]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/sched.c | |
3 | * | |
4 | * Kernel scheduler and related syscalls | |
5 | * | |
6 | * Copyright (C) 1991-2002 Linus Torvalds | |
7 | * | |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | |
9 | * make semaphores SMP safe | |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | |
11 | * by Andrea Arcangeli | |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | |
13 | * hybrid priority-list and round-robin design with | |
14 | * an array-switch method of distributing timeslices | |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | |
19 | */ | |
20 | ||
21 | #include <linux/mm.h> | |
22 | #include <linux/module.h> | |
23 | #include <linux/nmi.h> | |
24 | #include <linux/init.h> | |
25 | #include <asm/uaccess.h> | |
26 | #include <linux/highmem.h> | |
27 | #include <linux/smp_lock.h> | |
28 | #include <asm/mmu_context.h> | |
29 | #include <linux/interrupt.h> | |
c59ede7b | 30 | #include <linux/capability.h> |
1da177e4 LT |
31 | #include <linux/completion.h> |
32 | #include <linux/kernel_stat.h> | |
9a11b49a | 33 | #include <linux/debug_locks.h> |
1da177e4 LT |
34 | #include <linux/security.h> |
35 | #include <linux/notifier.h> | |
36 | #include <linux/profile.h> | |
37 | #include <linux/suspend.h> | |
198e2f18 | 38 | #include <linux/vmalloc.h> |
1da177e4 LT |
39 | #include <linux/blkdev.h> |
40 | #include <linux/delay.h> | |
41 | #include <linux/smp.h> | |
42 | #include <linux/threads.h> | |
43 | #include <linux/timer.h> | |
44 | #include <linux/rcupdate.h> | |
45 | #include <linux/cpu.h> | |
46 | #include <linux/cpuset.h> | |
47 | #include <linux/percpu.h> | |
48 | #include <linux/kthread.h> | |
49 | #include <linux/seq_file.h> | |
50 | #include <linux/syscalls.h> | |
51 | #include <linux/times.h> | |
8f0ab514 | 52 | #include <linux/tsacct_kern.h> |
c6fd91f0 | 53 | #include <linux/kprobes.h> |
0ff92245 | 54 | #include <linux/delayacct.h> |
1da177e4 LT |
55 | #include <asm/tlb.h> |
56 | ||
57 | #include <asm/unistd.h> | |
58 | ||
59 | /* | |
60 | * Convert user-nice values [ -20 ... 0 ... 19 ] | |
61 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | |
62 | * and back. | |
63 | */ | |
64 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | |
65 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | |
66 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | |
67 | ||
68 | /* | |
69 | * 'User priority' is the nice value converted to something we | |
70 | * can work with better when scaling various scheduler parameters, | |
71 | * it's a [ 0 ... 39 ] range. | |
72 | */ | |
73 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | |
74 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | |
75 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | |
76 | ||
77 | /* | |
78 | * Some helpers for converting nanosecond timing to jiffy resolution | |
79 | */ | |
80 | #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ)) | |
81 | #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) | |
82 | ||
83 | /* | |
84 | * These are the 'tuning knobs' of the scheduler: | |
85 | * | |
86 | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | |
87 | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | |
88 | * Timeslices get refilled after they expire. | |
89 | */ | |
90 | #define MIN_TIMESLICE max(5 * HZ / 1000, 1) | |
91 | #define DEF_TIMESLICE (100 * HZ / 1000) | |
92 | #define ON_RUNQUEUE_WEIGHT 30 | |
93 | #define CHILD_PENALTY 95 | |
94 | #define PARENT_PENALTY 100 | |
95 | #define EXIT_WEIGHT 3 | |
96 | #define PRIO_BONUS_RATIO 25 | |
97 | #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | |
98 | #define INTERACTIVE_DELTA 2 | |
99 | #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS) | |
100 | #define STARVATION_LIMIT (MAX_SLEEP_AVG) | |
101 | #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG)) | |
102 | ||
103 | /* | |
104 | * If a task is 'interactive' then we reinsert it in the active | |
105 | * array after it has expired its current timeslice. (it will not | |
106 | * continue to run immediately, it will still roundrobin with | |
107 | * other interactive tasks.) | |
108 | * | |
109 | * This part scales the interactivity limit depending on niceness. | |
110 | * | |
111 | * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | |
112 | * Here are a few examples of different nice levels: | |
113 | * | |
114 | * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | |
115 | * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | |
116 | * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0] | |
117 | * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | |
118 | * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | |
119 | * | |
120 | * (the X axis represents the possible -5 ... 0 ... +5 dynamic | |
121 | * priority range a task can explore, a value of '1' means the | |
122 | * task is rated interactive.) | |
123 | * | |
124 | * Ie. nice +19 tasks can never get 'interactive' enough to be | |
125 | * reinserted into the active array. And only heavily CPU-hog nice -20 | |
126 | * tasks will be expired. Default nice 0 tasks are somewhere between, | |
127 | * it takes some effort for them to get interactive, but it's not | |
128 | * too hard. | |
129 | */ | |
130 | ||
131 | #define CURRENT_BONUS(p) \ | |
132 | (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | |
133 | MAX_SLEEP_AVG) | |
134 | ||
135 | #define GRANULARITY (10 * HZ / 1000 ? : 1) | |
136 | ||
137 | #ifdef CONFIG_SMP | |
138 | #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \ | |
139 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | |
140 | num_online_cpus()) | |
141 | #else | |
142 | #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \ | |
143 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | |
144 | #endif | |
145 | ||
146 | #define SCALE(v1,v1_max,v2_max) \ | |
147 | (v1) * (v2_max) / (v1_max) | |
148 | ||
149 | #define DELTA(p) \ | |
013d3868 MA |
150 | (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \ |
151 | INTERACTIVE_DELTA) | |
1da177e4 LT |
152 | |
153 | #define TASK_INTERACTIVE(p) \ | |
154 | ((p)->prio <= (p)->static_prio - DELTA(p)) | |
155 | ||
156 | #define INTERACTIVE_SLEEP(p) \ | |
157 | (JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | |
158 | (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | |
159 | ||
160 | #define TASK_PREEMPTS_CURR(p, rq) \ | |
161 | ((p)->prio < (rq)->curr->prio) | |
162 | ||
163 | /* | |
164 | * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | |
165 | * to time slice values: [800ms ... 100ms ... 5ms] | |
166 | * | |
167 | * The higher a thread's priority, the bigger timeslices | |
168 | * it gets during one round of execution. But even the lowest | |
169 | * priority thread gets MIN_TIMESLICE worth of execution time. | |
170 | */ | |
171 | ||
172 | #define SCALE_PRIO(x, prio) \ | |
2dd73a4f | 173 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE) |
1da177e4 | 174 | |
2dd73a4f | 175 | static unsigned int static_prio_timeslice(int static_prio) |
1da177e4 | 176 | { |
2dd73a4f PW |
177 | if (static_prio < NICE_TO_PRIO(0)) |
178 | return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio); | |
1da177e4 | 179 | else |
2dd73a4f | 180 | return SCALE_PRIO(DEF_TIMESLICE, static_prio); |
1da177e4 | 181 | } |
2dd73a4f | 182 | |
36c8b586 | 183 | static inline unsigned int task_timeslice(struct task_struct *p) |
2dd73a4f PW |
184 | { |
185 | return static_prio_timeslice(p->static_prio); | |
186 | } | |
187 | ||
1da177e4 LT |
188 | /* |
189 | * These are the runqueue data structures: | |
190 | */ | |
191 | ||
1da177e4 LT |
192 | struct prio_array { |
193 | unsigned int nr_active; | |
d444886e | 194 | DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */ |
1da177e4 LT |
195 | struct list_head queue[MAX_PRIO]; |
196 | }; | |
197 | ||
198 | /* | |
199 | * This is the main, per-CPU runqueue data structure. | |
200 | * | |
201 | * Locking rule: those places that want to lock multiple runqueues | |
202 | * (such as the load balancing or the thread migration code), lock | |
203 | * acquire operations must be ordered by ascending &runqueue. | |
204 | */ | |
70b97a7f | 205 | struct rq { |
1da177e4 LT |
206 | spinlock_t lock; |
207 | ||
208 | /* | |
209 | * nr_running and cpu_load should be in the same cacheline because | |
210 | * remote CPUs use both these fields when doing load calculation. | |
211 | */ | |
212 | unsigned long nr_running; | |
2dd73a4f | 213 | unsigned long raw_weighted_load; |
1da177e4 | 214 | #ifdef CONFIG_SMP |
7897986b | 215 | unsigned long cpu_load[3]; |
1da177e4 LT |
216 | #endif |
217 | unsigned long long nr_switches; | |
218 | ||
219 | /* | |
220 | * This is part of a global counter where only the total sum | |
221 | * over all CPUs matters. A task can increase this counter on | |
222 | * one CPU and if it got migrated afterwards it may decrease | |
223 | * it on another CPU. Always updated under the runqueue lock: | |
224 | */ | |
225 | unsigned long nr_uninterruptible; | |
226 | ||
227 | unsigned long expired_timestamp; | |
228 | unsigned long long timestamp_last_tick; | |
36c8b586 | 229 | struct task_struct *curr, *idle; |
1da177e4 | 230 | struct mm_struct *prev_mm; |
70b97a7f | 231 | struct prio_array *active, *expired, arrays[2]; |
1da177e4 LT |
232 | int best_expired_prio; |
233 | atomic_t nr_iowait; | |
234 | ||
235 | #ifdef CONFIG_SMP | |
236 | struct sched_domain *sd; | |
237 | ||
238 | /* For active balancing */ | |
239 | int active_balance; | |
240 | int push_cpu; | |
0a2966b4 | 241 | int cpu; /* cpu of this runqueue */ |
1da177e4 | 242 | |
36c8b586 | 243 | struct task_struct *migration_thread; |
1da177e4 LT |
244 | struct list_head migration_queue; |
245 | #endif | |
246 | ||
247 | #ifdef CONFIG_SCHEDSTATS | |
248 | /* latency stats */ | |
249 | struct sched_info rq_sched_info; | |
250 | ||
251 | /* sys_sched_yield() stats */ | |
252 | unsigned long yld_exp_empty; | |
253 | unsigned long yld_act_empty; | |
254 | unsigned long yld_both_empty; | |
255 | unsigned long yld_cnt; | |
256 | ||
257 | /* schedule() stats */ | |
258 | unsigned long sched_switch; | |
259 | unsigned long sched_cnt; | |
260 | unsigned long sched_goidle; | |
261 | ||
262 | /* try_to_wake_up() stats */ | |
263 | unsigned long ttwu_cnt; | |
264 | unsigned long ttwu_local; | |
265 | #endif | |
fcb99371 | 266 | struct lock_class_key rq_lock_key; |
1da177e4 LT |
267 | }; |
268 | ||
70b97a7f | 269 | static DEFINE_PER_CPU(struct rq, runqueues); |
1da177e4 | 270 | |
0a2966b4 CL |
271 | static inline int cpu_of(struct rq *rq) |
272 | { | |
273 | #ifdef CONFIG_SMP | |
274 | return rq->cpu; | |
275 | #else | |
276 | return 0; | |
277 | #endif | |
278 | } | |
279 | ||
674311d5 NP |
280 | /* |
281 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | |
1a20ff27 | 282 | * See detach_destroy_domains: synchronize_sched for details. |
674311d5 NP |
283 | * |
284 | * The domain tree of any CPU may only be accessed from within | |
285 | * preempt-disabled sections. | |
286 | */ | |
48f24c4d IM |
287 | #define for_each_domain(cpu, __sd) \ |
288 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | |
1da177e4 LT |
289 | |
290 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | |
291 | #define this_rq() (&__get_cpu_var(runqueues)) | |
292 | #define task_rq(p) cpu_rq(task_cpu(p)) | |
293 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | |
294 | ||
1da177e4 | 295 | #ifndef prepare_arch_switch |
4866cde0 NP |
296 | # define prepare_arch_switch(next) do { } while (0) |
297 | #endif | |
298 | #ifndef finish_arch_switch | |
299 | # define finish_arch_switch(prev) do { } while (0) | |
300 | #endif | |
301 | ||
302 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
70b97a7f | 303 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
304 | { |
305 | return rq->curr == p; | |
306 | } | |
307 | ||
70b97a7f | 308 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
309 | { |
310 | } | |
311 | ||
70b97a7f | 312 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 | 313 | { |
da04c035 IM |
314 | #ifdef CONFIG_DEBUG_SPINLOCK |
315 | /* this is a valid case when another task releases the spinlock */ | |
316 | rq->lock.owner = current; | |
317 | #endif | |
8a25d5de IM |
318 | /* |
319 | * If we are tracking spinlock dependencies then we have to | |
320 | * fix up the runqueue lock - which gets 'carried over' from | |
321 | * prev into current: | |
322 | */ | |
323 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | |
324 | ||
4866cde0 NP |
325 | spin_unlock_irq(&rq->lock); |
326 | } | |
327 | ||
328 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
70b97a7f | 329 | static inline int task_running(struct rq *rq, struct task_struct *p) |
4866cde0 NP |
330 | { |
331 | #ifdef CONFIG_SMP | |
332 | return p->oncpu; | |
333 | #else | |
334 | return rq->curr == p; | |
335 | #endif | |
336 | } | |
337 | ||
70b97a7f | 338 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
339 | { |
340 | #ifdef CONFIG_SMP | |
341 | /* | |
342 | * We can optimise this out completely for !SMP, because the | |
343 | * SMP rebalancing from interrupt is the only thing that cares | |
344 | * here. | |
345 | */ | |
346 | next->oncpu = 1; | |
347 | #endif | |
348 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
349 | spin_unlock_irq(&rq->lock); | |
350 | #else | |
351 | spin_unlock(&rq->lock); | |
352 | #endif | |
353 | } | |
354 | ||
70b97a7f | 355 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
4866cde0 NP |
356 | { |
357 | #ifdef CONFIG_SMP | |
358 | /* | |
359 | * After ->oncpu is cleared, the task can be moved to a different CPU. | |
360 | * We must ensure this doesn't happen until the switch is completely | |
361 | * finished. | |
362 | */ | |
363 | smp_wmb(); | |
364 | prev->oncpu = 0; | |
365 | #endif | |
366 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | |
367 | local_irq_enable(); | |
1da177e4 | 368 | #endif |
4866cde0 NP |
369 | } |
370 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | |
1da177e4 | 371 | |
b29739f9 IM |
372 | /* |
373 | * __task_rq_lock - lock the runqueue a given task resides on. | |
374 | * Must be called interrupts disabled. | |
375 | */ | |
70b97a7f | 376 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
b29739f9 IM |
377 | __acquires(rq->lock) |
378 | { | |
70b97a7f | 379 | struct rq *rq; |
b29739f9 IM |
380 | |
381 | repeat_lock_task: | |
382 | rq = task_rq(p); | |
383 | spin_lock(&rq->lock); | |
384 | if (unlikely(rq != task_rq(p))) { | |
385 | spin_unlock(&rq->lock); | |
386 | goto repeat_lock_task; | |
387 | } | |
388 | return rq; | |
389 | } | |
390 | ||
1da177e4 LT |
391 | /* |
392 | * task_rq_lock - lock the runqueue a given task resides on and disable | |
393 | * interrupts. Note the ordering: we can safely lookup the task_rq without | |
394 | * explicitly disabling preemption. | |
395 | */ | |
70b97a7f | 396 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
1da177e4 LT |
397 | __acquires(rq->lock) |
398 | { | |
70b97a7f | 399 | struct rq *rq; |
1da177e4 LT |
400 | |
401 | repeat_lock_task: | |
402 | local_irq_save(*flags); | |
403 | rq = task_rq(p); | |
404 | spin_lock(&rq->lock); | |
405 | if (unlikely(rq != task_rq(p))) { | |
406 | spin_unlock_irqrestore(&rq->lock, *flags); | |
407 | goto repeat_lock_task; | |
408 | } | |
409 | return rq; | |
410 | } | |
411 | ||
70b97a7f | 412 | static inline void __task_rq_unlock(struct rq *rq) |
b29739f9 IM |
413 | __releases(rq->lock) |
414 | { | |
415 | spin_unlock(&rq->lock); | |
416 | } | |
417 | ||
70b97a7f | 418 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
1da177e4 LT |
419 | __releases(rq->lock) |
420 | { | |
421 | spin_unlock_irqrestore(&rq->lock, *flags); | |
422 | } | |
423 | ||
424 | #ifdef CONFIG_SCHEDSTATS | |
425 | /* | |
426 | * bump this up when changing the output format or the meaning of an existing | |
427 | * format, so that tools can adapt (or abort) | |
428 | */ | |
68767a0a | 429 | #define SCHEDSTAT_VERSION 12 |
1da177e4 LT |
430 | |
431 | static int show_schedstat(struct seq_file *seq, void *v) | |
432 | { | |
433 | int cpu; | |
434 | ||
435 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | |
436 | seq_printf(seq, "timestamp %lu\n", jiffies); | |
437 | for_each_online_cpu(cpu) { | |
70b97a7f | 438 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
439 | #ifdef CONFIG_SMP |
440 | struct sched_domain *sd; | |
441 | int dcnt = 0; | |
442 | #endif | |
443 | ||
444 | /* runqueue-specific stats */ | |
445 | seq_printf(seq, | |
446 | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | |
447 | cpu, rq->yld_both_empty, | |
448 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | |
449 | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | |
450 | rq->ttwu_cnt, rq->ttwu_local, | |
451 | rq->rq_sched_info.cpu_time, | |
452 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | |
453 | ||
454 | seq_printf(seq, "\n"); | |
455 | ||
456 | #ifdef CONFIG_SMP | |
457 | /* domain-specific stats */ | |
674311d5 | 458 | preempt_disable(); |
1da177e4 LT |
459 | for_each_domain(cpu, sd) { |
460 | enum idle_type itype; | |
461 | char mask_str[NR_CPUS]; | |
462 | ||
463 | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | |
464 | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | |
465 | for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | |
466 | itype++) { | |
467 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | |
468 | sd->lb_cnt[itype], | |
469 | sd->lb_balanced[itype], | |
470 | sd->lb_failed[itype], | |
471 | sd->lb_imbalance[itype], | |
472 | sd->lb_gained[itype], | |
473 | sd->lb_hot_gained[itype], | |
474 | sd->lb_nobusyq[itype], | |
475 | sd->lb_nobusyg[itype]); | |
476 | } | |
68767a0a | 477 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n", |
1da177e4 | 478 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, |
68767a0a NP |
479 | sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed, |
480 | sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed, | |
1da177e4 LT |
481 | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); |
482 | } | |
674311d5 | 483 | preempt_enable(); |
1da177e4 LT |
484 | #endif |
485 | } | |
486 | return 0; | |
487 | } | |
488 | ||
489 | static int schedstat_open(struct inode *inode, struct file *file) | |
490 | { | |
491 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | |
492 | char *buf = kmalloc(size, GFP_KERNEL); | |
493 | struct seq_file *m; | |
494 | int res; | |
495 | ||
496 | if (!buf) | |
497 | return -ENOMEM; | |
498 | res = single_open(file, show_schedstat, NULL); | |
499 | if (!res) { | |
500 | m = file->private_data; | |
501 | m->buf = buf; | |
502 | m->size = size; | |
503 | } else | |
504 | kfree(buf); | |
505 | return res; | |
506 | } | |
507 | ||
508 | struct file_operations proc_schedstat_operations = { | |
509 | .open = schedstat_open, | |
510 | .read = seq_read, | |
511 | .llseek = seq_lseek, | |
512 | .release = single_release, | |
513 | }; | |
514 | ||
52f17b6c CS |
515 | /* |
516 | * Expects runqueue lock to be held for atomicity of update | |
517 | */ | |
518 | static inline void | |
519 | rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies) | |
520 | { | |
521 | if (rq) { | |
522 | rq->rq_sched_info.run_delay += delta_jiffies; | |
523 | rq->rq_sched_info.pcnt++; | |
524 | } | |
525 | } | |
526 | ||
527 | /* | |
528 | * Expects runqueue lock to be held for atomicity of update | |
529 | */ | |
530 | static inline void | |
531 | rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies) | |
532 | { | |
533 | if (rq) | |
534 | rq->rq_sched_info.cpu_time += delta_jiffies; | |
535 | } | |
1da177e4 LT |
536 | # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) |
537 | # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) | |
538 | #else /* !CONFIG_SCHEDSTATS */ | |
52f17b6c CS |
539 | static inline void |
540 | rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies) | |
541 | {} | |
542 | static inline void | |
543 | rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies) | |
544 | {} | |
1da177e4 LT |
545 | # define schedstat_inc(rq, field) do { } while (0) |
546 | # define schedstat_add(rq, field, amt) do { } while (0) | |
547 | #endif | |
548 | ||
549 | /* | |
550 | * rq_lock - lock a given runqueue and disable interrupts. | |
551 | */ | |
70b97a7f | 552 | static inline struct rq *this_rq_lock(void) |
1da177e4 LT |
553 | __acquires(rq->lock) |
554 | { | |
70b97a7f | 555 | struct rq *rq; |
1da177e4 LT |
556 | |
557 | local_irq_disable(); | |
558 | rq = this_rq(); | |
559 | spin_lock(&rq->lock); | |
560 | ||
561 | return rq; | |
562 | } | |
563 | ||
52f17b6c | 564 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
1da177e4 LT |
565 | /* |
566 | * Called when a process is dequeued from the active array and given | |
567 | * the cpu. We should note that with the exception of interactive | |
568 | * tasks, the expired queue will become the active queue after the active | |
569 | * queue is empty, without explicitly dequeuing and requeuing tasks in the | |
570 | * expired queue. (Interactive tasks may be requeued directly to the | |
571 | * active queue, thus delaying tasks in the expired queue from running; | |
572 | * see scheduler_tick()). | |
573 | * | |
574 | * This function is only called from sched_info_arrive(), rather than | |
575 | * dequeue_task(). Even though a task may be queued and dequeued multiple | |
576 | * times as it is shuffled about, we're really interested in knowing how | |
577 | * long it was from the *first* time it was queued to the time that it | |
578 | * finally hit a cpu. | |
579 | */ | |
36c8b586 | 580 | static inline void sched_info_dequeued(struct task_struct *t) |
1da177e4 LT |
581 | { |
582 | t->sched_info.last_queued = 0; | |
583 | } | |
584 | ||
585 | /* | |
586 | * Called when a task finally hits the cpu. We can now calculate how | |
587 | * long it was waiting to run. We also note when it began so that we | |
588 | * can keep stats on how long its timeslice is. | |
589 | */ | |
36c8b586 | 590 | static void sched_info_arrive(struct task_struct *t) |
1da177e4 | 591 | { |
52f17b6c | 592 | unsigned long now = jiffies, delta_jiffies = 0; |
1da177e4 LT |
593 | |
594 | if (t->sched_info.last_queued) | |
52f17b6c | 595 | delta_jiffies = now - t->sched_info.last_queued; |
1da177e4 | 596 | sched_info_dequeued(t); |
52f17b6c | 597 | t->sched_info.run_delay += delta_jiffies; |
1da177e4 LT |
598 | t->sched_info.last_arrival = now; |
599 | t->sched_info.pcnt++; | |
600 | ||
52f17b6c | 601 | rq_sched_info_arrive(task_rq(t), delta_jiffies); |
1da177e4 LT |
602 | } |
603 | ||
604 | /* | |
605 | * Called when a process is queued into either the active or expired | |
606 | * array. The time is noted and later used to determine how long we | |
607 | * had to wait for us to reach the cpu. Since the expired queue will | |
608 | * become the active queue after active queue is empty, without dequeuing | |
609 | * and requeuing any tasks, we are interested in queuing to either. It | |
610 | * is unusual but not impossible for tasks to be dequeued and immediately | |
611 | * requeued in the same or another array: this can happen in sched_yield(), | |
612 | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | |
613 | * to runqueue. | |
614 | * | |
615 | * This function is only called from enqueue_task(), but also only updates | |
616 | * the timestamp if it is already not set. It's assumed that | |
617 | * sched_info_dequeued() will clear that stamp when appropriate. | |
618 | */ | |
36c8b586 | 619 | static inline void sched_info_queued(struct task_struct *t) |
1da177e4 | 620 | { |
52f17b6c CS |
621 | if (unlikely(sched_info_on())) |
622 | if (!t->sched_info.last_queued) | |
623 | t->sched_info.last_queued = jiffies; | |
1da177e4 LT |
624 | } |
625 | ||
626 | /* | |
627 | * Called when a process ceases being the active-running process, either | |
628 | * voluntarily or involuntarily. Now we can calculate how long we ran. | |
629 | */ | |
36c8b586 | 630 | static inline void sched_info_depart(struct task_struct *t) |
1da177e4 | 631 | { |
52f17b6c | 632 | unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival; |
1da177e4 | 633 | |
52f17b6c CS |
634 | t->sched_info.cpu_time += delta_jiffies; |
635 | rq_sched_info_depart(task_rq(t), delta_jiffies); | |
1da177e4 LT |
636 | } |
637 | ||
638 | /* | |
639 | * Called when tasks are switched involuntarily due, typically, to expiring | |
640 | * their time slice. (This may also be called when switching to or from | |
641 | * the idle task.) We are only called when prev != next. | |
642 | */ | |
36c8b586 | 643 | static inline void |
52f17b6c | 644 | __sched_info_switch(struct task_struct *prev, struct task_struct *next) |
1da177e4 | 645 | { |
70b97a7f | 646 | struct rq *rq = task_rq(prev); |
1da177e4 LT |
647 | |
648 | /* | |
649 | * prev now departs the cpu. It's not interesting to record | |
650 | * stats about how efficient we were at scheduling the idle | |
651 | * process, however. | |
652 | */ | |
653 | if (prev != rq->idle) | |
654 | sched_info_depart(prev); | |
655 | ||
656 | if (next != rq->idle) | |
657 | sched_info_arrive(next); | |
658 | } | |
52f17b6c CS |
659 | static inline void |
660 | sched_info_switch(struct task_struct *prev, struct task_struct *next) | |
661 | { | |
662 | if (unlikely(sched_info_on())) | |
663 | __sched_info_switch(prev, next); | |
664 | } | |
1da177e4 LT |
665 | #else |
666 | #define sched_info_queued(t) do { } while (0) | |
667 | #define sched_info_switch(t, next) do { } while (0) | |
52f17b6c | 668 | #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ |
1da177e4 LT |
669 | |
670 | /* | |
671 | * Adding/removing a task to/from a priority array: | |
672 | */ | |
70b97a7f | 673 | static void dequeue_task(struct task_struct *p, struct prio_array *array) |
1da177e4 LT |
674 | { |
675 | array->nr_active--; | |
676 | list_del(&p->run_list); | |
677 | if (list_empty(array->queue + p->prio)) | |
678 | __clear_bit(p->prio, array->bitmap); | |
679 | } | |
680 | ||
70b97a7f | 681 | static void enqueue_task(struct task_struct *p, struct prio_array *array) |
1da177e4 LT |
682 | { |
683 | sched_info_queued(p); | |
684 | list_add_tail(&p->run_list, array->queue + p->prio); | |
685 | __set_bit(p->prio, array->bitmap); | |
686 | array->nr_active++; | |
687 | p->array = array; | |
688 | } | |
689 | ||
690 | /* | |
691 | * Put task to the end of the run list without the overhead of dequeue | |
692 | * followed by enqueue. | |
693 | */ | |
70b97a7f | 694 | static void requeue_task(struct task_struct *p, struct prio_array *array) |
1da177e4 LT |
695 | { |
696 | list_move_tail(&p->run_list, array->queue + p->prio); | |
697 | } | |
698 | ||
70b97a7f IM |
699 | static inline void |
700 | enqueue_task_head(struct task_struct *p, struct prio_array *array) | |
1da177e4 LT |
701 | { |
702 | list_add(&p->run_list, array->queue + p->prio); | |
703 | __set_bit(p->prio, array->bitmap); | |
704 | array->nr_active++; | |
705 | p->array = array; | |
706 | } | |
707 | ||
708 | /* | |
b29739f9 | 709 | * __normal_prio - return the priority that is based on the static |
1da177e4 LT |
710 | * priority but is modified by bonuses/penalties. |
711 | * | |
712 | * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | |
713 | * into the -5 ... 0 ... +5 bonus/penalty range. | |
714 | * | |
715 | * We use 25% of the full 0...39 priority range so that: | |
716 | * | |
717 | * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | |
718 | * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | |
719 | * | |
720 | * Both properties are important to certain workloads. | |
721 | */ | |
b29739f9 | 722 | |
36c8b586 | 723 | static inline int __normal_prio(struct task_struct *p) |
1da177e4 LT |
724 | { |
725 | int bonus, prio; | |
726 | ||
1da177e4 LT |
727 | bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; |
728 | ||
729 | prio = p->static_prio - bonus; | |
730 | if (prio < MAX_RT_PRIO) | |
731 | prio = MAX_RT_PRIO; | |
732 | if (prio > MAX_PRIO-1) | |
733 | prio = MAX_PRIO-1; | |
734 | return prio; | |
735 | } | |
736 | ||
2dd73a4f PW |
737 | /* |
738 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | |
739 | * of tasks with abnormal "nice" values across CPUs the contribution that | |
740 | * each task makes to its run queue's load is weighted according to its | |
741 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | |
742 | * scaled version of the new time slice allocation that they receive on time | |
743 | * slice expiry etc. | |
744 | */ | |
745 | ||
746 | /* | |
747 | * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE | |
748 | * If static_prio_timeslice() is ever changed to break this assumption then | |
749 | * this code will need modification | |
750 | */ | |
751 | #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE | |
752 | #define LOAD_WEIGHT(lp) \ | |
753 | (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO) | |
754 | #define PRIO_TO_LOAD_WEIGHT(prio) \ | |
755 | LOAD_WEIGHT(static_prio_timeslice(prio)) | |
756 | #define RTPRIO_TO_LOAD_WEIGHT(rp) \ | |
757 | (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp)) | |
758 | ||
36c8b586 | 759 | static void set_load_weight(struct task_struct *p) |
2dd73a4f | 760 | { |
b29739f9 | 761 | if (has_rt_policy(p)) { |
2dd73a4f PW |
762 | #ifdef CONFIG_SMP |
763 | if (p == task_rq(p)->migration_thread) | |
764 | /* | |
765 | * The migration thread does the actual balancing. | |
766 | * Giving its load any weight will skew balancing | |
767 | * adversely. | |
768 | */ | |
769 | p->load_weight = 0; | |
770 | else | |
771 | #endif | |
772 | p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority); | |
773 | } else | |
774 | p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio); | |
775 | } | |
776 | ||
36c8b586 | 777 | static inline void |
70b97a7f | 778 | inc_raw_weighted_load(struct rq *rq, const struct task_struct *p) |
2dd73a4f PW |
779 | { |
780 | rq->raw_weighted_load += p->load_weight; | |
781 | } | |
782 | ||
36c8b586 | 783 | static inline void |
70b97a7f | 784 | dec_raw_weighted_load(struct rq *rq, const struct task_struct *p) |
2dd73a4f PW |
785 | { |
786 | rq->raw_weighted_load -= p->load_weight; | |
787 | } | |
788 | ||
70b97a7f | 789 | static inline void inc_nr_running(struct task_struct *p, struct rq *rq) |
2dd73a4f PW |
790 | { |
791 | rq->nr_running++; | |
792 | inc_raw_weighted_load(rq, p); | |
793 | } | |
794 | ||
70b97a7f | 795 | static inline void dec_nr_running(struct task_struct *p, struct rq *rq) |
2dd73a4f PW |
796 | { |
797 | rq->nr_running--; | |
798 | dec_raw_weighted_load(rq, p); | |
799 | } | |
800 | ||
b29739f9 IM |
801 | /* |
802 | * Calculate the expected normal priority: i.e. priority | |
803 | * without taking RT-inheritance into account. Might be | |
804 | * boosted by interactivity modifiers. Changes upon fork, | |
805 | * setprio syscalls, and whenever the interactivity | |
806 | * estimator recalculates. | |
807 | */ | |
36c8b586 | 808 | static inline int normal_prio(struct task_struct *p) |
b29739f9 IM |
809 | { |
810 | int prio; | |
811 | ||
812 | if (has_rt_policy(p)) | |
813 | prio = MAX_RT_PRIO-1 - p->rt_priority; | |
814 | else | |
815 | prio = __normal_prio(p); | |
816 | return prio; | |
817 | } | |
818 | ||
819 | /* | |
820 | * Calculate the current priority, i.e. the priority | |
821 | * taken into account by the scheduler. This value might | |
822 | * be boosted by RT tasks, or might be boosted by | |
823 | * interactivity modifiers. Will be RT if the task got | |
824 | * RT-boosted. If not then it returns p->normal_prio. | |
825 | */ | |
36c8b586 | 826 | static int effective_prio(struct task_struct *p) |
b29739f9 IM |
827 | { |
828 | p->normal_prio = normal_prio(p); | |
829 | /* | |
830 | * If we are RT tasks or we were boosted to RT priority, | |
831 | * keep the priority unchanged. Otherwise, update priority | |
832 | * to the normal priority: | |
833 | */ | |
834 | if (!rt_prio(p->prio)) | |
835 | return p->normal_prio; | |
836 | return p->prio; | |
837 | } | |
838 | ||
1da177e4 LT |
839 | /* |
840 | * __activate_task - move a task to the runqueue. | |
841 | */ | |
70b97a7f | 842 | static void __activate_task(struct task_struct *p, struct rq *rq) |
