]>
Commit | Line | Data |
---|---|---|
c1d7c514 | 1 | // SPDX-License-Identifier: GPL-2.0 |
a2de733c | 2 | /* |
b6bfebc1 | 3 | * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
a2de733c AJ |
4 | */ |
5 | ||
a2de733c | 6 | #include <linux/blkdev.h> |
558540c1 | 7 | #include <linux/ratelimit.h> |
de2491fd | 8 | #include <linux/sched/mm.h> |
d5178578 | 9 | #include <crypto/hash.h> |
a2de733c | 10 | #include "ctree.h" |
6e80d4f8 | 11 | #include "discard.h" |
a2de733c AJ |
12 | #include "volumes.h" |
13 | #include "disk-io.h" | |
14 | #include "ordered-data.h" | |
0ef8e451 | 15 | #include "transaction.h" |
558540c1 | 16 | #include "backref.h" |
5da6fcbc | 17 | #include "extent_io.h" |
ff023aac | 18 | #include "dev-replace.h" |
53b381b3 | 19 | #include "raid56.h" |
aac0023c | 20 | #include "block-group.h" |
12659251 | 21 | #include "zoned.h" |
c7f13d42 | 22 | #include "fs.h" |
07e81dc9 | 23 | #include "accessors.h" |
7c8ede16 | 24 | #include "file-item.h" |
2fc6822c | 25 | #include "scrub.h" |
9acaa641 | 26 | #include "raid-stripe-tree.h" |
a2de733c AJ |
27 | |
28 | /* | |
29 | * This is only the first step towards a full-features scrub. It reads all | |
30 | * extent and super block and verifies the checksums. In case a bad checksum | |
31 | * is found or the extent cannot be read, good data will be written back if | |
32 | * any can be found. | |
33 | * | |
34 | * Future enhancements: | |
a2de733c AJ |
35 | * - In case an unrepairable extent is encountered, track which files are |
36 | * affected and report them | |
a2de733c | 37 | * - track and record media errors, throw out bad devices |
a2de733c | 38 | * - add a mode to also read unallocated space |
a2de733c AJ |
39 | */ |
40 | ||
d9d181c1 | 41 | struct scrub_ctx; |
a2de733c | 42 | |
ff023aac | 43 | /* |
13a62fd9 | 44 | * The following value only influences the performance. |
c9d328c0 | 45 | * |
eefaf0a1 | 46 | * This determines how many stripes would be submitted in one go, |
ae76d8e3 | 47 | * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). |
ff023aac | 48 | */ |
ae76d8e3 QW |
49 | #define SCRUB_STRIPES_PER_GROUP 8 |
50 | ||
51 | /* | |
52 | * How many groups we have for each sctx. | |
53 | * | |
54 | * This would be 8M per device, the same value as the old scrub in-flight bios | |
55 | * size limit. | |
56 | */ | |
57 | #define SCRUB_GROUPS_PER_SCTX 16 | |
58 | ||
59 | #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) | |
7a9e9987 SB |
60 | |
61 | /* | |
0bb3acdc | 62 | * The following value times PAGE_SIZE needs to be large enough to match the |
7a9e9987 | 63 | * largest node/leaf/sector size that shall be supported. |
7a9e9987 | 64 | */ |
7e737cbc | 65 | #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) |
a2de733c | 66 | |
2af2aaf9 QW |
67 | /* Represent one sector and its needed info to verify the content. */ |
68 | struct scrub_sector_verification { | |
69 | bool is_metadata; | |
70 | ||
71 | union { | |
72 | /* | |
73 | * Csum pointer for data csum verification. Should point to a | |
74 | * sector csum inside scrub_stripe::csums. | |
75 | * | |
76 | * NULL if this data sector has no csum. | |
77 | */ | |
78 | u8 *csum; | |
79 | ||
80 | /* | |
81 | * Extra info for metadata verification. All sectors inside a | |
82 | * tree block share the same generation. | |
83 | */ | |
84 | u64 generation; | |
85 | }; | |
86 | }; | |
87 | ||
88 | enum scrub_stripe_flags { | |
89 | /* Set when @mirror_num, @dev, @physical and @logical are set. */ | |
90 | SCRUB_STRIPE_FLAG_INITIALIZED, | |
91 | ||
92 | /* Set when the read-repair is finished. */ | |
