]> Git Repo - linux.git/blame - fs/btrfs/scrub.c
netfs: Fix interaction of streaming writes with zero-point tracker
[linux.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c 10#include "ctree.h"
6e80d4f8 11#include "discard.h"
a2de733c
AJ
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
0ef8e451 15#include "transaction.h"
558540c1 16#include "backref.h"
5da6fcbc 17#include "extent_io.h"
ff023aac 18#include "dev-replace.h"
53b381b3 19#include "raid56.h"
aac0023c 20#include "block-group.h"
12659251 21#include "zoned.h"
c7f13d42 22#include "fs.h"
07e81dc9 23#include "accessors.h"
7c8ede16 24#include "file-item.h"
2fc6822c 25#include "scrub.h"
9acaa641 26#include "raid-stripe-tree.h"
a2de733c
AJ
27
28/*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
a2de733c
AJ
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
a2de733c 37 * - track and record media errors, throw out bad devices
a2de733c 38 * - add a mode to also read unallocated space
a2de733c
AJ
39 */
40
d9d181c1 41struct scrub_ctx;
a2de733c 42
ff023aac 43/*
13a62fd9 44 * The following value only influences the performance.
c9d328c0 45 *
eefaf0a1 46 * This determines how many stripes would be submitted in one go,
ae76d8e3 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
ff023aac 48 */
ae76d8e3
QW
49#define SCRUB_STRIPES_PER_GROUP 8
50
51/*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57#define SCRUB_GROUPS_PER_SCTX 16
58
59#define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
7a9e9987
SB
60
61/*
0bb3acdc 62 * The following value times PAGE_SIZE needs to be large enough to match the
7a9e9987 63 * largest node/leaf/sector size that shall be supported.
7a9e9987 64 */
7e737cbc 65#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
a2de733c 66
2af2aaf9
QW
67/* Represent one sector and its needed info to verify the content. */
68struct scrub_sector_verification {
69 bool is_metadata;
70
71 union {
72 /*
73 * Csum pointer for data csum verification. Should point to a
74 * sector csum inside scrub_stripe::csums.
75 *
76 * NULL if this data sector has no csum.
77 */
78 u8 *csum;
79
80 /*
81 * Extra info for metadata verification. All sectors inside a
82 * tree block share the same generation.
83 */
84 u64 generation;
85 };
86};
87
88enum scrub_stripe_flags {
89 /* Set when @mirror_num, @dev, @physical and @logical are set. */
90 SCRUB_STRIPE_FLAG_INITIALIZED,
91
92 /* Set when the read-repair is finished. */
93 SCRUB_STRIPE_FLAG_REPAIR_DONE,
1009254b
QW
94
95 /*
96 * Set for data stripes if it's triggered from P/Q stripe.
97 * During such scrub, we should not report errors in data stripes, nor
98 * update the accounting.
99 */
100 SCRUB_STRIPE_FLAG_NO_REPORT,
2af2aaf9
QW
101};
102
103#define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105/*
106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107 */
108struct scrub_stripe {
00965807 109 struct scrub_ctx *sctx;
2af2aaf9
QW
110 struct btrfs_block_group *bg;
111
112 struct page *pages[SCRUB_STRIPE_PAGES];
113 struct scrub_sector_verification *sectors;
114
115 struct btrfs_device *dev;
116 u64 logical;
117 u64 physical;
118
119 u16 mirror_num;
120
121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 u16 nr_sectors;
123
00965807
QW
124 /*
125 * How many data/meta extents are in this stripe. Only for scrub status
126 * reporting purposes.
127 */
128 u16 nr_data_extents;
129 u16 nr_meta_extents;
130
2af2aaf9
QW
131 atomic_t pending_io;
132 wait_queue_head_t io_wait;
9ecb5ef5 133 wait_queue_head_t repair_wait;
2af2aaf9
QW
134
135 /*
136 * Indicate the states of the stripe. Bits are defined in
137 * scrub_stripe_flags enum.
138 */
139 unsigned long state;
140
141 /* Indicate which sectors are covered by extent items. */
142 unsigned long extent_sector_bitmap;
143
144 /*
145 * The errors hit during the initial read of the stripe.
146 *
147 * Would be utilized for error reporting and repair.
79b8ee70
QW
148 *
149 * The remaining init_nr_* records the number of errors hit, only used
150 * by error reporting.
2af2aaf9
QW
151 */
152 unsigned long init_error_bitmap;
79b8ee70
QW
153 unsigned int init_nr_io_errors;
154 unsigned int init_nr_csum_errors;
155 unsigned int init_nr_meta_errors;
2af2aaf9
QW
156
157 /*
158 * The following error bitmaps are all for the current status.
159 * Every time we submit a new read, these bitmaps may be updated.
160 *
161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 *
163 * IO and csum errors can happen for both metadata and data.
164 */
165 unsigned long error_bitmap;
166 unsigned long io_error_bitmap;
167 unsigned long csum_error_bitmap;
168 unsigned long meta_error_bitmap;
169
058e09e6
QW
170 /* For writeback (repair or replace) error reporting. */
171 unsigned long write_error_bitmap;
172
173 /* Writeback can be concurrent, thus we need to protect the bitmap. */
174 spinlock_t write_error_lock;
175
2af2aaf9
QW
176 /*
177 * Checksum for the whole stripe if this stripe is inside a data block
178 * group.
179 */
180 u8 *csums;
9ecb5ef5
QW
181
182 struct work_struct work;
2af2aaf9
QW
183};
184
d9d181c1 185struct scrub_ctx {
ae76d8e3 186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
1009254b 187 struct scrub_stripe *raid56_data_stripes;
fb456252 188 struct btrfs_fs_info *fs_info;
1dc4888e 189 struct btrfs_path extent_path;
3c771c19 190 struct btrfs_path csum_path;
a2de733c 191 int first_free;
54765392 192 int cur_stripe;
a2de733c 193 atomic_t cancel_req;
8628764e 194 int readonly;
63a212ab 195
eb3b5053
DS
196 /* State of IO submission throttling affecting the associated device */
197 ktime_t throttle_deadline;
198 u64 throttle_sent;
199
63a212ab 200 int is_dev_replace;
de17addc 201 u64 write_pointer;
3fb99303 202
3fb99303 203 struct mutex wr_lock;
3fb99303 204 struct btrfs_device *wr_tgtdev;
63a212ab 205
a2de733c
AJ
206 /*
207 * statistics
208 */
209 struct btrfs_scrub_progress stat;
210 spinlock_t stat_lock;
f55985f4
FM
211
212 /*
213 * Use a ref counter to avoid use-after-free issues. Scrub workers
214 * decrement bios_in_flight and workers_pending and then do a wakeup
215 * on the list_wait wait queue. We must ensure the main scrub task
216 * doesn't free the scrub context before or while the workers are
217 * doing the wakeup() call.
218 */
99f4cdb1 219 refcount_t refs;
a2de733c
AJ
220};
221
558540c1
JS
222struct scrub_warning {
223 struct btrfs_path *path;
224 u64 extent_item_size;
558540c1 225 const char *errstr;
6aa21263 226 u64 physical;
558540c1
JS
227 u64 logical;
228 struct btrfs_device *dev;
558540c1
JS
229};
230
2af2aaf9
QW
231static void release_scrub_stripe(struct scrub_stripe *stripe)
232{
233 if (!stripe)
234 return;
235
236 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237 if (stripe->pages[i])
238 __free_page(stripe->pages[i]);
239 stripe->pages[i] = NULL;
240 }
241 kfree(stripe->sectors);
242 kfree(stripe->csums);
243 stripe->sectors = NULL;
244 stripe->csums = NULL;
00965807 245 stripe->sctx = NULL;
2af2aaf9
QW
246 stripe->state = 0;
247}
248
54765392
QW
249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250 struct scrub_stripe *stripe)
2af2aaf9
QW
251{
252 int ret;
253
254 memset(stripe, 0, sizeof(*stripe));
255
256 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257 stripe->state = 0;
258
259 init_waitqueue_head(&stripe->io_wait);
9ecb5ef5 260 init_waitqueue_head(&stripe->repair_wait);
2af2aaf9 261 atomic_set(&stripe->pending_io, 0);
058e09e6 262 spin_lock_init(&stripe->write_error_lock);
2af2aaf9 263
0fbf6cbd 264 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
2af2aaf9
QW
265 if (ret < 0)
266 goto error;
267
268 stripe->sectors = kcalloc(stripe->nr_sectors,
269 sizeof(struct scrub_sector_verification),
270 GFP_KERNEL);
271 if (!stripe->sectors)
272 goto error;
273
274 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275 fs_info->csum_size, GFP_KERNEL);
276 if (!stripe->csums)
277 goto error;
278 return 0;
279error:
280 release_scrub_stripe(stripe);
281 return -ENOMEM;
282}
283
9ecb5ef5 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
2af2aaf9
QW
285{
286 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287}
288
f55985f4 289static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 290
cb7ab021 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
292{
293 while (atomic_read(&fs_info->scrub_pause_req)) {
294 mutex_unlock(&fs_info->scrub_lock);
295 wait_event(fs_info->scrub_pause_wait,
296 atomic_read(&fs_info->scrub_pause_req) == 0);
297 mutex_lock(&fs_info->scrub_lock);
298 }
299}
300
0e22be89 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
302{
303 atomic_inc(&fs_info->scrubs_paused);
304 wake_up(&fs_info->scrub_pause_wait);
0e22be89 305}
cb7ab021 306
0e22be89
Z
307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308{
cb7ab021
WS
309 mutex_lock(&fs_info->scrub_lock);
310 __scrub_blocked_if_needed(fs_info);
311 atomic_dec(&fs_info->scrubs_paused);
312 mutex_unlock(&fs_info->scrub_lock);
313
314 wake_up(&fs_info->scrub_pause_wait);
315}
316
0e22be89
Z
317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318{
319 scrub_pause_on(fs_info);
320 scrub_pause_off(fs_info);
321}
322
d9d181c1 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
324{
325 int i;
a2de733c 326
d9d181c1 327 if (!sctx)
a2de733c
AJ
328 return;
329
ae76d8e3 330 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
54765392
QW
331 release_scrub_stripe(&sctx->stripes[i]);
332
ae76d8e3 333 kvfree(sctx);
a2de733c
AJ
334}
335
f55985f4
FM
336static void scrub_put_ctx(struct scrub_ctx *sctx)
337{
99f4cdb1 338 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
339 scrub_free_ctx(sctx);
340}
341
92f7ba43
DS
342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 344{
d9d181c1 345 struct scrub_ctx *sctx;
a2de733c 346 int i;
a2de733c 347
ae76d8e3
QW
348 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
349 * kvzalloc().
350 */
351 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 352 if (!sctx)
a2de733c 353 goto nomem;
99f4cdb1 354 refcount_set(&sctx->refs, 1);
63a212ab 355 sctx->is_dev_replace = is_dev_replace;
92f7ba43 356 sctx->fs_info = fs_info;
1dc4888e
QW
357 sctx->extent_path.search_commit_root = 1;
358 sctx->extent_path.skip_locking = 1;
3c771c19
QW
359 sctx->csum_path.search_commit_root = 1;
360 sctx->csum_path.skip_locking = 1;
ae76d8e3 361 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
54765392
QW
362 int ret;
363
364 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365 if (ret < 0)
366 goto nomem;
367 sctx->stripes[i].sctx = sctx;
368 }
d9d181c1 369 sctx->first_free = 0;
d9d181c1 370 atomic_set(&sctx->cancel_req, 0);
d9d181c1 371
d9d181c1 372 spin_lock_init(&sctx->stat_lock);
eb3b5053 373 sctx->throttle_deadline = 0;
ff023aac 374
3fb99303 375 mutex_init(&sctx->wr_lock);
8fcdac3f 376 if (is_dev_replace) {
ded56184 377 WARN_ON(!fs_info->dev_replace.tgtdev);
ded56184 378 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
ff023aac 379 }
8fcdac3f 380
d9d181c1 381 return sctx;
a2de733c
AJ
382
383nomem:
d9d181c1 384 scrub_free_ctx(sctx);
a2de733c
AJ
385 return ERR_PTR(-ENOMEM);
386}
387
c7499a64
FM
388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389 u64 root, void *warn_ctx)
558540c1 390{
558540c1
JS
391 u32 nlink;
392 int ret;
393 int i;
de2491fd 394 unsigned nofs_flag;
558540c1
JS
395 struct extent_buffer *eb;
396 struct btrfs_inode_item *inode_item;
ff023aac 397 struct scrub_warning *swarn = warn_ctx;
fb456252 398 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
399 struct inode_fs_paths *ipath = NULL;
400 struct btrfs_root *local_root;
1d4c08e0 401 struct btrfs_key key;
558540c1 402
56e9357a 403 local_root = btrfs_get_fs_root(fs_info, root, true);
558540c1
JS
404 if (IS_ERR(local_root)) {
405 ret = PTR_ERR(local_root);
406 goto err;
407 }
408
14692cc1
DS
409 /*
410 * this makes the path point to (inum INODE_ITEM ioff)
411 */
1d4c08e0
DS
412 key.objectid = inum;
413 key.type = BTRFS_INODE_ITEM_KEY;
414 key.offset = 0;
415
416 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1 417 if (ret) {
00246528 418 btrfs_put_root(local_root);
558540c1
JS
419 btrfs_release_path(swarn->path);
420 goto err;
421 }
422
423 eb = swarn->path->nodes[0];
424 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425 struct btrfs_inode_item);
558540c1
JS
426 nlink = btrfs_inode_nlink(eb, inode_item);
427 btrfs_release_path(swarn->path);
428
de2491fd
DS
429 /*
430 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431 * uses GFP_NOFS in this context, so we keep it consistent but it does
432 * not seem to be strictly necessary.
