]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
f30c2269 | 2 | * linux/kernel/posix-timers.c |
1da177e4 LT |
3 | * |
4 | * | |
5 | * 2002-10-15 Posix Clocks & timers | |
6 | * by George Anzinger [email protected] | |
7 | * | |
8 | * Copyright (C) 2002 2003 by MontaVista Software. | |
9 | * | |
10 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | |
11 | * Copyright (C) 2004 Boris Hu | |
12 | * | |
13 | * This program is free software; you can redistribute it and/or modify | |
14 | * it under the terms of the GNU General Public License as published by | |
15 | * the Free Software Foundation; either version 2 of the License, or (at | |
16 | * your option) any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, but | |
19 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * General Public License for more details. | |
22 | ||
23 | * You should have received a copy of the GNU General Public License | |
24 | * along with this program; if not, write to the Free Software | |
25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
26 | * | |
27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | |
28 | */ | |
29 | ||
30 | /* These are all the functions necessary to implement | |
31 | * POSIX clocks & timers | |
32 | */ | |
33 | #include <linux/mm.h> | |
1da177e4 LT |
34 | #include <linux/interrupt.h> |
35 | #include <linux/slab.h> | |
36 | #include <linux/time.h> | |
97d1f15b | 37 | #include <linux/mutex.h> |
1da177e4 LT |
38 | |
39 | #include <asm/uaccess.h> | |
1da177e4 LT |
40 | #include <linux/list.h> |
41 | #include <linux/init.h> | |
42 | #include <linux/compiler.h> | |
5ed67f05 | 43 | #include <linux/hash.h> |
0606f422 | 44 | #include <linux/posix-clock.h> |
1da177e4 LT |
45 | #include <linux/posix-timers.h> |
46 | #include <linux/syscalls.h> | |
47 | #include <linux/wait.h> | |
48 | #include <linux/workqueue.h> | |
9984de1a | 49 | #include <linux/export.h> |
5ed67f05 | 50 | #include <linux/hashtable.h> |
1da177e4 | 51 | |
1da177e4 | 52 | /* |
5ed67f05 PE |
53 | * Management arrays for POSIX timers. Timers are now kept in static hash table |
54 | * with 512 entries. | |
55 | * Timer ids are allocated by local routine, which selects proper hash head by | |
56 | * key, constructed from current->signal address and per signal struct counter. | |
57 | * This keeps timer ids unique per process, but now they can intersect between | |
58 | * processes. | |
1da177e4 LT |
59 | */ |
60 | ||
61 | /* | |
62 | * Lets keep our timers in a slab cache :-) | |
63 | */ | |
e18b890b | 64 | static struct kmem_cache *posix_timers_cache; |
5ed67f05 PE |
65 | |
66 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); | |
67 | static DEFINE_SPINLOCK(hash_lock); | |
1da177e4 | 68 | |
1da177e4 LT |
69 | /* |
70 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | |
71 | * SIGEV values. Here we put out an error if this assumption fails. | |
72 | */ | |
73 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | |
74 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | |
75 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | |
76 | #endif | |
77 | ||
65da528d TG |
78 | /* |
79 | * parisc wants ENOTSUP instead of EOPNOTSUPP | |
80 | */ | |
81 | #ifndef ENOTSUP | |
82 | # define ENANOSLEEP_NOTSUP EOPNOTSUPP | |
83 | #else | |
84 | # define ENANOSLEEP_NOTSUP ENOTSUP | |
85 | #endif | |
1da177e4 LT |
86 | |
87 | /* | |
88 | * The timer ID is turned into a timer address by idr_find(). | |
89 | * Verifying a valid ID consists of: | |
90 | * | |
91 | * a) checking that idr_find() returns other than -1. | |
92 | * b) checking that the timer id matches the one in the timer itself. | |
93 | * c) that the timer owner is in the callers thread group. | |
94 | */ | |
95 | ||
96 | /* | |
97 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | |
98 | * to implement others. This structure defines the various | |
0061748d | 99 | * clocks. |
1da177e4 LT |
100 | * |
101 | * RESOLUTION: Clock resolution is used to round up timer and interval | |
102 | * times, NOT to report clock times, which are reported with as | |
103 | * much resolution as the system can muster. In some cases this | |
104 | * resolution may depend on the underlying clock hardware and | |
105 | * may not be quantifiable until run time, and only then is the | |
106 | * necessary code is written. The standard says we should say | |
107 | * something about this issue in the documentation... | |
108 | * | |
0061748d RC |
109 | * FUNCTIONS: The CLOCKs structure defines possible functions to |
110 | * handle various clock functions. | |
1da177e4 | 111 | * |
0061748d RC |
112 | * The standard POSIX timer management code assumes the |
113 | * following: 1.) The k_itimer struct (sched.h) is used for | |
114 | * the timer. 2.) The list, it_lock, it_clock, it_id and | |
115 | * it_pid fields are not modified by timer code. | |
1da177e4 LT |
116 | * |
117 | * Permissions: It is assumed that the clock_settime() function defined | |
118 | * for each clock will take care of permission checks. Some | |
119 | * clocks may be set able by any user (i.e. local process | |
120 | * clocks) others not. Currently the only set able clock we | |
121 | * have is CLOCK_REALTIME and its high res counter part, both of | |
122 | * which we beg off on and pass to do_sys_settimeofday(). | |
123 | */ | |
124 | ||
125 | static struct k_clock posix_clocks[MAX_CLOCKS]; | |
becf8b5d | 126 | |
1da177e4 | 127 | /* |
becf8b5d | 128 | * These ones are defined below. |
