]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Dynamic DMA mapping support. | |
3 | * | |
569c8bf5 | 4 | * This implementation is for IA-64 and EM64T platforms that do not support |
1da177e4 LT |
5 | * I/O TLBs (aka DMA address translation hardware). |
6 | * Copyright (C) 2000 Asit Mallick <[email protected]> | |
7 | * Copyright (C) 2000 Goutham Rao <[email protected]> | |
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | |
9 | * David Mosberger-Tang <[email protected]> | |
10 | * | |
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | |
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | |
13 | * unnecessary i-cache flushing. | |
569c8bf5 JL |
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. |
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | |
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | |
1da177e4 LT |
17 | */ |
18 | ||
19 | #include <linux/cache.h> | |
17e5ad6c | 20 | #include <linux/dma-mapping.h> |
1da177e4 LT |
21 | #include <linux/mm.h> |
22 | #include <linux/module.h> | |
1da177e4 LT |
23 | #include <linux/spinlock.h> |
24 | #include <linux/string.h> | |
25 | #include <linux/types.h> | |
26 | #include <linux/ctype.h> | |
27 | ||
28 | #include <asm/io.h> | |
1da177e4 | 29 | #include <asm/dma.h> |
17e5ad6c | 30 | #include <asm/scatterlist.h> |
1da177e4 LT |
31 | |
32 | #include <linux/init.h> | |
33 | #include <linux/bootmem.h> | |
34 | ||
35 | #define OFFSET(val,align) ((unsigned long) \ | |
36 | ( (val) & ( (align) - 1))) | |
37 | ||
38 | #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset) | |
39 | #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) | |
40 | ||
41 | /* | |
42 | * Maximum allowable number of contiguous slabs to map, | |
43 | * must be a power of 2. What is the appropriate value ? | |
44 | * The complexity of {map,unmap}_single is linearly dependent on this value. | |
45 | */ | |
46 | #define IO_TLB_SEGSIZE 128 | |
47 | ||
48 | /* | |
49 | * log of the size of each IO TLB slab. The number of slabs is command line | |
50 | * controllable. | |
51 | */ | |
52 | #define IO_TLB_SHIFT 11 | |
53 | ||
0b9afede AW |
54 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
55 | ||
56 | /* | |
57 | * Minimum IO TLB size to bother booting with. Systems with mainly | |
58 | * 64bit capable cards will only lightly use the swiotlb. If we can't | |
59 | * allocate a contiguous 1MB, we're probably in trouble anyway. | |
60 | */ | |
61 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | |
62 | ||
de69e0f0 JL |
63 | /* |
64 | * Enumeration for sync targets | |
65 | */ | |
66 | enum dma_sync_target { | |
67 | SYNC_FOR_CPU = 0, | |
68 | SYNC_FOR_DEVICE = 1, | |
69 | }; | |
70 | ||
1da177e4 LT |
71 | int swiotlb_force; |
72 | ||
73 | /* | |
74 | * Used to do a quick range check in swiotlb_unmap_single and | |
75 | * swiotlb_sync_single_*, to see if the memory was in fact allocated by this | |
76 | * API. | |
77 | */ | |
78 | static char *io_tlb_start, *io_tlb_end; | |
79 | ||
80 | /* | |
81 | * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and | |
82 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. | |
83 | */ | |
84 | static unsigned long io_tlb_nslabs; | |
85 | ||
86 | /* | |
87 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | |
88 | */ | |
89 | static unsigned long io_tlb_overflow = 32*1024; | |
90 | ||
91 | void *io_tlb_overflow_buffer; | |
92 | ||
93 | /* | |
94 | * This is a free list describing the number of free entries available from | |
95 | * each index | |
96 | */ | |
97 | static unsigned int *io_tlb_list; | |
98 | static unsigned int io_tlb_index; | |
99 | ||
100 | /* | |
101 | * We need to save away the original address corresponding to a mapped entry | |
102 | * for the sync operations. | |
103 | */ | |
104 | static unsigned char **io_tlb_orig_addr; | |
105 | ||
106 | /* | |
107 | * Protect the above data structures in the map and unmap calls | |
108 | */ | |
109 | static DEFINE_SPINLOCK(io_tlb_lock); | |
110 | ||
111 | static int __init | |
112 | setup_io_tlb_npages(char *str) | |
113 | { | |
114 | if (isdigit(*str)) { | |
e8579e72 | 115 | io_tlb_nslabs = simple_strtoul(str, &str, 0); |
1da177e4 LT |
116 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
