]>
Commit | Line | Data |
---|---|---|
0a8165d7 | 1 | /* |
351df4b2 JK |
2 | * fs/f2fs/segment.c |
3 | * | |
4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. | |
5 | * http://www.samsung.com/ | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 as | |
9 | * published by the Free Software Foundation. | |
10 | */ | |
11 | #include <linux/fs.h> | |
12 | #include <linux/f2fs_fs.h> | |
13 | #include <linux/bio.h> | |
14 | #include <linux/blkdev.h> | |
690e4a3e | 15 | #include <linux/prefetch.h> |
351df4b2 JK |
16 | #include <linux/vmalloc.h> |
17 | ||
18 | #include "f2fs.h" | |
19 | #include "segment.h" | |
20 | #include "node.h" | |
21 | ||
0a8165d7 | 22 | /* |
351df4b2 JK |
23 | * This function balances dirty node and dentry pages. |
24 | * In addition, it controls garbage collection. | |
25 | */ | |
26 | void f2fs_balance_fs(struct f2fs_sb_info *sbi) | |
27 | { | |
351df4b2 | 28 | /* |
029cd28c JK |
29 | * We should do GC or end up with checkpoint, if there are so many dirty |
30 | * dir/node pages without enough free segments. | |
351df4b2 | 31 | */ |
43727527 | 32 | if (has_not_enough_free_secs(sbi, 0)) { |
351df4b2 | 33 | mutex_lock(&sbi->gc_mutex); |
408e9375 | 34 | f2fs_gc(sbi); |
351df4b2 JK |
35 | } |
36 | } | |
37 | ||
38 | static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | |
39 | enum dirty_type dirty_type) | |
40 | { | |
41 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
42 | ||
43 | /* need not be added */ | |
44 | if (IS_CURSEG(sbi, segno)) | |
45 | return; | |
46 | ||
47 | if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) | |
48 | dirty_i->nr_dirty[dirty_type]++; | |
49 | ||
50 | if (dirty_type == DIRTY) { | |
51 | struct seg_entry *sentry = get_seg_entry(sbi, segno); | |
52 | dirty_type = sentry->type; | |
53 | if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) | |
54 | dirty_i->nr_dirty[dirty_type]++; | |
55 | } | |
56 | } | |
57 | ||
58 | static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | |
59 | enum dirty_type dirty_type) | |
60 | { | |
61 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
62 | ||
63 | if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) | |
64 | dirty_i->nr_dirty[dirty_type]--; | |
65 | ||
66 | if (dirty_type == DIRTY) { | |
67 | struct seg_entry *sentry = get_seg_entry(sbi, segno); | |
68 | dirty_type = sentry->type; | |
69 | if (test_and_clear_bit(segno, | |
70 | dirty_i->dirty_segmap[dirty_type])) | |
71 | dirty_i->nr_dirty[dirty_type]--; | |
72 | clear_bit(segno, dirty_i->victim_segmap[FG_GC]); | |
73 | clear_bit(segno, dirty_i->victim_segmap[BG_GC]); | |
74 | } | |
75 | } | |
76 | ||
0a8165d7 | 77 | /* |
351df4b2 JK |
78 | * Should not occur error such as -ENOMEM. |
79 | * Adding dirty entry into seglist is not critical operation. | |
80 | * If a given segment is one of current working segments, it won't be added. | |
81 | */ | |
82 | void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) | |
83 | { | |
84 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
85 | unsigned short valid_blocks; | |
86 | ||
87 | if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) | |
88 | return; | |
89 | ||
90 | mutex_lock(&dirty_i->seglist_lock); | |
91 | ||
92 | valid_blocks = get_valid_blocks(sbi, segno, 0); | |
93 | ||
94 | if (valid_blocks == 0) { | |
95 | __locate_dirty_segment(sbi, segno, PRE); | |
96 | __remove_dirty_segment(sbi, segno, DIRTY); | |
97 | } else if (valid_blocks < sbi->blocks_per_seg) { | |
98 | __locate_dirty_segment(sbi, segno, DIRTY); | |
99 | } else { | |
100 | /* Recovery routine with SSR needs this */ | |
101 | __remove_dirty_segment(sbi, segno, DIRTY); | |
102 | } | |
103 | ||
104 | mutex_unlock(&dirty_i->seglist_lock); | |
105 | return; | |
106 | } | |
107 | ||
0a8165d7 | 108 | /* |
351df4b2 JK |
109 | * Should call clear_prefree_segments after checkpoint is done. |
110 | */ | |
111 | static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) | |
112 | { | |
113 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
114 | unsigned int segno, offset = 0; | |
115 | unsigned int total_segs = TOTAL_SEGS(sbi); | |
116 | ||
117 | mutex_lock(&dirty_i->seglist_lock); | |
118 | while (1) { | |
119 | segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, | |
120 | offset); | |
121 | if (segno >= total_segs) | |
122 | break; | |
123 | __set_test_and_free(sbi, segno); | |
124 | offset = segno + 1; | |
125 | } | |
126 | mutex_unlock(&dirty_i->seglist_lock); | |
127 | } | |
128 | ||
129 | void clear_prefree_segments(struct f2fs_sb_info *sbi) | |
130 | { | |
131 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
132 | unsigned int segno, offset = 0; | |
133 | unsigned int total_segs = TOTAL_SEGS(sbi); | |
134 | ||
135 | mutex_lock(&dirty_i->seglist_lock); | |
136 | while (1) { | |
137 | segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, | |
138 | offset); | |
139 | if (segno >= total_segs) | |
140 | break; | |
141 | ||
142 | offset = segno + 1; | |
143 | if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE])) | |
144 | dirty_i->nr_dirty[PRE]--; | |
145 | ||
146 | /* Let's use trim */ | |
147 | if (test_opt(sbi, DISCARD)) | |
148 | blkdev_issue_discard(sbi->sb->s_bdev, | |
149 | START_BLOCK(sbi, segno) << | |
150 | sbi->log_sectors_per_block, | |
151 | 1 << (sbi->log_sectors_per_block + | |
152 | sbi->log_blocks_per_seg), | |
153 | GFP_NOFS, 0); | |
154 | } | |
155 | mutex_unlock(&dirty_i->seglist_lock); | |
156 | } | |
157 | ||
158 | static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) | |
159 | { | |
160 | struct sit_info *sit_i = SIT_I(sbi); | |
161 | if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) | |
162 | sit_i->dirty_sentries++; | |
163 | } | |
164 | ||
165 | static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, | |
166 | unsigned int segno, int modified) | |
167 | { | |
168 | struct seg_entry *se = get_seg_entry(sbi, segno); | |
169 | se->type = type; | |
170 | if (modified) | |
171 | __mark_sit_entry_dirty(sbi, segno); | |
172 | } | |
173 | ||
174 | static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) | |
175 | { | |
176 | struct seg_entry *se; | |
177 | unsigned int segno, offset; | |
178 | long int new_vblocks; | |
179 | ||
180 | segno = GET_SEGNO(sbi, blkaddr); | |
181 | ||
182 | se = get_seg_entry(sbi, segno); | |
183 | new_vblocks = se->valid_blocks + del; | |
184 | offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); | |
185 | ||
186 | BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) || | |
187 | (new_vblocks > sbi->blocks_per_seg))); | |
188 | ||
189 | se->valid_blocks = new_vblocks; | |
190 | se->mtime = get_mtime(sbi); | |
191 | SIT_I(sbi)->max_mtime = se->mtime; | |
192 | ||
193 | /* Update valid block bitmap */ | |
194 | if (del > 0) { | |
195 | if (f2fs_set_bit(offset, se->cur_valid_map)) | |
196 | BUG(); | |
197 | } else { | |
198 | if (!f2fs_clear_bit(offset, se->cur_valid_map)) | |
199 | BUG(); | |
200 | } | |
201 | if (!f2fs_test_bit(offset, se->ckpt_valid_map)) | |
202 | se->ckpt_valid_blocks += del; | |
203 | ||
204 | __mark_sit_entry_dirty(sbi, segno); | |
205 | ||
206 | /* update total number of valid blocks to be written in ckpt area */ | |
207 | SIT_I(sbi)->written_valid_blocks += del; | |
208 | ||
209 | if (sbi->segs_per_sec > 1) | |
210 | get_sec_entry(sbi, segno)->valid_blocks += del; | |
211 | } | |
212 | ||
213 | static void refresh_sit_entry(struct f2fs_sb_info *sbi, | |
214 | block_t old_blkaddr, block_t new_blkaddr) | |
215 | { | |
216 | update_sit_entry(sbi, new_blkaddr, 1); | |
217 | if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) | |
218 | update_sit_entry(sbi, old_blkaddr, -1); | |
219 | } | |
220 | ||
221 | void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) | |
222 | { | |
223 | unsigned int segno = GET_SEGNO(sbi, addr); | |
224 | struct sit_info *sit_i = SIT_I(sbi); | |
225 | ||
226 | BUG_ON(addr == NULL_ADDR); | |
227 | if (addr == NEW_ADDR) | |
228 | return; | |
229 | ||
230 | /* add it into sit main buffer */ | |