93 | SCRUB_STRIPE_FLAG_REPAIR_DONE, | |
1009254b QW |
94 | |
95 | /* | |
96 | * Set for data stripes if it's triggered from P/Q stripe. | |
97 | * During such scrub, we should not report errors in data stripes, nor | |
98 | * update the accounting. | |
99 | */ | |
100 | SCRUB_STRIPE_FLAG_NO_REPORT, | |
2af2aaf9 QW |
101 | }; |
102 | ||
103 | #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) | |
104 | ||
105 | /* | |
106 | * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. | |
107 | */ | |
108 | struct scrub_stripe { | |
00965807 | 109 | struct scrub_ctx *sctx; |
2af2aaf9 QW |
110 | struct btrfs_block_group *bg; |
111 | ||
112 | struct page *pages[SCRUB_STRIPE_PAGES]; | |
113 | struct scrub_sector_verification *sectors; | |
114 | ||
115 | struct btrfs_device *dev; | |
116 | u64 logical; | |
117 | u64 physical; | |
118 | ||
119 | u16 mirror_num; | |
120 | ||
121 | /* Should be BTRFS_STRIPE_LEN / sectorsize. */ | |
122 | u16 nr_sectors; | |
123 | ||
00965807 QW |
124 | /* |
125 | * How many data/meta extents are in this stripe. Only for scrub status | |
126 | * reporting purposes. | |
127 | */ | |
128 | u16 nr_data_extents; | |
129 | u16 nr_meta_extents; | |
130 | ||
2af2aaf9 QW |
131 | atomic_t pending_io; |
132 | wait_queue_head_t io_wait; | |
9ecb5ef5 | 133 | wait_queue_head_t repair_wait; |
2af2aaf9 QW |
134 | |
135 | /* | |
136 | * Indicate the states of the stripe. Bits are defined in | |
137 | * scrub_stripe_flags enum. | |
138 | */ | |
139 | unsigned long state; | |
140 | ||
141 | /* Indicate which sectors are covered by extent items. */ | |
142 | unsigned long extent_sector_bitmap; | |
143 | ||
144 | /* | |
145 | * The errors hit during the initial read of the stripe. | |
146 | * | |
147 | * Would be utilized for error reporting and repair. | |
79b8ee70 QW |
148 | * |
149 | * The remaining init_nr_* records the number of errors hit, only used | |
150 | * by error reporting. | |
2af2aaf9 QW |
151 | */ |
152 | unsigned long init_error_bitmap; | |
79b8ee70 QW |
153 | unsigned int init_nr_io_errors; |
154 | unsigned int init_nr_csum_errors; | |
155 | unsigned int init_nr_meta_errors; | |
2af2aaf9 QW |
156 | |
157 | /* | |
158 | * The following error bitmaps are all for the current status. | |
159 | * Every time we submit a new read, these bitmaps may be updated. | |
160 | * | |
161 | * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; | |
162 | * | |
163 | * IO and csum errors can happen for both metadata and data. | |
164 | */ | |
165 | unsigned long error_bitmap; | |
166 | unsigned long io_error_bitmap; | |
167 | unsigned long csum_error_bitmap; | |
168 | unsigned long meta_error_bitmap; | |
169 | ||
058e09e6 QW |
170 | /* For writeback (repair or replace) error reporting. */ |
171 | unsigned long write_error_bitmap; | |
172 | ||
173 | /* Writeback can be concurrent, thus we need to protect the bitmap. */ | |
174 | spinlock_t write_error_lock; | |
175 | ||
2af2aaf9 QW |
176 | /* |
177 | * Checksum for the whole stripe if this stripe is inside a data block | |
178 | * group. | |
179 | */ | |
180 | u8 *csums; | |
9ecb5ef5 QW |
181 | |
182 | struct work_struct work; | |
2af2aaf9 QW |
183 | }; |
184 | ||
d9d181c1 | 185 | struct scrub_ctx { |
ae76d8e3 | 186 | struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; |
1009254b | 187 | struct scrub_stripe *raid56_data_stripes; |
fb456252 | 188 | struct btrfs_fs_info *fs_info; |
1dc4888e | 189 | struct btrfs_path extent_path; |
3c771c19 | 190 | struct btrfs_path csum_path; |
a2de733c | 191 | int first_free; |
54765392 | 192 | int cur_stripe; |
a2de733c | 193 | atomic_t cancel_req; |
