]> Git Repo - linux.git/blame - mm/slab.h
tcp: correctly handle increased zerocopy args struct size
[linux.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
11c7aec2 44#include <linux/fault-inject.h>
11c7aec2
JDB
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
7c00fce9 47#include <linux/random.h>
d92a8cfc 48#include <linux/sched/mm.h>
07f361b2 49
97d06609
CL
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
18004c5d
CL
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
9b030cb8
CL
70
71/* The list of all slab caches on the system */
18004c5d
CL
72extern struct list_head slab_caches;
73
9b030cb8
CL
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
af3b5f87
VB
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
cb5d9fb3 79 const char *name[NR_KMALLOC_TYPES];
55de8b9c 80 unsigned int size;
af3b5f87
VB
81} kmalloc_info[];
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
d50112ed 86void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
44405099 92gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 93
9b030cb8 94/* Functions provided by the slab allocators */
d50112ed 95int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 96
55de8b9c
AD
97struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 slab_flags_t flags, unsigned int useroffset,
99 unsigned int usersize);
45530c44 100extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
101 unsigned int size, slab_flags_t flags,
102 unsigned int useroffset, unsigned int usersize);
45530c44 103
423c929c 104int slab_unmergeable(struct kmem_cache *s);
f4957d5b 105struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 106 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 107#ifndef CONFIG_SLOB
2633d7a0 108struct kmem_cache *
f4957d5b 109__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 110 slab_flags_t flags, void (*ctor)(void *));
423c929c 111
0293d1fd 112slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 113 slab_flags_t flags, const char *name,
423c929c 114 void (*ctor)(void *));
cbb79694 115#else
2633d7a0 116static inline struct kmem_cache *
f4957d5b 117__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 118 slab_flags_t flags, void (*ctor)(void *))
cbb79694 119{ return NULL; }
423c929c 120
0293d1fd 121static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 122 slab_flags_t flags, const char *name,
423c929c
JK
123 void (*ctor)(void *))
124{
125 return flags;
126}
cbb79694
CL
127#endif
128
129
d8843922 130/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
131#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
132 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 133 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
134
135#if defined(CONFIG_DEBUG_SLAB)
136#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
137#elif defined(CONFIG_SLUB_DEBUG)
138#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 139 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
140#else
141#define SLAB_DEBUG_FLAGS (0)
142#endif
143
144#if defined(CONFIG_SLAB)
145#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 146 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 147 SLAB_ACCOUNT)
d8843922
GC
148#elif defined(CONFIG_SLUB)
149#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 150 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922
GC
151#else
152#define SLAB_CACHE_FLAGS (0)
153#endif
154
e70954fd 155/* Common flags available with current configuration */
d8843922
GC
156#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157
e70954fd
TG
158/* Common flags permitted for kmem_cache_create */
159#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
160 SLAB_RED_ZONE | \
161 SLAB_POISON | \
162 SLAB_STORE_USER | \
163 SLAB_TRACE | \
164 SLAB_CONSISTENCY_CHECKS | \
165 SLAB_MEM_SPREAD | \
166 SLAB_NOLEAKTRACE | \
167 SLAB_RECLAIM_ACCOUNT | \
168 SLAB_TEMPORARY | \
e70954fd
TG
169 SLAB_ACCOUNT)
170
f9e13c0a 171bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 172int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 173void __kmem_cache_release(struct kmem_cache *);
c9fc5864 174int __kmem_cache_shrink(struct kmem_cache *);
41a21285 175void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 176
b7454ad3
GC
177struct seq_file;
178struct file;
b7454ad3 179
0d7561c6
GC
180struct slabinfo {
181 unsigned long active_objs;
182 unsigned long num_objs;
183 unsigned long active_slabs;
184 unsigned long num_slabs;
185 unsigned long shared_avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int shared;
189 unsigned int objects_per_slab;
190 unsigned int cache_order;
191};
192
193void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
194void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
195ssize_t slabinfo_write(struct file *file, const char __user *buffer,
196 size_t count, loff_t *ppos);
ba6c496e 197
484748f0
CL
198/*
199 * Generic implementation of bulk operations
200 * These are useful for situations in which the allocator cannot
9f706d68 201 * perform optimizations. In that case segments of the object listed
484748f0
CL
202 * may be allocated or freed using these operations.
