]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
97d06609 CL |
2 | #ifndef MM_SLAB_H |
3 | #define MM_SLAB_H | |
4 | /* | |
5 | * Internal slab definitions | |
6 | */ | |
7 | ||
07f361b2 JK |
8 | #ifdef CONFIG_SLOB |
9 | /* | |
10 | * Common fields provided in kmem_cache by all slab allocators | |
11 | * This struct is either used directly by the allocator (SLOB) | |
12 | * or the allocator must include definitions for all fields | |
13 | * provided in kmem_cache_common in their definition of kmem_cache. | |
14 | * | |
15 | * Once we can do anonymous structs (C11 standard) we could put a | |
16 | * anonymous struct definition in these allocators so that the | |
17 | * separate allocations in the kmem_cache structure of SLAB and | |
18 | * SLUB is no longer needed. | |
19 | */ | |
20 | struct kmem_cache { | |
21 | unsigned int object_size;/* The original size of the object */ | |
22 | unsigned int size; /* The aligned/padded/added on size */ | |
23 | unsigned int align; /* Alignment as calculated */ | |
d50112ed | 24 | slab_flags_t flags; /* Active flags on the slab */ |
7bbdb81e AD |
25 | unsigned int useroffset;/* Usercopy region offset */ |
26 | unsigned int usersize; /* Usercopy region size */ | |
07f361b2 JK |
27 | const char *name; /* Slab name for sysfs */ |
28 | int refcount; /* Use counter */ | |
29 | void (*ctor)(void *); /* Called on object slot creation */ | |
30 | struct list_head list; /* List of all slab caches on the system */ | |
31 | }; | |
32 | ||
33 | #endif /* CONFIG_SLOB */ | |
34 | ||
35 | #ifdef CONFIG_SLAB | |
36 | #include <linux/slab_def.h> | |
37 | #endif | |
38 | ||
39 | #ifdef CONFIG_SLUB | |
40 | #include <linux/slub_def.h> | |
41 | #endif | |
42 | ||
43 | #include <linux/memcontrol.h> | |
11c7aec2 | 44 | #include <linux/fault-inject.h> |
11c7aec2 JDB |
45 | #include <linux/kasan.h> |
46 | #include <linux/kmemleak.h> | |
7c00fce9 | 47 | #include <linux/random.h> |
d92a8cfc | 48 | #include <linux/sched/mm.h> |
07f361b2 | 49 | |
97d06609 CL |
50 | /* |
51 | * State of the slab allocator. | |
52 | * | |
53 | * This is used to describe the states of the allocator during bootup. | |
54 | * Allocators use this to gradually bootstrap themselves. Most allocators | |
55 | * have the problem that the structures used for managing slab caches are | |
56 | * allocated from slab caches themselves. | |
57 | */ | |
58 | enum slab_state { | |
59 | DOWN, /* No slab functionality yet */ | |
60 | PARTIAL, /* SLUB: kmem_cache_node available */ | |
ce8eb6c4 | 61 | PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ |
97d06609 CL |
62 | UP, /* Slab caches usable but not all extras yet */ |
63 | FULL /* Everything is working */ | |
64 | }; | |
65 | ||
66 | extern enum slab_state slab_state; | |
67 | ||
18004c5d CL |
68 | /* The slab cache mutex protects the management structures during changes */ |
69 | extern struct mutex slab_mutex; | |
9b030cb8 CL |
70 | |
71 | /* The list of all slab caches on the system */ | |
18004c5d CL |
72 | extern struct list_head slab_caches; |
73 | ||
9b030cb8 CL |
74 | /* The slab cache that manages slab cache information */ |
75 | extern struct kmem_cache *kmem_cache; | |
76 | ||
af3b5f87 VB |
77 | /* A table of kmalloc cache names and sizes */ |
78 | extern const struct kmalloc_info_struct { | |
cb5d9fb3 | 79 | const char *name[NR_KMALLOC_TYPES]; |