8628764e | 194 | int readonly; |
63a212ab | 195 | |
eb3b5053 DS |
196 | /* State of IO submission throttling affecting the associated device */ |
197 | ktime_t throttle_deadline; | |
198 | u64 throttle_sent; | |
199 | ||
63a212ab | 200 | int is_dev_replace; |
de17addc | 201 | u64 write_pointer; |
3fb99303 | 202 | |
3fb99303 | 203 | struct mutex wr_lock; |
3fb99303 | 204 | struct btrfs_device *wr_tgtdev; |
63a212ab | 205 | |
a2de733c AJ |
206 | /* |
207 | * statistics | |
208 | */ | |
209 | struct btrfs_scrub_progress stat; | |
210 | spinlock_t stat_lock; | |
f55985f4 FM |
211 | |
212 | /* | |
213 | * Use a ref counter to avoid use-after-free issues. Scrub workers | |
214 | * decrement bios_in_flight and workers_pending and then do a wakeup | |
215 | * on the list_wait wait queue. We must ensure the main scrub task | |
216 | * doesn't free the scrub context before or while the workers are | |
217 | * doing the wakeup() call. | |
218 | */ | |
99f4cdb1 | 219 | refcount_t refs; |
a2de733c AJ |
220 | }; |
221 | ||
558540c1 JS |
222 | struct scrub_warning { |
223 | struct btrfs_path *path; | |
224 | u64 extent_item_size; | |
558540c1 | 225 | const char *errstr; |
6aa21263 | 226 | u64 physical; |
558540c1 JS |
227 | u64 logical; |
228 | struct btrfs_device *dev; | |
558540c1 JS |
229 | }; |
230 | ||
2af2aaf9 QW |
231 | static void release_scrub_stripe(struct scrub_stripe *stripe) |
232 | { | |
233 | if (!stripe) | |
234 | return; | |
235 | ||
236 | for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { | |
237 | if (stripe->pages[i]) | |
238 | __free_page(stripe->pages[i]); | |
239 | stripe->pages[i] = NULL; | |
240 | } | |
241 | kfree(stripe->sectors); | |
242 | kfree(stripe->csums); | |
243 | stripe->sectors = NULL; | |
244 | stripe->csums = NULL; | |
00965807 | 245 | stripe->sctx = NULL; |
2af2aaf9 QW |
246 | stripe->state = 0; |
247 | } | |
248 | ||
54765392 QW |
249 | static int init_scrub_stripe(struct btrfs_fs_info *fs_info, |
250 | struct scrub_stripe *stripe) | |
2af2aaf9 QW |
251 | { |
252 | int ret; | |
253 | ||
254 | memset(stripe, 0, sizeof(*stripe)); | |
255 | ||
256 | stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; | |
257 | stripe->state = 0; | |
258 | ||
259 | init_waitqueue_head(&stripe->io_wait); | |
9ecb5ef5 | 260 | init_waitqueue_head(&stripe->repair_wait); |
2af2aaf9 | 261 | atomic_set(&stripe->pending_io, 0); |
058e09e6 | 262 | spin_lock_init(&stripe->write_error_lock); |
2af2aaf9 | 263 | |
0fbf6cbd | 264 | ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false); |
2af2aaf9 QW |
265 | if (ret < 0) |
266 | goto error; | |
267 | ||
268 | stripe->sectors = kcalloc(stripe->nr_sectors, | |
269 | sizeof(struct scrub_sector_verification), | |
270 | GFP_KERNEL); | |
271 | if (!stripe->sectors) | |
272 | goto error; | |
273 | ||
274 | stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, | |
275 | fs_info->csum_size, GFP_KERNEL); | |
276 | if (!stripe->csums) | |
277 | goto error; | |
278 | return 0; | |
279 | error: | |
280 | release_scrub_stripe(stripe); | |
281 | return -ENOMEM; | |
282 | } | |
283 | ||
9ecb5ef5 | 284 | static void wait_scrub_stripe_io(struct scrub_stripe *stripe) |
2af2aaf9 QW |
285 | { |
286 | wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); | |
287 | } | |
288 | ||
f55985f4 | 289 | static void scrub_put_ctx(struct scrub_ctx *sctx); |
1623edeb | 290 | |
cb7ab021 | 291 | static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
3cb0929a WS |
292 | { |
293 | while (atomic_read(&fs_info->scrub_pause_req)) { | |
294 | mutex_unlock(&fs_info->scrub_lock); | |