117 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
118 | } | |
119 | if (*str == ',') | |
120 | ++str; | |
121 | if (!strcmp(str, "force")) | |
122 | swiotlb_force = 1; | |
123 | return 1; | |
124 | } | |
125 | __setup("swiotlb=", setup_io_tlb_npages); | |
126 | /* make io_tlb_overflow tunable too? */ | |
127 | ||
128 | /* | |
129 | * Statically reserve bounce buffer space and initialize bounce buffer data | |
17e5ad6c | 130 | * structures for the software IO TLB used to implement the DMA API. |
1da177e4 LT |
131 | */ |
132 | void | |
133 | swiotlb_init_with_default_size (size_t default_size) | |
134 | { | |
135 | unsigned long i; | |
136 | ||
137 | if (!io_tlb_nslabs) { | |
e8579e72 | 138 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); |
1da177e4 LT |
139 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); |
140 | } | |
141 | ||
142 | /* | |
143 | * Get IO TLB memory from the low pages | |
144 | */ | |
008857c1 | 145 | io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); |
1da177e4 LT |
146 | if (!io_tlb_start) |
147 | panic("Cannot allocate SWIOTLB buffer"); | |
148 | io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); | |
149 | ||
150 | /* | |
151 | * Allocate and initialize the free list array. This array is used | |
152 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
153 | * between io_tlb_start and io_tlb_end. | |
154 | */ | |
155 | io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int)); | |
156 | for (i = 0; i < io_tlb_nslabs; i++) | |
157 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
158 | io_tlb_index = 0; | |
159 | io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *)); | |
160 | ||
161 | /* | |
162 | * Get the overflow emergency buffer | |
163 | */ | |
164 | io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow); | |
165 | printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n", | |
166 | virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); | |
167 | } | |
168 | ||
169 | void | |
170 | swiotlb_init (void) | |
171 | { | |
172 | swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */ | |
173 | } | |
174 | ||
0b9afede AW |
175 | /* |
176 | * Systems with larger DMA zones (those that don't support ISA) can | |
177 | * initialize the swiotlb later using the slab allocator if needed. | |
178 | * This should be just like above, but with some error catching. | |
179 | */ | |
180 | int | |
181 | swiotlb_late_init_with_default_size (size_t default_size) | |
182 | { | |
183 | unsigned long i, req_nslabs = io_tlb_nslabs; | |
184 | unsigned int order; | |
185 | ||
186 | if (!io_tlb_nslabs) { | |
187 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
188 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
189 | } | |
190 | ||
191 | /* | |
192 | * Get IO TLB memory from the low pages | |
193 | */ | |
194 | order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | |
195 | io_tlb_nslabs = SLABS_PER_PAGE << order; | |
196 | ||
197 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | |
198 | io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | |
199 | order); | |
200 | if (io_tlb_start) | |
201 | break; | |
202 | order--; | |
203 | } | |
204 | ||
205 | if (!io_tlb_start) | |
206 | goto cleanup1; | |
207 | ||
208 | if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) { | |
209 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " | |
210 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | |
211 | io_tlb_nslabs = SLABS_PER_PAGE << order; | |
212 | } | |
213 | io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); | |
214 | memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | |
215 | ||
216 | /* | |
217 | * Allocate and initialize the free list array. This array is used | |
218 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
219 | * between io_tlb_start and io_tlb_end. | |
220 | */ | |
221 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | |
222 | get_order(io_tlb_nslabs * sizeof(int))); | |
223 | if (!io_tlb_list) | |
224 | goto cleanup2; | |
225 | ||
226 | for (i = 0; i < io_tlb_nslabs; i++) | |
227 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
228 | io_tlb_index = 0; | |
229 | ||
230 | io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL, | |