1da177e4 | 843 | { |
70b97a7f | 844 | struct prio_array *target = rq->active; |
d425b274 | 845 | |
f1adad78 | 846 | if (batch_task(p)) |
d425b274 CK |
847 | target = rq->expired; |
848 | enqueue_task(p, target); | |
2dd73a4f | 849 | inc_nr_running(p, rq); |
1da177e4 LT |
850 | } |
851 | ||
852 | /* | |
853 | * __activate_idle_task - move idle task to the _front_ of runqueue. | |
854 | */ | |
70b97a7f | 855 | static inline void __activate_idle_task(struct task_struct *p, struct rq *rq) |
1da177e4 LT |
856 | { |
857 | enqueue_task_head(p, rq->active); | |
2dd73a4f | 858 | inc_nr_running(p, rq); |
1da177e4 LT |
859 | } |
860 | ||
b29739f9 IM |
861 | /* |
862 | * Recalculate p->normal_prio and p->prio after having slept, | |
863 | * updating the sleep-average too: | |
864 | */ | |
36c8b586 | 865 | static int recalc_task_prio(struct task_struct *p, unsigned long long now) |
1da177e4 LT |
866 | { |
867 | /* Caller must always ensure 'now >= p->timestamp' */ | |
72d2854d | 868 | unsigned long sleep_time = now - p->timestamp; |
1da177e4 | 869 | |
d425b274 | 870 | if (batch_task(p)) |
b0a9499c | 871 | sleep_time = 0; |
1da177e4 LT |
872 | |
873 | if (likely(sleep_time > 0)) { | |
874 | /* | |
72d2854d CK |
875 | * This ceiling is set to the lowest priority that would allow |
876 | * a task to be reinserted into the active array on timeslice | |
877 | * completion. | |
1da177e4 | 878 | */ |
72d2854d | 879 | unsigned long ceiling = INTERACTIVE_SLEEP(p); |
e72ff0bb | 880 | |
72d2854d CK |
881 | if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) { |
882 | /* | |
883 | * Prevents user tasks from achieving best priority | |
884 | * with one single large enough sleep. | |
885 | */ | |
886 | p->sleep_avg = ceiling; | |
887 | /* | |
888 | * Using INTERACTIVE_SLEEP() as a ceiling places a | |
889 | * nice(0) task 1ms sleep away from promotion, and | |
890 | * gives it 700ms to round-robin with no chance of | |
891 | * being demoted. This is more than generous, so | |
892 | * mark this sleep as non-interactive to prevent the | |
893 | * on-runqueue bonus logic from intervening should | |
894 | * this task not receive cpu immediately. | |
895 | */ | |
896 | p->sleep_type = SLEEP_NONINTERACTIVE; | |
1da177e4 | 897 | } else { |
1da177e4 LT |
898 | /* |
899 | * Tasks waking from uninterruptible sleep are | |
900 | * limited in their sleep_avg rise as they | |
901 | * are likely to be waiting on I/O | |
902 | */ | |
3dee386e | 903 | if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) { |
72d2854d | 904 | if (p->sleep_avg >= ceiling) |
1da177e4 LT |
905 | sleep_time = 0; |
906 | else if (p->sleep_avg + sleep_time >= | |
72d2854d CK |
907 | ceiling) { |
908 | p->sleep_avg = ceiling; | |
909 | sleep_time = 0; | |
1da177e4 LT |
910 | } |
911 | } | |
912 | ||
913 | /* | |
914 | * This code gives a bonus to interactive tasks. | |
915 | * | |
916 | * The boost works by updating the 'average sleep time' | |
917 | * value here, based on ->timestamp. The more time a | |
918 | * task spends sleeping, the higher the average gets - | |
919 | * and the higher the priority boost gets as well. | |
920 | */ | |
921 | p->sleep_avg += sleep_time; | |
922 | ||
1da177e4 | 923 | } |
72d2854d CK |
924 | if (p->sleep_avg > NS_MAX_SLEEP_AVG) |
925 | p->sleep_avg = NS_MAX_SLEEP_AVG; | |
1da177e4 LT |
926 | } |
927 | ||
a3464a10 | 928 | return effective_prio(p); |
1da177e4 LT |
929 | } |
930 | ||
931 | /* | |
932 | * activate_task - move a task to the runqueue and do priority recalculation | |
933 | * | |
934 | * Update all the scheduling statistics stuff. (sleep average | |
935 | * calculation, priority modifiers, etc.) | |
936 | */ | |
70b97a7f | 937 | static void activate_task(struct task_struct *p, struct rq *rq, int local) |
1da177e4 LT |
938 | { |
939 | unsigned long long now; | |
940 | ||
941 | now = sched_clock(); | |
942 | #ifdef CONFIG_SMP | |
943 | if (!local) { | |
944 | /* Compensate for drifting sched_clock */ | |
70b97a7f | 945 | struct rq *this_rq = this_rq(); |
1da177e4 LT |
946 | now = (now - this_rq->timestamp_last_tick) |
947 | + rq->timestamp_last_tick; | |
948 | } | |
949 | #endif | |
950 | ||
a47ab937 KC |
951 | if (!rt_task(p)) |
952 | p->prio = recalc_task_prio(p, now); | |
1da177e4 LT |
953 | |
954 | /* | |
955 | * This checks to make sure it's not an uninterruptible task | |
956 | * that is now waking up. | |
957 | */ | |
3dee386e | 958 | if (p->sleep_type == SLEEP_NORMAL) { |
1da177e4 LT |
959 | /* |
960 | * Tasks which were woken up by interrupts (ie. hw events) | |
961 | * are most likely of interactive nature. So we give them | |
962 | * the credit of extending their sleep time to the period | |
963 | * of time they spend on the runqueue, waiting for execution | |
964 | * on a CPU, first time around: | |
965 | */ | |
966 | if (in_interrupt()) | |
3dee386e | 967 | p->sleep_type = SLEEP_INTERRUPTED; |
1da177e4 LT |
968 | else { |
969 | /* | |
970 | * Normal first-time wakeups get a credit too for | |
971 | * on-runqueue time, but it will be weighted down: | |
972 | */ | |
3dee386e | 973 | p->sleep_type = SLEEP_INTERACTIVE; |
1da177e4 LT |
974 | } |
975 | } | |
976 | p->timestamp = now; | |
977 | ||
978 | __activate_task(p, rq); | |
979 | } | |
980 | ||
981 | /* | |
982 | * deactivate_task - remove a task from the runqueue. | |
983 | */ | |
70b97a7f | 984 | static void deactivate_task(struct task_struct *p, struct rq *rq) |
1da177e4 | 985 | { |
2dd73a4f | 986 | dec_nr_running(p, rq); |
1da177e4 LT |
987 | dequeue_task(p, p->array); |
988 | p->array = NULL; | |
989 | } | |
990 | ||
991 | /* | |
992 | * resched_task - mark a task 'to be rescheduled now'. | |
993 | * | |
994 | * On UP this means the setting of the need_resched flag, on SMP it | |
995 | * might also involve a cross-CPU call to trigger the scheduler on | |
996 | * the target CPU. | |
997 | */ | |
998 | #ifdef CONFIG_SMP | |
495ab9c0 AK |
999 | |
1000 | #ifndef tsk_is_polling | |
1001 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | |
1002 | #endif | |
1003 | ||
36c8b586 | 1004 | static void resched_task(struct task_struct *p) |
1da177e4 | 1005 | { |
64c7c8f8 | 1006 | int cpu; |
1da177e4 LT |
1007 | |
1008 | assert_spin_locked(&task_rq(p)->lock); | |
1009 | ||
64c7c8f8 NP |
1010 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) |
1011 | return; | |
1012 | ||
1013 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | |
1da177e4 | 1014 | |
64c7c8f8 NP |
1015 | cpu = task_cpu(p); |
1016 | if (cpu == smp_processor_id()) | |
1017 | return; | |
1018 | ||
495ab9c0 | 1019 | /* NEED_RESCHED must be visible before we test polling */ |
64c7c8f8 | 1020 | smp_mb(); |
495ab9c0 | 1021 | if (!tsk_is_polling(p)) |
64c7c8f8 | 1022 | smp_send_reschedule(cpu); |
1da177e4 LT |
1023 | } |
1024 | #else | |
36c8b586 | 1025 | static inline void resched_task(struct task_struct *p) |
1da177e4 | 1026 | { |
64c7c8f8 | 1027 | assert_spin_locked(&task_rq(p)->lock); |
1da177e4 LT |
1028 | set_tsk_need_resched(p); |
1029 | } | |
1030 | #endif | |
1031 | ||
1032 | /** | |
1033 | * task_curr - is this task currently executing on a CPU? | |
1034 | * @p: the task in question. | |
1035 | */ | |
36c8b586 | 1036 | inline int task_curr(const struct task_struct *p) |
1da177e4 LT |
1037 | { |
1038 | return cpu_curr(task_cpu(p)) == p; | |
1039 | } | |
1040 | ||
2dd73a4f PW |
1041 | /* Used instead of source_load when we know the type == 0 */ |
1042 | unsigned long weighted_cpuload(const int cpu) | |
1043 | { | |
1044 | return cpu_rq(cpu)->raw_weighted_load; | |
1045 | } | |
1046 | ||
1da177e4 | 1047 | #ifdef CONFIG_SMP |
70b97a7f | 1048 | struct migration_req { |
1da177e4 | 1049 | struct list_head list; |
1da177e4 | 1050 | |
36c8b586 | 1051 | struct task_struct *task; |
1da177e4 LT |
1052 | int dest_cpu; |
1053 | ||
1da177e4 | 1054 | struct completion done; |
70b97a7f | 1055 | }; |
1da177e4 LT |
1056 | |
1057 | /* | |
1058 | * The task's runqueue lock must be held. | |
1059 | * Returns true if you have to wait for migration thread. | |
1060 | */ | |
36c8b586 | 1061 | static int |
70b97a7f | 1062 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1da177e4 | 1063 | { |
70b97a7f | 1064 | struct rq *rq = task_rq(p); |
1da177e4 LT |
1065 | |
1066 | /* | |
1067 | * If the task is not on a runqueue (and not running), then | |
1068 | * it is sufficient to simply update the task's cpu field. | |
1069 | */ | |
1070 | if (!p->array && !task_running(rq, p)) { | |
1071 | set_task_cpu(p, dest_cpu); | |
1072 | return 0; | |
1073 | } | |
1074 | ||
1075 | init_completion(&req->done); | |
1da177e4 LT |
1076 | req->task = p; |
1077 | req->dest_cpu = dest_cpu; | |
1078 | list_add(&req->list, &rq->migration_queue); | |
48f24c4d | 1079 | |
1da177e4 LT |
1080 | return 1; |
1081 | } | |
1082 | ||
1083 | /* | |
1084 | * wait_task_inactive - wait for a thread to unschedule. | |
1085 | * | |
1086 | * The caller must ensure that the task *will* unschedule sometime soon, | |
1087 | * else this function might spin for a *long* time. This function can't | |
1088 | * be called with interrupts off, or it may introduce deadlock with | |
1089 | * smp_call_function() if an IPI is sent by the same process we are | |
1090 | * waiting to become inactive. | |
1091 | */ | |
36c8b586 | 1092 | void wait_task_inactive(struct task_struct *p) |
1da177e4 LT |
1093 | { |
1094 | unsigned long flags; | |
70b97a7f | 1095 | struct rq *rq; |
1da177e4 LT |
1096 | int preempted; |
1097 | ||
1098 | repeat: | |
1099 | rq = task_rq_lock(p, &flags); | |
1100 | /* Must be off runqueue entirely, not preempted. */ | |
1101 | if (unlikely(p->array || task_running(rq, p))) { | |
1102 | /* If it's preempted, we yield. It could be a while. */ | |
1103 | preempted = !task_running(rq, p); | |
1104 | task_rq_unlock(rq, &flags); | |
1105 | cpu_relax(); | |
1106 | if (preempted) | |
1107 | yield(); | |
1108 | goto repeat; | |
1109 | } | |
1110 | task_rq_unlock(rq, &flags); | |
1111 | } | |
1112 | ||
1113 | /*** | |
1114 | * kick_process - kick a running thread to enter/exit the kernel | |
1115 | * @p: the to-be-kicked thread | |
1116 | * | |
1117 | * Cause a process which is running on another CPU to enter | |
1118 | * kernel-mode, without any delay. (to get signals handled.) | |
1119 | * | |
1120 | * NOTE: this function doesnt have to take the runqueue lock, | |
1121 | * because all it wants to ensure is that the remote task enters | |
1122 | * the kernel. If the IPI races and the task has been migrated | |
1123 | * to another CPU then no harm is done and the purpose has been | |
1124 | * achieved as well. | |
1125 | */ | |
36c8b586 | 1126 | void kick_process(struct task_struct *p) |
1da177e4 LT |
1127 | { |
1128 | int cpu; | |
1129 | ||
1130 | preempt_disable(); | |
1131 | cpu = task_cpu(p); | |
1132 | if ((cpu != smp_processor_id()) && task_curr(p)) | |
1133 | smp_send_reschedule(cpu); | |
1134 | preempt_enable(); | |
1135 | } | |
1136 | ||
1137 | /* | |
2dd73a4f PW |
1138 | * Return a low guess at the load of a migration-source cpu weighted |
1139 | * according to the scheduling class and "nice" value. | |
1da177e4 LT |
1140 | * |
1141 | * We want to under-estimate the load of migration sources, to | |
1142 | * balance conservatively. | |
1143 | */ | |
a2000572 | 1144 | static inline unsigned long source_load(int cpu, int type) |
1da177e4 | 1145 | { |
70b97a7f | 1146 | struct rq *rq = cpu_rq(cpu); |
2dd73a4f | 1147 | |
3b0bd9bc | 1148 | if (type == 0) |
2dd73a4f | 1149 | return rq->raw_weighted_load; |
b910472d | 1150 | |
2dd73a4f | 1151 | return min(rq->cpu_load[type-1], rq->raw_weighted_load); |
1da177e4 LT |
1152 | } |
1153 | ||
1154 | /* | |
2dd73a4f PW |
1155 | * Return a high guess at the load of a migration-target cpu weighted |
1156 | * according to the scheduling class and "nice" value. | |
1da177e4 | 1157 | */ |
a2000572 | 1158 | static inline unsigned long target_load(int cpu, int type) |
1da177e4 | 1159 | { |
70b97a7f | 1160 | struct rq *rq = cpu_rq(cpu); |
2dd73a4f | 1161 | |
7897986b | 1162 | if (type == 0) |
2dd73a4f | 1163 | return rq->raw_weighted_load; |
3b0bd9bc | 1164 | |
2dd73a4f PW |
1165 | return max(rq->cpu_load[type-1], rq->raw_weighted_load); |
1166 | } | |
1167 | ||
1168 | /* | |
1169 | * Return the average load per task on the cpu's run queue | |
1170 | */ | |
1171 | static inline unsigned long cpu_avg_load_per_task(int cpu) | |
1172 | { | |
70b97a7f | 1173 | struct rq *rq = cpu_rq(cpu); |
2dd73a4f PW |
1174 | unsigned long n = rq->nr_running; |
1175 | ||
48f24c4d | 1176 | return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE; |
1da177e4 LT |
1177 | } |
1178 | ||
147cbb4b NP |
1179 | /* |
1180 | * find_idlest_group finds and returns the least busy CPU group within the | |
1181 | * domain. | |
1182 | */ | |
1183 | static struct sched_group * | |
1184 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | |
1185 | { | |
1186 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | |
1187 | unsigned long min_load = ULONG_MAX, this_load = 0; | |
1188 | int load_idx = sd->forkexec_idx; | |
1189 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | |
1190 | ||
1191 | do { | |
1192 | unsigned long load, avg_load; | |
1193 | int local_group; | |
1194 | int i; | |
1195 | ||
da5a5522 BD |
1196 | /* Skip over this group if it has no CPUs allowed */ |
1197 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | |
1198 | goto nextgroup; | |
1199 | ||
147cbb4b | 1200 | local_group = cpu_isset(this_cpu, group->cpumask); |
147cbb4b NP |
1201 | |
1202 | /* Tally up the load of all CPUs in the group */ | |
1203 | avg_load = 0; | |
1204 | ||
1205 | for_each_cpu_mask(i, group->cpumask) { | |
1206 | /* Bias balancing toward cpus of our domain */ | |
1207 | if (local_group) | |
1208 | load = source_load(i, load_idx); | |
1209 | else | |
1210 | load = target_load(i, load_idx); | |
1211 | ||
1212 | avg_load += load; | |
1213 | } | |
1214 | ||
1215 | /* Adjust by relative CPU power of the group */ | |
1216 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | |
1217 | ||
1218 | if (local_group) { | |
1219 | this_load = avg_load; | |
1220 | this = group; | |
1221 | } else if (avg_load < min_load) { | |
1222 | min_load = avg_load; | |
1223 | idlest = group; | |
1224 | } | |
da5a5522 | 1225 | nextgroup: |
147cbb4b NP |
1226 | group = group->next; |
1227 | } while (group != sd->groups); | |
1228 | ||
1229 | if (!idlest || 100*this_load < imbalance*min_load) | |
1230 | return NULL; | |
1231 | return idlest; | |
1232 | } | |
1233 | ||
1234 | /* | |
0feaece9 | 1235 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
147cbb4b | 1236 | */ |
95cdf3b7 IM |
1237 | static int |
1238 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | |
147cbb4b | 1239 | { |
da5a5522 | 1240 | cpumask_t tmp; |
147cbb4b NP |
1241 | unsigned long load, min_load = ULONG_MAX; |
1242 | int idlest = -1; | |
1243 | int i; | |
1244 | ||
da5a5522 BD |
1245 | /* Traverse only the allowed CPUs */ |
1246 | cpus_and(tmp, group->cpumask, p->cpus_allowed); | |
1247 | ||
1248 | for_each_cpu_mask(i, tmp) { | |
2dd73a4f | 1249 | load = weighted_cpuload(i); |
147cbb4b NP |
1250 | |
1251 | if (load < min_load || (load == min_load && i == this_cpu)) { | |
1252 | min_load = load; | |
1253 | idlest = i; | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | return idlest; | |
1258 | } | |
1259 | ||
476d139c NP |
1260 | /* |
1261 | * sched_balance_self: balance the current task (running on cpu) in domains | |
1262 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | |
1263 | * SD_BALANCE_EXEC. | |
1264 | * | |
1265 | * Balance, ie. select the least loaded group. | |
1266 | * | |
1267 | * Returns the target CPU number, or the same CPU if no balancing is needed. | |
1268 | * | |
1269 | * preempt must be disabled. | |
1270 | */ | |
1271 | static int sched_balance_self(int cpu, int flag) | |
1272 | { | |
1273 | struct task_struct *t = current; | |
1274 | struct sched_domain *tmp, *sd = NULL; | |
147cbb4b | 1275 | |
c96d145e | 1276 | for_each_domain(cpu, tmp) { |
5c45bf27 SS |
1277 | /* |
1278 | * If power savings logic is enabled for a domain, stop there. | |
1279 | */ | |
1280 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | |
1281 | break; | |
476d139c NP |
1282 | if (tmp->flags & flag) |
1283 | sd = tmp; | |
c96d145e | 1284 | } |
476d139c NP |
1285 | |
1286 | while (sd) { | |
1287 | cpumask_t span; | |
1288 | struct sched_group *group; | |
1a848870 SS |
1289 | int new_cpu, weight; |
1290 | ||
1291 | if (!(sd->flags & flag)) { | |
1292 | sd = sd->child; | |
1293 | continue; | |
1294 | } | |
476d139c NP |
1295 | |
1296 | span = sd->span; | |
1297 | group = find_idlest_group(sd, t, cpu); | |
1a848870 SS |
1298 | if (!group) { |
1299 | sd = sd->child; | |
1300 | continue; | |
1301 | } | |
476d139c | 1302 | |
da5a5522 | 1303 | new_cpu = find_idlest_cpu(group, t, cpu); |
1a848870 SS |
1304 | if (new_cpu == -1 || new_cpu == cpu) { |
1305 | /* Now try balancing at a lower domain level of cpu */ | |
1306 | sd = sd->child; | |
1307 | continue; | |
1308 | } | |
476d139c | 1309 | |
1a848870 | 1310 | /* Now try balancing at a lower domain level of new_cpu */ |
476d139c | 1311 | cpu = new_cpu; |
476d139c NP |
1312 | sd = NULL; |
1313 | weight = cpus_weight(span); | |
1314 | for_each_domain(cpu, tmp) { | |
1315 | if (weight <= cpus_weight(tmp->span)) | |
1316 | break; | |
1317 | if (tmp->flags & flag) | |
1318 | sd = tmp; | |
1319 | } | |
1320 | /* while loop will break here if sd == NULL */ | |
1321 | } | |
1322 | ||
1323 | return cpu; | |
1324 | } | |
1325 | ||
1326 | #endif /* CONFIG_SMP */ | |
1da177e4 LT |
1327 | |
1328 | /* | |
1329 | * wake_idle() will wake a task on an idle cpu if task->cpu is | |
1330 | * not idle and an idle cpu is available. The span of cpus to | |
1331 | * search starts with cpus closest then further out as needed, | |
1332 | * so we always favor a closer, idle cpu. | |
1333 | * | |
1334 | * Returns the CPU we should wake onto. | |
1335 | */ | |
1336 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | |
36c8b586 | 1337 | static int wake_idle(int cpu, struct task_struct *p) |
1da177e4 LT |
1338 | { |
1339 | cpumask_t tmp; | |
1340 | struct sched_domain *sd; | |
1341 | int i; | |
1342 | ||
1343 | if (idle_cpu(cpu)) | |
1344 | return cpu; | |
1345 | ||
1346 | for_each_domain(cpu, sd) { | |
1347 | if (sd->flags & SD_WAKE_IDLE) { | |
e0f364f4 | 1348 | cpus_and(tmp, sd->span, p->cpus_allowed); |
1da177e4 LT |
1349 | for_each_cpu_mask(i, tmp) { |
1350 | if (idle_cpu(i)) | |
1351 | return i; | |
1352 | } | |
1353 | } | |
e0f364f4 NP |
1354 | else |
1355 | break; | |
1da177e4 LT |
1356 | } |
1357 | return cpu; | |
1358 | } | |
1359 | #else | |
36c8b586 | 1360 | static inline int wake_idle(int cpu, struct task_struct *p) |
1da177e4 LT |
1361 | { |
1362 | return cpu; | |
1363 | } | |
1364 | #endif | |
1365 | ||
1366 | /*** | |
1367 | * try_to_wake_up - wake up a thread | |
1368 | * @p: the to-be-woken-up thread | |
1369 | * @state: the mask of task states that can be woken | |
1370 | * @sync: do a synchronous wakeup? | |
1371 | * | |
1372 | * Put it on the run-queue if it's not already there. The "current" | |
1373 | * thread is always on the run-queue (except when the actual | |
1374 | * re-schedule is in progress), and as such you're allowed to do | |
1375 | * the simpler "current->state = TASK_RUNNING" to mark yourself | |
1376 | * runnable without the overhead of this. | |
1377 | * | |
1378 | * returns failure only if the task is already active. | |
1379 | */ | |
36c8b586 | 1380 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
1da177e4 LT |
1381 | { |
1382 | int cpu, this_cpu, success = 0; | |
1383 | unsigned long flags; | |
1384 | long old_state; | |
70b97a7f | 1385 | struct rq *rq; |
1da177e4 | 1386 | #ifdef CONFIG_SMP |
7897986b | 1387 | struct sched_domain *sd, *this_sd = NULL; |
70b97a7f | 1388 | unsigned long load, this_load; |
1da177e4 LT |
1389 | int new_cpu; |
1390 | #endif | |
1391 | ||
1392 | rq = task_rq_lock(p, &flags); | |
1393 | old_state = p->state; | |
1394 | if (!(old_state & state)) | |
1395 | goto out; | |
1396 | ||
1397 | if (p->array) | |
1398 | goto out_running; | |
1399 | ||
1400 | cpu = task_cpu(p); | |
1401 | this_cpu = smp_processor_id(); | |
1402 | ||
1403 | #ifdef CONFIG_SMP | |
1404 | if (unlikely(task_running(rq, p))) | |
1405 | goto out_activate; | |
1406 | ||
7897986b NP |
1407 | new_cpu = cpu; |
1408 | ||
1da177e4 LT |
1409 | schedstat_inc(rq, ttwu_cnt); |
1410 | if (cpu == this_cpu) { | |
1411 | schedstat_inc(rq, ttwu_local); | |
7897986b NP |
1412 | goto out_set_cpu; |
1413 | } | |
1414 | ||
1415 | for_each_domain(this_cpu, sd) { | |
1416 | if (cpu_isset(cpu, sd->span)) { | |
1417 | schedstat_inc(sd, ttwu_wake_remote); | |
1418 | this_sd = sd; | |
1419 | break; | |
1da177e4 LT |
1420 | } |
1421 | } | |
1da177e4 | 1422 | |
7897986b | 1423 | if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) |
1da177e4 LT |
1424 | goto out_set_cpu; |
1425 | ||
1da177e4 | 1426 | /* |
7897986b | 1427 | * Check for affine wakeup and passive balancing possibilities. |
1da177e4 | 1428 | */ |
7897986b NP |
1429 | if (this_sd) { |
1430 | int idx = this_sd->wake_idx; | |
1431 | unsigned int imbalance; | |
1da177e4 | 1432 | |
a3f21bce NP |
1433 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; |
1434 | ||
7897986b NP |
1435 | load = source_load(cpu, idx); |
1436 | this_load = target_load(this_cpu, idx); | |
1da177e4 | 1437 | |
7897986b NP |
1438 | new_cpu = this_cpu; /* Wake to this CPU if we can */ |
1439 | ||
a3f21bce NP |
1440 | if (this_sd->flags & SD_WAKE_AFFINE) { |
1441 | unsigned long tl = this_load; | |
2dd73a4f PW |
1442 | unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu); |
1443 | ||
1da177e4 | 1444 | /* |
a3f21bce NP |
1445 | * If sync wakeup then subtract the (maximum possible) |
1446 | * effect of the currently running task from the load | |
1447 | * of the current CPU: | |
1da177e4 | 1448 | */ |
a3f21bce | 1449 | if (sync) |
2dd73a4f | 1450 | tl -= current->load_weight; |
a3f21bce NP |
1451 | |
1452 | if ((tl <= load && | |
2dd73a4f PW |
1453 | tl + target_load(cpu, idx) <= tl_per_task) || |
1454 | 100*(tl + p->load_weight) <= imbalance*load) { | |
a3f21bce NP |
1455 | /* |
1456 | * This domain has SD_WAKE_AFFINE and | |
1457 | * p is cache cold in this domain, and | |
1458 | * there is no bad imbalance. | |
1459 | */ | |
1460 | schedstat_inc(this_sd, ttwu_move_affine); | |
1461 | goto out_set_cpu; | |
1462 | } | |
1463 | } | |
1464 | ||
1465 | /* | |
1466 | * Start passive balancing when half the imbalance_pct | |
1467 | * limit is reached. | |
1468 | */ | |
1469 | if (this_sd->flags & SD_WAKE_BALANCE) { | |
1470 | if (imbalance*this_load <= 100*load) { | |
1471 | schedstat_inc(this_sd, ttwu_move_balance); | |
1472 | goto out_set_cpu; | |
1473 | } | |
1da177e4 LT |
1474 | } |
1475 | } | |
1476 | ||
1477 | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | |
1478 | out_set_cpu: | |
1479 | new_cpu = wake_idle(new_cpu, p); | |
1480 | if (new_cpu != cpu) { | |
1481 | set_task_cpu(p, new_cpu); | |
1482 | task_rq_unlock(rq, &flags); | |
1483 | /* might preempt at this point */ | |
1484 | rq = task_rq_lock(p, &flags); | |
1485 | old_state = p->state; | |
1486 | if (!(old_state & state)) | |
1487 | goto out; | |
1488 | if (p->array) | |
1489 | goto out_running; | |
1490 | ||
1491 | this_cpu = smp_processor_id(); | |
1492 | cpu = task_cpu(p); | |
1493 | } | |
1494 | ||
1495 | out_activate: | |
1496 | #endif /* CONFIG_SMP */ | |
1497 | if (old_state == TASK_UNINTERRUPTIBLE) { | |
1498 | rq->nr_uninterruptible--; | |
1499 | /* | |
1500 | * Tasks on involuntary sleep don't earn | |
1501 | * sleep_avg beyond just interactive state. | |
1502 | */ | |
3dee386e | 1503 | p->sleep_type = SLEEP_NONINTERACTIVE; |
e7c38cb4 | 1504 | } else |
1da177e4 | 1505 | |
d79fc0fc IM |
1506 | /* |
1507 | * Tasks that have marked their sleep as noninteractive get | |
e7c38cb4 CK |
1508 | * woken up with their sleep average not weighted in an |
1509 | * interactive way. | |
d79fc0fc | 1510 | */ |
e7c38cb4 CK |
1511 | if (old_state & TASK_NONINTERACTIVE) |
1512 | p->sleep_type = SLEEP_NONINTERACTIVE; | |
1513 | ||
1514 | ||
1515 | activate_task(p, rq, cpu == this_cpu); | |
1da177e4 LT |
1516 | /* |
1517 | * Sync wakeups (i.e. those types of wakeups where the waker | |
1518 | * has indicated that it will leave the CPU in short order) | |
1519 | * don't trigger a preemption, if the woken up task will run on | |
1520 | * this cpu. (in this case the 'I will reschedule' promise of | |
1521 | * the waker guarantees that the freshly woken up task is going | |
1522 | * to be considered on this CPU.) | |
1523 | */ | |
1da177e4 LT |
1524 | if (!sync || cpu != this_cpu) { |
1525 | if (TASK_PREEMPTS_CURR(p, rq)) | |
1526 | resched_task(rq->curr); | |
1527 | } | |
1528 | success = 1; | |
1529 | ||
1530 | out_running: | |
1531 | p->state = TASK_RUNNING; | |
1532 | out: | |
1533 | task_rq_unlock(rq, &flags); | |
1534 | ||
1535 | return success; | |
1536 | } | |
1537 | ||
36c8b586 | 1538 | int fastcall wake_up_process(struct task_struct *p) |
1da177e4 LT |
1539 | { |
1540 | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | |
1541 | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | |
1542 | } | |
1da177e4 LT |
1543 | EXPORT_SYMBOL(wake_up_process); |
1544 | ||
36c8b586 | 1545 | int fastcall wake_up_state(struct task_struct *p, unsigned int state) |
1da177e4 LT |
1546 | { |
1547 | return try_to_wake_up(p, state, 0); | |
1548 | } | |
1549 | ||
1da177e4 LT |
1550 | /* |
1551 | * Perform scheduler related setup for a newly forked process p. | |
1552 | * p is forked by current. | |
1553 | */ | |
36c8b586 | 1554 | void fastcall sched_fork(struct task_struct *p, int clone_flags) |
1da177e4 | 1555 | { |
476d139c NP |
1556 | int cpu = get_cpu(); |
1557 | ||
1558 | #ifdef CONFIG_SMP | |
1559 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | |
1560 | #endif | |
1561 | set_task_cpu(p, cpu); | |
1562 | ||
1da177e4 LT |
1563 | /* |
1564 | * We mark the process as running here, but have not actually | |
1565 | * inserted it onto the runqueue yet. This guarantees that | |
1566 | * nobody will actually run it, and a signal or other external | |
1567 | * event cannot wake it up and insert it on the runqueue either. | |
1568 | */ | |
1569 | p->state = TASK_RUNNING; | |
b29739f9 IM |
1570 | |
1571 | /* | |
1572 | * Make sure we do not leak PI boosting priority to the child: | |
1573 | */ | |
1574 | p->prio = current->normal_prio; | |
1575 | ||
1da177e4 LT |
1576 | INIT_LIST_HEAD(&p->run_list); |
1577 | p->array = NULL; | |
52f17b6c CS |
1578 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
1579 | if (unlikely(sched_info_on())) | |
1580 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | |
1da177e4 | 1581 | #endif |
d6077cb8 | 1582 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4866cde0 NP |
1583 | p->oncpu = 0; |
1584 | #endif | |
1da177e4 | 1585 | #ifdef CONFIG_PREEMPT |
4866cde0 | 1586 | /* Want to start with kernel preemption disabled. */ |
a1261f54 | 1587 | task_thread_info(p)->preempt_count = 1; |
1da177e4 LT |
1588 | #endif |
1589 | /* | |
1590 | * Share the timeslice between parent and child, thus the | |
1591 | * total amount of pending timeslices in the system doesn't change, | |
1592 | * resulting in more scheduling fairness. | |
1593 | */ | |
1594 | local_irq_disable(); | |
1595 | p->time_slice = (current->time_slice + 1) >> 1; | |
1596 | /* | |
1597 | * The remainder of the first timeslice might be recovered by | |
1598 | * the parent if the child exits early enough. | |
1599 | */ | |
1600 | p->first_time_slice = 1; | |
1601 | current->time_slice >>= 1; | |
1602 | p->timestamp = sched_clock(); | |
1603 | if (unlikely(!current->time_slice)) { | |
1604 | /* | |
1605 | * This case is rare, it happens when the parent has only | |
1606 | * a single jiffy left from its timeslice. Taking the | |
1607 | * runqueue lock is not a problem. | |
1608 | */ | |
1609 | current->time_slice = 1; | |
1da177e4 | 1610 | scheduler_tick(); |
476d139c NP |
1611 | } |
1612 | local_irq_enable(); | |
1613 | put_cpu(); | |
1da177e4 LT |
1614 | } |
1615 | ||
1616 | /* | |
1617 | * wake_up_new_task - wake up a newly created task for the first time. | |
1618 | * | |
1619 | * This function will do some initial scheduler statistics housekeeping | |
1620 | * that must be done for every newly created context, then puts the task | |
1621 | * on the runqueue and wakes it. | |
1622 | */ | |
36c8b586 | 1623 | void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
1da177e4 | 1624 | { |
70b97a7f | 1625 | struct rq *rq, *this_rq; |
1da177e4 LT |
1626 | unsigned long flags; |
1627 | int this_cpu, cpu; | |
1da177e4 LT |
1628 | |
1629 | rq = task_rq_lock(p, &flags); | |
147cbb4b | 1630 | BUG_ON(p->state != TASK_RUNNING); |
1da177e4 | 1631 | this_cpu = smp_processor_id(); |
147cbb4b | 1632 | cpu = task_cpu(p); |
1da177e4 | 1633 | |
1da177e4 LT |
1634 | /* |
1635 | * We decrease the sleep average of forking parents | |
1636 | * and children as well, to keep max-interactive tasks | |
1637 | * from forking tasks that are max-interactive. The parent | |
1638 | * (current) is done further down, under its lock. | |
1639 | */ | |
1640 | p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | |
1641 | CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | |
1642 | ||
1643 | p->prio = effective_prio(p); | |
1644 | ||
1645 | if (likely(cpu == this_cpu)) { | |
1646 | if (!(clone_flags & CLONE_VM)) { | |
1647 | /* | |
1648 | * The VM isn't cloned, so we're in a good position to | |
1649 | * do child-runs-first in anticipation of an exec. This | |
1650 | * usually avoids a lot of COW overhead. | |
1651 | */ | |
1652 | if (unlikely(!current->array)) | |
1653 | __activate_task(p, rq); | |
1654 | else { | |
1655 | p->prio = current->prio; | |
b29739f9 | 1656 | p->normal_prio = current->normal_prio; |
1da177e4 LT |
1657 | list_add_tail(&p->run_list, ¤t->run_list); |
1658 | p->array = current->array; | |
1659 | p->array->nr_active++; | |
2dd73a4f | 1660 | inc_nr_running(p, rq); |
1da177e4 LT |
1661 | } |
1662 | set_need_resched(); | |
1663 | } else | |
1664 | /* Run child last */ | |
1665 | __activate_task(p, rq); | |
1666 | /* | |
1667 | * We skip the following code due to cpu == this_cpu | |
1668 | * | |
1669 | * task_rq_unlock(rq, &flags); | |
1670 | * this_rq = task_rq_lock(current, &flags); | |
1671 | */ | |
1672 | this_rq = rq; | |
1673 | } else { | |
1674 | this_rq = cpu_rq(this_cpu); | |
1675 | ||
1676 | /* | |
1677 | * Not the local CPU - must adjust timestamp. This should | |
1678 | * get optimised away in the !CONFIG_SMP case. | |
1679 | */ | |
1680 | p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | |
1681 | + rq->timestamp_last_tick; | |
1682 | __activate_task(p, rq); | |
1683 | if (TASK_PREEMPTS_CURR(p, rq)) | |
1684 | resched_task(rq->curr); | |
1685 | ||
1686 | /* | |
1687 | * Parent and child are on different CPUs, now get the | |
1688 | * parent runqueue to update the parent's ->sleep_avg: | |
1689 | */ | |
1690 | task_rq_unlock(rq, &flags); | |
1691 | this_rq = task_rq_lock(current, &flags); | |
1692 | } | |
1693 | current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | |
1694 | PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | |
1695 | task_rq_unlock(this_rq, &flags); | |
1696 | } | |
1697 | ||
1698 | /* | |
1699 | * Potentially available exiting-child timeslices are | |
1700 | * retrieved here - this way the parent does not get | |
1701 | * penalized for creating too many threads. | |
1702 | * | |
1703 | * (this cannot be used to 'generate' timeslices | |
1704 | * artificially, because any timeslice recovered here | |
1705 | * was given away by the parent in the first place.) | |
1706 | */ | |
36c8b586 | 1707 | void fastcall sched_exit(struct task_struct *p) |
1da177e4 LT |
1708 | { |
1709 | unsigned long flags; | |
70b97a7f | 1710 | struct rq *rq; |
1da177e4 LT |
1711 | |
1712 | /* | |
1713 | * If the child was a (relative-) CPU hog then decrease | |
1714 | * the sleep_avg of the parent as well. | |
1715 | */ | |
1716 | rq = task_rq_lock(p->parent, &flags); | |
889dfafe | 1717 | if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) { |