203 */
204void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 205int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 206
6cea1d56
RG
207static inline int cache_vmstat_idx(struct kmem_cache *s)
208{
209 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 210 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
211}
212
e42f174e
VB
213#ifdef CONFIG_SLUB_DEBUG
214#ifdef CONFIG_SLUB_DEBUG_ON
215DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
216#else
217DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
218#endif
219extern void print_tracking(struct kmem_cache *s, void *object);
220#else
221static inline void print_tracking(struct kmem_cache *s, void *object)
222{
223}
224#endif
225
226/*
227 * Returns true if any of the specified slub_debug flags is enabled for the
228 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
229 * the static key.
230 */
231static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
232{
233#ifdef CONFIG_SLUB_DEBUG
234 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
235 if (static_branch_unlikely(&slub_debug_enabled))
236 return s->flags & flags;
237#endif
238 return false;
239}
240
84c07d11 241#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
242int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
243 gfp_t gfp);
286e04b8
RG
244
245static inline void memcg_free_page_obj_cgroups(struct page *page)
246{
270c6a71 247 kfree(page_objcgs(page));
bcfe06bf 248 page->memcg_data = 0;
286e04b8
RG
249}
250
f2fe7b09
RG
251static inline size_t obj_full_size(struct kmem_cache *s)
252{
253 /*
254 * For each accounted object there is an extra space which is used
255 * to store obj_cgroup membership. Charge it too.
256 */
257 return s->size + sizeof(struct obj_cgroup *);
258}
259
10befea9
RG
260static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
261 size_t objects,
262 gfp_t flags)
f2fe7b09 263{
9855609b
RG
264 struct obj_cgroup *objcg;
265
9855609b
RG
266 objcg = get_obj_cgroup_from_current();
267 if (!objcg)
10befea9 268 return NULL;
9855609b
RG
269
270 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
271 obj_cgroup_put(objcg);
10befea9 272 return NULL;
f2fe7b09
RG
273 }
274
10befea9 275 return objcg;
f2fe7b09
RG
276}
277
278static inline void mod_objcg_state(struct obj_cgroup *objcg,
279 struct pglist_data *pgdat,
280 int idx, int nr)
281{
282 struct mem_cgroup *memcg;
283 struct lruvec *lruvec;
284
285 rcu_read_lock();
286 memcg = obj_cgroup_memcg(objcg);
287 lruvec = mem_cgroup_lruvec(memcg, pgdat);
288 mod_memcg_lruvec_state(lruvec, idx, nr);
289 rcu_read_unlock();
290}
291
964d4bd3
RG
292static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
293 struct obj_cgroup *objcg,
10befea9
RG
294 gfp_t flags, size_t size,
295 void **p)
964d4bd3
RG
296{
297 struct page *page;
298 unsigned long off;
299 size_t i;
300
10befea9
RG
301 if (!objcg)
302 return;
303
304 flags &= ~__GFP_ACCOUNT;
964d4bd3
RG
305 for (i = 0; i < size; i++) {
306 if (likely(p[i])) {
307 page = virt_to_head_page(p[i]);
10befea9 308
270c6a71 309 if (!page_objcgs(page) &&
10befea9
RG
310 memcg_alloc_page_obj_cgroups(page, s, flags)) {
311 obj_cgroup_uncharge(objcg, obj_full_size(s));
312 continue;
313 }
314
964d4bd3
RG
315 off = obj_to_index(s, page, p[i]);
316 obj_cgroup_get(objcg);
270c6a71 317 page_objcgs(page)[off] = objcg;
f2fe7b09
RG
318 mod_objcg_state(objcg, page_pgdat(page),
319 cache_vmstat_idx(s), obj_full_size(s));
320 } else {
321 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
322 }
323 }
324 obj_cgroup_put(objcg);
964d4bd3
RG
325}
326
d1b2cf6c
BR
327static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
328 void **p, int objects)
964d4bd3 329{
d1b2cf6c 330 struct kmem_cache *s;
270c6a71 331 struct obj_cgroup **objcgs;
964d4bd3 332 struct obj_cgroup *objcg;