433 */
434 nofs_flag = memalloc_nofs_save();
558540c1 435 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 436 memalloc_nofs_restore(nofs_flag);
26bdef54 437 if (IS_ERR(ipath)) {
00246528 438 btrfs_put_root(local_root);
26bdef54
DC
439 ret = PTR_ERR(ipath);
440 ipath = NULL;
441 goto err;
442 }
558540c1
JS
443 ret = paths_from_inode(inum, ipath);
444
445 if (ret < 0)
446 goto err;
447
448 /*
449 * we deliberately ignore the bit ipath might have been too small to
450 * hold all of the paths here
451 */
452 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 453 btrfs_warn_in_rcu(fs_info,
8df507cb 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
5d163e0e 455 swarn->errstr, swarn->logical,
cb3e217b 456 btrfs_dev_name(swarn->dev),
6aa21263 457 swarn->physical,
5d163e0e 458 root, inum, offset,
8df507cb 459 fs_info->sectorsize, nlink,
5d163e0e 460 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1 461
00246528 462 btrfs_put_root(local_root);
558540c1
JS
463 free_ipath(ipath);
464 return 0;
465
466err:
5d163e0e 467 btrfs_warn_in_rcu(fs_info,
6aa21263 468 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e 469 swarn->errstr, swarn->logical,
cb3e217b 470 btrfs_dev_name(swarn->dev),
6aa21263 471 swarn->physical,
5d163e0e 472 root, inum, offset, ret);
558540c1
JS
473
474 free_ipath(ipath);
475 return 0;
476}
477
00965807
QW
478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479 bool is_super, u64 logical, u64 physical)
558540c1 480{
00965807 481 struct btrfs_fs_info *fs_info = dev->fs_info;
558540c1
JS
482 struct btrfs_path *path;
483 struct btrfs_key found_key;
484 struct extent_buffer *eb;
485 struct btrfs_extent_item *ei;
486 struct scrub_warning swarn;
69917e43 487 u64 flags = 0;
69917e43 488 u32 item_size;
69917e43 489 int ret;
558540c1 490
e69bf81c 491 /* Super block error, no need to search extent tree. */
00965807 492 if (is_super) {
e69bf81c 493 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
00965807 494 errstr, btrfs_dev_name(dev), physical);
e69bf81c
QW
495 return;
496 }
558540c1 497 path = btrfs_alloc_path();
8b9456da
DS
498 if (!path)
499 return;
558540c1 500
00965807
QW
501 swarn.physical = physical;
502 swarn.logical = logical;
558540c1 503 swarn.errstr = errstr;
a36cf8b8 504 swarn.dev = NULL;
558540c1 505
69917e43
LB
506 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507 &flags);
558540c1
JS
508 if (ret < 0)
509 goto out;
510
558540c1
JS
511 swarn.extent_item_size = found_key.offset;
512
513 eb = path->nodes[0];
514 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
3212fa14 515 item_size = btrfs_item_size(eb, path->slots[0]);
558540c1 516
69917e43 517 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
b7f9945a
QW
518 unsigned long ptr = 0;
519 u8 ref_level;
520 u64 ref_root;
521
522 while (true) {
6eda71d0
LB
523 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524 item_size, &ref_root,
525 &ref_level);
b7f9945a
QW
526 if (ret < 0) {
527 btrfs_warn(fs_info,
528 "failed to resolve tree backref for logical %llu: %d",
529 swarn.logical, ret);
530 break;
531 }
532 if (ret > 0)
533 break;
ecaeb14b 534 btrfs_warn_in_rcu(fs_info,
6aa21263 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
b7f9945a
QW
536 errstr, swarn.logical, btrfs_dev_name(dev),
537 swarn.physical, (ref_level ? "node" : "leaf"),
538 ref_level, ref_root);
539 }
d8fe29e9 540 btrfs_release_path(path);
558540c1 541 } else {
a2c8d27e
FM
542 struct btrfs_backref_walk_ctx ctx = { 0 };
543
d8fe29e9 544 btrfs_release_path(path);
a2c8d27e
FM
545
546 ctx.bytenr = found_key.objectid;
547 ctx.extent_item_pos = swarn.logical - found_key.objectid;
548 ctx.fs_info = fs_info;
549
558540c1 550 swarn.path = path;
a36cf8b8 551 swarn.dev = dev;
a2c8d27e
FM
552
553 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
558540c1
JS
554 }
555
556out:
557 btrfs_free_path(path);
558540c1
JS
558}
559
de17addc
NA
560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561{
562 int ret = 0;
563 u64 length;
564
565 if (!btrfs_is_zoned(sctx->fs_info))
566 return 0;
567
7db1c5d1
NA
568 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569 return 0;
570
de17addc
NA
571 if (sctx->write_pointer < physical) {
572 length = physical - sctx->write_pointer;
573
574 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575 sctx->write_pointer, length);
576 if (!ret)
577 sctx->write_pointer = physical;
578 }
579 return ret;
580}
581
a3ddbaeb
QW
582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583{
584 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586
587 return stripe->pages[page_index];
588}
589
590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591 int sector_nr)
592{
593 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594
595 return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596}
597
97cf8f37 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
a3ddbaeb
QW
599{
600 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606 u8 on_disk_csum[BTRFS_CSUM_SIZE];
607 u8 calculated_csum[BTRFS_CSUM_SIZE];
608 struct btrfs_header *header;
609
610 /*
611 * Here we don't have a good way to attach the pages (and subpages)
612 * to a dummy extent buffer, thus we have to directly grab the members
613 * from pages.
614 */
615 header = (struct btrfs_header *)(page_address(first_page) + first_off);
616 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617
618 if (logical != btrfs_stack_header_bytenr(header)) {
619 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 btrfs_warn_rl(fs_info,
622 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623 logical, stripe->mirror_num,
624 btrfs_stack_header_bytenr(header), logical);
625 return;
626 }
b471965f
AJ
627 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628 BTRFS_FSID_SIZE) != 0) {
a3ddbaeb
QW
629 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631 btrfs_warn_rl(fs_info,
632 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
633 logical, stripe->mirror_num,
634 header->fsid, fs_info->fs_devices->fsid);
635 return;
636 }
637 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638 BTRFS_UUID_SIZE) != 0) {
639 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641 btrfs_warn_rl(fs_info,
642 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643 logical, stripe->mirror_num,
644 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645 return;
646 }
647
648 /* Now check tree block csum. */
649 shash->tfm = fs_info->csum_shash;
650 crypto_shash_init(shash);
651 crypto_shash_update(shash, page_address(first_page) + first_off +
652 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653
654 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655 struct page *page = scrub_stripe_get_page(stripe, i);
656 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657
658 crypto_shash_update(shash, page_address(page) + page_off,
659 fs_info->sectorsize);
660 }
661
662 crypto_shash_final(shash, calculated_csum);
663 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 btrfs_warn_rl(fs_info,
667 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668 logical, stripe->mirror_num,
669 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671 return;
672 }
673 if (stripe->sectors[sector_nr].generation !=
674 btrfs_stack_header_generation(header)) {
675 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677 btrfs_warn_rl(fs_info,
678 "tree block %llu mirror %u has bad generation, has %llu want %llu",
679 logical, stripe->mirror_num,
680 btrfs_stack_header_generation(header),
681 stripe->sectors[sector_nr].generation);
682 return;
683 }
684 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687}
688
97cf8f37
QW
689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690{
691 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696 u8 csum_buf[BTRFS_CSUM_SIZE];
697 int ret;
698
699 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700
701 /* Sector not utilized, skip it. */
702 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703 return;
704
705 /* IO error, no need to check. */
706 if (test_bit(sector_nr, &stripe->io_error_bitmap))
707 return;
708
709 /* Metadata, verify the full tree block. */
710 if (sector->is_metadata) {
711 /*
eefaf0a1 712 * Check if the tree block crosses the stripe boundary. If
97cf8f37
QW
713 * crossed the boundary, we cannot verify it but only give a
714 * warning.
715 *
716 * This can only happen on a very old filesystem where chunks
717 * are not ensured to be stripe aligned.
718 */
719 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720 btrfs_warn_rl(fs_info,
721 "tree block at %llu crosses stripe boundary %llu",
722 stripe->logical +
723 (sector_nr << fs_info->sectorsize_bits),
724 stripe->logical);
725 return;
726 }
727 scrub_verify_one_metadata(stripe, sector_nr);
728 return;
729 }
730
731 /*
732 * Data is easier, we just verify the data csum (if we have it). For
733 * cases without csum, we have no other choice but to trust it.
734 */
735 if (!sector->csum) {
736 clear_bit(sector_nr, &stripe->error_bitmap);
737 return;
738 }
739
740 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741 if (ret < 0) {
742 set_bit(sector_nr, &stripe->csum_error_bitmap);
743 set_bit(sector_nr, &stripe->error_bitmap);
744 } else {
745 clear_bit(sector_nr, &stripe->csum_error_bitmap);
746 clear_bit(sector_nr, &stripe->error_bitmap);
747 }
748}
749
750/* Verify specified sectors of a stripe. */
9ecb5ef5 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
97cf8f37
QW
752{
753 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755 int sector_nr;
756
757 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758 scrub_verify_one_sector(stripe, sector_nr);
759 if (stripe->sectors[sector_nr].is_metadata)
760 sector_nr += sectors_per_tree - 1;
761 }
762}
763
9ecb5ef5
QW
764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765{
766 int i;
767
768 for (i = 0; i < stripe->nr_sectors; i++) {
769 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771 break;
772 }
773 ASSERT(i < stripe->nr_sectors);
774 return i;
775}
776
777/*
778 * Repair read is different to the regular read:
779 *
780 * - Only reads the failed sectors
781 * - May have extra blocksize limits
782 */
783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784{
785 struct scrub_stripe *stripe = bbio->private;
786 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787 struct bio_vec *bvec;
788 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789 u32 bio_size = 0;
790 int i;
791
792 ASSERT(sector_nr < stripe->nr_sectors);
793
794 bio_for_each_bvec_all(bvec, &bbio->bio, i)
795 bio_size += bvec->bv_len;
796
797 if (bbio->bio.bi_status) {
798 bitmap_set(&stripe->io_error_bitmap, sector_nr,
799 bio_size >> fs_info->sectorsize_bits);
800 bitmap_set(&stripe->error_bitmap, sector_nr,
801 bio_size >> fs_info->sectorsize_bits);
802 } else {
803 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804 bio_size >> fs_info->sectorsize_bits);
805 }
806 bio_put(&bbio->bio);
807 if (atomic_dec_and_test(&stripe->pending_io))
808 wake_up(&stripe->io_wait);
809}
810
811static int calc_next_mirror(int mirror, int num_copies)
812{
813 ASSERT(mirror <= num_copies);
814 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815}
816
817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818 int mirror, int blocksize, bool wait)
819{
820 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821 struct btrfs_bio *bbio = NULL;
822 const unsigned long old_error_bitmap = stripe->error_bitmap;
823 int i;
824
825 ASSERT(stripe->mirror_num >= 1);
826 ASSERT(atomic_read(&stripe->pending_io) == 0);
827
828 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829 struct page *page;
830 int pgoff;
831 int ret;
832
833 page = scrub_stripe_get_page(stripe, i);
834 pgoff = scrub_stripe_get_page_offset(stripe, i);
835
836 /* The current sector cannot be merged, submit the bio. */
837 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838 bbio->bio.bi_iter.bi_size >= blocksize)) {
839 ASSERT(bbio->bio.bi_iter.bi_size);
840 atomic_inc(&stripe->pending_io);
841 btrfs_submit_bio(bbio, mirror);
842 if (wait)
843 wait_scrub_stripe_io(stripe);
844 bbio = NULL;
845 }
846
847 if (!bbio) {
848 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849 fs_info, scrub_repair_read_endio, stripe);
850 bbio->bio.bi_iter.bi_sector = (stripe->logical +
851 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852 }
853
854 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855 ASSERT(ret == fs_info->sectorsize);
856 }
857 if (bbio) {
858 ASSERT(bbio->bio.bi_iter.bi_size);
859 atomic_inc(&stripe->pending_io);
860 btrfs_submit_bio(bbio, mirror);
861 if (wait)
862 wait_scrub_stripe_io(stripe);
863 }
864}
865
00965807
QW
866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867 struct scrub_stripe *stripe)
868{
869 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870 DEFAULT_RATELIMIT_BURST);
871 struct btrfs_fs_info *fs_info = sctx->fs_info;
872 struct btrfs_device *dev = NULL;
873 u64 physical = 0;
874 int nr_data_sectors = 0;
875 int nr_meta_sectors = 0;
876 int nr_nodatacsum_sectors = 0;
877 int nr_repaired_sectors = 0;
878 int sector_nr;
879
1009254b
QW
880 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881 return;
882
00965807
QW
883 /*
884 * Init needed infos for error reporting.