231 | mutex_lock(&sit_i->sentry_lock); | |
232 | ||
233 | update_sit_entry(sbi, addr, -1); | |
234 | ||
235 | /* add it into dirty seglist */ | |
236 | locate_dirty_segment(sbi, segno); | |
237 | ||
238 | mutex_unlock(&sit_i->sentry_lock); | |
239 | } | |
240 | ||
0a8165d7 | 241 | /* |
351df4b2 JK |
242 | * This function should be resided under the curseg_mutex lock |
243 | */ | |
244 | static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, | |
245 | struct f2fs_summary *sum, unsigned short offset) | |
246 | { | |
247 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
248 | void *addr = curseg->sum_blk; | |
249 | addr += offset * sizeof(struct f2fs_summary); | |
250 | memcpy(addr, sum, sizeof(struct f2fs_summary)); | |
251 | return; | |
252 | } | |
253 | ||
0a8165d7 | 254 | /* |
351df4b2 JK |
255 | * Calculate the number of current summary pages for writing |
256 | */ | |
257 | int npages_for_summary_flush(struct f2fs_sb_info *sbi) | |
258 | { | |
259 | int total_size_bytes = 0; | |
260 | int valid_sum_count = 0; | |
261 | int i, sum_space; | |
262 | ||
263 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | |
264 | if (sbi->ckpt->alloc_type[i] == SSR) | |
265 | valid_sum_count += sbi->blocks_per_seg; | |
266 | else | |
267 | valid_sum_count += curseg_blkoff(sbi, i); | |
268 | } | |
269 | ||
270 | total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1) | |
271 | + sizeof(struct nat_journal) + 2 | |
272 | + sizeof(struct sit_journal) + 2; | |
273 | sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE; | |
274 | if (total_size_bytes < sum_space) | |
275 | return 1; | |
276 | else if (total_size_bytes < 2 * sum_space) | |
277 | return 2; | |
278 | return 3; | |
279 | } | |
280 | ||
0a8165d7 | 281 | /* |
351df4b2 JK |
282 | * Caller should put this summary page |
283 | */ | |
284 | struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) | |
285 | { | |
286 | return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); | |
287 | } | |
288 | ||
289 | static void write_sum_page(struct f2fs_sb_info *sbi, | |
290 | struct f2fs_summary_block *sum_blk, block_t blk_addr) | |
291 | { | |
292 | struct page *page = grab_meta_page(sbi, blk_addr); | |
293 | void *kaddr = page_address(page); | |
294 | memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); | |
295 | set_page_dirty(page); | |
296 | f2fs_put_page(page, 1); | |
297 | } | |
298 | ||
299 | static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, | |
300 | int ofs_unit, int type) | |
301 | { | |
302 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
303 | unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE]; | |
304 | unsigned int segno, next_segno, i; | |
305 | int ofs = 0; | |
306 | ||
307 | /* | |
308 | * If there is not enough reserved sections, | |
309 | * we should not reuse prefree segments. | |
310 | */ | |
43727527 | 311 | if (has_not_enough_free_secs(sbi, 0)) |
351df4b2 JK |
312 | return NULL_SEGNO; |
313 | ||
314 | /* | |
315 | * NODE page should not reuse prefree segment, | |
316 | * since those information is used for SPOR. | |
317 | */ | |
318 | if (IS_NODESEG(type)) | |
319 | return NULL_SEGNO; | |
320 | next: | |
321 | segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++); | |
322 | ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit; | |
323 | if (segno < TOTAL_SEGS(sbi)) { | |
324 | /* skip intermediate segments in a section */ | |
325 | if (segno % ofs_unit) | |
326 | goto next; | |
327 | ||
328 | /* skip if whole section is not prefree */ | |
329 | next_segno = find_next_zero_bit(prefree_segmap, | |
330 | TOTAL_SEGS(sbi), segno + 1); | |
331 | if (next_segno - segno < ofs_unit) | |
332 | goto next; | |
333 | ||
334 | /* skip if whole section was not free at the last checkpoint */ | |
335 | for (i = 0; i < ofs_unit; i++) | |
336 | if (get_seg_entry(sbi, segno)->ckpt_valid_blocks) | |
337 | goto next; | |
338 | return segno; | |
339 | } | |
340 | return NULL_SEGNO; | |
341 | } | |
342 | ||
0a8165d7 | 343 | /* |
351df4b2 JK |
344 | * Find a new segment from the free segments bitmap to right order |
345 | * This function should be returned with success, otherwise BUG | |
346 | */ | |
347 | static void get_new_segment(struct f2fs_sb_info *sbi, | |
348 | unsigned int *newseg, bool new_sec, int dir) | |
349 | { | |
350 | struct free_segmap_info *free_i = FREE_I(sbi); | |
351 | unsigned int total_secs = sbi->total_sections; | |
352 | unsigned int segno, secno, zoneno; | |
353 | unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone; | |
354 | unsigned int hint = *newseg / sbi->segs_per_sec; | |
355 | unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); | |
356 | unsigned int left_start = hint; | |
357 | bool init = true; | |
358 | int go_left = 0; | |
359 | int i; | |
360 | ||
361 | write_lock(&free_i->segmap_lock); | |
362 | ||
363 | if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { | |
364 | segno = find_next_zero_bit(free_i->free_segmap, | |
365 | TOTAL_SEGS(sbi), *newseg + 1); | |
366 | if (segno < TOTAL_SEGS(sbi)) | |
367 | goto got_it; | |
368 | } | |
369 | find_other_zone: | |
370 | secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint); | |
371 | if (secno >= total_secs) { | |
372 | if (dir == ALLOC_RIGHT) { | |
373 | secno = find_next_zero_bit(free_i->free_secmap, | |
374 | total_secs, 0); | |
375 | BUG_ON(secno >= total_secs); | |
376 | } else { | |
377 | go_left = 1; | |
378 | left_start = hint - 1; | |
379 | } | |
380 | } | |
381 | if (go_left == 0) | |
382 | goto skip_left; | |
383 | ||
384 | while (test_bit(left_start, free_i->free_secmap)) { | |
385 | if (left_start > 0) { | |
386 | left_start--; | |
387 | continue; | |
388 | } | |
389 | left_start = find_next_zero_bit(free_i->free_secmap, | |
390 | total_secs, 0); | |
391 | BUG_ON(left_start >= total_secs); | |
392 | break; | |
393 | } | |
394 | secno = left_start; | |
395 | skip_left: | |
396 | hint = secno; | |
397 | segno = secno * sbi->segs_per_sec; | |
398 | zoneno = secno / sbi->secs_per_zone; | |
399 | ||
400 | /* give up on finding another zone */ | |
401 | if (!init) | |
402 | goto got_it; | |
403 | if (sbi->secs_per_zone == 1) | |
404 | goto got_it; | |
405 | if (zoneno == old_zoneno) | |
406 | goto got_it; | |
407 | if (dir == ALLOC_LEFT) { | |
408 | if (!go_left && zoneno + 1 >= total_zones) | |
409 | goto got_it; | |
410 | if (go_left && zoneno == 0) | |
411 | goto got_it; | |
412 | } | |
413 | for (i = 0; i < NR_CURSEG_TYPE; i++) | |
414 | if (CURSEG_I(sbi, i)->zone == zoneno) | |
415 | break; | |
416 | ||
417 | if (i < NR_CURSEG_TYPE) { | |
418 | /* zone is in user, try another */ | |
419 | if (go_left) | |
420 | hint = zoneno * sbi->secs_per_zone - 1; | |
421 | else if (zoneno + 1 >= total_zones) | |
422 | hint = 0; | |
423 | else | |
424 | hint = (zoneno + 1) * sbi->secs_per_zone; | |
425 | init = false; | |
426 | goto find_other_zone; | |
427 | } | |
428 | got_it: | |
429 | /* set it as dirty segment in free segmap */ | |
430 | BUG_ON(test_bit(segno, free_i->free_segmap)); | |
431 | __set_inuse(sbi, segno); | |
432 | *newseg = segno; | |
433 | write_unlock(&free_i->segmap_lock); | |
434 | } | |
435 | ||
436 | static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) | |
437 | { | |
438 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
439 | struct summary_footer *sum_footer; | |
440 | ||
441 | curseg->segno = curseg->next_segno; | |
442 | curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); | |
443 | curseg->next_blkoff = 0; | |
444 | curseg->next_segno = NULL_SEGNO; | |
445 | ||
446 | sum_footer = &(curseg->sum_blk->footer); | |
447 | memset(sum_footer, 0, sizeof(struct summary_footer)); | |
448 | if (IS_DATASEG(type)) | |
449 | SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); | |
450 | if (IS_NODESEG(type)) | |
451 | SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); | |
452 | __set_sit_entry_type(sbi, type, curseg->segno, modified); | |
453 | } | |
454 | ||