1da177e4 | 129 | */ |
becf8b5d TG |
130 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, |
131 | struct timespec __user *rmtp); | |
838394fb | 132 | static int common_timer_create(struct k_itimer *new_timer); |
becf8b5d TG |
133 | static void common_timer_get(struct k_itimer *, struct itimerspec *); |
134 | static int common_timer_set(struct k_itimer *, int, | |
135 | struct itimerspec *, struct itimerspec *); | |
136 | static int common_timer_del(struct k_itimer *timer); | |
1da177e4 | 137 | |
c9cb2e3d | 138 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); |
1da177e4 | 139 | |
20f33a03 NK |
140 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
141 | ||
142 | #define lock_timer(tid, flags) \ | |
143 | ({ struct k_itimer *__timr; \ | |
144 | __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ | |
145 | __timr; \ | |
146 | }) | |
1da177e4 | 147 | |
5ed67f05 PE |
148 | static int hash(struct signal_struct *sig, unsigned int nr) |
149 | { | |
150 | return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); | |
151 | } | |
152 | ||
153 | static struct k_itimer *__posix_timers_find(struct hlist_head *head, | |
154 | struct signal_struct *sig, | |
155 | timer_t id) | |
156 | { | |
5ed67f05 PE |
157 | struct k_itimer *timer; |
158 | ||
159 | hlist_for_each_entry_rcu(timer, head, t_hash) { | |
160 | if ((timer->it_signal == sig) && (timer->it_id == id)) | |
161 | return timer; | |
162 | } | |
163 | return NULL; | |
164 | } | |
165 | ||
166 | static struct k_itimer *posix_timer_by_id(timer_t id) | |
167 | { | |
168 | struct signal_struct *sig = current->signal; | |
169 | struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; | |
170 | ||
171 | return __posix_timers_find(head, sig, id); | |
172 | } | |
173 | ||
174 | static int posix_timer_add(struct k_itimer *timer) | |
175 | { | |
176 | struct signal_struct *sig = current->signal; | |
177 | int first_free_id = sig->posix_timer_id; | |
178 | struct hlist_head *head; | |
179 | int ret = -ENOENT; | |
180 | ||
181 | do { | |
182 | spin_lock(&hash_lock); | |
183 | head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; | |
184 | if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { | |
185 | hlist_add_head_rcu(&timer->t_hash, head); | |
186 | ret = sig->posix_timer_id; | |
187 | } | |
188 | if (++sig->posix_timer_id < 0) | |
189 | sig->posix_timer_id = 0; | |
190 | if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) | |
191 | /* Loop over all possible ids completed */ | |
192 | ret = -EAGAIN; | |
193 | spin_unlock(&hash_lock); | |
194 | } while (ret == -ENOENT); | |
195 | return ret; | |
196 | } | |
197 | ||
1da177e4 LT |
198 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
199 | { | |
200 | spin_unlock_irqrestore(&timr->it_lock, flags); | |
201 | } | |
202 | ||
42285777 TG |
203 | /* Get clock_realtime */ |
204 | static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp) | |
205 | { | |
206 | ktime_get_real_ts(tp); | |
207 | return 0; | |
208 | } | |
209 | ||
26f9a479 TG |
210 | /* Set clock_realtime */ |
211 | static int posix_clock_realtime_set(const clockid_t which_clock, | |
212 | const struct timespec *tp) | |
213 | { | |
214 | return do_sys_settimeofday(tp, NULL); | |
215 | } | |
216 | ||
f1f1d5eb RC |
217 | static int posix_clock_realtime_adj(const clockid_t which_clock, |
218 | struct timex *t) | |
219 | { | |
220 | return do_adjtimex(t); | |
221 | } | |
222 | ||
becf8b5d TG |
223 | /* |
224 | * Get monotonic time for posix timers | |
225 | */ | |
226 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | |
227 | { | |
228 | ktime_get_ts(tp); | |
229 | return 0; | |
230 | } | |
1da177e4 | 231 | |
2d42244a | 232 | /* |
7fdd7f89 | 233 | * Get monotonic-raw time for posix timers |
2d42244a JS |
234 | */ |
235 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |
236 | { | |
237 | getrawmonotonic(tp); | |
238 | return 0; | |
239 | } | |
240 | ||
da15cfda JS |
241 | |
242 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | |
243 | { | |
244 | *tp = current_kernel_time(); | |
245 | return 0; | |
246 | } | |
247 | ||
248 | static int posix_get_monotonic_coarse(clockid_t which_clock, | |
249 | struct timespec *tp) | |
250 | { | |
251 | *tp = get_monotonic_coarse(); | |
252 | return 0; | |
253 | } | |
254 | ||
6622e670 | 255 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) |
da15cfda JS |
256 | { |
257 | *tp = ktime_to_timespec(KTIME_LOW_RES); | |
258 | return 0; | |
259 | } | |
7fdd7f89 JS |
260 | |
261 | static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp) | |
262 | { | |
263 | get_monotonic_boottime(tp); | |
264 | return 0; | |
265 | } | |
266 | ||
1ff3c967 JS |
267 | static int posix_get_tai(clockid_t which_clock, struct timespec *tp) |
268 | { | |
269 | timekeeping_clocktai(tp); | |
270 | return 0; | |
271 | } | |
7fdd7f89 | 272 | |
1da177e4 LT |
273 | /* |
274 | * Initialize everything, well, just everything in Posix clocks/timers ;) | |
275 | */ | |
276 | static __init int init_posix_timers(void) | |
277 | { | |
becf8b5d | 278 | struct k_clock clock_realtime = { |
2fd1f040 | 279 | .clock_getres = hrtimer_get_res, |
42285777 | 280 | .clock_get = posix_clock_realtime_get, |
26f9a479 | 281 | .clock_set = posix_clock_realtime_set, |
f1f1d5eb | 282 | .clock_adj = posix_clock_realtime_adj, |
a5cd2880 | 283 | .nsleep = common_nsleep, |
59bd5bc2 | 284 | .nsleep_restart = hrtimer_nanosleep_restart, |
838394fb | 285 | .timer_create = common_timer_create, |
