]>
Commit | Line | Data |
---|---|---|
1e51764a AB |
1 | /* |
2 | * This file is part of UBIFS. | |
3 | * | |
4 | * Copyright (C) 2006-2008 Nokia Corporation. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms of the GNU General Public License version 2 as published by | |
8 | * the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | |
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
18 | * | |
19 | * Authors: Adrian Hunter | |
20 | * Artem Bityutskiy (Битюцкий Артём) | |
21 | */ | |
22 | ||
23 | /* | |
24 | * This file implements the functions that access LEB properties and their | |
25 | * categories. LEBs are categorized based on the needs of UBIFS, and the | |
26 | * categories are stored as either heaps or lists to provide a fast way of | |
27 | * finding a LEB in a particular category. For example, UBIFS may need to find | |
28 | * an empty LEB for the journal, or a very dirty LEB for garbage collection. | |
29 | */ | |
30 | ||
31 | #include "ubifs.h" | |
32 | ||
33 | /** | |
34 | * get_heap_comp_val - get the LEB properties value for heap comparisons. | |
35 | * @lprops: LEB properties | |
36 | * @cat: LEB category | |
37 | */ | |
38 | static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) | |
39 | { | |
40 | switch (cat) { | |
41 | case LPROPS_FREE: | |
42 | return lprops->free; | |
43 | case LPROPS_DIRTY_IDX: | |
44 | return lprops->free + lprops->dirty; | |
45 | default: | |
46 | return lprops->dirty; | |
47 | } | |
48 | } | |
49 | ||
50 | /** | |
51 | * move_up_lpt_heap - move a new heap entry up as far as possible. | |
52 | * @c: UBIFS file-system description object | |
53 | * @heap: LEB category heap | |
54 | * @lprops: LEB properties to move | |
55 | * @cat: LEB category | |
56 | * | |
57 | * New entries to a heap are added at the bottom and then moved up until the | |
58 | * parent's value is greater. In the case of LPT's category heaps, the value | |
59 | * is either the amount of free space or the amount of dirty space, depending | |
60 | * on the category. | |
61 | */ | |
62 | static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, | |
63 | struct ubifs_lprops *lprops, int cat) | |
64 | { | |
65 | int val1, val2, hpos; | |
66 | ||
67 | hpos = lprops->hpos; | |
68 | if (!hpos) | |
69 | return; /* Already top of the heap */ | |
70 | val1 = get_heap_comp_val(lprops, cat); | |
71 | /* Compare to parent and, if greater, move up the heap */ | |
72 | do { | |
73 | int ppos = (hpos - 1) / 2; | |
74 | ||
75 | val2 = get_heap_comp_val(heap->arr[ppos], cat); | |
76 | if (val2 >= val1) | |
77 | return; | |
78 | /* Greater than parent so move up */ | |
79 | heap->arr[ppos]->hpos = hpos; | |
80 | heap->arr[hpos] = heap->arr[ppos]; | |
81 | heap->arr[ppos] = lprops; | |
82 | lprops->hpos = ppos; | |
83 | hpos = ppos; | |
84 | } while (hpos); | |
85 | } | |
86 | ||
87 | /** | |
88 | * adjust_lpt_heap - move a changed heap entry up or down the heap. | |
89 | * @c: UBIFS file-system description object | |
90 | * @heap: LEB category heap | |
91 | * @lprops: LEB properties to move | |
92 | * @hpos: heap position of @lprops | |
93 | * @cat: LEB category | |
94 | * | |
95 | * Changed entries in a heap are moved up or down until the parent's value is | |
96 | * greater. In the case of LPT's category heaps, the value is either the amount | |
97 | * of free space or the amount of dirty space, depending on the category. | |
98 | */ | |
99 | static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, | |
100 | struct ubifs_lprops *lprops, int hpos, int cat) | |
101 | { | |
102 | int val1, val2, val3, cpos; | |
103 | ||
104 | val1 = get_heap_comp_val(lprops, cat); | |
105 | /* Compare to parent and, if greater than parent, move up the heap */ | |
106 | if (hpos) { | |
107 | int ppos = (hpos - 1) / 2; | |
108 | ||
109 | val2 = get_heap_comp_val(heap->arr[ppos], cat); | |
110 | if (val1 > val2) { | |
111 | /* Greater than parent so move up */ | |
112 | while (1) { | |
113 | heap->arr[ppos]->hpos = hpos; | |
114 | heap->arr[hpos] = heap->arr[ppos]; | |
115 | heap->arr[ppos] = lprops; | |
116 | lprops->hpos = ppos; | |
117 | hpos = ppos; | |
118 | if (!hpos) | |
119 | return; | |
120 | ppos = (hpos - 1) / 2; | |
121 | val2 = get_heap_comp_val(heap->arr[ppos], cat); | |
122 | if (val1 <= val2) | |
123 | return; | |
124 | /* Still greater than parent so keep going */ | |
125 | } | |
126 | } | |
127 | } | |
948cfb21 | 128 | |
1e51764a AB |
129 | /* Not greater than parent, so compare to children */ |
130 | while (1) { | |
131 | /* Compare to left child */ | |
132 | cpos = hpos * 2 + 1; | |
133 | if (cpos >= heap->cnt) | |
134 | return; | |
135 | val2 = get_heap_comp_val(heap->arr[cpos], cat); | |
136 | if (val1 < val2) { | |
137 | /* Less than left child, so promote biggest child */ | |
138 | if (cpos + 1 < heap->cnt) { | |
139 | val3 = get_heap_comp_val(heap->arr[cpos + 1], | |
140 | cat); | |
141 | if (val3 > val2) | |
142 | cpos += 1; /* Right child is bigger */ | |
143 | } | |
144 | heap->arr[cpos]->hpos = hpos; | |
145 | heap->arr[hpos] = heap->arr[cpos]; | |
146 | heap->arr[cpos] = lprops; | |
147 | lprops->hpos = cpos; | |
148 | hpos = cpos; | |
149 | continue; | |
150 | } | |
151 | /* Compare to right child */ | |
152 | cpos += 1; | |
153 | if (cpos >= heap->cnt) | |
154 | return; | |
155 | val3 = get_heap_comp_val(heap->arr[cpos], cat); | |
156 | if (val1 < val3) { | |
157 | /* Less than right child, so promote right child */ | |
158 | heap->arr[cpos]->hpos = hpos; | |
159 | heap->arr[hpos] = heap->arr[cpos]; | |
160 | heap->arr[cpos] = lprops; | |
161 | lprops->hpos = cpos; | |
162 | hpos = cpos; | |
163 | continue; | |
164 | } | |
165 | return; | |
166 | } | |
167 | } | |
168 | ||
169 | /** | |
170 | * add_to_lpt_heap - add LEB properties to a LEB category heap. | |
171 | * @c: UBIFS file-system description object | |
172 | * @lprops: LEB properties to add | |
173 | * @cat: LEB category | |
174 | * | |