295 | wait_event(fs_info->scrub_pause_wait, | |
296 | atomic_read(&fs_info->scrub_pause_req) == 0); | |
297 | mutex_lock(&fs_info->scrub_lock); | |
298 | } | |
299 | } | |
300 | ||
0e22be89 | 301 | static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
cb7ab021 WS |
302 | { |
303 | atomic_inc(&fs_info->scrubs_paused); | |
304 | wake_up(&fs_info->scrub_pause_wait); | |
0e22be89 | 305 | } |
cb7ab021 | 306 | |
0e22be89 Z |
307 | static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
308 | { | |
cb7ab021 WS |
309 | mutex_lock(&fs_info->scrub_lock); |
310 | __scrub_blocked_if_needed(fs_info); | |
311 | atomic_dec(&fs_info->scrubs_paused); | |
312 | mutex_unlock(&fs_info->scrub_lock); | |
313 | ||
314 | wake_up(&fs_info->scrub_pause_wait); | |
315 | } | |
316 | ||
0e22be89 Z |
317 | static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
318 | { | |
319 | scrub_pause_on(fs_info); | |
320 | scrub_pause_off(fs_info); | |
321 | } | |
322 | ||
d9d181c1 | 323 | static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
a2de733c AJ |
324 | { |
325 | int i; | |
a2de733c | 326 | |
d9d181c1 | 327 | if (!sctx) |
a2de733c AJ |
328 | return; |
329 | ||
ae76d8e3 | 330 | for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) |
54765392 QW |
331 | release_scrub_stripe(&sctx->stripes[i]); |
332 | ||
ae76d8e3 | 333 | kvfree(sctx); |
a2de733c AJ |
334 | } |
335 | ||
f55985f4 FM |
336 | static void scrub_put_ctx(struct scrub_ctx *sctx) |
337 | { | |
99f4cdb1 | 338 | if (refcount_dec_and_test(&sctx->refs)) |
f55985f4 FM |
339 | scrub_free_ctx(sctx); |
340 | } | |
341 | ||
92f7ba43 DS |
342 | static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( |
343 | struct btrfs_fs_info *fs_info, int is_dev_replace) | |
a2de733c | 344 | { |
d9d181c1 | 345 | struct scrub_ctx *sctx; |
a2de733c | 346 | int i; |
a2de733c | 347 | |
ae76d8e3 QW |
348 | /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use |
349 | * kvzalloc(). | |
350 | */ | |
351 | sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); | |
d9d181c1 | 352 | if (!sctx) |
a2de733c | 353 | goto nomem; |
99f4cdb1 | 354 | refcount_set(&sctx->refs, 1); |
63a212ab | 355 | sctx->is_dev_replace = is_dev_replace; |
92f7ba43 | 356 | sctx->fs_info = fs_info; |
1dc4888e QW |
357 | sctx->extent_path.search_commit_root = 1; |
358 | sctx->extent_path.skip_locking = 1; | |
3c771c19 QW |
359 | sctx->csum_path.search_commit_root = 1; |
360 | sctx->csum_path.skip_locking = 1; | |
ae76d8e3 | 361 | for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { |
54765392 QW |
362 | int ret; |
363 | ||
364 | ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); | |
365 | if (ret < 0) | |
366 | goto nomem; | |
367 | sctx->stripes[i].sctx = sctx; | |
368 | } | |
d9d181c1 | 369 | sctx->first_free = 0; |
d9d181c1 | 370 | atomic_set(&sctx->cancel_req, 0); |
d9d181c1 | 371 | |
d9d181c1 | 372 | spin_lock_init(&sctx->stat_lock); |
eb3b5053 | 373 | sctx->throttle_deadline = 0; |
ff023aac | 374 | |
3fb99303 | 375 | mutex_init(&sctx->wr_lock); |
8fcdac3f | 376 | if (is_dev_replace) { |
ded56184 | 377 | WARN_ON(!fs_info->dev_replace.tgtdev); |
ded56184 | 378 | sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
ff023aac | 379 | } |
8fcdac3f | 380 | |
d9d181c1 | 381 | return sctx; |
a2de733c AJ |
382 | |
383 | nomem: | |
d9d181c1 | 384 | scrub_free_ctx(sctx); |
a2de733c AJ |
385 | return ERR_PTR(-ENOMEM); |
386 | } | |
387 | ||
c7499a64 FM |
388 | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, |
389 | u64 root, void *warn_ctx) | |
558540c1 | 390 | { |
558540c1 JS |
391 | u32 nlink; |
392 | int ret; | |
393 | int i; | |