27722df1 | 286 | .timer_set = common_timer_set, |
a7319fa2 | 287 | .timer_get = common_timer_get, |
6761c670 | 288 | .timer_del = common_timer_del, |
1da177e4 | 289 | }; |
becf8b5d | 290 | struct k_clock clock_monotonic = { |
2fd1f040 TG |
291 | .clock_getres = hrtimer_get_res, |
292 | .clock_get = posix_ktime_get_ts, | |
a5cd2880 | 293 | .nsleep = common_nsleep, |
59bd5bc2 | 294 | .nsleep_restart = hrtimer_nanosleep_restart, |
838394fb | 295 | .timer_create = common_timer_create, |
27722df1 | 296 | .timer_set = common_timer_set, |
a7319fa2 | 297 | .timer_get = common_timer_get, |
6761c670 | 298 | .timer_del = common_timer_del, |
1da177e4 | 299 | }; |
2d42244a | 300 | struct k_clock clock_monotonic_raw = { |
2fd1f040 TG |
301 | .clock_getres = hrtimer_get_res, |
302 | .clock_get = posix_get_monotonic_raw, | |
2d42244a | 303 | }; |
da15cfda | 304 | struct k_clock clock_realtime_coarse = { |
2fd1f040 TG |
305 | .clock_getres = posix_get_coarse_res, |
306 | .clock_get = posix_get_realtime_coarse, | |
da15cfda JS |
307 | }; |
308 | struct k_clock clock_monotonic_coarse = { | |
2fd1f040 TG |
309 | .clock_getres = posix_get_coarse_res, |
310 | .clock_get = posix_get_monotonic_coarse, | |
da15cfda | 311 | }; |
1ff3c967 JS |
312 | struct k_clock clock_tai = { |
313 | .clock_getres = hrtimer_get_res, | |
314 | .clock_get = posix_get_tai, | |
90adda98 JS |
315 | .nsleep = common_nsleep, |
316 | .nsleep_restart = hrtimer_nanosleep_restart, | |
317 | .timer_create = common_timer_create, | |
318 | .timer_set = common_timer_set, | |
319 | .timer_get = common_timer_get, | |
320 | .timer_del = common_timer_del, | |
1ff3c967 | 321 | }; |
7fdd7f89 JS |
322 | struct k_clock clock_boottime = { |
323 | .clock_getres = hrtimer_get_res, | |
324 | .clock_get = posix_get_boottime, | |
325 | .nsleep = common_nsleep, | |
326 | .nsleep_restart = hrtimer_nanosleep_restart, | |
327 | .timer_create = common_timer_create, | |
328 | .timer_set = common_timer_set, | |
329 | .timer_get = common_timer_get, | |
330 | .timer_del = common_timer_del, | |
331 | }; | |
1da177e4 | 332 | |
52708737 TG |
333 | posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); |
334 | posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); | |
335 | posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | |
336 | posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | |
337 | posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | |
7fdd7f89 | 338 | posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); |
1ff3c967 | 339 | posix_timers_register_clock(CLOCK_TAI, &clock_tai); |
1da177e4 LT |
340 | |
341 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | |
040b5c6f AD |
342 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
343 | NULL); | |
1da177e4 LT |
344 | return 0; |
345 | } | |
346 | ||
347 | __initcall(init_posix_timers); | |
348 | ||
1da177e4 LT |
349 | static void schedule_next_timer(struct k_itimer *timr) |
350 | { | |
44f21475 RZ |
351 | struct hrtimer *timer = &timr->it.real.timer; |
352 | ||
becf8b5d | 353 | if (timr->it.real.interval.tv64 == 0) |
1da177e4 LT |
354 | return; |
355 | ||
4d672e7a DL |
356 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, |
357 | timer->base->get_time(), | |
358 | timr->it.real.interval); | |
44f21475 | 359 | |
1da177e4 LT |
360 | timr->it_overrun_last = timr->it_overrun; |
361 | timr->it_overrun = -1; | |
362 | ++timr->it_requeue_pending; | |
44f21475 | 363 | hrtimer_restart(timer); |
1da177e4 LT |
364 | } |
365 | ||
366 | /* | |
367 | * This function is exported for use by the signal deliver code. It is | |
368 | * called just prior to the info block being released and passes that | |
369 | * block to us. It's function is to update the overrun entry AND to | |
370 | * restart the timer. It should only be called if the timer is to be | |
371 | * restarted (i.e. we have flagged this in the sys_private entry of the | |
372 | * info block). | |
373 | * | |
25985edc | 374 | * To protect against the timer going away while the interrupt is queued, |
1da177e4 LT |
375 | * we require that the it_requeue_pending flag be set. |
376 | */ | |
377 | void do_schedule_next_timer(struct siginfo *info) | |
378 | { | |
379 | struct k_itimer *timr; | |
380 | unsigned long flags; | |
381 | ||
382 | timr = lock_timer(info->si_tid, &flags); | |
383 | ||
becf8b5d TG |
384 | if (timr && timr->it_requeue_pending == info->si_sys_private) { |
385 | if (timr->it_clock < 0) | |
386 | posix_cpu_timer_schedule(timr); | |
387 | else | |
388 | schedule_next_timer(timr); | |
1da177e4 | 389 | |
54da1174 | 390 | info->si_overrun += timr->it_overrun_last; |
becf8b5d TG |
391 | } |
392 | ||
b6557fbc TG |
393 | if (timr) |
394 | unlock_timer(timr, flags); | |
1da177e4 LT |
395 | } |
396 | ||
ba661292 | 397 | int posix_timer_event(struct k_itimer *timr, int si_private) |
1da177e4 | 398 | { |
27af4245 ON |
399 | struct task_struct *task; |
400 | int shared, ret = -1; | |
ba661292 ON |
401 | /* |
402 | * FIXME: if ->sigq is queued we can race with | |
403 | * dequeue_signal()->do_schedule_next_timer(). | |
404 | * | |
405 | * If dequeue_signal() sees the "right" value of | |
406 | * si_sys_private it calls do_schedule_next_timer(). | |
407 | * We re-queue ->sigq and drop ->it_lock(). | |
408 | * do_schedule_next_timer() locks the timer | |
409 | * and re-schedules it while ->sigq is pending. | |
410 | * Not really bad, but not that we want. | |
411 | */ | |