0a8165d7 | 455 | /* |
351df4b2 JK |
456 | * Allocate a current working segment. |
457 | * This function always allocates a free segment in LFS manner. | |
458 | */ | |
459 | static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) | |
460 | { | |
461 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
462 | unsigned int segno = curseg->segno; | |
463 | int dir = ALLOC_LEFT; | |
464 | ||
465 | write_sum_page(sbi, curseg->sum_blk, | |
466 | GET_SUM_BLOCK(sbi, curseg->segno)); | |
467 | if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) | |
468 | dir = ALLOC_RIGHT; | |
469 | ||
470 | if (test_opt(sbi, NOHEAP)) | |
471 | dir = ALLOC_RIGHT; | |
472 | ||
473 | get_new_segment(sbi, &segno, new_sec, dir); | |
474 | curseg->next_segno = segno; | |
475 | reset_curseg(sbi, type, 1); | |
476 | curseg->alloc_type = LFS; | |
477 | } | |
478 | ||
479 | static void __next_free_blkoff(struct f2fs_sb_info *sbi, | |
480 | struct curseg_info *seg, block_t start) | |
481 | { | |
482 | struct seg_entry *se = get_seg_entry(sbi, seg->segno); | |
483 | block_t ofs; | |
484 | for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) { | |
485 | if (!f2fs_test_bit(ofs, se->ckpt_valid_map) | |
486 | && !f2fs_test_bit(ofs, se->cur_valid_map)) | |
487 | break; | |
488 | } | |
489 | seg->next_blkoff = ofs; | |
490 | } | |
491 | ||
0a8165d7 | 492 | /* |
351df4b2 JK |
493 | * If a segment is written by LFS manner, next block offset is just obtained |
494 | * by increasing the current block offset. However, if a segment is written by | |
495 | * SSR manner, next block offset obtained by calling __next_free_blkoff | |
496 | */ | |
497 | static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, | |
498 | struct curseg_info *seg) | |
499 | { | |
500 | if (seg->alloc_type == SSR) | |
501 | __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); | |
502 | else | |
503 | seg->next_blkoff++; | |
504 | } | |
505 | ||
0a8165d7 | 506 | /* |
351df4b2 JK |
507 | * This function always allocates a used segment (from dirty seglist) by SSR |
508 | * manner, so it should recover the existing segment information of valid blocks | |
509 | */ | |
510 | static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) | |
511 | { | |
512 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
513 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
514 | unsigned int new_segno = curseg->next_segno; | |
515 | struct f2fs_summary_block *sum_node; | |
516 | struct page *sum_page; | |
517 | ||
518 | write_sum_page(sbi, curseg->sum_blk, | |
519 | GET_SUM_BLOCK(sbi, curseg->segno)); | |
520 | __set_test_and_inuse(sbi, new_segno); | |
521 | ||
522 | mutex_lock(&dirty_i->seglist_lock); | |
523 | __remove_dirty_segment(sbi, new_segno, PRE); | |
524 | __remove_dirty_segment(sbi, new_segno, DIRTY); | |
525 | mutex_unlock(&dirty_i->seglist_lock); | |
526 | ||
527 | reset_curseg(sbi, type, 1); | |
528 | curseg->alloc_type = SSR; | |
529 | __next_free_blkoff(sbi, curseg, 0); | |
530 | ||
531 | if (reuse) { | |
532 | sum_page = get_sum_page(sbi, new_segno); | |
533 | sum_node = (struct f2fs_summary_block *)page_address(sum_page); | |
534 | memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); | |
535 | f2fs_put_page(sum_page, 1); | |
536 | } | |
537 | } | |
538 | ||
43727527 JK |
539 | static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) |
540 | { | |
541 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
542 | const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; | |
543 | ||
544 | if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) | |
545 | return v_ops->get_victim(sbi, | |
546 | &(curseg)->next_segno, BG_GC, type, SSR); | |
547 | ||
548 | /* For data segments, let's do SSR more intensively */ | |
549 | for (; type >= CURSEG_HOT_DATA; type--) | |
550 | if (v_ops->get_victim(sbi, &(curseg)->next_segno, | |
551 | BG_GC, type, SSR)) | |
552 | return 1; | |
553 | return 0; | |
554 | } | |
555 | ||
351df4b2 JK |
556 | /* |
557 | * flush out current segment and replace it with new segment | |
558 | * This function should be returned with success, otherwise BUG | |
559 | */ | |
560 | static void allocate_segment_by_default(struct f2fs_sb_info *sbi, | |
561 | int type, bool force) | |
562 | { | |
563 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
564 | unsigned int ofs_unit; | |
565 | ||
566 | if (force) { | |
567 | new_curseg(sbi, type, true); | |
568 | goto out; | |
569 | } | |
570 | ||
571 | ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec; | |
572 | curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type); | |
573 | ||
574 | if (curseg->next_segno != NULL_SEGNO) | |
575 | change_curseg(sbi, type, false); | |
576 | else if (type == CURSEG_WARM_NODE) | |
577 | new_curseg(sbi, type, false); | |
578 | else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) | |
579 | change_curseg(sbi, type, true); | |
580 | else | |
581 | new_curseg(sbi, type, false); | |
582 | out: | |
583 | sbi->segment_count[curseg->alloc_type]++; | |
584 | } | |
585 | ||
586 | void allocate_new_segments(struct f2fs_sb_info *sbi) | |
587 | { | |
588 | struct curseg_info *curseg; | |
589 | unsigned int old_curseg; | |
590 | int i; | |
591 | ||
592 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | |
593 | curseg = CURSEG_I(sbi, i); | |
594 | old_curseg = curseg->segno; | |
595 | SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); | |
596 | locate_dirty_segment(sbi, old_curseg); | |
597 | } | |
598 | } | |
599 | ||
600 | static const struct segment_allocation default_salloc_ops = { | |
601 | .allocate_segment = allocate_segment_by_default, | |
602 | }; | |
603 | ||
604 | static void f2fs_end_io_write(struct bio *bio, int err) | |
605 | { | |
606 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
607 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | |
608 | struct bio_private *p = bio->bi_private; | |
609 | ||
610 | do { | |
611 | struct page *page = bvec->bv_page; | |
612 | ||
613 | if (--bvec >= bio->bi_io_vec) | |
614 | prefetchw(&bvec->bv_page->flags); | |
615 | if (!uptodate) { | |
616 | SetPageError(page); | |
617 | if (page->mapping) | |
618 | set_bit(AS_EIO, &page->mapping->flags); | |
25ca923b | 619 | set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG); |
577e3495 | 620 | p->sbi->sb->s_flags |= MS_RDONLY; |
351df4b2 JK |
621 | } |
622 | end_page_writeback(page); | |
623 | dec_page_count(p->sbi, F2FS_WRITEBACK); | |
624 | } while (bvec >= bio->bi_io_vec); | |
625 | ||
626 | if (p->is_sync) | |
627 | complete(p->wait); | |
628 | kfree(p); | |
629 | bio_put(bio); | |
630 | } | |
631 | ||
3cd8a239 | 632 | struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages) |
351df4b2 JK |
633 | { |
634 | struct bio *bio; | |
3cd8a239 | 635 | struct bio_private *priv; |
351df4b2 | 636 | retry: |
3cd8a239 JK |
637 | priv = kmalloc(sizeof(struct bio_private), GFP_NOFS); |
638 | if (!priv) { | |
351df4b2 | 639 | cond_resched(); |
c212991a | 640 | goto retry; |
351df4b2 | 641 | } |
3cd8a239 JK |
642 | |
643 | /* No failure on bio allocation */ | |
644 | bio = bio_alloc(GFP_NOIO, npages); | |
645 | bio->bi_bdev = bdev; | |
646 | bio->bi_private = priv; | |
351df4b2 JK |
647 | return bio; |
648 | } | |
649 | ||
650 | static void do_submit_bio(struct f2fs_sb_info *sbi, | |
651 | enum page_type type, bool sync) | |
652 | { | |
653 | int rw = sync ? WRITE_SYNC : WRITE; | |
654 | enum page_type btype = type > META ? META : type; | |
655 | ||
656 | if (type >= META_FLUSH) | |
657 | rw = WRITE_FLUSH_FUA; | |
658 | ||
659 | if (sbi->bio[btype]) { | |
660 | struct bio_private *p = sbi->bio[btype]->bi_private; | |
661 | p->sbi = sbi; | |
662 | sbi->bio[btype]->bi_end_io = f2fs_end_io_write; | |
663 | if (type == META_FLUSH) { | |
664 | DECLARE_COMPLETION_ONSTACK(wait); | |
665 | p->is_sync = true; | |
666 | p->wait = &wait; | |
667 | submit_bio(rw, sbi->bio[btype]); | |
668 | wait_for_completion(&wait); | |
669 | } else { | |
670 | p->is_sync = false; | |