175 | * This function returns %1 if @lprops is added to the heap for LEB category | |
176 | * @cat, otherwise %0 is returned because the heap is full. | |
177 | */ | |
178 | static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, | |
179 | int cat) | |
180 | { | |
181 | struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; | |
182 | ||
183 | if (heap->cnt >= heap->max_cnt) { | |
184 | const int b = LPT_HEAP_SZ / 2 - 1; | |
185 | int cpos, val1, val2; | |
186 | ||
187 | /* Compare to some other LEB on the bottom of heap */ | |
188 | /* Pick a position kind of randomly */ | |
189 | cpos = (((size_t)lprops >> 4) & b) + b; | |
190 | ubifs_assert(cpos >= b); | |
191 | ubifs_assert(cpos < LPT_HEAP_SZ); | |
192 | ubifs_assert(cpos < heap->cnt); | |
193 | ||
194 | val1 = get_heap_comp_val(lprops, cat); | |
195 | val2 = get_heap_comp_val(heap->arr[cpos], cat); | |
196 | if (val1 > val2) { | |
197 | struct ubifs_lprops *lp; | |
198 | ||
199 | lp = heap->arr[cpos]; | |
200 | lp->flags &= ~LPROPS_CAT_MASK; | |
201 | lp->flags |= LPROPS_UNCAT; | |
202 | list_add(&lp->list, &c->uncat_list); | |
203 | lprops->hpos = cpos; | |
204 | heap->arr[cpos] = lprops; | |
205 | move_up_lpt_heap(c, heap, lprops, cat); | |
206 | dbg_check_heap(c, heap, cat, lprops->hpos); | |
207 | return 1; /* Added to heap */ | |
208 | } | |
209 | dbg_check_heap(c, heap, cat, -1); | |
210 | return 0; /* Not added to heap */ | |
211 | } else { | |
212 | lprops->hpos = heap->cnt++; | |
213 | heap->arr[lprops->hpos] = lprops; | |
214 | move_up_lpt_heap(c, heap, lprops, cat); | |
215 | dbg_check_heap(c, heap, cat, lprops->hpos); | |
216 | return 1; /* Added to heap */ | |
217 | } | |
218 | } | |
219 | ||
220 | /** | |
221 | * remove_from_lpt_heap - remove LEB properties from a LEB category heap. | |
222 | * @c: UBIFS file-system description object | |
223 | * @lprops: LEB properties to remove | |
224 | * @cat: LEB category | |
225 | */ | |
226 | static void remove_from_lpt_heap(struct ubifs_info *c, | |
227 | struct ubifs_lprops *lprops, int cat) | |
228 | { | |
229 | struct ubifs_lpt_heap *heap; | |
230 | int hpos = lprops->hpos; | |
231 | ||
232 | heap = &c->lpt_heap[cat - 1]; | |
233 | ubifs_assert(hpos >= 0 && hpos < heap->cnt); | |
234 | ubifs_assert(heap->arr[hpos] == lprops); | |
235 | heap->cnt -= 1; | |
236 | if (hpos < heap->cnt) { | |
237 | heap->arr[hpos] = heap->arr[heap->cnt]; | |
238 | heap->arr[hpos]->hpos = hpos; | |
239 | adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); | |
240 | } | |
241 | dbg_check_heap(c, heap, cat, -1); | |
242 | } | |
243 | ||
244 | /** | |
245 | * lpt_heap_replace - replace lprops in a category heap. | |
246 | * @c: UBIFS file-system description object | |
247 | * @old_lprops: LEB properties to replace | |
248 | * @new_lprops: LEB properties with which to replace | |
249 | * @cat: LEB category | |
250 | * | |
251 | * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) | |
252 | * and the lprops that the pnode contains. When that happens, references in | |
253 | * the category heaps to those lprops must be updated to point to the new | |
254 | * lprops. This function does that. | |
255 | */ | |
256 | static void lpt_heap_replace(struct ubifs_info *c, | |
257 | struct ubifs_lprops *old_lprops, | |
258 | struct ubifs_lprops *new_lprops, int cat) | |
259 | { | |
260 | struct ubifs_lpt_heap *heap; | |
261 | int hpos = new_lprops->hpos; | |
262 | ||
263 | heap = &c->lpt_heap[cat - 1]; | |
264 | heap->arr[hpos] = new_lprops; | |
265 | } | |
266 | ||
267 | /** | |
268 | * ubifs_add_to_cat - add LEB properties to a category list or heap. | |
269 | * @c: UBIFS file-system description object | |
270 | * @lprops: LEB properties to add | |
271 | * @cat: LEB category to which to add | |
272 | * | |
273 | * LEB properties are categorized to enable fast find operations. | |
274 | */ | |
275 | void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, | |
276 | int cat) | |
277 | { | |
278 | switch (cat) { | |
279 | case LPROPS_DIRTY: | |
280 | case LPROPS_DIRTY_IDX: | |
281 | case LPROPS_FREE: | |
282 | if (add_to_lpt_heap(c, lprops, cat)) | |
283 | break; | |
284 | /* No more room on heap so make it uncategorized */ | |
285 | cat = LPROPS_UNCAT; | |
286 | /* Fall through */ | |
287 | case LPROPS_UNCAT: | |
288 | list_add(&lprops->list, &c->uncat_list); | |
289 | break; | |
290 | case LPROPS_EMPTY: | |
291 | list_add(&lprops->list, &c->empty_list); | |
292 | break; | |
293 | case LPROPS_FREEABLE: | |
294 | list_add(&lprops->list, &c->freeable_list); | |
295 | c->freeable_cnt += 1; | |
296 | break; | |
297 | case LPROPS_FRDI_IDX: | |
298 | list_add(&lprops->list, &c->frdi_idx_list); | |
299 | break; | |
300 | default: | |
301 | ubifs_assert(0); | |
302 | } | |
303 | lprops->flags &= ~LPROPS_CAT_MASK; | |
304 | lprops->flags |= cat; | |
305 | } | |
306 | ||
307 | /** | |
308 | * ubifs_remove_from_cat - remove LEB properties from a category list or heap. | |
309 | * @c: UBIFS file-system description object | |
310 | * @lprops: LEB properties to remove | |
311 | * @cat: LEB category from which to remove | |
312 | * | |
313 | * LEB properties are categorized to enable fast find operations. | |
314 | */ | |
315 | static void ubifs_remove_from_cat(struct ubifs_info *c, | |
316 | struct ubifs_lprops *lprops, int cat) | |
317 | { | |
318 | switch (cat) { | |
319 | case LPROPS_DIRTY: | |
320 | case LPROPS_DIRTY_IDX: | |
321 | case LPROPS_FREE: | |
322 | remove_from_lpt_heap(c, lprops, cat); | |
323 | break; | |
324 | case LPROPS_FREEABLE: | |
325 | c->freeable_cnt -= 1; | |
326 | ubifs_assert(c->freeable_cnt >= 0); | |
327 | /* Fall through */ | |
328 | case LPROPS_UNCAT: | |
329 | case LPROPS_EMPTY: | |
330 | case LPROPS_FRDI_IDX: | |
331 | ubifs_assert(!list_empty(&lprops->list)); | |
332 | list_del(&lprops->list); | |
333 | break; | |
334 | default: | |
335 | ubifs_assert(0); | |
336 | } | |
337 | } | |
338 | ||
339 | /** | |
340 | * ubifs_replace_cat - replace lprops in a category list or heap. | |