1da177e4 LT |
1718 | p->parent->time_slice += p->time_slice; |
1719 | if (unlikely(p->parent->time_slice > task_timeslice(p))) | |
1720 | p->parent->time_slice = task_timeslice(p); | |
1721 | } | |
1722 | if (p->sleep_avg < p->parent->sleep_avg) | |
1723 | p->parent->sleep_avg = p->parent->sleep_avg / | |
1724 | (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | |
1725 | (EXIT_WEIGHT + 1); | |
1726 | task_rq_unlock(rq, &flags); | |
1727 | } | |
1728 | ||
4866cde0 NP |
1729 | /** |
1730 | * prepare_task_switch - prepare to switch tasks | |
1731 | * @rq: the runqueue preparing to switch | |
1732 | * @next: the task we are going to switch to. | |
1733 | * | |
1734 | * This is called with the rq lock held and interrupts off. It must | |
1735 | * be paired with a subsequent finish_task_switch after the context | |
1736 | * switch. | |
1737 | * | |
1738 | * prepare_task_switch sets up locking and calls architecture specific | |
1739 | * hooks. | |
1740 | */ | |
70b97a7f | 1741 | static inline void prepare_task_switch(struct rq *rq, struct task_struct *next) |
4866cde0 NP |
1742 | { |
1743 | prepare_lock_switch(rq, next); | |
1744 | prepare_arch_switch(next); | |
1745 | } | |
1746 | ||
1da177e4 LT |
1747 | /** |
1748 | * finish_task_switch - clean up after a task-switch | |
344babaa | 1749 | * @rq: runqueue associated with task-switch |
1da177e4 LT |
1750 | * @prev: the thread we just switched away from. |
1751 | * | |
4866cde0 NP |
1752 | * finish_task_switch must be called after the context switch, paired |
1753 | * with a prepare_task_switch call before the context switch. | |
1754 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | |
1755 | * and do any other architecture-specific cleanup actions. | |
1da177e4 LT |
1756 | * |
1757 | * Note that we may have delayed dropping an mm in context_switch(). If | |
1758 | * so, we finish that here outside of the runqueue lock. (Doing it | |
1759 | * with the lock held can cause deadlocks; see schedule() for | |
1760 | * details.) | |
1761 | */ | |
70b97a7f | 1762 | static inline void finish_task_switch(struct rq *rq, struct task_struct *prev) |
1da177e4 LT |
1763 | __releases(rq->lock) |
1764 | { | |
1da177e4 | 1765 | struct mm_struct *mm = rq->prev_mm; |
55a101f8 | 1766 | long prev_state; |
1da177e4 LT |
1767 | |
1768 | rq->prev_mm = NULL; | |
1769 | ||
1770 | /* | |
1771 | * A task struct has one reference for the use as "current". | |
c394cc9f | 1772 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
55a101f8 ON |
1773 | * schedule one last time. The schedule call will never return, and |
1774 | * the scheduled task must drop that reference. | |
c394cc9f | 1775 | * The test for TASK_DEAD must occur while the runqueue locks are |
1da177e4 LT |
1776 | * still held, otherwise prev could be scheduled on another cpu, die |
1777 | * there before we look at prev->state, and then the reference would | |
1778 | * be dropped twice. | |
1779 | * Manfred Spraul <[email protected]> | |
1780 | */ | |
55a101f8 | 1781 | prev_state = prev->state; |
4866cde0 NP |
1782 | finish_arch_switch(prev); |
1783 | finish_lock_switch(rq, prev); | |
1da177e4 LT |
1784 | if (mm) |
1785 | mmdrop(mm); | |
c394cc9f | 1786 | if (unlikely(prev_state == TASK_DEAD)) { |
c6fd91f0 | 1787 | /* |
1788 | * Remove function-return probe instances associated with this | |
1789 | * task and put them back on the free list. | |
1790 | */ | |
1791 | kprobe_flush_task(prev); | |
1da177e4 | 1792 | put_task_struct(prev); |
c6fd91f0 | 1793 | } |
1da177e4 LT |
1794 | } |
1795 | ||
1796 | /** | |
1797 | * schedule_tail - first thing a freshly forked thread must call. | |
1798 | * @prev: the thread we just switched away from. | |
1799 | */ | |
36c8b586 | 1800 | asmlinkage void schedule_tail(struct task_struct *prev) |
1da177e4 LT |
1801 | __releases(rq->lock) |
1802 | { | |
70b97a7f IM |
1803 | struct rq *rq = this_rq(); |
1804 | ||
4866cde0 NP |
1805 | finish_task_switch(rq, prev); |
1806 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | |
1807 | /* In this case, finish_task_switch does not reenable preemption */ | |
1808 | preempt_enable(); | |
1809 | #endif | |
1da177e4 LT |
1810 | if (current->set_child_tid) |
1811 | put_user(current->pid, current->set_child_tid); | |
1812 | } | |
1813 | ||
1814 | /* | |
1815 | * context_switch - switch to the new MM and the new | |
1816 | * thread's register state. | |
1817 | */ | |
36c8b586 | 1818 | static inline struct task_struct * |
70b97a7f | 1819 | context_switch(struct rq *rq, struct task_struct *prev, |
36c8b586 | 1820 | struct task_struct *next) |
1da177e4 LT |
1821 | { |
1822 | struct mm_struct *mm = next->mm; | |
1823 | struct mm_struct *oldmm = prev->active_mm; | |
1824 | ||
1825 | if (unlikely(!mm)) { | |
1826 | next->active_mm = oldmm; | |
1827 | atomic_inc(&oldmm->mm_count); | |
1828 | enter_lazy_tlb(oldmm, next); | |
1829 | } else | |
1830 | switch_mm(oldmm, mm, next); | |
1831 | ||
1832 | if (unlikely(!prev->mm)) { | |
1833 | prev->active_mm = NULL; | |
1834 | WARN_ON(rq->prev_mm); | |
1835 | rq->prev_mm = oldmm; | |
1836 | } | |
3a5f5e48 IM |
1837 | /* |
1838 | * Since the runqueue lock will be released by the next | |
1839 | * task (which is an invalid locking op but in the case | |
1840 | * of the scheduler it's an obvious special-case), so we | |
1841 | * do an early lockdep release here: | |
1842 | */ | |
1843 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | |
8a25d5de | 1844 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
3a5f5e48 | 1845 | #endif |
1da177e4 LT |
1846 | |
1847 | /* Here we just switch the register state and the stack. */ | |
1848 | switch_to(prev, next, prev); | |
1849 | ||
1850 | return prev; | |
1851 | } | |
1852 | ||
1853 | /* | |
1854 | * nr_running, nr_uninterruptible and nr_context_switches: | |
1855 | * | |
1856 | * externally visible scheduler statistics: current number of runnable | |
1857 | * threads, current number of uninterruptible-sleeping threads, total | |
1858 | * number of context switches performed since bootup. | |
1859 | */ | |
1860 | unsigned long nr_running(void) | |
1861 | { | |
1862 | unsigned long i, sum = 0; | |
1863 | ||
1864 | for_each_online_cpu(i) | |
1865 | sum += cpu_rq(i)->nr_running; | |
1866 | ||
1867 | return sum; | |
1868 | } | |
1869 | ||
1870 | unsigned long nr_uninterruptible(void) | |
1871 | { | |
1872 | unsigned long i, sum = 0; | |
1873 | ||
0a945022 | 1874 | for_each_possible_cpu(i) |
1da177e4 LT |
1875 | sum += cpu_rq(i)->nr_uninterruptible; |
1876 | ||
1877 | /* | |
1878 | * Since we read the counters lockless, it might be slightly | |
1879 | * inaccurate. Do not allow it to go below zero though: | |
1880 | */ | |
1881 | if (unlikely((long)sum < 0)) | |
1882 | sum = 0; | |
1883 | ||
1884 | return sum; | |
1885 | } | |
1886 | ||
1887 | unsigned long long nr_context_switches(void) | |
1888 | { | |
cc94abfc SR |
1889 | int i; |
1890 | unsigned long long sum = 0; | |
1da177e4 | 1891 | |
0a945022 | 1892 | for_each_possible_cpu(i) |
1da177e4 LT |
1893 | sum += cpu_rq(i)->nr_switches; |
1894 | ||
1895 | return sum; | |
1896 | } | |
1897 | ||
1898 | unsigned long nr_iowait(void) | |
1899 | { | |
1900 | unsigned long i, sum = 0; | |
1901 | ||
0a945022 | 1902 | for_each_possible_cpu(i) |
1da177e4 LT |
1903 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
1904 | ||
1905 | return sum; | |
1906 | } | |
1907 | ||
db1b1fef JS |
1908 | unsigned long nr_active(void) |
1909 | { | |
1910 | unsigned long i, running = 0, uninterruptible = 0; | |
1911 | ||
1912 | for_each_online_cpu(i) { | |
1913 | running += cpu_rq(i)->nr_running; | |
1914 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | |
1915 | } | |
1916 | ||
1917 | if (unlikely((long)uninterruptible < 0)) | |
1918 | uninterruptible = 0; | |
1919 | ||
1920 | return running + uninterruptible; | |
1921 | } | |
1922 | ||
1da177e4 LT |
1923 | #ifdef CONFIG_SMP |
1924 | ||
48f24c4d IM |
1925 | /* |
1926 | * Is this task likely cache-hot: | |
1927 | */ | |
1928 | static inline int | |
1929 | task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd) | |
1930 | { | |
1931 | return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time; | |
1932 | } | |
1933 | ||
1da177e4 LT |
1934 | /* |
1935 | * double_rq_lock - safely lock two runqueues | |
1936 | * | |
1937 | * Note this does not disable interrupts like task_rq_lock, | |
1938 | * you need to do so manually before calling. | |
1939 | */ | |
70b97a7f | 1940 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
1941 | __acquires(rq1->lock) |
1942 | __acquires(rq2->lock) | |
1943 | { | |
1944 | if (rq1 == rq2) { | |
1945 | spin_lock(&rq1->lock); | |
1946 | __acquire(rq2->lock); /* Fake it out ;) */ | |
1947 | } else { | |
c96d145e | 1948 | if (rq1 < rq2) { |
1da177e4 LT |
1949 | spin_lock(&rq1->lock); |
1950 | spin_lock(&rq2->lock); | |
1951 | } else { | |
1952 | spin_lock(&rq2->lock); | |
1953 | spin_lock(&rq1->lock); | |
1954 | } | |
1955 | } | |
1956 | } | |
1957 | ||
1958 | /* | |
1959 | * double_rq_unlock - safely unlock two runqueues | |
1960 | * | |
1961 | * Note this does not restore interrupts like task_rq_unlock, | |
1962 | * you need to do so manually after calling. | |
1963 | */ | |
70b97a7f | 1964 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1da177e4 LT |
1965 | __releases(rq1->lock) |
1966 | __releases(rq2->lock) | |
1967 | { | |
1968 | spin_unlock(&rq1->lock); | |
1969 | if (rq1 != rq2) | |
1970 | spin_unlock(&rq2->lock); | |
1971 | else | |
1972 | __release(rq2->lock); | |
1973 | } | |
1974 | ||
1975 | /* | |
1976 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | |
1977 | */ | |
70b97a7f | 1978 | static void double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1da177e4 LT |
1979 | __releases(this_rq->lock) |
1980 | __acquires(busiest->lock) | |
1981 | __acquires(this_rq->lock) | |
1982 | { | |
1983 | if (unlikely(!spin_trylock(&busiest->lock))) { | |
c96d145e | 1984 | if (busiest < this_rq) { |
1da177e4 LT |
1985 | spin_unlock(&this_rq->lock); |
1986 | spin_lock(&busiest->lock); | |
1987 | spin_lock(&this_rq->lock); | |
1988 | } else | |
1989 | spin_lock(&busiest->lock); | |
1990 | } | |
1991 | } | |
1992 | ||
1da177e4 LT |
1993 | /* |
1994 | * If dest_cpu is allowed for this process, migrate the task to it. | |
1995 | * This is accomplished by forcing the cpu_allowed mask to only | |
1996 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | |
1997 | * the cpu_allowed mask is restored. | |
1998 | */ | |
36c8b586 | 1999 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
1da177e4 | 2000 | { |
70b97a7f | 2001 | struct migration_req req; |
1da177e4 | 2002 | unsigned long flags; |
70b97a7f | 2003 | struct rq *rq; |
1da177e4 LT |
2004 | |
2005 | rq = task_rq_lock(p, &flags); | |
2006 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | |
2007 | || unlikely(cpu_is_offline(dest_cpu))) | |
2008 | goto out; | |
2009 | ||
2010 | /* force the process onto the specified CPU */ | |
2011 | if (migrate_task(p, dest_cpu, &req)) { | |
2012 | /* Need to wait for migration thread (might exit: take ref). */ | |
2013 | struct task_struct *mt = rq->migration_thread; | |
36c8b586 | 2014 | |
1da177e4 LT |
2015 | get_task_struct(mt); |
2016 | task_rq_unlock(rq, &flags); | |
2017 | wake_up_process(mt); | |
2018 | put_task_struct(mt); | |
2019 | wait_for_completion(&req.done); | |
36c8b586 | 2020 | |
1da177e4 LT |
2021 | return; |
2022 | } | |
2023 | out: | |
2024 | task_rq_unlock(rq, &flags); | |
2025 | } | |
2026 | ||
2027 | /* | |
476d139c NP |
2028 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2029 | * this point the task has the smallest effective memory and cache footprint. | |
1da177e4 LT |
2030 | */ |
2031 | void sched_exec(void) | |
2032 | { | |
1da177e4 | 2033 | int new_cpu, this_cpu = get_cpu(); |
476d139c | 2034 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
1da177e4 | 2035 | put_cpu(); |
476d139c NP |
2036 | if (new_cpu != this_cpu) |
2037 | sched_migrate_task(current, new_cpu); | |
1da177e4 LT |
2038 | } |
2039 | ||
2040 | /* | |
2041 | * pull_task - move a task from a remote runqueue to the local runqueue. | |
2042 | * Both runqueues must be locked. | |
2043 | */ | |
70b97a7f IM |
2044 | static void pull_task(struct rq *src_rq, struct prio_array *src_array, |
2045 | struct task_struct *p, struct rq *this_rq, | |
2046 | struct prio_array *this_array, int this_cpu) | |
1da177e4 LT |
2047 | { |
2048 | dequeue_task(p, src_array); | |
2dd73a4f | 2049 | dec_nr_running(p, src_rq); |
1da177e4 | 2050 | set_task_cpu(p, this_cpu); |
2dd73a4f | 2051 | inc_nr_running(p, this_rq); |
1da177e4 LT |
2052 | enqueue_task(p, this_array); |
2053 | p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | |
2054 | + this_rq->timestamp_last_tick; | |
2055 | /* | |
2056 | * Note that idle threads have a prio of MAX_PRIO, for this test | |
2057 | * to be always true for them. | |
2058 | */ | |
2059 | if (TASK_PREEMPTS_CURR(p, this_rq)) | |
2060 | resched_task(this_rq->curr); | |
2061 | } | |
2062 | ||
2063 | /* | |
2064 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
2065 | */ | |
858119e1 | 2066 | static |
70b97a7f | 2067 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
95cdf3b7 IM |
2068 | struct sched_domain *sd, enum idle_type idle, |
2069 | int *all_pinned) | |
1da177e4 LT |
2070 | { |
2071 | /* | |
2072 | * We do not migrate tasks that are: | |
2073 | * 1) running (obviously), or | |
2074 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | |
2075 | * 3) are cache-hot on their current CPU. | |
2076 | */ | |
1da177e4 LT |
2077 | if (!cpu_isset(this_cpu, p->cpus_allowed)) |
2078 | return 0; | |
81026794 NP |
2079 | *all_pinned = 0; |
2080 | ||
2081 | if (task_running(rq, p)) | |
2082 | return 0; | |
1da177e4 LT |
2083 | |
2084 | /* | |
2085 | * Aggressive migration if: | |
cafb20c1 | 2086 | * 1) task is cache cold, or |
1da177e4 LT |
2087 | * 2) too many balance attempts have failed. |
2088 | */ | |
2089 | ||
cafb20c1 | 2090 | if (sd->nr_balance_failed > sd->cache_nice_tries) |
1da177e4 LT |
2091 | return 1; |
2092 | ||
2093 | if (task_hot(p, rq->timestamp_last_tick, sd)) | |
81026794 | 2094 | return 0; |
1da177e4 LT |
2095 | return 1; |
2096 | } | |
2097 | ||
615052dc | 2098 | #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio) |
48f24c4d | 2099 | |
1da177e4 | 2100 | /* |
2dd73a4f PW |
2101 | * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted |
2102 | * load from busiest to this_rq, as part of a balancing operation within | |
2103 | * "domain". Returns the number of tasks moved. | |
1da177e4 LT |
2104 | * |
2105 | * Called with both runqueues locked. | |
2106 | */ | |
70b97a7f | 2107 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2dd73a4f PW |
2108 | unsigned long max_nr_move, unsigned long max_load_move, |
2109 | struct sched_domain *sd, enum idle_type idle, | |
2110 | int *all_pinned) | |
1da177e4 | 2111 | { |
48f24c4d IM |
2112 | int idx, pulled = 0, pinned = 0, this_best_prio, best_prio, |
2113 | best_prio_seen, skip_for_load; | |
70b97a7f | 2114 | struct prio_array *array, *dst_array; |
1da177e4 | 2115 | struct list_head *head, *curr; |
36c8b586 | 2116 | struct task_struct *tmp; |
2dd73a4f | 2117 | long rem_load_move; |
1da177e4 | 2118 | |
2dd73a4f | 2119 | if (max_nr_move == 0 || max_load_move == 0) |
1da177e4 LT |
2120 | goto out; |
2121 | ||
2dd73a4f | 2122 | rem_load_move = max_load_move; |
81026794 | 2123 | pinned = 1; |
615052dc | 2124 | this_best_prio = rq_best_prio(this_rq); |
48f24c4d | 2125 | best_prio = rq_best_prio(busiest); |
615052dc PW |
2126 | /* |
2127 | * Enable handling of the case where there is more than one task | |
2128 | * with the best priority. If the current running task is one | |
48f24c4d | 2129 | * of those with prio==best_prio we know it won't be moved |
615052dc PW |
2130 | * and therefore it's safe to override the skip (based on load) of |
2131 | * any task we find with that prio. | |
2132 | */ | |
48f24c4d | 2133 | best_prio_seen = best_prio == busiest->curr->prio; |
81026794 | 2134 | |
1da177e4 LT |
2135 | /* |
2136 | * We first consider expired tasks. Those will likely not be | |
2137 | * executed in the near future, and they are most likely to | |
2138 | * be cache-cold, thus switching CPUs has the least effect | |
2139 | * on them. | |
2140 | */ | |
2141 | if (busiest->expired->nr_active) { | |
2142 | array = busiest->expired; | |
2143 | dst_array = this_rq->expired; | |
2144 | } else { | |
2145 | array = busiest->active; | |
2146 | dst_array = this_rq->active; | |
2147 | } | |
2148 | ||
2149 | new_array: | |
2150 | /* Start searching at priority 0: */ | |
2151 | idx = 0; | |
2152 | skip_bitmap: | |
2153 | if (!idx) | |
2154 | idx = sched_find_first_bit(array->bitmap); | |
2155 | else | |
2156 | idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | |
2157 | if (idx >= MAX_PRIO) { | |
2158 | if (array == busiest->expired && busiest->active->nr_active) { | |
2159 | array = busiest->active; | |
2160 | dst_array = this_rq->active; | |
2161 | goto new_array; | |
2162 | } | |
2163 | goto out; | |
2164 | } | |
2165 | ||
2166 | head = array->queue + idx; | |
2167 | curr = head->prev; | |
2168 | skip_queue: | |
36c8b586 | 2169 | tmp = list_entry(curr, struct task_struct, run_list); |
1da177e4 LT |
2170 | |
2171 | curr = curr->prev; | |
2172 | ||
50ddd969 PW |
2173 | /* |
2174 | * To help distribute high priority tasks accross CPUs we don't | |
2175 | * skip a task if it will be the highest priority task (i.e. smallest | |
2176 | * prio value) on its new queue regardless of its load weight | |
2177 | */ | |
615052dc PW |
2178 | skip_for_load = tmp->load_weight > rem_load_move; |
2179 | if (skip_for_load && idx < this_best_prio) | |
48f24c4d | 2180 | skip_for_load = !best_prio_seen && idx == best_prio; |
615052dc | 2181 | if (skip_for_load || |
2dd73a4f | 2182 | !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { |
48f24c4d IM |
2183 | |
2184 | best_prio_seen |= idx == best_prio; | |
1da177e4 LT |
2185 | if (curr != head) |
2186 | goto skip_queue; | |
2187 | idx++; | |
2188 | goto skip_bitmap; | |
2189 | } | |
2190 | ||
2191 | #ifdef CONFIG_SCHEDSTATS | |
2192 | if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | |
2193 | schedstat_inc(sd, lb_hot_gained[idle]); | |
2194 | #endif | |
2195 | ||
2196 | pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | |
2197 | pulled++; | |
2dd73a4f | 2198 | rem_load_move -= tmp->load_weight; |
1da177e4 | 2199 | |
2dd73a4f PW |
2200 | /* |
2201 | * We only want to steal up to the prescribed number of tasks | |
2202 | * and the prescribed amount of weighted load. | |
2203 | */ | |
2204 | if (pulled < max_nr_move && rem_load_move > 0) { | |
615052dc PW |
2205 | if (idx < this_best_prio) |
2206 | this_best_prio = idx; | |
1da177e4 LT |
2207 | if (curr != head) |
2208 | goto skip_queue; | |
2209 | idx++; | |
2210 | goto skip_bitmap; | |
2211 | } | |
2212 | out: | |
2213 | /* | |
2214 | * Right now, this is the only place pull_task() is called, | |
2215 | * so we can safely collect pull_task() stats here rather than | |
2216 | * inside pull_task(). | |
2217 | */ | |
2218 | schedstat_add(sd, lb_gained[idle], pulled); | |
81026794 NP |
2219 | |
2220 | if (all_pinned) | |
2221 | *all_pinned = pinned; | |
1da177e4 LT |
2222 | return pulled; |
2223 | } | |
2224 | ||
2225 | /* | |
2226 | * find_busiest_group finds and returns the busiest CPU group within the | |
48f24c4d IM |
2227 | * domain. It calculates and returns the amount of weighted load which |
2228 | * should be moved to restore balance via the imbalance parameter. | |
1da177e4 LT |
2229 | */ |
2230 | static struct sched_group * | |
2231 | find_busiest_group(struct sched_domain *sd, int this_cpu, | |
0a2966b4 CL |
2232 | unsigned long *imbalance, enum idle_type idle, int *sd_idle, |
2233 | cpumask_t *cpus) | |
1da177e4 LT |
2234 | { |
2235 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | |
2236 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | |
0c117f1b | 2237 | unsigned long max_pull; |
2dd73a4f PW |
2238 | unsigned long busiest_load_per_task, busiest_nr_running; |
2239 | unsigned long this_load_per_task, this_nr_running; | |
7897986b | 2240 | int load_idx; |
5c45bf27 SS |
2241 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
2242 | int power_savings_balance = 1; | |
2243 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | |
2244 | unsigned long min_nr_running = ULONG_MAX; | |
2245 | struct sched_group *group_min = NULL, *group_leader = NULL; | |
2246 | #endif | |
1da177e4 LT |
2247 | |
2248 | max_load = this_load = total_load = total_pwr = 0; | |
2dd73a4f PW |
2249 | busiest_load_per_task = busiest_nr_running = 0; |
2250 | this_load_per_task = this_nr_running = 0; | |
7897986b NP |
2251 | if (idle == NOT_IDLE) |
2252 | load_idx = sd->busy_idx; | |
2253 | else if (idle == NEWLY_IDLE) | |
2254 | load_idx = sd->newidle_idx; | |
2255 | else | |
2256 | load_idx = sd->idle_idx; | |
1da177e4 LT |
2257 | |
2258 | do { | |
5c45bf27 | 2259 | unsigned long load, group_capacity; |
1da177e4 LT |
2260 | int local_group; |
2261 | int i; | |
2dd73a4f | 2262 | unsigned long sum_nr_running, sum_weighted_load; |
1da177e4 LT |
2263 | |
2264 | local_group = cpu_isset(this_cpu, group->cpumask); | |
2265 | ||
2266 | /* Tally up the load of all CPUs in the group */ | |
2dd73a4f | 2267 | sum_weighted_load = sum_nr_running = avg_load = 0; |
1da177e4 LT |
2268 | |
2269 | for_each_cpu_mask(i, group->cpumask) { | |
0a2966b4 CL |
2270 | struct rq *rq; |
2271 | ||
2272 | if (!cpu_isset(i, *cpus)) | |
2273 | continue; | |
2274 | ||
2275 | rq = cpu_rq(i); | |
2dd73a4f | 2276 | |
5969fe06 NP |
2277 | if (*sd_idle && !idle_cpu(i)) |
2278 | *sd_idle = 0; | |
2279 | ||
1da177e4 LT |
2280 | /* Bias balancing toward cpus of our domain */ |
2281 | if (local_group) | |
a2000572 | 2282 | load = target_load(i, load_idx); |
1da177e4 | 2283 | else |
a2000572 | 2284 | load = source_load(i, load_idx); |
1da177e4 LT |
2285 | |
2286 | avg_load += load; | |
2dd73a4f PW |
2287 | sum_nr_running += rq->nr_running; |
2288 | sum_weighted_load += rq->raw_weighted_load; | |
1da177e4 LT |
2289 | } |
2290 | ||
2291 | total_load += avg_load; | |
2292 | total_pwr += group->cpu_power; | |
2293 | ||
2294 | /* Adjust by relative CPU power of the group */ | |
2295 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | |
2296 | ||
5c45bf27 SS |
2297 | group_capacity = group->cpu_power / SCHED_LOAD_SCALE; |
2298 | ||
1da177e4 LT |
2299 | if (local_group) { |
2300 | this_load = avg_load; | |
2301 | this = group; | |
2dd73a4f PW |
2302 | this_nr_running = sum_nr_running; |
2303 | this_load_per_task = sum_weighted_load; | |
2304 | } else if (avg_load > max_load && | |
5c45bf27 | 2305 | sum_nr_running > group_capacity) { |
1da177e4 LT |
2306 | max_load = avg_load; |
2307 | busiest = group; | |
2dd73a4f PW |
2308 | busiest_nr_running = sum_nr_running; |
2309 | busiest_load_per_task = sum_weighted_load; | |
1da177e4 | 2310 | } |
5c45bf27 SS |
2311 | |
2312 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | |
2313 | /* | |
2314 | * Busy processors will not participate in power savings | |
2315 | * balance. | |
2316 | */ | |
2317 | if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
2318 | goto group_next; | |
2319 | ||
2320 | /* | |
2321 | * If the local group is idle or completely loaded | |
2322 | * no need to do power savings balance at this domain | |
2323 | */ | |
2324 | if (local_group && (this_nr_running >= group_capacity || | |
2325 | !this_nr_running)) | |
2326 | power_savings_balance = 0; | |
2327 | ||
2328 | /* | |
2329 | * If a group is already running at full capacity or idle, | |
2330 | * don't include that group in power savings calculations | |
2331 | */ | |
2332 | if (!power_savings_balance || sum_nr_running >= group_capacity | |
2333 | || !sum_nr_running) | |
2334 | goto group_next; | |
2335 | ||
2336 | /* | |
2337 | * Calculate the group which has the least non-idle load. | |
2338 | * This is the group from where we need to pick up the load | |
2339 | * for saving power | |
2340 | */ | |
2341 | if ((sum_nr_running < min_nr_running) || | |
2342 | (sum_nr_running == min_nr_running && | |
2343 | first_cpu(group->cpumask) < | |
2344 | first_cpu(group_min->cpumask))) { | |
2345 | group_min = group; | |
2346 | min_nr_running = sum_nr_running; | |
2347 | min_load_per_task = sum_weighted_load / | |
2348 | sum_nr_running; | |
2349 | } | |
2350 | ||
2351 | /* | |
2352 | * Calculate the group which is almost near its | |
2353 | * capacity but still has some space to pick up some load | |
2354 | * from other group and save more power | |
2355 | */ | |
48f24c4d | 2356 | if (sum_nr_running <= group_capacity - 1) { |
5c45bf27 SS |
2357 | if (sum_nr_running > leader_nr_running || |
2358 | (sum_nr_running == leader_nr_running && | |
2359 | first_cpu(group->cpumask) > | |
2360 | first_cpu(group_leader->cpumask))) { | |
2361 | group_leader = group; | |
2362 | leader_nr_running = sum_nr_running; | |
2363 | } | |
48f24c4d | 2364 | } |
5c45bf27 SS |
2365 | group_next: |
2366 | #endif | |
1da177e4 LT |
2367 | group = group->next; |
2368 | } while (group != sd->groups); | |
2369 | ||
2dd73a4f | 2370 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) |
1da177e4 LT |
2371 | goto out_balanced; |
2372 | ||
2373 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | |
2374 | ||
2375 | if (this_load >= avg_load || | |
2376 | 100*max_load <= sd->imbalance_pct*this_load) | |
2377 | goto out_balanced; | |
2378 | ||
2dd73a4f | 2379 | busiest_load_per_task /= busiest_nr_running; |
1da177e4 LT |
2380 | /* |
2381 | * We're trying to get all the cpus to the average_load, so we don't | |
2382 | * want to push ourselves above the average load, nor do we wish to | |
2383 | * reduce the max loaded cpu below the average load, as either of these | |
2384 | * actions would just result in more rebalancing later, and ping-pong | |
2385 | * tasks around. Thus we look for the minimum possible imbalance. | |
2386 | * Negative imbalances (*we* are more loaded than anyone else) will | |
2387 | * be counted as no imbalance for these purposes -- we can't fix that | |
2388 | * by pulling tasks to us. Be careful of negative numbers as they'll | |
2389 | * appear as very large values with unsigned longs. | |
2390 | */ | |
2dd73a4f PW |
2391 | if (max_load <= busiest_load_per_task) |
2392 | goto out_balanced; | |
2393 | ||
2394 | /* | |
2395 | * In the presence of smp nice balancing, certain scenarios can have | |
2396 | * max load less than avg load(as we skip the groups at or below | |
2397 | * its cpu_power, while calculating max_load..) | |
2398 | */ | |
2399 | if (max_load < avg_load) { | |
2400 | *imbalance = 0; | |
2401 | goto small_imbalance; | |
2402 | } | |
0c117f1b SS |
2403 | |
2404 | /* Don't want to pull so many tasks that a group would go idle */ | |
2dd73a4f | 2405 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); |
0c117f1b | 2406 | |
1da177e4 | 2407 | /* How much load to actually move to equalise the imbalance */ |
0c117f1b | 2408 | *imbalance = min(max_pull * busiest->cpu_power, |
1da177e4 LT |
2409 | (avg_load - this_load) * this->cpu_power) |
2410 | / SCHED_LOAD_SCALE; | |
2411 | ||
2dd73a4f PW |
2412 | /* |
2413 | * if *imbalance is less than the average load per runnable task | |
2414 | * there is no gaurantee that any tasks will be moved so we'll have | |
2415 | * a think about bumping its value to force at least one task to be | |
2416 | * moved | |
2417 | */ | |
2418 | if (*imbalance < busiest_load_per_task) { | |
48f24c4d | 2419 | unsigned long tmp, pwr_now, pwr_move; |
2dd73a4f PW |
2420 | unsigned int imbn; |
2421 | ||
2422 | small_imbalance: | |
2423 | pwr_move = pwr_now = 0; | |
2424 | imbn = 2; | |
2425 | if (this_nr_running) { | |
2426 | this_load_per_task /= this_nr_running; | |
2427 | if (busiest_load_per_task > this_load_per_task) | |
2428 | imbn = 1; | |
2429 | } else | |
2430 | this_load_per_task = SCHED_LOAD_SCALE; | |
1da177e4 | 2431 | |
2dd73a4f PW |
2432 | if (max_load - this_load >= busiest_load_per_task * imbn) { |
2433 | *imbalance = busiest_load_per_task; | |
1da177e4 LT |
2434 | return busiest; |
2435 | } | |
2436 | ||
2437 | /* | |
2438 | * OK, we don't have enough imbalance to justify moving tasks, | |
2439 | * however we may be able to increase total CPU power used by | |
2440 | * moving them. | |
2441 | */ | |
2442 | ||
2dd73a4f PW |
2443 | pwr_now += busiest->cpu_power * |
2444 | min(busiest_load_per_task, max_load); | |
2445 | pwr_now += this->cpu_power * | |
2446 | min(this_load_per_task, this_load); | |
1da177e4 LT |
2447 | pwr_now /= SCHED_LOAD_SCALE; |
2448 | ||
2449 | /* Amount of load we'd subtract */ | |
2dd73a4f | 2450 | tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power; |
1da177e4 | 2451 | if (max_load > tmp) |
2dd73a4f PW |
2452 | pwr_move += busiest->cpu_power * |
2453 | min(busiest_load_per_task, max_load - tmp); | |
1da177e4 LT |
2454 | |
2455 | /* Amount of load we'd add */ | |
2456 | if (max_load*busiest->cpu_power < | |
2dd73a4f | 2457 | busiest_load_per_task*SCHED_LOAD_SCALE) |
1da177e4 LT |
2458 | tmp = max_load*busiest->cpu_power/this->cpu_power; |
2459 | else | |
2dd73a4f PW |
2460 | tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power; |
2461 | pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp); | |
1da177e4 LT |
2462 | pwr_move /= SCHED_LOAD_SCALE; |
2463 | ||
2464 | /* Move if we gain throughput */ | |
2465 | if (pwr_move <= pwr_now) | |
2466 | goto out_balanced; | |
2467 | ||
2dd73a4f | 2468 | *imbalance = busiest_load_per_task; |
1da177e4 LT |
2469 | } |
2470 | ||
1da177e4 LT |
2471 | return busiest; |
2472 | ||
2473 | out_balanced: | |
5c45bf27 SS |
2474 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
2475 | if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | |
2476 | goto ret; | |
1da177e4 | 2477 | |
5c45bf27 SS |
2478 | if (this == group_leader && group_leader != group_min) { |
2479 | *imbalance = min_load_per_task; | |
2480 | return group_min; | |
2481 | } | |
2482 | ret: | |
2483 | #endif | |
1da177e4 LT |
2484 | *imbalance = 0; |
2485 | return NULL; | |
2486 | } | |
2487 | ||
2488 | /* | |
2489 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | |
2490 | */ | |
70b97a7f | 2491 | static struct rq * |
48f24c4d | 2492 | find_busiest_queue(struct sched_group *group, enum idle_type idle, |
0a2966b4 | 2493 | unsigned long imbalance, cpumask_t *cpus) |
1da177e4 | 2494 | { |
70b97a7f | 2495 | struct rq *busiest = NULL, *rq; |
2dd73a4f | 2496 | unsigned long max_load = 0; |
1da177e4 LT |
2497 | int i; |
2498 | ||
2499 | for_each_cpu_mask(i, group->cpumask) { | |
0a2966b4 CL |
2500 | |
2501 | if (!cpu_isset(i, *cpus)) | |
2502 | continue; | |
2503 | ||
48f24c4d | 2504 | rq = cpu_rq(i); |
2dd73a4f | 2505 | |
48f24c4d | 2506 | if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance) |
2dd73a4f | 2507 | continue; |
1da177e4 | 2508 | |
48f24c4d IM |
2509 | if (rq->raw_weighted_load > max_load) { |
2510 | max_load = rq->raw_weighted_load; | |
2511 | busiest = rq; | |
1da177e4 LT |
2512 | } |
2513 | } | |
2514 | ||
2515 | return busiest; | |
2516 | } | |
2517 | ||
77391d71 NP |
2518 | /* |
2519 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
2520 | * so long as it is large enough. | |
2521 | */ | |
2522 | #define MAX_PINNED_INTERVAL 512 | |
2523 | ||
48f24c4d IM |
2524 | static inline unsigned long minus_1_or_zero(unsigned long n) |
2525 | { | |
2526 | return n > 0 ? n - 1 : 0; | |
2527 | } | |
2528 | ||
1da177e4 LT |
2529 | /* |
2530 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
2531 | * tasks if there is an imbalance. | |
2532 | * | |
2533 | * Called with this_rq unlocked. | |
2534 | */ | |
70b97a7f | 2535 | static int load_balance(int this_cpu, struct rq *this_rq, |
1da177e4 LT |
2536 | struct sched_domain *sd, enum idle_type idle) |
2537 | { | |
48f24c4d | 2538 | int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
1da177e4 | 2539 | struct sched_group *group; |
1da177e4 | 2540 | unsigned long imbalance; |
70b97a7f | 2541 | struct rq *busiest; |
0a2966b4 | 2542 | cpumask_t cpus = CPU_MASK_ALL; |
5969fe06 | 2543 | |
89c4710e SS |
2544 | /* |