1da177e4 | 412 | timr->sigq->info.si_sys_private = si_private; |
1da177e4 | 413 | |
27af4245 ON |
414 | rcu_read_lock(); |
415 | task = pid_task(timr->it_pid, PIDTYPE_PID); | |
416 | if (task) { | |
417 | shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); | |
418 | ret = send_sigqueue(timr->sigq, task, shared); | |
419 | } | |
420 | rcu_read_unlock(); | |
4aa73611 ON |
421 | /* If we failed to send the signal the timer stops. */ |
422 | return ret > 0; | |
1da177e4 LT |
423 | } |
424 | EXPORT_SYMBOL_GPL(posix_timer_event); | |
425 | ||
426 | /* | |
427 | * This function gets called when a POSIX.1b interval timer expires. It | |
428 | * is used as a callback from the kernel internal timer. The | |
429 | * run_timer_list code ALWAYS calls with interrupts on. | |
430 | ||
431 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | |
432 | */ | |
c9cb2e3d | 433 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
1da177e4 | 434 | { |
05cfb614 | 435 | struct k_itimer *timr; |
1da177e4 | 436 | unsigned long flags; |
becf8b5d | 437 | int si_private = 0; |
c9cb2e3d | 438 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
1da177e4 | 439 | |
05cfb614 | 440 | timr = container_of(timer, struct k_itimer, it.real.timer); |
1da177e4 | 441 | spin_lock_irqsave(&timr->it_lock, flags); |
1da177e4 | 442 | |
becf8b5d TG |
443 | if (timr->it.real.interval.tv64 != 0) |
444 | si_private = ++timr->it_requeue_pending; | |
1da177e4 | 445 | |
becf8b5d TG |
446 | if (posix_timer_event(timr, si_private)) { |
447 | /* | |
448 | * signal was not sent because of sig_ignor | |
449 | * we will not get a call back to restart it AND | |
450 | * it should be restarted. | |
451 | */ | |
452 | if (timr->it.real.interval.tv64 != 0) { | |
58229a18 TG |
453 | ktime_t now = hrtimer_cb_get_time(timer); |
454 | ||
455 | /* | |
456 | * FIXME: What we really want, is to stop this | |
457 | * timer completely and restart it in case the | |
458 | * SIG_IGN is removed. This is a non trivial | |
459 | * change which involves sighand locking | |
460 | * (sigh !), which we don't want to do late in | |
461 | * the release cycle. | |
462 | * | |
463 | * For now we just let timers with an interval | |
464 | * less than a jiffie expire every jiffie to | |
465 | * avoid softirq starvation in case of SIG_IGN | |
466 | * and a very small interval, which would put | |
467 | * the timer right back on the softirq pending | |
468 | * list. By moving now ahead of time we trick | |
469 | * hrtimer_forward() to expire the timer | |
470 | * later, while we still maintain the overrun | |
471 | * accuracy, but have some inconsistency in | |
472 | * the timer_gettime() case. This is at least | |
473 | * better than a starved softirq. A more | |
474 | * complex fix which solves also another related | |
475 | * inconsistency is already in the pipeline. | |
476 | */ | |
477 | #ifdef CONFIG_HIGH_RES_TIMERS | |
478 | { | |
479 | ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); | |
480 | ||
481 | if (timr->it.real.interval.tv64 < kj.tv64) | |
482 | now = ktime_add(now, kj); | |
483 | } | |
484 | #endif | |
4d672e7a | 485 | timr->it_overrun += (unsigned int) |
58229a18 | 486 | hrtimer_forward(timer, now, |
becf8b5d TG |
487 | timr->it.real.interval); |
488 | ret = HRTIMER_RESTART; | |
a0a0c28c | 489 | ++timr->it_requeue_pending; |
1da177e4 | 490 | } |
1da177e4 | 491 | } |
1da177e4 | 492 | |
becf8b5d TG |
493 | unlock_timer(timr, flags); |
494 | return ret; | |
495 | } | |
1da177e4 | 496 | |
27af4245 | 497 | static struct pid *good_sigevent(sigevent_t * event) |
1da177e4 LT |
498 | { |
499 | struct task_struct *rtn = current->group_leader; | |
500 | ||
501 | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | |
8dc86af0 | 502 | (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || |
bac0abd6 | 503 | !same_thread_group(rtn, current) || |
1da177e4 LT |
504 | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) |
505 | return NULL; | |
506 | ||
507 | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | |
508 | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | |
509 | return NULL; | |
510 | ||
27af4245 | 511 | return task_pid(rtn); |
1da177e4 LT |
512 | } |
513 | ||
52708737 TG |
514 | void posix_timers_register_clock(const clockid_t clock_id, |
515 | struct k_clock *new_clock) | |
1da177e4 LT |
516 | { |
517 | if ((unsigned) clock_id >= MAX_CLOCKS) { | |
4359ac0a TG |
518 | printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n", |
519 | clock_id); | |
520 | return; | |
521 | } | |
522 | ||
523 | if (!new_clock->clock_get) { | |
524 | printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n", | |
525 | clock_id); | |
526 | return; | |
527 | } | |
528 | if (!new_clock->clock_getres) { | |
529 | printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n", | |
1da177e4 LT |
530 | clock_id); |
531 | return; | |
532 | } | |
533 | ||
534 | posix_clocks[clock_id] = *new_clock; | |
535 | } | |
52708737 | 536 | EXPORT_SYMBOL_GPL(posix_timers_register_clock); |
1da177e4 LT |
537 | |
538 | static struct k_itimer * alloc_posix_timer(void) | |
539 | { | |
540 | struct k_itimer *tmr; | |
c3762229 | 541 | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
1da177e4 LT |
542 | if (!tmr) |
543 | return tmr; | |
1da177e4 LT |
544 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
545 | kmem_cache_free(posix_timers_cache, tmr); | |
aa94fbd5 | 546 | return NULL; |
1da177e4 | 547 | } |