671 | submit_bio(rw, sbi->bio[btype]); | |
672 | } | |
673 | sbi->bio[btype] = NULL; | |
674 | } | |
675 | } | |
676 | ||
677 | void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync) | |
678 | { | |
679 | down_write(&sbi->bio_sem); | |
680 | do_submit_bio(sbi, type, sync); | |
681 | up_write(&sbi->bio_sem); | |
682 | } | |
683 | ||
684 | static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page, | |
685 | block_t blk_addr, enum page_type type) | |
686 | { | |
687 | struct block_device *bdev = sbi->sb->s_bdev; | |
688 | ||
689 | verify_block_addr(sbi, blk_addr); | |
690 | ||
691 | down_write(&sbi->bio_sem); | |
692 | ||
693 | inc_page_count(sbi, F2FS_WRITEBACK); | |
694 | ||
695 | if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1) | |
696 | do_submit_bio(sbi, type, false); | |
697 | alloc_new: | |
3cd8a239 JK |
698 | if (sbi->bio[type] == NULL) { |
699 | sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev)); | |
700 | sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); | |
701 | /* | |
702 | * The end_io will be assigned at the sumbission phase. | |
703 | * Until then, let bio_add_page() merge consecutive IOs as much | |
704 | * as possible. | |
705 | */ | |
706 | } | |
351df4b2 JK |
707 | |
708 | if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) < | |
709 | PAGE_CACHE_SIZE) { | |
710 | do_submit_bio(sbi, type, false); | |
711 | goto alloc_new; | |
712 | } | |
713 | ||
714 | sbi->last_block_in_bio[type] = blk_addr; | |
715 | ||
716 | up_write(&sbi->bio_sem); | |
717 | } | |
718 | ||
719 | static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) | |
720 | { | |
721 | struct curseg_info *curseg = CURSEG_I(sbi, type); | |
722 | if (curseg->next_blkoff < sbi->blocks_per_seg) | |
723 | return true; | |
724 | return false; | |
725 | } | |
726 | ||
727 | static int __get_segment_type_2(struct page *page, enum page_type p_type) | |
728 | { | |
729 | if (p_type == DATA) | |
730 | return CURSEG_HOT_DATA; | |
731 | else | |
732 | return CURSEG_HOT_NODE; | |
733 | } | |
734 | ||
735 | static int __get_segment_type_4(struct page *page, enum page_type p_type) | |
736 | { | |
737 | if (p_type == DATA) { | |
738 | struct inode *inode = page->mapping->host; | |
739 | ||
740 | if (S_ISDIR(inode->i_mode)) | |
741 | return CURSEG_HOT_DATA; | |
742 | else | |
743 | return CURSEG_COLD_DATA; | |
744 | } else { | |
745 | if (IS_DNODE(page) && !is_cold_node(page)) | |
746 | return CURSEG_HOT_NODE; | |
747 | else | |
748 | return CURSEG_COLD_NODE; | |
749 | } | |
750 | } | |
751 | ||
752 | static int __get_segment_type_6(struct page *page, enum page_type p_type) | |
753 | { | |
754 | if (p_type == DATA) { | |
755 | struct inode *inode = page->mapping->host; | |
756 | ||
757 | if (S_ISDIR(inode->i_mode)) | |
758 | return CURSEG_HOT_DATA; | |
759 | else if (is_cold_data(page) || is_cold_file(inode)) | |
760 | return CURSEG_COLD_DATA; | |
761 | else | |
762 | return CURSEG_WARM_DATA; | |
763 | } else { | |
764 | if (IS_DNODE(page)) | |
765 | return is_cold_node(page) ? CURSEG_WARM_NODE : | |
766 | CURSEG_HOT_NODE; | |
767 | else | |
768 | return CURSEG_COLD_NODE; | |
769 | } | |
770 | } | |
771 | ||
772 | static int __get_segment_type(struct page *page, enum page_type p_type) | |
773 | { | |
774 | struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); | |
775 | switch (sbi->active_logs) { | |
776 | case 2: | |
777 | return __get_segment_type_2(page, p_type); | |
778 | case 4: | |
779 | return __get_segment_type_4(page, p_type); | |
351df4b2 | 780 | } |
12a67146 JK |
781 | /* NR_CURSEG_TYPE(6) logs by default */ |
782 | BUG_ON(sbi->active_logs != NR_CURSEG_TYPE); | |
783 | return __get_segment_type_6(page, p_type); | |
351df4b2 JK |
784 | } |
785 | ||
786 | static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, | |
787 | block_t old_blkaddr, block_t *new_blkaddr, | |
788 | struct f2fs_summary *sum, enum page_type p_type) | |
789 | { | |
790 | struct sit_info *sit_i = SIT_I(sbi); | |
791 | struct curseg_info *curseg; | |
792 | unsigned int old_cursegno; | |
793 | int type; | |
794 | ||
795 | type = __get_segment_type(page, p_type); | |
796 | curseg = CURSEG_I(sbi, type); | |
797 | ||
798 | mutex_lock(&curseg->curseg_mutex); | |
799 | ||
800 | *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); | |
801 | old_cursegno = curseg->segno; | |
802 | ||
803 | /* | |
804 | * __add_sum_entry should be resided under the curseg_mutex | |
805 | * because, this function updates a summary entry in the | |
806 | * current summary block. | |
807 | */ | |
808 | __add_sum_entry(sbi, type, sum, curseg->next_blkoff); | |
809 | ||
810 | mutex_lock(&sit_i->sentry_lock); | |
811 | __refresh_next_blkoff(sbi, curseg); | |
812 | sbi->block_count[curseg->alloc_type]++; | |
813 | ||
814 | /* | |
815 | * SIT information should be updated before segment allocation, | |
816 | * since SSR needs latest valid block information. | |
817 | */ | |
818 | refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); | |
819 | ||
820 | if (!__has_curseg_space(sbi, type)) | |
821 | sit_i->s_ops->allocate_segment(sbi, type, false); | |
822 | ||
823 | locate_dirty_segment(sbi, old_cursegno); | |
824 | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | |
825 | mutex_unlock(&sit_i->sentry_lock); | |
826 | ||
827 | if (p_type == NODE) | |
828 | fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); | |
829 | ||
830 | /* writeout dirty page into bdev */ | |
831 | submit_write_page(sbi, page, *new_blkaddr, p_type); | |
832 | ||
833 | mutex_unlock(&curseg->curseg_mutex); | |
834 | } | |
835 | ||
577e3495 | 836 | void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) |
351df4b2 | 837 | { |
351df4b2 JK |
838 | set_page_writeback(page); |
839 | submit_write_page(sbi, page, page->index, META); | |
351df4b2 JK |
840 | } |
841 | ||
842 | void write_node_page(struct f2fs_sb_info *sbi, struct page *page, | |
843 | unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) | |
844 | { | |
845 | struct f2fs_summary sum; | |
846 | set_summary(&sum, nid, 0, 0); | |
847 | do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE); | |
848 | } | |
849 | ||
850 | void write_data_page(struct inode *inode, struct page *page, | |
851 | struct dnode_of_data *dn, block_t old_blkaddr, | |
852 | block_t *new_blkaddr) | |
853 | { | |
854 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); | |
855 | struct f2fs_summary sum; | |
856 | struct node_info ni; | |
857 | ||
858 | BUG_ON(old_blkaddr == NULL_ADDR); | |
859 | get_node_info(sbi, dn->nid, &ni); | |
860 | set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); | |
861 | ||
862 | do_write_page(sbi, page, old_blkaddr, | |
863 | new_blkaddr, &sum, DATA); | |
864 | } | |
865 | ||
866 | void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page, | |
867 | block_t old_blk_addr) | |
868 | { | |
869 | submit_write_page(sbi, page, old_blk_addr, DATA); | |
870 | } | |
871 | ||
872 | void recover_data_page(struct f2fs_sb_info *sbi, | |
873 | struct page *page, struct f2fs_summary *sum, | |
874 | block_t old_blkaddr, block_t new_blkaddr) | |
875 | { | |
876 | struct sit_info *sit_i = SIT_I(sbi); | |
877 | struct curseg_info *curseg; | |
878 | unsigned int segno, old_cursegno; | |
879 | struct seg_entry *se; | |
880 | int type; | |
881 | ||
882 | segno = GET_SEGNO(sbi, new_blkaddr); | |
883 | se = get_seg_entry(sbi, segno); | |
884 | type = se->type; | |
885 | ||
886 | if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { | |
887 | if (old_blkaddr == NULL_ADDR) | |
888 | type = CURSEG_COLD_DATA; | |
889 | else | |
890 | type = CURSEG_WARM_DATA; | |
891 | } | |
892 | curseg = CURSEG_I(sbi, type); | |
893 | ||
894 | mutex_lock(&curseg->curseg_mutex); | |
895 | mutex_lock(&sit_i->sentry_lock); | |
896 | ||
897 | old_cursegno = curseg->segno; | |
898 | ||
899 | /* change the current segment */ | |
900 | if (segno != curseg->segno) { | |
901 | curseg->next_segno = segno; | |
902 | change_curseg(sbi, type, true); | |