231 | get_order(io_tlb_nslabs * sizeof(char *))); | |
232 | if (!io_tlb_orig_addr) | |
233 | goto cleanup3; | |
234 | ||
235 | memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *)); | |
236 | ||
237 | /* | |
238 | * Get the overflow emergency buffer | |
239 | */ | |
240 | io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | |
241 | get_order(io_tlb_overflow)); | |
242 | if (!io_tlb_overflow_buffer) | |
243 | goto cleanup4; | |
244 | ||
245 | printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - " | |
246 | "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20, | |
247 | virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); | |
248 | ||
249 | return 0; | |
250 | ||
251 | cleanup4: | |
252 | free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * | |
253 | sizeof(char *))); | |
254 | io_tlb_orig_addr = NULL; | |
255 | cleanup3: | |
256 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | |
257 | sizeof(int))); | |
258 | io_tlb_list = NULL; | |
259 | io_tlb_end = NULL; | |
260 | cleanup2: | |
261 | free_pages((unsigned long)io_tlb_start, order); | |
262 | io_tlb_start = NULL; | |
263 | cleanup1: | |
264 | io_tlb_nslabs = req_nslabs; | |
265 | return -ENOMEM; | |
266 | } | |
267 | ||
1da177e4 LT |
268 | static inline int |
269 | address_needs_mapping(struct device *hwdev, dma_addr_t addr) | |
270 | { | |
271 | dma_addr_t mask = 0xffffffff; | |
272 | /* If the device has a mask, use it, otherwise default to 32 bits */ | |
273 | if (hwdev && hwdev->dma_mask) | |
274 | mask = *hwdev->dma_mask; | |
275 | return (addr & ~mask) != 0; | |
276 | } | |
277 | ||
278 | /* | |
279 | * Allocates bounce buffer and returns its kernel virtual address. | |
280 | */ | |
281 | static void * | |
282 | map_single(struct device *hwdev, char *buffer, size_t size, int dir) | |
283 | { | |
284 | unsigned long flags; | |
285 | char *dma_addr; | |
286 | unsigned int nslots, stride, index, wrap; | |
287 | int i; | |
288 | ||
289 | /* | |
290 | * For mappings greater than a page, we limit the stride (and | |
291 | * hence alignment) to a page size. | |
292 | */ | |
293 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
294 | if (size > PAGE_SIZE) | |
295 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | |
296 | else | |
297 | stride = 1; | |
298 | ||
299 | if (!nslots) | |
300 | BUG(); | |
301 | ||
302 | /* | |
303 | * Find suitable number of IO TLB entries size that will fit this | |
304 | * request and allocate a buffer from that IO TLB pool. | |
305 | */ | |
306 | spin_lock_irqsave(&io_tlb_lock, flags); | |
307 | { | |
308 | wrap = index = ALIGN(io_tlb_index, stride); | |
309 | ||
310 | if (index >= io_tlb_nslabs) | |
311 | wrap = index = 0; | |
312 | ||
313 | do { | |
314 | /* | |
315 | * If we find a slot that indicates we have 'nslots' | |
316 | * number of contiguous buffers, we allocate the | |
317 | * buffers from that slot and mark the entries as '0' | |
318 | * indicating unavailable. | |
319 | */ | |
320 | if (io_tlb_list[index] >= nslots) { | |
321 | int count = 0; | |
322 | ||
323 | for (i = index; i < (int) (index + nslots); i++) | |
324 | io_tlb_list[i] = 0; | |
325 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
326 | io_tlb_list[i] = ++count; | |
327 | dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); | |
328 | ||
329 | /* | |
330 | * Update the indices to avoid searching in | |
331 | * the next round. | |
332 | */ | |
333 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | |
334 | ? (index + nslots) : 0); | |
335 | ||
336 | goto found; | |
337 | } | |
338 | index += stride; | |
339 | if (index >= io_tlb_nslabs) | |
340 | index = 0; | |
341 | } while (index != wrap); | |
342 | ||
343 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
344 | return NULL; | |
345 | } | |
346 | found: | |
347 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
348 | ||
349 | /* | |
350 | * Save away the mapping from the original address to the DMA address. | |
351 | * This is needed when we sync the memory. Then we sync the buffer if | |
352 | * needed. | |
353 | */ | |
354 | io_tlb_orig_addr[index] = buffer; | |
355 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | |
356 | memcpy(dma_addr, buffer, size); | |
357 | ||