885 *
eefaf0a1 886 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
00965807
QW
887 * thus no need for dev/physical, error reporting still needs dev and physical.
888 */
889 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890 u64 mapped_len = fs_info->sectorsize;
891 struct btrfs_io_context *bioc = NULL;
892 int stripe_index = stripe->mirror_num - 1;
893 int ret;
894
895 /* For scrub, our mirror_num should always start at 1. */
896 ASSERT(stripe->mirror_num >= 1);
723b8bb1
CH
897 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898 stripe->logical, &mapped_len, &bioc,
9fb2acc2 899 NULL, NULL);
00965807
QW
900 /*
901 * If we failed, dev will be NULL, and later detailed reports
902 * will just be skipped.
903 */
904 if (ret < 0)
905 goto skip;
906 physical = bioc->stripes[stripe_index].physical;
907 dev = bioc->stripes[stripe_index].dev;
908 btrfs_put_bioc(bioc);
909 }
910
911skip:
912 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913 bool repaired = false;
914
915 if (stripe->sectors[sector_nr].is_metadata) {
916 nr_meta_sectors++;
917 } else {
918 nr_data_sectors++;
919 if (!stripe->sectors[sector_nr].csum)
920 nr_nodatacsum_sectors++;
921 }
922
923 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924 !test_bit(sector_nr, &stripe->error_bitmap)) {
925 nr_repaired_sectors++;
926 repaired = true;
927 }
928
929 /* Good sector from the beginning, nothing need to be done. */
930 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931 continue;
932
933 /*
934 * Report error for the corrupted sectors. If repaired, just
935 * output the message of repaired message.
936 */
937 if (repaired) {
938 if (dev) {
939 btrfs_err_rl_in_rcu(fs_info,
940 "fixed up error at logical %llu on dev %s physical %llu",
941 stripe->logical, btrfs_dev_name(dev),
942 physical);
943 } else {
944 btrfs_err_rl_in_rcu(fs_info,
945 "fixed up error at logical %llu on mirror %u",
946 stripe->logical, stripe->mirror_num);
947 }
948 continue;
949 }
950
951 /* The remaining are all for unrepaired. */
952 if (dev) {
953 btrfs_err_rl_in_rcu(fs_info,
954 "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955 stripe->logical, btrfs_dev_name(dev),
956 physical);
957 } else {
958 btrfs_err_rl_in_rcu(fs_info,
959 "unable to fixup (regular) error at logical %llu on mirror %u",
960 stripe->logical, stripe->mirror_num);
961 }
962
963 if (test_bit(sector_nr, &stripe->io_error_bitmap))
964 if (__ratelimit(&rs) && dev)
965 scrub_print_common_warning("i/o error", dev, false,
966 stripe->logical, physical);
967 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968 if (__ratelimit(&rs) && dev)
969 scrub_print_common_warning("checksum error", dev, false,
970 stripe->logical, physical);
971 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972 if (__ratelimit(&rs) && dev)
973 scrub_print_common_warning("header error", dev, false,
974 stripe->logical, physical);
975 }
976
977 spin_lock(&sctx->stat_lock);
978 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982 sctx->stat.no_csum += nr_nodatacsum_sectors;
79b8ee70
QW
983 sctx->stat.read_errors += stripe->init_nr_io_errors;
984 sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985 sctx->stat.verify_errors += stripe->init_nr_meta_errors;
00965807
QW
986 sctx->stat.uncorrectable_errors +=
987 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988 sctx->stat.corrected_errors += nr_repaired_sectors;
989 spin_unlock(&sctx->stat_lock);
990}
991
4fe44f9d
QW
992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993 unsigned long write_bitmap, bool dev_replace);
994
9ecb5ef5
QW
995/*
996 * The main entrance for all read related scrub work, including:
997 *
998 * - Wait for the initial read to finish
999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 * possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
4fe44f9d 1003 * - Submit writeback for repaired sectors
9ecb5ef5 1004 *
4fe44f9d
QW
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
9ecb5ef5
QW
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
4fe44f9d
QW
1011 struct scrub_ctx *sctx = stripe->sctx;
1012 struct btrfs_fs_info *fs_info = sctx->fs_info;
9ecb5ef5
QW
1013 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014 stripe->bg->length);
7192833c 1015 unsigned long repaired;
9ecb5ef5
QW
1016 int mirror;
1017 int i;
1018
1019 ASSERT(stripe->mirror_num > 0);
1020
1021 wait_scrub_stripe_io(stripe);
1022 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023 /* Save the initial failed bitmap for later repair and report usage. */
1024 stripe->init_error_bitmap = stripe->error_bitmap;
79b8ee70
QW
1025 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026 stripe->nr_sectors);
1027 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028 stripe->nr_sectors);
1029 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030 stripe->nr_sectors);
9ecb5ef5
QW
1031
1032 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033 goto out;
1034
1035 /*
1036 * Try all remaining mirrors.
1037 *
1038 * Here we still try to read as large block as possible, as this is
1039 * faster and we have extra safety nets to rely on.
1040 */
1041 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042 mirror != stripe->mirror_num;
1043 mirror = calc_next_mirror(mirror, num_copies)) {
1044 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046 scrub_stripe_submit_repair_read(stripe, mirror,
1047 BTRFS_STRIPE_LEN, false);
1048 wait_scrub_stripe_io(stripe);
1049 scrub_verify_one_stripe(stripe, old_error_bitmap);
1050 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051 goto out;
1052 }
1053
1054 /*
1055 * Last safety net, try re-checking all mirrors, including the failed
1056 * one, sector-by-sector.
1057 *
1058 * As if one sector failed the drive's internal csum, the whole read
1059 * containing the offending sector would be marked as error.
1060 * Thus here we do sector-by-sector read.
1061 *
1062 * This can be slow, thus we only try it as the last resort.
1063 */
1064
1065 for (i = 0, mirror = stripe->mirror_num;
1066 i < num_copies;
1067 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070 scrub_stripe_submit_repair_read(stripe, mirror,
1071 fs_info->sectorsize, true);
1072 wait_scrub_stripe_io(stripe);
1073 scrub_verify_one_stripe(stripe, old_error_bitmap);
1074 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075 goto out;
1076 }
1077out:
4fe44f9d
QW
1078 /*
1079 * Submit the repaired sectors. For zoned case, we cannot do repair
1080 * in-place, but queue the bg to be relocated.
1081 */
7192833c
NA
1082 bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083 stripe->nr_sectors);
1084 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085 if (btrfs_is_zoned(fs_info)) {
4fe44f9d 1086 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
7192833c
NA
1087 } else {
1088 scrub_write_sectors(sctx, stripe, repaired, false);
1089 wait_scrub_stripe_io(stripe);
1090 }
4fe44f9d
QW
1091 }
1092
1093 scrub_stripe_report_errors(sctx, stripe);
9ecb5ef5
QW
1094 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095 wake_up(&stripe->repair_wait);
1096}
1097
54765392 1098static void scrub_read_endio(struct btrfs_bio *bbio)
9ecb5ef5
QW
1099{
1100 struct scrub_stripe *stripe = bbio->private;
f546c428
QW
1101 struct bio_vec *bvec;
1102 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103 int num_sectors;
1104 u32 bio_size = 0;
1105 int i;
1106
1107 ASSERT(sector_nr < stripe->nr_sectors);
1108 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109 bio_size += bvec->bv_len;
1110 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
9ecb5ef5
QW
1111
1112 if (bbio->bio.bi_status) {
f546c428
QW
1113 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
9ecb5ef5 1115 } else {
f546c428 1116 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
9ecb5ef5
QW
1117 }
1118 bio_put(&bbio->bio);
1119 if (atomic_dec_and_test(&stripe->pending_io)) {
1120 wake_up(&stripe->io_wait);
1121 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123 }
1124}
1125
058e09e6
QW
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128 struct scrub_stripe *stripe = bbio->private;
1129 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130 struct bio_vec *bvec;
1131 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132 u32 bio_size = 0;
1133 int i;
1134
1135 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136 bio_size += bvec->bv_len;
1137
1138 if (bbio->bio.bi_status) {
1139 unsigned long flags;
1140
1141 spin_lock_irqsave(&stripe->write_error_lock, flags);
1142 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143 bio_size >> fs_info->sectorsize_bits);
1144 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145 }
1146 bio_put(&bbio->bio);
1147
1148 if (atomic_dec_and_test(&stripe->pending_io))
1149 wake_up(&stripe->io_wait);
1150}
1151
b675df02
QW
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153 struct scrub_stripe *stripe,
1154 struct btrfs_bio *bbio, bool dev_replace)
1155{
1156 struct btrfs_fs_info *fs_info = sctx->fs_info;
1157 u32 bio_len = bbio->bio.bi_iter.bi_size;
1158 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159 stripe->logical;
1160
1161 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162 atomic_inc(&stripe->pending_io);
1163 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164 if (!btrfs_is_zoned(fs_info))
1165 return;
1166 /*
1167 * For zoned writeback, queue depth must be 1, thus we must wait for
1168 * the write to finish before the next write.
1169 */
1170 wait_scrub_stripe_io(stripe);
1171
1172 /*
1173 * And also need to update the write pointer if write finished
1174 * successfully.
1175 */
1176 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177 &stripe->write_error_bitmap))
1178 sctx->write_pointer += bio_len;
1179}
1180
058e09e6
QW
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 * Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 * Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
54765392
QW
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195 unsigned long write_bitmap, bool dev_replace)
058e09e6
QW
1196{
1197 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198 struct btrfs_bio *bbio = NULL;
058e09e6
QW
1199 int sector_nr;
1200
1201 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204 int ret;
1205
1206 /* We should only writeback sectors covered by an extent. */
1207 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209 /* Cannot merge with previous sector, submit the current one. */
1210 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
b675df02 1211 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
058e09e6
QW
1212 bbio = NULL;
1213 }
1214 if (!bbio) {
1215 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216 fs_info, scrub_write_endio, stripe);
1217 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218 (sector_nr << fs_info->sectorsize_bits)) >>
1219 SECTOR_SHIFT;
1220 }
1221 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222 ASSERT(ret == fs_info->sectorsize);
1223 }
b675df02
QW
1224 if (bbio)
1225 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
058e09e6
QW
1226}
1227
13a62fd9
QW
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
e02ee89b
QW
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233 unsigned int bio_size)
eb3b5053
DS
1234{
1235 const int time_slice = 1000;
eb3b5053
DS
1236 s64 delta;
1237 ktime_t now;
1238 u32 div;
1239 u64 bwlimit;
1240
eb3b5053
DS
1241 bwlimit = READ_ONCE(device->scrub_speed_max);
1242 if (bwlimit == 0)
1243 return;
1244
1245 /*
1246 * Slice is divided into intervals when the IO is submitted, adjust by
1247 * bwlimit and maximum of 64 intervals.
1248 */
1249 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250 div = min_t(u32, 64, div);
1251
1252 /* Start new epoch, set deadline */
1253 now = ktime_get();
1254 if (sctx->throttle_deadline == 0) {
1255 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256 sctx->throttle_sent = 0;
1257 }
1258
1259 /* Still in the time to send? */
1260 if (ktime_before(now, sctx->throttle_deadline)) {
1261 /* If current bio is within the limit, send it */
e02ee89b 1262 sctx->throttle_sent += bio_size;
eb3b5053
DS
1263 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264 return;
1265
1266 /* We're over the limit, sleep until the rest of the slice */
1267 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268 } else {
1269 /* New request after deadline, start new epoch */
1270 delta = 0;
1271 }
1272
1273 if (delta) {
1274 long timeout;
1275
1276 timeout = div_u64(delta * HZ, 1000);
1277 schedule_timeout_interruptible(timeout);
1278 }
1279
1280 /* Next call will start the deadline period */
1281 sctx->throttle_deadline = 0;
1282}
1283
3b080b25
WS
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
7dc66abb 1292 struct btrfs_chunk_map *map, u64 *offset,
5a6ac9ea 1293 u64 *stripe_start)
3b080b25
WS
1294{
1295 int i;
1296 int j = 0;
3b080b25 1297 u64 last_offset;
cff82672 1298 const int data_stripes = nr_data_stripes(map);
3b080b25 1299
cff82672 1300 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
1301 if (stripe_start)
1302 *stripe_start = last_offset;
1303
3b080b25 1304 *offset = last_offset;
cff82672 1305 for (i = 0; i < data_stripes; i++) {
6ded22c1
QW
1306 u32 stripe_nr;
1307 u32 stripe_index;
1308 u32 rot;
1309
cb091225 1310 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
3b080b25 1311
6ded22c1 1312 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
3b080b25
WS
1313
1314 /* Work out the disk rotation on this stripe-set */
6ded22c1 1315 rot = stripe_nr % map->num_stripes;
3b080b25
WS
1316 /* calculate which stripe this data locates */
1317 rot += i;
e4fbaee2 1318 stripe_index = rot % map->num_stripes;
3b080b25
WS
1319 if (stripe_index == num)
1320 return 0;
1321 if (stripe_index < num)
1322 j++;
1323 }
cb091225 1324 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
3b080b25
WS
1325 return 1;
1326}
1327
416bd7e7
QW
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334 u64 search_start, u64 search_len)
1335{
1336 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337 u64 len;
1338 struct btrfs_key key;
1339
1340 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342 key.type == BTRFS_METADATA_ITEM_KEY);
1343 if (key.type == BTRFS_METADATA_ITEM_KEY)
1344 len = fs_info->nodesize;
1345 else
1346 len = key.offset;
1347
1348 if (key.objectid + len <= search_start)
1349 return -1;
1350 if (key.objectid >= search_start + search_len)
1351 return 1;
1352 return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372 struct btrfs_path *path,
1373 u64 search_start, u64 search_len)
1374{
1375 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376 struct btrfs_key key;
1377 int ret;
1378
1379 /* Continue using the existing path */
1380 if (path->nodes[0])
1381 goto search_forward;
1382
1383 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384 key.type = BTRFS_METADATA_ITEM_KEY;
1385 else
1386 key.type = BTRFS_EXTENT_ITEM_KEY;
1387 key.objectid = search_start;
1388 key.offset = (u64)-1;
1389
1390 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391 if (ret < 0)
1392 return ret;
f626a0f5
DS
1393 if (ret == 0) {
1394 /*
1395 * Key with offset -1 found, there would have to exist an extent
1396 * item with such offset, but this is out of the valid range.