55de8b9c | 80 | unsigned int size; |
af3b5f87 VB |
81 | } kmalloc_info[]; |
82 | ||
f97d5f63 CL |
83 | #ifndef CONFIG_SLOB |
84 | /* Kmalloc array related functions */ | |
34cc6990 | 85 | void setup_kmalloc_cache_index_table(void); |
d50112ed | 86 | void create_kmalloc_caches(slab_flags_t); |
2c59dd65 CL |
87 | |
88 | /* Find the kmalloc slab corresponding for a certain size */ | |
89 | struct kmem_cache *kmalloc_slab(size_t, gfp_t); | |
f97d5f63 CL |
90 | #endif |
91 | ||
44405099 | 92 | gfp_t kmalloc_fix_flags(gfp_t flags); |
f97d5f63 | 93 | |
9b030cb8 | 94 | /* Functions provided by the slab allocators */ |
d50112ed | 95 | int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); |
97d06609 | 96 | |
55de8b9c AD |
97 | struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, |
98 | slab_flags_t flags, unsigned int useroffset, | |
99 | unsigned int usersize); | |
45530c44 | 100 | extern void create_boot_cache(struct kmem_cache *, const char *name, |
361d575e AD |
101 | unsigned int size, slab_flags_t flags, |
102 | unsigned int useroffset, unsigned int usersize); | |
45530c44 | 103 | |
423c929c | 104 | int slab_unmergeable(struct kmem_cache *s); |
f4957d5b | 105 | struct kmem_cache *find_mergeable(unsigned size, unsigned align, |
d50112ed | 106 | slab_flags_t flags, const char *name, void (*ctor)(void *)); |
12220dea | 107 | #ifndef CONFIG_SLOB |
2633d7a0 | 108 | struct kmem_cache * |
f4957d5b | 109 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 110 | slab_flags_t flags, void (*ctor)(void *)); |
423c929c | 111 | |
0293d1fd | 112 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 113 | slab_flags_t flags, const char *name, |
423c929c | 114 | void (*ctor)(void *)); |
cbb79694 | 115 | #else |
2633d7a0 | 116 | static inline struct kmem_cache * |
f4957d5b | 117 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 118 | slab_flags_t flags, void (*ctor)(void *)) |
cbb79694 | 119 | { return NULL; } |
423c929c | 120 | |
0293d1fd | 121 | static inline slab_flags_t kmem_cache_flags(unsigned int object_size, |
d50112ed | 122 | slab_flags_t flags, const char *name, |
423c929c JK |
123 | void (*ctor)(void *)) |
124 | { | |
125 | return flags; | |
126 | } | |
cbb79694 CL |
127 | #endif |
128 | ||
129 | ||
d8843922 | 130 | /* Legal flag mask for kmem_cache_create(), for various configurations */ |
6d6ea1e9 NB |
131 | #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ |
132 | SLAB_CACHE_DMA32 | SLAB_PANIC | \ | |
5f0d5a3a | 133 | SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) |
d8843922 GC |
134 | |
135 | #if defined(CONFIG_DEBUG_SLAB) | |
136 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | |
137 | #elif defined(CONFIG_SLUB_DEBUG) | |
138 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
becfda68 | 139 | SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) |
d8843922 GC |
140 | #else |
141 | #define SLAB_DEBUG_FLAGS (0) | |
142 | #endif | |
143 | ||
144 | #if defined(CONFIG_SLAB) | |
145 | #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ | |
230e9fc2 | 146 | SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ |
75f296d9 | 147 | SLAB_ACCOUNT) |
d8843922 GC |
148 | #elif defined(CONFIG_SLUB) |
149 | #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ | |
75f296d9 | 150 | SLAB_TEMPORARY | SLAB_ACCOUNT) |
d8843922 GC |
151 | #else |
152 | #define SLAB_CACHE_FLAGS (0) | |
153 | #endif | |
154 | ||