2545 | * When power savings policy is enabled for the parent domain, idle | |
2546 | * sibling can pick up load irrespective of busy siblings. In this case, | |
2547 | * let the state of idle sibling percolate up as IDLE, instead of | |
2548 | * portraying it as NOT_IDLE. | |
2549 | */ | |
5c45bf27 | 2550 | if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2551 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2552 | sd_idle = 1; |
1da177e4 | 2553 | |
1da177e4 LT |
2554 | schedstat_inc(sd, lb_cnt[idle]); |
2555 | ||
0a2966b4 CL |
2556 | redo: |
2557 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | |
2558 | &cpus); | |
1da177e4 LT |
2559 | if (!group) { |
2560 | schedstat_inc(sd, lb_nobusyg[idle]); | |
2561 | goto out_balanced; | |
2562 | } | |
2563 | ||
0a2966b4 | 2564 | busiest = find_busiest_queue(group, idle, imbalance, &cpus); |
1da177e4 LT |
2565 | if (!busiest) { |
2566 | schedstat_inc(sd, lb_nobusyq[idle]); | |
2567 | goto out_balanced; | |
2568 | } | |
2569 | ||
db935dbd | 2570 | BUG_ON(busiest == this_rq); |
1da177e4 LT |
2571 | |
2572 | schedstat_add(sd, lb_imbalance[idle], imbalance); | |
2573 | ||
2574 | nr_moved = 0; | |
2575 | if (busiest->nr_running > 1) { | |
2576 | /* | |
2577 | * Attempt to move tasks. If find_busiest_group has found | |
2578 | * an imbalance but busiest->nr_running <= 1, the group is | |
2579 | * still unbalanced. nr_moved simply stays zero, so it is | |
2580 | * correctly treated as an imbalance. | |
2581 | */ | |
e17224bf | 2582 | double_rq_lock(this_rq, busiest); |
1da177e4 | 2583 | nr_moved = move_tasks(this_rq, this_cpu, busiest, |
48f24c4d IM |
2584 | minus_1_or_zero(busiest->nr_running), |
2585 | imbalance, sd, idle, &all_pinned); | |
e17224bf | 2586 | double_rq_unlock(this_rq, busiest); |
81026794 NP |
2587 | |
2588 | /* All tasks on this runqueue were pinned by CPU affinity */ | |
0a2966b4 CL |
2589 | if (unlikely(all_pinned)) { |
2590 | cpu_clear(cpu_of(busiest), cpus); | |
2591 | if (!cpus_empty(cpus)) | |
2592 | goto redo; | |
81026794 | 2593 | goto out_balanced; |
0a2966b4 | 2594 | } |
1da177e4 | 2595 | } |
81026794 | 2596 | |
1da177e4 LT |
2597 | if (!nr_moved) { |
2598 | schedstat_inc(sd, lb_failed[idle]); | |
2599 | sd->nr_balance_failed++; | |
2600 | ||
2601 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | |
1da177e4 LT |
2602 | |
2603 | spin_lock(&busiest->lock); | |
fa3b6ddc SS |
2604 | |
2605 | /* don't kick the migration_thread, if the curr | |
2606 | * task on busiest cpu can't be moved to this_cpu | |
2607 | */ | |
2608 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | |
2609 | spin_unlock(&busiest->lock); | |
2610 | all_pinned = 1; | |
2611 | goto out_one_pinned; | |
2612 | } | |
2613 | ||
1da177e4 LT |
2614 | if (!busiest->active_balance) { |
2615 | busiest->active_balance = 1; | |
2616 | busiest->push_cpu = this_cpu; | |
81026794 | 2617 | active_balance = 1; |
1da177e4 LT |
2618 | } |
2619 | spin_unlock(&busiest->lock); | |
81026794 | 2620 | if (active_balance) |
1da177e4 LT |
2621 | wake_up_process(busiest->migration_thread); |
2622 | ||
2623 | /* | |
2624 | * We've kicked active balancing, reset the failure | |
2625 | * counter. | |
2626 | */ | |
39507451 | 2627 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
1da177e4 | 2628 | } |
81026794 | 2629 | } else |
1da177e4 LT |
2630 | sd->nr_balance_failed = 0; |
2631 | ||
81026794 | 2632 | if (likely(!active_balance)) { |
1da177e4 LT |
2633 | /* We were unbalanced, so reset the balancing interval */ |
2634 | sd->balance_interval = sd->min_interval; | |
81026794 NP |
2635 | } else { |
2636 | /* | |
2637 | * If we've begun active balancing, start to back off. This | |
2638 | * case may not be covered by the all_pinned logic if there | |
2639 | * is only 1 task on the busy runqueue (because we don't call | |
2640 | * move_tasks). | |
2641 | */ | |
2642 | if (sd->balance_interval < sd->max_interval) | |
2643 | sd->balance_interval *= 2; | |
1da177e4 LT |
2644 | } |
2645 | ||
5c45bf27 | 2646 | if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2647 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2648 | return -1; |
1da177e4 LT |
2649 | return nr_moved; |
2650 | ||
2651 | out_balanced: | |
1da177e4 LT |
2652 | schedstat_inc(sd, lb_balanced[idle]); |
2653 | ||
16cfb1c0 | 2654 | sd->nr_balance_failed = 0; |
fa3b6ddc SS |
2655 | |
2656 | out_one_pinned: | |
1da177e4 | 2657 | /* tune up the balancing interval */ |
77391d71 NP |
2658 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
2659 | (sd->balance_interval < sd->max_interval)) | |
1da177e4 LT |
2660 | sd->balance_interval *= 2; |
2661 | ||
48f24c4d | 2662 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2663 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2664 | return -1; |
1da177e4 LT |
2665 | return 0; |
2666 | } | |
2667 | ||
2668 | /* | |
2669 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
2670 | * tasks if there is an imbalance. | |
2671 | * | |
2672 | * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | |
2673 | * this_rq is locked. | |
2674 | */ | |
48f24c4d | 2675 | static int |
70b97a7f | 2676 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) |
1da177e4 LT |
2677 | { |
2678 | struct sched_group *group; | |
70b97a7f | 2679 | struct rq *busiest = NULL; |
1da177e4 LT |
2680 | unsigned long imbalance; |
2681 | int nr_moved = 0; | |
5969fe06 | 2682 | int sd_idle = 0; |
0a2966b4 | 2683 | cpumask_t cpus = CPU_MASK_ALL; |
5969fe06 | 2684 | |
89c4710e SS |
2685 | /* |
2686 | * When power savings policy is enabled for the parent domain, idle | |
2687 | * sibling can pick up load irrespective of busy siblings. In this case, | |
2688 | * let the state of idle sibling percolate up as IDLE, instead of | |
2689 | * portraying it as NOT_IDLE. | |
2690 | */ | |
2691 | if (sd->flags & SD_SHARE_CPUPOWER && | |
2692 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 | 2693 | sd_idle = 1; |
1da177e4 LT |
2694 | |
2695 | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | |
0a2966b4 CL |
2696 | redo: |
2697 | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, | |
2698 | &sd_idle, &cpus); | |
1da177e4 | 2699 | if (!group) { |
1da177e4 | 2700 | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); |
16cfb1c0 | 2701 | goto out_balanced; |
1da177e4 LT |
2702 | } |
2703 | ||
0a2966b4 CL |
2704 | busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance, |
2705 | &cpus); | |
db935dbd | 2706 | if (!busiest) { |
1da177e4 | 2707 | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); |
16cfb1c0 | 2708 | goto out_balanced; |
1da177e4 LT |
2709 | } |
2710 | ||
db935dbd NP |
2711 | BUG_ON(busiest == this_rq); |
2712 | ||
1da177e4 | 2713 | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); |
d6d5cfaf NP |
2714 | |
2715 | nr_moved = 0; | |
2716 | if (busiest->nr_running > 1) { | |
2717 | /* Attempt to move tasks */ | |
2718 | double_lock_balance(this_rq, busiest); | |
2719 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | |
2dd73a4f | 2720 | minus_1_or_zero(busiest->nr_running), |
81026794 | 2721 | imbalance, sd, NEWLY_IDLE, NULL); |
d6d5cfaf | 2722 | spin_unlock(&busiest->lock); |
0a2966b4 CL |
2723 | |
2724 | if (!nr_moved) { | |
2725 | cpu_clear(cpu_of(busiest), cpus); | |
2726 | if (!cpus_empty(cpus)) | |
2727 | goto redo; | |
2728 | } | |
d6d5cfaf NP |
2729 | } |
2730 | ||
5969fe06 | 2731 | if (!nr_moved) { |
1da177e4 | 2732 | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); |
89c4710e SS |
2733 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
2734 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | |
5969fe06 NP |
2735 | return -1; |
2736 | } else | |
16cfb1c0 | 2737 | sd->nr_balance_failed = 0; |
1da177e4 | 2738 | |
1da177e4 | 2739 | return nr_moved; |
16cfb1c0 NP |
2740 | |
2741 | out_balanced: | |
2742 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | |
48f24c4d | 2743 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
89c4710e | 2744 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
5969fe06 | 2745 | return -1; |
16cfb1c0 | 2746 | sd->nr_balance_failed = 0; |
48f24c4d | 2747 | |
16cfb1c0 | 2748 | return 0; |
1da177e4 LT |
2749 | } |
2750 | ||
2751 | /* | |
2752 | * idle_balance is called by schedule() if this_cpu is about to become | |
2753 | * idle. Attempts to pull tasks from other CPUs. | |
2754 | */ | |
70b97a7f | 2755 | static void idle_balance(int this_cpu, struct rq *this_rq) |
1da177e4 LT |
2756 | { |
2757 | struct sched_domain *sd; | |
2758 | ||
2759 | for_each_domain(this_cpu, sd) { | |
2760 | if (sd->flags & SD_BALANCE_NEWIDLE) { | |
48f24c4d IM |
2761 | /* If we've pulled tasks over stop searching: */ |
2762 | if (load_balance_newidle(this_cpu, this_rq, sd)) | |
1da177e4 | 2763 | break; |
1da177e4 LT |
2764 | } |
2765 | } | |
2766 | } | |
2767 | ||
2768 | /* | |
2769 | * active_load_balance is run by migration threads. It pushes running tasks | |
2770 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | |
2771 | * running on each physical CPU where possible, and avoids physical / | |
2772 | * logical imbalances. | |
2773 | * | |
2774 | * Called with busiest_rq locked. | |
2775 | */ | |
70b97a7f | 2776 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
1da177e4 | 2777 | { |
39507451 | 2778 | int target_cpu = busiest_rq->push_cpu; |
70b97a7f IM |
2779 | struct sched_domain *sd; |
2780 | struct rq *target_rq; | |
39507451 | 2781 | |
48f24c4d | 2782 | /* Is there any task to move? */ |
39507451 | 2783 | if (busiest_rq->nr_running <= 1) |
39507451 NP |
2784 | return; |
2785 | ||
2786 | target_rq = cpu_rq(target_cpu); | |
1da177e4 LT |
2787 | |
2788 | /* | |
39507451 NP |
2789 | * This condition is "impossible", if it occurs |
2790 | * we need to fix it. Originally reported by | |
2791 | * Bjorn Helgaas on a 128-cpu setup. | |
1da177e4 | 2792 | */ |
39507451 | 2793 | BUG_ON(busiest_rq == target_rq); |
1da177e4 | 2794 | |
39507451 NP |
2795 | /* move a task from busiest_rq to target_rq */ |
2796 | double_lock_balance(busiest_rq, target_rq); | |
2797 | ||
2798 | /* Search for an sd spanning us and the target CPU. */ | |
c96d145e | 2799 | for_each_domain(target_cpu, sd) { |
39507451 | 2800 | if ((sd->flags & SD_LOAD_BALANCE) && |
48f24c4d | 2801 | cpu_isset(busiest_cpu, sd->span)) |
39507451 | 2802 | break; |
c96d145e | 2803 | } |
39507451 | 2804 | |
48f24c4d IM |
2805 | if (likely(sd)) { |
2806 | schedstat_inc(sd, alb_cnt); | |
39507451 | 2807 | |
48f24c4d IM |
2808 | if (move_tasks(target_rq, target_cpu, busiest_rq, 1, |
2809 | RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, | |
2810 | NULL)) | |
2811 | schedstat_inc(sd, alb_pushed); | |
2812 | else | |
2813 | schedstat_inc(sd, alb_failed); | |
2814 | } | |
39507451 | 2815 | spin_unlock(&target_rq->lock); |
1da177e4 LT |
2816 | } |
2817 | ||
2818 | /* | |
2819 | * rebalance_tick will get called every timer tick, on every CPU. | |
2820 | * | |
2821 | * It checks each scheduling domain to see if it is due to be balanced, | |
2822 | * and initiates a balancing operation if so. | |
2823 | * | |
2824 | * Balancing parameters are set up in arch_init_sched_domains. | |
2825 | */ | |
2826 | ||
48f24c4d IM |
2827 | /* Don't have all balancing operations going off at once: */ |
2828 | static inline unsigned long cpu_offset(int cpu) | |
2829 | { | |
2830 | return jiffies + cpu * HZ / NR_CPUS; | |
2831 | } | |
1da177e4 | 2832 | |
48f24c4d | 2833 | static void |
70b97a7f | 2834 | rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle) |
1da177e4 | 2835 | { |
48f24c4d | 2836 | unsigned long this_load, interval, j = cpu_offset(this_cpu); |
1da177e4 | 2837 | struct sched_domain *sd; |
48f24c4d | 2838 | int i, scale; |
1da177e4 | 2839 | |
2dd73a4f | 2840 | this_load = this_rq->raw_weighted_load; |
48f24c4d IM |
2841 | |
2842 | /* Update our load: */ | |
2843 | for (i = 0, scale = 1; i < 3; i++, scale <<= 1) { | |
2844 | unsigned long old_load, new_load; | |
2845 | ||
7897986b | 2846 | old_load = this_rq->cpu_load[i]; |
48f24c4d | 2847 | new_load = this_load; |
7897986b NP |
2848 | /* |
2849 | * Round up the averaging division if load is increasing. This | |
2850 | * prevents us from getting stuck on 9 if the load is 10, for | |
2851 | * example. | |
2852 | */ | |
2853 | if (new_load > old_load) | |
2854 | new_load += scale-1; | |
2855 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale; | |
2856 | } | |
1da177e4 LT |
2857 | |
2858 | for_each_domain(this_cpu, sd) { | |
1da177e4 LT |
2859 | if (!(sd->flags & SD_LOAD_BALANCE)) |
2860 | continue; | |
2861 | ||
2862 | interval = sd->balance_interval; | |
2863 | if (idle != SCHED_IDLE) | |
2864 | interval *= sd->busy_factor; | |
2865 | ||
2866 | /* scale ms to jiffies */ | |
2867 | interval = msecs_to_jiffies(interval); | |
2868 | if (unlikely(!interval)) | |
2869 | interval = 1; | |
2870 | ||
2871 | if (j - sd->last_balance >= interval) { | |
2872 | if (load_balance(this_cpu, this_rq, sd, idle)) { | |
fa3b6ddc SS |
2873 | /* |
2874 | * We've pulled tasks over so either we're no | |
5969fe06 NP |
2875 | * longer idle, or one of our SMT siblings is |
2876 | * not idle. | |
2877 | */ | |
1da177e4 LT |
2878 | idle = NOT_IDLE; |
2879 | } | |
2880 | sd->last_balance += interval; | |
2881 | } | |
2882 | } | |
2883 | } | |
2884 | #else | |
2885 | /* | |
2886 | * on UP we do not need to balance between CPUs: | |
2887 | */ | |
70b97a7f | 2888 | static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle) |
1da177e4 LT |
2889 | { |
2890 | } | |
70b97a7f | 2891 | static inline void idle_balance(int cpu, struct rq *rq) |
1da177e4 LT |
2892 | { |
2893 | } | |
2894 | #endif | |
2895 | ||
70b97a7f | 2896 | static inline int wake_priority_sleeper(struct rq *rq) |
1da177e4 LT |
2897 | { |
2898 | int ret = 0; | |
48f24c4d | 2899 | |
1da177e4 LT |
2900 | #ifdef CONFIG_SCHED_SMT |
2901 | spin_lock(&rq->lock); | |
2902 | /* | |
2903 | * If an SMT sibling task has been put to sleep for priority | |
2904 | * reasons reschedule the idle task to see if it can now run. | |
2905 | */ | |
2906 | if (rq->nr_running) { | |
2907 | resched_task(rq->idle); | |
2908 | ret = 1; | |
2909 | } | |
2910 | spin_unlock(&rq->lock); | |
2911 | #endif | |
2912 | return ret; | |
2913 | } | |
2914 | ||
2915 | DEFINE_PER_CPU(struct kernel_stat, kstat); | |
2916 | ||
2917 | EXPORT_PER_CPU_SYMBOL(kstat); | |
2918 | ||
2919 | /* | |
2920 | * This is called on clock ticks and on context switches. | |
2921 | * Bank in p->sched_time the ns elapsed since the last tick or switch. | |
2922 | */ | |
48f24c4d | 2923 | static inline void |
70b97a7f | 2924 | update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now) |
1da177e4 | 2925 | { |
48f24c4d | 2926 | p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick); |
1da177e4 LT |
2927 | } |
2928 | ||
2929 | /* | |
2930 | * Return current->sched_time plus any more ns on the sched_clock | |
2931 | * that have not yet been banked. | |
2932 | */ | |
36c8b586 | 2933 | unsigned long long current_sched_time(const struct task_struct *p) |
1da177e4 LT |
2934 | { |
2935 | unsigned long long ns; | |
2936 | unsigned long flags; | |
48f24c4d | 2937 | |
1da177e4 | 2938 | local_irq_save(flags); |
48f24c4d IM |
2939 | ns = max(p->timestamp, task_rq(p)->timestamp_last_tick); |
2940 | ns = p->sched_time + sched_clock() - ns; | |
1da177e4 | 2941 | local_irq_restore(flags); |
48f24c4d | 2942 | |
1da177e4 LT |
2943 | return ns; |
2944 | } | |
2945 | ||
f1adad78 LT |
2946 | /* |
2947 | * We place interactive tasks back into the active array, if possible. | |
2948 | * | |
2949 | * To guarantee that this does not starve expired tasks we ignore the | |
2950 | * interactivity of a task if the first expired task had to wait more | |
2951 | * than a 'reasonable' amount of time. This deadline timeout is | |
2952 | * load-dependent, as the frequency of array switched decreases with | |
2953 | * increasing number of running tasks. We also ignore the interactivity | |
2954 | * if a better static_prio task has expired: | |
2955 | */ | |
70b97a7f | 2956 | static inline int expired_starving(struct rq *rq) |
48f24c4d IM |
2957 | { |
2958 | if (rq->curr->static_prio > rq->best_expired_prio) | |
2959 | return 1; | |
2960 | if (!STARVATION_LIMIT || !rq->expired_timestamp) | |
2961 | return 0; | |
2962 | if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running) | |
2963 | return 1; | |
2964 | return 0; | |
2965 | } | |
f1adad78 | 2966 | |
1da177e4 LT |
2967 | /* |
2968 | * Account user cpu time to a process. | |
2969 | * @p: the process that the cpu time gets accounted to | |
2970 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
2971 | * @cputime: the cpu time spent in user space since the last update | |
2972 | */ | |
2973 | void account_user_time(struct task_struct *p, cputime_t cputime) | |
2974 | { | |
2975 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
2976 | cputime64_t tmp; | |
2977 | ||
2978 | p->utime = cputime_add(p->utime, cputime); | |
2979 | ||
2980 | /* Add user time to cpustat. */ | |
2981 | tmp = cputime_to_cputime64(cputime); | |
2982 | if (TASK_NICE(p) > 0) | |
2983 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | |
2984 | else | |
2985 | cpustat->user = cputime64_add(cpustat->user, tmp); | |
2986 | } | |
2987 | ||
2988 | /* | |
2989 | * Account system cpu time to a process. | |
2990 | * @p: the process that the cpu time gets accounted to | |
2991 | * @hardirq_offset: the offset to subtract from hardirq_count() | |
2992 | * @cputime: the cpu time spent in kernel space since the last update | |
2993 | */ | |
2994 | void account_system_time(struct task_struct *p, int hardirq_offset, | |
2995 | cputime_t cputime) | |
2996 | { | |
2997 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
70b97a7f | 2998 | struct rq *rq = this_rq(); |
1da177e4 LT |
2999 | cputime64_t tmp; |
3000 | ||
3001 | p->stime = cputime_add(p->stime, cputime); | |
3002 | ||
3003 | /* Add system time to cpustat. */ | |
3004 | tmp = cputime_to_cputime64(cputime); | |
3005 | if (hardirq_count() - hardirq_offset) | |
3006 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | |
3007 | else if (softirq_count()) | |
3008 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | |
3009 | else if (p != rq->idle) | |
3010 | cpustat->system = cputime64_add(cpustat->system, tmp); | |
3011 | else if (atomic_read(&rq->nr_iowait) > 0) | |
3012 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | |
3013 | else | |
3014 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
3015 | /* Account for system time used */ | |
3016 | acct_update_integrals(p); | |
1da177e4 LT |
3017 | } |
3018 | ||
3019 | /* | |
3020 | * Account for involuntary wait time. | |
3021 | * @p: the process from which the cpu time has been stolen | |
3022 | * @steal: the cpu time spent in involuntary wait | |
3023 | */ | |
3024 | void account_steal_time(struct task_struct *p, cputime_t steal) | |
3025 | { | |
3026 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | |
3027 | cputime64_t tmp = cputime_to_cputime64(steal); | |
70b97a7f | 3028 | struct rq *rq = this_rq(); |
1da177e4 LT |
3029 | |
3030 | if (p == rq->idle) { | |
3031 | p->stime = cputime_add(p->stime, steal); | |
3032 | if (atomic_read(&rq->nr_iowait) > 0) | |
3033 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | |
3034 | else | |
3035 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | |
3036 | } else | |
3037 | cpustat->steal = cputime64_add(cpustat->steal, tmp); | |
3038 | } | |
3039 | ||
3040 | /* | |
3041 | * This function gets called by the timer code, with HZ frequency. | |
3042 | * We call it with interrupts disabled. | |
3043 | * | |
3044 | * It also gets called by the fork code, when changing the parent's | |
3045 | * timeslices. | |
3046 | */ | |
3047 | void scheduler_tick(void) | |
3048 | { | |
48f24c4d | 3049 | unsigned long long now = sched_clock(); |
36c8b586 | 3050 | struct task_struct *p = current; |
1da177e4 | 3051 | int cpu = smp_processor_id(); |
70b97a7f | 3052 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
3053 | |
3054 | update_cpu_clock(p, rq, now); | |
3055 | ||
3056 | rq->timestamp_last_tick = now; | |
3057 | ||
3058 | if (p == rq->idle) { | |
3059 | if (wake_priority_sleeper(rq)) | |
3060 | goto out; | |
3061 | rebalance_tick(cpu, rq, SCHED_IDLE); | |
3062 | return; | |
3063 | } | |
3064 | ||
3065 | /* Task might have expired already, but not scheduled off yet */ | |
3066 | if (p->array != rq->active) { | |
3067 | set_tsk_need_resched(p); | |
3068 | goto out; | |
3069 | } | |
3070 | spin_lock(&rq->lock); | |
3071 | /* | |
3072 | * The task was running during this tick - update the | |
3073 | * time slice counter. Note: we do not update a thread's | |
3074 | * priority until it either goes to sleep or uses up its | |
3075 | * timeslice. This makes it possible for interactive tasks | |
3076 | * to use up their timeslices at their highest priority levels. | |
3077 | */ | |
3078 | if (rt_task(p)) { | |
3079 | /* | |
3080 | * RR tasks need a special form of timeslice management. | |
3081 | * FIFO tasks have no timeslices. | |
3082 | */ | |
3083 | if ((p->policy == SCHED_RR) && !--p->time_slice) { | |
3084 | p->time_slice = task_timeslice(p); | |
3085 | p->first_time_slice = 0; | |
3086 | set_tsk_need_resched(p); | |
3087 | ||
3088 | /* put it at the end of the queue: */ | |
3089 | requeue_task(p, rq->active); | |
3090 | } | |
3091 | goto out_unlock; | |
3092 | } | |
3093 | if (!--p->time_slice) { | |
3094 | dequeue_task(p, rq->active); | |
3095 | set_tsk_need_resched(p); | |
3096 | p->prio = effective_prio(p); | |
3097 | p->time_slice = task_timeslice(p); | |
3098 | p->first_time_slice = 0; | |
3099 | ||
3100 | if (!rq->expired_timestamp) | |
3101 | rq->expired_timestamp = jiffies; | |
48f24c4d | 3102 | if (!TASK_INTERACTIVE(p) || expired_starving(rq)) { |
1da177e4 LT |
3103 | enqueue_task(p, rq->expired); |
3104 | if (p->static_prio < rq->best_expired_prio) | |
3105 | rq->best_expired_prio = p->static_prio; | |
3106 | } else | |
3107 | enqueue_task(p, rq->active); | |
3108 | } else { | |
3109 | /* | |
3110 | * Prevent a too long timeslice allowing a task to monopolize | |
3111 | * the CPU. We do this by splitting up the timeslice into | |
3112 | * smaller pieces. | |
3113 | * | |
3114 | * Note: this does not mean the task's timeslices expire or | |
3115 | * get lost in any way, they just might be preempted by | |
3116 | * another task of equal priority. (one with higher | |
3117 | * priority would have preempted this task already.) We | |
3118 | * requeue this task to the end of the list on this priority | |
3119 | * level, which is in essence a round-robin of tasks with | |
3120 | * equal priority. | |
3121 | * | |
3122 | * This only applies to tasks in the interactive | |
3123 | * delta range with at least TIMESLICE_GRANULARITY to requeue. | |
3124 | */ | |
3125 | if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | |
3126 | p->time_slice) % TIMESLICE_GRANULARITY(p)) && | |
3127 | (p->time_slice >= TIMESLICE_GRANULARITY(p)) && | |
3128 | (p->array == rq->active)) { | |
3129 | ||
3130 | requeue_task(p, rq->active); | |
3131 | set_tsk_need_resched(p); | |
3132 | } | |
3133 | } | |
3134 | out_unlock: | |
3135 | spin_unlock(&rq->lock); | |
3136 | out: | |
3137 | rebalance_tick(cpu, rq, NOT_IDLE); | |
3138 | } | |
3139 | ||
3140 | #ifdef CONFIG_SCHED_SMT | |
70b97a7f | 3141 | static inline void wakeup_busy_runqueue(struct rq *rq) |
fc38ed75 CK |
3142 | { |
3143 | /* If an SMT runqueue is sleeping due to priority reasons wake it up */ | |
3144 | if (rq->curr == rq->idle && rq->nr_running) | |
3145 | resched_task(rq->idle); | |
3146 | } | |
3147 | ||
c96d145e KC |
3148 | /* |
3149 | * Called with interrupt disabled and this_rq's runqueue locked. | |
3150 | */ | |
3151 | static void wake_sleeping_dependent(int this_cpu) | |
1da177e4 | 3152 | { |
41c7ce9a | 3153 | struct sched_domain *tmp, *sd = NULL; |
1da177e4 LT |
3154 | int i; |
3155 | ||
c96d145e KC |
3156 | for_each_domain(this_cpu, tmp) { |
3157 | if (tmp->flags & SD_SHARE_CPUPOWER) { | |
41c7ce9a | 3158 | sd = tmp; |
c96d145e KC |
3159 | break; |
3160 | } | |
3161 | } | |
41c7ce9a NP |
3162 | |
3163 | if (!sd) | |
1da177e4 LT |
3164 | return; |
3165 | ||
c96d145e | 3166 | for_each_cpu_mask(i, sd->span) { |
70b97a7f | 3167 | struct rq *smt_rq = cpu_rq(i); |
1da177e4 | 3168 | |
c96d145e KC |
3169 | if (i == this_cpu) |
3170 | continue; | |
3171 | if (unlikely(!spin_trylock(&smt_rq->lock))) | |
3172 | continue; | |
3173 | ||
fc38ed75 | 3174 | wakeup_busy_runqueue(smt_rq); |
c96d145e | 3175 | spin_unlock(&smt_rq->lock); |
1da177e4 | 3176 | } |
1da177e4 LT |
3177 | } |
3178 | ||
67f9a619 IM |
3179 | /* |
3180 | * number of 'lost' timeslices this task wont be able to fully | |
3181 | * utilize, if another task runs on a sibling. This models the | |
3182 | * slowdown effect of other tasks running on siblings: | |
3183 | */ | |
36c8b586 IM |
3184 | static inline unsigned long |
3185 | smt_slice(struct task_struct *p, struct sched_domain *sd) | |
67f9a619 IM |
3186 | { |
3187 | return p->time_slice * (100 - sd->per_cpu_gain) / 100; | |
3188 | } | |
3189 | ||
c96d145e KC |
3190 | /* |
3191 | * To minimise lock contention and not have to drop this_rq's runlock we only | |
3192 | * trylock the sibling runqueues and bypass those runqueues if we fail to | |
3193 | * acquire their lock. As we only trylock the normal locking order does not | |
3194 | * need to be obeyed. | |
3195 | */ | |
36c8b586 | 3196 | static int |
70b97a7f | 3197 | dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p) |
1da177e4 | 3198 | { |
41c7ce9a | 3199 | struct sched_domain *tmp, *sd = NULL; |
1da177e4 | 3200 | int ret = 0, i; |
1da177e4 | 3201 | |
c96d145e KC |
3202 | /* kernel/rt threads do not participate in dependent sleeping */ |
3203 | if (!p->mm || rt_task(p)) | |
3204 | return 0; | |
3205 | ||
3206 | for_each_domain(this_cpu, tmp) { | |
3207 | if (tmp->flags & SD_SHARE_CPUPOWER) { | |
41c7ce9a | 3208 | sd = tmp; |
c96d145e KC |
3209 | break; |
3210 | } | |
3211 | } | |
41c7ce9a NP |
3212 | |
3213 | if (!sd) | |
1da177e4 LT |
3214 | return 0; |
3215 | ||
c96d145e | 3216 | for_each_cpu_mask(i, sd->span) { |
36c8b586 | 3217 | struct task_struct *smt_curr; |
70b97a7f | 3218 | struct rq *smt_rq; |
1da177e4 | 3219 | |
c96d145e KC |
3220 | if (i == this_cpu) |
3221 | continue; | |
1da177e4 | 3222 | |
c96d145e KC |
3223 | smt_rq = cpu_rq(i); |
3224 | if (unlikely(!spin_trylock(&smt_rq->lock))) | |
3225 | continue; | |
1da177e4 | 3226 | |
c96d145e | 3227 | smt_curr = smt_rq->curr; |
1da177e4 | 3228 | |
c96d145e KC |
3229 | if (!smt_curr->mm) |
3230 | goto unlock; | |
fc38ed75 | 3231 | |
1da177e4 LT |
3232 | /* |
3233 | * If a user task with lower static priority than the | |
3234 | * running task on the SMT sibling is trying to schedule, | |
3235 | * delay it till there is proportionately less timeslice | |
3236 | * left of the sibling task to prevent a lower priority | |
3237 | * task from using an unfair proportion of the | |
3238 | * physical cpu's resources. -ck | |
3239 | */ | |
fc38ed75 CK |
3240 | if (rt_task(smt_curr)) { |
3241 | /* | |
3242 | * With real time tasks we run non-rt tasks only | |
3243 | * per_cpu_gain% of the time. | |
3244 | */ | |
3245 | if ((jiffies % DEF_TIMESLICE) > | |
3246 | (sd->per_cpu_gain * DEF_TIMESLICE / 100)) | |
3247 | ret = 1; | |
c96d145e | 3248 | } else { |
67f9a619 IM |
3249 | if (smt_curr->static_prio < p->static_prio && |
3250 | !TASK_PREEMPTS_CURR(p, smt_rq) && | |
3251 | smt_slice(smt_curr, sd) > task_timeslice(p)) | |
fc38ed75 | 3252 | ret = 1; |
fc38ed75 | 3253 | } |
c96d145e KC |
3254 | unlock: |
3255 | spin_unlock(&smt_rq->lock); | |
1da177e4 | 3256 | } |
1da177e4 LT |
3257 | return ret; |
3258 | } | |
3259 | #else | |
c96d145e | 3260 | static inline void wake_sleeping_dependent(int this_cpu) |
1da177e4 LT |
3261 | { |
3262 | } | |
48f24c4d | 3263 | static inline int |
70b97a7f | 3264 | dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p) |
1da177e4 LT |
3265 | { |
3266 | return 0; | |
3267 | } | |
3268 | #endif | |
3269 | ||
3270 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | |
3271 | ||
3272 | void fastcall add_preempt_count(int val) | |
3273 | { | |
3274 | /* | |
3275 | * Underflow? | |
3276 | */ | |
9a11b49a IM |
3277 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
3278 | return; | |
1da177e4 LT |
3279 | preempt_count() += val; |
3280 | /* | |
3281 | * Spinlock count overflowing soon? | |
3282 | */ | |
9a11b49a | 3283 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); |
1da177e4 LT |
3284 | } |
3285 | EXPORT_SYMBOL(add_preempt_count); | |
3286 | ||
3287 | void fastcall sub_preempt_count(int val) | |
3288 | { | |
3289 | /* | |
3290 | * Underflow? | |
3291 | */ | |
9a11b49a IM |
3292 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
3293 | return; | |
1da177e4 LT |
3294 | /* |
3295 | * Is the spinlock portion underflowing? | |
3296 | */ | |
9a11b49a IM |
3297 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
3298 | !(preempt_count() & PREEMPT_MASK))) | |
3299 | return; | |
3300 | ||
1da177e4 LT |
3301 | preempt_count() -= val; |
3302 | } | |
3303 | EXPORT_SYMBOL(sub_preempt_count); | |
3304 | ||
3305 | #endif | |
3306 | ||
3dee386e CK |
3307 | static inline int interactive_sleep(enum sleep_type sleep_type) |
3308 | { | |
3309 | return (sleep_type == SLEEP_INTERACTIVE || | |
3310 | sleep_type == SLEEP_INTERRUPTED); | |
3311 | } | |
3312 | ||
1da177e4 LT |
3313 | /* |
3314 | * schedule() is the main scheduler function. | |
3315 | */ | |
3316 | asmlinkage void __sched schedule(void) | |
3317 | { | |
36c8b586 | 3318 | struct task_struct *prev, *next; |
70b97a7f | 3319 | struct prio_array *array; |
1da177e4 LT |
3320 | struct list_head *queue; |
3321 | unsigned long long now; | |
3322 | unsigned long run_time; | |
a3464a10 | 3323 | int cpu, idx, new_prio; |
48f24c4d | 3324 | long *switch_count; |
70b97a7f | 3325 | struct rq *rq; |
1da177e4 LT |
3326 | |
3327 | /* | |
3328 | * Test if we are atomic. Since do_exit() needs to call into | |
3329 | * schedule() atomically, we ignore that path for now. | |
3330 | * Otherwise, whine if we are scheduling when we should not be. | |
3331 | */ | |
77e4bfbc AM |
3332 | if (unlikely(in_atomic() && !current->exit_state)) { |
3333 | printk(KERN_ERR "BUG: scheduling while atomic: " | |
3334 | "%s/0x%08x/%d\n", | |
3335 | current->comm, preempt_count(), current->pid); | |
3336 | dump_stack(); | |
1da177e4 LT |
3337 | } |
3338 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | |
3339 | ||
3340 | need_resched: | |
3341 | preempt_disable(); | |
3342 | prev = current; | |
3343 | release_kernel_lock(prev); | |
3344 | need_resched_nonpreemptible: | |
3345 | rq = this_rq(); | |
3346 | ||
3347 | /* | |
3348 | * The idle thread is not allowed to schedule! | |
3349 | * Remove this check after it has been exercised a bit. | |
3350 | */ | |
3351 | if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | |
3352 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | |
3353 | dump_stack(); | |
3354 | } | |
3355 | ||
3356 | schedstat_inc(rq, sched_cnt); | |
3357 | now = sched_clock(); | |
238628ed | 3358 | if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) { |
1da177e4 | 3359 | run_time = now - prev->timestamp; |
238628ed | 3360 | if (unlikely((long long)(now - prev->timestamp) < 0)) |
1da177e4 LT |
3361 | run_time = 0; |
3362 | } else | |
3363 | run_time = NS_MAX_SLEEP_AVG; | |
3364 | ||
3365 | /* | |
3366 | * Tasks charged proportionately less run_time at high sleep_avg to | |
3367 | * delay them losing their interactive status | |
3368 | */ | |
3369 | run_time /= (CURRENT_BONUS(prev) ? : 1); | |
3370 | ||
3371 | spin_lock_irq(&rq->lock); | |
3372 | ||
1da177e4 LT |
3373 | switch_count = &prev->nivcsw; |
3374 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | |
3375 | switch_count = &prev->nvcsw; | |
3376 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | |
3377 | unlikely(signal_pending(prev)))) | |
3378 | prev->state = TASK_RUNNING; | |
3379 | else { | |
3380 | if (prev->state == TASK_UNINTERRUPTIBLE) | |
3381 | rq->nr_uninterruptible++; | |
3382 | deactivate_task(prev, rq); | |
3383 | } | |
3384 | } | |
3385 | ||