1397 */
1398 btrfs_release_path(path);
1399 return -EUCLEAN;
1400 }
416bd7e7 1401
416bd7e7
QW
1402 /*
1403 * Here we intentionally pass 0 as @min_objectid, as there could be
1404 * an extent item starting before @search_start.
1405 */
1406 ret = btrfs_previous_extent_item(extent_root, path, 0);
1407 if (ret < 0)
1408 return ret;
1409 /*
1410 * No matter whether we have found an extent item, the next loop will
1411 * properly do every check on the key.
1412 */
1413search_forward:
1414 while (true) {
1415 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416 if (key.objectid >= search_start + search_len)
1417 break;
1418 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419 key.type != BTRFS_EXTENT_ITEM_KEY)
1420 goto next;
1421
1422 ret = compare_extent_item_range(path, search_start, search_len);
1423 if (ret == 0)
1424 return ret;
1425 if (ret > 0)
1426 break;
1427next:
ebb0beca
FM
1428 ret = btrfs_next_item(extent_root, path);
1429 if (ret) {
1430 /* Either no more items or a fatal error. */
1431 btrfs_release_path(path);
1432 return ret;
416bd7e7
QW
1433 }
1434 }
1435 btrfs_release_path(path);
1436 return 1;
1437}
1438
09022b14
QW
1439static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441{
1442 struct btrfs_key key;
1443 struct btrfs_extent_item *ei;
1444
1445 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447 key.type == BTRFS_EXTENT_ITEM_KEY);
1448 *extent_start_ret = key.objectid;
1449 if (key.type == BTRFS_METADATA_ITEM_KEY)
1450 *size_ret = path->nodes[0]->fs_info->nodesize;
1451 else
1452 *size_ret = key.offset;
1453 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456}
1457
7db1c5d1
NA
1458static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459 u64 physical, u64 physical_end)
1460{
1461 struct btrfs_fs_info *fs_info = sctx->fs_info;
1462 int ret = 0;
1463
1464 if (!btrfs_is_zoned(fs_info))
1465 return 0;
1466
7db1c5d1
NA
1467 mutex_lock(&sctx->wr_lock);
1468 if (sctx->write_pointer < physical_end) {
1469 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470 physical,
1471 sctx->write_pointer);
1472 if (ret)
1473 btrfs_err(fs_info,
1474 "zoned: failed to recover write pointer");
1475 }
1476 mutex_unlock(&sctx->wr_lock);
1477 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478
1479 return ret;
1480}
1481
b9795475
QW
1482static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483 struct scrub_stripe *stripe,
1484 u64 extent_start, u64 extent_len,
1485 u64 extent_flags, u64 extent_gen)
1486{
1487 for (u64 cur_logical = max(stripe->logical, extent_start);
1488 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489 extent_start + extent_len);
1490 cur_logical += fs_info->sectorsize) {
1491 const int nr_sector = (cur_logical - stripe->logical) >>
1492 fs_info->sectorsize_bits;
1493 struct scrub_sector_verification *sector =
1494 &stripe->sectors[nr_sector];
1495
1496 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498 sector->is_metadata = true;
1499 sector->generation = extent_gen;
1500 }
1501 }
1502}
1503
1504static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505{
1506 stripe->extent_sector_bitmap = 0;
1507 stripe->init_error_bitmap = 0;
79b8ee70
QW
1508 stripe->init_nr_io_errors = 0;
1509 stripe->init_nr_csum_errors = 0;
1510 stripe->init_nr_meta_errors = 0;
b9795475
QW
1511 stripe->error_bitmap = 0;
1512 stripe->io_error_bitmap = 0;
1513 stripe->csum_error_bitmap = 0;
1514 stripe->meta_error_bitmap = 0;
1515}
1516
1517/*
1518 * Locate one stripe which has at least one extent in its range.
1519 *
1520 * Return 0 if found such stripe, and store its info into @stripe.
1521 * Return >0 if there is no such stripe in the specified range.
1522 * Return <0 for error.
1523 */
54765392 1524static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1dc4888e 1525 struct btrfs_path *extent_path,
3c771c19 1526 struct btrfs_path *csum_path,
54765392
QW
1527 struct btrfs_device *dev, u64 physical,
1528 int mirror_num, u64 logical_start,
1529 u32 logical_len,
1530 struct scrub_stripe *stripe)
b9795475
QW
1531{
1532 struct btrfs_fs_info *fs_info = bg->fs_info;
1533 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535 const u64 logical_end = logical_start + logical_len;
b9795475
QW
1536 u64 cur_logical = logical_start;
1537 u64 stripe_end;
1538 u64 extent_start;
1539 u64 extent_len;
1540 u64 extent_flags;
1541 u64 extent_gen;
1542 int ret;
1543
1544 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545 stripe->nr_sectors);
1546 scrub_stripe_reset_bitmaps(stripe);
1547
1548 /* The range must be inside the bg. */
1549 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550
1dc4888e
QW
1551 ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552 logical_len);
b9795475
QW
1553 /* Either error or not found. */
1554 if (ret)
1555 goto out;
1dc4888e
QW
1556 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557 &extent_gen);
00965807
QW
1558 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559 stripe->nr_meta_extents++;
1560 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561 stripe->nr_data_extents++;
b9795475
QW
1562 cur_logical = max(extent_start, cur_logical);
1563
1564 /*
1565 * Round down to stripe boundary.
1566 *
1567 * The extra calculation against bg->start is to handle block groups
1568 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569 */
1570 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571 bg->start;
1572 stripe->physical = physical + stripe->logical - logical_start;
1573 stripe->dev = dev;
1574 stripe->bg = bg;
1575 stripe->mirror_num = mirror_num;
1576 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577
1578 /* Fill the first extent info into stripe->sectors[] array. */
1579 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580 extent_flags, extent_gen);
1581 cur_logical = extent_start + extent_len;
1582
1583 /* Fill the extent info for the remaining sectors. */
1584 while (cur_logical <= stripe_end) {
1dc4888e 1585 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
b9795475
QW
1586 stripe_end - cur_logical + 1);
1587 if (ret < 0)
1588 goto out;
1589 if (ret > 0) {
1590 ret = 0;
1591 break;
1592 }
1dc4888e 1593 get_extent_info(extent_path, &extent_start, &extent_len,
b9795475 1594 &extent_flags, &extent_gen);
00965807
QW
1595 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596 stripe->nr_meta_extents++;
1597 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598 stripe->nr_data_extents++;
b9795475
QW
1599 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600 extent_flags, extent_gen);
1601 cur_logical = extent_start + extent_len;
1602 }
1603
1604 /* Now fill the data csum. */
1605 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606 int sector_nr;
1607 unsigned long csum_bitmap = 0;
1608
1609 /* Csum space should have already been allocated. */
1610 ASSERT(stripe->csums);
1611
1612 /*
1613 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614 * should contain at most 16 sectors.
1615 */
1616 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617
3c771c19
QW
1618 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619 stripe->logical, stripe_end,
1620 stripe->csums, &csum_bitmap);
b9795475
QW
1621 if (ret < 0)
1622 goto out;
1623 if (ret > 0)
1624 ret = 0;
1625
1626 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627 stripe->sectors[sector_nr].csum = stripe->csums +
1628 sector_nr * fs_info->csum_size;
1629 }
1630 }
1631 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632out:
b9795475
QW
1633 return ret;
1634}
1635
54765392
QW
1636static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637{
1638 scrub_stripe_reset_bitmaps(stripe);
1639
1640 stripe->nr_meta_extents = 0;
1641 stripe->nr_data_extents = 0;
1642 stripe->state = 0;
1643
1644 for (int i = 0; i < stripe->nr_sectors; i++) {
1645 stripe->sectors[i].is_metadata = false;
1646 stripe->sectors[i].csum = NULL;
1647 stripe->sectors[i].generation = 0;
1648 }
1649}
1650
33eb1e5d
QW
1651static u32 stripe_length(const struct scrub_stripe *stripe)
1652{
1653 ASSERT(stripe->bg);
1654
1655 return min(BTRFS_STRIPE_LEN,
1656 stripe->bg->start + stripe->bg->length - stripe->logical);
1657}
1658
9acaa641
JT
1659static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1660 struct scrub_stripe *stripe)
1661{
1662 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1663 struct btrfs_bio *bbio = NULL;
33eb1e5d 1664 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
9acaa641
JT
1665 u64 stripe_len = BTRFS_STRIPE_LEN;
1666 int mirror = stripe->mirror_num;
1667 int i;
1668
1669 atomic_inc(&stripe->pending_io);
1670
1671 for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1672 struct page *page = scrub_stripe_get_page(stripe, i);
1673 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1674
7f2d219e
QW
1675 /* We're beyond the chunk boundary, no need to read anymore. */
1676 if (i >= nr_sectors)
1677 break;
1678
9acaa641
JT
1679 /* The current sector cannot be merged, submit the bio. */
1680 if (bbio &&
1681 ((i > 0 &&
1682 !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1683 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1684 ASSERT(bbio->bio.bi_iter.bi_size);
1685 atomic_inc(&stripe->pending_io);
1686 btrfs_submit_bio(bbio, mirror);
1687 bbio = NULL;
1688 }
1689
1690 if (!bbio) {
1691 struct btrfs_io_stripe io_stripe = {};
1692 struct btrfs_io_context *bioc = NULL;
1693 const u64 logical = stripe->logical +
1694 (i << fs_info->sectorsize_bits);
1695 int err;
1696
9acaa641 1697 io_stripe.is_scrub = true;
2c499086
QW
1698 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1699 /*
1700 * For RST cases, we need to manually split the bbio to
1701 * follow the RST boundary.
1702 */
9acaa641 1703 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2c499086 1704 &stripe_len, &bioc, &io_stripe, &mirror);
9acaa641 1705 btrfs_put_bioc(bioc);
2c499086
QW
1706 if (err < 0) {
1707 set_bit(i, &stripe->io_error_bitmap);
1708 set_bit(i, &stripe->error_bitmap);
1709 continue;
9acaa641 1710 }
2c499086
QW
1711
1712 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1713 fs_info, scrub_read_endio, stripe);
1714 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
9acaa641
JT
1715 }
1716
1717 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1718 }
1719
1720 if (bbio) {
1721 ASSERT(bbio->bio.bi_iter.bi_size);
1722 atomic_inc(&stripe->pending_io);
1723 btrfs_submit_bio(bbio, mirror);
1724 }
1725
1726 if (atomic_dec_and_test(&stripe->pending_io)) {
1727 wake_up(&stripe->io_wait);
1728 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1729 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1730 }
1731}
1732
54765392
QW
1733static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1734 struct scrub_stripe *stripe)
1735{
1736 struct btrfs_fs_info *fs_info = sctx->fs_info;
1737 struct btrfs_bio *bbio;
33eb1e5d 1738 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
54765392
QW
1739 int mirror = stripe->mirror_num;
1740
1741 ASSERT(stripe->bg);
1742 ASSERT(stripe->mirror_num > 0);
1743 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1744
9acaa641
JT
1745 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1746 scrub_submit_extent_sector_read(sctx, stripe);
1747 return;
1748 }
1749
54765392
QW
1750 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1751 scrub_read_endio, stripe);
1752
54765392 1753 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
f546c428
QW
1754 /* Read the whole range inside the chunk boundary. */
1755 for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1756 struct page *page = scrub_stripe_get_page(stripe, cur);
1757 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
54765392
QW
1758 int ret;
1759
f546c428 1760 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
54765392 1761 /* We should have allocated enough bio vectors. */
f546c428 1762 ASSERT(ret == fs_info->sectorsize);
54765392
QW
1763 }
1764 atomic_inc(&stripe->pending_io);
1765
1766 /*
1767 * For dev-replace, either user asks to avoid the source dev, or
1768 * the device is missing, we try the next mirror instead.