358 | return dma_addr; | |
359 | } | |
360 | ||
361 | /* | |
362 | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | |
363 | */ | |
364 | static void | |
365 | unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir) | |
366 | { | |
367 | unsigned long flags; | |
368 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
369 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | |
370 | char *buffer = io_tlb_orig_addr[index]; | |
371 | ||
372 | /* | |
373 | * First, sync the memory before unmapping the entry | |
374 | */ | |
375 | if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | |
376 | /* | |
377 | * bounce... copy the data back into the original buffer * and | |
378 | * delete the bounce buffer. | |
379 | */ | |
380 | memcpy(buffer, dma_addr, size); | |
381 | ||
382 | /* | |
383 | * Return the buffer to the free list by setting the corresponding | |
384 | * entries to indicate the number of contigous entries available. | |
385 | * While returning the entries to the free list, we merge the entries | |
386 | * with slots below and above the pool being returned. | |
387 | */ | |
388 | spin_lock_irqsave(&io_tlb_lock, flags); | |
389 | { | |
390 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | |
391 | io_tlb_list[index + nslots] : 0); | |
392 | /* | |
393 | * Step 1: return the slots to the free list, merging the | |
394 | * slots with superceeding slots | |
395 | */ | |
396 | for (i = index + nslots - 1; i >= index; i--) | |
397 | io_tlb_list[i] = ++count; | |
398 | /* | |
399 | * Step 2: merge the returned slots with the preceding slots, | |
400 | * if available (non zero) | |
401 | */ | |
402 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
403 | io_tlb_list[i] = ++count; | |
404 | } | |
405 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
406 | } | |
407 | ||
408 | static void | |
de69e0f0 JL |
409 | sync_single(struct device *hwdev, char *dma_addr, size_t size, |
410 | int dir, int target) | |
1da177e4 LT |
411 | { |
412 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | |
413 | char *buffer = io_tlb_orig_addr[index]; | |
414 | ||
de69e0f0 JL |
415 | switch (target) { |
416 | case SYNC_FOR_CPU: | |
417 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
418 | memcpy(buffer, dma_addr, size); | |
419 | else if (dir != DMA_TO_DEVICE) | |
420 | BUG(); | |
421 | break; | |
422 | case SYNC_FOR_DEVICE: | |
423 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
424 | memcpy(dma_addr, buffer, size); | |
425 | else if (dir != DMA_FROM_DEVICE) | |
426 | BUG(); | |
427 | break; | |
428 | default: | |
1da177e4 | 429 | BUG(); |
de69e0f0 | 430 | } |
1da177e4 LT |
431 | } |
432 | ||
433 | void * | |
434 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | |
06a54497 | 435 | dma_addr_t *dma_handle, gfp_t flags) |
1da177e4 LT |
436 | { |
437 | unsigned long dev_addr; | |
438 | void *ret; | |
439 | int order = get_order(size); | |
440 | ||
441 | /* | |
442 | * XXX fix me: the DMA API should pass us an explicit DMA mask | |
443 | * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32 | |
444 | * bit range instead of a 16MB one). | |
445 | */ | |
446 | flags |= GFP_DMA; | |
447 | ||
448 | ret = (void *)__get_free_pages(flags, order); | |
449 | if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) { | |
450 | /* | |
451 | * The allocated memory isn't reachable by the device. | |
452 | * Fall back on swiotlb_map_single(). | |
453 | */ | |
454 | free_pages((unsigned long) ret, order); | |
455 | ret = NULL; | |
456 | } | |
457 | if (!ret) { | |
458 | /* | |
459 | * We are either out of memory or the device can't DMA | |
460 | * to GFP_DMA memory; fall back on | |
461 | * swiotlb_map_single(), which will grab memory from | |
462 | * the lowest available address range. | |
463 | */ | |
464 | dma_addr_t handle; | |
465 | handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE); | |
17a941d8 | 466 | if (swiotlb_dma_mapping_error(handle)) |
1da177e4 LT |
467 | return NULL; |
468 | ||
469 | ret = phys_to_virt(handle); | |
470 | } | |
471 | ||
472 | memset(ret, 0, size); | |
473 | dev_addr = virt_to_phys(ret); | |
474 | ||
475 | /* Confirm address can be DMA'd by device */ | |
476 | if (address_needs_mapping(hwdev, dev_addr)) { | |