341 | * @c: UBIFS file-system description object | |
342 | * @old_lprops: LEB properties to replace | |
343 | * @new_lprops: LEB properties with which to replace | |
344 | * | |
345 | * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) | |
346 | * and the lprops that the pnode contains. When that happens, references in | |
347 | * category lists and heaps must be replaced. This function does that. | |
348 | */ | |
349 | void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, | |
350 | struct ubifs_lprops *new_lprops) | |
351 | { | |
352 | int cat; | |
353 | ||
354 | cat = new_lprops->flags & LPROPS_CAT_MASK; | |
355 | switch (cat) { | |
356 | case LPROPS_DIRTY: | |
357 | case LPROPS_DIRTY_IDX: | |
358 | case LPROPS_FREE: | |
359 | lpt_heap_replace(c, old_lprops, new_lprops, cat); | |
360 | break; | |
361 | case LPROPS_UNCAT: | |
362 | case LPROPS_EMPTY: | |
363 | case LPROPS_FREEABLE: | |
364 | case LPROPS_FRDI_IDX: | |
365 | list_replace(&old_lprops->list, &new_lprops->list); | |
366 | break; | |
367 | default: | |
368 | ubifs_assert(0); | |
369 | } | |
370 | } | |
371 | ||
372 | /** | |
373 | * ubifs_ensure_cat - ensure LEB properties are categorized. | |
374 | * @c: UBIFS file-system description object | |
375 | * @lprops: LEB properties | |
376 | * | |
377 | * A LEB may have fallen off of the bottom of a heap, and ended up as | |
378 | * uncategorized even though it has enough space for us now. If that is the case | |
379 | * this function will put the LEB back onto a heap. | |
380 | */ | |
381 | void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) | |
382 | { | |
383 | int cat = lprops->flags & LPROPS_CAT_MASK; | |
384 | ||
385 | if (cat != LPROPS_UNCAT) | |
386 | return; | |
387 | cat = ubifs_categorize_lprops(c, lprops); | |
388 | if (cat == LPROPS_UNCAT) | |
389 | return; | |
390 | ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); | |
391 | ubifs_add_to_cat(c, lprops, cat); | |
392 | } | |
393 | ||
394 | /** | |
395 | * ubifs_categorize_lprops - categorize LEB properties. | |
396 | * @c: UBIFS file-system description object | |
397 | * @lprops: LEB properties to categorize | |
398 | * | |
399 | * LEB properties are categorized to enable fast find operations. This function | |
400 | * returns the LEB category to which the LEB properties belong. Note however | |
401 | * that if the LEB category is stored as a heap and the heap is full, the | |
402 | * LEB properties may have their category changed to %LPROPS_UNCAT. | |
403 | */ | |
404 | int ubifs_categorize_lprops(const struct ubifs_info *c, | |
405 | const struct ubifs_lprops *lprops) | |
406 | { | |
407 | if (lprops->flags & LPROPS_TAKEN) | |
408 | return LPROPS_UNCAT; | |
409 | ||
410 | if (lprops->free == c->leb_size) { | |
411 | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); | |
412 | return LPROPS_EMPTY; | |
413 | } | |
414 | ||
415 | if (lprops->free + lprops->dirty == c->leb_size) { | |
416 | if (lprops->flags & LPROPS_INDEX) | |
417 | return LPROPS_FRDI_IDX; | |
418 | else | |
419 | return LPROPS_FREEABLE; | |
420 | } | |
421 | ||
422 | if (lprops->flags & LPROPS_INDEX) { | |
423 | if (lprops->dirty + lprops->free >= c->min_idx_node_sz) | |
424 | return LPROPS_DIRTY_IDX; | |
425 | } else { | |
426 | if (lprops->dirty >= c->dead_wm && | |
427 | lprops->dirty > lprops->free) | |
428 | return LPROPS_DIRTY; | |
429 | if (lprops->free > 0) | |
430 | return LPROPS_FREE; | |
431 | } | |
432 | ||
433 | return LPROPS_UNCAT; | |
434 | } | |
435 | ||
436 | /** | |
437 | * change_category - change LEB properties category. | |
438 | * @c: UBIFS file-system description object | |
439 | * @lprops: LEB properties to recategorize | |
440 | * | |
441 | * LEB properties are categorized to enable fast find operations. When the LEB | |
442 | * properties change they must be recategorized. | |
443 | */ | |
444 | static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) | |
445 | { | |
446 | int old_cat = lprops->flags & LPROPS_CAT_MASK; | |
447 | int new_cat = ubifs_categorize_lprops(c, lprops); | |
448 | ||
449 | if (old_cat == new_cat) { | |
450 | struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1]; | |
451 | ||
452 | /* lprops on a heap now must be moved up or down */ | |
453 | if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) | |
454 | return; /* Not on a heap */ | |
455 | heap = &c->lpt_heap[new_cat - 1]; | |
456 | adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); | |
457 | } else { | |
458 | ubifs_remove_from_cat(c, lprops, old_cat); | |
459 | ubifs_add_to_cat(c, lprops, new_cat); | |
460 | } | |
461 | } | |
462 | ||
1e51764a AB |
463 | /** |
464 | * calc_dark - calculate LEB dark space size. | |
465 | * @c: the UBIFS file-system description object | |
466 | * @spc: amount of free and dirty space in the LEB | |
467 | * | |
468 | * This function calculates amount of dark space in an LEB which has @spc bytes | |
469 | * of free and dirty space. Returns the calculations result. | |
470 | * | |
471 | * Dark space is the space which is not always usable - it depends on which | |
472 | * nodes are written in which order. E.g., if an LEB has only 512 free bytes, | |
473 | * it is dark space, because it cannot fit a large data node. So UBIFS cannot | |
474 | * count on this LEB and treat these 512 bytes as usable because it is not true | |
475 | * if, for example, only big chunks of uncompressible data will be written to | |
476 | * the FS. | |
477 | */ | |
478 | static int calc_dark(struct ubifs_info *c, int spc) | |
479 | { | |
480 | ubifs_assert(!(spc & 7)); | |
481 | ||
482 | if (spc < c->dark_wm) | |
483 | return spc; | |
484 | ||
485 | /* | |
486 | * If we have slightly more space then the dark space watermark, we can | |
487 | * anyway safely assume it we'll be able to write a node of the | |
488 | * smallest size there. | |
489 | */ | |
490 | if (spc - c->dark_wm < MIN_WRITE_SZ) | |
491 | return spc - MIN_WRITE_SZ; | |
492 | ||
493 | return c->dark_wm; | |