1769 */
1770 if (sctx->is_dev_replace &&
1771 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1772 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1773 !stripe->dev->bdev)) {
1774 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1775 stripe->bg->length);
1776
1777 mirror = calc_next_mirror(mirror, num_copies);
1778 }
1779 btrfs_submit_bio(bbio, mirror);
1780}
1781
8eb3dd17
QW
1782static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1783{
1784 int i;
1785
1786 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1787 if (stripe->sectors[i].is_metadata) {
1788 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1789
1790 btrfs_err(fs_info,
1791 "stripe %llu has unrepaired metadata sector at %llu",
1792 stripe->logical,
1793 stripe->logical + (i << fs_info->sectorsize_bits));
1794 return true;
1795 }
1796 }
1797 return false;
1798}
1799
ae76d8e3
QW
1800static void submit_initial_group_read(struct scrub_ctx *sctx,
1801 unsigned int first_slot,
1802 unsigned int nr_stripes)
1803{
1804 struct blk_plug plug;
1805
1806 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1807 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1808
1809 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1810 btrfs_stripe_nr_to_offset(nr_stripes));
1811 blk_start_plug(&plug);
1812 for (int i = 0; i < nr_stripes; i++) {
1813 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1814
1815 /* Those stripes should be initialized. */
1816 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1817 scrub_submit_initial_read(sctx, stripe);
1818 }
1819 blk_finish_plug(&plug);
1820}
1821
8eb3dd17 1822static int flush_scrub_stripes(struct scrub_ctx *sctx)
54765392
QW
1823{
1824 struct btrfs_fs_info *fs_info = sctx->fs_info;
1825 struct scrub_stripe *stripe;
1826 const int nr_stripes = sctx->cur_stripe;
8eb3dd17 1827 int ret = 0;
54765392
QW
1828
1829 if (!nr_stripes)
8eb3dd17 1830 return 0;
54765392
QW
1831
1832 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
e02ee89b 1833
ae76d8e3
QW
1834 /* Submit the stripes which are populated but not submitted. */
1835 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1836 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1837
1838 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
54765392
QW
1839 }
1840
1841 for (int i = 0; i < nr_stripes; i++) {
1842 stripe = &sctx->stripes[i];
1843
1844 wait_event(stripe->repair_wait,
1845 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1846 }
1847
54765392
QW
1848 /* Submit for dev-replace. */
1849 if (sctx->is_dev_replace) {
8eb3dd17
QW
1850 /*
1851 * For dev-replace, if we know there is something wrong with
eefaf0a1 1852 * metadata, we should immediately abort.
8eb3dd17
QW
1853 */
1854 for (int i = 0; i < nr_stripes; i++) {
1855 if (stripe_has_metadata_error(&sctx->stripes[i])) {
1856 ret = -EIO;
1857 goto out;
1858 }
1859 }
54765392
QW
1860 for (int i = 0; i < nr_stripes; i++) {
1861 unsigned long good;
1862
1863 stripe = &sctx->stripes[i];
1864
1865 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1866
1867 bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1868 &stripe->error_bitmap, stripe->nr_sectors);
1869 scrub_write_sectors(sctx, stripe, good, true);
1870 }
1871 }
1872
1873 /* Wait for the above writebacks to finish. */
1874 for (int i = 0; i < nr_stripes; i++) {
1875 stripe = &sctx->stripes[i];
1876
1877 wait_scrub_stripe_io(stripe);
63447b7d
QW
1878 spin_lock(&sctx->stat_lock);
1879 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1880 spin_unlock(&sctx->stat_lock);
54765392
QW
1881 scrub_reset_stripe(stripe);
1882 }
8eb3dd17 1883out:
54765392 1884 sctx->cur_stripe = 0;
8eb3dd17 1885 return ret;
54765392
QW
1886}
1887
1009254b
QW
1888static void raid56_scrub_wait_endio(struct bio *bio)
1889{
1890 complete(bio->bi_private);
1891}
1892
e02ee89b
QW
1893static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1894 struct btrfs_device *dev, int mirror_num,
ae76d8e3
QW
1895 u64 logical, u32 length, u64 physical,
1896 u64 *found_logical_ret)
54765392
QW
1897{
1898 struct scrub_stripe *stripe;
1899 int ret;
1900
ae76d8e3
QW
1901 /*
1902 * There should always be one slot left, as caller filling the last
1903 * slot should flush them all.
1904 */
1905 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
54765392 1906
47e2b06b
QW
1907 /* @found_logical_ret must be specified. */
1908 ASSERT(found_logical_ret);
1909
54765392 1910 stripe = &sctx->stripes[sctx->cur_stripe];
54765392 1911 scrub_reset_stripe(stripe);
3c771c19
QW
1912 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1913 &sctx->csum_path, dev, physical,
1914 mirror_num, logical, length, stripe);
54765392
QW
1915 /* Either >0 as no more extents or <0 for error. */
1916 if (ret)
1917 return ret;
47e2b06b 1918 *found_logical_ret = stripe->logical;
54765392 1919 sctx->cur_stripe++;
ae76d8e3
QW
1920
1921 /* We filled one group, submit it. */
1922 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1923 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1924
1925 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1926 }
1927
1928 /* Last slot used, flush them all. */
1929 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1930 return flush_scrub_stripes(sctx);
54765392
QW
1931 return 0;
1932}
1933
1009254b
QW
1934static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1935 struct btrfs_device *scrub_dev,
1936 struct btrfs_block_group *bg,
7dc66abb 1937 struct btrfs_chunk_map *map,
1009254b
QW
1938 u64 full_stripe_start)
1939{
1940 DECLARE_COMPLETION_ONSTACK(io_done);
1941 struct btrfs_fs_info *fs_info = sctx->fs_info;
1942 struct btrfs_raid_bio *rbio;
1943 struct btrfs_io_context *bioc = NULL;
1dc4888e 1944 struct btrfs_path extent_path = { 0 };
3c771c19 1945 struct btrfs_path csum_path = { 0 };
1009254b
QW
1946 struct bio *bio;
1947 struct scrub_stripe *stripe;
1948 bool all_empty = true;
1949 const int data_stripes = nr_data_stripes(map);
1950 unsigned long extent_bitmap = 0;
cb091225 1951 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1009254b
QW
1952 int ret;
1953
1954 ASSERT(sctx->raid56_data_stripes);
1955
1dc4888e 1956 /*
3c771c19
QW
1957 * For data stripe search, we cannot re-use the same extent/csum paths,
1958 * as the data stripe bytenr may be smaller than previous extent. Thus
1959 * we have to use our own extent/csum paths.
1dc4888e
QW
1960 */
1961 extent_path.search_commit_root = 1;
1962 extent_path.skip_locking = 1;
3c771c19
QW
1963 csum_path.search_commit_root = 1;
1964 csum_path.skip_locking = 1;
1dc4888e 1965
1009254b
QW
1966 for (int i = 0; i < data_stripes; i++) {
1967 int stripe_index;
1968 int rot;
1969 u64 physical;
1970
1971 stripe = &sctx->raid56_data_stripes[i];
1972 rot = div_u64(full_stripe_start - bg->start,
1973 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1974 stripe_index = (i + rot) % map->num_stripes;
1975 physical = map->stripes[stripe_index].physical +
cb091225 1976 btrfs_stripe_nr_to_offset(rot);
1009254b
QW
1977
1978 scrub_reset_stripe(stripe);
1979 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
3c771c19 1980 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1009254b 1981 map->stripes[stripe_index].dev, physical, 1,
cb091225 1982 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1009254b
QW
1983 BTRFS_STRIPE_LEN, stripe);
1984 if (ret < 0)
1985 goto out;
1986 /*
1987 * No extent in this data stripe, need to manually mark them
1988 * initialized to make later read submission happy.
1989 */
1990 if (ret > 0) {
1991 stripe->logical = full_stripe_start +
cb091225 1992 btrfs_stripe_nr_to_offset(i);
1009254b
QW
1993 stripe->dev = map->stripes[stripe_index].dev;
1994 stripe->mirror_num = 1;
1995 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1996 }
1997 }
1998
1999 /* Check if all data stripes are empty. */
2000 for (int i = 0; i < data_stripes; i++) {
2001 stripe = &sctx->raid56_data_stripes[i];
2002 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2003 all_empty = false;
2004 break;
2005 }
2006 }
2007 if (all_empty) {
2008 ret = 0;
2009 goto out;
2010 }
2011
2012 for (int i = 0; i < data_stripes; i++) {
2013 stripe = &sctx->raid56_data_stripes[i];
2014 scrub_submit_initial_read(sctx, stripe);
2015 }
2016 for (int i = 0; i < data_stripes; i++) {
2017 stripe = &sctx->raid56_data_stripes[i];
2018
2019 wait_event(stripe->repair_wait,
2020 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2021 }
2022 /* For now, no zoned support for RAID56. */
2023 ASSERT(!btrfs_is_zoned(sctx->fs_info));
2024
1009254b
QW
2025 /*
2026 * Now all data stripes are properly verified. Check if we have any
2027 * unrepaired, if so abort immediately or we could further corrupt the
2028 * P/Q stripes.
2029 *
2030 * During the loop, also populate extent_bitmap.
2031 */
2032 for (int i = 0; i < data_stripes; i++) {
2033 unsigned long error;
2034
2035 stripe = &sctx->raid56_data_stripes[i];
2036
2037 /*
2038 * We should only check the errors where there is an extent.
2039 * As we may hit an empty data stripe while it's missing.
2040 */
2041 bitmap_and(&error, &stripe->error_bitmap,
2042 &stripe->extent_sector_bitmap, stripe->nr_sectors);
2043 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2044 btrfs_err(fs_info,
2045"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2046 full_stripe_start, i, stripe->nr_sectors,
2047 &error);
2048 ret = -EIO;
2049 goto out;
2050 }
2051 bitmap_or(&extent_bitmap, &extent_bitmap,
2052 &stripe->extent_sector_bitmap, stripe->nr_sectors);
2053 }
2054
2055 /* Now we can check and regenerate the P/Q stripe. */
2056 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2057 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2058 bio->bi_private = &io_done;
2059 bio->bi_end_io = raid56_scrub_wait_endio;
2060
2061 btrfs_bio_counter_inc_blocked(fs_info);
723b8bb1 2062 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
9fb2acc2 2063 &length, &bioc, NULL, NULL);
1009254b
QW
2064 if (ret < 0) {
2065 btrfs_put_bioc(bioc);
2066 btrfs_bio_counter_dec(fs_info);
2067 goto out;
2068 }
2069 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2070 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2071 btrfs_put_bioc(bioc);
2072 if (!rbio) {
2073 ret = -ENOMEM;
2074 btrfs_bio_counter_dec(fs_info);
2075 goto out;
2076 }
94ead93e
QW
2077 /* Use the recovered stripes as cache to avoid read them from disk again. */
2078 for (int i = 0; i < data_stripes; i++) {
2079 stripe = &sctx->raid56_data_stripes[i];
2080
2081 raid56_parity_cache_data_pages(rbio, stripe->pages,
2082 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2083 }
1009254b
QW
2084 raid56_parity_submit_scrub_rbio(rbio);
2085 wait_for_completion_io(&io_done);
2086 ret = blk_status_to_errno(bio->bi_status);
2087 bio_put(bio);
2088 btrfs_bio_counter_dec(fs_info);
2089
1dc4888e 2090 btrfs_release_path(&extent_path);
3c771c19 2091 btrfs_release_path(&csum_path);
1009254b
QW
2092out:
2093 return ret;
2094}
2095
09022b14
QW
2096/*
2097 * Scrub one range which can only has simple mirror based profile.
2098 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2099 * RAID0/RAID10).
2100 *
2101 * Since we may need to handle a subset of block group, we need @logical_start
2102 * and @logical_length parameter.