903 | } | |
904 | ||
905 | curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & | |
906 | (sbi->blocks_per_seg - 1); | |
907 | __add_sum_entry(sbi, type, sum, curseg->next_blkoff); | |
908 | ||
909 | refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); | |
910 | ||
911 | locate_dirty_segment(sbi, old_cursegno); | |
912 | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | |
913 | ||
914 | mutex_unlock(&sit_i->sentry_lock); | |
915 | mutex_unlock(&curseg->curseg_mutex); | |
916 | } | |
917 | ||
918 | void rewrite_node_page(struct f2fs_sb_info *sbi, | |
919 | struct page *page, struct f2fs_summary *sum, | |
920 | block_t old_blkaddr, block_t new_blkaddr) | |
921 | { | |
922 | struct sit_info *sit_i = SIT_I(sbi); | |
923 | int type = CURSEG_WARM_NODE; | |
924 | struct curseg_info *curseg; | |
925 | unsigned int segno, old_cursegno; | |
926 | block_t next_blkaddr = next_blkaddr_of_node(page); | |
927 | unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); | |
928 | ||
929 | curseg = CURSEG_I(sbi, type); | |
930 | ||
931 | mutex_lock(&curseg->curseg_mutex); | |
932 | mutex_lock(&sit_i->sentry_lock); | |
933 | ||
934 | segno = GET_SEGNO(sbi, new_blkaddr); | |
935 | old_cursegno = curseg->segno; | |
936 | ||
937 | /* change the current segment */ | |
938 | if (segno != curseg->segno) { | |
939 | curseg->next_segno = segno; | |
940 | change_curseg(sbi, type, true); | |
941 | } | |
942 | curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & | |
943 | (sbi->blocks_per_seg - 1); | |
944 | __add_sum_entry(sbi, type, sum, curseg->next_blkoff); | |
945 | ||
946 | /* change the current log to the next block addr in advance */ | |
947 | if (next_segno != segno) { | |
948 | curseg->next_segno = next_segno; | |
949 | change_curseg(sbi, type, true); | |
950 | } | |
951 | curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) & | |
952 | (sbi->blocks_per_seg - 1); | |
953 | ||
954 | /* rewrite node page */ | |
955 | set_page_writeback(page); | |
956 | submit_write_page(sbi, page, new_blkaddr, NODE); | |
957 | f2fs_submit_bio(sbi, NODE, true); | |
958 | refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); | |
959 | ||
960 | locate_dirty_segment(sbi, old_cursegno); | |
961 | locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | |
962 | ||
963 | mutex_unlock(&sit_i->sentry_lock); | |
964 | mutex_unlock(&curseg->curseg_mutex); | |
965 | } | |
966 | ||
967 | static int read_compacted_summaries(struct f2fs_sb_info *sbi) | |
968 | { | |
969 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | |
970 | struct curseg_info *seg_i; | |
971 | unsigned char *kaddr; | |
972 | struct page *page; | |
973 | block_t start; | |
974 | int i, j, offset; | |
975 | ||
976 | start = start_sum_block(sbi); | |
977 | ||
978 | page = get_meta_page(sbi, start++); | |
979 | kaddr = (unsigned char *)page_address(page); | |
980 | ||
981 | /* Step 1: restore nat cache */ | |
982 | seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
983 | memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); | |
984 | ||
985 | /* Step 2: restore sit cache */ | |
986 | seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | |
987 | memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, | |
988 | SUM_JOURNAL_SIZE); | |
989 | offset = 2 * SUM_JOURNAL_SIZE; | |
990 | ||
991 | /* Step 3: restore summary entries */ | |
992 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | |
993 | unsigned short blk_off; | |
994 | unsigned int segno; | |
995 | ||
996 | seg_i = CURSEG_I(sbi, i); | |
997 | segno = le32_to_cpu(ckpt->cur_data_segno[i]); | |
998 | blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); | |
999 | seg_i->next_segno = segno; | |
1000 | reset_curseg(sbi, i, 0); | |
1001 | seg_i->alloc_type = ckpt->alloc_type[i]; | |
1002 | seg_i->next_blkoff = blk_off; | |
1003 | ||
1004 | if (seg_i->alloc_type == SSR) | |
1005 | blk_off = sbi->blocks_per_seg; | |
1006 | ||
1007 | for (j = 0; j < blk_off; j++) { | |
1008 | struct f2fs_summary *s; | |
1009 | s = (struct f2fs_summary *)(kaddr + offset); | |
1010 | seg_i->sum_blk->entries[j] = *s; | |
1011 | offset += SUMMARY_SIZE; | |
1012 | if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - | |
1013 | SUM_FOOTER_SIZE) | |
1014 | continue; | |
1015 | ||
1016 | f2fs_put_page(page, 1); | |
1017 | page = NULL; | |
1018 | ||
1019 | page = get_meta_page(sbi, start++); | |
1020 | kaddr = (unsigned char *)page_address(page); | |
1021 | offset = 0; | |
1022 | } | |
1023 | } | |
1024 | f2fs_put_page(page, 1); | |
1025 | return 0; | |
1026 | } | |
1027 | ||
1028 | static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) | |
1029 | { | |
1030 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | |
1031 | struct f2fs_summary_block *sum; | |
1032 | struct curseg_info *curseg; | |
1033 | struct page *new; | |
1034 | unsigned short blk_off; | |
1035 | unsigned int segno = 0; | |
1036 | block_t blk_addr = 0; | |
1037 | ||
1038 | /* get segment number and block addr */ | |
1039 | if (IS_DATASEG(type)) { | |
1040 | segno = le32_to_cpu(ckpt->cur_data_segno[type]); | |
1041 | blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - | |
1042 | CURSEG_HOT_DATA]); | |
25ca923b | 1043 | if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) |
351df4b2 JK |
1044 | blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); |
1045 | else | |
1046 | blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); | |
1047 | } else { | |
1048 | segno = le32_to_cpu(ckpt->cur_node_segno[type - | |
1049 | CURSEG_HOT_NODE]); | |
1050 | blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - | |
1051 | CURSEG_HOT_NODE]); | |
25ca923b | 1052 | if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) |
351df4b2 JK |
1053 | blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, |
1054 | type - CURSEG_HOT_NODE); | |
1055 | else | |
1056 | blk_addr = GET_SUM_BLOCK(sbi, segno); | |
1057 | } | |
1058 | ||
1059 | new = get_meta_page(sbi, blk_addr); | |
1060 | sum = (struct f2fs_summary_block *)page_address(new); | |
1061 | ||
1062 | if (IS_NODESEG(type)) { | |
25ca923b | 1063 | if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { |
351df4b2 JK |
1064 | struct f2fs_summary *ns = &sum->entries[0]; |
1065 | int i; | |
1066 | for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { | |
1067 | ns->version = 0; | |
1068 | ns->ofs_in_node = 0; | |
1069 | } | |
1070 | } else { | |
1071 | if (restore_node_summary(sbi, segno, sum)) { | |
1072 | f2fs_put_page(new, 1); | |
1073 | return -EINVAL; | |
1074 | } | |
1075 | } | |
1076 | } | |
1077 | ||
1078 | /* set uncompleted segment to curseg */ | |
1079 | curseg = CURSEG_I(sbi, type); | |
1080 | mutex_lock(&curseg->curseg_mutex); | |
1081 | memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); | |
1082 | curseg->next_segno = segno; | |
1083 | reset_curseg(sbi, type, 0); | |
1084 | curseg->alloc_type = ckpt->alloc_type[type]; | |
1085 | curseg->next_blkoff = blk_off; | |
1086 | mutex_unlock(&curseg->curseg_mutex); | |
1087 | f2fs_put_page(new, 1); | |
1088 | return 0; | |
1089 | } | |
1090 | ||
1091 | static int restore_curseg_summaries(struct f2fs_sb_info *sbi) | |
1092 | { | |
1093 | int type = CURSEG_HOT_DATA; | |
1094 | ||
25ca923b | 1095 | if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { |
351df4b2 JK |
1096 | /* restore for compacted data summary */ |
1097 | if (read_compacted_summaries(sbi)) | |
1098 | return -EINVAL; | |
1099 | type = CURSEG_HOT_NODE; | |
1100 | } | |
1101 | ||
1102 | for (; type <= CURSEG_COLD_NODE; type++) | |
1103 | if (read_normal_summaries(sbi, type)) | |
1104 | return -EINVAL; | |
1105 | return 0; | |
1106 | } | |
1107 | ||
1108 | static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) | |
1109 | { | |
1110 | struct page *page; | |
1111 | unsigned char *kaddr; | |
1112 | struct f2fs_summary *summary; | |
1113 | struct curseg_info *seg_i; | |
1114 | int written_size = 0; | |
1115 | int i, j; | |
1116 | ||
1117 | page = grab_meta_page(sbi, blkaddr++); | |