494 | } | |
495 | ||
496 | /** | |
497 | * is_lprops_dirty - determine if LEB properties are dirty. | |
498 | * @c: the UBIFS file-system description object | |
499 | * @lprops: LEB properties to test | |
500 | */ | |
501 | static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) | |
502 | { | |
503 | struct ubifs_pnode *pnode; | |
504 | int pos; | |
505 | ||
506 | pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); | |
507 | pnode = (struct ubifs_pnode *)container_of(lprops - pos, | |
508 | struct ubifs_pnode, | |
509 | lprops[0]); | |
510 | return !test_bit(COW_ZNODE, &pnode->flags) && | |
511 | test_bit(DIRTY_CNODE, &pnode->flags); | |
512 | } | |
513 | ||
514 | /** | |
515 | * ubifs_change_lp - change LEB properties. | |
516 | * @c: the UBIFS file-system description object | |
517 | * @lp: LEB properties to change | |
518 | * @free: new free space amount | |
519 | * @dirty: new dirty space amount | |
520 | * @flags: new flags | |
521 | * @idx_gc_cnt: change to the count of idx_gc list | |
522 | * | |
d3cf502b AB |
523 | * This function changes LEB properties (@free, @dirty or @flag). However, the |
524 | * property which has the %LPROPS_NC value is not changed. Returns a pointer to | |
525 | * the updated LEB properties on success and a negative error code on failure. | |
1e51764a | 526 | * |
d3cf502b AB |
527 | * Note, the LEB properties may have had to be copied (due to COW) and |
528 | * consequently the pointer returned may not be the same as the pointer | |
529 | * passed. | |
1e51764a AB |
530 | */ |
531 | const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, | |
532 | const struct ubifs_lprops *lp, | |
533 | int free, int dirty, int flags, | |
534 | int idx_gc_cnt) | |
535 | { | |
536 | /* | |
537 | * This is the only function that is allowed to change lprops, so we | |
538 | * discard the const qualifier. | |
539 | */ | |
540 | struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; | |
541 | ||
542 | dbg_lp("LEB %d, free %d, dirty %d, flags %d", | |
543 | lprops->lnum, free, dirty, flags); | |
544 | ||
545 | ubifs_assert(mutex_is_locked(&c->lp_mutex)); | |
546 | ubifs_assert(c->lst.empty_lebs >= 0 && | |
547 | c->lst.empty_lebs <= c->main_lebs); | |
548 | ubifs_assert(c->freeable_cnt >= 0); | |
549 | ubifs_assert(c->freeable_cnt <= c->main_lebs); | |
550 | ubifs_assert(c->lst.taken_empty_lebs >= 0); | |
551 | ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); | |
552 | ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); | |
553 | ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); | |
554 | ubifs_assert(!(c->lst.total_used & 7)); | |
555 | ubifs_assert(free == LPROPS_NC || free >= 0); | |
556 | ubifs_assert(dirty == LPROPS_NC || dirty >= 0); | |
557 | ||
558 | if (!is_lprops_dirty(c, lprops)) { | |
559 | lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); | |
560 | if (IS_ERR(lprops)) | |
561 | return lprops; | |
562 | } else | |
563 | ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); | |
564 | ||
565 | ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); | |
566 | ||
567 | spin_lock(&c->space_lock); | |
1e51764a AB |
568 | if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) |
569 | c->lst.taken_empty_lebs -= 1; | |
570 | ||
571 | if (!(lprops->flags & LPROPS_INDEX)) { | |
572 | int old_spc; | |
573 | ||
574 | old_spc = lprops->free + lprops->dirty; | |
575 | if (old_spc < c->dead_wm) | |
576 | c->lst.total_dead -= old_spc; | |
577 | else | |
578 | c->lst.total_dark -= calc_dark(c, old_spc); | |
579 | ||
580 | c->lst.total_used -= c->leb_size - old_spc; | |
581 | } | |
582 | ||
583 | if (free != LPROPS_NC) { | |
584 | free = ALIGN(free, 8); | |
585 | c->lst.total_free += free - lprops->free; | |
586 | ||
587 | /* Increase or decrease empty LEBs counter if needed */ | |
588 | if (free == c->leb_size) { | |
589 | if (lprops->free != c->leb_size) | |
590 | c->lst.empty_lebs += 1; | |
591 | } else if (lprops->free == c->leb_size) | |
592 | c->lst.empty_lebs -= 1; | |
593 | lprops->free = free; | |
594 | } | |
595 | ||
596 | if (dirty != LPROPS_NC) { | |
597 | dirty = ALIGN(dirty, 8); | |
598 | c->lst.total_dirty += dirty - lprops->dirty; | |
599 | lprops->dirty = dirty; | |
600 | } | |
601 | ||
602 | if (flags != LPROPS_NC) { | |
603 | /* Take care about indexing LEBs counter if needed */ | |
604 | if ((lprops->flags & LPROPS_INDEX)) { | |
605 | if (!(flags & LPROPS_INDEX)) | |
606 | c->lst.idx_lebs -= 1; | |
607 | } else if (flags & LPROPS_INDEX) | |
608 | c->lst.idx_lebs += 1; | |
609 | lprops->flags = flags; | |
610 | } | |
611 | ||
612 | if (!(lprops->flags & LPROPS_INDEX)) { | |
613 | int new_spc; | |
614 | ||
615 | new_spc = lprops->free + lprops->dirty; | |
616 | if (new_spc < c->dead_wm) | |
617 | c->lst.total_dead += new_spc; | |
618 | else | |
619 | c->lst.total_dark += calc_dark(c, new_spc); | |
620 | ||
621 | c->lst.total_used += c->leb_size - new_spc; | |
622 | } | |
623 | ||
624 | if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) | |
625 | c->lst.taken_empty_lebs += 1; | |
626 | ||
627 | change_category(c, lprops); | |
1e51764a | 628 | c->idx_gc_cnt += idx_gc_cnt; |
1e51764a | 629 | spin_unlock(&c->space_lock); |
1e51764a AB |
630 | return lprops; |
631 | } | |
632 | ||
1e51764a AB |
633 | /** |
634 | * ubifs_get_lp_stats - get lprops statistics. | |
635 | * @c: UBIFS file-system description object | |
636 | * @st: return statistics | |
637 | */ | |
638 | void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *st) | |
639 | { | |
640 | spin_lock(&c->space_lock); | |
641 | memcpy(st, &c->lst, sizeof(struct ubifs_lp_stats)); | |
642 | spin_unlock(&c->space_lock); | |
643 | } | |
644 | ||
645 | /** | |
646 | * ubifs_change_one_lp - change LEB properties. | |
647 | * @c: the UBIFS file-system description object | |
648 | * @lnum: LEB to change properties for | |
649 | * @free: amount of free space | |
650 | * @dirty: amount of dirty space | |
651 | * @flags_set: flags to set | |