3386 | cpu = smp_processor_id(); | |
3387 | if (unlikely(!rq->nr_running)) { | |
1da177e4 LT |
3388 | idle_balance(cpu, rq); |
3389 | if (!rq->nr_running) { | |
3390 | next = rq->idle; | |
3391 | rq->expired_timestamp = 0; | |
c96d145e | 3392 | wake_sleeping_dependent(cpu); |
1da177e4 LT |
3393 | goto switch_tasks; |
3394 | } | |
1da177e4 LT |
3395 | } |
3396 | ||
3397 | array = rq->active; | |
3398 | if (unlikely(!array->nr_active)) { | |
3399 | /* | |
3400 | * Switch the active and expired arrays. | |
3401 | */ | |
3402 | schedstat_inc(rq, sched_switch); | |
3403 | rq->active = rq->expired; | |
3404 | rq->expired = array; | |
3405 | array = rq->active; | |
3406 | rq->expired_timestamp = 0; | |
3407 | rq->best_expired_prio = MAX_PRIO; | |
3408 | } | |
3409 | ||
3410 | idx = sched_find_first_bit(array->bitmap); | |
3411 | queue = array->queue + idx; | |
36c8b586 | 3412 | next = list_entry(queue->next, struct task_struct, run_list); |
1da177e4 | 3413 | |
3dee386e | 3414 | if (!rt_task(next) && interactive_sleep(next->sleep_type)) { |
1da177e4 | 3415 | unsigned long long delta = now - next->timestamp; |
238628ed | 3416 | if (unlikely((long long)(now - next->timestamp) < 0)) |
1da177e4 LT |
3417 | delta = 0; |
3418 | ||
3dee386e | 3419 | if (next->sleep_type == SLEEP_INTERACTIVE) |
1da177e4 LT |
3420 | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; |
3421 | ||
3422 | array = next->array; | |
a3464a10 CS |
3423 | new_prio = recalc_task_prio(next, next->timestamp + delta); |
3424 | ||
3425 | if (unlikely(next->prio != new_prio)) { | |
3426 | dequeue_task(next, array); | |
3427 | next->prio = new_prio; | |
3428 | enqueue_task(next, array); | |
7c4bb1f9 | 3429 | } |
1da177e4 | 3430 | } |
3dee386e | 3431 | next->sleep_type = SLEEP_NORMAL; |
c96d145e KC |
3432 | if (dependent_sleeper(cpu, rq, next)) |
3433 | next = rq->idle; | |
1da177e4 LT |
3434 | switch_tasks: |
3435 | if (next == rq->idle) | |
3436 | schedstat_inc(rq, sched_goidle); | |
3437 | prefetch(next); | |
383f2835 | 3438 | prefetch_stack(next); |
1da177e4 LT |
3439 | clear_tsk_need_resched(prev); |
3440 | rcu_qsctr_inc(task_cpu(prev)); | |
3441 | ||
3442 | update_cpu_clock(prev, rq, now); | |
3443 | ||
3444 | prev->sleep_avg -= run_time; | |
3445 | if ((long)prev->sleep_avg <= 0) | |
3446 | prev->sleep_avg = 0; | |
3447 | prev->timestamp = prev->last_ran = now; | |
3448 | ||
3449 | sched_info_switch(prev, next); | |
3450 | if (likely(prev != next)) { | |
3451 | next->timestamp = now; | |
3452 | rq->nr_switches++; | |
3453 | rq->curr = next; | |
3454 | ++*switch_count; | |
3455 | ||
4866cde0 | 3456 | prepare_task_switch(rq, next); |
1da177e4 LT |
3457 | prev = context_switch(rq, prev, next); |
3458 | barrier(); | |
4866cde0 NP |
3459 | /* |
3460 | * this_rq must be evaluated again because prev may have moved | |
3461 | * CPUs since it called schedule(), thus the 'rq' on its stack | |
3462 | * frame will be invalid. | |
3463 | */ | |
3464 | finish_task_switch(this_rq(), prev); | |
1da177e4 LT |
3465 | } else |
3466 | spin_unlock_irq(&rq->lock); | |
3467 | ||
3468 | prev = current; | |
3469 | if (unlikely(reacquire_kernel_lock(prev) < 0)) | |
3470 | goto need_resched_nonpreemptible; | |
3471 | preempt_enable_no_resched(); | |
3472 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
3473 | goto need_resched; | |
3474 | } | |
1da177e4 LT |
3475 | EXPORT_SYMBOL(schedule); |
3476 | ||
3477 | #ifdef CONFIG_PREEMPT | |
3478 | /* | |
2ed6e34f | 3479 | * this is the entry point to schedule() from in-kernel preemption |
1da177e4 LT |
3480 | * off of preempt_enable. Kernel preemptions off return from interrupt |
3481 | * occur there and call schedule directly. | |
3482 | */ | |
3483 | asmlinkage void __sched preempt_schedule(void) | |
3484 | { | |
3485 | struct thread_info *ti = current_thread_info(); | |
3486 | #ifdef CONFIG_PREEMPT_BKL | |
3487 | struct task_struct *task = current; | |
3488 | int saved_lock_depth; | |
3489 | #endif | |
3490 | /* | |
3491 | * If there is a non-zero preempt_count or interrupts are disabled, | |
3492 | * we do not want to preempt the current task. Just return.. | |
3493 | */ | |
3494 | if (unlikely(ti->preempt_count || irqs_disabled())) | |
3495 | return; | |
3496 | ||
3497 | need_resched: | |
3498 | add_preempt_count(PREEMPT_ACTIVE); | |
3499 | /* | |
3500 | * We keep the big kernel semaphore locked, but we | |
3501 | * clear ->lock_depth so that schedule() doesnt | |
3502 | * auto-release the semaphore: | |
3503 | */ | |
3504 | #ifdef CONFIG_PREEMPT_BKL | |
3505 | saved_lock_depth = task->lock_depth; | |
3506 | task->lock_depth = -1; | |
3507 | #endif | |
3508 | schedule(); | |
3509 | #ifdef CONFIG_PREEMPT_BKL | |
3510 | task->lock_depth = saved_lock_depth; | |
3511 | #endif | |
3512 | sub_preempt_count(PREEMPT_ACTIVE); | |
3513 | ||
3514 | /* we could miss a preemption opportunity between schedule and now */ | |
3515 | barrier(); | |
3516 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
3517 | goto need_resched; | |
3518 | } | |
1da177e4 LT |
3519 | EXPORT_SYMBOL(preempt_schedule); |
3520 | ||
3521 | /* | |
2ed6e34f | 3522 | * this is the entry point to schedule() from kernel preemption |
1da177e4 LT |
3523 | * off of irq context. |
3524 | * Note, that this is called and return with irqs disabled. This will | |
3525 | * protect us against recursive calling from irq. | |
3526 | */ | |
3527 | asmlinkage void __sched preempt_schedule_irq(void) | |
3528 | { | |
3529 | struct thread_info *ti = current_thread_info(); | |
3530 | #ifdef CONFIG_PREEMPT_BKL | |
3531 | struct task_struct *task = current; | |
3532 | int saved_lock_depth; | |
3533 | #endif | |
2ed6e34f | 3534 | /* Catch callers which need to be fixed */ |
1da177e4 LT |
3535 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
3536 | ||
3537 | need_resched: | |
3538 | add_preempt_count(PREEMPT_ACTIVE); | |
3539 | /* | |
3540 | * We keep the big kernel semaphore locked, but we | |
3541 | * clear ->lock_depth so that schedule() doesnt | |
3542 | * auto-release the semaphore: | |
3543 | */ | |
3544 | #ifdef CONFIG_PREEMPT_BKL | |
3545 | saved_lock_depth = task->lock_depth; | |
3546 | task->lock_depth = -1; | |
3547 | #endif | |
3548 | local_irq_enable(); | |
3549 | schedule(); | |
3550 | local_irq_disable(); | |
3551 | #ifdef CONFIG_PREEMPT_BKL | |
3552 | task->lock_depth = saved_lock_depth; | |
3553 | #endif | |
3554 | sub_preempt_count(PREEMPT_ACTIVE); | |
3555 | ||
3556 | /* we could miss a preemption opportunity between schedule and now */ | |
3557 | barrier(); | |
3558 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | |
3559 | goto need_resched; | |
3560 | } | |
3561 | ||
3562 | #endif /* CONFIG_PREEMPT */ | |
3563 | ||
95cdf3b7 IM |
3564 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
3565 | void *key) | |
1da177e4 | 3566 | { |
48f24c4d | 3567 | return try_to_wake_up(curr->private, mode, sync); |
1da177e4 | 3568 | } |
1da177e4 LT |
3569 | EXPORT_SYMBOL(default_wake_function); |
3570 | ||
3571 | /* | |
3572 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | |
3573 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | |
3574 | * number) then we wake all the non-exclusive tasks and one exclusive task. | |
3575 | * | |
3576 | * There are circumstances in which we can try to wake a task which has already | |
3577 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | |
3578 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | |
3579 | */ | |
3580 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | |
3581 | int nr_exclusive, int sync, void *key) | |
3582 | { | |
3583 | struct list_head *tmp, *next; | |
3584 | ||
3585 | list_for_each_safe(tmp, next, &q->task_list) { | |
48f24c4d IM |
3586 | wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list); |
3587 | unsigned flags = curr->flags; | |
3588 | ||
1da177e4 | 3589 | if (curr->func(curr, mode, sync, key) && |
48f24c4d | 3590 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
1da177e4 LT |
3591 | break; |
3592 | } | |
3593 | } | |
3594 | ||
3595 | /** | |
3596 | * __wake_up - wake up threads blocked on a waitqueue. | |
3597 | * @q: the waitqueue | |
3598 | * @mode: which threads | |
3599 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
67be2dd1 | 3600 | * @key: is directly passed to the wakeup function |
1da177e4 LT |
3601 | */ |
3602 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | |
95cdf3b7 | 3603 | int nr_exclusive, void *key) |
1da177e4 LT |
3604 | { |
3605 | unsigned long flags; | |
3606 | ||
3607 | spin_lock_irqsave(&q->lock, flags); | |
3608 | __wake_up_common(q, mode, nr_exclusive, 0, key); | |
3609 | spin_unlock_irqrestore(&q->lock, flags); | |
3610 | } | |
1da177e4 LT |
3611 | EXPORT_SYMBOL(__wake_up); |
3612 | ||
3613 | /* | |
3614 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | |
3615 | */ | |
3616 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | |
3617 | { | |
3618 | __wake_up_common(q, mode, 1, 0, NULL); | |
3619 | } | |
3620 | ||
3621 | /** | |
67be2dd1 | 3622 | * __wake_up_sync - wake up threads blocked on a waitqueue. |
1da177e4 LT |
3623 | * @q: the waitqueue |
3624 | * @mode: which threads | |
3625 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | |
3626 | * | |
3627 | * The sync wakeup differs that the waker knows that it will schedule | |
3628 | * away soon, so while the target thread will be woken up, it will not | |
3629 | * be migrated to another CPU - ie. the two threads are 'synchronized' | |
3630 | * with each other. This can prevent needless bouncing between CPUs. | |
3631 | * | |
3632 | * On UP it can prevent extra preemption. | |
3633 | */ | |
95cdf3b7 IM |
3634 | void fastcall |
3635 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | |
1da177e4 LT |
3636 | { |
3637 | unsigned long flags; | |
3638 | int sync = 1; | |
3639 | ||
3640 | if (unlikely(!q)) | |
3641 | return; | |
3642 | ||
3643 | if (unlikely(!nr_exclusive)) | |
3644 | sync = 0; | |
3645 | ||
3646 | spin_lock_irqsave(&q->lock, flags); | |
3647 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | |
3648 | spin_unlock_irqrestore(&q->lock, flags); | |
3649 | } | |
3650 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | |
3651 | ||
3652 | void fastcall complete(struct completion *x) | |
3653 | { | |
3654 | unsigned long flags; | |
3655 | ||
3656 | spin_lock_irqsave(&x->wait.lock, flags); | |
3657 | x->done++; | |
3658 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | |
3659 | 1, 0, NULL); | |
3660 | spin_unlock_irqrestore(&x->wait.lock, flags); | |
3661 | } | |
3662 | EXPORT_SYMBOL(complete); | |
3663 | ||
3664 | void fastcall complete_all(struct completion *x) | |
3665 | { | |
3666 | unsigned long flags; | |
3667 | ||
3668 | spin_lock_irqsave(&x->wait.lock, flags); | |
3669 | x->done += UINT_MAX/2; | |
3670 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | |
3671 | 0, 0, NULL); | |
3672 | spin_unlock_irqrestore(&x->wait.lock, flags); | |
3673 | } | |
3674 | EXPORT_SYMBOL(complete_all); | |
3675 | ||
3676 | void fastcall __sched wait_for_completion(struct completion *x) | |
3677 | { | |
3678 | might_sleep(); | |
48f24c4d | 3679 | |
1da177e4 LT |
3680 | spin_lock_irq(&x->wait.lock); |
3681 | if (!x->done) { | |
3682 | DECLARE_WAITQUEUE(wait, current); | |
3683 | ||
3684 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3685 | __add_wait_queue_tail(&x->wait, &wait); | |
3686 | do { | |
3687 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
3688 | spin_unlock_irq(&x->wait.lock); | |
3689 | schedule(); | |
3690 | spin_lock_irq(&x->wait.lock); | |
3691 | } while (!x->done); | |
3692 | __remove_wait_queue(&x->wait, &wait); | |
3693 | } | |
3694 | x->done--; | |
3695 | spin_unlock_irq(&x->wait.lock); | |
3696 | } | |
3697 | EXPORT_SYMBOL(wait_for_completion); | |
3698 | ||
3699 | unsigned long fastcall __sched | |
3700 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | |
3701 | { | |
3702 | might_sleep(); | |
3703 | ||
3704 | spin_lock_irq(&x->wait.lock); | |
3705 | if (!x->done) { | |
3706 | DECLARE_WAITQUEUE(wait, current); | |
3707 | ||
3708 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3709 | __add_wait_queue_tail(&x->wait, &wait); | |
3710 | do { | |
3711 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
3712 | spin_unlock_irq(&x->wait.lock); | |
3713 | timeout = schedule_timeout(timeout); | |
3714 | spin_lock_irq(&x->wait.lock); | |
3715 | if (!timeout) { | |
3716 | __remove_wait_queue(&x->wait, &wait); | |
3717 | goto out; | |
3718 | } | |
3719 | } while (!x->done); | |
3720 | __remove_wait_queue(&x->wait, &wait); | |
3721 | } | |
3722 | x->done--; | |
3723 | out: | |
3724 | spin_unlock_irq(&x->wait.lock); | |
3725 | return timeout; | |
3726 | } | |
3727 | EXPORT_SYMBOL(wait_for_completion_timeout); | |
3728 | ||
3729 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | |
3730 | { | |
3731 | int ret = 0; | |
3732 | ||
3733 | might_sleep(); | |
3734 | ||
3735 | spin_lock_irq(&x->wait.lock); | |
3736 | if (!x->done) { | |
3737 | DECLARE_WAITQUEUE(wait, current); | |
3738 | ||
3739 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3740 | __add_wait_queue_tail(&x->wait, &wait); | |
3741 | do { | |
3742 | if (signal_pending(current)) { | |
3743 | ret = -ERESTARTSYS; | |
3744 | __remove_wait_queue(&x->wait, &wait); | |
3745 | goto out; | |
3746 | } | |
3747 | __set_current_state(TASK_INTERRUPTIBLE); | |
3748 | spin_unlock_irq(&x->wait.lock); | |
3749 | schedule(); | |
3750 | spin_lock_irq(&x->wait.lock); | |
3751 | } while (!x->done); | |
3752 | __remove_wait_queue(&x->wait, &wait); | |
3753 | } | |
3754 | x->done--; | |
3755 | out: | |
3756 | spin_unlock_irq(&x->wait.lock); | |
3757 | ||
3758 | return ret; | |
3759 | } | |
3760 | EXPORT_SYMBOL(wait_for_completion_interruptible); | |
3761 | ||
3762 | unsigned long fastcall __sched | |
3763 | wait_for_completion_interruptible_timeout(struct completion *x, | |
3764 | unsigned long timeout) | |
3765 | { | |
3766 | might_sleep(); | |
3767 | ||
3768 | spin_lock_irq(&x->wait.lock); | |
3769 | if (!x->done) { | |
3770 | DECLARE_WAITQUEUE(wait, current); | |
3771 | ||
3772 | wait.flags |= WQ_FLAG_EXCLUSIVE; | |
3773 | __add_wait_queue_tail(&x->wait, &wait); | |
3774 | do { | |
3775 | if (signal_pending(current)) { | |
3776 | timeout = -ERESTARTSYS; | |
3777 | __remove_wait_queue(&x->wait, &wait); | |
3778 | goto out; | |
3779 | } | |
3780 | __set_current_state(TASK_INTERRUPTIBLE); | |
3781 | spin_unlock_irq(&x->wait.lock); | |
3782 | timeout = schedule_timeout(timeout); | |
3783 | spin_lock_irq(&x->wait.lock); | |
3784 | if (!timeout) { | |
3785 | __remove_wait_queue(&x->wait, &wait); | |
3786 | goto out; | |
3787 | } | |
3788 | } while (!x->done); | |
3789 | __remove_wait_queue(&x->wait, &wait); | |
3790 | } | |
3791 | x->done--; | |
3792 | out: | |
3793 | spin_unlock_irq(&x->wait.lock); | |
3794 | return timeout; | |
3795 | } | |
3796 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | |
3797 | ||
3798 | ||
3799 | #define SLEEP_ON_VAR \ | |
3800 | unsigned long flags; \ | |
3801 | wait_queue_t wait; \ | |
3802 | init_waitqueue_entry(&wait, current); | |
3803 | ||
3804 | #define SLEEP_ON_HEAD \ | |
3805 | spin_lock_irqsave(&q->lock,flags); \ | |
3806 | __add_wait_queue(q, &wait); \ | |
3807 | spin_unlock(&q->lock); | |
3808 | ||
3809 | #define SLEEP_ON_TAIL \ | |
3810 | spin_lock_irq(&q->lock); \ | |
3811 | __remove_wait_queue(q, &wait); \ | |
3812 | spin_unlock_irqrestore(&q->lock, flags); | |
3813 | ||
3814 | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | |
3815 | { | |
3816 | SLEEP_ON_VAR | |
3817 | ||
3818 | current->state = TASK_INTERRUPTIBLE; | |
3819 | ||
3820 | SLEEP_ON_HEAD | |
3821 | schedule(); | |
3822 | SLEEP_ON_TAIL | |
3823 | } | |
1da177e4 LT |
3824 | EXPORT_SYMBOL(interruptible_sleep_on); |
3825 | ||
95cdf3b7 IM |
3826 | long fastcall __sched |
3827 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | |
1da177e4 LT |
3828 | { |
3829 | SLEEP_ON_VAR | |
3830 | ||
3831 | current->state = TASK_INTERRUPTIBLE; | |
3832 | ||
3833 | SLEEP_ON_HEAD | |
3834 | timeout = schedule_timeout(timeout); | |
3835 | SLEEP_ON_TAIL | |
3836 | ||
3837 | return timeout; | |
3838 | } | |
1da177e4 LT |
3839 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
3840 | ||
3841 | void fastcall __sched sleep_on(wait_queue_head_t *q) | |
3842 | { | |
3843 | SLEEP_ON_VAR | |
3844 | ||
3845 | current->state = TASK_UNINTERRUPTIBLE; | |
3846 | ||
3847 | SLEEP_ON_HEAD | |
3848 | schedule(); | |
3849 | SLEEP_ON_TAIL | |
3850 | } | |
1da177e4 LT |
3851 | EXPORT_SYMBOL(sleep_on); |
3852 | ||
3853 | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | |
3854 | { | |
3855 | SLEEP_ON_VAR | |
3856 | ||
3857 | current->state = TASK_UNINTERRUPTIBLE; | |
3858 | ||
3859 | SLEEP_ON_HEAD | |
3860 | timeout = schedule_timeout(timeout); | |
3861 | SLEEP_ON_TAIL | |
3862 | ||
3863 | return timeout; | |
3864 | } | |
3865 | ||
3866 | EXPORT_SYMBOL(sleep_on_timeout); | |
3867 | ||
b29739f9 IM |
3868 | #ifdef CONFIG_RT_MUTEXES |
3869 | ||
3870 | /* | |
3871 | * rt_mutex_setprio - set the current priority of a task | |
3872 | * @p: task | |
3873 | * @prio: prio value (kernel-internal form) | |
3874 | * | |
3875 | * This function changes the 'effective' priority of a task. It does | |
3876 | * not touch ->normal_prio like __setscheduler(). | |
3877 | * | |
3878 | * Used by the rt_mutex code to implement priority inheritance logic. | |
3879 | */ | |
36c8b586 | 3880 | void rt_mutex_setprio(struct task_struct *p, int prio) |
b29739f9 | 3881 | { |
70b97a7f | 3882 | struct prio_array *array; |
b29739f9 | 3883 | unsigned long flags; |
70b97a7f | 3884 | struct rq *rq; |
b29739f9 IM |
3885 | int oldprio; |
3886 | ||
3887 | BUG_ON(prio < 0 || prio > MAX_PRIO); | |
3888 | ||
3889 | rq = task_rq_lock(p, &flags); | |
3890 | ||
3891 | oldprio = p->prio; | |
3892 | array = p->array; | |
3893 | if (array) | |
3894 | dequeue_task(p, array); | |
3895 | p->prio = prio; | |
3896 | ||
3897 | if (array) { | |
3898 | /* | |
3899 | * If changing to an RT priority then queue it | |
3900 | * in the active array! | |
3901 | */ | |
3902 | if (rt_task(p)) | |
3903 | array = rq->active; | |
3904 | enqueue_task(p, array); | |
3905 | /* | |
3906 | * Reschedule if we are currently running on this runqueue and | |
3907 | * our priority decreased, or if we are not currently running on | |
3908 | * this runqueue and our priority is higher than the current's | |
3909 | */ | |
3910 | if (task_running(rq, p)) { | |
3911 | if (p->prio > oldprio) | |
3912 | resched_task(rq->curr); | |
3913 | } else if (TASK_PREEMPTS_CURR(p, rq)) | |
3914 | resched_task(rq->curr); | |
3915 | } | |
3916 | task_rq_unlock(rq, &flags); | |
3917 | } | |
3918 | ||
3919 | #endif | |
3920 | ||
36c8b586 | 3921 | void set_user_nice(struct task_struct *p, long nice) |
1da177e4 | 3922 | { |
70b97a7f | 3923 | struct prio_array *array; |
48f24c4d | 3924 | int old_prio, delta; |
1da177e4 | 3925 | unsigned long flags; |
70b97a7f | 3926 | struct rq *rq; |
1da177e4 LT |
3927 | |
3928 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | |
3929 | return; | |
3930 | /* | |
3931 | * We have to be careful, if called from sys_setpriority(), | |
3932 | * the task might be in the middle of scheduling on another CPU. | |
3933 | */ | |
3934 | rq = task_rq_lock(p, &flags); | |
3935 | /* | |
3936 | * The RT priorities are set via sched_setscheduler(), but we still | |
3937 | * allow the 'normal' nice value to be set - but as expected | |
3938 | * it wont have any effect on scheduling until the task is | |
b0a9499c | 3939 | * not SCHED_NORMAL/SCHED_BATCH: |
1da177e4 | 3940 | */ |
b29739f9 | 3941 | if (has_rt_policy(p)) { |
1da177e4 LT |
3942 | p->static_prio = NICE_TO_PRIO(nice); |
3943 | goto out_unlock; | |
3944 | } | |
3945 | array = p->array; | |
2dd73a4f | 3946 | if (array) { |
1da177e4 | 3947 | dequeue_task(p, array); |
2dd73a4f PW |
3948 | dec_raw_weighted_load(rq, p); |
3949 | } | |
1da177e4 | 3950 | |
1da177e4 | 3951 | p->static_prio = NICE_TO_PRIO(nice); |
2dd73a4f | 3952 | set_load_weight(p); |
b29739f9 IM |
3953 | old_prio = p->prio; |
3954 | p->prio = effective_prio(p); | |
3955 | delta = p->prio - old_prio; | |
1da177e4 LT |
3956 | |
3957 | if (array) { | |
3958 | enqueue_task(p, array); | |
2dd73a4f | 3959 | inc_raw_weighted_load(rq, p); |
1da177e4 LT |
3960 | /* |
3961 | * If the task increased its priority or is running and | |
3962 | * lowered its priority, then reschedule its CPU: | |
3963 | */ | |
3964 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | |
3965 | resched_task(rq->curr); | |
3966 | } | |
3967 | out_unlock: | |
3968 | task_rq_unlock(rq, &flags); | |
3969 | } | |
1da177e4 LT |
3970 | EXPORT_SYMBOL(set_user_nice); |
3971 | ||
e43379f1 MM |
3972 | /* |
3973 | * can_nice - check if a task can reduce its nice value | |
3974 | * @p: task | |
3975 | * @nice: nice value | |
3976 | */ | |
36c8b586 | 3977 | int can_nice(const struct task_struct *p, const int nice) |
e43379f1 | 3978 | { |
024f4747 MM |
3979 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
3980 | int nice_rlim = 20 - nice; | |
48f24c4d | 3981 | |
e43379f1 MM |
3982 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
3983 | capable(CAP_SYS_NICE)); | |
3984 | } | |
3985 | ||
1da177e4 LT |
3986 | #ifdef __ARCH_WANT_SYS_NICE |
3987 | ||
3988 | /* | |
3989 | * sys_nice - change the priority of the current process. | |
3990 | * @increment: priority increment | |
3991 | * | |
3992 | * sys_setpriority is a more generic, but much slower function that | |
3993 | * does similar things. | |
3994 | */ | |
3995 | asmlinkage long sys_nice(int increment) | |
3996 | { | |
48f24c4d | 3997 | long nice, retval; |
1da177e4 LT |
3998 | |
3999 | /* | |
4000 | * Setpriority might change our priority at the same moment. | |
4001 | * We don't have to worry. Conceptually one call occurs first | |
4002 | * and we have a single winner. | |
4003 | */ | |
e43379f1 MM |
4004 | if (increment < -40) |
4005 | increment = -40; | |
1da177e4 LT |
4006 | if (increment > 40) |
4007 | increment = 40; | |
4008 | ||
4009 | nice = PRIO_TO_NICE(current->static_prio) + increment; | |
4010 | if (nice < -20) | |
4011 | nice = -20; | |
4012 | if (nice > 19) | |
4013 | nice = 19; | |
4014 | ||
e43379f1 MM |
4015 | if (increment < 0 && !can_nice(current, nice)) |
4016 | return -EPERM; | |
4017 | ||
1da177e4 LT |
4018 | retval = security_task_setnice(current, nice); |
4019 | if (retval) | |
4020 | return retval; | |
4021 | ||
4022 | set_user_nice(current, nice); | |
4023 | return 0; | |
4024 | } | |
4025 | ||
4026 | #endif | |
4027 | ||
4028 | /** | |
4029 | * task_prio - return the priority value of a given task. | |
4030 | * @p: the task in question. | |
4031 | * | |
4032 | * This is the priority value as seen by users in /proc. | |
4033 | * RT tasks are offset by -200. Normal tasks are centered | |
4034 | * around 0, value goes from -16 to +15. | |
4035 | */ | |
36c8b586 | 4036 | int task_prio(const struct task_struct *p) |
1da177e4 LT |
4037 | { |
4038 | return p->prio - MAX_RT_PRIO; | |
4039 | } | |
4040 | ||
4041 | /** | |
4042 | * task_nice - return the nice value of a given task. | |
4043 | * @p: the task in question. | |
4044 | */ | |
36c8b586 | 4045 | int task_nice(const struct task_struct *p) |
1da177e4 LT |
4046 | { |
4047 | return TASK_NICE(p); | |
4048 | } | |
1da177e4 | 4049 | EXPORT_SYMBOL_GPL(task_nice); |
1da177e4 LT |
4050 | |
4051 | /** | |
4052 | * idle_cpu - is a given cpu idle currently? | |
4053 | * @cpu: the processor in question. | |
4054 | */ | |
4055 | int idle_cpu(int cpu) | |
4056 | { | |
4057 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | |
4058 | } | |
4059 | ||
1da177e4 LT |
4060 | /** |
4061 | * idle_task - return the idle task for a given cpu. | |
4062 | * @cpu: the processor in question. | |
4063 | */ | |
36c8b586 | 4064 | struct task_struct *idle_task(int cpu) |
1da177e4 LT |
4065 | { |
4066 | return cpu_rq(cpu)->idle; | |
4067 | } | |
4068 | ||
4069 | /** | |
4070 | * find_process_by_pid - find a process with a matching PID value. | |
4071 | * @pid: the pid in question. | |
4072 | */ | |
36c8b586 | 4073 | static inline struct task_struct *find_process_by_pid(pid_t pid) |
1da177e4 LT |
4074 | { |
4075 | return pid ? find_task_by_pid(pid) : current; | |
4076 | } | |
4077 | ||
4078 | /* Actually do priority change: must hold rq lock. */ | |
4079 | static void __setscheduler(struct task_struct *p, int policy, int prio) | |
4080 | { | |
4081 | BUG_ON(p->array); | |
48f24c4d | 4082 | |
1da177e4 LT |
4083 | p->policy = policy; |
4084 | p->rt_priority = prio; | |
b29739f9 IM |
4085 | p->normal_prio = normal_prio(p); |
4086 | /* we are holding p->pi_lock already */ | |
4087 | p->prio = rt_mutex_getprio(p); | |
4088 | /* | |
4089 | * SCHED_BATCH tasks are treated as perpetual CPU hogs: | |
4090 | */ | |
4091 | if (policy == SCHED_BATCH) | |
4092 | p->sleep_avg = 0; | |
2dd73a4f | 4093 | set_load_weight(p); |
1da177e4 LT |
4094 | } |
4095 | ||
4096 | /** | |
4097 | * sched_setscheduler - change the scheduling policy and/or RT priority of | |
4098 | * a thread. | |
4099 | * @p: the task in question. | |
4100 | * @policy: new policy. | |
4101 | * @param: structure containing the new RT priority. | |
5fe1d75f ON |
4102 | * |
4103 | * NOTE: the task may be already dead | |
1da177e4 | 4104 | */ |
95cdf3b7 IM |
4105 | int sched_setscheduler(struct task_struct *p, int policy, |
4106 | struct sched_param *param) | |
1da177e4 | 4107 | { |
48f24c4d | 4108 | int retval, oldprio, oldpolicy = -1; |
70b97a7f | 4109 | struct prio_array *array; |
1da177e4 | 4110 | unsigned long flags; |
70b97a7f | 4111 | struct rq *rq; |
1da177e4 | 4112 | |
66e5393a SR |
4113 | /* may grab non-irq protected spin_locks */ |
4114 | BUG_ON(in_interrupt()); | |
1da177e4 LT |
4115 | recheck: |
4116 | /* double check policy once rq lock held */ | |
4117 | if (policy < 0) | |
4118 | policy = oldpolicy = p->policy; | |
4119 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | |
b0a9499c IM |
4120 | policy != SCHED_NORMAL && policy != SCHED_BATCH) |
4121 | return -EINVAL; | |
1da177e4 LT |
4122 | /* |
4123 | * Valid priorities for SCHED_FIFO and SCHED_RR are | |
b0a9499c IM |
4124 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and |
4125 | * SCHED_BATCH is 0. | |
1da177e4 LT |
4126 | */ |
4127 | if (param->sched_priority < 0 || | |
95cdf3b7 | 4128 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
d46523ea | 4129 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
1da177e4 | 4130 | return -EINVAL; |
57a6f51c | 4131 | if (is_rt_policy(policy) != (param->sched_priority != 0)) |
1da177e4 LT |
4132 | return -EINVAL; |
4133 | ||
37e4ab3f OC |
4134 | /* |
4135 | * Allow unprivileged RT tasks to decrease priority: | |
4136 | */ | |
4137 | if (!capable(CAP_SYS_NICE)) { | |
8dc3e909 ON |
4138 | if (is_rt_policy(policy)) { |
4139 | unsigned long rlim_rtprio; | |
4140 | unsigned long flags; | |
4141 | ||
4142 | if (!lock_task_sighand(p, &flags)) | |
4143 | return -ESRCH; | |
4144 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | |
4145 | unlock_task_sighand(p, &flags); | |
4146 | ||
4147 | /* can't set/change the rt policy */ | |
4148 | if (policy != p->policy && !rlim_rtprio) | |
4149 | return -EPERM; | |
4150 | ||
4151 | /* can't increase priority */ | |
4152 | if (param->sched_priority > p->rt_priority && | |
4153 | param->sched_priority > rlim_rtprio) | |
4154 | return -EPERM; | |
4155 | } | |
5fe1d75f | 4156 | |
37e4ab3f OC |
4157 | /* can't change other user's priorities */ |
4158 | if ((current->euid != p->euid) && | |
4159 | (current->euid != p->uid)) | |
4160 | return -EPERM; | |
4161 | } | |
1da177e4 LT |
4162 | |
4163 | retval = security_task_setscheduler(p, policy, param); | |
4164 | if (retval) | |
4165 | return retval; | |
b29739f9 IM |
4166 | /* |
4167 | * make sure no PI-waiters arrive (or leave) while we are | |
4168 | * changing the priority of the task: | |
4169 | */ | |
4170 | spin_lock_irqsave(&p->pi_lock, flags); | |
1da177e4 LT |
4171 | /* |
4172 | * To be able to change p->policy safely, the apropriate | |
4173 | * runqueue lock must be held. | |
4174 | */ | |
b29739f9 | 4175 | rq = __task_rq_lock(p); |
1da177e4 LT |
4176 | /* recheck policy now with rq lock held */ |
4177 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | |
4178 | policy = oldpolicy = -1; | |
b29739f9 IM |
4179 | __task_rq_unlock(rq); |
4180 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
4181 | goto recheck; |
4182 | } | |
4183 | array = p->array; | |
4184 | if (array) | |
4185 | deactivate_task(p, rq); | |
4186 | oldprio = p->prio; | |
4187 | __setscheduler(p, policy, param->sched_priority); | |
4188 | if (array) { | |
4189 | __activate_task(p, rq); | |
4190 | /* | |
4191 | * Reschedule if we are currently running on this runqueue and | |
4192 | * our priority decreased, or if we are not currently running on | |
4193 | * this runqueue and our priority is higher than the current's | |
4194 | */ | |
4195 | if (task_running(rq, p)) { | |
4196 | if (p->prio > oldprio) | |
4197 | resched_task(rq->curr); | |
4198 | } else if (TASK_PREEMPTS_CURR(p, rq)) | |
4199 | resched_task(rq->curr); | |
4200 | } | |
b29739f9 IM |
4201 | __task_rq_unlock(rq); |
4202 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
4203 | ||
95e02ca9 TG |
4204 | rt_mutex_adjust_pi(p); |
4205 | ||
1da177e4 LT |
4206 | return 0; |
4207 | } | |
4208 | EXPORT_SYMBOL_GPL(sched_setscheduler); | |
4209 | ||
95cdf3b7 IM |
4210 | static int |
4211 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | |
1da177e4 | 4212 | { |
1da177e4 LT |
4213 | struct sched_param lparam; |
4214 | struct task_struct *p; | |
36c8b586 | 4215 | int retval; |
1da177e4 LT |
4216 | |
4217 | if (!param || pid < 0) | |
4218 | return -EINVAL; | |
4219 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | |
4220 | return -EFAULT; | |
5fe1d75f ON |
4221 | |
4222 | rcu_read_lock(); | |
4223 | retval = -ESRCH; | |
1da177e4 | 4224 | p = find_process_by_pid(pid); |
5fe1d75f ON |
4225 | if (p != NULL) |
4226 | retval = sched_setscheduler(p, policy, &lparam); | |
4227 | rcu_read_unlock(); | |
36c8b586 | 4228 | |
1da177e4 LT |
4229 | return retval; |
4230 | } | |
4231 | ||
4232 | /** | |
4233 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | |
4234 | * @pid: the pid in question. | |
4235 | * @policy: new policy. | |
4236 | * @param: structure containing the new RT priority. | |
4237 | */ | |
4238 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | |
4239 | struct sched_param __user *param) | |
4240 | { | |
c21761f1 JB |
4241 | /* negative values for policy are not valid */ |
4242 | if (policy < 0) | |
4243 | return -EINVAL; | |
4244 | ||
1da177e4 LT |
4245 | return do_sched_setscheduler(pid, policy, param); |
4246 | } | |
4247 | ||
4248 | /** | |
4249 | * sys_sched_setparam - set/change the RT priority of a thread | |
4250 | * @pid: the pid in question. | |
4251 | * @param: structure containing the new RT priority. | |
4252 | */ | |
4253 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | |
4254 | { | |
4255 | return do_sched_setscheduler(pid, -1, param); | |
4256 | } | |
4257 | ||
4258 | /** | |
4259 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | |
4260 | * @pid: the pid in question. | |
4261 | */ | |
4262 | asmlinkage long sys_sched_getscheduler(pid_t pid) | |
4263 | { | |
36c8b586 | 4264 | struct task_struct *p; |
1da177e4 | 4265 | int retval = -EINVAL; |
1da177e4 LT |
4266 | |
4267 | if (pid < 0) | |
4268 | goto out_nounlock; | |
4269 | ||
4270 | retval = -ESRCH; | |
4271 | read_lock(&tasklist_lock); | |
4272 | p = find_process_by_pid(pid); | |
4273 | if (p) { | |
4274 | retval = security_task_getscheduler(p); | |
4275 | if (!retval) | |
4276 | retval = p->policy; | |
4277 | } | |
4278 | read_unlock(&tasklist_lock); | |
4279 | ||
4280 | out_nounlock: | |
4281 | return retval; | |
4282 | } | |
4283 | ||
4284 | /** | |
4285 | * sys_sched_getscheduler - get the RT priority of a thread | |
4286 | * @pid: the pid in question. | |
4287 | * @param: structure containing the RT priority. | |
4288 | */ | |
4289 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | |
4290 | { | |
4291 | struct sched_param lp; | |
36c8b586 | 4292 | struct task_struct *p; |