2103 */
2104static int scrub_simple_mirror(struct scrub_ctx *sctx,
09022b14 2105 struct btrfs_block_group *bg,
7dc66abb 2106 struct btrfs_chunk_map *map,
09022b14
QW
2107 u64 logical_start, u64 logical_length,
2108 struct btrfs_device *device,
2109 u64 physical, int mirror_num)
2110{
2111 struct btrfs_fs_info *fs_info = sctx->fs_info;
2112 const u64 logical_end = logical_start + logical_length;
09022b14 2113 u64 cur_logical = logical_start;
b4e585ff 2114 int ret = 0;
09022b14
QW
2115
2116 /* The range must be inside the bg */
2117 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2118
09022b14
QW
2119 /* Go through each extent items inside the logical range */
2120 while (cur_logical < logical_end) {
47e2b06b 2121 u64 found_logical = U64_MAX;
e02ee89b 2122 u64 cur_physical = physical + cur_logical - logical_start;
09022b14
QW
2123
2124 /* Canceled? */
2125 if (atomic_read(&fs_info->scrub_cancel_req) ||
2126 atomic_read(&sctx->cancel_req)) {
2127 ret = -ECANCELED;
2128 break;
2129 }
2130 /* Paused? */
2131 if (atomic_read(&fs_info->scrub_pause_req)) {
2132 /* Push queued extents */
09022b14
QW
2133 scrub_blocked_if_needed(fs_info);
2134 }
2135 /* Block group removed? */
2136 spin_lock(&bg->lock);
3349b57f 2137 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
09022b14
QW
2138 spin_unlock(&bg->lock);
2139 ret = 0;
2140 break;
2141 }
2142 spin_unlock(&bg->lock);
2143
e02ee89b
QW
2144 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2145 cur_logical, logical_end - cur_logical,
ae76d8e3 2146 cur_physical, &found_logical);
09022b14
QW
2147 if (ret > 0) {
2148 /* No more extent, just update the accounting */
63447b7d 2149 spin_lock(&sctx->stat_lock);
09022b14 2150 sctx->stat.last_physical = physical + logical_length;
63447b7d 2151 spin_unlock(&sctx->stat_lock);
09022b14
QW
2152 ret = 0;
2153 break;
2154 }
2155 if (ret < 0)
2156 break;
09022b14 2157
47e2b06b
QW
2158 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2159 ASSERT(found_logical != U64_MAX);
ae76d8e3 2160 cur_logical = found_logical + BTRFS_STRIPE_LEN;
e02ee89b 2161
09022b14
QW
2162 /* Don't hold CPU for too long time */
2163 cond_resched();
2164 }
09022b14
QW
2165 return ret;
2166}
2167
8557635e 2168/* Calculate the full stripe length for simple stripe based profiles */
7dc66abb 2169static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
8557635e
QW
2170{
2171 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2172 BTRFS_BLOCK_GROUP_RAID10));
2173
cb091225 2174 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
8557635e
QW
2175}
2176
2177/* Get the logical bytenr for the stripe */
7dc66abb 2178static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
8557635e
QW
2179 struct btrfs_block_group *bg,
2180 int stripe_index)
2181{
2182 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2183 BTRFS_BLOCK_GROUP_RAID10));
2184 ASSERT(stripe_index < map->num_stripes);
2185
2186 /*
2187 * (stripe_index / sub_stripes) gives how many data stripes we need to
2188 * skip.
2189 */
cb091225 2190 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
a97699d1 2191 bg->start;
8557635e
QW
2192}
2193
2194/* Get the mirror number for the stripe */
7dc66abb 2195static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
8557635e
QW
2196{
2197 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2198 BTRFS_BLOCK_GROUP_RAID10));
2199 ASSERT(stripe_index < map->num_stripes);
2200
2201 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2202 return stripe_index % map->sub_stripes + 1;
2203}
2204
2205static int scrub_simple_stripe(struct scrub_ctx *sctx,
8557635e 2206 struct btrfs_block_group *bg,
7dc66abb 2207 struct btrfs_chunk_map *map,
8557635e
QW
2208 struct btrfs_device *device,
2209 int stripe_index)
2210{
2211 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2212 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2213 const u64 orig_physical = map->stripes[stripe_index].physical;
2214 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2215 u64 cur_logical = orig_logical;
2216 u64 cur_physical = orig_physical;
2217 int ret = 0;
2218
2219 while (cur_logical < bg->start + bg->length) {
2220 /*
2221 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2222 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2223 * this stripe.
2224 */
6b4d375a
QW
2225 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2226 BTRFS_STRIPE_LEN, device, cur_physical,
2227 mirror_num);
8557635e
QW
2228 if (ret)
2229 return ret;
2230 /* Skip to next stripe which belongs to the target device */
2231 cur_logical += logical_increment;
2232 /* For physical offset, we just go to next stripe */
a97699d1 2233 cur_physical += BTRFS_STRIPE_LEN;
8557635e
QW
2234 }
2235 return ret;
2236}
2237
d9d181c1 2238static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2ae8ae3d 2239 struct btrfs_block_group *bg,
7dc66abb 2240 struct btrfs_chunk_map *map,
a36cf8b8 2241 struct btrfs_device *scrub_dev,
bc88b486 2242 int stripe_index)
a2de733c 2243{
fb456252 2244 struct btrfs_fs_info *fs_info = sctx->fs_info;
09022b14 2245 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2ae8ae3d 2246 const u64 chunk_logical = bg->start;
a2de733c 2247 int ret;
8eb3dd17 2248 int ret2;
1194a824 2249 u64 physical = map->stripes[stripe_index].physical;
7dc66abb 2250 const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
bc88b486 2251 const u64 physical_end = physical + dev_stripe_len;
a2de733c 2252 u64 logical;
625f1c8d 2253 u64 logic_end;
18d30ab9 2254 /* The logical increment after finishing one stripe */
5c07c53f 2255 u64 increment;
18d30ab9 2256 /* Offset inside the chunk */
a2de733c 2257 u64 offset;
5a6ac9ea 2258 u64 stripe_logical;
3b080b25 2259 int stop_loop = 0;
53b381b3 2260
1dc4888e
QW
2261 /* Extent_path should be released by now. */
2262 ASSERT(sctx->extent_path.nodes[0] == NULL);
2263
cb7ab021 2264 scrub_blocked_if_needed(fs_info);
7a26285e 2265
de17addc
NA
2266 if (sctx->is_dev_replace &&
2267 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2268 mutex_lock(&sctx->wr_lock);
2269 sctx->write_pointer = physical;
2270 mutex_unlock(&sctx->wr_lock);
de17addc
NA
2271 }
2272
1009254b
QW
2273 /* Prepare the extra data stripes used by RAID56. */
2274 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2275 ASSERT(sctx->raid56_data_stripes == NULL);
2276
2277 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2278 sizeof(struct scrub_stripe),
2279 GFP_KERNEL);
2280 if (!sctx->raid56_data_stripes) {
2281 ret = -ENOMEM;
2282 goto out;
2283 }
2284 for (int i = 0; i < nr_data_stripes(map); i++) {
2285 ret = init_scrub_stripe(fs_info,
2286 &sctx->raid56_data_stripes[i]);
2287 if (ret < 0)
2288 goto out;
2289 sctx->raid56_data_stripes[i].bg = bg;
2290 sctx->raid56_data_stripes[i].sctx = sctx;
2291 }
2292 }
09022b14
QW
2293 /*
2294 * There used to be a big double loop to handle all profiles using the
2295 * same routine, which grows larger and more gross over time.
2296 *
2297 * So here we handle each profile differently, so simpler profiles
2298 * have simpler scrubbing function.
2299 */
2300 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2301 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2302 /*
2303 * Above check rules out all complex profile, the remaining
2304 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2305 * mirrored duplication without stripe.
2306 *
2307 * Only @physical and @mirror_num needs to calculated using
2308 * @stripe_index.
2309 */
6b4d375a
QW
2310 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2311 scrub_dev, map->stripes[stripe_index].physical,
09022b14 2312 stripe_index + 1);
e430c428 2313 offset = 0;
09022b14
QW
2314 goto out;
2315 }
8557635e 2316 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
6b4d375a 2317 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
cb091225 2318 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
8557635e
QW
2319 goto out;
2320 }
2321
2322 /* Only RAID56 goes through the old code */
2323 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
a2de733c 2324 ret = 0;
e430c428
QW
2325
2326 /* Calculate the logical end of the stripe */
2327 get_raid56_logic_offset(physical_end, stripe_index,
2328 map, &logic_end, NULL);
2329 logic_end += chunk_logical;
2330
2331 /* Initialize @offset in case we need to go to out: label */
2332 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
cb091225 2333 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
e430c428 2334
18d30ab9
QW
2335 /*
2336 * Due to the rotation, for RAID56 it's better to iterate each stripe
2337 * using their physical offset.
2338 */
3b080b25 2339 while (physical < physical_end) {
18d30ab9
QW
2340 ret = get_raid56_logic_offset(physical, stripe_index, map,
2341 &logical, &stripe_logical);
e430c428
QW
2342 logical += chunk_logical;
2343 if (ret) {
2344 /* it is parity strip */
2345 stripe_logical += chunk_logical;
1009254b
QW
2346 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2347 map, stripe_logical);
63447b7d
QW
2348 spin_lock(&sctx->stat_lock);
2349 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2350 physical_end);
2351 spin_unlock(&sctx->stat_lock);
e430c428
QW
2352 if (ret)
2353 goto out;
18d30ab9 2354 goto next;
f2f66a2f
ZL
2355 }
2356
18d30ab9
QW
2357 /*
2358 * Now we're at a data stripe, scrub each extents in the range.
2359 *
2360 * At this stage, if we ignore the repair part, inside each data
2361 * stripe it is no different than SINGLE profile.
2362 * We can reuse scrub_simple_mirror() here, as the repair part
2363 * is still based on @mirror_num.
2364 */
6b4d375a 2365 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
18d30ab9 2366 scrub_dev, physical, 1);
a2de733c
AJ
2367 if (ret < 0)
2368 goto out;
a2de733c 2369next:
a2de733c 2370 logical += increment;
a97699d1 2371 physical += BTRFS_STRIPE_LEN;
d9d181c1 2372 spin_lock(&sctx->stat_lock);
625f1c8d 2373 if (stop_loop)
bc88b486
QW
2374 sctx->stat.last_physical =
2375 map->stripes[stripe_index].physical + dev_stripe_len;
625f1c8d
LB
2376 else
2377 sctx->stat.last_physical = physical;
d9d181c1 2378 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
2379 if (stop_loop)
2380 break;
a2de733c 2381 }
ff023aac 2382out:
8eb3dd17 2383 ret2 = flush_scrub_stripes(sctx);
b50f2d04 2384 if (!ret)
8eb3dd17 2385 ret = ret2;
1dc4888e 2386 btrfs_release_path(&sctx->extent_path);
3c771c19 2387 btrfs_release_path(&sctx->csum_path);
1dc4888e 2388
1009254b
QW
2389 if (sctx->raid56_data_stripes) {
2390 for (int i = 0; i < nr_data_stripes(map); i++)
2391 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2392 kfree(sctx->raid56_data_stripes);
2393 sctx->raid56_data_stripes = NULL;
2394 }
7db1c5d1
NA
2395
2396 if (sctx->is_dev_replace && ret >= 0) {
2397 int ret2;
2398
2ae8ae3d
QW
2399 ret2 = sync_write_pointer_for_zoned(sctx,
2400 chunk_logical + offset,
2401 map->stripes[stripe_index].physical,
2402 physical_end);
7db1c5d1
NA
2403 if (ret2)
2404 ret = ret2;
2405 }
2406
a2de733c
AJ
2407 return ret < 0 ? ret : 0;
2408}
2409
d9d181c1 2410static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
d04fbe19 2411 struct btrfs_block_group *bg,
a36cf8b8 2412 struct btrfs_device *scrub_dev,
020d5b73 2413 u64 dev_offset,
d04fbe19 2414 u64 dev_extent_len)
a2de733c 2415{
fb456252 2416 struct btrfs_fs_info *fs_info = sctx->fs_info;
7dc66abb 2417 struct btrfs_chunk_map *map;
a2de733c 2418 int i;
ff023aac 2419 int ret = 0;
a2de733c 2420
7dc66abb
FM
2421 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2422 if (!map) {
020d5b73
FM
2423 /*
2424 * Might have been an unused block group deleted by the cleaner
2425 * kthread or relocation.