652 | * @flags_clean: flags to clean | |
653 | * @idx_gc_cnt: change to the count of idx_gc list | |
654 | * | |
655 | * This function changes properties of LEB @lnum. It is a helper wrapper over | |
656 | * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the | |
657 | * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and | |
658 | * a negative error code in case of failure. | |
659 | */ | |
660 | int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, | |
661 | int flags_set, int flags_clean, int idx_gc_cnt) | |
662 | { | |
663 | int err = 0, flags; | |
664 | const struct ubifs_lprops *lp; | |
665 | ||
666 | ubifs_get_lprops(c); | |
667 | ||
668 | lp = ubifs_lpt_lookup_dirty(c, lnum); | |
669 | if (IS_ERR(lp)) { | |
670 | err = PTR_ERR(lp); | |
671 | goto out; | |
672 | } | |
673 | ||
674 | flags = (lp->flags | flags_set) & ~flags_clean; | |
675 | lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); | |
676 | if (IS_ERR(lp)) | |
677 | err = PTR_ERR(lp); | |
678 | ||
679 | out: | |
680 | ubifs_release_lprops(c); | |
e4d9b6cb AB |
681 | if (err) |
682 | ubifs_err("cannot change properties of LEB %d, error %d", | |
683 | lnum, err); | |
1e51764a AB |
684 | return err; |
685 | } | |
686 | ||
687 | /** | |
688 | * ubifs_update_one_lp - update LEB properties. | |
689 | * @c: the UBIFS file-system description object | |
690 | * @lnum: LEB to change properties for | |
691 | * @free: amount of free space | |
692 | * @dirty: amount of dirty space to add | |
693 | * @flags_set: flags to set | |
694 | * @flags_clean: flags to clean | |
695 | * | |
696 | * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to | |
697 | * current dirty space, not substitutes it. | |
698 | */ | |
699 | int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, | |
700 | int flags_set, int flags_clean) | |
701 | { | |
702 | int err = 0, flags; | |
703 | const struct ubifs_lprops *lp; | |
704 | ||
705 | ubifs_get_lprops(c); | |
706 | ||
707 | lp = ubifs_lpt_lookup_dirty(c, lnum); | |
708 | if (IS_ERR(lp)) { | |
709 | err = PTR_ERR(lp); | |
710 | goto out; | |
711 | } | |
712 | ||
713 | flags = (lp->flags | flags_set) & ~flags_clean; | |
714 | lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); | |
715 | if (IS_ERR(lp)) | |
716 | err = PTR_ERR(lp); | |
717 | ||
718 | out: | |
719 | ubifs_release_lprops(c); | |
e4d9b6cb AB |
720 | if (err) |
721 | ubifs_err("cannot update properties of LEB %d, error %d", | |
722 | lnum, err); | |
1e51764a AB |
723 | return err; |
724 | } | |
725 | ||
726 | /** | |
727 | * ubifs_read_one_lp - read LEB properties. | |
728 | * @c: the UBIFS file-system description object | |
729 | * @lnum: LEB to read properties for | |
730 | * @lp: where to store read properties | |
731 | * | |
732 | * This helper function reads properties of a LEB @lnum and stores them in @lp. | |
733 | * Returns zero in case of success and a negative error code in case of | |
734 | * failure. | |
735 | */ | |
736 | int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) | |
737 | { | |
738 | int err = 0; | |
739 | const struct ubifs_lprops *lpp; | |
740 | ||
741 | ubifs_get_lprops(c); | |
742 | ||
743 | lpp = ubifs_lpt_lookup(c, lnum); | |
744 | if (IS_ERR(lpp)) { | |
745 | err = PTR_ERR(lpp); | |
e4d9b6cb AB |
746 | ubifs_err("cannot read properties of LEB %d, error %d", |
747 | lnum, err); | |
1e51764a AB |
748 | goto out; |
749 | } | |
750 | ||
751 | memcpy(lp, lpp, sizeof(struct ubifs_lprops)); | |
752 | ||
753 | out: | |
754 | ubifs_release_lprops(c); | |
755 | return err; | |
756 | } | |
757 | ||
758 | /** | |
759 | * ubifs_fast_find_free - try to find a LEB with free space quickly. | |
760 | * @c: the UBIFS file-system description object | |
761 | * | |
762 | * This function returns LEB properties for a LEB with free space or %NULL if | |
763 | * the function is unable to find a LEB quickly. | |
764 | */ | |
765 | const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) | |
766 | { | |
767 | struct ubifs_lprops *lprops; | |
768 | struct ubifs_lpt_heap *heap; | |
769 | ||
770 | ubifs_assert(mutex_is_locked(&c->lp_mutex)); | |
771 | ||
772 | heap = &c->lpt_heap[LPROPS_FREE - 1]; | |
773 | if (heap->cnt == 0) | |
774 | return NULL; | |
775 | ||
776 | lprops = heap->arr[0]; | |
777 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | |
778 | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); | |
779 | return lprops; | |
780 | } | |
781 | ||
782 | /** | |
783 | * ubifs_fast_find_empty - try to find an empty LEB quickly. | |
784 | * @c: the UBIFS file-system description object | |
785 | * | |
786 | * This function returns LEB properties for an empty LEB or %NULL if the | |
787 | * function is unable to find an empty LEB quickly. | |
788 | */ | |
789 | const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) | |
790 | { | |
791 | struct ubifs_lprops *lprops; | |
792 | ||
793 | ubifs_assert(mutex_is_locked(&c->lp_mutex)); | |
794 | ||
795 | if (list_empty(&c->empty_list)) | |
796 | return NULL; | |
797 | ||
798 | lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); | |
799 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | |
800 | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); | |
801 | ubifs_assert(lprops->free == c->leb_size); | |
802 | return lprops; | |
803 | } | |
804 | ||
805 | /** | |
806 | * ubifs_fast_find_freeable - try to find a freeable LEB quickly. | |
807 | * @c: the UBIFS file-system description object | |
808 | * | |
809 | * This function returns LEB properties for a freeable LEB or %NULL if the | |
810 | * function is unable to find a freeable LEB quickly. | |
811 | */ | |
812 | const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) | |
813 | { | |
814 | struct ubifs_lprops *lprops; | |
815 | ||
816 | ubifs_assert(mutex_is_locked(&c->lp_mutex)); | |
817 | ||
818 | if (list_empty(&c->freeable_list)) | |
819 | return NULL; | |
820 | ||
821 | lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); | |