1da177e4 | 4293 | int retval = -EINVAL; |
1da177e4 LT |
4294 | |
4295 | if (!param || pid < 0) | |
4296 | goto out_nounlock; | |
4297 | ||
4298 | read_lock(&tasklist_lock); | |
4299 | p = find_process_by_pid(pid); | |
4300 | retval = -ESRCH; | |
4301 | if (!p) | |
4302 | goto out_unlock; | |
4303 | ||
4304 | retval = security_task_getscheduler(p); | |
4305 | if (retval) | |
4306 | goto out_unlock; | |
4307 | ||
4308 | lp.sched_priority = p->rt_priority; | |
4309 | read_unlock(&tasklist_lock); | |
4310 | ||
4311 | /* | |
4312 | * This one might sleep, we cannot do it with a spinlock held ... | |
4313 | */ | |
4314 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | |
4315 | ||
4316 | out_nounlock: | |
4317 | return retval; | |
4318 | ||
4319 | out_unlock: | |
4320 | read_unlock(&tasklist_lock); | |
4321 | return retval; | |
4322 | } | |
4323 | ||
4324 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | |
4325 | { | |
1da177e4 | 4326 | cpumask_t cpus_allowed; |
36c8b586 IM |
4327 | struct task_struct *p; |
4328 | int retval; | |
1da177e4 LT |
4329 | |
4330 | lock_cpu_hotplug(); | |
4331 | read_lock(&tasklist_lock); | |
4332 | ||
4333 | p = find_process_by_pid(pid); | |
4334 | if (!p) { | |
4335 | read_unlock(&tasklist_lock); | |
4336 | unlock_cpu_hotplug(); | |
4337 | return -ESRCH; | |
4338 | } | |
4339 | ||
4340 | /* | |
4341 | * It is not safe to call set_cpus_allowed with the | |
4342 | * tasklist_lock held. We will bump the task_struct's | |
4343 | * usage count and then drop tasklist_lock. | |
4344 | */ | |
4345 | get_task_struct(p); | |
4346 | read_unlock(&tasklist_lock); | |
4347 | ||
4348 | retval = -EPERM; | |
4349 | if ((current->euid != p->euid) && (current->euid != p->uid) && | |
4350 | !capable(CAP_SYS_NICE)) | |
4351 | goto out_unlock; | |
4352 | ||
e7834f8f DQ |
4353 | retval = security_task_setscheduler(p, 0, NULL); |
4354 | if (retval) | |
4355 | goto out_unlock; | |
4356 | ||
1da177e4 LT |
4357 | cpus_allowed = cpuset_cpus_allowed(p); |
4358 | cpus_and(new_mask, new_mask, cpus_allowed); | |
4359 | retval = set_cpus_allowed(p, new_mask); | |
4360 | ||
4361 | out_unlock: | |
4362 | put_task_struct(p); | |
4363 | unlock_cpu_hotplug(); | |
4364 | return retval; | |
4365 | } | |
4366 | ||
4367 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | |
4368 | cpumask_t *new_mask) | |
4369 | { | |
4370 | if (len < sizeof(cpumask_t)) { | |
4371 | memset(new_mask, 0, sizeof(cpumask_t)); | |
4372 | } else if (len > sizeof(cpumask_t)) { | |
4373 | len = sizeof(cpumask_t); | |
4374 | } | |
4375 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | |
4376 | } | |
4377 | ||
4378 | /** | |
4379 | * sys_sched_setaffinity - set the cpu affinity of a process | |
4380 | * @pid: pid of the process | |
4381 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
4382 | * @user_mask_ptr: user-space pointer to the new cpu mask | |
4383 | */ | |
4384 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | |
4385 | unsigned long __user *user_mask_ptr) | |
4386 | { | |
4387 | cpumask_t new_mask; | |
4388 | int retval; | |
4389 | ||
4390 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | |
4391 | if (retval) | |
4392 | return retval; | |
4393 | ||
4394 | return sched_setaffinity(pid, new_mask); | |
4395 | } | |
4396 | ||
4397 | /* | |
4398 | * Represents all cpu's present in the system | |
4399 | * In systems capable of hotplug, this map could dynamically grow | |
4400 | * as new cpu's are detected in the system via any platform specific | |
4401 | * method, such as ACPI for e.g. | |
4402 | */ | |
4403 | ||
4cef0c61 | 4404 | cpumask_t cpu_present_map __read_mostly; |
1da177e4 LT |
4405 | EXPORT_SYMBOL(cpu_present_map); |
4406 | ||
4407 | #ifndef CONFIG_SMP | |
4cef0c61 | 4408 | cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; |
e16b38f7 GB |
4409 | EXPORT_SYMBOL(cpu_online_map); |
4410 | ||
4cef0c61 | 4411 | cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; |
e16b38f7 | 4412 | EXPORT_SYMBOL(cpu_possible_map); |
1da177e4 LT |
4413 | #endif |
4414 | ||
4415 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | |
4416 | { | |
36c8b586 | 4417 | struct task_struct *p; |
1da177e4 | 4418 | int retval; |
1da177e4 LT |
4419 | |
4420 | lock_cpu_hotplug(); | |
4421 | read_lock(&tasklist_lock); | |
4422 | ||
4423 | retval = -ESRCH; | |
4424 | p = find_process_by_pid(pid); | |
4425 | if (!p) | |
4426 | goto out_unlock; | |
4427 | ||
e7834f8f DQ |
4428 | retval = security_task_getscheduler(p); |
4429 | if (retval) | |
4430 | goto out_unlock; | |
4431 | ||
2f7016d9 | 4432 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); |
1da177e4 LT |
4433 | |
4434 | out_unlock: | |
4435 | read_unlock(&tasklist_lock); | |
4436 | unlock_cpu_hotplug(); | |
4437 | if (retval) | |
4438 | return retval; | |
4439 | ||
4440 | return 0; | |
4441 | } | |
4442 | ||
4443 | /** | |
4444 | * sys_sched_getaffinity - get the cpu affinity of a process | |
4445 | * @pid: pid of the process | |
4446 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | |
4447 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | |
4448 | */ | |
4449 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | |
4450 | unsigned long __user *user_mask_ptr) | |
4451 | { | |
4452 | int ret; | |
4453 | cpumask_t mask; | |
4454 | ||
4455 | if (len < sizeof(cpumask_t)) | |
4456 | return -EINVAL; | |
4457 | ||
4458 | ret = sched_getaffinity(pid, &mask); | |
4459 | if (ret < 0) | |
4460 | return ret; | |
4461 | ||
4462 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | |
4463 | return -EFAULT; | |
4464 | ||
4465 | return sizeof(cpumask_t); | |
4466 | } | |
4467 | ||
4468 | /** | |
4469 | * sys_sched_yield - yield the current processor to other threads. | |
4470 | * | |
4471 | * this function yields the current CPU by moving the calling thread | |
4472 | * to the expired array. If there are no other threads running on this | |
4473 | * CPU then this function will return. | |
4474 | */ | |
4475 | asmlinkage long sys_sched_yield(void) | |
4476 | { | |
70b97a7f IM |
4477 | struct rq *rq = this_rq_lock(); |
4478 | struct prio_array *array = current->array, *target = rq->expired; | |
1da177e4 LT |
4479 | |
4480 | schedstat_inc(rq, yld_cnt); | |
4481 | /* | |
4482 | * We implement yielding by moving the task into the expired | |
4483 | * queue. | |
4484 | * | |
4485 | * (special rule: RT tasks will just roundrobin in the active | |
4486 | * array.) | |
4487 | */ | |
4488 | if (rt_task(current)) | |
4489 | target = rq->active; | |
4490 | ||
5927ad78 | 4491 | if (array->nr_active == 1) { |
1da177e4 LT |
4492 | schedstat_inc(rq, yld_act_empty); |
4493 | if (!rq->expired->nr_active) | |
4494 | schedstat_inc(rq, yld_both_empty); | |
4495 | } else if (!rq->expired->nr_active) | |
4496 | schedstat_inc(rq, yld_exp_empty); | |
4497 | ||
4498 | if (array != target) { | |
4499 | dequeue_task(current, array); | |
4500 | enqueue_task(current, target); | |
4501 | } else | |
4502 | /* | |
4503 | * requeue_task is cheaper so perform that if possible. | |
4504 | */ | |
4505 | requeue_task(current, array); | |
4506 | ||
4507 | /* | |
4508 | * Since we are going to call schedule() anyway, there's | |
4509 | * no need to preempt or enable interrupts: | |
4510 | */ | |
4511 | __release(rq->lock); | |
8a25d5de | 4512 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
1da177e4 LT |
4513 | _raw_spin_unlock(&rq->lock); |
4514 | preempt_enable_no_resched(); | |
4515 | ||
4516 | schedule(); | |
4517 | ||
4518 | return 0; | |
4519 | } | |
4520 | ||
2d7d2535 | 4521 | static inline int __resched_legal(int expected_preempt_count) |
e7b38404 | 4522 | { |
2d7d2535 | 4523 | if (unlikely(preempt_count() != expected_preempt_count)) |
e7b38404 AM |
4524 | return 0; |
4525 | if (unlikely(system_state != SYSTEM_RUNNING)) | |
4526 | return 0; | |
4527 | return 1; | |
4528 | } | |
4529 | ||
4530 | static void __cond_resched(void) | |
1da177e4 | 4531 | { |
8e0a43d8 IM |
4532 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
4533 | __might_sleep(__FILE__, __LINE__); | |
4534 | #endif | |
5bbcfd90 IM |
4535 | /* |
4536 | * The BKS might be reacquired before we have dropped | |
4537 | * PREEMPT_ACTIVE, which could trigger a second | |
4538 | * cond_resched() call. | |
4539 | */ | |
1da177e4 LT |
4540 | do { |
4541 | add_preempt_count(PREEMPT_ACTIVE); | |
4542 | schedule(); | |
4543 | sub_preempt_count(PREEMPT_ACTIVE); | |
4544 | } while (need_resched()); | |
4545 | } | |
4546 | ||
4547 | int __sched cond_resched(void) | |
4548 | { | |
2d7d2535 | 4549 | if (need_resched() && __resched_legal(0)) { |
1da177e4 LT |
4550 | __cond_resched(); |
4551 | return 1; | |
4552 | } | |
4553 | return 0; | |
4554 | } | |
1da177e4 LT |
4555 | EXPORT_SYMBOL(cond_resched); |
4556 | ||
4557 | /* | |
4558 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | |
4559 | * call schedule, and on return reacquire the lock. | |
4560 | * | |
4561 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | |
4562 | * operations here to prevent schedule() from being called twice (once via | |
4563 | * spin_unlock(), once by hand). | |
4564 | */ | |
95cdf3b7 | 4565 | int cond_resched_lock(spinlock_t *lock) |
1da177e4 | 4566 | { |
6df3cecb JK |
4567 | int ret = 0; |
4568 | ||
1da177e4 LT |
4569 | if (need_lockbreak(lock)) { |
4570 | spin_unlock(lock); | |
4571 | cpu_relax(); | |
6df3cecb | 4572 | ret = 1; |
1da177e4 LT |
4573 | spin_lock(lock); |
4574 | } | |
2d7d2535 | 4575 | if (need_resched() && __resched_legal(1)) { |
8a25d5de | 4576 | spin_release(&lock->dep_map, 1, _THIS_IP_); |
1da177e4 LT |
4577 | _raw_spin_unlock(lock); |
4578 | preempt_enable_no_resched(); | |
4579 | __cond_resched(); | |
6df3cecb | 4580 | ret = 1; |
1da177e4 | 4581 | spin_lock(lock); |
1da177e4 | 4582 | } |
6df3cecb | 4583 | return ret; |
1da177e4 | 4584 | } |
1da177e4 LT |
4585 | EXPORT_SYMBOL(cond_resched_lock); |
4586 | ||
4587 | int __sched cond_resched_softirq(void) | |
4588 | { | |
4589 | BUG_ON(!in_softirq()); | |
4590 | ||
2d7d2535 | 4591 | if (need_resched() && __resched_legal(0)) { |
de30a2b3 IM |
4592 | raw_local_irq_disable(); |
4593 | _local_bh_enable(); | |
4594 | raw_local_irq_enable(); | |
1da177e4 LT |
4595 | __cond_resched(); |
4596 | local_bh_disable(); | |
4597 | return 1; | |
4598 | } | |
4599 | return 0; | |
4600 | } | |
1da177e4 LT |
4601 | EXPORT_SYMBOL(cond_resched_softirq); |
4602 | ||
1da177e4 LT |
4603 | /** |
4604 | * yield - yield the current processor to other threads. | |
4605 | * | |
4606 | * this is a shortcut for kernel-space yielding - it marks the | |
4607 | * thread runnable and calls sys_sched_yield(). | |
4608 | */ | |
4609 | void __sched yield(void) | |
4610 | { | |
4611 | set_current_state(TASK_RUNNING); | |
4612 | sys_sched_yield(); | |
4613 | } | |
1da177e4 LT |
4614 | EXPORT_SYMBOL(yield); |
4615 | ||
4616 | /* | |
4617 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | |
4618 | * that process accounting knows that this is a task in IO wait state. | |
4619 | * | |
4620 | * But don't do that if it is a deliberate, throttling IO wait (this task | |
4621 | * has set its backing_dev_info: the queue against which it should throttle) | |
4622 | */ | |
4623 | void __sched io_schedule(void) | |
4624 | { | |
70b97a7f | 4625 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 | 4626 | |
0ff92245 | 4627 | delayacct_blkio_start(); |
1da177e4 LT |
4628 | atomic_inc(&rq->nr_iowait); |
4629 | schedule(); | |
4630 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 4631 | delayacct_blkio_end(); |
1da177e4 | 4632 | } |
1da177e4 LT |
4633 | EXPORT_SYMBOL(io_schedule); |
4634 | ||
4635 | long __sched io_schedule_timeout(long timeout) | |
4636 | { | |
70b97a7f | 4637 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
1da177e4 LT |
4638 | long ret; |
4639 | ||
0ff92245 | 4640 | delayacct_blkio_start(); |
1da177e4 LT |
4641 | atomic_inc(&rq->nr_iowait); |
4642 | ret = schedule_timeout(timeout); | |
4643 | atomic_dec(&rq->nr_iowait); | |
0ff92245 | 4644 | delayacct_blkio_end(); |
1da177e4 LT |
4645 | return ret; |
4646 | } | |
4647 | ||
4648 | /** | |
4649 | * sys_sched_get_priority_max - return maximum RT priority. | |
4650 | * @policy: scheduling class. | |
4651 | * | |
4652 | * this syscall returns the maximum rt_priority that can be used | |
4653 | * by a given scheduling class. | |
4654 | */ | |
4655 | asmlinkage long sys_sched_get_priority_max(int policy) | |
4656 | { | |
4657 | int ret = -EINVAL; | |
4658 | ||
4659 | switch (policy) { | |
4660 | case SCHED_FIFO: | |
4661 | case SCHED_RR: | |
4662 | ret = MAX_USER_RT_PRIO-1; | |
4663 | break; | |
4664 | case SCHED_NORMAL: | |
b0a9499c | 4665 | case SCHED_BATCH: |
1da177e4 LT |
4666 | ret = 0; |
4667 | break; | |
4668 | } | |
4669 | return ret; | |
4670 | } | |
4671 | ||
4672 | /** | |
4673 | * sys_sched_get_priority_min - return minimum RT priority. | |
4674 | * @policy: scheduling class. | |
4675 | * | |
4676 | * this syscall returns the minimum rt_priority that can be used | |
4677 | * by a given scheduling class. | |
4678 | */ | |
4679 | asmlinkage long sys_sched_get_priority_min(int policy) | |
4680 | { | |
4681 | int ret = -EINVAL; | |
4682 | ||
4683 | switch (policy) { | |
4684 | case SCHED_FIFO: | |
4685 | case SCHED_RR: | |
4686 | ret = 1; | |
4687 | break; | |
4688 | case SCHED_NORMAL: | |
b0a9499c | 4689 | case SCHED_BATCH: |
1da177e4 LT |
4690 | ret = 0; |
4691 | } | |
4692 | return ret; | |
4693 | } | |
4694 | ||
4695 | /** | |
4696 | * sys_sched_rr_get_interval - return the default timeslice of a process. | |
4697 | * @pid: pid of the process. | |
4698 | * @interval: userspace pointer to the timeslice value. | |
4699 | * | |
4700 | * this syscall writes the default timeslice value of a given process | |
4701 | * into the user-space timespec buffer. A value of '0' means infinity. | |
4702 | */ | |
4703 | asmlinkage | |
4704 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | |
4705 | { | |
36c8b586 | 4706 | struct task_struct *p; |
1da177e4 LT |
4707 | int retval = -EINVAL; |
4708 | struct timespec t; | |
1da177e4 LT |
4709 | |
4710 | if (pid < 0) | |
4711 | goto out_nounlock; | |
4712 | ||
4713 | retval = -ESRCH; | |
4714 | read_lock(&tasklist_lock); | |
4715 | p = find_process_by_pid(pid); | |
4716 | if (!p) | |
4717 | goto out_unlock; | |
4718 | ||
4719 | retval = security_task_getscheduler(p); | |
4720 | if (retval) | |
4721 | goto out_unlock; | |
4722 | ||
b78709cf | 4723 | jiffies_to_timespec(p->policy == SCHED_FIFO ? |
1da177e4 LT |
4724 | 0 : task_timeslice(p), &t); |
4725 | read_unlock(&tasklist_lock); | |
4726 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | |
4727 | out_nounlock: | |
4728 | return retval; | |
4729 | out_unlock: | |
4730 | read_unlock(&tasklist_lock); | |
4731 | return retval; | |
4732 | } | |
4733 | ||
4734 | static inline struct task_struct *eldest_child(struct task_struct *p) | |
4735 | { | |
48f24c4d IM |
4736 | if (list_empty(&p->children)) |
4737 | return NULL; | |
1da177e4 LT |
4738 | return list_entry(p->children.next,struct task_struct,sibling); |
4739 | } | |
4740 | ||
4741 | static inline struct task_struct *older_sibling(struct task_struct *p) | |
4742 | { | |
48f24c4d IM |
4743 | if (p->sibling.prev==&p->parent->children) |
4744 | return NULL; | |
1da177e4 LT |
4745 | return list_entry(p->sibling.prev,struct task_struct,sibling); |
4746 | } | |
4747 | ||
4748 | static inline struct task_struct *younger_sibling(struct task_struct *p) | |
4749 | { | |
48f24c4d IM |
4750 | if (p->sibling.next==&p->parent->children) |
4751 | return NULL; | |
1da177e4 LT |
4752 | return list_entry(p->sibling.next,struct task_struct,sibling); |
4753 | } | |
4754 | ||
2ed6e34f | 4755 | static const char stat_nam[] = "RSDTtZX"; |
36c8b586 IM |
4756 | |
4757 | static void show_task(struct task_struct *p) | |
1da177e4 | 4758 | { |
36c8b586 | 4759 | struct task_struct *relative; |
1da177e4 | 4760 | unsigned long free = 0; |
36c8b586 | 4761 | unsigned state; |
1da177e4 | 4762 | |
1da177e4 | 4763 | state = p->state ? __ffs(p->state) + 1 : 0; |
2ed6e34f AM |
4764 | printk("%-13.13s %c", p->comm, |
4765 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | |
1da177e4 LT |
4766 | #if (BITS_PER_LONG == 32) |
4767 | if (state == TASK_RUNNING) | |
4768 | printk(" running "); | |
4769 | else | |
4770 | printk(" %08lX ", thread_saved_pc(p)); | |
4771 | #else | |
4772 | if (state == TASK_RUNNING) | |
4773 | printk(" running task "); | |
4774 | else | |
4775 | printk(" %016lx ", thread_saved_pc(p)); | |
4776 | #endif | |
4777 | #ifdef CONFIG_DEBUG_STACK_USAGE | |
4778 | { | |
10ebffde | 4779 | unsigned long *n = end_of_stack(p); |
1da177e4 LT |
4780 | while (!*n) |
4781 | n++; | |
10ebffde | 4782 | free = (unsigned long)n - (unsigned long)end_of_stack(p); |
1da177e4 LT |
4783 | } |
4784 | #endif | |
4785 | printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | |
4786 | if ((relative = eldest_child(p))) | |
4787 | printk("%5d ", relative->pid); | |
4788 | else | |
4789 | printk(" "); | |
4790 | if ((relative = younger_sibling(p))) | |
4791 | printk("%7d", relative->pid); | |
4792 | else | |
4793 | printk(" "); | |
4794 | if ((relative = older_sibling(p))) | |
4795 | printk(" %5d", relative->pid); | |
4796 | else | |
4797 | printk(" "); | |
4798 | if (!p->mm) | |
4799 | printk(" (L-TLB)\n"); | |
4800 | else | |
4801 | printk(" (NOTLB)\n"); | |
4802 | ||
4803 | if (state != TASK_RUNNING) | |
4804 | show_stack(p, NULL); | |
4805 | } | |
4806 | ||
4807 | void show_state(void) | |
4808 | { | |
36c8b586 | 4809 | struct task_struct *g, *p; |
1da177e4 LT |
4810 | |
4811 | #if (BITS_PER_LONG == 32) | |
4812 | printk("\n" | |
4813 | " sibling\n"); | |
4814 | printk(" task PC pid father child younger older\n"); | |
4815 | #else | |
4816 | printk("\n" | |
4817 | " sibling\n"); | |
4818 | printk(" task PC pid father child younger older\n"); | |
4819 | #endif | |
4820 | read_lock(&tasklist_lock); | |
4821 | do_each_thread(g, p) { | |
4822 | /* | |
4823 | * reset the NMI-timeout, listing all files on a slow | |
4824 | * console might take alot of time: | |
4825 | */ | |
4826 | touch_nmi_watchdog(); | |
4827 | show_task(p); | |
4828 | } while_each_thread(g, p); | |
4829 | ||
4830 | read_unlock(&tasklist_lock); | |
9a11b49a | 4831 | debug_show_all_locks(); |
1da177e4 LT |
4832 | } |
4833 | ||
f340c0d1 IM |
4834 | /** |
4835 | * init_idle - set up an idle thread for a given CPU | |
4836 | * @idle: task in question | |
4837 | * @cpu: cpu the idle task belongs to | |
4838 | * | |
4839 | * NOTE: this function does not set the idle thread's NEED_RESCHED | |
4840 | * flag, to make booting more robust. | |
4841 | */ | |
5c1e1767 | 4842 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
1da177e4 | 4843 | { |
70b97a7f | 4844 | struct rq *rq = cpu_rq(cpu); |
1da177e4 LT |
4845 | unsigned long flags; |
4846 | ||
81c29a85 | 4847 | idle->timestamp = sched_clock(); |
1da177e4 LT |
4848 | idle->sleep_avg = 0; |
4849 | idle->array = NULL; | |
b29739f9 | 4850 | idle->prio = idle->normal_prio = MAX_PRIO; |
1da177e4 LT |
4851 | idle->state = TASK_RUNNING; |
4852 | idle->cpus_allowed = cpumask_of_cpu(cpu); | |
4853 | set_task_cpu(idle, cpu); | |
4854 | ||
4855 | spin_lock_irqsave(&rq->lock, flags); | |
4856 | rq->curr = rq->idle = idle; | |
4866cde0 NP |
4857 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
4858 | idle->oncpu = 1; | |
4859 | #endif | |
1da177e4 LT |
4860 | spin_unlock_irqrestore(&rq->lock, flags); |
4861 | ||
4862 | /* Set the preempt count _outside_ the spinlocks! */ | |
4863 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | |
a1261f54 | 4864 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); |
1da177e4 | 4865 | #else |
a1261f54 | 4866 | task_thread_info(idle)->preempt_count = 0; |
1da177e4 LT |
4867 | #endif |
4868 | } | |
4869 | ||
4870 | /* | |
4871 | * In a system that switches off the HZ timer nohz_cpu_mask | |
4872 | * indicates which cpus entered this state. This is used | |
4873 | * in the rcu update to wait only for active cpus. For system | |
4874 | * which do not switch off the HZ timer nohz_cpu_mask should | |
4875 | * always be CPU_MASK_NONE. | |
4876 | */ | |
4877 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | |
4878 | ||
4879 | #ifdef CONFIG_SMP | |
4880 | /* | |
4881 | * This is how migration works: | |
4882 | * | |
70b97a7f | 4883 | * 1) we queue a struct migration_req structure in the source CPU's |
1da177e4 LT |
4884 | * runqueue and wake up that CPU's migration thread. |
4885 | * 2) we down() the locked semaphore => thread blocks. | |
4886 | * 3) migration thread wakes up (implicitly it forces the migrated | |
4887 | * thread off the CPU) | |
4888 | * 4) it gets the migration request and checks whether the migrated | |
4889 | * task is still in the wrong runqueue. | |
4890 | * 5) if it's in the wrong runqueue then the migration thread removes | |
4891 | * it and puts it into the right queue. | |
4892 | * 6) migration thread up()s the semaphore. | |
4893 | * 7) we wake up and the migration is done. | |
4894 | */ | |
4895 | ||
4896 | /* | |
4897 | * Change a given task's CPU affinity. Migrate the thread to a | |
4898 | * proper CPU and schedule it away if the CPU it's executing on | |
4899 | * is removed from the allowed bitmask. | |
4900 | * | |
4901 | * NOTE: the caller must have a valid reference to the task, the | |
4902 | * task must not exit() & deallocate itself prematurely. The | |
4903 | * call is not atomic; no spinlocks may be held. | |
4904 | */ | |
36c8b586 | 4905 | int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) |
1da177e4 | 4906 | { |
70b97a7f | 4907 | struct migration_req req; |
1da177e4 | 4908 | unsigned long flags; |
70b97a7f | 4909 | struct rq *rq; |
48f24c4d | 4910 | int ret = 0; |
1da177e4 LT |
4911 | |
4912 | rq = task_rq_lock(p, &flags); | |
4913 | if (!cpus_intersects(new_mask, cpu_online_map)) { | |
4914 | ret = -EINVAL; | |
4915 | goto out; | |
4916 | } | |
4917 | ||
4918 | p->cpus_allowed = new_mask; | |
4919 | /* Can the task run on the task's current CPU? If so, we're done */ | |
4920 | if (cpu_isset(task_cpu(p), new_mask)) | |
4921 | goto out; | |
4922 | ||
4923 | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | |
4924 | /* Need help from migration thread: drop lock and wait. */ | |
4925 | task_rq_unlock(rq, &flags); | |
4926 | wake_up_process(rq->migration_thread); | |
4927 | wait_for_completion(&req.done); | |
4928 | tlb_migrate_finish(p->mm); | |
4929 | return 0; | |
4930 | } | |
4931 | out: | |
4932 | task_rq_unlock(rq, &flags); | |
48f24c4d | 4933 | |
1da177e4 LT |
4934 | return ret; |
4935 | } | |
1da177e4 LT |
4936 | EXPORT_SYMBOL_GPL(set_cpus_allowed); |
4937 | ||
4938 | /* | |
4939 | * Move (not current) task off this cpu, onto dest cpu. We're doing | |
4940 | * this because either it can't run here any more (set_cpus_allowed() | |
4941 | * away from this CPU, or CPU going down), or because we're | |
4942 | * attempting to rebalance this task on exec (sched_exec). | |
4943 | * | |
4944 | * So we race with normal scheduler movements, but that's OK, as long | |
4945 | * as the task is no longer on this CPU. | |
efc30814 KK |
4946 | * |
4947 | * Returns non-zero if task was successfully migrated. | |
1da177e4 | 4948 | */ |
efc30814 | 4949 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
1da177e4 | 4950 | { |
70b97a7f | 4951 | struct rq *rq_dest, *rq_src; |
efc30814 | 4952 | int ret = 0; |
1da177e4 LT |
4953 | |
4954 | if (unlikely(cpu_is_offline(dest_cpu))) | |
efc30814 | 4955 | return ret; |
1da177e4 LT |
4956 | |
4957 | rq_src = cpu_rq(src_cpu); | |
4958 | rq_dest = cpu_rq(dest_cpu); | |
4959 | ||
4960 | double_rq_lock(rq_src, rq_dest); | |
4961 | /* Already moved. */ | |
4962 | if (task_cpu(p) != src_cpu) | |
4963 | goto out; | |
4964 | /* Affinity changed (again). */ | |
4965 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | |
4966 | goto out; | |
4967 | ||
4968 | set_task_cpu(p, dest_cpu); | |
4969 | if (p->array) { | |
4970 | /* | |
4971 | * Sync timestamp with rq_dest's before activating. | |
4972 | * The same thing could be achieved by doing this step | |
4973 | * afterwards, and pretending it was a local activate. | |
4974 | * This way is cleaner and logically correct. | |
4975 | */ | |
4976 | p->timestamp = p->timestamp - rq_src->timestamp_last_tick | |
4977 | + rq_dest->timestamp_last_tick; | |
4978 | deactivate_task(p, rq_src); | |
0a565f79 | 4979 | __activate_task(p, rq_dest); |
1da177e4 LT |
4980 | if (TASK_PREEMPTS_CURR(p, rq_dest)) |
4981 | resched_task(rq_dest->curr); | |
4982 | } | |
efc30814 | 4983 | ret = 1; |
1da177e4 LT |
4984 | out: |
4985 | double_rq_unlock(rq_src, rq_dest); | |
efc30814 | 4986 | return ret; |
1da177e4 LT |
4987 | } |
4988 | ||
4989 | /* | |
4990 | * migration_thread - this is a highprio system thread that performs | |
4991 | * thread migration by bumping thread off CPU then 'pushing' onto | |
4992 | * another runqueue. | |
4993 | */ | |
95cdf3b7 | 4994 | static int migration_thread(void *data) |
1da177e4 | 4995 | { |
1da177e4 | 4996 | int cpu = (long)data; |
70b97a7f | 4997 | struct rq *rq; |
1da177e4 LT |
4998 | |
4999 | rq = cpu_rq(cpu); | |
5000 | BUG_ON(rq->migration_thread != current); | |
5001 | ||
5002 | set_current_state(TASK_INTERRUPTIBLE); | |
5003 | while (!kthread_should_stop()) { | |
70b97a7f | 5004 | struct migration_req *req; |
1da177e4 | 5005 | struct list_head *head; |
1da177e4 | 5006 | |
3e1d1d28 | 5007 | try_to_freeze(); |
1da177e4 LT |
5008 | |
5009 | spin_lock_irq(&rq->lock); | |
5010 | ||
5011 | if (cpu_is_offline(cpu)) { | |
5012 | spin_unlock_irq(&rq->lock); | |
5013 | goto wait_to_die; | |
5014 | } | |
5015 | ||
5016 | if (rq->active_balance) { | |
5017 | active_load_balance(rq, cpu); | |
5018 | rq->active_balance = 0; | |
5019 | } | |
5020 | ||
5021 | head = &rq->migration_queue; | |
5022 | ||
5023 | if (list_empty(head)) { | |
5024 | spin_unlock_irq(&rq->lock); | |
5025 | schedule(); | |
5026 | set_current_state(TASK_INTERRUPTIBLE); | |
5027 | continue; | |
5028 | } | |
70b97a7f | 5029 | req = list_entry(head->next, struct migration_req, list); |
1da177e4 LT |
5030 | list_del_init(head->next); |
5031 | ||
674311d5 NP |
5032 | spin_unlock(&rq->lock); |
5033 | __migrate_task(req->task, cpu, req->dest_cpu); | |
5034 | local_irq_enable(); | |
1da177e4 LT |
5035 | |
5036 | complete(&req->done); | |
5037 | } | |
5038 | __set_current_state(TASK_RUNNING); | |
5039 | return 0; | |
5040 | ||
5041 | wait_to_die: | |
5042 | /* Wait for kthread_stop */ | |
5043 | set_current_state(TASK_INTERRUPTIBLE); | |
5044 | while (!kthread_should_stop()) { | |
5045 | schedule(); | |
5046 | set_current_state(TASK_INTERRUPTIBLE); | |
5047 | } | |
5048 | __set_current_state(TASK_RUNNING); | |
5049 | return 0; | |
5050 | } | |
5051 | ||
5052 | #ifdef CONFIG_HOTPLUG_CPU | |
5053 | /* Figure out where task on dead CPU should go, use force if neccessary. */ | |
48f24c4d | 5054 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
1da177e4 | 5055 | { |
efc30814 | 5056 | unsigned long flags; |
1da177e4 | 5057 | cpumask_t mask; |
70b97a7f IM |
5058 | struct rq *rq; |
5059 | int dest_cpu; | |
1da177e4 | 5060 | |
efc30814 | 5061 | restart: |
1da177e4 LT |
5062 | /* On same node? */ |
5063 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | |
48f24c4d | 5064 | cpus_and(mask, mask, p->cpus_allowed); |
1da177e4 LT |
5065 | dest_cpu = any_online_cpu(mask); |
5066 | ||
5067 | /* On any allowed CPU? */ | |
5068 | if (dest_cpu == NR_CPUS) | |
48f24c4d | 5069 | dest_cpu = any_online_cpu(p->cpus_allowed); |
1da177e4 LT |
5070 | |
5071 | /* No more Mr. Nice Guy. */ | |
5072 | if (dest_cpu == NR_CPUS) { | |
48f24c4d IM |
5073 | rq = task_rq_lock(p, &flags); |
5074 | cpus_setall(p->cpus_allowed); | |
5075 | dest_cpu = any_online_cpu(p->cpus_allowed); | |
efc30814 | 5076 | task_rq_unlock(rq, &flags); |
1da177e4 LT |
5077 | |
5078 | /* | |
5079 | * Don't tell them about moving exiting tasks or | |
5080 | * kernel threads (both mm NULL), since they never | |
5081 | * leave kernel. | |
5082 | */ | |
48f24c4d | 5083 | if (p->mm && printk_ratelimit()) |
1da177e4 LT |
5084 | printk(KERN_INFO "process %d (%s) no " |
5085 | "longer affine to cpu%d\n", | |
48f24c4d | 5086 | p->pid, p->comm, dead_cpu); |
1da177e4 | 5087 | } |
48f24c4d | 5088 | if (!__migrate_task(p, dead_cpu, dest_cpu)) |
efc30814 | 5089 | goto restart; |
1da177e4 LT |
5090 | } |
5091 | ||
5092 | /* | |
5093 | * While a dead CPU has no uninterruptible tasks queued at this point, | |
5094 | * it might still have a nonzero ->nr_uninterruptible counter, because | |
5095 | * for performance reasons the counter is not stricly tracking tasks to | |
5096 | * their home CPUs. So we just add the counter to another CPU's counter, | |
5097 | * to keep the global sum constant after CPU-down: | |
5098 | */ | |
70b97a7f | 5099 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
1da177e4 | 5100 | { |
70b97a7f | 5101 | struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); |
1da177e4 LT |
5102 | unsigned long flags; |
5103 | ||
5104 | local_irq_save(flags); | |
5105 | double_rq_lock(rq_src, rq_dest); | |
5106 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | |
5107 | rq_src->nr_uninterruptible = 0; | |
5108 | double_rq_unlock(rq_src, rq_dest); | |
5109 | local_irq_restore(flags); | |
5110 | } | |
5111 | ||
5112 | /* Run through task list and migrate tasks from the dead cpu. */ | |
5113 | static void migrate_live_tasks(int src_cpu) | |
5114 | { | |
48f24c4d | 5115 | struct task_struct *p, *t; |
1da177e4 LT |
5116 | |
5117 | write_lock_irq(&tasklist_lock); | |
5118 | ||
48f24c4d IM |
5119 | do_each_thread(t, p) { |
5120 | if (p == current) | |
1da177e4 LT |
5121 | continue; |
5122 | ||
48f24c4d IM |
5123 | if (task_cpu(p) == src_cpu) |
5124 | move_task_off_dead_cpu(src_cpu, p); | |
5125 | } while_each_thread(t, p); | |
1da177e4 LT |
5126 | |
5127 | write_unlock_irq(&tasklist_lock); | |
5128 | } | |
5129 | ||
5130 | /* Schedules idle task to be the next runnable task on current CPU. | |
5131 | * It does so by boosting its priority to highest possible and adding it to | |
48f24c4d | 5132 | * the _front_ of the runqueue. Used by CPU offline code. |
1da177e4 LT |
5133 | */ |
5134 | void sched_idle_next(void) | |
5135 | { | |
48f24c4d | 5136 | int this_cpu = smp_processor_id(); |
70b97a7f | 5137 | struct rq *rq = cpu_rq(this_cpu); |
1da177e4 LT |
5138 | struct task_struct *p = rq->idle; |
5139 | unsigned long flags; | |
5140 | ||
5141 | /* cpu has to be offline */ | |
48f24c4d | 5142 | BUG_ON(cpu_online(this_cpu)); |
1da177e4 | 5143 | |
48f24c4d IM |
5144 | /* |
5145 | * Strictly not necessary since rest of the CPUs are stopped by now | |
5146 | * and interrupts disabled on the current cpu. | |
1da177e4 LT |
5147 | */ |
5148 | spin_lock_irqsave(&rq->lock, flags); | |
5149 | ||
5150 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | |
48f24c4d IM |
5151 | |
5152 | /* Add idle task to the _front_ of its priority queue: */ | |
1da177e4 LT |
5153 | __activate_idle_task(p, rq); |
5154 | ||
5155 | spin_unlock_irqrestore(&rq->lock, flags); | |
5156 | } | |
5157 | ||
48f24c4d IM |
5158 | /* |
5159 | * Ensures that the idle task is using init_mm right before its cpu goes | |
1da177e4 LT |
5160 | * offline. |
5161 | */ | |
5162 | void idle_task_exit(void) | |
5163 | { | |
5164 | struct mm_struct *mm = current->active_mm; | |
5165 | ||
5166 | BUG_ON(cpu_online(smp_processor_id())); | |
5167 | ||
5168 | if (mm != &init_mm) | |
5169 | switch_mm(mm, &init_mm, current); | |
5170 | mmdrop(mm); | |
5171 | } | |
5172 | ||
36c8b586 | 5173 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
1da177e4 | 5174 | { |
70b97a7f | 5175 | struct rq *rq = cpu_rq(dead_cpu); |
1da177e4 LT |
5176 | |
5177 | /* Must be exiting, otherwise would be on tasklist. */ | |
48f24c4d | 5178 | BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD); |
1da177e4 LT |
5179 | |
5180 | /* Cannot have done final schedule yet: would have vanished. */ | |
c394cc9f | 5181 | BUG_ON(p->state == TASK_DEAD); |
1da177e4 | 5182 | |
48f24c4d | 5183 | get_task_struct(p); |
1da177e4 LT |
5184 | |
5185 | /* | |
5186 | * Drop lock around migration; if someone else moves it, | |