1118 | kaddr = (unsigned char *)page_address(page); | |
1119 | ||
1120 | /* Step 1: write nat cache */ | |
1121 | seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | |
1122 | memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); | |
1123 | written_size += SUM_JOURNAL_SIZE; | |
1124 | ||
1125 | /* Step 2: write sit cache */ | |
1126 | seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | |
1127 | memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, | |
1128 | SUM_JOURNAL_SIZE); | |
1129 | written_size += SUM_JOURNAL_SIZE; | |
1130 | ||
1131 | set_page_dirty(page); | |
1132 | ||
1133 | /* Step 3: write summary entries */ | |
1134 | for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | |
1135 | unsigned short blkoff; | |
1136 | seg_i = CURSEG_I(sbi, i); | |
1137 | if (sbi->ckpt->alloc_type[i] == SSR) | |
1138 | blkoff = sbi->blocks_per_seg; | |
1139 | else | |
1140 | blkoff = curseg_blkoff(sbi, i); | |
1141 | ||
1142 | for (j = 0; j < blkoff; j++) { | |
1143 | if (!page) { | |
1144 | page = grab_meta_page(sbi, blkaddr++); | |
1145 | kaddr = (unsigned char *)page_address(page); | |
1146 | written_size = 0; | |
1147 | } | |
1148 | summary = (struct f2fs_summary *)(kaddr + written_size); | |
1149 | *summary = seg_i->sum_blk->entries[j]; | |
1150 | written_size += SUMMARY_SIZE; | |
1151 | set_page_dirty(page); | |
1152 | ||
1153 | if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - | |
1154 | SUM_FOOTER_SIZE) | |
1155 | continue; | |
1156 | ||
1157 | f2fs_put_page(page, 1); | |
1158 | page = NULL; | |
1159 | } | |
1160 | } | |
1161 | if (page) | |
1162 | f2fs_put_page(page, 1); | |
1163 | } | |
1164 | ||
1165 | static void write_normal_summaries(struct f2fs_sb_info *sbi, | |
1166 | block_t blkaddr, int type) | |
1167 | { | |
1168 | int i, end; | |
1169 | if (IS_DATASEG(type)) | |
1170 | end = type + NR_CURSEG_DATA_TYPE; | |
1171 | else | |
1172 | end = type + NR_CURSEG_NODE_TYPE; | |
1173 | ||
1174 | for (i = type; i < end; i++) { | |
1175 | struct curseg_info *sum = CURSEG_I(sbi, i); | |
1176 | mutex_lock(&sum->curseg_mutex); | |
1177 | write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); | |
1178 | mutex_unlock(&sum->curseg_mutex); | |
1179 | } | |
1180 | } | |
1181 | ||
1182 | void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | |
1183 | { | |
25ca923b | 1184 | if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) |
351df4b2 JK |
1185 | write_compacted_summaries(sbi, start_blk); |
1186 | else | |
1187 | write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); | |
1188 | } | |
1189 | ||
1190 | void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | |
1191 | { | |
25ca923b | 1192 | if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) |
351df4b2 JK |
1193 | write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); |
1194 | return; | |
1195 | } | |
1196 | ||
1197 | int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, | |
1198 | unsigned int val, int alloc) | |
1199 | { | |
1200 | int i; | |
1201 | ||
1202 | if (type == NAT_JOURNAL) { | |
1203 | for (i = 0; i < nats_in_cursum(sum); i++) { | |
1204 | if (le32_to_cpu(nid_in_journal(sum, i)) == val) | |
1205 | return i; | |
1206 | } | |
1207 | if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) | |
1208 | return update_nats_in_cursum(sum, 1); | |
1209 | } else if (type == SIT_JOURNAL) { | |
1210 | for (i = 0; i < sits_in_cursum(sum); i++) | |
1211 | if (le32_to_cpu(segno_in_journal(sum, i)) == val) | |
1212 | return i; | |
1213 | if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) | |
1214 | return update_sits_in_cursum(sum, 1); | |
1215 | } | |
1216 | return -1; | |
1217 | } | |
1218 | ||
1219 | static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, | |
1220 | unsigned int segno) | |
1221 | { | |
1222 | struct sit_info *sit_i = SIT_I(sbi); | |
1223 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); | |
1224 | block_t blk_addr = sit_i->sit_base_addr + offset; | |
1225 | ||
1226 | check_seg_range(sbi, segno); | |
1227 | ||
1228 | /* calculate sit block address */ | |
1229 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) | |
1230 | blk_addr += sit_i->sit_blocks; | |
1231 | ||
1232 | return get_meta_page(sbi, blk_addr); | |
1233 | } | |
1234 | ||
1235 | static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, | |
1236 | unsigned int start) | |
1237 | { | |
1238 | struct sit_info *sit_i = SIT_I(sbi); | |
1239 | struct page *src_page, *dst_page; | |
1240 | pgoff_t src_off, dst_off; | |
1241 | void *src_addr, *dst_addr; | |
1242 | ||
1243 | src_off = current_sit_addr(sbi, start); | |
1244 | dst_off = next_sit_addr(sbi, src_off); | |
1245 | ||
1246 | /* get current sit block page without lock */ | |
1247 | src_page = get_meta_page(sbi, src_off); | |
1248 | dst_page = grab_meta_page(sbi, dst_off); | |
1249 | BUG_ON(PageDirty(src_page)); | |
1250 | ||
1251 | src_addr = page_address(src_page); | |
1252 | dst_addr = page_address(dst_page); | |
1253 | memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); | |
1254 | ||
1255 | set_page_dirty(dst_page); | |
1256 | f2fs_put_page(src_page, 1); | |
1257 | ||
1258 | set_to_next_sit(sit_i, start); | |
1259 | ||
1260 | return dst_page; | |
1261 | } | |
1262 | ||
1263 | static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) | |
1264 | { | |
1265 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | |
1266 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1267 | int i; | |
1268 | ||
1269 | /* | |
1270 | * If the journal area in the current summary is full of sit entries, | |
1271 | * all the sit entries will be flushed. Otherwise the sit entries | |
1272 | * are not able to replace with newly hot sit entries. | |
1273 | */ | |
1274 | if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { | |
1275 | for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { | |
1276 | unsigned int segno; | |
1277 | segno = le32_to_cpu(segno_in_journal(sum, i)); | |
1278 | __mark_sit_entry_dirty(sbi, segno); | |
1279 | } | |
1280 | update_sits_in_cursum(sum, -sits_in_cursum(sum)); | |
1281 | return 1; | |
1282 | } | |
1283 | return 0; | |
1284 | } | |
1285 | ||
0a8165d7 | 1286 | /* |
351df4b2 JK |
1287 | * CP calls this function, which flushes SIT entries including sit_journal, |
1288 | * and moves prefree segs to free segs. | |
1289 | */ | |
1290 | void flush_sit_entries(struct f2fs_sb_info *sbi) | |
1291 | { | |
1292 | struct sit_info *sit_i = SIT_I(sbi); | |
1293 | unsigned long *bitmap = sit_i->dirty_sentries_bitmap; | |
1294 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | |
1295 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1296 | unsigned long nsegs = TOTAL_SEGS(sbi); | |
1297 | struct page *page = NULL; | |
1298 | struct f2fs_sit_block *raw_sit = NULL; | |
1299 | unsigned int start = 0, end = 0; | |
1300 | unsigned int segno = -1; | |
1301 | bool flushed; | |
1302 | ||
1303 | mutex_lock(&curseg->curseg_mutex); | |
1304 | mutex_lock(&sit_i->sentry_lock); | |
1305 | ||
1306 | /* | |
1307 | * "flushed" indicates whether sit entries in journal are flushed | |
1308 | * to the SIT area or not. | |
1309 | */ | |
1310 | flushed = flush_sits_in_journal(sbi); | |
1311 | ||
1312 | while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { | |
1313 | struct seg_entry *se = get_seg_entry(sbi, segno); | |
1314 | int sit_offset, offset; | |
1315 | ||
1316 | sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); | |
1317 | ||
1318 | if (flushed) | |
1319 | goto to_sit_page; | |
1320 | ||
1321 | offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); | |
1322 | if (offset >= 0) { | |
1323 | segno_in_journal(sum, offset) = cpu_to_le32(segno); | |
1324 | seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); | |
1325 | goto flush_done; | |
1326 | } | |
1327 | to_sit_page: | |
1328 | if (!page || (start > segno) || (segno > end)) { | |
1329 | if (page) { | |
1330 | f2fs_put_page(page, 1); | |
1331 | page = NULL; | |
1332 | } | |