d1b2cf6c 333 struct page *page;
964d4bd3 334 unsigned int off;
d1b2cf6c 335 int i;
964d4bd3 336
10befea9
RG
337 if (!memcg_kmem_enabled())
338 return;
339
d1b2cf6c
BR
340 for (i = 0; i < objects; i++) {
341 if (unlikely(!p[i]))
342 continue;
964d4bd3 343
d1b2cf6c 344 page = virt_to_head_page(p[i]);
270c6a71
RG
345 objcgs = page_objcgs(page);
346 if (!objcgs)
d1b2cf6c 347 continue;
f2fe7b09 348
d1b2cf6c
BR
349 if (!s_orig)
350 s = page->slab_cache;
351 else
352 s = s_orig;
10befea9 353
d1b2cf6c 354 off = obj_to_index(s, page, p[i]);
270c6a71 355 objcg = objcgs[off];
d1b2cf6c
BR
356 if (!objcg)
357 continue;
f2fe7b09 358
270c6a71 359 objcgs[off] = NULL;
d1b2cf6c
BR
360 obj_cgroup_uncharge(objcg, obj_full_size(s));
361 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
362 -obj_full_size(s));
363 obj_cgroup_put(objcg);
364 }
964d4bd3
RG
365}
366
84c07d11 367#else /* CONFIG_MEMCG_KMEM */
9855609b 368static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
369{
370 return NULL;
371}
372
286e04b8
RG
373static inline int memcg_alloc_page_obj_cgroups(struct page *page,
374 struct kmem_cache *s, gfp_t gfp)
375{
376 return 0;
377}
378
379static inline void memcg_free_page_obj_cgroups(struct page *page)
380{
381}
382
10befea9
RG
383static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
384 size_t objects,
385 gfp_t flags)
f2fe7b09
RG
386{
387 return NULL;
388}
389
964d4bd3
RG
390static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
391 struct obj_cgroup *objcg,
10befea9
RG
392 gfp_t flags, size_t size,
393 void **p)
964d4bd3
RG
394{
395}
396
d1b2cf6c
BR
397static inline void memcg_slab_free_hook(struct kmem_cache *s,
398 void **p, int objects)
964d4bd3
RG
399{
400}
84c07d11 401#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 402
a64b5378
KC
403static inline struct kmem_cache *virt_to_cache(const void *obj)
404{
405 struct page *page;
406
407 page = virt_to_head_page(obj);
408 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
409 __func__))
410 return NULL;
411 return page->slab_cache;
412}
413
74d555be
RG
414static __always_inline void account_slab_page(struct page *page, int order,
415 struct kmem_cache *s)
6cea1d56 416{
f2fe7b09
RG
417 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
418 PAGE_SIZE << order);
6cea1d56
RG
419}
420
74d555be
RG
421static __always_inline void unaccount_slab_page(struct page *page, int order,
422 struct kmem_cache *s)
6cea1d56 423{
10befea9 424 if (memcg_kmem_enabled())
f2fe7b09 425 memcg_free_page_obj_cgroups(page);
9855609b 426
f2fe7b09
RG
427 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
428 -(PAGE_SIZE << order));
6cea1d56
RG
429}
430
e42f174e
VB
431static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
432{
433 struct kmem_cache *cachep;
434
435 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
436 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
437 return s;
438
439 cachep = virt_to_cache(x);
10befea9 440 if (WARN(cachep && cachep != s,
e42f174e
VB
441 "%s: Wrong slab cache. %s but object is from %s\n",
442 __func__, s->name, cachep->name))
443 print_tracking(cachep, x);
444 return cachep;
445}
446
11c7aec2
JDB
447static inline size_t slab_ksize(const struct kmem_cache *s)
448{
449#ifndef CONFIG_SLUB
450 return s->object_size;
451
452#else /* CONFIG_SLUB */
453# ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Debugging requires use of the padding between object
456 * and whatever may come after it.
457 */
458 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
459 return s->object_size;
460# endif
80a9201a
AP
461 if (s->flags & SLAB_KASAN)
462 return s->object_size;
11c7aec2
JDB
463 /*
464 * If we have the need to store the freelist pointer
465 * back there or track user information then we can
466 * only use the space before that information.