de2491fd | 394 | unsigned nofs_flag; |
558540c1 JS |
395 | struct extent_buffer *eb; |
396 | struct btrfs_inode_item *inode_item; | |
ff023aac | 397 | struct scrub_warning *swarn = warn_ctx; |
fb456252 | 398 | struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
558540c1 JS |
399 | struct inode_fs_paths *ipath = NULL; |
400 | struct btrfs_root *local_root; | |
1d4c08e0 | 401 | struct btrfs_key key; |
558540c1 | 402 | |
56e9357a | 403 | local_root = btrfs_get_fs_root(fs_info, root, true); |
558540c1 JS |
404 | if (IS_ERR(local_root)) { |
405 | ret = PTR_ERR(local_root); | |
406 | goto err; | |
407 | } | |
408 | ||
14692cc1 DS |
409 | /* |
410 | * this makes the path point to (inum INODE_ITEM ioff) | |
411 | */ | |
1d4c08e0 DS |
412 | key.objectid = inum; |
413 | key.type = BTRFS_INODE_ITEM_KEY; | |
414 | key.offset = 0; | |
415 | ||
416 | ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); | |
558540c1 | 417 | if (ret) { |
00246528 | 418 | btrfs_put_root(local_root); |
558540c1 JS |
419 | btrfs_release_path(swarn->path); |
420 | goto err; | |
421 | } | |
422 | ||
423 | eb = swarn->path->nodes[0]; | |
424 | inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], | |
425 | struct btrfs_inode_item); | |
558540c1 JS |
426 | nlink = btrfs_inode_nlink(eb, inode_item); |
427 | btrfs_release_path(swarn->path); | |
428 | ||
de2491fd DS |
429 | /* |
430 | * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub | |
431 | * uses GFP_NOFS in this context, so we keep it consistent but it does | |
432 | * not seem to be strictly necessary. | |
433 | */ | |
434 | nofs_flag = memalloc_nofs_save(); | |
558540c1 | 435 | ipath = init_ipath(4096, local_root, swarn->path); |
de2491fd | 436 | memalloc_nofs_restore(nofs_flag); |
26bdef54 | 437 | if (IS_ERR(ipath)) { |
00246528 | 438 | btrfs_put_root(local_root); |
26bdef54 DC |
439 | ret = PTR_ERR(ipath); |
440 | ipath = NULL; | |
441 | goto err; | |
442 | } | |
558540c1 JS |
443 | ret = paths_from_inode(inum, ipath); |
444 | ||
445 | if (ret < 0) | |
446 | goto err; | |
447 | ||
448 | /* | |
449 | * we deliberately ignore the bit ipath might have been too small to | |
450 | * hold all of the paths here | |
451 | */ | |
452 | for (i = 0; i < ipath->fspath->elem_cnt; ++i) | |
5d163e0e | 453 | btrfs_warn_in_rcu(fs_info, |
8df507cb | 454 | "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", |
5d163e0e | 455 | swarn->errstr, swarn->logical, |
cb3e217b | 456 | btrfs_dev_name(swarn->dev), |
6aa21263 | 457 | swarn->physical, |
5d163e0e | 458 | root, inum, offset, |
8df507cb | 459 | fs_info->sectorsize, nlink, |
5d163e0e | 460 | (char *)(unsigned long)ipath->fspath->val[i]); |
558540c1 | 461 | |
00246528 | 462 | btrfs_put_root(local_root); |
558540c1 JS |
463 | free_ipath(ipath); |
464 | return 0; | |
465 | ||
466 | err: | |
5d163e0e | 467 | btrfs_warn_in_rcu(fs_info, |
6aa21263 | 468 | "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", |
5d163e0e | 469 | swarn->errstr, swarn->logical, |
cb3e217b | 470 | btrfs_dev_name(swarn->dev), |
6aa21263 | 471 | swarn->physical, |
5d163e0e | 472 | root, inum, offset, ret); |
558540c1 JS |
473 | |
474 | free_ipath(ipath); | |
475 | return 0; | |
476 | } | |
477 | ||
00965807 QW |
478 | static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, |
479 | bool is_super, u64 logical, u64 physical) | |
558540c1 | 480 | { |
00965807 | 481 | struct btrfs_fs_info *fs_info = dev->fs_info; |
558540c1 JS |
482 | struct btrfs_path *path; |
483 | struct btrfs_key found_key; | |
484 | struct extent_buffer *eb; | |
485 | struct btrfs_extent_item *ei; | |