477 | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n", | |
478 | (unsigned long long)*hwdev->dma_mask, dev_addr); | |
479 | panic("swiotlb_alloc_coherent: allocated memory is out of " | |
480 | "range for device"); | |
481 | } | |
482 | *dma_handle = dev_addr; | |
483 | return ret; | |
484 | } | |
485 | ||
486 | void | |
487 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | |
488 | dma_addr_t dma_handle) | |
489 | { | |
490 | if (!(vaddr >= (void *)io_tlb_start | |
491 | && vaddr < (void *)io_tlb_end)) | |
492 | free_pages((unsigned long) vaddr, get_order(size)); | |
493 | else | |
494 | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | |
495 | swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE); | |
496 | } | |
497 | ||
498 | static void | |
499 | swiotlb_full(struct device *dev, size_t size, int dir, int do_panic) | |
500 | { | |
501 | /* | |
502 | * Ran out of IOMMU space for this operation. This is very bad. | |
503 | * Unfortunately the drivers cannot handle this operation properly. | |
17e5ad6c | 504 | * unless they check for dma_mapping_error (most don't) |
1da177e4 LT |
505 | * When the mapping is small enough return a static buffer to limit |
506 | * the damage, or panic when the transfer is too big. | |
507 | */ | |
17e5ad6c | 508 | printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at " |
1da177e4 LT |
509 | "device %s\n", size, dev ? dev->bus_id : "?"); |
510 | ||
511 | if (size > io_tlb_overflow && do_panic) { | |
17e5ad6c TL |
512 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
513 | panic("DMA: Memory would be corrupted\n"); | |
514 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | |
515 | panic("DMA: Random memory would be DMAed\n"); | |
1da177e4 LT |
516 | } |
517 | } | |
518 | ||
519 | /* | |
520 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
17e5ad6c | 521 | * physical address to use is returned. |
1da177e4 LT |
522 | * |
523 | * Once the device is given the dma address, the device owns this memory until | |
524 | * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed. | |
525 | */ | |
526 | dma_addr_t | |
527 | swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir) | |
528 | { | |
529 | unsigned long dev_addr = virt_to_phys(ptr); | |
530 | void *map; | |
531 | ||
532 | if (dir == DMA_NONE) | |
533 | BUG(); | |
534 | /* | |
535 | * If the pointer passed in happens to be in the device's DMA window, | |
536 | * we can safely return the device addr and not worry about bounce | |
537 | * buffering it. | |
538 | */ | |
539 | if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force) | |
540 | return dev_addr; | |
541 | ||
542 | /* | |
543 | * Oh well, have to allocate and map a bounce buffer. | |
544 | */ | |
545 | map = map_single(hwdev, ptr, size, dir); | |
546 | if (!map) { | |
547 | swiotlb_full(hwdev, size, dir, 1); | |
548 | map = io_tlb_overflow_buffer; | |
549 | } | |
550 | ||
551 | dev_addr = virt_to_phys(map); | |
552 | ||
553 | /* | |
554 | * Ensure that the address returned is DMA'ble | |
555 | */ | |
556 | if (address_needs_mapping(hwdev, dev_addr)) | |
557 | panic("map_single: bounce buffer is not DMA'ble"); | |
558 | ||
559 | return dev_addr; | |
560 | } | |
561 | ||
562 | /* | |
563 | * Since DMA is i-cache coherent, any (complete) pages that were written via | |
564 | * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to | |
565 | * flush them when they get mapped into an executable vm-area. | |
566 | */ | |
567 | static void | |
568 | mark_clean(void *addr, size_t size) | |
569 | { | |
570 | unsigned long pg_addr, end; | |
571 | ||
572 | pg_addr = PAGE_ALIGN((unsigned long) addr); | |
573 | end = (unsigned long) addr + size; | |
574 | while (pg_addr + PAGE_SIZE <= end) { | |
575 | struct page *page = virt_to_page(pg_addr); | |
576 | set_bit(PG_arch_1, &page->flags); | |
577 | pg_addr += PAGE_SIZE; | |
578 | } | |
579 | } | |
580 | ||
581 | /* | |
582 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
583 | * match what was provided for in a previous swiotlb_map_single call. All | |
584 | * other usages are undefined. | |
585 | * | |
586 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
587 | * whatever the device wrote there. | |
588 | */ | |
589 | void | |