ba661292 | 548 | memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); |
1da177e4 LT |
549 | return tmr; |
550 | } | |
551 | ||
8af08871 ED |
552 | static void k_itimer_rcu_free(struct rcu_head *head) |
553 | { | |
554 | struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); | |
555 | ||
556 | kmem_cache_free(posix_timers_cache, tmr); | |
557 | } | |
558 | ||
1da177e4 LT |
559 | #define IT_ID_SET 1 |
560 | #define IT_ID_NOT_SET 0 | |
561 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |
562 | { | |
563 | if (it_id_set) { | |
564 | unsigned long flags; | |
5ed67f05 PE |
565 | spin_lock_irqsave(&hash_lock, flags); |
566 | hlist_del_rcu(&tmr->t_hash); | |
567 | spin_unlock_irqrestore(&hash_lock, flags); | |
1da177e4 | 568 | } |
89992102 | 569 | put_pid(tmr->it_pid); |
1da177e4 | 570 | sigqueue_free(tmr->sigq); |
8af08871 | 571 | call_rcu(&tmr->it.rcu, k_itimer_rcu_free); |
1da177e4 LT |
572 | } |
573 | ||
cc785ac2 TG |
574 | static struct k_clock *clockid_to_kclock(const clockid_t id) |
575 | { | |
576 | if (id < 0) | |
0606f422 RC |
577 | return (id & CLOCKFD_MASK) == CLOCKFD ? |
578 | &clock_posix_dynamic : &clock_posix_cpu; | |
cc785ac2 TG |
579 | |
580 | if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) | |
581 | return NULL; | |
582 | return &posix_clocks[id]; | |
583 | } | |
584 | ||
838394fb TG |
585 | static int common_timer_create(struct k_itimer *new_timer) |
586 | { | |
587 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | |
588 | return 0; | |
589 | } | |
590 | ||
1da177e4 LT |
591 | /* Create a POSIX.1b interval timer. */ |
592 | ||
362e9c07 HC |
593 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
594 | struct sigevent __user *, timer_event_spec, | |
595 | timer_t __user *, created_timer_id) | |
1da177e4 | 596 | { |
838394fb | 597 | struct k_clock *kc = clockid_to_kclock(which_clock); |
2cd499e3 | 598 | struct k_itimer *new_timer; |
ef864c95 | 599 | int error, new_timer_id; |
1da177e4 LT |
600 | sigevent_t event; |
601 | int it_id_set = IT_ID_NOT_SET; | |
602 | ||
838394fb | 603 | if (!kc) |
1da177e4 | 604 | return -EINVAL; |
838394fb TG |
605 | if (!kc->timer_create) |
606 | return -EOPNOTSUPP; | |
1da177e4 LT |
607 | |
608 | new_timer = alloc_posix_timer(); | |
609 | if (unlikely(!new_timer)) | |
610 | return -EAGAIN; | |
611 | ||
612 | spin_lock_init(&new_timer->it_lock); | |
5ed67f05 PE |
613 | new_timer_id = posix_timer_add(new_timer); |
614 | if (new_timer_id < 0) { | |
615 | error = new_timer_id; | |
1da177e4 LT |
616 | goto out; |
617 | } | |
618 | ||
619 | it_id_set = IT_ID_SET; | |
620 | new_timer->it_id = (timer_t) new_timer_id; | |
621 | new_timer->it_clock = which_clock; | |
622 | new_timer->it_overrun = -1; | |
1da177e4 | 623 | |
1da177e4 LT |
624 | if (timer_event_spec) { |
625 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | |
626 | error = -EFAULT; | |
627 | goto out; | |
628 | } | |
36b2f046 | 629 | rcu_read_lock(); |
89992102 | 630 | new_timer->it_pid = get_pid(good_sigevent(&event)); |
36b2f046 | 631 | rcu_read_unlock(); |
89992102 | 632 | if (!new_timer->it_pid) { |
1da177e4 LT |
633 | error = -EINVAL; |
634 | goto out; | |
635 | } | |
636 | } else { | |
5a9fa730 ON |
637 | event.sigev_notify = SIGEV_SIGNAL; |
638 | event.sigev_signo = SIGALRM; | |
639 | event.sigev_value.sival_int = new_timer->it_id; | |
89992102 | 640 | new_timer->it_pid = get_pid(task_tgid(current)); |
1da177e4 LT |
641 | } |
642 | ||
5a9fa730 ON |
643 | new_timer->it_sigev_notify = event.sigev_notify; |
644 | new_timer->sigq->info.si_signo = event.sigev_signo; | |
645 | new_timer->sigq->info.si_value = event.sigev_value; | |
717835d9 | 646 | new_timer->sigq->info.si_tid = new_timer->it_id; |
5a9fa730 | 647 | new_timer->sigq->info.si_code = SI_TIMER; |
717835d9 | 648 | |
2b08de00 AV |
649 | if (copy_to_user(created_timer_id, |
650 | &new_timer_id, sizeof (new_timer_id))) { | |
651 | error = -EFAULT; | |
652 | goto out; | |
653 | } | |
654 | ||
838394fb | 655 | error = kc->timer_create(new_timer); |
45e0fffc AV |
656 | if (error) |
657 | goto out; | |
658 | ||
36b2f046 | 659 | spin_lock_irq(¤t->sighand->siglock); |
27af4245 | 660 | new_timer->it_signal = current->signal; |
36b2f046 ON |
661 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
662 | spin_unlock_irq(¤t->sighand->siglock); | |
ef864c95 ON |
663 | |
664 | return 0; | |
838394fb | 665 | /* |
1da177e4 LT |
666 | * In the case of the timer belonging to another task, after |
667 | * the task is unlocked, the timer is owned by the other task | |
668 | * and may cease to exist at any time. Don't use or modify | |
669 | * new_timer after the unlock call. | |
670 | */ | |
1da177e4 | 671 | out: |
ef864c95 | 672 | release_posix_timer(new_timer, it_id_set); |
1da177e4 LT |
673 | return error; |
674 | } | |
675 | ||
1da177e4 LT |
676 | /* |
677 | * Locking issues: We need to protect the result of the id look up until | |
678 | * we get the timer locked down so it is not deleted under us. The | |
679 | * removal is done under the idr spinlock so we use that here to bridge | |
680 | * the find to the timer lock. To avoid a dead lock, the timer id MUST | |
681 | * be release with out holding the timer lock. | |
682 | */ | |
20f33a03 | 683 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
1da177e4 LT |
684 | { |
685 | struct k_itimer *timr; | |
8af08871 | 686 | |
e182bb38 TH |
687 | /* |
688 | * timer_t could be any type >= int and we want to make sure any | |
689 | * @timer_id outside positive int range fails lookup. | |