1333 | ||
1334 | start = START_SEGNO(sit_i, segno); | |
1335 | end = start + SIT_ENTRY_PER_BLOCK - 1; | |
1336 | ||
1337 | /* read sit block that will be updated */ | |
1338 | page = get_next_sit_page(sbi, start); | |
1339 | raw_sit = page_address(page); | |
1340 | } | |
1341 | ||
1342 | /* udpate entry in SIT block */ | |
1343 | seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); | |
1344 | flush_done: | |
1345 | __clear_bit(segno, bitmap); | |
1346 | sit_i->dirty_sentries--; | |
1347 | } | |
1348 | mutex_unlock(&sit_i->sentry_lock); | |
1349 | mutex_unlock(&curseg->curseg_mutex); | |
1350 | ||
1351 | /* writeout last modified SIT block */ | |
1352 | f2fs_put_page(page, 1); | |
1353 | ||
1354 | set_prefree_as_free_segments(sbi); | |
1355 | } | |
1356 | ||
1357 | static int build_sit_info(struct f2fs_sb_info *sbi) | |
1358 | { | |
1359 | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | |
1360 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | |
1361 | struct sit_info *sit_i; | |
1362 | unsigned int sit_segs, start; | |
1363 | char *src_bitmap, *dst_bitmap; | |
1364 | unsigned int bitmap_size; | |
1365 | ||
1366 | /* allocate memory for SIT information */ | |
1367 | sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); | |
1368 | if (!sit_i) | |
1369 | return -ENOMEM; | |
1370 | ||
1371 | SM_I(sbi)->sit_info = sit_i; | |
1372 | ||
1373 | sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); | |
1374 | if (!sit_i->sentries) | |
1375 | return -ENOMEM; | |
1376 | ||
1377 | bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | |
1378 | sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); | |
1379 | if (!sit_i->dirty_sentries_bitmap) | |
1380 | return -ENOMEM; | |
1381 | ||
1382 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | |
1383 | sit_i->sentries[start].cur_valid_map | |
1384 | = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | |
1385 | sit_i->sentries[start].ckpt_valid_map | |
1386 | = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | |
1387 | if (!sit_i->sentries[start].cur_valid_map | |
1388 | || !sit_i->sentries[start].ckpt_valid_map) | |
1389 | return -ENOMEM; | |
1390 | } | |
1391 | ||
1392 | if (sbi->segs_per_sec > 1) { | |
1393 | sit_i->sec_entries = vzalloc(sbi->total_sections * | |
1394 | sizeof(struct sec_entry)); | |
1395 | if (!sit_i->sec_entries) | |
1396 | return -ENOMEM; | |
1397 | } | |
1398 | ||
1399 | /* get information related with SIT */ | |
1400 | sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; | |
1401 | ||
1402 | /* setup SIT bitmap from ckeckpoint pack */ | |
1403 | bitmap_size = __bitmap_size(sbi, SIT_BITMAP); | |
1404 | src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); | |
1405 | ||
1406 | dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL); | |
1407 | if (!dst_bitmap) | |
1408 | return -ENOMEM; | |
1409 | memcpy(dst_bitmap, src_bitmap, bitmap_size); | |
1410 | ||
1411 | /* init SIT information */ | |
1412 | sit_i->s_ops = &default_salloc_ops; | |
1413 | ||
1414 | sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); | |
1415 | sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; | |
1416 | sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); | |
1417 | sit_i->sit_bitmap = dst_bitmap; | |
1418 | sit_i->bitmap_size = bitmap_size; | |
1419 | sit_i->dirty_sentries = 0; | |
1420 | sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; | |
1421 | sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); | |
1422 | sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; | |
1423 | mutex_init(&sit_i->sentry_lock); | |
1424 | return 0; | |
1425 | } | |
1426 | ||
1427 | static int build_free_segmap(struct f2fs_sb_info *sbi) | |
1428 | { | |
1429 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
1430 | struct free_segmap_info *free_i; | |
1431 | unsigned int bitmap_size, sec_bitmap_size; | |
1432 | ||
1433 | /* allocate memory for free segmap information */ | |
1434 | free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); | |
1435 | if (!free_i) | |
1436 | return -ENOMEM; | |
1437 | ||
1438 | SM_I(sbi)->free_info = free_i; | |
1439 | ||
1440 | bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | |
1441 | free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); | |
1442 | if (!free_i->free_segmap) | |
1443 | return -ENOMEM; | |
1444 | ||
1445 | sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections); | |
1446 | free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); | |
1447 | if (!free_i->free_secmap) | |
1448 | return -ENOMEM; | |
1449 | ||
1450 | /* set all segments as dirty temporarily */ | |
1451 | memset(free_i->free_segmap, 0xff, bitmap_size); | |
1452 | memset(free_i->free_secmap, 0xff, sec_bitmap_size); | |
1453 | ||
1454 | /* init free segmap information */ | |
1455 | free_i->start_segno = | |
1456 | (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); | |
1457 | free_i->free_segments = 0; | |
1458 | free_i->free_sections = 0; | |
1459 | rwlock_init(&free_i->segmap_lock); | |
1460 | return 0; | |
1461 | } | |
1462 | ||
1463 | static int build_curseg(struct f2fs_sb_info *sbi) | |
1464 | { | |
1042d60f | 1465 | struct curseg_info *array; |
351df4b2 JK |
1466 | int i; |
1467 | ||
1468 | array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); | |
1469 | if (!array) | |
1470 | return -ENOMEM; | |
1471 | ||
1472 | SM_I(sbi)->curseg_array = array; | |
1473 | ||
1474 | for (i = 0; i < NR_CURSEG_TYPE; i++) { | |
1475 | mutex_init(&array[i].curseg_mutex); | |
1476 | array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); | |
1477 | if (!array[i].sum_blk) | |
1478 | return -ENOMEM; | |
1479 | array[i].segno = NULL_SEGNO; | |
1480 | array[i].next_blkoff = 0; | |
1481 | } | |
1482 | return restore_curseg_summaries(sbi); | |
1483 | } | |
1484 | ||
1485 | static void build_sit_entries(struct f2fs_sb_info *sbi) | |
1486 | { | |
1487 | struct sit_info *sit_i = SIT_I(sbi); | |
1488 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | |
1489 | struct f2fs_summary_block *sum = curseg->sum_blk; | |
1490 | unsigned int start; | |
1491 | ||
1492 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | |
1493 | struct seg_entry *se = &sit_i->sentries[start]; | |
1494 | struct f2fs_sit_block *sit_blk; | |
1495 | struct f2fs_sit_entry sit; | |
1496 | struct page *page; | |
1497 | int i; | |
1498 | ||
1499 | mutex_lock(&curseg->curseg_mutex); | |
1500 | for (i = 0; i < sits_in_cursum(sum); i++) { | |
1501 | if (le32_to_cpu(segno_in_journal(sum, i)) == start) { | |
1502 | sit = sit_in_journal(sum, i); | |
1503 | mutex_unlock(&curseg->curseg_mutex); | |
1504 | goto got_it; | |
1505 | } | |
1506 | } | |
1507 | mutex_unlock(&curseg->curseg_mutex); | |
1508 | page = get_current_sit_page(sbi, start); | |
1509 | sit_blk = (struct f2fs_sit_block *)page_address(page); | |
1510 | sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; | |
1511 | f2fs_put_page(page, 1); | |
1512 | got_it: | |
1513 | check_block_count(sbi, start, &sit); | |
1514 | seg_info_from_raw_sit(se, &sit); | |
1515 | if (sbi->segs_per_sec > 1) { | |
1516 | struct sec_entry *e = get_sec_entry(sbi, start); | |
1517 | e->valid_blocks += se->valid_blocks; | |
1518 | } | |
1519 | } | |
1520 | } | |
1521 | ||
1522 | static void init_free_segmap(struct f2fs_sb_info *sbi) | |
1523 | { | |
1524 | unsigned int start; | |
1525 | int type; | |
1526 | ||
1527 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | |
1528 | struct seg_entry *sentry = get_seg_entry(sbi, start); | |
1529 | if (!sentry->valid_blocks) | |
1530 | __set_free(sbi, start); | |
1531 | } | |
1532 | ||
1533 | /* set use the current segments */ | |
1534 | for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { | |
1535 | struct curseg_info *curseg_t = CURSEG_I(sbi, type); | |
1536 | __set_test_and_inuse(sbi, curseg_t->segno); | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | static void init_dirty_segmap(struct f2fs_sb_info *sbi) | |
1541 | { | |
1542 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