822 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | |
823 | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); | |
824 | ubifs_assert(lprops->free + lprops->dirty == c->leb_size); | |
825 | ubifs_assert(c->freeable_cnt > 0); | |
826 | return lprops; | |
827 | } | |
828 | ||
829 | /** | |
830 | * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. | |
831 | * @c: the UBIFS file-system description object | |
832 | * | |
833 | * This function returns LEB properties for a freeable index LEB or %NULL if the | |
834 | * function is unable to find a freeable index LEB quickly. | |
835 | */ | |
836 | const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) | |
837 | { | |
838 | struct ubifs_lprops *lprops; | |
839 | ||
840 | ubifs_assert(mutex_is_locked(&c->lp_mutex)); | |
841 | ||
842 | if (list_empty(&c->frdi_idx_list)) | |
843 | return NULL; | |
844 | ||
845 | lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); | |
846 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | |
847 | ubifs_assert((lprops->flags & LPROPS_INDEX)); | |
848 | ubifs_assert(lprops->free + lprops->dirty == c->leb_size); | |
849 | return lprops; | |
850 | } | |
851 | ||
852 | #ifdef CONFIG_UBIFS_FS_DEBUG | |
853 | ||
854 | /** | |
855 | * dbg_check_cats - check category heaps and lists. | |
856 | * @c: UBIFS file-system description object | |
857 | * | |
858 | * This function returns %0 on success and a negative error code on failure. | |
859 | */ | |
860 | int dbg_check_cats(struct ubifs_info *c) | |
861 | { | |
862 | struct ubifs_lprops *lprops; | |
863 | struct list_head *pos; | |
864 | int i, cat; | |
865 | ||
866 | if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS))) | |
867 | return 0; | |
868 | ||
869 | list_for_each_entry(lprops, &c->empty_list, list) { | |
870 | if (lprops->free != c->leb_size) { | |
871 | ubifs_err("non-empty LEB %d on empty list " | |
872 | "(free %d dirty %d flags %d)", lprops->lnum, | |
873 | lprops->free, lprops->dirty, lprops->flags); | |
874 | return -EINVAL; | |
875 | } | |
876 | if (lprops->flags & LPROPS_TAKEN) { | |
877 | ubifs_err("taken LEB %d on empty list " | |
878 | "(free %d dirty %d flags %d)", lprops->lnum, | |
879 | lprops->free, lprops->dirty, lprops->flags); | |
880 | return -EINVAL; | |
881 | } | |
882 | } | |
883 | ||
884 | i = 0; | |
885 | list_for_each_entry(lprops, &c->freeable_list, list) { | |
886 | if (lprops->free + lprops->dirty != c->leb_size) { | |
887 | ubifs_err("non-freeable LEB %d on freeable list " | |
888 | "(free %d dirty %d flags %d)", lprops->lnum, | |
889 | lprops->free, lprops->dirty, lprops->flags); | |
890 | return -EINVAL; | |
891 | } | |
892 | if (lprops->flags & LPROPS_TAKEN) { | |
893 | ubifs_err("taken LEB %d on freeable list " | |
894 | "(free %d dirty %d flags %d)", lprops->lnum, | |
895 | lprops->free, lprops->dirty, lprops->flags); | |
896 | return -EINVAL; | |
897 | } | |
898 | i += 1; | |
899 | } | |
900 | if (i != c->freeable_cnt) { | |
901 | ubifs_err("freeable list count %d expected %d", i, | |
902 | c->freeable_cnt); | |
903 | return -EINVAL; | |
904 | } | |
905 | ||
906 | i = 0; | |
907 | list_for_each(pos, &c->idx_gc) | |
908 | i += 1; | |
909 | if (i != c->idx_gc_cnt) { | |
910 | ubifs_err("idx_gc list count %d expected %d", i, | |
911 | c->idx_gc_cnt); | |
912 | return -EINVAL; | |
913 | } | |
914 | ||
915 | list_for_each_entry(lprops, &c->frdi_idx_list, list) { | |
916 | if (lprops->free + lprops->dirty != c->leb_size) { | |
917 | ubifs_err("non-freeable LEB %d on frdi_idx list " | |
918 | "(free %d dirty %d flags %d)", lprops->lnum, | |
919 | lprops->free, lprops->dirty, lprops->flags); | |
920 | return -EINVAL; | |
921 | } | |
922 | if (lprops->flags & LPROPS_TAKEN) { | |
923 | ubifs_err("taken LEB %d on frdi_idx list " | |
924 | "(free %d dirty %d flags %d)", lprops->lnum, | |
925 | lprops->free, lprops->dirty, lprops->flags); | |
926 | return -EINVAL; | |
927 | } | |
928 | if (!(lprops->flags & LPROPS_INDEX)) { | |
929 | ubifs_err("non-index LEB %d on frdi_idx list " | |
930 | "(free %d dirty %d flags %d)", lprops->lnum, | |
931 | lprops->free, lprops->dirty, lprops->flags); | |
932 | return -EINVAL; | |
933 | } | |
934 | } | |
935 | ||
936 | for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { | |
937 | struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; | |
938 | ||
939 | for (i = 0; i < heap->cnt; i++) { | |
940 | lprops = heap->arr[i]; | |
941 | if (!lprops) { | |
942 | ubifs_err("null ptr in LPT heap cat %d", cat); | |
943 | return -EINVAL; | |
944 | } | |
945 | if (lprops->hpos != i) { | |
946 | ubifs_err("bad ptr in LPT heap cat %d", cat); | |
947 | return -EINVAL; | |
948 | } | |
949 | if (lprops->flags & LPROPS_TAKEN) { | |
950 | ubifs_err("taken LEB in LPT heap cat %d", cat); | |
951 | return -EINVAL; | |
952 | } | |
953 | } | |
954 | } | |
955 | ||
956 | return 0; | |
957 | } | |
958 | ||
959 | void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, | |
960 | int add_pos) | |
961 | { | |
962 | int i = 0, j, err = 0; | |
963 | ||
964 | if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS))) | |
965 | return; | |
966 | ||
967 | for (i = 0; i < heap->cnt; i++) { | |
968 | struct ubifs_lprops *lprops = heap->arr[i]; | |
969 | struct ubifs_lprops *lp; | |
970 | ||
971 | if (i != add_pos) | |
972 | if ((lprops->flags & LPROPS_CAT_MASK) != cat) { | |
973 | err = 1; | |
974 | goto out; | |
975 | } | |
976 | if (lprops->hpos != i) { | |
977 | err = 2; | |
978 | goto out; | |
979 | } | |
980 | lp = ubifs_lpt_lookup(c, lprops->lnum); | |
981 | if (IS_ERR(lp)) { | |
982 | err = 3; | |
983 | goto out; | |
984 | } | |
985 | if (lprops != lp) { | |
986 | dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d", | |
987 | (size_t)lprops, (size_t)lp, lprops->lnum, | |
988 | lp->lnum); | |
989 | err = 4; | |
990 | goto out; | |
991 | } | |
992 | for (j = 0; j < i; j++) { | |
993 | lp = heap->arr[j]; | |
994 | if (lp == lprops) { | |
995 | err = 5; | |