2426 */
d04fbe19 2427 spin_lock(&bg->lock);
3349b57f 2428 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
020d5b73 2429 ret = -EINVAL;
d04fbe19 2430 spin_unlock(&bg->lock);
020d5b73
FM
2431
2432 return ret;
2433 }
7dc66abb 2434 if (map->start != bg->start)
a2de733c 2435 goto out;
7dc66abb 2436 if (map->chunk_len < dev_extent_len)
a2de733c
AJ
2437 goto out;
2438
2439 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 2440 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 2441 map->stripes[i].physical == dev_offset) {
7dc66abb 2442 ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
a2de733c
AJ
2443 if (ret)
2444 goto out;
2445 }
2446 }
2447out:
7dc66abb 2448 btrfs_free_chunk_map(map);
a2de733c
AJ
2449
2450 return ret;
2451}
2452
de17addc
NA
2453static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2454 struct btrfs_block_group *cache)
2455{
2456 struct btrfs_fs_info *fs_info = cache->fs_info;
de17addc
NA
2457
2458 if (!btrfs_is_zoned(fs_info))
2459 return 0;
2460
2461 btrfs_wait_block_group_reservations(cache);
2462 btrfs_wait_nocow_writers(cache);
42317ab4 2463 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
de17addc 2464
ded980eb 2465 return btrfs_commit_current_transaction(root);
de17addc
NA
2466}
2467
a2de733c 2468static noinline_for_stack
a36cf8b8 2469int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 2470 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
2471{
2472 struct btrfs_dev_extent *dev_extent = NULL;
2473 struct btrfs_path *path;
0b246afa
JM
2474 struct btrfs_fs_info *fs_info = sctx->fs_info;
2475 struct btrfs_root *root = fs_info->dev_root;
a2de733c 2476 u64 chunk_offset;
55e3a601 2477 int ret = 0;
76a8efa1 2478 int ro_set;
a2de733c
AJ
2479 int slot;
2480 struct extent_buffer *l;
2481 struct btrfs_key key;
2482 struct btrfs_key found_key;
32da5386 2483 struct btrfs_block_group *cache;
ff023aac 2484 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
2485
2486 path = btrfs_alloc_path();
2487 if (!path)
2488 return -ENOMEM;
2489
e4058b54 2490 path->reada = READA_FORWARD;
a2de733c
AJ
2491 path->search_commit_root = 1;
2492 path->skip_locking = 1;
2493
a36cf8b8 2494 key.objectid = scrub_dev->devid;
a2de733c
AJ
2495 key.offset = 0ull;
2496 key.type = BTRFS_DEV_EXTENT_KEY;
2497
a2de733c 2498 while (1) {
d04fbe19
QW
2499 u64 dev_extent_len;
2500
a2de733c
AJ
2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 if (ret < 0)
8c51032f
AJ
2503 break;
2504 if (ret > 0) {
2505 if (path->slots[0] >=
2506 btrfs_header_nritems(path->nodes[0])) {
2507 ret = btrfs_next_leaf(root, path);
55e3a601
Z
2508 if (ret < 0)
2509 break;
2510 if (ret > 0) {
2511 ret = 0;
8c51032f 2512 break;
55e3a601
Z
2513 }
2514 } else {
2515 ret = 0;
8c51032f
AJ
2516 }
2517 }
a2de733c
AJ
2518
2519 l = path->nodes[0];
2520 slot = path->slots[0];
2521
2522 btrfs_item_key_to_cpu(l, &found_key, slot);
2523
a36cf8b8 2524 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
2525 break;
2526
962a298f 2527 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2528 break;
2529
2530 if (found_key.offset >= end)
2531 break;
2532
2533 if (found_key.offset < key.offset)
2534 break;
2535
2536 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
d04fbe19 2537 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
a2de733c 2538
d04fbe19 2539 if (found_key.offset + dev_extent_len <= start)
ced96edc 2540 goto skip;
a2de733c 2541
a2de733c
AJ
2542 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2543
2544 /*
2545 * get a reference on the corresponding block group to prevent
2546 * the chunk from going away while we scrub it
2547 */
2548 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
2549
2550 /* some chunks are removed but not committed to disk yet,
2551 * continue scrubbing */
2552 if (!cache)
2553 goto skip;
2554
a692e13d
FM
2555 ASSERT(cache->start <= chunk_offset);
2556 /*
2557 * We are using the commit root to search for device extents, so
2558 * that means we could have found a device extent item from a
2559 * block group that was deleted in the current transaction. The
2560 * logical start offset of the deleted block group, stored at
2561 * @chunk_offset, might be part of the logical address range of
2562 * a new block group (which uses different physical extents).
2563 * In this case btrfs_lookup_block_group() has returned the new
2564 * block group, and its start address is less than @chunk_offset.
2565 *
2566 * We skip such new block groups, because it's pointless to
2567 * process them, as we won't find their extents because we search
2568 * for them using the commit root of the extent tree. For a device
2569 * replace it's also fine to skip it, we won't miss copying them
2570 * to the target device because we have the write duplication
2571 * setup through the regular write path (by btrfs_map_block()),
2572 * and we have committed a transaction when we started the device
2573 * replace, right after setting up the device replace state.
2574 */
2575 if (cache->start < chunk_offset) {
2576 btrfs_put_block_group(cache);
2577 goto skip;
2578 }
2579
78ce9fc2 2580 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3349b57f 2581 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
0dc16ef4
FM
2582 btrfs_put_block_group(cache);
2583 goto skip;
78ce9fc2 2584 }
78ce9fc2
NA
2585 }
2586
2473d24f
FM
2587 /*
2588 * Make sure that while we are scrubbing the corresponding block
2589 * group doesn't get its logical address and its device extents
2590 * reused for another block group, which can possibly be of a
2591 * different type and different profile. We do this to prevent
2592 * false error detections and crashes due to bogus attempts to
2593 * repair extents.
2594 */
2595 spin_lock(&cache->lock);
3349b57f 2596 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2473d24f
FM
2597 spin_unlock(&cache->lock);
2598 btrfs_put_block_group(cache);
2599 goto skip;
2600 }
6b7304af 2601 btrfs_freeze_block_group(cache);
2473d24f
FM
2602 spin_unlock(&cache->lock);
2603
55e3a601
Z
2604 /*
2605 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2606 * to avoid deadlock caused by:
2607 * btrfs_inc_block_group_ro()
2608 * -> btrfs_wait_for_commit()
2609 * -> btrfs_commit_transaction()
2610 * -> btrfs_scrub_pause()
2611 */
2612 scrub_pause_on(fs_info);
b12de528
QW
2613
2614 /*
2615 * Don't do chunk preallocation for scrub.
2616 *
2617 * This is especially important for SYSTEM bgs, or we can hit
2618 * -EFBIG from btrfs_finish_chunk_alloc() like:
2619 * 1. The only SYSTEM bg is marked RO.
2620 * Since SYSTEM bg is small, that's pretty common.
2621 * 2. New SYSTEM bg will be allocated
2622 * Due to regular version will allocate new chunk.
2623 * 3. New SYSTEM bg is empty and will get cleaned up
2624 * Before cleanup really happens, it's marked RO again.
2625 * 4. Empty SYSTEM bg get scrubbed
2626 * We go back to 2.
2627 *
2628 * This can easily boost the amount of SYSTEM chunks if cleaner
2629 * thread can't be triggered fast enough, and use up all space
2630 * of btrfs_super_block::sys_chunk_array
1bbb97b8
QW
2631 *
2632 * While for dev replace, we need to try our best to mark block
2633 * group RO, to prevent race between:
2634 * - Write duplication
2635 * Contains latest data
2636 * - Scrub copy
2637 * Contains data from commit tree
2638 *
2639 * If target block group is not marked RO, nocow writes can
2640 * be overwritten by scrub copy, causing data corruption.
2641 * So for dev-replace, it's not allowed to continue if a block
2642 * group is not RO.
b12de528 2643 */
1bbb97b8 2644 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
de17addc
NA
2645 if (!ret && sctx->is_dev_replace) {
2646 ret = finish_extent_writes_for_zoned(root, cache);
2647 if (ret) {
2648 btrfs_dec_block_group_ro(cache);
2649 scrub_pause_off(fs_info);
2650 btrfs_put_block_group(cache);
2651 break;
2652 }
2653 }
2654
76a8efa1
Z
2655 if (ret == 0) {
2656 ro_set = 1;
7561551e
QW
2657 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2658 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
76a8efa1
Z
2659 /*
2660 * btrfs_inc_block_group_ro return -ENOSPC when it
2661 * failed in creating new chunk for metadata.
1bbb97b8 2662 * It is not a problem for scrub, because
76a8efa1
Z
2663 * metadata are always cowed, and our scrub paused
2664 * commit_transactions.
7561551e
QW
2665 *
2666 * For RAID56 chunks, we have to mark them read-only
2667 * for scrub, as later we would use our own cache
2668 * out of RAID56 realm.
2669 * Thus we want the RAID56 bg to be marked RO to
2670 * prevent RMW from screwing up out cache.
76a8efa1
Z
2671 */
2672 ro_set = 0;
195a49ea
FM
2673 } else if (ret == -ETXTBSY) {
2674 btrfs_warn(fs_info,
2675 "skipping scrub of block group %llu due to active swapfile",
2676 cache->start);
2677 scrub_pause_off(fs_info);
2678 ret = 0;
2679 goto skip_unfreeze;
76a8efa1 2680 } else {
5d163e0e 2681 btrfs_warn(fs_info,
913e1535 2682 "failed setting block group ro: %d", ret);
6b7304af 2683 btrfs_unfreeze_block_group(cache);
55e3a601 2684 btrfs_put_block_group(cache);
1bbb97b8 2685 scrub_pause_off(fs_info);
55e3a601
Z
2686 break;
2687 }
2688
1bbb97b8
QW
2689 /*
2690 * Now the target block is marked RO, wait for nocow writes to
2691 * finish before dev-replace.
2692 * COW is fine, as COW never overwrites extents in commit tree.
2693 */
2694 if (sctx->is_dev_replace) {
2695 btrfs_wait_nocow_writers(cache);
42317ab4 2696 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
1bbb97b8
QW
2697 }
2698
2699 scrub_pause_off(fs_info);
3ec17a67 2700 down_write(&dev_replace->rwsem);
d04fbe19 2701 dev_replace->cursor_right = found_key.offset + dev_extent_len;
ff023aac
SB
2702 dev_replace->cursor_left = found_key.offset;
2703 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
2704 up_write(&dev_replace->rwsem);
2705
d04fbe19
QW
2706 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2707 dev_extent_len);
78ce9fc2
NA
2708 if (sctx->is_dev_replace &&
2709 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2710 cache, found_key.offset))
2711 ro_set = 0;
2712
3ec17a67 2713 down_write(&dev_replace->rwsem);
1a1a8b73
FM
2714 dev_replace->cursor_left = dev_replace->cursor_right;
2715 dev_replace->item_needs_writeback = 1;
3ec17a67 2716 up_write(&dev_replace->rwsem);
1a1a8b73 2717
76a8efa1 2718 if (ro_set)
2ff7e61e 2719 btrfs_dec_block_group_ro(cache);
ff023aac 2720
758f2dfc
FM
2721 /*
2722 * We might have prevented the cleaner kthread from deleting
2723 * this block group if it was already unused because we raced
2724 * and set it to RO mode first. So add it back to the unused
2725 * list, otherwise it might not ever be deleted unless a manual
2726 * balance is triggered or it becomes used and unused again.