e70954fd | 155 | /* Common flags available with current configuration */ |
d8843922 GC |
156 | #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) |
157 | ||
e70954fd TG |
158 | /* Common flags permitted for kmem_cache_create */ |
159 | #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ | |
160 | SLAB_RED_ZONE | \ | |
161 | SLAB_POISON | \ | |
162 | SLAB_STORE_USER | \ | |
163 | SLAB_TRACE | \ | |
164 | SLAB_CONSISTENCY_CHECKS | \ | |
165 | SLAB_MEM_SPREAD | \ | |
166 | SLAB_NOLEAKTRACE | \ | |
167 | SLAB_RECLAIM_ACCOUNT | \ | |
168 | SLAB_TEMPORARY | \ | |
e70954fd TG |
169 | SLAB_ACCOUNT) |
170 | ||
f9e13c0a | 171 | bool __kmem_cache_empty(struct kmem_cache *); |
945cf2b6 | 172 | int __kmem_cache_shutdown(struct kmem_cache *); |
52b4b950 | 173 | void __kmem_cache_release(struct kmem_cache *); |
c9fc5864 | 174 | int __kmem_cache_shrink(struct kmem_cache *); |
41a21285 | 175 | void slab_kmem_cache_release(struct kmem_cache *); |
945cf2b6 | 176 | |
b7454ad3 GC |
177 | struct seq_file; |
178 | struct file; | |
b7454ad3 | 179 | |
0d7561c6 GC |
180 | struct slabinfo { |
181 | unsigned long active_objs; | |
182 | unsigned long num_objs; | |
183 | unsigned long active_slabs; | |
184 | unsigned long num_slabs; | |
185 | unsigned long shared_avail; | |
186 | unsigned int limit; | |
187 | unsigned int batchcount; | |
188 | unsigned int shared; | |
189 | unsigned int objects_per_slab; | |
190 | unsigned int cache_order; | |
191 | }; | |
192 | ||
193 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); | |
194 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); | |
b7454ad3 GC |
195 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
196 | size_t count, loff_t *ppos); | |
ba6c496e | 197 | |
484748f0 CL |
198 | /* |
199 | * Generic implementation of bulk operations | |
200 | * These are useful for situations in which the allocator cannot | |
9f706d68 | 201 | * perform optimizations. In that case segments of the object listed |
484748f0 CL |
202 | * may be allocated or freed using these operations. |
203 | */ | |
204 | void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); | |
865762a8 | 205 | int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); |
484748f0 | 206 | |
6cea1d56 RG |
207 | static inline int cache_vmstat_idx(struct kmem_cache *s) |
208 | { | |
209 | return (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
d42f3245 | 210 | NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; |
6cea1d56 RG |
211 | } |
212 | ||
e42f174e VB |
213 | #ifdef CONFIG_SLUB_DEBUG |
214 | #ifdef CONFIG_SLUB_DEBUG_ON | |
215 | DECLARE_STATIC_KEY_TRUE(slub_debug_enabled); | |
216 | #else | |
217 | DECLARE_STATIC_KEY_FALSE(slub_debug_enabled); | |
218 | #endif | |
219 | extern void print_tracking(struct kmem_cache *s, void *object); | |
220 | #else | |
221 | static inline void print_tracking(struct kmem_cache *s, void *object) | |
222 | { | |
223 | } | |
224 | #endif | |
225 | ||
226 | /* | |
227 | * Returns true if any of the specified slub_debug flags is enabled for the | |
228 | * cache. Use only for flags parsed by setup_slub_debug() as it also enables | |
229 | * the static key. | |
230 | */ | |
231 | static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags) | |
232 | { | |
233 | #ifdef CONFIG_SLUB_DEBUG | |
234 | VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS)); | |