996 | goto out; | |
997 | } | |
998 | if (lp->lnum == lprops->lnum) { | |
999 | err = 6; | |
1000 | goto out; | |
1001 | } | |
1002 | } | |
1003 | } | |
1004 | out: | |
1005 | if (err) { | |
1006 | dbg_msg("failed cat %d hpos %d err %d", cat, i, err); | |
1007 | dbg_dump_stack(); | |
1008 | dbg_dump_heap(c, heap, cat); | |
1009 | } | |
1010 | } | |
1011 | ||
1012 | /** | |
1013 | * struct scan_check_data - data provided to scan callback function. | |
1014 | * @lst: LEB properties statistics | |
1015 | * @err: error code | |
1016 | */ | |
1017 | struct scan_check_data { | |
1018 | struct ubifs_lp_stats lst; | |
1019 | int err; | |
1020 | }; | |
1021 | ||
1022 | /** | |
1023 | * scan_check_cb - scan callback. | |
1024 | * @c: the UBIFS file-system description object | |
1025 | * @lp: LEB properties to scan | |
1026 | * @in_tree: whether the LEB properties are in main memory | |
1027 | * @data: information passed to and from the caller of the scan | |
1028 | * | |
1029 | * This function returns a code that indicates whether the scan should continue | |
1030 | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree | |
1031 | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop | |
1032 | * (%LPT_SCAN_STOP). | |
1033 | */ | |
1034 | static int scan_check_cb(struct ubifs_info *c, | |
1035 | const struct ubifs_lprops *lp, int in_tree, | |
1036 | struct scan_check_data *data) | |
1037 | { | |
1038 | struct ubifs_scan_leb *sleb; | |
1039 | struct ubifs_scan_node *snod; | |
1040 | struct ubifs_lp_stats *lst = &data->lst; | |
1041 | int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty; | |
1042 | ||
1043 | cat = lp->flags & LPROPS_CAT_MASK; | |
1044 | if (cat != LPROPS_UNCAT) { | |
1045 | cat = ubifs_categorize_lprops(c, lp); | |
1046 | if (cat != (lp->flags & LPROPS_CAT_MASK)) { | |
1047 | ubifs_err("bad LEB category %d expected %d", | |
1048 | (lp->flags & LPROPS_CAT_MASK), cat); | |
1049 | goto out; | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | /* Check lp is on its category list (if it has one) */ | |
1054 | if (in_tree) { | |
1055 | struct list_head *list = NULL; | |
1056 | ||
1057 | switch (cat) { | |
1058 | case LPROPS_EMPTY: | |
1059 | list = &c->empty_list; | |
1060 | break; | |
1061 | case LPROPS_FREEABLE: | |
1062 | list = &c->freeable_list; | |
1063 | break; | |
1064 | case LPROPS_FRDI_IDX: | |
1065 | list = &c->frdi_idx_list; | |
1066 | break; | |
1067 | case LPROPS_UNCAT: | |
1068 | list = &c->uncat_list; | |
1069 | break; | |
1070 | } | |
1071 | if (list) { | |
1072 | struct ubifs_lprops *lprops; | |
1073 | int found = 0; | |
1074 | ||
1075 | list_for_each_entry(lprops, list, list) { | |
1076 | if (lprops == lp) { | |
1077 | found = 1; | |
1078 | break; | |
1079 | } | |
1080 | } | |
1081 | if (!found) { | |
1082 | ubifs_err("bad LPT list (category %d)", cat); | |
1083 | goto out; | |
1084 | } | |
1085 | } | |
1086 | } | |
1087 | ||
1088 | /* Check lp is on its category heap (if it has one) */ | |
1089 | if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { | |
1090 | struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; | |
1091 | ||
1092 | if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || | |
1093 | lp != heap->arr[lp->hpos]) { | |
1094 | ubifs_err("bad LPT heap (category %d)", cat); | |
1095 | goto out; | |
1096 | } | |
1097 | } | |
1098 | ||
17c2f9f8 | 1099 | sleb = ubifs_scan(c, lnum, 0, c->dbg->buf); |
1e51764a AB |
1100 | if (IS_ERR(sleb)) { |
1101 | /* | |
1102 | * After an unclean unmount, empty and freeable LEBs | |
1103 | * may contain garbage. | |
1104 | */ | |
1105 | if (lp->free == c->leb_size) { | |
1106 | ubifs_err("scan errors were in empty LEB " | |
1107 | "- continuing checking"); | |
1108 | lst->empty_lebs += 1; | |
1109 | lst->total_free += c->leb_size; | |
1110 | lst->total_dark += calc_dark(c, c->leb_size); | |
1111 | return LPT_SCAN_CONTINUE; | |
1112 | } | |
1113 | ||
1114 | if (lp->free + lp->dirty == c->leb_size && | |
1115 | !(lp->flags & LPROPS_INDEX)) { | |
1116 | ubifs_err("scan errors were in freeable LEB " | |
1117 | "- continuing checking"); | |
1118 | lst->total_free += lp->free; | |
1119 | lst->total_dirty += lp->dirty; | |
1120 | lst->total_dark += calc_dark(c, c->leb_size); | |
1121 | return LPT_SCAN_CONTINUE; | |
1122 | } | |
1123 | data->err = PTR_ERR(sleb); | |
1124 | return LPT_SCAN_STOP; | |
1125 | } | |
1126 | ||
1127 | is_idx = -1; | |
1128 | list_for_each_entry(snod, &sleb->nodes, list) { | |
1129 | int found, level = 0; | |
1130 | ||
1131 | cond_resched(); | |
1132 | ||
1133 | if (is_idx == -1) | |
1134 | is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; | |
1135 | ||
1136 | if (is_idx && snod->type != UBIFS_IDX_NODE) { | |
1137 | ubifs_err("indexing node in data LEB %d:%d", | |
1138 | lnum, snod->offs); | |
1139 | goto out_destroy; | |
1140 | } | |
1141 | ||
1142 | if (snod->type == UBIFS_IDX_NODE) { | |
1143 | struct ubifs_idx_node *idx = snod->node; | |
1144 | ||
1145 | key_read(c, ubifs_idx_key(c, idx), &snod->key); | |
1146 | level = le16_to_cpu(idx->level); | |
1147 | } | |
1148 | ||
1149 | found = ubifs_tnc_has_node(c, &snod->key, level, lnum, | |
1150 | snod->offs, is_idx); | |
1151 | if (found) { | |
1152 | if (found < 0) | |
1153 | goto out_destroy; | |
1154 | used += ALIGN(snod->len, 8); | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | free = c->leb_size - sleb->endpt; | |
1159 | dirty = sleb->endpt - used; | |
1160 | ||
1161 | if (free > c->leb_size || free < 0 || dirty > c->leb_size || | |
1162 | dirty < 0) { | |
1163 | ubifs_err("bad calculated accounting for LEB %d: " | |
1164 | "free %d, dirty %d", lnum, free, dirty); | |
1165 | goto out_destroy; | |
1166 | } | |
1167 | ||
1168 | if (lp->free + lp->dirty == c->leb_size && | |
1169 | free + dirty == c->leb_size) | |
1170 | if ((is_idx && !(lp->flags & LPROPS_INDEX)) || | |
1171 | (!is_idx && free == c->leb_size) || | |
1172 | lp->free == c->leb_size) { | |
1173 | /* | |
1174 | * Empty or freeable LEBs could contain index | |