590 | swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, | |
591 | int dir) | |
592 | { | |
593 | char *dma_addr = phys_to_virt(dev_addr); | |
594 | ||
595 | if (dir == DMA_NONE) | |
596 | BUG(); | |
597 | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | |
598 | unmap_single(hwdev, dma_addr, size, dir); | |
599 | else if (dir == DMA_FROM_DEVICE) | |
600 | mark_clean(dma_addr, size); | |
601 | } | |
602 | ||
603 | /* | |
604 | * Make physical memory consistent for a single streaming mode DMA translation | |
605 | * after a transfer. | |
606 | * | |
607 | * If you perform a swiotlb_map_single() but wish to interrogate the buffer | |
17e5ad6c TL |
608 | * using the cpu, yet do not wish to teardown the dma mapping, you must |
609 | * call this function before doing so. At the next point you give the dma | |
1da177e4 LT |
610 | * address back to the card, you must first perform a |
611 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
612 | */ | |
8270f3f1 JL |
613 | static inline void |
614 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | |
de69e0f0 | 615 | size_t size, int dir, int target) |
1da177e4 LT |
616 | { |
617 | char *dma_addr = phys_to_virt(dev_addr); | |
618 | ||
619 | if (dir == DMA_NONE) | |
620 | BUG(); | |
621 | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | |
de69e0f0 | 622 | sync_single(hwdev, dma_addr, size, dir, target); |
1da177e4 LT |
623 | else if (dir == DMA_FROM_DEVICE) |
624 | mark_clean(dma_addr, size); | |
625 | } | |
626 | ||
8270f3f1 JL |
627 | void |
628 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
629 | size_t size, int dir) | |
630 | { | |
de69e0f0 | 631 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); |
8270f3f1 JL |
632 | } |
633 | ||
1da177e4 LT |
634 | void |
635 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
636 | size_t size, int dir) | |
637 | { | |
de69e0f0 | 638 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); |
1da177e4 LT |
639 | } |
640 | ||
878a97cf JL |
641 | /* |
642 | * Same as above, but for a sub-range of the mapping. | |
643 | */ | |
644 | static inline void | |
645 | swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr, | |
de69e0f0 JL |
646 | unsigned long offset, size_t size, |
647 | int dir, int target) | |
878a97cf JL |
648 | { |
649 | char *dma_addr = phys_to_virt(dev_addr) + offset; | |
650 | ||
651 | if (dir == DMA_NONE) | |
652 | BUG(); | |
653 | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | |
de69e0f0 | 654 | sync_single(hwdev, dma_addr, size, dir, target); |
878a97cf JL |
655 | else if (dir == DMA_FROM_DEVICE) |
656 | mark_clean(dma_addr, size); | |
657 | } | |
658 | ||
659 | void | |
660 | swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
661 | unsigned long offset, size_t size, int dir) | |
662 | { | |
de69e0f0 JL |
663 | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, |
664 | SYNC_FOR_CPU); | |
878a97cf JL |
665 | } |
666 | ||
667 | void | |
668 | swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
669 | unsigned long offset, size_t size, int dir) | |
670 | { | |
de69e0f0 JL |
671 | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, |
672 | SYNC_FOR_DEVICE); | |
878a97cf JL |
673 | } |
674 | ||
1da177e4 LT |
675 | /* |
676 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
677 | * This is the scatter-gather version of the above swiotlb_map_single | |
678 | * interface. Here the scatter gather list elements are each tagged with the | |
679 | * appropriate dma address and length. They are obtained via | |
680 | * sg_dma_{address,length}(SG). | |
681 | * | |
682 | * NOTE: An implementation may be able to use a smaller number of | |
683 | * DMA address/length pairs than there are SG table elements. | |
684 | * (for example via virtual mapping capabilities) | |
685 | * The routine returns the number of addr/length pairs actually | |
686 | * used, at most nents. | |
687 | * | |
688 | * Device ownership issues as mentioned above for swiotlb_map_single are the | |
689 | * same here. | |
690 | */ | |
691 | int | |
692 | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems, | |
693 | int dir) | |
694 | { | |
695 | void *addr; | |
696 | unsigned long dev_addr; | |
697 | int i; | |
698 | ||