235 | if (static_branch_unlikely(&slub_debug_enabled)) | |
236 | return s->flags & flags; | |
237 | #endif | |
238 | return false; | |
239 | } | |
240 | ||
84c07d11 | 241 | #ifdef CONFIG_MEMCG_KMEM |
10befea9 RG |
242 | int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, |
243 | gfp_t gfp); | |
286e04b8 RG |
244 | |
245 | static inline void memcg_free_page_obj_cgroups(struct page *page) | |
246 | { | |
270c6a71 | 247 | kfree(page_objcgs(page)); |
bcfe06bf | 248 | page->memcg_data = 0; |
286e04b8 RG |
249 | } |
250 | ||
f2fe7b09 RG |
251 | static inline size_t obj_full_size(struct kmem_cache *s) |
252 | { | |
253 | /* | |
254 | * For each accounted object there is an extra space which is used | |
255 | * to store obj_cgroup membership. Charge it too. | |
256 | */ | |
257 | return s->size + sizeof(struct obj_cgroup *); | |
258 | } | |
259 | ||
10befea9 RG |
260 | static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, |
261 | size_t objects, | |
262 | gfp_t flags) | |
f2fe7b09 | 263 | { |
9855609b RG |
264 | struct obj_cgroup *objcg; |
265 | ||
9855609b RG |
266 | objcg = get_obj_cgroup_from_current(); |
267 | if (!objcg) | |
10befea9 | 268 | return NULL; |
9855609b RG |
269 | |
270 | if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) { | |
271 | obj_cgroup_put(objcg); | |
10befea9 | 272 | return NULL; |
f2fe7b09 RG |
273 | } |
274 | ||
10befea9 | 275 | return objcg; |
f2fe7b09 RG |
276 | } |
277 | ||
278 | static inline void mod_objcg_state(struct obj_cgroup *objcg, | |
279 | struct pglist_data *pgdat, | |
280 | int idx, int nr) | |
281 | { | |
282 | struct mem_cgroup *memcg; | |
283 | struct lruvec *lruvec; | |
284 | ||
285 | rcu_read_lock(); | |
286 | memcg = obj_cgroup_memcg(objcg); | |
287 | lruvec = mem_cgroup_lruvec(memcg, pgdat); | |
288 | mod_memcg_lruvec_state(lruvec, idx, nr); | |
289 | rcu_read_unlock(); | |
290 | } | |
291 | ||
964d4bd3 RG |
292 | static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, |
293 | struct obj_cgroup *objcg, | |
10befea9 RG |
294 | gfp_t flags, size_t size, |
295 | void **p) | |
964d4bd3 RG |
296 | { |
297 | struct page *page; | |
298 | unsigned long off; | |
299 | size_t i; | |
300 | ||
10befea9 RG |
301 | if (!objcg) |
302 | return; | |
303 | ||
304 | flags &= ~__GFP_ACCOUNT; | |
964d4bd3 RG |
305 | for (i = 0; i < size; i++) { |
306 | if (likely(p[i])) { | |
307 | page = virt_to_head_page(p[i]); | |
10befea9 | 308 | |
270c6a71 | 309 | if (!page_objcgs(page) && |
10befea9 RG |
310 | memcg_alloc_page_obj_cgroups(page, s, flags)) { |
311 | obj_cgroup_uncharge(objcg, obj_full_size(s)); | |
312 | continue; | |
313 | } | |
314 | ||
964d4bd3 RG |
315 | off = obj_to_index(s, page, p[i]); |
316 | obj_cgroup_get(objcg); | |
270c6a71 | 317 | page_objcgs(page)[off] = objcg; |
f2fe7b09 RG |
318 | mod_objcg_state(objcg, page_pgdat(page), |
319 | cache_vmstat_idx(s), obj_full_size(s)); | |
320 | } else { | |
321 | obj_cgroup_uncharge(objcg, obj_full_size(s)); | |
964d4bd3 RG |
322 | } |
323 | } | |
324 | obj_cgroup_put(objcg); | |
964d4bd3 RG |
325 | } |
326 | ||
d1b2cf6c BR |
327 | static inline void memcg_slab_free_hook(struct kmem_cache *s_orig, |
328 | void **p, int objects) | |
964d4bd3 | 329 | { |
d1b2cf6c | 330 | struct kmem_cache *s; |
270c6a71 | 331 | struct obj_cgroup **objcgs; |
964d4bd3 | 332 | struct obj_cgroup *objcg; |
d1b2cf6c | 333 | struct page *page; |