690 | */ | |
691 | if ((unsigned long long)timer_id > INT_MAX) | |
692 | return NULL; | |
693 | ||
8af08871 | 694 | rcu_read_lock(); |
5ed67f05 | 695 | timr = posix_timer_by_id(timer_id); |
1da177e4 | 696 | if (timr) { |
8af08871 | 697 | spin_lock_irqsave(&timr->it_lock, *flags); |
89992102 | 698 | if (timr->it_signal == current->signal) { |
8af08871 | 699 | rcu_read_unlock(); |
31d92845 ON |
700 | return timr; |
701 | } | |
8af08871 | 702 | spin_unlock_irqrestore(&timr->it_lock, *flags); |
31d92845 | 703 | } |
8af08871 | 704 | rcu_read_unlock(); |
1da177e4 | 705 | |
31d92845 | 706 | return NULL; |
1da177e4 LT |
707 | } |
708 | ||
709 | /* | |
710 | * Get the time remaining on a POSIX.1b interval timer. This function | |
711 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | |
712 | * mess with irq. | |
713 | * | |
714 | * We have a couple of messes to clean up here. First there is the case | |
715 | * of a timer that has a requeue pending. These timers should appear to | |
716 | * be in the timer list with an expiry as if we were to requeue them | |
717 | * now. | |
718 | * | |
719 | * The second issue is the SIGEV_NONE timer which may be active but is | |
720 | * not really ever put in the timer list (to save system resources). | |
721 | * This timer may be expired, and if so, we will do it here. Otherwise | |
722 | * it is the same as a requeue pending timer WRT to what we should | |
723 | * report. | |
724 | */ | |
725 | static void | |
726 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | |
727 | { | |
3b98a532 | 728 | ktime_t now, remaining, iv; |
becf8b5d | 729 | struct hrtimer *timer = &timr->it.real.timer; |
1da177e4 | 730 | |
becf8b5d | 731 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
becf8b5d | 732 | |
3b98a532 RZ |
733 | iv = timr->it.real.interval; |
734 | ||
becf8b5d | 735 | /* interval timer ? */ |
3b98a532 RZ |
736 | if (iv.tv64) |
737 | cur_setting->it_interval = ktime_to_timespec(iv); | |
738 | else if (!hrtimer_active(timer) && | |
739 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | |
becf8b5d | 740 | return; |
3b98a532 RZ |
741 | |
742 | now = timer->base->get_time(); | |
743 | ||
becf8b5d | 744 | /* |
3b98a532 RZ |
745 | * When a requeue is pending or this is a SIGEV_NONE |
746 | * timer move the expiry time forward by intervals, so | |
747 | * expiry is > now. | |
becf8b5d | 748 | */ |
3b98a532 RZ |
749 | if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || |
750 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | |
4d672e7a | 751 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); |
3b98a532 | 752 | |
cc584b21 | 753 | remaining = ktime_sub(hrtimer_get_expires(timer), now); |
becf8b5d | 754 | /* Return 0 only, when the timer is expired and not pending */ |
3b98a532 RZ |
755 | if (remaining.tv64 <= 0) { |
756 | /* | |
757 | * A single shot SIGEV_NONE timer must return 0, when | |
758 | * it is expired ! | |
759 | */ | |
760 | if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | |
761 | cur_setting->it_value.tv_nsec = 1; | |
762 | } else | |
becf8b5d | 763 | cur_setting->it_value = ktime_to_timespec(remaining); |
1da177e4 LT |
764 | } |
765 | ||
766 | /* Get the time remaining on a POSIX.1b interval timer. */ | |
362e9c07 HC |
767 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
768 | struct itimerspec __user *, setting) | |
1da177e4 | 769 | { |
1da177e4 | 770 | struct itimerspec cur_setting; |
a7319fa2 TG |
771 | struct k_itimer *timr; |
772 | struct k_clock *kc; | |
1da177e4 | 773 | unsigned long flags; |
a7319fa2 | 774 | int ret = 0; |
1da177e4 LT |
775 | |
776 | timr = lock_timer(timer_id, &flags); | |
777 | if (!timr) | |
778 | return -EINVAL; | |
779 | ||
a7319fa2 TG |
780 | kc = clockid_to_kclock(timr->it_clock); |
781 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) | |
782 | ret = -EINVAL; | |
783 | else | |
784 | kc->timer_get(timr, &cur_setting); | |
1da177e4 LT |
785 | |
786 | unlock_timer(timr, flags); | |
787 | ||
a7319fa2 | 788 | if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) |
1da177e4 LT |
789 | return -EFAULT; |
790 | ||
a7319fa2 | 791 | return ret; |
1da177e4 | 792 | } |
becf8b5d | 793 | |
1da177e4 LT |
794 | /* |
795 | * Get the number of overruns of a POSIX.1b interval timer. This is to | |
796 | * be the overrun of the timer last delivered. At the same time we are | |
797 | * accumulating overruns on the next timer. The overrun is frozen when | |
798 | * the signal is delivered, either at the notify time (if the info block | |
799 | * is not queued) or at the actual delivery time (as we are informed by | |
800 | * the call back to do_schedule_next_timer(). So all we need to do is | |
801 | * to pick up the frozen overrun. | |
802 | */ | |
362e9c07 | 803 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
1da177e4 LT |
804 | { |
805 | struct k_itimer *timr; | |
806 | int overrun; | |
5ba25331 | 807 | unsigned long flags; |
1da177e4 LT |
808 | |
809 | timr = lock_timer(timer_id, &flags); | |
810 | if (!timr) | |
811 | return -EINVAL; | |
812 | ||
813 | overrun = timr->it_overrun_last; | |
814 | unlock_timer(timr, flags); | |
815 | ||
816 | return overrun; | |
817 | } | |
1da177e4 LT |
818 | |
819 | /* Set a POSIX.1b interval timer. */ | |
820 | /* timr->it_lock is taken. */ | |
858119e1 | 821 | static int |
1da177e4 LT |
822 | common_timer_set(struct k_itimer *timr, int flags, |
823 | struct itimerspec *new_setting, struct itimerspec *old_setting) | |