699 | if (dir == DMA_NONE) | |
700 | BUG(); | |
701 | ||
702 | for (i = 0; i < nelems; i++, sg++) { | |
703 | addr = SG_ENT_VIRT_ADDRESS(sg); | |
704 | dev_addr = virt_to_phys(addr); | |
705 | if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) { | |
7e870233 AK |
706 | void *map = map_single(hwdev, addr, sg->length, dir); |
707 | sg->dma_address = virt_to_bus(map); | |
708 | if (!map) { | |
1da177e4 LT |
709 | /* Don't panic here, we expect map_sg users |
710 | to do proper error handling. */ | |
711 | swiotlb_full(hwdev, sg->length, dir, 0); | |
712 | swiotlb_unmap_sg(hwdev, sg - i, i, dir); | |
713 | sg[0].dma_length = 0; | |
714 | return 0; | |
715 | } | |
716 | } else | |
717 | sg->dma_address = dev_addr; | |
718 | sg->dma_length = sg->length; | |
719 | } | |
720 | return nelems; | |
721 | } | |
722 | ||
723 | /* | |
724 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
725 | * concerning calls here are the same as for swiotlb_unmap_single() above. | |
726 | */ | |
727 | void | |
728 | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems, | |
729 | int dir) | |
730 | { | |
731 | int i; | |
732 | ||
733 | if (dir == DMA_NONE) | |
734 | BUG(); | |
735 | ||
736 | for (i = 0; i < nelems; i++, sg++) | |
737 | if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) | |
738 | unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir); | |
739 | else if (dir == DMA_FROM_DEVICE) | |
740 | mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length); | |
741 | } | |
742 | ||
743 | /* | |
744 | * Make physical memory consistent for a set of streaming mode DMA translations | |
745 | * after a transfer. | |
746 | * | |
747 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
748 | * and usage. | |
749 | */ | |
8270f3f1 JL |
750 | static inline void |
751 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg, | |
de69e0f0 | 752 | int nelems, int dir, int target) |
1da177e4 LT |
753 | { |
754 | int i; | |
755 | ||
756 | if (dir == DMA_NONE) | |
757 | BUG(); | |
758 | ||
759 | for (i = 0; i < nelems; i++, sg++) | |
760 | if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) | |
761 | sync_single(hwdev, (void *) sg->dma_address, | |
de69e0f0 | 762 | sg->dma_length, dir, target); |
1da177e4 LT |
763 | } |
764 | ||
8270f3f1 JL |
765 | void |
766 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
767 | int nelems, int dir) | |
768 | { | |
de69e0f0 | 769 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); |
8270f3f1 JL |
770 | } |
771 | ||
1da177e4 LT |
772 | void |
773 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
774 | int nelems, int dir) | |
775 | { | |
de69e0f0 | 776 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); |
1da177e4 LT |
777 | } |
778 | ||
779 | int | |
780 | swiotlb_dma_mapping_error(dma_addr_t dma_addr) | |
781 | { | |
782 | return (dma_addr == virt_to_phys(io_tlb_overflow_buffer)); | |
783 | } | |
784 | ||
785 | /* | |
17e5ad6c | 786 | * Return whether the given device DMA address mask can be supported |
1da177e4 | 787 | * properly. For example, if your device can only drive the low 24-bits |
17e5ad6c | 788 | * during bus mastering, then you would pass 0x00ffffff as the mask to |
1da177e4 LT |
789 | * this function. |
790 | */ | |
791 | int | |
792 | swiotlb_dma_supported (struct device *hwdev, u64 mask) | |
793 | { | |
794 | return (virt_to_phys (io_tlb_end) - 1) <= mask; | |
795 | } | |
796 | ||
797 | EXPORT_SYMBOL(swiotlb_init); | |
798 | EXPORT_SYMBOL(swiotlb_map_single); | |
799 | EXPORT_SYMBOL(swiotlb_unmap_single); | |
800 | EXPORT_SYMBOL(swiotlb_map_sg); | |
801 | EXPORT_SYMBOL(swiotlb_unmap_sg); | |
802 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); | |
803 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); | |
878a97cf JL |
804 | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu); |
805 | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device); | |
1da177e4 LT |
806 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); |
807 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); | |
808 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); | |
809 | EXPORT_SYMBOL(swiotlb_alloc_coherent); | |
810 | EXPORT_SYMBOL(swiotlb_free_coherent); | |
811 | EXPORT_SYMBOL(swiotlb_dma_supported); |