964d4bd3 | 334 | unsigned int off; |
d1b2cf6c | 335 | int i; |
964d4bd3 | 336 | |
10befea9 RG |
337 | if (!memcg_kmem_enabled()) |
338 | return; | |
339 | ||
d1b2cf6c BR |
340 | for (i = 0; i < objects; i++) { |
341 | if (unlikely(!p[i])) | |
342 | continue; | |
964d4bd3 | 343 | |
d1b2cf6c | 344 | page = virt_to_head_page(p[i]); |
270c6a71 RG |
345 | objcgs = page_objcgs(page); |
346 | if (!objcgs) | |
d1b2cf6c | 347 | continue; |
f2fe7b09 | 348 | |
d1b2cf6c BR |
349 | if (!s_orig) |
350 | s = page->slab_cache; | |
351 | else | |
352 | s = s_orig; | |
10befea9 | 353 | |
d1b2cf6c | 354 | off = obj_to_index(s, page, p[i]); |
270c6a71 | 355 | objcg = objcgs[off]; |
d1b2cf6c BR |
356 | if (!objcg) |
357 | continue; | |
f2fe7b09 | 358 | |
270c6a71 | 359 | objcgs[off] = NULL; |
d1b2cf6c BR |
360 | obj_cgroup_uncharge(objcg, obj_full_size(s)); |
361 | mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s), | |
362 | -obj_full_size(s)); | |
363 | obj_cgroup_put(objcg); | |
364 | } | |
964d4bd3 RG |
365 | } |
366 | ||
84c07d11 | 367 | #else /* CONFIG_MEMCG_KMEM */ |
9855609b | 368 | static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) |
4d96ba35 RG |
369 | { |
370 | return NULL; | |
371 | } | |
372 | ||
286e04b8 RG |
373 | static inline int memcg_alloc_page_obj_cgroups(struct page *page, |
374 | struct kmem_cache *s, gfp_t gfp) | |
375 | { | |
376 | return 0; | |
377 | } | |
378 | ||
379 | static inline void memcg_free_page_obj_cgroups(struct page *page) | |
380 | { | |
381 | } | |
382 | ||
10befea9 RG |
383 | static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s, |
384 | size_t objects, | |
385 | gfp_t flags) | |
f2fe7b09 RG |
386 | { |
387 | return NULL; | |
388 | } | |
389 | ||
964d4bd3 RG |
390 | static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, |
391 | struct obj_cgroup *objcg, | |
10befea9 RG |
392 | gfp_t flags, size_t size, |
393 | void **p) | |
964d4bd3 RG |
394 | { |
395 | } | |
396 | ||
d1b2cf6c BR |
397 | static inline void memcg_slab_free_hook(struct kmem_cache *s, |
398 | void **p, int objects) | |
964d4bd3 RG |
399 | { |
400 | } | |
84c07d11 | 401 | #endif /* CONFIG_MEMCG_KMEM */ |
b9ce5ef4 | 402 | |
a64b5378 KC |
403 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
404 | { | |
405 | struct page *page; | |
406 | ||
407 | page = virt_to_head_page(obj); | |
408 | if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n", | |
409 | __func__)) | |
410 | return NULL; | |
411 | return page->slab_cache; | |
412 | } | |
413 | ||
74d555be RG |
414 | static __always_inline void account_slab_page(struct page *page, int order, |
415 | struct kmem_cache *s) | |
6cea1d56 | 416 | { |
f2fe7b09 RG |
417 | mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), |
418 | PAGE_SIZE << order); | |
6cea1d56 RG |
419 | } |
420 | ||
74d555be RG |
421 | static __always_inline void unaccount_slab_page(struct page *page, int order, |
422 | struct kmem_cache *s) | |
6cea1d56 | 423 | { |
10befea9 | 424 | if (memcg_kmem_enabled()) |
f2fe7b09 | 425 | memcg_free_page_obj_cgroups(page); |
9855609b | 426 | |
f2fe7b09 RG |
427 | mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), |
428 | -(PAGE_SIZE << order)); | |
6cea1d56 RG |
429 | } |
430 | ||
e42f174e VB |
431 | static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) |
432 | { | |
433 | struct kmem_cache *cachep; | |
434 | ||