2727 */
2728 spin_lock(&cache->lock);
3349b57f
JB
2729 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2730 !cache->ro && cache->reserved == 0 && cache->used == 0) {
758f2dfc 2731 spin_unlock(&cache->lock);
6e80d4f8
DZ
2732 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2733 btrfs_discard_queue_work(&fs_info->discard_ctl,
2734 cache);
2735 else
2736 btrfs_mark_bg_unused(cache);
758f2dfc
FM
2737 } else {
2738 spin_unlock(&cache->lock);
2739 }
195a49ea 2740skip_unfreeze:
6b7304af 2741 btrfs_unfreeze_block_group(cache);
a2de733c
AJ
2742 btrfs_put_block_group(cache);
2743 if (ret)
2744 break;
32934280 2745 if (sctx->is_dev_replace &&
af1be4f8 2746 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
2747 ret = -EIO;
2748 break;
2749 }
2750 if (sctx->stat.malloc_errors > 0) {
2751 ret = -ENOMEM;
2752 break;
2753 }
ced96edc 2754skip:
d04fbe19 2755 key.offset = found_key.offset + dev_extent_len;
71267333 2756 btrfs_release_path(path);
a2de733c
AJ
2757 }
2758
a2de733c 2759 btrfs_free_path(path);
8c51032f 2760
55e3a601 2761 return ret;
a2de733c
AJ
2762}
2763
2a2dc22f
QW
2764static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2765 struct page *page, u64 physical, u64 generation)
2766{
2767 struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 struct bio_vec bvec;
2769 struct bio bio;
2770 struct btrfs_super_block *sb = page_address(page);
2771 int ret;
2772
2773 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2774 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2775 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2776 ret = submit_bio_wait(&bio);
2777 bio_uninit(&bio);
2778
2779 if (ret < 0)
2780 return ret;
2781 ret = btrfs_check_super_csum(fs_info, sb);
2782 if (ret != 0) {
2783 btrfs_err_rl(fs_info,
2784 "super block at physical %llu devid %llu has bad csum",
2785 physical, dev->devid);
2786 return -EIO;
2787 }
2788 if (btrfs_super_generation(sb) != generation) {
2789 btrfs_err_rl(fs_info,
2790"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2791 physical, dev->devid,
2792 btrfs_super_generation(sb), generation);
2793 return -EUCLEAN;
2794 }
2795
2796 return btrfs_validate_super(fs_info, sb, -1);
2797}
2798
a36cf8b8
SB
2799static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2800 struct btrfs_device *scrub_dev)
a2de733c
AJ
2801{
2802 int i;
2803 u64 bytenr;
2804 u64 gen;
2a2dc22f
QW
2805 int ret = 0;
2806 struct page *page;
0b246afa 2807 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 2808
84961539 2809 if (BTRFS_FS_ERROR(fs_info))
fbabd4a3 2810 return -EROFS;
79787eaa 2811
2a2dc22f
QW
2812 page = alloc_page(GFP_KERNEL);
2813 if (!page) {
2814 spin_lock(&sctx->stat_lock);
2815 sctx->stat.malloc_errors++;
2816 spin_unlock(&sctx->stat_lock);
2817 return -ENOMEM;
2818 }
2819
5f546063 2820 /* Seed devices of a new filesystem has their own generation. */
0b246afa 2821 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
2822 gen = scrub_dev->generation;
2823 else
0124855f 2824 gen = btrfs_get_last_trans_committed(fs_info);
a2de733c
AJ
2825
2826 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
74098a98
JT
2827 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2828 if (ret == -ENOENT)
2829 break;
2830
2831 if (ret) {
2832 spin_lock(&sctx->stat_lock);
2833 sctx->stat.super_errors++;
2834 spin_unlock(&sctx->stat_lock);
2835 continue;
2836 }
2837
935e5cc9
MX
2838 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2839 scrub_dev->commit_total_bytes)
a2de733c 2840 break;
12659251
NA
2841 if (!btrfs_check_super_location(scrub_dev, bytenr))
2842 continue;
a2de733c 2843
2a2dc22f
QW
2844 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2845 if (ret) {
2846 spin_lock(&sctx->stat_lock);
2847 sctx->stat.super_errors++;
2848 spin_unlock(&sctx->stat_lock);
2849 }
a2de733c 2850 }
2a2dc22f 2851 __free_page(page);
a2de733c
AJ
2852 return 0;
2853}
2854
e89c4a9c
JB
2855static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2856{
2857 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2858 &fs_info->scrub_lock)) {
be539518 2859 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
e89c4a9c
JB
2860
2861 fs_info->scrub_workers = NULL;
e89c4a9c
JB
2862 mutex_unlock(&fs_info->scrub_lock);
2863
be539518
CH
2864 if (scrub_workers)
2865 destroy_workqueue(scrub_workers);
e89c4a9c
JB
2866 }
2867}
2868
a2de733c
AJ
2869/*
2870 * get a reference count on fs_info->scrub_workers. start worker if necessary
2871 */
39dc7bd9 2872static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
a2de733c 2873{
be539518 2874 struct workqueue_struct *scrub_workers = NULL;
6f011058 2875 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 2876 int max_active = fs_info->thread_pool_size;
e89c4a9c 2877 int ret = -ENOMEM;
a2de733c 2878
e89c4a9c
JB
2879 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2880 return 0;
eb4318e5 2881
39dc7bd9 2882 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
e89c4a9c 2883 if (!scrub_workers)
81db6ae8 2884 return -ENOMEM;
ff09c4ca 2885
e89c4a9c
JB
2886 mutex_lock(&fs_info->scrub_lock);
2887 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
81db6ae8 2888 ASSERT(fs_info->scrub_workers == NULL);
e89c4a9c 2889 fs_info->scrub_workers = scrub_workers;
ff09c4ca 2890 refcount_set(&fs_info->scrub_workers_refcnt, 1);
e89c4a9c
JB
2891 mutex_unlock(&fs_info->scrub_lock);
2892 return 0;
632dd772 2893 }
e89c4a9c
JB
2894 /* Other thread raced in and created the workers for us */
2895 refcount_inc(&fs_info->scrub_workers_refcnt);
2896 mutex_unlock(&fs_info->scrub_lock);
e82afc52 2897
e89c4a9c 2898 ret = 0;
5dc96f8d 2899
be539518 2900 destroy_workqueue(scrub_workers);
e89c4a9c 2901 return ret;
a2de733c
AJ
2902}
2903
aa1b8cd4
SB
2904int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2905 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 2906 int readonly, int is_dev_replace)
a2de733c 2907{
562d7b15 2908 struct btrfs_dev_lookup_args args = { .devid = devid };
d9d181c1 2909 struct scrub_ctx *sctx;
a2de733c
AJ
2910 int ret;
2911 struct btrfs_device *dev;
a5fb1142 2912 unsigned int nofs_flag;
f9eab5f0 2913 bool need_commit = false;
a2de733c 2914
aa1b8cd4 2915 if (btrfs_fs_closing(fs_info))
6c3abeda 2916 return -EAGAIN;
a2de733c 2917
fc65bb53
QW
2918 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2919 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
b5d67f64 2920
fc65bb53
QW
2921 /*
2922 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2923 * value (max nodesize / min sectorsize), thus nodesize should always
2924 * be fine.
2925 */
2926 ASSERT(fs_info->nodesize <=
2927 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
7a9e9987 2928
0e94c4f4
DS
2929 /* Allocate outside of device_list_mutex */
2930 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2931 if (IS_ERR(sctx))
2932 return PTR_ERR(sctx);
a2de733c 2933
39dc7bd9 2934 ret = scrub_workers_get(fs_info);
e89c4a9c
JB
2935 if (ret)
2936 goto out_free_ctx;
2937
aa1b8cd4 2938 mutex_lock(&fs_info->fs_devices->device_list_mutex);
562d7b15 2939 dev = btrfs_find_device(fs_info->fs_devices, &args);
e6e674bd
AJ
2940 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2941 !is_dev_replace)) {
aa1b8cd4 2942 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 2943 ret = -ENODEV;
e89c4a9c 2944 goto out;
a2de733c 2945 }
a2de733c 2946
ebbede42
AJ
2947 if (!is_dev_replace && !readonly &&
2948 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 2949 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a4852cf2
DS
2950 btrfs_err_in_rcu(fs_info,
2951 "scrub on devid %llu: filesystem on %s is not writable",
cb3e217b 2952 devid, btrfs_dev_name(dev));
0e94c4f4 2953 ret = -EROFS;
e89c4a9c 2954 goto out;
5d68da3b
MX
2955 }
2956
3b7a016f 2957 mutex_lock(&fs_info->scrub_lock);
e12c9621 2958 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 2959 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 2960 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2961 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 2962 ret = -EIO;
e89c4a9c 2963 goto out;
a2de733c
AJ
2964 }
2965
cb5583dd 2966 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 2967 if (dev->scrub_ctx ||
8dabb742
SB
2968 (!is_dev_replace &&
2969 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 2970 up_read(&fs_info->dev_replace.rwsem);
a2de733c 2971 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2972 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 2973 ret = -EINPROGRESS;
e89c4a9c 2974 goto out;
a2de733c 2975 }
cb5583dd 2976 up_read(&fs_info->dev_replace.rwsem);
3b7a016f 2977
d9d181c1 2978 sctx->readonly = readonly;
cadbc0a0 2979 dev->scrub_ctx = sctx;
3cb0929a 2980 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 2981
3cb0929a
WS
2982 /*
2983 * checking @scrub_pause_req here, we can avoid
2984 * race between committing transaction and scrubbing.
2985 */
cb7ab021 2986 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
2987 atomic_inc(&fs_info->scrubs_running);
2988 mutex_unlock(&fs_info->scrub_lock);
a2de733c 2989
a5fb1142
FM
2990 /*
2991 * In order to avoid deadlock with reclaim when there is a transaction
2992 * trying to pause scrub, make sure we use GFP_NOFS for all the
46343501 2993 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
a5fb1142
FM
2994 * invoked by our callees. The pausing request is done when the
2995 * transaction commit starts, and it blocks the transaction until scrub
2996 * is paused (done at specific points at scrub_stripe() or right above
2997 * before incrementing fs_info->scrubs_running).
2998 */
2999 nofs_flag = memalloc_nofs_save();
ff023aac 3000 if (!is_dev_replace) {
f9eab5f0
QW
3001 u64 old_super_errors;
3002
3003 spin_lock(&sctx->stat_lock);
3004 old_super_errors = sctx->stat.super_errors;
3005 spin_unlock(&sctx->stat_lock);
3006
d1e14420 3007 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
3008 /*
3009 * by holding device list mutex, we can
3010 * kick off writing super in log tree sync.
3011 */
3cb0929a 3012 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3013 ret = scrub_supers(sctx, dev);
3cb0929a 3014 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f9eab5f0
QW
3015
3016 spin_lock(&sctx->stat_lock);
3017 /*
3018 * Super block errors found, but we can not commit transaction
3019 * at current context, since btrfs_commit_transaction() needs
3020 * to pause the current running scrub (hold by ourselves).
3021 */
3022 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3023 need_commit = true;
3024 spin_unlock(&sctx->stat_lock);
ff023aac 3025 }
a2de733c
AJ
3026
3027 if (!ret)
32934280 3028 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 3029 memalloc_nofs_restore(nofs_flag);
a2de733c 3030
a2de733c
AJ
3031 atomic_dec(&fs_info->scrubs_running);
3032 wake_up(&fs_info->scrub_pause_wait);
3033
3034 if (progress)
d9d181c1 3035 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 3036
d1e14420
AJ
3037 if (!is_dev_replace)
3038 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3039 ret ? "not finished" : "finished", devid, ret);
3040
a2de733c 3041 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3042 dev->scrub_ctx = NULL;
a2de733c
AJ
3043 mutex_unlock(&fs_info->scrub_lock);
3044
e89c4a9c 3045 scrub_workers_put(fs_info);
f55985f4 3046 scrub_put_ctx(sctx);
a2de733c 3047
f9eab5f0
QW
3048 /*
3049 * We found some super block errors before, now try to force a
3050 * transaction commit, as scrub has finished.
3051 */
3052 if (need_commit) {
3053 struct btrfs_trans_handle *trans;
3054
3055 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3056 if (IS_ERR(trans)) {
3057 ret = PTR_ERR(trans);
3058 btrfs_err(fs_info,
3059 "scrub: failed to start transaction to fix super block errors: %d", ret);
3060 return ret;
3061 }
3062 ret = btrfs_commit_transaction(trans);
3063 if (ret < 0)
3064 btrfs_err(fs_info,
3065 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3066 }
0e94c4f4 3067 return ret;
e89c4a9c
JB
3068out:
3069 scrub_workers_put(fs_info);
0e94c4f4
DS
3070out_free_ctx:
3071 scrub_free_ctx(sctx);
3072
a2de733c
AJ
3073 return ret;
3074}
3075
2ff7e61e 3076void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3077{
a2de733c
AJ
3078 mutex_lock(&fs_info->scrub_lock);
3079 atomic_inc(&fs_info->scrub_pause_req);
3080 while (atomic_read(&fs_info->scrubs_paused) !=
3081 atomic_read(&fs_info->scrubs_running)) {
3082 mutex_unlock(&fs_info->scrub_lock);
3083 wait_event(fs_info->scrub_pause_wait,
3084 atomic_read(&fs_info->scrubs_paused) ==
3085 atomic_read(&fs_info->scrubs_running));
3086 mutex_lock(&fs_info->scrub_lock);
3087 }
3088 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3089}
3090
2ff7e61e 3091void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 3092{
a2de733c
AJ
3093 atomic_dec(&fs_info->scrub_pause_req);
3094 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3095}
3096
aa1b8cd4 3097int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3098{
a2de733c
AJ
3099 mutex_lock(&fs_info->scrub_lock);
3100 if (!atomic_read(&fs_info->scrubs_running)) {
3101 mutex_unlock(&fs_info->scrub_lock);
3102 return -ENOTCONN;
3103 }
3104
3105 atomic_inc(&fs_info->scrub_cancel_req);
3106 while (atomic_read(&fs_info->scrubs_running)) {
3107 mutex_unlock(&fs_info->scrub_lock);
3108 wait_event(fs_info->scrub_pause_wait,
3109 atomic_read(&fs_info->scrubs_running) == 0);
3110 mutex_lock(&fs_info->scrub_lock);
3111 }
3112 atomic_dec(&fs_info->scrub_cancel_req);
3113 mutex_unlock(&fs_info->scrub_lock);
3114
3115 return 0;
3116}
3117
163e97ee 3118int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 3119{
163e97ee 3120 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 3121 struct scrub_ctx *sctx;
a2de733c
AJ
3122
3123 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3124 sctx = dev->scrub_ctx;
d9d181c1 3125 if (!sctx) {
a2de733c
AJ
3126 mutex_unlock(&fs_info->scrub_lock);
3127 return -ENOTCONN;
3128 }
d9d181c1 3129 atomic_inc(&sctx->cancel_req);
cadbc0a0 3130 while (dev->scrub_ctx) {
a2de733c
AJ
3131 mutex_unlock(&fs_info->scrub_lock);
3132 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 3133 dev->scrub_ctx == NULL);
a2de733c
AJ
3134 mutex_lock(&fs_info->scrub_lock);
3135 }
3136 mutex_unlock(&fs_info->scrub_lock);
3137
3138 return 0;
3139}
1623edeb 3140
2ff7e61e 3141int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
3142 struct btrfs_scrub_progress *progress)
3143{
562d7b15 3144 struct btrfs_dev_lookup_args args = { .devid = devid };
a2de733c 3145 struct btrfs_device *dev;
d9d181c1 3146 struct scrub_ctx *sctx = NULL;
a2de733c 3147
0b246afa 3148 mutex_lock(&fs_info->fs_devices->device_list_mutex);
562d7b15 3149 dev = btrfs_find_device(fs_info->fs_devices, &args);
a2de733c 3150 if (dev)
cadbc0a0 3151 sctx = dev->scrub_ctx;
d9d181c1
SB
3152 if (sctx)
3153 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 3154 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3155
d9d181c1 3156 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3157}
This page took 1.572355 seconds and 4 git commands to generate.