467 */
5f0d5a3a 468 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
469 return s->inuse;
470 /*
471 * Else we can use all the padding etc for the allocation
472 */
473 return s->size;
474#endif
475}
476
477static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
964d4bd3
RG
478 struct obj_cgroup **objcgp,
479 size_t size, gfp_t flags)
11c7aec2
JDB
480{
481 flags &= gfp_allowed_mask;
d92a8cfc
PZ
482
483 fs_reclaim_acquire(flags);
484 fs_reclaim_release(flags);
485
11c7aec2
JDB
486 might_sleep_if(gfpflags_allow_blocking(flags));
487
fab9963a 488 if (should_failslab(s, flags))
11c7aec2
JDB
489 return NULL;
490
45264778
VD
491 if (memcg_kmem_enabled() &&
492 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
10befea9 493 *objcgp = memcg_slab_pre_alloc_hook(s, size, flags);
45264778
VD
494
495 return s;
11c7aec2
JDB
496}
497
964d4bd3
RG
498static inline void slab_post_alloc_hook(struct kmem_cache *s,
499 struct obj_cgroup *objcg,
500 gfp_t flags, size_t size, void **p)
11c7aec2
JDB
501{
502 size_t i;
503
504 flags &= gfp_allowed_mask;
505 for (i = 0; i < size; i++) {
53128245 506 p[i] = kasan_slab_alloc(s, p[i], flags);
a2f77575 507 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
53128245 508 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 509 s->flags, flags);
11c7aec2 510 }
45264778 511
10befea9
RG
512 if (memcg_kmem_enabled())
513 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
514}
515
44c5356f 516#ifndef CONFIG_SLOB
ca34956b
CL
517/*
518 * The slab lists for all objects.
519 */
520struct kmem_cache_node {
521 spinlock_t list_lock;
522
523#ifdef CONFIG_SLAB
524 struct list_head slabs_partial; /* partial list first, better asm code */
525 struct list_head slabs_full;
526 struct list_head slabs_free;
bf00bd34
DR
527 unsigned long total_slabs; /* length of all slab lists */
528 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
529 unsigned long free_objects;
530 unsigned int free_limit;
531 unsigned int colour_next; /* Per-node cache coloring */
532 struct array_cache *shared; /* shared per node */
c8522a3a 533 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
534 unsigned long next_reap; /* updated without locking */
535 int free_touched; /* updated without locking */
536#endif
537
538#ifdef CONFIG_SLUB
539 unsigned long nr_partial;
540 struct list_head partial;
541#ifdef CONFIG_SLUB_DEBUG
542 atomic_long_t nr_slabs;
543 atomic_long_t total_objects;
544 struct list_head full;
545#endif
546#endif
547
548};
e25839f6 549
44c5356f
CL
550static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
551{
552 return s->node[node];
553}
554
555/*
556 * Iterator over all nodes. The body will be executed for each node that has
557 * a kmem_cache_node structure allocated (which is true for all online nodes)
558 */
559#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
560 for (__node = 0; __node < nr_node_ids; __node++) \
561 if ((__n = get_node(__s, __node)))
44c5356f
CL
562
563#endif
564
1df3b26f 565void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
566void *slab_next(struct seq_file *m, void *p, loff_t *pos);
567void slab_stop(struct seq_file *m, void *p);
b047501c 568int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 569
852d8be0
YS
570#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
571void dump_unreclaimable_slab(void);
572#else
573static inline void dump_unreclaimable_slab(void)
574{
575}
576#endif
577
55834c59
AP
578void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
579
7c00fce9
TG
580#ifdef CONFIG_SLAB_FREELIST_RANDOM
581int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
582 gfp_t gfp);
583void cache_random_seq_destroy(struct kmem_cache *cachep);
584#else
585static inline int cache_random_seq_create(struct kmem_cache *cachep,
586 unsigned int count, gfp_t gfp)
587{
588 return 0;
589}
590static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
591#endif /* CONFIG_SLAB_FREELIST_RANDOM */
592
6471384a
AP
593static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
594{
595 if (static_branch_unlikely(&init_on_alloc)) {
596 if (c->ctor)
597 return false;
598 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
599 return flags & __GFP_ZERO;
600 return true;
601 }
602 return flags & __GFP_ZERO;
603}
604
605static inline bool slab_want_init_on_free(struct kmem_cache *c)
606{
607 if (static_branch_unlikely(&init_on_free))
608 return !(c->ctor ||
609 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
610 return false;
611}
612
5240ab40 613#endif /* MM_SLAB_H */
This page took 0.603756 seconds and 4 git commands to generate.