435 | if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
e42f174e VB |
436 | !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) |
437 | return s; | |
438 | ||
439 | cachep = virt_to_cache(x); | |
10befea9 | 440 | if (WARN(cachep && cachep != s, |
e42f174e VB |
441 | "%s: Wrong slab cache. %s but object is from %s\n", |
442 | __func__, s->name, cachep->name)) | |
443 | print_tracking(cachep, x); | |
444 | return cachep; | |
445 | } | |
446 | ||
11c7aec2 JDB |
447 | static inline size_t slab_ksize(const struct kmem_cache *s) |
448 | { | |
449 | #ifndef CONFIG_SLUB | |
450 | return s->object_size; | |
451 | ||
452 | #else /* CONFIG_SLUB */ | |
453 | # ifdef CONFIG_SLUB_DEBUG | |
454 | /* | |
455 | * Debugging requires use of the padding between object | |
456 | * and whatever may come after it. | |
457 | */ | |
458 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
459 | return s->object_size; | |
460 | # endif | |
80a9201a AP |
461 | if (s->flags & SLAB_KASAN) |
462 | return s->object_size; | |
11c7aec2 JDB |
463 | /* |
464 | * If we have the need to store the freelist pointer | |
465 | * back there or track user information then we can | |
466 | * only use the space before that information. | |
467 | */ | |
5f0d5a3a | 468 | if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER)) |
11c7aec2 JDB |
469 | return s->inuse; |
470 | /* | |
471 | * Else we can use all the padding etc for the allocation | |
472 | */ | |
473 | return s->size; | |
474 | #endif | |
475 | } | |
476 | ||
477 | static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, | |
964d4bd3 RG |
478 | struct obj_cgroup **objcgp, |
479 | size_t size, gfp_t flags) | |
11c7aec2 JDB |
480 | { |
481 | flags &= gfp_allowed_mask; | |
d92a8cfc PZ |
482 | |
483 | fs_reclaim_acquire(flags); | |
484 | fs_reclaim_release(flags); | |
485 | ||
11c7aec2 JDB |
486 | might_sleep_if(gfpflags_allow_blocking(flags)); |
487 | ||
fab9963a | 488 | if (should_failslab(s, flags)) |
11c7aec2 JDB |
489 | return NULL; |
490 | ||
45264778 VD |
491 | if (memcg_kmem_enabled() && |
492 | ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT))) | |
10befea9 | 493 | *objcgp = memcg_slab_pre_alloc_hook(s, size, flags); |
45264778 VD |
494 | |
495 | return s; | |
11c7aec2 JDB |
496 | } |
497 | ||
964d4bd3 RG |
498 | static inline void slab_post_alloc_hook(struct kmem_cache *s, |
499 | struct obj_cgroup *objcg, | |
500 | gfp_t flags, size_t size, void **p) | |
11c7aec2 JDB |
501 | { |
502 | size_t i; | |
503 | ||
504 | flags &= gfp_allowed_mask; | |
505 | for (i = 0; i < size; i++) { | |
53128245 | 506 | p[i] = kasan_slab_alloc(s, p[i], flags); |
a2f77575 | 507 | /* As p[i] might get tagged, call kmemleak hook after KASAN. */ |
53128245 | 508 | kmemleak_alloc_recursive(p[i], s->object_size, 1, |
11c7aec2 | 509 | s->flags, flags); |
11c7aec2 | 510 | } |
45264778 | 511 | |
10befea9 RG |
512 | if (memcg_kmem_enabled()) |
513 | memcg_slab_post_alloc_hook(s, objcg, flags, size, p); | |
11c7aec2 JDB |
514 | } |
515 | ||
44c5356f | 516 | #ifndef CONFIG_SLOB |
ca34956b CL |
517 | /* |
518 | * The slab lists for all objects. | |
519 | */ | |
520 | struct kmem_cache_node { | |
521 | spinlock_t list_lock; | |
522 | ||
523 | #ifdef CONFIG_SLAB | |
524 | struct list_head slabs_partial; /* partial list first, better asm code */ | |
525 | struct list_head slabs_full; | |
526 | struct list_head slabs_free; | |