824 | { | |
becf8b5d | 825 | struct hrtimer *timer = &timr->it.real.timer; |
7978672c | 826 | enum hrtimer_mode mode; |
1da177e4 LT |
827 | |
828 | if (old_setting) | |
829 | common_timer_get(timr, old_setting); | |
830 | ||
831 | /* disable the timer */ | |
becf8b5d | 832 | timr->it.real.interval.tv64 = 0; |
1da177e4 LT |
833 | /* |
834 | * careful here. If smp we could be in the "fire" routine which will | |
835 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | |
836 | */ | |
becf8b5d | 837 | if (hrtimer_try_to_cancel(timer) < 0) |
1da177e4 | 838 | return TIMER_RETRY; |
1da177e4 LT |
839 | |
840 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | |
841 | ~REQUEUE_PENDING; | |
842 | timr->it_overrun_last = 0; | |
1da177e4 | 843 | |
becf8b5d TG |
844 | /* switch off the timer when it_value is zero */ |
845 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) | |
846 | return 0; | |
1da177e4 | 847 | |
c9cb2e3d | 848 | mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
7978672c | 849 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
7978672c | 850 | timr->it.real.timer.function = posix_timer_fn; |
becf8b5d | 851 | |
cc584b21 | 852 | hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); |
becf8b5d TG |
853 | |
854 | /* Convert interval */ | |
855 | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); | |
856 | ||
857 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | |
952bbc87 TG |
858 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { |
859 | /* Setup correct expiry time for relative timers */ | |
5a7780e7 | 860 | if (mode == HRTIMER_MODE_REL) { |
cc584b21 | 861 | hrtimer_add_expires(timer, timer->base->get_time()); |
5a7780e7 | 862 | } |
becf8b5d | 863 | return 0; |
952bbc87 | 864 | } |
becf8b5d | 865 | |
cc584b21 | 866 | hrtimer_start_expires(timer, mode); |
1da177e4 LT |
867 | return 0; |
868 | } | |
869 | ||
870 | /* Set a POSIX.1b interval timer */ | |
362e9c07 HC |
871 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
872 | const struct itimerspec __user *, new_setting, | |
873 | struct itimerspec __user *, old_setting) | |
1da177e4 LT |
874 | { |
875 | struct k_itimer *timr; | |
876 | struct itimerspec new_spec, old_spec; | |
877 | int error = 0; | |
5ba25331 | 878 | unsigned long flag; |
1da177e4 | 879 | struct itimerspec *rtn = old_setting ? &old_spec : NULL; |
27722df1 | 880 | struct k_clock *kc; |
1da177e4 LT |
881 | |
882 | if (!new_setting) | |
883 | return -EINVAL; | |
884 | ||
885 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | |
886 | return -EFAULT; | |
887 | ||
becf8b5d TG |
888 | if (!timespec_valid(&new_spec.it_interval) || |
889 | !timespec_valid(&new_spec.it_value)) | |
1da177e4 LT |
890 | return -EINVAL; |
891 | retry: | |
892 | timr = lock_timer(timer_id, &flag); | |
893 | if (!timr) | |
894 | return -EINVAL; | |
895 | ||
27722df1 TG |
896 | kc = clockid_to_kclock(timr->it_clock); |
897 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) | |
898 | error = -EINVAL; | |
899 | else | |
900 | error = kc->timer_set(timr, flags, &new_spec, rtn); | |
1da177e4 LT |
901 | |
902 | unlock_timer(timr, flag); | |
903 | if (error == TIMER_RETRY) { | |
904 | rtn = NULL; // We already got the old time... | |
905 | goto retry; | |
906 | } | |
907 | ||
becf8b5d TG |
908 | if (old_setting && !error && |
909 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | |
1da177e4 LT |
910 | error = -EFAULT; |
911 | ||
912 | return error; | |
913 | } | |
914 | ||
6761c670 | 915 | static int common_timer_del(struct k_itimer *timer) |
1da177e4 | 916 | { |
becf8b5d | 917 | timer->it.real.interval.tv64 = 0; |
f972be33 | 918 | |
becf8b5d | 919 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1da177e4 | 920 | return TIMER_RETRY; |
1da177e4 LT |
921 | return 0; |
922 | } | |
923 | ||
924 | static inline int timer_delete_hook(struct k_itimer *timer) | |
925 | { | |
6761c670 TG |
926 | struct k_clock *kc = clockid_to_kclock(timer->it_clock); |
927 | ||
928 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) | |
929 | return -EINVAL; | |
930 | return kc->timer_del(timer); | |
1da177e4 LT |
931 | } |
932 | ||
933 | /* Delete a POSIX.1b interval timer. */ | |
362e9c07 | 934 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
1da177e4 LT |
935 | { |
936 | struct k_itimer *timer; | |
5ba25331 | 937 | unsigned long flags; |
1da177e4 | 938 | |
1da177e4 | 939 | retry_delete: |
1da177e4 LT |
940 | timer = lock_timer(timer_id, &flags); |
941 | if (!timer) | |
942 | return -EINVAL; | |
943 | ||
becf8b5d | 944 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4 LT |
945 | unlock_timer(timer, flags); |
946 | goto retry_delete; | |
947 | } | |
becf8b5d | 948 | |
1da177e4 LT |
949 | spin_lock(¤t->sighand->siglock); |
950 | list_del(&timer->list); | |
951 | spin_unlock(¤t->sighand->siglock); | |
952 | /* | |
953 | * This keeps any tasks waiting on the spin lock from thinking | |
954 | * they got something (see the lock code above). | |
955 | */ | |
89992102 | 956 | timer->it_signal = NULL; |
4b7a1304 | 957 | |
1da177e4 LT |
958 | unlock_timer(timer, flags); |
959 | release_posix_timer(timer, IT_ID_SET); | |
960 | return 0; | |
961 | } | |
becf8b5d | 962 | |
1da177e4 LT |
963 | /* |
964 | * return timer owned by the process, used by exit_itimers | |
965 | */ | |
858119e1 | 966 | static void itimer_delete(struct k_itimer *timer) |
1da177e4 LT |
967 | { |
968 | unsigned long flags; | |
969 | ||