5187 | * that's OK. No task can be added to this CPU, so iteration is | |
5188 | * fine. | |
5189 | */ | |
5190 | spin_unlock_irq(&rq->lock); | |
48f24c4d | 5191 | move_task_off_dead_cpu(dead_cpu, p); |
1da177e4 LT |
5192 | spin_lock_irq(&rq->lock); |
5193 | ||
48f24c4d | 5194 | put_task_struct(p); |
1da177e4 LT |
5195 | } |
5196 | ||
5197 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | |
5198 | static void migrate_dead_tasks(unsigned int dead_cpu) | |
5199 | { | |
70b97a7f | 5200 | struct rq *rq = cpu_rq(dead_cpu); |
48f24c4d | 5201 | unsigned int arr, i; |
1da177e4 LT |
5202 | |
5203 | for (arr = 0; arr < 2; arr++) { | |
5204 | for (i = 0; i < MAX_PRIO; i++) { | |
5205 | struct list_head *list = &rq->arrays[arr].queue[i]; | |
48f24c4d | 5206 | |
1da177e4 | 5207 | while (!list_empty(list)) |
36c8b586 IM |
5208 | migrate_dead(dead_cpu, list_entry(list->next, |
5209 | struct task_struct, run_list)); | |
1da177e4 LT |
5210 | } |
5211 | } | |
5212 | } | |
5213 | #endif /* CONFIG_HOTPLUG_CPU */ | |
5214 | ||
5215 | /* | |
5216 | * migration_call - callback that gets triggered when a CPU is added. | |
5217 | * Here we can start up the necessary migration thread for the new CPU. | |
5218 | */ | |
48f24c4d IM |
5219 | static int __cpuinit |
5220 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |
1da177e4 | 5221 | { |
1da177e4 | 5222 | struct task_struct *p; |
48f24c4d | 5223 | int cpu = (long)hcpu; |
1da177e4 | 5224 | unsigned long flags; |
70b97a7f | 5225 | struct rq *rq; |
1da177e4 LT |
5226 | |
5227 | switch (action) { | |
5228 | case CPU_UP_PREPARE: | |
5229 | p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | |
5230 | if (IS_ERR(p)) | |
5231 | return NOTIFY_BAD; | |
5232 | p->flags |= PF_NOFREEZE; | |
5233 | kthread_bind(p, cpu); | |
5234 | /* Must be high prio: stop_machine expects to yield to it. */ | |
5235 | rq = task_rq_lock(p, &flags); | |
5236 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | |
5237 | task_rq_unlock(rq, &flags); | |
5238 | cpu_rq(cpu)->migration_thread = p; | |
5239 | break; | |
48f24c4d | 5240 | |
1da177e4 LT |
5241 | case CPU_ONLINE: |
5242 | /* Strictly unneccessary, as first user will wake it. */ | |
5243 | wake_up_process(cpu_rq(cpu)->migration_thread); | |
5244 | break; | |
48f24c4d | 5245 | |
1da177e4 LT |
5246 | #ifdef CONFIG_HOTPLUG_CPU |
5247 | case CPU_UP_CANCELED: | |
fc75cdfa HC |
5248 | if (!cpu_rq(cpu)->migration_thread) |
5249 | break; | |
1da177e4 | 5250 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
a4c4af7c HC |
5251 | kthread_bind(cpu_rq(cpu)->migration_thread, |
5252 | any_online_cpu(cpu_online_map)); | |
1da177e4 LT |
5253 | kthread_stop(cpu_rq(cpu)->migration_thread); |
5254 | cpu_rq(cpu)->migration_thread = NULL; | |
5255 | break; | |
48f24c4d | 5256 | |
1da177e4 LT |
5257 | case CPU_DEAD: |
5258 | migrate_live_tasks(cpu); | |
5259 | rq = cpu_rq(cpu); | |
5260 | kthread_stop(rq->migration_thread); | |
5261 | rq->migration_thread = NULL; | |
5262 | /* Idle task back to normal (off runqueue, low prio) */ | |
5263 | rq = task_rq_lock(rq->idle, &flags); | |
5264 | deactivate_task(rq->idle, rq); | |
5265 | rq->idle->static_prio = MAX_PRIO; | |
5266 | __setscheduler(rq->idle, SCHED_NORMAL, 0); | |
5267 | migrate_dead_tasks(cpu); | |
5268 | task_rq_unlock(rq, &flags); | |
5269 | migrate_nr_uninterruptible(rq); | |
5270 | BUG_ON(rq->nr_running != 0); | |
5271 | ||
5272 | /* No need to migrate the tasks: it was best-effort if | |
5273 | * they didn't do lock_cpu_hotplug(). Just wake up | |
5274 | * the requestors. */ | |
5275 | spin_lock_irq(&rq->lock); | |
5276 | while (!list_empty(&rq->migration_queue)) { | |
70b97a7f IM |
5277 | struct migration_req *req; |
5278 | ||
1da177e4 | 5279 | req = list_entry(rq->migration_queue.next, |
70b97a7f | 5280 | struct migration_req, list); |
1da177e4 LT |
5281 | list_del_init(&req->list); |
5282 | complete(&req->done); | |
5283 | } | |
5284 | spin_unlock_irq(&rq->lock); | |
5285 | break; | |
5286 | #endif | |
5287 | } | |
5288 | return NOTIFY_OK; | |
5289 | } | |
5290 | ||
5291 | /* Register at highest priority so that task migration (migrate_all_tasks) | |
5292 | * happens before everything else. | |
5293 | */ | |
26c2143b | 5294 | static struct notifier_block __cpuinitdata migration_notifier = { |
1da177e4 LT |
5295 | .notifier_call = migration_call, |
5296 | .priority = 10 | |
5297 | }; | |
5298 | ||
5299 | int __init migration_init(void) | |
5300 | { | |
5301 | void *cpu = (void *)(long)smp_processor_id(); | |
07dccf33 | 5302 | int err; |
48f24c4d IM |
5303 | |
5304 | /* Start one for the boot CPU: */ | |
07dccf33 AM |
5305 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
5306 | BUG_ON(err == NOTIFY_BAD); | |
1da177e4 LT |
5307 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
5308 | register_cpu_notifier(&migration_notifier); | |
48f24c4d | 5309 | |
1da177e4 LT |
5310 | return 0; |
5311 | } | |
5312 | #endif | |
5313 | ||
5314 | #ifdef CONFIG_SMP | |
1a20ff27 | 5315 | #undef SCHED_DOMAIN_DEBUG |
1da177e4 LT |
5316 | #ifdef SCHED_DOMAIN_DEBUG |
5317 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | |
5318 | { | |
5319 | int level = 0; | |
5320 | ||
41c7ce9a NP |
5321 | if (!sd) { |
5322 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | |
5323 | return; | |
5324 | } | |
5325 | ||
1da177e4 LT |
5326 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
5327 | ||
5328 | do { | |
5329 | int i; | |
5330 | char str[NR_CPUS]; | |
5331 | struct sched_group *group = sd->groups; | |
5332 | cpumask_t groupmask; | |
5333 | ||
5334 | cpumask_scnprintf(str, NR_CPUS, sd->span); | |
5335 | cpus_clear(groupmask); | |
5336 | ||
5337 | printk(KERN_DEBUG); | |
5338 | for (i = 0; i < level + 1; i++) | |
5339 | printk(" "); | |
5340 | printk("domain %d: ", level); | |
5341 | ||
5342 | if (!(sd->flags & SD_LOAD_BALANCE)) { | |
5343 | printk("does not load-balance\n"); | |
5344 | if (sd->parent) | |
5345 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | |
5346 | break; | |
5347 | } | |
5348 | ||
5349 | printk("span %s\n", str); | |
5350 | ||
5351 | if (!cpu_isset(cpu, sd->span)) | |
5352 | printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | |
5353 | if (!cpu_isset(cpu, group->cpumask)) | |
5354 | printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | |
5355 | ||
5356 | printk(KERN_DEBUG); | |
5357 | for (i = 0; i < level + 2; i++) | |
5358 | printk(" "); | |
5359 | printk("groups:"); | |
5360 | do { | |
5361 | if (!group) { | |
5362 | printk("\n"); | |
5363 | printk(KERN_ERR "ERROR: group is NULL\n"); | |
5364 | break; | |
5365 | } | |
5366 | ||
5367 | if (!group->cpu_power) { | |
5368 | printk("\n"); | |
5369 | printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | |
5370 | } | |
5371 | ||
5372 | if (!cpus_weight(group->cpumask)) { | |
5373 | printk("\n"); | |
5374 | printk(KERN_ERR "ERROR: empty group\n"); | |
5375 | } | |
5376 | ||
5377 | if (cpus_intersects(groupmask, group->cpumask)) { | |
5378 | printk("\n"); | |
5379 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | |
5380 | } | |
5381 | ||
5382 | cpus_or(groupmask, groupmask, group->cpumask); | |
5383 | ||
5384 | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | |
5385 | printk(" %s", str); | |
5386 | ||
5387 | group = group->next; | |
5388 | } while (group != sd->groups); | |
5389 | printk("\n"); | |
5390 | ||
5391 | if (!cpus_equal(sd->span, groupmask)) | |
5392 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | |
5393 | ||
5394 | level++; | |
5395 | sd = sd->parent; | |
5396 | ||
5397 | if (sd) { | |
5398 | if (!cpus_subset(groupmask, sd->span)) | |
5399 | printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | |
5400 | } | |
5401 | ||
5402 | } while (sd); | |
5403 | } | |
5404 | #else | |
48f24c4d | 5405 | # define sched_domain_debug(sd, cpu) do { } while (0) |
1da177e4 LT |
5406 | #endif |
5407 | ||
1a20ff27 | 5408 | static int sd_degenerate(struct sched_domain *sd) |
245af2c7 SS |
5409 | { |
5410 | if (cpus_weight(sd->span) == 1) | |
5411 | return 1; | |
5412 | ||
5413 | /* Following flags need at least 2 groups */ | |
5414 | if (sd->flags & (SD_LOAD_BALANCE | | |
5415 | SD_BALANCE_NEWIDLE | | |
5416 | SD_BALANCE_FORK | | |
89c4710e SS |
5417 | SD_BALANCE_EXEC | |
5418 | SD_SHARE_CPUPOWER | | |
5419 | SD_SHARE_PKG_RESOURCES)) { | |
245af2c7 SS |
5420 | if (sd->groups != sd->groups->next) |
5421 | return 0; | |
5422 | } | |
5423 | ||
5424 | /* Following flags don't use groups */ | |
5425 | if (sd->flags & (SD_WAKE_IDLE | | |
5426 | SD_WAKE_AFFINE | | |
5427 | SD_WAKE_BALANCE)) | |
5428 | return 0; | |
5429 | ||
5430 | return 1; | |
5431 | } | |
5432 | ||
48f24c4d IM |
5433 | static int |
5434 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |
245af2c7 SS |
5435 | { |
5436 | unsigned long cflags = sd->flags, pflags = parent->flags; | |
5437 | ||
5438 | if (sd_degenerate(parent)) | |
5439 | return 1; | |
5440 | ||
5441 | if (!cpus_equal(sd->span, parent->span)) | |
5442 | return 0; | |
5443 | ||
5444 | /* Does parent contain flags not in child? */ | |
5445 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | |
5446 | if (cflags & SD_WAKE_AFFINE) | |
5447 | pflags &= ~SD_WAKE_BALANCE; | |
5448 | /* Flags needing groups don't count if only 1 group in parent */ | |
5449 | if (parent->groups == parent->groups->next) { | |
5450 | pflags &= ~(SD_LOAD_BALANCE | | |
5451 | SD_BALANCE_NEWIDLE | | |
5452 | SD_BALANCE_FORK | | |
89c4710e SS |
5453 | SD_BALANCE_EXEC | |
5454 | SD_SHARE_CPUPOWER | | |
5455 | SD_SHARE_PKG_RESOURCES); | |
245af2c7 SS |
5456 | } |
5457 | if (~cflags & pflags) | |
5458 | return 0; | |
5459 | ||
5460 | return 1; | |
5461 | } | |
5462 | ||
1da177e4 LT |
5463 | /* |
5464 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | |
5465 | * hold the hotplug lock. | |
5466 | */ | |
9c1cfda2 | 5467 | static void cpu_attach_domain(struct sched_domain *sd, int cpu) |
1da177e4 | 5468 | { |
70b97a7f | 5469 | struct rq *rq = cpu_rq(cpu); |
245af2c7 SS |
5470 | struct sched_domain *tmp; |
5471 | ||
5472 | /* Remove the sched domains which do not contribute to scheduling. */ | |
5473 | for (tmp = sd; tmp; tmp = tmp->parent) { | |
5474 | struct sched_domain *parent = tmp->parent; | |
5475 | if (!parent) | |
5476 | break; | |
1a848870 | 5477 | if (sd_parent_degenerate(tmp, parent)) { |
245af2c7 | 5478 | tmp->parent = parent->parent; |
1a848870 SS |
5479 | if (parent->parent) |
5480 | parent->parent->child = tmp; | |
5481 | } | |
245af2c7 SS |
5482 | } |
5483 | ||
1a848870 | 5484 | if (sd && sd_degenerate(sd)) { |
245af2c7 | 5485 | sd = sd->parent; |
1a848870 SS |
5486 | if (sd) |
5487 | sd->child = NULL; | |
5488 | } | |
1da177e4 LT |
5489 | |
5490 | sched_domain_debug(sd, cpu); | |
5491 | ||
674311d5 | 5492 | rcu_assign_pointer(rq->sd, sd); |
1da177e4 LT |
5493 | } |
5494 | ||
5495 | /* cpus with isolated domains */ | |
5c1e1767 | 5496 | static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE; |
1da177e4 LT |
5497 | |
5498 | /* Setup the mask of cpus configured for isolated domains */ | |
5499 | static int __init isolated_cpu_setup(char *str) | |
5500 | { | |
5501 | int ints[NR_CPUS], i; | |
5502 | ||
5503 | str = get_options(str, ARRAY_SIZE(ints), ints); | |
5504 | cpus_clear(cpu_isolated_map); | |
5505 | for (i = 1; i <= ints[0]; i++) | |
5506 | if (ints[i] < NR_CPUS) | |
5507 | cpu_set(ints[i], cpu_isolated_map); | |
5508 | return 1; | |
5509 | } | |
5510 | ||
5511 | __setup ("isolcpus=", isolated_cpu_setup); | |
5512 | ||
5513 | /* | |
5514 | * init_sched_build_groups takes an array of groups, the cpumask we wish | |
5515 | * to span, and a pointer to a function which identifies what group a CPU | |
5516 | * belongs to. The return value of group_fn must be a valid index into the | |
5517 | * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | |
5518 | * keep track of groups covered with a cpumask_t). | |
5519 | * | |
5520 | * init_sched_build_groups will build a circular linked list of the groups | |
5521 | * covered by the given span, and will set each group's ->cpumask correctly, | |
5522 | * and ->cpu_power to 0. | |
5523 | */ | |
a616058b SS |
5524 | static void |
5525 | init_sched_build_groups(struct sched_group groups[], cpumask_t span, | |
5526 | const cpumask_t *cpu_map, | |
5527 | int (*group_fn)(int cpu, const cpumask_t *cpu_map)) | |
1da177e4 LT |
5528 | { |
5529 | struct sched_group *first = NULL, *last = NULL; | |
5530 | cpumask_t covered = CPU_MASK_NONE; | |
5531 | int i; | |
5532 | ||
5533 | for_each_cpu_mask(i, span) { | |
a616058b | 5534 | int group = group_fn(i, cpu_map); |
1da177e4 LT |
5535 | struct sched_group *sg = &groups[group]; |
5536 | int j; | |
5537 | ||
5538 | if (cpu_isset(i, covered)) | |
5539 | continue; | |
5540 | ||
5541 | sg->cpumask = CPU_MASK_NONE; | |
5542 | sg->cpu_power = 0; | |
5543 | ||
5544 | for_each_cpu_mask(j, span) { | |
a616058b | 5545 | if (group_fn(j, cpu_map) != group) |
1da177e4 LT |
5546 | continue; |
5547 | ||
5548 | cpu_set(j, covered); | |
5549 | cpu_set(j, sg->cpumask); | |
5550 | } | |
5551 | if (!first) | |
5552 | first = sg; | |
5553 | if (last) | |
5554 | last->next = sg; | |
5555 | last = sg; | |
5556 | } | |
5557 | last->next = first; | |
5558 | } | |
5559 | ||
9c1cfda2 | 5560 | #define SD_NODES_PER_DOMAIN 16 |
1da177e4 | 5561 | |
198e2f18 | 5562 | /* |
5563 | * Self-tuning task migration cost measurement between source and target CPUs. | |
5564 | * | |
5565 | * This is done by measuring the cost of manipulating buffers of varying | |
5566 | * sizes. For a given buffer-size here are the steps that are taken: | |
5567 | * | |
5568 | * 1) the source CPU reads+dirties a shared buffer | |
5569 | * 2) the target CPU reads+dirties the same shared buffer | |
5570 | * | |
5571 | * We measure how long they take, in the following 4 scenarios: | |
5572 | * | |
5573 | * - source: CPU1, target: CPU2 | cost1 | |
5574 | * - source: CPU2, target: CPU1 | cost2 | |
5575 | * - source: CPU1, target: CPU1 | cost3 | |
5576 | * - source: CPU2, target: CPU2 | cost4 | |
5577 | * | |
5578 | * We then calculate the cost3+cost4-cost1-cost2 difference - this is | |
5579 | * the cost of migration. | |
5580 | * | |
5581 | * We then start off from a small buffer-size and iterate up to larger | |
5582 | * buffer sizes, in 5% steps - measuring each buffer-size separately, and | |
5583 | * doing a maximum search for the cost. (The maximum cost for a migration | |
5584 | * normally occurs when the working set size is around the effective cache | |
5585 | * size.) | |
5586 | */ | |
5587 | #define SEARCH_SCOPE 2 | |
5588 | #define MIN_CACHE_SIZE (64*1024U) | |
5589 | #define DEFAULT_CACHE_SIZE (5*1024*1024U) | |
70b4d63e | 5590 | #define ITERATIONS 1 |
198e2f18 | 5591 | #define SIZE_THRESH 130 |
5592 | #define COST_THRESH 130 | |
5593 | ||
5594 | /* | |
5595 | * The migration cost is a function of 'domain distance'. Domain | |
5596 | * distance is the number of steps a CPU has to iterate down its | |
5597 | * domain tree to share a domain with the other CPU. The farther | |
5598 | * two CPUs are from each other, the larger the distance gets. | |
5599 | * | |
5600 | * Note that we use the distance only to cache measurement results, | |
5601 | * the distance value is not used numerically otherwise. When two | |
5602 | * CPUs have the same distance it is assumed that the migration | |
5603 | * cost is the same. (this is a simplification but quite practical) | |
5604 | */ | |
5605 | #define MAX_DOMAIN_DISTANCE 32 | |
5606 | ||
5607 | static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = | |
4bbf39c2 IM |
5608 | { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = |
5609 | /* | |
5610 | * Architectures may override the migration cost and thus avoid | |
5611 | * boot-time calibration. Unit is nanoseconds. Mostly useful for | |
5612 | * virtualized hardware: | |
5613 | */ | |
5614 | #ifdef CONFIG_DEFAULT_MIGRATION_COST | |
5615 | CONFIG_DEFAULT_MIGRATION_COST | |
5616 | #else | |
5617 | -1LL | |
5618 | #endif | |
5619 | }; | |
198e2f18 | 5620 | |
5621 | /* | |
5622 | * Allow override of migration cost - in units of microseconds. | |
5623 | * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost | |
5624 | * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: | |
5625 | */ | |
5626 | static int __init migration_cost_setup(char *str) | |
5627 | { | |
5628 | int ints[MAX_DOMAIN_DISTANCE+1], i; | |
5629 | ||
5630 | str = get_options(str, ARRAY_SIZE(ints), ints); | |
5631 | ||
5632 | printk("#ints: %d\n", ints[0]); | |
5633 | for (i = 1; i <= ints[0]; i++) { | |
5634 | migration_cost[i-1] = (unsigned long long)ints[i]*1000; | |
5635 | printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); | |
5636 | } | |
5637 | return 1; | |
5638 | } | |
5639 | ||
5640 | __setup ("migration_cost=", migration_cost_setup); | |
5641 | ||
5642 | /* | |
5643 | * Global multiplier (divisor) for migration-cutoff values, | |
5644 | * in percentiles. E.g. use a value of 150 to get 1.5 times | |
5645 | * longer cache-hot cutoff times. | |
5646 | * | |
5647 | * (We scale it from 100 to 128 to long long handling easier.) | |
5648 | */ | |
5649 | ||
5650 | #define MIGRATION_FACTOR_SCALE 128 | |
5651 | ||
5652 | static unsigned int migration_factor = MIGRATION_FACTOR_SCALE; | |
5653 | ||
5654 | static int __init setup_migration_factor(char *str) | |
5655 | { | |
5656 | get_option(&str, &migration_factor); | |
5657 | migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; | |
5658 | return 1; | |
5659 | } | |
5660 | ||
5661 | __setup("migration_factor=", setup_migration_factor); | |
5662 | ||
5663 | /* | |
5664 | * Estimated distance of two CPUs, measured via the number of domains | |
5665 | * we have to pass for the two CPUs to be in the same span: | |
5666 | */ | |
5667 | static unsigned long domain_distance(int cpu1, int cpu2) | |
5668 | { | |
5669 | unsigned long distance = 0; | |
5670 | struct sched_domain *sd; | |
5671 | ||
5672 | for_each_domain(cpu1, sd) { | |
5673 | WARN_ON(!cpu_isset(cpu1, sd->span)); | |
5674 | if (cpu_isset(cpu2, sd->span)) | |
5675 | return distance; | |
5676 | distance++; | |
5677 | } | |
5678 | if (distance >= MAX_DOMAIN_DISTANCE) { | |
5679 | WARN_ON(1); | |
5680 | distance = MAX_DOMAIN_DISTANCE-1; | |
5681 | } | |
5682 | ||
5683 | return distance; | |
5684 | } | |
5685 | ||
5686 | static unsigned int migration_debug; | |
5687 | ||
5688 | static int __init setup_migration_debug(char *str) | |
5689 | { | |
5690 | get_option(&str, &migration_debug); | |
5691 | return 1; | |
5692 | } | |
5693 | ||
5694 | __setup("migration_debug=", setup_migration_debug); | |
5695 | ||
5696 | /* | |
5697 | * Maximum cache-size that the scheduler should try to measure. | |
5698 | * Architectures with larger caches should tune this up during | |
5699 | * bootup. Gets used in the domain-setup code (i.e. during SMP | |
5700 | * bootup). | |
5701 | */ | |
5702 | unsigned int max_cache_size; | |
5703 | ||
5704 | static int __init setup_max_cache_size(char *str) | |
5705 | { | |
5706 | get_option(&str, &max_cache_size); | |
5707 | return 1; | |
5708 | } | |
5709 | ||
5710 | __setup("max_cache_size=", setup_max_cache_size); | |
5711 | ||
5712 | /* | |
5713 | * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This | |
5714 | * is the operation that is timed, so we try to generate unpredictable | |
5715 | * cachemisses that still end up filling the L2 cache: | |
5716 | */ | |
5717 | static void touch_cache(void *__cache, unsigned long __size) | |
5718 | { | |
5719 | unsigned long size = __size/sizeof(long), chunk1 = size/3, | |
5720 | chunk2 = 2*size/3; | |
5721 | unsigned long *cache = __cache; | |
5722 | int i; | |
5723 | ||
5724 | for (i = 0; i < size/6; i += 8) { | |
5725 | switch (i % 6) { | |
5726 | case 0: cache[i]++; | |
5727 | case 1: cache[size-1-i]++; | |
5728 | case 2: cache[chunk1-i]++; | |
5729 | case 3: cache[chunk1+i]++; | |
5730 | case 4: cache[chunk2-i]++; | |
5731 | case 5: cache[chunk2+i]++; | |
5732 | } | |
5733 | } | |
5734 | } | |
5735 | ||
5736 | /* | |
5737 | * Measure the cache-cost of one task migration. Returns in units of nsec. | |
5738 | */ | |
48f24c4d IM |
5739 | static unsigned long long |
5740 | measure_one(void *cache, unsigned long size, int source, int target) | |
198e2f18 | 5741 | { |
5742 | cpumask_t mask, saved_mask; | |
5743 | unsigned long long t0, t1, t2, t3, cost; | |
5744 | ||
5745 | saved_mask = current->cpus_allowed; | |
5746 | ||
5747 | /* | |
5748 | * Flush source caches to RAM and invalidate them: | |
5749 | */ | |
5750 | sched_cacheflush(); | |
5751 | ||
5752 | /* | |
5753 | * Migrate to the source CPU: | |
5754 | */ | |
5755 | mask = cpumask_of_cpu(source); | |
5756 | set_cpus_allowed(current, mask); | |
5757 | WARN_ON(smp_processor_id() != source); | |
5758 | ||
5759 | /* | |
5760 | * Dirty the working set: | |
5761 | */ | |
5762 | t0 = sched_clock(); | |
5763 | touch_cache(cache, size); | |
5764 | t1 = sched_clock(); | |
5765 | ||
5766 | /* | |
5767 | * Migrate to the target CPU, dirty the L2 cache and access | |
5768 | * the shared buffer. (which represents the working set | |
5769 | * of a migrated task.) | |
5770 | */ | |
5771 | mask = cpumask_of_cpu(target); | |
5772 | set_cpus_allowed(current, mask); | |
5773 | WARN_ON(smp_processor_id() != target); | |
5774 | ||
5775 | t2 = sched_clock(); | |
5776 | touch_cache(cache, size); | |
5777 | t3 = sched_clock(); | |
5778 | ||
5779 | cost = t1-t0 + t3-t2; | |
5780 | ||
5781 | if (migration_debug >= 2) | |
5782 | printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n", | |
5783 | source, target, t1-t0, t1-t0, t3-t2, cost); | |
5784 | /* | |
5785 | * Flush target caches to RAM and invalidate them: | |
5786 | */ | |
5787 | sched_cacheflush(); | |
5788 | ||
5789 | set_cpus_allowed(current, saved_mask); | |
5790 | ||
5791 | return cost; | |
5792 | } | |
5793 | ||
5794 | /* | |
5795 | * Measure a series of task migrations and return the average | |
5796 | * result. Since this code runs early during bootup the system | |
5797 | * is 'undisturbed' and the average latency makes sense. | |
5798 | * | |
5799 | * The algorithm in essence auto-detects the relevant cache-size, | |
5800 | * so it will properly detect different cachesizes for different | |
5801 | * cache-hierarchies, depending on how the CPUs are connected. | |
5802 | * | |
5803 | * Architectures can prime the upper limit of the search range via | |
5804 | * max_cache_size, otherwise the search range defaults to 20MB...64K. | |
5805 | */ | |
5806 | static unsigned long long | |
5807 | measure_cost(int cpu1, int cpu2, void *cache, unsigned int size) | |
5808 | { | |
5809 | unsigned long long cost1, cost2; | |
5810 | int i; | |
5811 | ||
5812 | /* | |
5813 | * Measure the migration cost of 'size' bytes, over an | |
5814 | * average of 10 runs: | |
5815 | * | |
5816 | * (We perturb the cache size by a small (0..4k) | |
5817 | * value to compensate size/alignment related artifacts. | |
5818 | * We also subtract the cost of the operation done on | |
5819 | * the same CPU.) | |
5820 | */ | |
5821 | cost1 = 0; | |
5822 | ||
5823 | /* | |
5824 | * dry run, to make sure we start off cache-cold on cpu1, | |
5825 | * and to get any vmalloc pagefaults in advance: | |
5826 | */ | |
5827 | measure_one(cache, size, cpu1, cpu2); | |
5828 | for (i = 0; i < ITERATIONS; i++) | |
5829 | cost1 += measure_one(cache, size - i*1024, cpu1, cpu2); | |
5830 | ||
5831 | measure_one(cache, size, cpu2, cpu1); | |
5832 | for (i = 0; i < ITERATIONS; i++) | |
5833 | cost1 += measure_one(cache, size - i*1024, cpu2, cpu1); | |
5834 | ||
5835 | /* | |
5836 | * (We measure the non-migrating [cached] cost on both | |
5837 | * cpu1 and cpu2, to handle CPUs with different speeds) | |
5838 | */ | |
5839 | cost2 = 0; | |
5840 | ||
5841 | measure_one(cache, size, cpu1, cpu1); | |
5842 | for (i = 0; i < ITERATIONS; i++) | |
5843 | cost2 += measure_one(cache, size - i*1024, cpu1, cpu1); | |
5844 | ||
5845 | measure_one(cache, size, cpu2, cpu2); | |
5846 | for (i = 0; i < ITERATIONS; i++) | |
5847 | cost2 += measure_one(cache, size - i*1024, cpu2, cpu2); | |
5848 | ||
5849 | /* | |
5850 | * Get the per-iteration migration cost: | |
5851 | */ | |
5852 | do_div(cost1, 2*ITERATIONS); | |
5853 | do_div(cost2, 2*ITERATIONS); | |
5854 | ||
5855 | return cost1 - cost2; | |
5856 | } | |
5857 | ||
5858 | static unsigned long long measure_migration_cost(int cpu1, int cpu2) | |
5859 | { | |
5860 | unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0; | |
5861 | unsigned int max_size, size, size_found = 0; | |
5862 | long long cost = 0, prev_cost; | |
5863 | void *cache; | |
5864 | ||
5865 | /* | |
5866 | * Search from max_cache_size*5 down to 64K - the real relevant | |
5867 | * cachesize has to lie somewhere inbetween. | |
5868 | */ | |
5869 | if (max_cache_size) { | |
5870 | max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE); | |
5871 | size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE); | |
5872 | } else { | |
5873 | /* | |
5874 | * Since we have no estimation about the relevant | |
5875 | * search range | |
5876 | */ | |
5877 | max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE; | |
5878 | size = MIN_CACHE_SIZE; | |
5879 | } | |
5880 | ||
5881 | if (!cpu_online(cpu1) || !cpu_online(cpu2)) { | |
5882 | printk("cpu %d and %d not both online!\n", cpu1, cpu2); | |
5883 | return 0; | |
5884 | } | |
5885 | ||
5886 | /* | |
5887 | * Allocate the working set: | |
5888 | */ | |
5889 | cache = vmalloc(max_size); | |
5890 | if (!cache) { | |
5891 | printk("could not vmalloc %d bytes for cache!\n", 2*max_size); | |
2ed6e34f | 5892 | return 1000000; /* return 1 msec on very small boxen */ |
198e2f18 | 5893 | } |
5894 | ||
5895 | while (size <= max_size) { | |
5896 | prev_cost = cost; | |
5897 | cost = measure_cost(cpu1, cpu2, cache, size); | |
5898 | ||
5899 | /* | |
5900 | * Update the max: | |
5901 | */ | |
5902 | if (cost > 0) { | |
5903 | if (max_cost < cost) { | |
5904 | max_cost = cost; | |
5905 | size_found = size; | |
5906 | } | |
5907 | } | |
5908 | /* | |
5909 | * Calculate average fluctuation, we use this to prevent | |
5910 | * noise from triggering an early break out of the loop: | |
5911 | */ | |
5912 | fluct = abs(cost - prev_cost); | |
5913 | avg_fluct = (avg_fluct + fluct)/2; | |
5914 | ||
5915 | if (migration_debug) | |
5916 | printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n", | |
5917 | cpu1, cpu2, size, | |
5918 | (long)cost / 1000000, | |
5919 | ((long)cost / 100000) % 10, | |
5920 | (long)max_cost / 1000000, | |
5921 | ((long)max_cost / 100000) % 10, | |
5922 | domain_distance(cpu1, cpu2), | |
5923 | cost, avg_fluct); | |
5924 | ||
5925 | /* | |
5926 | * If we iterated at least 20% past the previous maximum, | |
5927 | * and the cost has dropped by more than 20% already, | |
5928 | * (taking fluctuations into account) then we assume to | |
5929 | * have found the maximum and break out of the loop early: | |
5930 | */ | |
5931 | if (size_found && (size*100 > size_found*SIZE_THRESH)) | |
5932 | if (cost+avg_fluct <= 0 || | |
5933 | max_cost*100 > (cost+avg_fluct)*COST_THRESH) { | |
5934 | ||
5935 | if (migration_debug) | |
5936 | printk("-> found max.\n"); | |
5937 | break; | |
5938 | } | |
5939 | /* | |
70b4d63e | 5940 | * Increase the cachesize in 10% steps: |
198e2f18 | 5941 | */ |
70b4d63e | 5942 | size = size * 10 / 9; |
198e2f18 | 5943 | } |
5944 | ||
5945 | if (migration_debug) | |
5946 | printk("[%d][%d] working set size found: %d, cost: %Ld\n", | |
5947 | cpu1, cpu2, size_found, max_cost); | |
5948 | ||
5949 | vfree(cache); | |
5950 | ||
5951 | /* | |
5952 | * A task is considered 'cache cold' if at least 2 times | |
5953 | * the worst-case cost of migration has passed. | |
5954 | * | |
5955 | * (this limit is only listened to if the load-balancing | |
5956 | * situation is 'nice' - if there is a large imbalance we | |
5957 | * ignore it for the sake of CPU utilization and | |
5958 | * processing fairness.) | |
5959 | */ | |
5960 | return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE; | |
5961 | } | |
5962 | ||
5963 | static void calibrate_migration_costs(const cpumask_t *cpu_map) | |
5964 | { | |
5965 | int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id(); | |
5966 | unsigned long j0, j1, distance, max_distance = 0; | |
5967 | struct sched_domain *sd; | |
5968 | ||
5969 | j0 = jiffies; | |
5970 | ||
5971 | /* | |
5972 | * First pass - calculate the cacheflush times: | |
5973 | */ | |
5974 | for_each_cpu_mask(cpu1, *cpu_map) { | |
5975 | for_each_cpu_mask(cpu2, *cpu_map) { | |
5976 | if (cpu1 == cpu2) | |
5977 | continue; | |
5978 | distance = domain_distance(cpu1, cpu2); | |
5979 | max_distance = max(max_distance, distance); | |
5980 | /* | |
5981 | * No result cached yet? | |
5982 | */ | |
5983 | if (migration_cost[distance] == -1LL) | |
5984 | migration_cost[distance] = | |
5985 | measure_migration_cost(cpu1, cpu2); | |
5986 | } | |
5987 | } | |
5988 | /* | |
5989 | * Second pass - update the sched domain hierarchy with | |
5990 | * the new cache-hot-time estimations: | |
5991 | */ | |
5992 | for_each_cpu_mask(cpu, *cpu_map) { | |
5993 | distance = 0; | |
5994 | for_each_domain(cpu, sd) { | |
5995 | sd->cache_hot_time = migration_cost[distance]; | |
5996 | distance++; | |
5997 | } | |
5998 | } | |
5999 | /* | |
6000 | * Print the matrix: | |
6001 | */ | |
6002 | if (migration_debug) | |
6003 | printk("migration: max_cache_size: %d, cpu: %d MHz:\n", | |
6004 | max_cache_size, | |
6005 | #ifdef CONFIG_X86 | |
6006 | cpu_khz/1000 | |
6007 | #else | |
6008 | -1 | |
6009 | #endif | |
6010 | ); | |
bd576c95 | 6011 | if (system_state == SYSTEM_BOOTING) { |
74732646 DJ |
6012 | if (num_online_cpus() > 1) { |
6013 | printk("migration_cost="); | |
6014 | for (distance = 0; distance <= max_distance; distance++) { | |
6015 | if (distance) | |
6016 | printk(","); | |
6017 | printk("%ld", (long)migration_cost[distance] / 1000); | |
6018 | } | |
6019 | printk("\n"); | |
bd576c95 | 6020 | } |
198e2f18 | 6021 | } |
198e2f18 | 6022 | j1 = jiffies; |
6023 | if (migration_debug) | |
6024 | printk("migration: %ld seconds\n", (j1-j0)/HZ); | |
6025 | ||
6026 | /* | |
6027 | * Move back to the original CPU. NUMA-Q gets confused | |
6028 | * if we migrate to another quad during bootup. | |
6029 | */ | |
6030 | if (raw_smp_processor_id() != orig_cpu) { | |
6031 | cpumask_t mask = cpumask_of_cpu(orig_cpu), | |
6032 | saved_mask = current->cpus_allowed; | |
6033 | ||
6034 | set_cpus_allowed(current, mask); | |
6035 | set_cpus_allowed(current, saved_mask); | |
6036 | } | |
6037 | } | |
6038 | ||
9c1cfda2 | 6039 | #ifdef CONFIG_NUMA |
198e2f18 | 6040 | |
9c1cfda2 JH |
6041 | /** |
6042 | * find_next_best_node - find the next node to include in a sched_domain | |
6043 | * @node: node whose sched_domain we're building | |
6044 | * @used_nodes: nodes already in the sched_domain | |
6045 | * | |
6046 | * Find the next node to include in a given scheduling domain. Simply | |
6047 | * finds the closest node not already in the @used_nodes map. | |
6048 | * | |
6049 | * Should use nodemask_t. | |
6050 | */ | |
6051 | static int find_next_best_node(int node, unsigned long *used_nodes) | |
6052 | { | |
6053 | int i, n, val, min_val, best_node = 0; | |
6054 | ||
6055 | min_val = INT_MAX; | |
6056 | ||
6057 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6058 | /* Start at @node */ | |
6059 | n = (node + i) % MAX_NUMNODES; | |
6060 | ||
6061 | if (!nr_cpus_node(n)) | |
6062 | continue; | |
6063 | ||
6064 | /* Skip already used nodes */ | |
6065 | if (test_bit(n, used_nodes)) | |
6066 | continue; | |
6067 | ||
6068 | /* Simple min distance search */ | |
6069 | val = node_distance(node, n); | |
6070 | ||
6071 | if (val < min_val) { | |
6072 | min_val = val; | |
6073 | best_node = n; | |
6074 | } | |
6075 | } | |
6076 | ||
6077 | set_bit(best_node, used_nodes); | |
6078 | return best_node; | |
6079 | } | |
6080 | ||
6081 | /** | |
6082 | * sched_domain_node_span - get a cpumask for a node's sched_domain | |
6083 | * @node: node whose cpumask we're constructing | |
6084 | * @size: number of nodes to include in this span | |
6085 | * | |
6086 | * Given a node, construct a good cpumask for its sched_domain to span. It | |