bf00bd34 DR |
527 | unsigned long total_slabs; /* length of all slab lists */ |
528 | unsigned long free_slabs; /* length of free slab list only */ | |
ca34956b CL |
529 | unsigned long free_objects; |
530 | unsigned int free_limit; | |
531 | unsigned int colour_next; /* Per-node cache coloring */ | |
532 | struct array_cache *shared; /* shared per node */ | |
c8522a3a | 533 | struct alien_cache **alien; /* on other nodes */ |
ca34956b CL |
534 | unsigned long next_reap; /* updated without locking */ |
535 | int free_touched; /* updated without locking */ | |
536 | #endif | |
537 | ||
538 | #ifdef CONFIG_SLUB | |
539 | unsigned long nr_partial; | |
540 | struct list_head partial; | |
541 | #ifdef CONFIG_SLUB_DEBUG | |
542 | atomic_long_t nr_slabs; | |
543 | atomic_long_t total_objects; | |
544 | struct list_head full; | |
545 | #endif | |
546 | #endif | |
547 | ||
548 | }; | |
e25839f6 | 549 | |
44c5356f CL |
550 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) |
551 | { | |
552 | return s->node[node]; | |
553 | } | |
554 | ||
555 | /* | |
556 | * Iterator over all nodes. The body will be executed for each node that has | |
557 | * a kmem_cache_node structure allocated (which is true for all online nodes) | |
558 | */ | |
559 | #define for_each_kmem_cache_node(__s, __node, __n) \ | |
9163582c MP |
560 | for (__node = 0; __node < nr_node_ids; __node++) \ |
561 | if ((__n = get_node(__s, __node))) | |
44c5356f CL |
562 | |
563 | #endif | |
564 | ||
1df3b26f | 565 | void *slab_start(struct seq_file *m, loff_t *pos); |
276a2439 WL |
566 | void *slab_next(struct seq_file *m, void *p, loff_t *pos); |
567 | void slab_stop(struct seq_file *m, void *p); | |
b047501c | 568 | int memcg_slab_show(struct seq_file *m, void *p); |
5240ab40 | 569 | |
852d8be0 YS |
570 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) |
571 | void dump_unreclaimable_slab(void); | |
572 | #else | |
573 | static inline void dump_unreclaimable_slab(void) | |
574 | { | |
575 | } | |
576 | #endif | |
577 | ||
55834c59 AP |
578 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr); |
579 | ||
7c00fce9 TG |
580 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
581 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | |
582 | gfp_t gfp); | |
583 | void cache_random_seq_destroy(struct kmem_cache *cachep); | |
584 | #else | |
585 | static inline int cache_random_seq_create(struct kmem_cache *cachep, | |
586 | unsigned int count, gfp_t gfp) | |
587 | { | |
588 | return 0; | |
589 | } | |
590 | static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { } | |
591 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
592 | ||
6471384a AP |
593 | static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c) |
594 | { | |
595 | if (static_branch_unlikely(&init_on_alloc)) { | |
596 | if (c->ctor) | |
597 | return false; | |
598 | if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) | |
599 | return flags & __GFP_ZERO; | |
600 | return true; | |
601 | } | |
602 | return flags & __GFP_ZERO; | |
603 | } | |
604 | ||
605 | static inline bool slab_want_init_on_free(struct kmem_cache *c) | |
606 | { | |
607 | if (static_branch_unlikely(&init_on_free)) | |
608 | return !(c->ctor || | |
609 | (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))); | |
610 | return false; | |
611 | } | |
612 | ||
5240ab40 | 613 | #endif /* MM_SLAB_H */ |