1da177e4 | 970 | retry_delete: |
1da177e4 LT |
971 | spin_lock_irqsave(&timer->it_lock, flags); |
972 | ||
becf8b5d | 973 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4 LT |
974 | unlock_timer(timer, flags); |
975 | goto retry_delete; | |
976 | } | |
1da177e4 LT |
977 | list_del(&timer->list); |
978 | /* | |
979 | * This keeps any tasks waiting on the spin lock from thinking | |
980 | * they got something (see the lock code above). | |
981 | */ | |
89992102 | 982 | timer->it_signal = NULL; |
4b7a1304 | 983 | |
1da177e4 LT |
984 | unlock_timer(timer, flags); |
985 | release_posix_timer(timer, IT_ID_SET); | |
986 | } | |
987 | ||
988 | /* | |
25f407f0 | 989 | * This is called by do_exit or de_thread, only when there are no more |
1da177e4 LT |
990 | * references to the shared signal_struct. |
991 | */ | |
992 | void exit_itimers(struct signal_struct *sig) | |
993 | { | |
994 | struct k_itimer *tmr; | |
995 | ||
996 | while (!list_empty(&sig->posix_timers)) { | |
997 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | |
998 | itimer_delete(tmr); | |
999 | } | |
1000 | } | |
1001 | ||
362e9c07 HC |
1002 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
1003 | const struct timespec __user *, tp) | |
1da177e4 | 1004 | { |
26f9a479 | 1005 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1006 | struct timespec new_tp; |
1007 | ||
26f9a479 | 1008 | if (!kc || !kc->clock_set) |
1da177e4 | 1009 | return -EINVAL; |
26f9a479 | 1010 | |
1da177e4 LT |
1011 | if (copy_from_user(&new_tp, tp, sizeof (*tp))) |
1012 | return -EFAULT; | |
1013 | ||
26f9a479 | 1014 | return kc->clock_set(which_clock, &new_tp); |
1da177e4 LT |
1015 | } |
1016 | ||
362e9c07 HC |
1017 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
1018 | struct timespec __user *,tp) | |
1da177e4 | 1019 | { |
42285777 | 1020 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1021 | struct timespec kernel_tp; |
1022 | int error; | |
1023 | ||
42285777 | 1024 | if (!kc) |
1da177e4 | 1025 | return -EINVAL; |
42285777 TG |
1026 | |
1027 | error = kc->clock_get(which_clock, &kernel_tp); | |
1028 | ||
1da177e4 LT |
1029 | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) |
1030 | error = -EFAULT; | |
1031 | ||
1032 | return error; | |
1da177e4 LT |
1033 | } |
1034 | ||
f1f1d5eb RC |
1035 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
1036 | struct timex __user *, utx) | |
1037 | { | |
1038 | struct k_clock *kc = clockid_to_kclock(which_clock); | |
1039 | struct timex ktx; | |
1040 | int err; | |
1041 | ||
1042 | if (!kc) | |
1043 | return -EINVAL; | |
1044 | if (!kc->clock_adj) | |
1045 | return -EOPNOTSUPP; | |
1046 | ||
1047 | if (copy_from_user(&ktx, utx, sizeof(ktx))) | |
1048 | return -EFAULT; | |
1049 | ||
1050 | err = kc->clock_adj(which_clock, &ktx); | |
1051 | ||
f0dbe81f | 1052 | if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
f1f1d5eb RC |
1053 | return -EFAULT; |
1054 | ||
1055 | return err; | |
1056 | } | |
1057 | ||
362e9c07 HC |
1058 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
1059 | struct timespec __user *, tp) | |
1da177e4 | 1060 | { |
e5e542ee | 1061 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1062 | struct timespec rtn_tp; |
1063 | int error; | |
1064 | ||
e5e542ee | 1065 | if (!kc) |
1da177e4 LT |
1066 | return -EINVAL; |
1067 | ||
e5e542ee | 1068 | error = kc->clock_getres(which_clock, &rtn_tp); |
1da177e4 | 1069 | |
e5e542ee | 1070 | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) |
1da177e4 | 1071 | error = -EFAULT; |
1da177e4 LT |
1072 | |
1073 | return error; | |
1074 | } | |
1075 | ||
97735f25 TG |
1076 | /* |
1077 | * nanosleep for monotonic and realtime clocks | |
1078 | */ | |
1079 | static int common_nsleep(const clockid_t which_clock, int flags, | |
1080 | struct timespec *tsave, struct timespec __user *rmtp) | |
1081 | { | |
080344b9 ON |
1082 | return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? |
1083 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | |
1084 | which_clock); | |
97735f25 | 1085 | } |
1da177e4 | 1086 | |
362e9c07 HC |
1087 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
1088 | const struct timespec __user *, rqtp, | |
1089 | struct timespec __user *, rmtp) | |
1da177e4 | 1090 | { |
a5cd2880 | 1091 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 | 1092 | struct timespec t; |
1da177e4 | 1093 | |
a5cd2880 | 1094 | if (!kc) |
1da177e4 | 1095 | return -EINVAL; |
a5cd2880 TG |
1096 | if (!kc->nsleep) |
1097 | return -ENANOSLEEP_NOTSUP; | |
1da177e4 LT |
1098 | |
1099 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | |
1100 | return -EFAULT; | |
1101 | ||
5f82b2b7 | 1102 | if (!timespec_valid(&t)) |
1da177e4 LT |
1103 | return -EINVAL; |
1104 | ||
a5cd2880 | 1105 | return kc->nsleep(which_clock, flags, &t, rmtp); |
1da177e4 | 1106 | } |
1711ef38 | 1107 | |
1711ef38 TA |
1108 | /* |
1109 | * This will restart clock_nanosleep. This is required only by | |
1110 | * compat_clock_nanosleep_restart for now. | |
1111 | */ | |
59bd5bc2 | 1112 | long clock_nanosleep_restart(struct restart_block *restart_block) |
1711ef38 | 1113 | { |
ab8177bc | 1114 | clockid_t which_clock = restart_block->nanosleep.clockid; |
59bd5bc2 TG |
1115 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1116 | ||
1117 | if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) | |
1118 | return -EINVAL; | |
1711ef38 | 1119 | |
59bd5bc2 | 1120 | return kc->nsleep_restart(restart_block); |
1711ef38 | 1121 | } |