1543 | struct free_segmap_info *free_i = FREE_I(sbi); | |
1544 | unsigned int segno = 0, offset = 0; | |
1545 | unsigned short valid_blocks; | |
1546 | ||
1547 | while (segno < TOTAL_SEGS(sbi)) { | |
1548 | /* find dirty segment based on free segmap */ | |
1549 | segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset); | |
1550 | if (segno >= TOTAL_SEGS(sbi)) | |
1551 | break; | |
1552 | offset = segno + 1; | |
1553 | valid_blocks = get_valid_blocks(sbi, segno, 0); | |
1554 | if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) | |
1555 | continue; | |
1556 | mutex_lock(&dirty_i->seglist_lock); | |
1557 | __locate_dirty_segment(sbi, segno, DIRTY); | |
1558 | mutex_unlock(&dirty_i->seglist_lock); | |
1559 | } | |
1560 | } | |
1561 | ||
1562 | static int init_victim_segmap(struct f2fs_sb_info *sbi) | |
1563 | { | |
1564 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
1565 | unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | |
1566 | ||
1567 | dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL); | |
1568 | dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL); | |
1569 | if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC]) | |
1570 | return -ENOMEM; | |
1571 | return 0; | |
1572 | } | |
1573 | ||
1574 | static int build_dirty_segmap(struct f2fs_sb_info *sbi) | |
1575 | { | |
1576 | struct dirty_seglist_info *dirty_i; | |
1577 | unsigned int bitmap_size, i; | |
1578 | ||
1579 | /* allocate memory for dirty segments list information */ | |
1580 | dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); | |
1581 | if (!dirty_i) | |
1582 | return -ENOMEM; | |
1583 | ||
1584 | SM_I(sbi)->dirty_info = dirty_i; | |
1585 | mutex_init(&dirty_i->seglist_lock); | |
1586 | ||
1587 | bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | |
1588 | ||
1589 | for (i = 0; i < NR_DIRTY_TYPE; i++) { | |
1590 | dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); | |
351df4b2 JK |
1591 | if (!dirty_i->dirty_segmap[i]) |
1592 | return -ENOMEM; | |
1593 | } | |
1594 | ||
1595 | init_dirty_segmap(sbi); | |
1596 | return init_victim_segmap(sbi); | |
1597 | } | |
1598 | ||
0a8165d7 | 1599 | /* |
351df4b2 JK |
1600 | * Update min, max modified time for cost-benefit GC algorithm |
1601 | */ | |
1602 | static void init_min_max_mtime(struct f2fs_sb_info *sbi) | |
1603 | { | |
1604 | struct sit_info *sit_i = SIT_I(sbi); | |
1605 | unsigned int segno; | |
1606 | ||
1607 | mutex_lock(&sit_i->sentry_lock); | |
1608 | ||
1609 | sit_i->min_mtime = LLONG_MAX; | |
1610 | ||
1611 | for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { | |
1612 | unsigned int i; | |
1613 | unsigned long long mtime = 0; | |
1614 | ||
1615 | for (i = 0; i < sbi->segs_per_sec; i++) | |
1616 | mtime += get_seg_entry(sbi, segno + i)->mtime; | |
1617 | ||
1618 | mtime = div_u64(mtime, sbi->segs_per_sec); | |
1619 | ||
1620 | if (sit_i->min_mtime > mtime) | |
1621 | sit_i->min_mtime = mtime; | |
1622 | } | |
1623 | sit_i->max_mtime = get_mtime(sbi); | |
1624 | mutex_unlock(&sit_i->sentry_lock); | |
1625 | } | |
1626 | ||
1627 | int build_segment_manager(struct f2fs_sb_info *sbi) | |
1628 | { | |
1629 | struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | |
1630 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | |
1042d60f | 1631 | struct f2fs_sm_info *sm_info; |
351df4b2 JK |
1632 | int err; |
1633 | ||
1634 | sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); | |
1635 | if (!sm_info) | |
1636 | return -ENOMEM; | |
1637 | ||
1638 | /* init sm info */ | |
1639 | sbi->sm_info = sm_info; | |
1640 | INIT_LIST_HEAD(&sm_info->wblist_head); | |
1641 | spin_lock_init(&sm_info->wblist_lock); | |
1642 | sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); | |
1643 | sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); | |
1644 | sm_info->segment_count = le32_to_cpu(raw_super->segment_count); | |
1645 | sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); | |
1646 | sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); | |
1647 | sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); | |
1648 | sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); | |
1649 | ||
1650 | err = build_sit_info(sbi); | |
1651 | if (err) | |
1652 | return err; | |
1653 | err = build_free_segmap(sbi); | |
1654 | if (err) | |
1655 | return err; | |
1656 | err = build_curseg(sbi); | |
1657 | if (err) | |
1658 | return err; | |
1659 | ||
1660 | /* reinit free segmap based on SIT */ | |
1661 | build_sit_entries(sbi); | |
1662 | ||
1663 | init_free_segmap(sbi); | |
1664 | err = build_dirty_segmap(sbi); | |
1665 | if (err) | |
1666 | return err; | |
1667 | ||
1668 | init_min_max_mtime(sbi); | |
1669 | return 0; | |
1670 | } | |
1671 | ||
1672 | static void discard_dirty_segmap(struct f2fs_sb_info *sbi, | |
1673 | enum dirty_type dirty_type) | |
1674 | { | |
1675 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
1676 | ||
1677 | mutex_lock(&dirty_i->seglist_lock); | |
1678 | kfree(dirty_i->dirty_segmap[dirty_type]); | |
1679 | dirty_i->nr_dirty[dirty_type] = 0; | |
1680 | mutex_unlock(&dirty_i->seglist_lock); | |
1681 | } | |
1682 | ||
1683 | void reset_victim_segmap(struct f2fs_sb_info *sbi) | |
1684 | { | |
1685 | unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); | |
1686 | memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size); | |
1687 | } | |
1688 | ||
1689 | static void destroy_victim_segmap(struct f2fs_sb_info *sbi) | |
1690 | { | |
1691 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
1692 | ||
1693 | kfree(dirty_i->victim_segmap[FG_GC]); | |
1694 | kfree(dirty_i->victim_segmap[BG_GC]); | |
1695 | } | |
1696 | ||
1697 | static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) | |
1698 | { | |
1699 | struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | |
1700 | int i; | |
1701 | ||
1702 | if (!dirty_i) | |
1703 | return; | |
1704 | ||
1705 | /* discard pre-free/dirty segments list */ | |
1706 | for (i = 0; i < NR_DIRTY_TYPE; i++) | |
1707 | discard_dirty_segmap(sbi, i); | |
1708 | ||
1709 | destroy_victim_segmap(sbi); | |
1710 | SM_I(sbi)->dirty_info = NULL; | |
1711 | kfree(dirty_i); | |
1712 | } | |
1713 | ||
1714 | static void destroy_curseg(struct f2fs_sb_info *sbi) | |
1715 | { | |
1716 | struct curseg_info *array = SM_I(sbi)->curseg_array; | |
1717 | int i; | |
1718 | ||
1719 | if (!array) | |
1720 | return; | |
1721 | SM_I(sbi)->curseg_array = NULL; | |
1722 | for (i = 0; i < NR_CURSEG_TYPE; i++) | |
1723 | kfree(array[i].sum_blk); | |
1724 | kfree(array); | |
1725 | } | |
1726 | ||
1727 | static void destroy_free_segmap(struct f2fs_sb_info *sbi) | |
1728 | { | |
1729 | struct free_segmap_info *free_i = SM_I(sbi)->free_info; | |
1730 | if (!free_i) | |
1731 | return; | |
1732 | SM_I(sbi)->free_info = NULL; | |
1733 | kfree(free_i->free_segmap); | |
1734 | kfree(free_i->free_secmap); | |
1735 | kfree(free_i); | |
1736 | } | |
1737 | ||
1738 | static void destroy_sit_info(struct f2fs_sb_info *sbi) | |
1739 | { | |
1740 | struct sit_info *sit_i = SIT_I(sbi); | |
1741 | unsigned int start; | |
1742 | ||
1743 | if (!sit_i) | |
1744 | return; | |
1745 | ||
1746 | if (sit_i->sentries) { | |
1747 | for (start = 0; start < TOTAL_SEGS(sbi); start++) { | |
1748 | kfree(sit_i->sentries[start].cur_valid_map); | |
1749 | kfree(sit_i->sentries[start].ckpt_valid_map); | |
1750 | } | |
1751 | } | |
1752 | vfree(sit_i->sentries); | |
1753 | vfree(sit_i->sec_entries); | |
1754 | kfree(sit_i->dirty_sentries_bitmap); | |
1755 | ||
1756 | SM_I(sbi)->sit_info = NULL; | |
1757 | kfree(sit_i->sit_bitmap); | |
1758 | kfree(sit_i); | |
1759 | } | |
1760 | ||
1761 | void destroy_segment_manager(struct f2fs_sb_info *sbi) | |
1762 | { | |
1763 | struct f2fs_sm_info *sm_info = SM_I(sbi); | |
1764 | destroy_dirty_segmap(sbi); | |
1765 | destroy_curseg(sbi); | |
1766 | destroy_free_segmap(sbi); | |
1767 | destroy_sit_info(sbi); | |
1768 | sbi->sm_info = NULL; | |
1769 | kfree(sm_info); | |
1770 | } |