 | int magic; | |
510 | ||
511 | for (i = 0; i < nr_pages; i++, page++) { | |
512 | magic = atomic_read(&page->_mapcount); | |
513 | ||
514 | BUG_ON(magic == NODE_INFO); | |
515 | ||
516 | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); | |
517 | removing_section_nr = page->private; | |
518 | ||
519 | /* | |
520 | * When this function is called, the removing section is | |
521 | * logical offlined state. This means all pages are isolated | |
522 | * from page allocator. If removing section's memmap is placed | |
523 | * on the same section, it must not be freed. | |
524 | * If it is freed, page allocator may allocate it which will | |
525 | * be removed physically soon. | |
526 | */ | |
527 | if (maps_section_nr != removing_section_nr) | |
528 | put_page_bootmem(page); | |
529 | } | |
530 | } | |
98f3cfc1 | 531 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
0b0acbec | 532 | |
ea01ea93 BP |
533 | static void free_section_usemap(struct page *memmap, unsigned long *usemap) |
534 | { | |
0c0a4a51 YG |
535 | struct page *usemap_page; |
536 | unsigned long nr_pages; | |
537 | ||
ea01ea93 BP |
538 | if (!usemap) |
539 | return; | |
540 | ||
0c0a4a51 | 541 | usemap_page = virt_to_page(usemap); |
ea01ea93 BP |
542 | /* |
543 | * Check to see if allocation came from hot-plug-add | |
544 | */ | |
0c0a4a51 | 545 | if (PageSlab(usemap_page)) { |
ea01ea93 BP |
546 | kfree(usemap); |
547 | if (memmap) | |
548 | __kfree_section_memmap(memmap, PAGES_PER_SECTION); | |
549 | return; | |
550 | } | |
551 | ||
552 | /* | |
0c0a4a51 YG |
553 | * The usemap came from bootmem. This is packed with other usemaps |
554 | * on the section which has pgdat at boot time. Just keep it as is now. | |
ea01ea93 | 555 | */ |
0c0a4a51 YG |
556 | |
557 | if (memmap) { | |
558 | struct page *memmap_page; | |
559 | memmap_page = virt_to_page(memmap); | |
560 | ||
561 | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) | |
562 | >> PAGE_SHIFT; | |
563 | ||
564 | free_map_bootmem(memmap_page, nr_pages); | |
565 | } | |
ea01ea93 BP |
566 | } |
567 | ||
29751f69 AW |
568 | /* |
569 | * returns the number of sections whose mem_maps were properly | |
570 | * set. If this is <=0, then that means that the passed-in | |
571 | * map was not consumed and must be freed. | |
572 | */ | |
31168481 | 573 | int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, |
0b0acbec | 574 | int nr_pages) |
29751f69 | 575 | { |
0b0acbec DH |
576 | unsigned long section_nr = pfn_to_section_nr(start_pfn); |
577 | struct pglist_data *pgdat = zone->zone_pgdat; | |
578 | struct mem_section *ms; | |
579 | struct page *memmap; | |
5c0e3066 | 580 | unsigned long *usemap; |
0b0acbec DH |
581 | unsigned long flags; |
582 | int ret; | |
29751f69 | 583 | |
0b0acbec DH |
584 | /* |
585 | * no locking for this, because it does its own | |
586 | * plus, it does a kmalloc | |
587 | */ | |
bbd06825 WC |
588 | ret = sparse_index_init(section_nr, pgdat->node_id); |
589 | if (ret < 0 && ret != -EEXIST) | |
590 | return ret; | |
98f3cfc1 | 591 | memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); |
bbd06825 WC |
592 | if (!memmap) |
593 | return -ENOMEM; | |
5c0e3066 | 594 | usemap = __kmalloc_section_usemap(); |
bbd06825 WC |
595 | if (!usemap) { |
596 | __kfree_section_memmap(memmap, nr_pages); | |
597 | return -ENOMEM; | |
598 | } | |
0b0acbec DH |
599 | |
600 | pgdat_resize_lock(pgdat, &flags); | |
29751f69 | 601 | |
0b0acbec DH |
602 | ms = __pfn_to_section(start_pfn); |
603 | if (ms->section_mem_map & SECTION_MARKED_PRESENT) { | |
604 | ret = -EEXIST; | |
605 | goto out; | |
606 | } | |
5c0e3066 | 607 | |
29751f69 AW |
608 | ms->section_mem_map |= SECTION_MARKED_PRESENT; |
609 | ||
5c0e3066 | 610 | ret = sparse_init_one_section(ms, section_nr, memmap, usemap); |
0b0acbec | 611 | |
0b0acbec DH |
612 | out: |
613 | pgdat_resize_unlock(pgdat, &flags); | |
bbd06825 WC |
614 | if (ret <= 0) { |
615 | kfree(usemap); | |
46a66eec | 616 | __kfree_section_memmap(memmap, nr_pages); |
bbd06825 | 617 | } |
0b0acbec | 618 | return ret; |
29751f69 | 619 | } |
ea01ea93 BP |
620 | |
621 | void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) | |
622 | { | |
623 | struct page *memmap = NULL; | |
624 | unsigned long *usemap = NULL; | |
625 | ||
626 | if (ms->section_mem_map) { | |
627 | usemap = ms->pageblock_flags; | |
628 | memmap = sparse_decode_mem_map(ms->section_mem_map, | |
629 | __section_nr(ms)); | |
630 | ms->section_mem_map = 0; | |
631 | ms->pageblock_flags = NULL; | |
632 | } | |
633 | ||
634 | free_section_usemap(memmap, usemap); | |
635 | } | |
a3142c8e | 636 | #endif |