1175 | * nodes from an uncompleted commit due to an | |
1176 | * unclean unmount. Or they could be empty for | |
1177 | * the same reason. Or it may simply not have been | |
1178 | * unmapped. | |
1179 | */ | |
1180 | free = lp->free; | |
1181 | dirty = lp->dirty; | |
1182 | is_idx = 0; | |
1183 | } | |
1184 | ||
1185 | if (is_idx && lp->free + lp->dirty == free + dirty && | |
1186 | lnum != c->ihead_lnum) { | |
1187 | /* | |
1188 | * After an unclean unmount, an index LEB could have a different | |
1189 | * amount of free space than the value recorded by lprops. That | |
1190 | * is because the in-the-gaps method may use free space or | |
1191 | * create free space (as a side-effect of using ubi_leb_change | |
1192 | * and not writing the whole LEB). The incorrect free space | |
1193 | * value is not a problem because the index is only ever | |
1194 | * allocated empty LEBs, so there will never be an attempt to | |
1195 | * write to the free space at the end of an index LEB - except | |
1196 | * by the in-the-gaps method for which it is not a problem. | |
1197 | */ | |
1198 | free = lp->free; | |
1199 | dirty = lp->dirty; | |
1200 | } | |
1201 | ||
1202 | if (lp->free != free || lp->dirty != dirty) | |
1203 | goto out_print; | |
1204 | ||
1205 | if (is_idx && !(lp->flags & LPROPS_INDEX)) { | |
1206 | if (free == c->leb_size) | |
1207 | /* Free but not unmapped LEB, it's fine */ | |
1208 | is_idx = 0; | |
1209 | else { | |
1210 | ubifs_err("indexing node without indexing " | |
1211 | "flag"); | |
1212 | goto out_print; | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | if (!is_idx && (lp->flags & LPROPS_INDEX)) { | |
1217 | ubifs_err("data node with indexing flag"); | |
1218 | goto out_print; | |
1219 | } | |
1220 | ||
1221 | if (free == c->leb_size) | |
1222 | lst->empty_lebs += 1; | |
1223 | ||
1224 | if (is_idx) | |
1225 | lst->idx_lebs += 1; | |
1226 | ||
1227 | if (!(lp->flags & LPROPS_INDEX)) | |
1228 | lst->total_used += c->leb_size - free - dirty; | |
1229 | lst->total_free += free; | |
1230 | lst->total_dirty += dirty; | |
1231 | ||
1232 | if (!(lp->flags & LPROPS_INDEX)) { | |
1233 | int spc = free + dirty; | |
1234 | ||
1235 | if (spc < c->dead_wm) | |
1236 | lst->total_dead += spc; | |
1237 | else | |
1238 | lst->total_dark += calc_dark(c, spc); | |
1239 | } | |
1240 | ||
1241 | ubifs_scan_destroy(sleb); | |
1e51764a AB |
1242 | return LPT_SCAN_CONTINUE; |
1243 | ||
1244 | out_print: | |
1245 | ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, " | |
1246 | "should be free %d, dirty %d", | |
1247 | lnum, lp->free, lp->dirty, lp->flags, free, dirty); | |
1248 | dbg_dump_leb(c, lnum); | |
1249 | out_destroy: | |
1250 | ubifs_scan_destroy(sleb); | |
1251 | out: | |
1252 | data->err = -EINVAL; | |
1253 | return LPT_SCAN_STOP; | |
1254 | } | |
1255 | ||
1256 | /** | |
1257 | * dbg_check_lprops - check all LEB properties. | |
1258 | * @c: UBIFS file-system description object | |
1259 | * | |
1260 | * This function checks all LEB properties and makes sure they are all correct. | |
1261 | * It returns zero if everything is fine, %-EINVAL if there is an inconsistency | |
1262 | * and other negative error codes in case of other errors. This function is | |
1263 | * called while the file system is locked (because of commit start), so no | |
1264 | * additional locking is required. Note that locking the LPT mutex would cause | |
1265 | * a circular lock dependency with the TNC mutex. | |
1266 | */ | |
1267 | int dbg_check_lprops(struct ubifs_info *c) | |
1268 | { | |
1269 | int i, err; | |
1270 | struct scan_check_data data; | |
1271 | struct ubifs_lp_stats *lst = &data.lst; | |
1272 | ||
1273 | if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) | |
1274 | return 0; | |
1275 | ||
1276 | /* | |
1277 | * As we are going to scan the media, the write buffers have to be | |
1278 | * synchronized. | |
1279 | */ | |
1280 | for (i = 0; i < c->jhead_cnt; i++) { | |
1281 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); | |
1282 | if (err) | |
1283 | return err; | |
1284 | } | |
1285 | ||
1286 | memset(lst, 0, sizeof(struct ubifs_lp_stats)); | |
1287 | ||
1288 | data.err = 0; | |
1289 | err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, | |
1290 | (ubifs_lpt_scan_callback)scan_check_cb, | |
1291 | &data); | |
1292 | if (err && err != -ENOSPC) | |
1293 | goto out; | |
1294 | if (data.err) { | |
1295 | err = data.err; | |
1296 | goto out; | |
1297 | } | |
1298 | ||
1299 | if (lst->empty_lebs != c->lst.empty_lebs || | |
1300 | lst->idx_lebs != c->lst.idx_lebs || | |
1301 | lst->total_free != c->lst.total_free || | |
1302 | lst->total_dirty != c->lst.total_dirty || | |
1303 | lst->total_used != c->lst.total_used) { | |
1304 | ubifs_err("bad overall accounting"); | |
1305 | ubifs_err("calculated: empty_lebs %d, idx_lebs %d, " | |
1306 | "total_free %lld, total_dirty %lld, total_used %lld", | |
1307 | lst->empty_lebs, lst->idx_lebs, lst->total_free, | |
1308 | lst->total_dirty, lst->total_used); | |
1309 | ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, " | |
1310 | "total_free %lld, total_dirty %lld, total_used %lld", | |
1311 | c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, | |
1312 | c->lst.total_dirty, c->lst.total_used); | |
1313 | err = -EINVAL; | |
1314 | goto out; | |
1315 | } | |
1316 | ||
1317 | if (lst->total_dead != c->lst.total_dead || | |
1318 | lst->total_dark != c->lst.total_dark) { | |
1319 | ubifs_err("bad dead/dark space accounting"); | |
1320 | ubifs_err("calculated: total_dead %lld, total_dark %lld", | |
1321 | lst->total_dead, lst->total_dark); | |
1322 | ubifs_err("read from lprops: total_dead %lld, total_dark %lld", | |
1323 | c->lst.total_dead, c->lst.total_dark); | |
1324 | err = -EINVAL; | |
1325 | goto out; | |
1326 | } | |
1327 | ||
1328 | err = dbg_check_cats(c); | |
1329 | out: | |
1330 | return err; | |
1331 | } | |
1332 | ||
1333 | #endif /* CONFIG_UBIFS_FS_DEBUG */ |