6087 | * should be one that prevents unnecessary balancing, but also spreads tasks | |
6088 | * out optimally. | |
6089 | */ | |
6090 | static cpumask_t sched_domain_node_span(int node) | |
6091 | { | |
9c1cfda2 | 6092 | DECLARE_BITMAP(used_nodes, MAX_NUMNODES); |
48f24c4d IM |
6093 | cpumask_t span, nodemask; |
6094 | int i; | |
9c1cfda2 JH |
6095 | |
6096 | cpus_clear(span); | |
6097 | bitmap_zero(used_nodes, MAX_NUMNODES); | |
6098 | ||
6099 | nodemask = node_to_cpumask(node); | |
6100 | cpus_or(span, span, nodemask); | |
6101 | set_bit(node, used_nodes); | |
6102 | ||
6103 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | |
6104 | int next_node = find_next_best_node(node, used_nodes); | |
48f24c4d | 6105 | |
9c1cfda2 JH |
6106 | nodemask = node_to_cpumask(next_node); |
6107 | cpus_or(span, span, nodemask); | |
6108 | } | |
6109 | ||
6110 | return span; | |
6111 | } | |
6112 | #endif | |
6113 | ||
5c45bf27 | 6114 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
48f24c4d | 6115 | |
9c1cfda2 | 6116 | /* |
48f24c4d | 6117 | * SMT sched-domains: |
9c1cfda2 | 6118 | */ |
1da177e4 LT |
6119 | #ifdef CONFIG_SCHED_SMT |
6120 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | |
6121 | static struct sched_group sched_group_cpus[NR_CPUS]; | |
48f24c4d | 6122 | |
a616058b | 6123 | static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map) |
1da177e4 LT |
6124 | { |
6125 | return cpu; | |
6126 | } | |
6127 | #endif | |
6128 | ||
48f24c4d IM |
6129 | /* |
6130 | * multi-core sched-domains: | |
6131 | */ | |
1e9f28fa SS |
6132 | #ifdef CONFIG_SCHED_MC |
6133 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | |
a616058b | 6134 | static struct sched_group sched_group_core[NR_CPUS]; |
1e9f28fa SS |
6135 | #endif |
6136 | ||
6137 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | |
a616058b | 6138 | static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map) |
1e9f28fa | 6139 | { |
a616058b SS |
6140 | cpumask_t mask = cpu_sibling_map[cpu]; |
6141 | cpus_and(mask, mask, *cpu_map); | |
6142 | return first_cpu(mask); | |
1e9f28fa SS |
6143 | } |
6144 | #elif defined(CONFIG_SCHED_MC) | |
a616058b | 6145 | static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map) |
1e9f28fa SS |
6146 | { |
6147 | return cpu; | |
6148 | } | |
6149 | #endif | |
6150 | ||
1da177e4 | 6151 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
a616058b | 6152 | static struct sched_group sched_group_phys[NR_CPUS]; |
48f24c4d | 6153 | |
a616058b | 6154 | static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map) |
1da177e4 | 6155 | { |
48f24c4d | 6156 | #ifdef CONFIG_SCHED_MC |
1e9f28fa | 6157 | cpumask_t mask = cpu_coregroup_map(cpu); |
a616058b | 6158 | cpus_and(mask, mask, *cpu_map); |
1e9f28fa SS |
6159 | return first_cpu(mask); |
6160 | #elif defined(CONFIG_SCHED_SMT) | |
a616058b SS |
6161 | cpumask_t mask = cpu_sibling_map[cpu]; |
6162 | cpus_and(mask, mask, *cpu_map); | |
6163 | return first_cpu(mask); | |
1da177e4 LT |
6164 | #else |
6165 | return cpu; | |
6166 | #endif | |
6167 | } | |
6168 | ||
6169 | #ifdef CONFIG_NUMA | |
1da177e4 | 6170 | /* |
9c1cfda2 JH |
6171 | * The init_sched_build_groups can't handle what we want to do with node |
6172 | * groups, so roll our own. Now each node has its own list of groups which | |
6173 | * gets dynamically allocated. | |
1da177e4 | 6174 | */ |
9c1cfda2 | 6175 | static DEFINE_PER_CPU(struct sched_domain, node_domains); |
d1b55138 | 6176 | static struct sched_group **sched_group_nodes_bycpu[NR_CPUS]; |
1da177e4 | 6177 | |
9c1cfda2 | 6178 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); |
d1b55138 | 6179 | static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS]; |
9c1cfda2 | 6180 | |
a616058b | 6181 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map) |
9c1cfda2 JH |
6182 | { |
6183 | return cpu_to_node(cpu); | |
1da177e4 | 6184 | } |
08069033 SS |
6185 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
6186 | { | |
6187 | struct sched_group *sg = group_head; | |
6188 | int j; | |
6189 | ||
6190 | if (!sg) | |
6191 | return; | |
6192 | next_sg: | |
6193 | for_each_cpu_mask(j, sg->cpumask) { | |
6194 | struct sched_domain *sd; | |
6195 | ||
6196 | sd = &per_cpu(phys_domains, j); | |
6197 | if (j != first_cpu(sd->groups->cpumask)) { | |
6198 | /* | |
6199 | * Only add "power" once for each | |
6200 | * physical package. | |
6201 | */ | |
6202 | continue; | |
6203 | } | |
6204 | ||
6205 | sg->cpu_power += sd->groups->cpu_power; | |
6206 | } | |
6207 | sg = sg->next; | |
6208 | if (sg != group_head) | |
6209 | goto next_sg; | |
6210 | } | |
1da177e4 LT |
6211 | #endif |
6212 | ||
a616058b | 6213 | #ifdef CONFIG_NUMA |
51888ca2 SV |
6214 | /* Free memory allocated for various sched_group structures */ |
6215 | static void free_sched_groups(const cpumask_t *cpu_map) | |
6216 | { | |
a616058b | 6217 | int cpu, i; |
51888ca2 SV |
6218 | |
6219 | for_each_cpu_mask(cpu, *cpu_map) { | |
6220 | struct sched_group *sched_group_allnodes | |
6221 | = sched_group_allnodes_bycpu[cpu]; | |
6222 | struct sched_group **sched_group_nodes | |
6223 | = sched_group_nodes_bycpu[cpu]; | |
6224 | ||
6225 | if (sched_group_allnodes) { | |
6226 | kfree(sched_group_allnodes); | |
6227 | sched_group_allnodes_bycpu[cpu] = NULL; | |
6228 | } | |
6229 | ||
6230 | if (!sched_group_nodes) | |
6231 | continue; | |
6232 | ||
6233 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6234 | cpumask_t nodemask = node_to_cpumask(i); | |
6235 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | |
6236 | ||
6237 | cpus_and(nodemask, nodemask, *cpu_map); | |
6238 | if (cpus_empty(nodemask)) | |
6239 | continue; | |
6240 | ||
6241 | if (sg == NULL) | |
6242 | continue; | |
6243 | sg = sg->next; | |
6244 | next_sg: | |
6245 | oldsg = sg; | |
6246 | sg = sg->next; | |
6247 | kfree(oldsg); | |
6248 | if (oldsg != sched_group_nodes[i]) | |
6249 | goto next_sg; | |
6250 | } | |
6251 | kfree(sched_group_nodes); | |
6252 | sched_group_nodes_bycpu[cpu] = NULL; | |
6253 | } | |
51888ca2 | 6254 | } |
a616058b SS |
6255 | #else |
6256 | static void free_sched_groups(const cpumask_t *cpu_map) | |
6257 | { | |
6258 | } | |
6259 | #endif | |
51888ca2 | 6260 | |
89c4710e SS |
6261 | /* |
6262 | * Initialize sched groups cpu_power. | |
6263 | * | |
6264 | * cpu_power indicates the capacity of sched group, which is used while | |
6265 | * distributing the load between different sched groups in a sched domain. | |
6266 | * Typically cpu_power for all the groups in a sched domain will be same unless | |
6267 | * there are asymmetries in the topology. If there are asymmetries, group | |
6268 | * having more cpu_power will pickup more load compared to the group having | |
6269 | * less cpu_power. | |
6270 | * | |
6271 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | |
6272 | * the maximum number of tasks a group can handle in the presence of other idle | |
6273 | * or lightly loaded groups in the same sched domain. | |
6274 | */ | |
6275 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | |
6276 | { | |
6277 | struct sched_domain *child; | |
6278 | struct sched_group *group; | |
6279 | ||
6280 | WARN_ON(!sd || !sd->groups); | |
6281 | ||
6282 | if (cpu != first_cpu(sd->groups->cpumask)) | |
6283 | return; | |
6284 | ||
6285 | child = sd->child; | |
6286 | ||
6287 | /* | |
6288 | * For perf policy, if the groups in child domain share resources | |
6289 | * (for example cores sharing some portions of the cache hierarchy | |
6290 | * or SMT), then set this domain groups cpu_power such that each group | |
6291 | * can handle only one task, when there are other idle groups in the | |
6292 | * same sched domain. | |
6293 | */ | |
6294 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | |
6295 | (child->flags & | |
6296 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | |
6297 | sd->groups->cpu_power = SCHED_LOAD_SCALE; | |
6298 | return; | |
6299 | } | |
6300 | ||
6301 | sd->groups->cpu_power = 0; | |
6302 | ||
6303 | /* | |
6304 | * add cpu_power of each child group to this groups cpu_power | |
6305 | */ | |
6306 | group = child->groups; | |
6307 | do { | |
6308 | sd->groups->cpu_power += group->cpu_power; | |
6309 | group = group->next; | |
6310 | } while (group != child->groups); | |
6311 | } | |
6312 | ||
1da177e4 | 6313 | /* |
1a20ff27 DG |
6314 | * Build sched domains for a given set of cpus and attach the sched domains |
6315 | * to the individual cpus | |
1da177e4 | 6316 | */ |
51888ca2 | 6317 | static int build_sched_domains(const cpumask_t *cpu_map) |
1da177e4 LT |
6318 | { |
6319 | int i; | |
89c4710e | 6320 | struct sched_domain *sd; |
d1b55138 JH |
6321 | #ifdef CONFIG_NUMA |
6322 | struct sched_group **sched_group_nodes = NULL; | |
6323 | struct sched_group *sched_group_allnodes = NULL; | |
6324 | ||
6325 | /* | |
6326 | * Allocate the per-node list of sched groups | |
6327 | */ | |
51888ca2 | 6328 | sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES, |
d3a5aa98 | 6329 | GFP_KERNEL); |
d1b55138 JH |
6330 | if (!sched_group_nodes) { |
6331 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | |
51888ca2 | 6332 | return -ENOMEM; |
d1b55138 JH |
6333 | } |
6334 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | |
6335 | #endif | |
1da177e4 LT |
6336 | |
6337 | /* | |
1a20ff27 | 6338 | * Set up domains for cpus specified by the cpu_map. |
1da177e4 | 6339 | */ |
1a20ff27 | 6340 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 LT |
6341 | int group; |
6342 | struct sched_domain *sd = NULL, *p; | |
6343 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | |
6344 | ||
1a20ff27 | 6345 | cpus_and(nodemask, nodemask, *cpu_map); |
1da177e4 LT |
6346 | |
6347 | #ifdef CONFIG_NUMA | |
d1b55138 | 6348 | if (cpus_weight(*cpu_map) |
9c1cfda2 | 6349 | > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) { |
d1b55138 JH |
6350 | if (!sched_group_allnodes) { |
6351 | sched_group_allnodes | |
ce164428 CL |
6352 | = kmalloc_node(sizeof(struct sched_group) |
6353 | * MAX_NUMNODES, | |
6354 | GFP_KERNEL, | |
6355 | cpu_to_node(i)); | |
d1b55138 JH |
6356 | if (!sched_group_allnodes) { |
6357 | printk(KERN_WARNING | |
6358 | "Can not alloc allnodes sched group\n"); | |
51888ca2 | 6359 | goto error; |
d1b55138 JH |
6360 | } |
6361 | sched_group_allnodes_bycpu[i] | |
6362 | = sched_group_allnodes; | |
6363 | } | |
9c1cfda2 JH |
6364 | sd = &per_cpu(allnodes_domains, i); |
6365 | *sd = SD_ALLNODES_INIT; | |
6366 | sd->span = *cpu_map; | |
a616058b | 6367 | group = cpu_to_allnodes_group(i, cpu_map); |
9c1cfda2 JH |
6368 | sd->groups = &sched_group_allnodes[group]; |
6369 | p = sd; | |
6370 | } else | |
6371 | p = NULL; | |
6372 | ||
1da177e4 | 6373 | sd = &per_cpu(node_domains, i); |
1da177e4 | 6374 | *sd = SD_NODE_INIT; |
9c1cfda2 JH |
6375 | sd->span = sched_domain_node_span(cpu_to_node(i)); |
6376 | sd->parent = p; | |
1a848870 SS |
6377 | if (p) |
6378 | p->child = sd; | |
9c1cfda2 | 6379 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 LT |
6380 | #endif |
6381 | ||
6382 | p = sd; | |
6383 | sd = &per_cpu(phys_domains, i); | |
a616058b | 6384 | group = cpu_to_phys_group(i, cpu_map); |
1da177e4 LT |
6385 | *sd = SD_CPU_INIT; |
6386 | sd->span = nodemask; | |
6387 | sd->parent = p; | |
1a848870 SS |
6388 | if (p) |
6389 | p->child = sd; | |
1da177e4 LT |
6390 | sd->groups = &sched_group_phys[group]; |
6391 | ||
1e9f28fa SS |
6392 | #ifdef CONFIG_SCHED_MC |
6393 | p = sd; | |
6394 | sd = &per_cpu(core_domains, i); | |
a616058b | 6395 | group = cpu_to_core_group(i, cpu_map); |
1e9f28fa SS |
6396 | *sd = SD_MC_INIT; |
6397 | sd->span = cpu_coregroup_map(i); | |
6398 | cpus_and(sd->span, sd->span, *cpu_map); | |
6399 | sd->parent = p; | |
1a848870 | 6400 | p->child = sd; |
1e9f28fa SS |
6401 | sd->groups = &sched_group_core[group]; |
6402 | #endif | |
6403 | ||
1da177e4 LT |
6404 | #ifdef CONFIG_SCHED_SMT |
6405 | p = sd; | |
6406 | sd = &per_cpu(cpu_domains, i); | |
a616058b | 6407 | group = cpu_to_cpu_group(i, cpu_map); |
1da177e4 LT |
6408 | *sd = SD_SIBLING_INIT; |
6409 | sd->span = cpu_sibling_map[i]; | |
1a20ff27 | 6410 | cpus_and(sd->span, sd->span, *cpu_map); |
1da177e4 | 6411 | sd->parent = p; |
1a848870 | 6412 | p->child = sd; |
1da177e4 LT |
6413 | sd->groups = &sched_group_cpus[group]; |
6414 | #endif | |
6415 | } | |
6416 | ||
6417 | #ifdef CONFIG_SCHED_SMT | |
6418 | /* Set up CPU (sibling) groups */ | |
9c1cfda2 | 6419 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 | 6420 | cpumask_t this_sibling_map = cpu_sibling_map[i]; |
1a20ff27 | 6421 | cpus_and(this_sibling_map, this_sibling_map, *cpu_map); |
1da177e4 LT |
6422 | if (i != first_cpu(this_sibling_map)) |
6423 | continue; | |
6424 | ||
6425 | init_sched_build_groups(sched_group_cpus, this_sibling_map, | |
a616058b | 6426 | cpu_map, &cpu_to_cpu_group); |
1da177e4 LT |
6427 | } |
6428 | #endif | |
6429 | ||
1e9f28fa SS |
6430 | #ifdef CONFIG_SCHED_MC |
6431 | /* Set up multi-core groups */ | |
6432 | for_each_cpu_mask(i, *cpu_map) { | |
6433 | cpumask_t this_core_map = cpu_coregroup_map(i); | |
6434 | cpus_and(this_core_map, this_core_map, *cpu_map); | |
6435 | if (i != first_cpu(this_core_map)) | |
6436 | continue; | |
6437 | init_sched_build_groups(sched_group_core, this_core_map, | |
a616058b | 6438 | cpu_map, &cpu_to_core_group); |
1e9f28fa SS |
6439 | } |
6440 | #endif | |
6441 | ||
6442 | ||
1da177e4 LT |
6443 | /* Set up physical groups */ |
6444 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6445 | cpumask_t nodemask = node_to_cpumask(i); | |
6446 | ||
1a20ff27 | 6447 | cpus_and(nodemask, nodemask, *cpu_map); |
1da177e4 LT |
6448 | if (cpus_empty(nodemask)) |
6449 | continue; | |
6450 | ||
6451 | init_sched_build_groups(sched_group_phys, nodemask, | |
a616058b | 6452 | cpu_map, &cpu_to_phys_group); |
1da177e4 LT |
6453 | } |
6454 | ||
6455 | #ifdef CONFIG_NUMA | |
6456 | /* Set up node groups */ | |
d1b55138 JH |
6457 | if (sched_group_allnodes) |
6458 | init_sched_build_groups(sched_group_allnodes, *cpu_map, | |
a616058b | 6459 | cpu_map, &cpu_to_allnodes_group); |
9c1cfda2 JH |
6460 | |
6461 | for (i = 0; i < MAX_NUMNODES; i++) { | |
6462 | /* Set up node groups */ | |
6463 | struct sched_group *sg, *prev; | |
6464 | cpumask_t nodemask = node_to_cpumask(i); | |
6465 | cpumask_t domainspan; | |
6466 | cpumask_t covered = CPU_MASK_NONE; | |
6467 | int j; | |
6468 | ||
6469 | cpus_and(nodemask, nodemask, *cpu_map); | |
d1b55138 JH |
6470 | if (cpus_empty(nodemask)) { |
6471 | sched_group_nodes[i] = NULL; | |
9c1cfda2 | 6472 | continue; |
d1b55138 | 6473 | } |
9c1cfda2 JH |
6474 | |
6475 | domainspan = sched_domain_node_span(i); | |
6476 | cpus_and(domainspan, domainspan, *cpu_map); | |
6477 | ||
15f0b676 | 6478 | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); |
51888ca2 SV |
6479 | if (!sg) { |
6480 | printk(KERN_WARNING "Can not alloc domain group for " | |
6481 | "node %d\n", i); | |
6482 | goto error; | |
6483 | } | |
9c1cfda2 JH |
6484 | sched_group_nodes[i] = sg; |
6485 | for_each_cpu_mask(j, nodemask) { | |
6486 | struct sched_domain *sd; | |
6487 | sd = &per_cpu(node_domains, j); | |
6488 | sd->groups = sg; | |
9c1cfda2 JH |
6489 | } |
6490 | sg->cpu_power = 0; | |
6491 | sg->cpumask = nodemask; | |
51888ca2 | 6492 | sg->next = sg; |
9c1cfda2 JH |
6493 | cpus_or(covered, covered, nodemask); |
6494 | prev = sg; | |
6495 | ||
6496 | for (j = 0; j < MAX_NUMNODES; j++) { | |
6497 | cpumask_t tmp, notcovered; | |
6498 | int n = (i + j) % MAX_NUMNODES; | |
6499 | ||
6500 | cpus_complement(notcovered, covered); | |
6501 | cpus_and(tmp, notcovered, *cpu_map); | |
6502 | cpus_and(tmp, tmp, domainspan); | |
6503 | if (cpus_empty(tmp)) | |
6504 | break; | |
6505 | ||
6506 | nodemask = node_to_cpumask(n); | |
6507 | cpus_and(tmp, tmp, nodemask); | |
6508 | if (cpus_empty(tmp)) | |
6509 | continue; | |
6510 | ||
15f0b676 SV |
6511 | sg = kmalloc_node(sizeof(struct sched_group), |
6512 | GFP_KERNEL, i); | |
9c1cfda2 JH |
6513 | if (!sg) { |
6514 | printk(KERN_WARNING | |
6515 | "Can not alloc domain group for node %d\n", j); | |
51888ca2 | 6516 | goto error; |
9c1cfda2 JH |
6517 | } |
6518 | sg->cpu_power = 0; | |
6519 | sg->cpumask = tmp; | |
51888ca2 | 6520 | sg->next = prev->next; |
9c1cfda2 JH |
6521 | cpus_or(covered, covered, tmp); |
6522 | prev->next = sg; | |
6523 | prev = sg; | |
6524 | } | |
9c1cfda2 | 6525 | } |
1da177e4 LT |
6526 | #endif |
6527 | ||
6528 | /* Calculate CPU power for physical packages and nodes */ | |
5c45bf27 | 6529 | #ifdef CONFIG_SCHED_SMT |
1a20ff27 | 6530 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 | 6531 | sd = &per_cpu(cpu_domains, i); |
89c4710e | 6532 | init_sched_groups_power(i, sd); |
5c45bf27 | 6533 | } |
1da177e4 | 6534 | #endif |
1e9f28fa | 6535 | #ifdef CONFIG_SCHED_MC |
5c45bf27 | 6536 | for_each_cpu_mask(i, *cpu_map) { |
1e9f28fa | 6537 | sd = &per_cpu(core_domains, i); |
89c4710e | 6538 | init_sched_groups_power(i, sd); |
5c45bf27 SS |
6539 | } |
6540 | #endif | |
1e9f28fa | 6541 | |
5c45bf27 | 6542 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 | 6543 | sd = &per_cpu(phys_domains, i); |
89c4710e | 6544 | init_sched_groups_power(i, sd); |
1da177e4 LT |
6545 | } |
6546 | ||
9c1cfda2 | 6547 | #ifdef CONFIG_NUMA |
08069033 SS |
6548 | for (i = 0; i < MAX_NUMNODES; i++) |
6549 | init_numa_sched_groups_power(sched_group_nodes[i]); | |
9c1cfda2 | 6550 | |
f712c0c7 | 6551 | if (sched_group_allnodes) { |
a616058b | 6552 | int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map); |
f712c0c7 SS |
6553 | struct sched_group *sg = &sched_group_allnodes[group]; |
6554 | ||
6555 | init_numa_sched_groups_power(sg); | |
6556 | } | |
9c1cfda2 JH |
6557 | #endif |
6558 | ||
1da177e4 | 6559 | /* Attach the domains */ |
1a20ff27 | 6560 | for_each_cpu_mask(i, *cpu_map) { |
1da177e4 LT |
6561 | struct sched_domain *sd; |
6562 | #ifdef CONFIG_SCHED_SMT | |
6563 | sd = &per_cpu(cpu_domains, i); | |
1e9f28fa SS |
6564 | #elif defined(CONFIG_SCHED_MC) |
6565 | sd = &per_cpu(core_domains, i); | |
1da177e4 LT |
6566 | #else |
6567 | sd = &per_cpu(phys_domains, i); | |
6568 | #endif | |
6569 | cpu_attach_domain(sd, i); | |
6570 | } | |
198e2f18 | 6571 | /* |
6572 | * Tune cache-hot values: | |
6573 | */ | |
6574 | calibrate_migration_costs(cpu_map); | |
51888ca2 SV |
6575 | |
6576 | return 0; | |
6577 | ||
a616058b | 6578 | #ifdef CONFIG_NUMA |
51888ca2 SV |
6579 | error: |
6580 | free_sched_groups(cpu_map); | |
6581 | return -ENOMEM; | |
a616058b | 6582 | #endif |
1da177e4 | 6583 | } |
1a20ff27 DG |
6584 | /* |
6585 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | |
6586 | */ | |
51888ca2 | 6587 | static int arch_init_sched_domains(const cpumask_t *cpu_map) |
1a20ff27 DG |
6588 | { |
6589 | cpumask_t cpu_default_map; | |
51888ca2 | 6590 | int err; |
1da177e4 | 6591 | |
1a20ff27 DG |
6592 | /* |
6593 | * Setup mask for cpus without special case scheduling requirements. | |
6594 | * For now this just excludes isolated cpus, but could be used to | |
6595 | * exclude other special cases in the future. | |
6596 | */ | |
6597 | cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); | |
6598 | ||
51888ca2 SV |
6599 | err = build_sched_domains(&cpu_default_map); |
6600 | ||
6601 | return err; | |
1a20ff27 DG |
6602 | } |
6603 | ||
6604 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map) | |
1da177e4 | 6605 | { |
51888ca2 | 6606 | free_sched_groups(cpu_map); |
9c1cfda2 | 6607 | } |
1da177e4 | 6608 | |
1a20ff27 DG |
6609 | /* |
6610 | * Detach sched domains from a group of cpus specified in cpu_map | |
6611 | * These cpus will now be attached to the NULL domain | |
6612 | */ | |
858119e1 | 6613 | static void detach_destroy_domains(const cpumask_t *cpu_map) |
1a20ff27 DG |
6614 | { |
6615 | int i; | |
6616 | ||
6617 | for_each_cpu_mask(i, *cpu_map) | |
6618 | cpu_attach_domain(NULL, i); | |
6619 | synchronize_sched(); | |
6620 | arch_destroy_sched_domains(cpu_map); | |
6621 | } | |
6622 | ||
6623 | /* | |
6624 | * Partition sched domains as specified by the cpumasks below. | |
6625 | * This attaches all cpus from the cpumasks to the NULL domain, | |
6626 | * waits for a RCU quiescent period, recalculates sched | |
6627 | * domain information and then attaches them back to the | |
6628 | * correct sched domains | |
6629 | * Call with hotplug lock held | |
6630 | */ | |
51888ca2 | 6631 | int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) |
1a20ff27 DG |
6632 | { |
6633 | cpumask_t change_map; | |
51888ca2 | 6634 | int err = 0; |
1a20ff27 DG |
6635 | |
6636 | cpus_and(*partition1, *partition1, cpu_online_map); | |
6637 | cpus_and(*partition2, *partition2, cpu_online_map); | |
6638 | cpus_or(change_map, *partition1, *partition2); | |
6639 | ||
6640 | /* Detach sched domains from all of the affected cpus */ | |
6641 | detach_destroy_domains(&change_map); | |
6642 | if (!cpus_empty(*partition1)) | |
51888ca2 SV |
6643 | err = build_sched_domains(partition1); |
6644 | if (!err && !cpus_empty(*partition2)) | |
6645 | err = build_sched_domains(partition2); | |
6646 | ||
6647 | return err; | |
1a20ff27 DG |
6648 | } |
6649 | ||
5c45bf27 SS |
6650 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
6651 | int arch_reinit_sched_domains(void) | |
6652 | { | |
6653 | int err; | |
6654 | ||
6655 | lock_cpu_hotplug(); | |
6656 | detach_destroy_domains(&cpu_online_map); | |
6657 | err = arch_init_sched_domains(&cpu_online_map); | |
6658 | unlock_cpu_hotplug(); | |
6659 | ||
6660 | return err; | |
6661 | } | |
6662 | ||
6663 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | |
6664 | { | |
6665 | int ret; | |
6666 | ||
6667 | if (buf[0] != '0' && buf[0] != '1') | |
6668 | return -EINVAL; | |
6669 | ||
6670 | if (smt) | |
6671 | sched_smt_power_savings = (buf[0] == '1'); | |
6672 | else | |
6673 | sched_mc_power_savings = (buf[0] == '1'); | |
6674 | ||
6675 | ret = arch_reinit_sched_domains(); | |
6676 | ||
6677 | return ret ? ret : count; | |
6678 | } | |
6679 | ||
6680 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | |
6681 | { | |
6682 | int err = 0; | |
48f24c4d | 6683 | |
5c45bf27 SS |
6684 | #ifdef CONFIG_SCHED_SMT |
6685 | if (smt_capable()) | |
6686 | err = sysfs_create_file(&cls->kset.kobj, | |
6687 | &attr_sched_smt_power_savings.attr); | |
6688 | #endif | |
6689 | #ifdef CONFIG_SCHED_MC | |
6690 | if (!err && mc_capable()) | |
6691 | err = sysfs_create_file(&cls->kset.kobj, | |
6692 | &attr_sched_mc_power_savings.attr); | |
6693 | #endif | |
6694 | return err; | |
6695 | } | |
6696 | #endif | |
6697 | ||
6698 | #ifdef CONFIG_SCHED_MC | |
6699 | static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page) | |
6700 | { | |
6701 | return sprintf(page, "%u\n", sched_mc_power_savings); | |
6702 | } | |
48f24c4d IM |
6703 | static ssize_t sched_mc_power_savings_store(struct sys_device *dev, |
6704 | const char *buf, size_t count) | |
5c45bf27 SS |
6705 | { |
6706 | return sched_power_savings_store(buf, count, 0); | |
6707 | } | |
6708 | SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, | |
6709 | sched_mc_power_savings_store); | |
6710 | #endif | |
6711 | ||
6712 | #ifdef CONFIG_SCHED_SMT | |
6713 | static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page) | |
6714 | { | |
6715 | return sprintf(page, "%u\n", sched_smt_power_savings); | |
6716 | } | |
48f24c4d IM |
6717 | static ssize_t sched_smt_power_savings_store(struct sys_device *dev, |
6718 | const char *buf, size_t count) | |
5c45bf27 SS |
6719 | { |
6720 | return sched_power_savings_store(buf, count, 1); | |
6721 | } | |
6722 | SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, | |
6723 | sched_smt_power_savings_store); | |
6724 | #endif | |
6725 | ||
6726 | ||
1da177e4 LT |
6727 | #ifdef CONFIG_HOTPLUG_CPU |
6728 | /* | |
6729 | * Force a reinitialization of the sched domains hierarchy. The domains | |
6730 | * and groups cannot be updated in place without racing with the balancing | |
41c7ce9a | 6731 | * code, so we temporarily attach all running cpus to the NULL domain |
1da177e4 LT |
6732 | * which will prevent rebalancing while the sched domains are recalculated. |
6733 | */ | |
6734 | static int update_sched_domains(struct notifier_block *nfb, | |
6735 | unsigned long action, void *hcpu) | |
6736 | { | |
1da177e4 LT |
6737 | switch (action) { |
6738 | case CPU_UP_PREPARE: | |
6739 | case CPU_DOWN_PREPARE: | |
1a20ff27 | 6740 | detach_destroy_domains(&cpu_online_map); |
1da177e4 LT |
6741 | return NOTIFY_OK; |
6742 | ||
6743 | case CPU_UP_CANCELED: | |
6744 | case CPU_DOWN_FAILED: | |
6745 | case CPU_ONLINE: | |
6746 | case CPU_DEAD: | |
6747 | /* | |
6748 | * Fall through and re-initialise the domains. | |
6749 | */ | |
6750 | break; | |
6751 | default: | |
6752 | return NOTIFY_DONE; | |
6753 | } | |
6754 | ||
6755 | /* The hotplug lock is already held by cpu_up/cpu_down */ | |
1a20ff27 | 6756 | arch_init_sched_domains(&cpu_online_map); |
1da177e4 LT |
6757 | |
6758 | return NOTIFY_OK; | |
6759 | } | |
6760 | #endif | |
6761 | ||
6762 | void __init sched_init_smp(void) | |
6763 | { | |
5c1e1767 NP |
6764 | cpumask_t non_isolated_cpus; |
6765 | ||
1da177e4 | 6766 | lock_cpu_hotplug(); |
1a20ff27 | 6767 | arch_init_sched_domains(&cpu_online_map); |
5c1e1767 NP |
6768 | cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map); |
6769 | if (cpus_empty(non_isolated_cpus)) | |
6770 | cpu_set(smp_processor_id(), non_isolated_cpus); | |
1da177e4 LT |
6771 | unlock_cpu_hotplug(); |
6772 | /* XXX: Theoretical race here - CPU may be hotplugged now */ | |
6773 | hotcpu_notifier(update_sched_domains, 0); | |
5c1e1767 NP |
6774 | |
6775 | /* Move init over to a non-isolated CPU */ | |
6776 | if (set_cpus_allowed(current, non_isolated_cpus) < 0) | |
6777 | BUG(); | |
1da177e4 LT |
6778 | } |
6779 | #else | |
6780 | void __init sched_init_smp(void) | |
6781 | { | |
6782 | } | |
6783 | #endif /* CONFIG_SMP */ | |
6784 | ||
6785 | int in_sched_functions(unsigned long addr) | |
6786 | { | |
6787 | /* Linker adds these: start and end of __sched functions */ | |
6788 | extern char __sched_text_start[], __sched_text_end[]; | |
48f24c4d | 6789 | |
1da177e4 LT |
6790 | return in_lock_functions(addr) || |
6791 | (addr >= (unsigned long)__sched_text_start | |
6792 | && addr < (unsigned long)__sched_text_end); | |
6793 | } | |
6794 | ||
6795 | void __init sched_init(void) | |
6796 | { | |
1da177e4 LT |
6797 | int i, j, k; |
6798 | ||
0a945022 | 6799 | for_each_possible_cpu(i) { |
70b97a7f IM |
6800 | struct prio_array *array; |
6801 | struct rq *rq; | |
1da177e4 LT |
6802 | |
6803 | rq = cpu_rq(i); | |
6804 | spin_lock_init(&rq->lock); | |
fcb99371 | 6805 | lockdep_set_class(&rq->lock, &rq->rq_lock_key); |
7897986b | 6806 | rq->nr_running = 0; |
1da177e4 LT |
6807 | rq->active = rq->arrays; |
6808 | rq->expired = rq->arrays + 1; | |
6809 | rq->best_expired_prio = MAX_PRIO; | |
6810 | ||
6811 | #ifdef CONFIG_SMP | |
41c7ce9a | 6812 | rq->sd = NULL; |
7897986b NP |
6813 | for (j = 1; j < 3; j++) |
6814 | rq->cpu_load[j] = 0; | |
1da177e4 LT |
6815 | rq->active_balance = 0; |
6816 | rq->push_cpu = 0; | |
0a2966b4 | 6817 | rq->cpu = i; |
1da177e4 LT |
6818 | rq->migration_thread = NULL; |
6819 | INIT_LIST_HEAD(&rq->migration_queue); | |
6820 | #endif | |
6821 | atomic_set(&rq->nr_iowait, 0); | |
6822 | ||
6823 | for (j = 0; j < 2; j++) { | |
6824 | array = rq->arrays + j; | |
6825 | for (k = 0; k < MAX_PRIO; k++) { | |
6826 | INIT_LIST_HEAD(array->queue + k); | |
6827 | __clear_bit(k, array->bitmap); | |
6828 | } | |
6829 | // delimiter for bitsearch | |
6830 | __set_bit(MAX_PRIO, array->bitmap); | |
6831 | } | |
6832 | } | |
6833 | ||
2dd73a4f | 6834 | set_load_weight(&init_task); |
b50f60ce HC |
6835 | |
6836 | #ifdef CONFIG_RT_MUTEXES | |
6837 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | |
6838 | #endif | |
6839 | ||
1da177e4 LT |
6840 | /* |
6841 | * The boot idle thread does lazy MMU switching as well: | |
6842 | */ | |
6843 | atomic_inc(&init_mm.mm_count); | |
6844 | enter_lazy_tlb(&init_mm, current); | |
6845 | ||
6846 | /* | |
6847 | * Make us the idle thread. Technically, schedule() should not be | |
6848 | * called from this thread, however somewhere below it might be, | |
6849 | * but because we are the idle thread, we just pick up running again | |
6850 | * when this runqueue becomes "idle". | |
6851 | */ | |
6852 | init_idle(current, smp_processor_id()); | |
6853 | } | |
6854 | ||
6855 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | |
6856 | void __might_sleep(char *file, int line) | |
6857 | { | |
48f24c4d | 6858 | #ifdef in_atomic |
1da177e4 LT |
6859 | static unsigned long prev_jiffy; /* ratelimiting */ |
6860 | ||
6861 | if ((in_atomic() || irqs_disabled()) && | |
6862 | system_state == SYSTEM_RUNNING && !oops_in_progress) { | |
6863 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | |
6864 | return; | |
6865 | prev_jiffy = jiffies; | |
91368d73 | 6866 | printk(KERN_ERR "BUG: sleeping function called from invalid" |
1da177e4 LT |
6867 | " context at %s:%d\n", file, line); |
6868 | printk("in_atomic():%d, irqs_disabled():%d\n", | |
6869 | in_atomic(), irqs_disabled()); | |
6870 | dump_stack(); | |
6871 | } | |
6872 | #endif | |
6873 | } | |
6874 | EXPORT_SYMBOL(__might_sleep); | |
6875 | #endif | |
6876 | ||
6877 | #ifdef CONFIG_MAGIC_SYSRQ | |
6878 | void normalize_rt_tasks(void) | |
6879 | { | |
70b97a7f | 6880 | struct prio_array *array; |
1da177e4 | 6881 | struct task_struct *p; |
1da177e4 | 6882 | unsigned long flags; |
70b97a7f | 6883 | struct rq *rq; |
1da177e4 LT |
6884 | |
6885 | read_lock_irq(&tasklist_lock); | |
c96d145e | 6886 | for_each_process(p) { |
1da177e4 LT |
6887 | if (!rt_task(p)) |
6888 | continue; | |
6889 | ||
b29739f9 IM |
6890 | spin_lock_irqsave(&p->pi_lock, flags); |
6891 | rq = __task_rq_lock(p); | |
1da177e4 LT |
6892 | |
6893 | array = p->array; | |
6894 | if (array) | |
6895 | deactivate_task(p, task_rq(p)); | |
6896 | __setscheduler(p, SCHED_NORMAL, 0); | |
6897 | if (array) { | |
6898 | __activate_task(p, task_rq(p)); | |
6899 | resched_task(rq->curr); | |
6900 | } | |
6901 | ||
b29739f9 IM |
6902 | __task_rq_unlock(rq); |
6903 | spin_unlock_irqrestore(&p->pi_lock, flags); | |
1da177e4 LT |
6904 | } |
6905 | read_unlock_irq(&tasklist_lock); | |
6906 | } | |
6907 | ||
6908 | #endif /* CONFIG_MAGIC_SYSRQ */ | |
1df5c10a LT |
6909 | |
6910 | #ifdef CONFIG_IA64 | |
6911 | /* | |
6912 | * These functions are only useful for the IA64 MCA handling. | |
6913 | * | |
6914 | * They can only be called when the whole system has been | |
6915 | * stopped - every CPU needs to be quiescent, and no scheduling | |
6916 | * activity can take place. Using them for anything else would | |
6917 | * be a serious bug, and as a result, they aren't even visible | |
6918 | * under any other configuration. | |
6919 | */ | |
6920 | ||
6921 | /** | |
6922 | * curr_task - return the current task for a given cpu. | |
6923 | * @cpu: the processor in question. | |
6924 | * | |
6925 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
6926 | */ | |
36c8b586 | 6927 | struct task_struct *curr_task(int cpu) |
1df5c10a LT |
6928 | { |
6929 | return cpu_curr(cpu); | |
6930 | } | |
6931 | ||
6932 | /** | |
6933 | * set_curr_task - set the current task for a given cpu. | |
6934 | * @cpu: the processor in question. | |
6935 | * @p: the task pointer to set. | |
6936 | * | |
6937 | * Description: This function must only be used when non-maskable interrupts | |
6938 | * are serviced on a separate stack. It allows the architecture to switch the | |
6939 | * notion of the current task on a cpu in a non-blocking manner. This function | |
6940 | * must be called with all CPU's synchronized, and interrupts disabled, the | |
6941 | * and caller must save the original value of the current task (see | |
6942 | * curr_task() above) and restore that value before reenabling interrupts and | |
6943 | * re-starting the system. | |
6944 | * | |
6945 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | |
6946 | */ | |
36c8b586 | 6947 | void set_curr_task(int cpu, struct task_struct *p) |
1df5c10a LT |
6948 | { |
6949 | cpu_curr(cpu) = p; | |
6950 | } | |
6951 | ||
6952 | #endif |