486 | struct scrub_warning swarn; | |
69917e43 | 487 | u64 flags = 0; |
69917e43 | 488 | u32 item_size; |
69917e43 | 489 | int ret; |
558540c1 | 490 | |
e69bf81c | 491 | /* Super block error, no need to search extent tree. */ |
00965807 | 492 | if (is_super) { |
e69bf81c | 493 | btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", |
00965807 | 494 | errstr, btrfs_dev_name(dev), physical); |
e69bf81c QW |
495 | return; |
496 | } | |
558540c1 | 497 | path = btrfs_alloc_path(); |
8b9456da DS |
498 | if (!path) |
499 | return; | |
558540c1 | 500 | |
00965807 QW |
501 | swarn.physical = physical; |
502 | swarn.logical = logical; | |
558540c1 | 503 | swarn.errstr = errstr; |
a36cf8b8 | 504 | swarn.dev = NULL; |
558540c1 | 505 | |
69917e43 LB |
506 | ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
507 | &flags); | |
558540c1 JS |
508 | if (ret < 0) |
509 | goto out; | |
510 | ||
558540c1 JS |
511 | swarn.extent_item_size = found_key.offset; |
512 | ||
513 | eb = path->nodes[0]; | |
514 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | |
3212fa14 | 515 | item_size = btrfs_item_size(eb, path->slots[0]); |
558540c1 | 516 | |
69917e43 | 517 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
b7f9945a QW |
518 | unsigned long ptr = 0; |
519 | u8 ref_level; | |
520 | u64 ref_root; | |
521 | ||
522 | while (true) { | |
6eda71d0 LB |
523 | ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
524 | item_size, &ref_root, | |
525 | &ref_level); | |
b7f9945a QW |
526 | if (ret < 0) { |
527 | btrfs_warn(fs_info, | |
528 | "failed to resolve tree backref for logical %llu: %d", | |
529 | swarn.logical, ret); | |
530 | break; | |
531 | } | |
532 | if (ret > 0) | |
533 | break; | |
ecaeb14b | 534 | btrfs_warn_in_rcu(fs_info, |
6aa21263 | 535 | "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", |
b7f9945a QW |
536 | errstr, swarn.logical, btrfs_dev_name(dev), |
537 | swarn.physical, (ref_level ? "node" : "leaf"), | |
538 | ref_level, ref_root); | |
539 | } | |
d8fe29e9 | 540 | btrfs_release_path(path); |
558540c1 | 541 | } else { |
a2c8d27e FM |
542 | struct btrfs_backref_walk_ctx ctx = { 0 }; |
543 | ||
d8fe29e9 | 544 | btrfs_release_path(path); |
a2c8d27e FM |
545 | |
546 | ctx.bytenr = found_key.objectid; | |
547 | ctx.extent_item_pos = swarn.logical - found_key.objectid; | |
548 | ctx.fs_info = fs_info; | |
549 | ||
558540c1 | 550 | swarn.path = path; |
a36cf8b8 | 551 | swarn.dev = dev; |
a2c8d27e FM |
552 | |
553 | iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); | |
558540c1 JS |
554 | } |
555 | ||
556 | out: | |
557 | btrfs_free_path(path); | |
558540c1 JS |
558 | } |
559 | ||
de17addc NA |
560 | static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) |
561 | { | |
562 | int ret = 0; | |
563 | u64 length; | |
564 | ||
565 | if (!btrfs_is_zoned(sctx->fs_info)) | |
566 | return 0; | |
567 | ||
7db1c5d1 NA |
568 | if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) |
569 | return 0; | |
570 | ||
de17addc NA |
571 | if (sctx->write_pointer < physical) { |
572 | length = physical - sctx->write_pointer; | |
573 | ||
574 | ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, | |
575 | sctx->write_pointer, length); | |
576 | if (!ret) | |
577 | sctx->write_pointer = physical; | |
578 | } | |
579 | return ret; | |
580 | } | |
581 | ||
a3ddbaeb QW |
582 | static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) |
583 | { | |
584 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
585 | int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; | |
586 | ||
587 | return stripe->pages[page_index]; | |
588 | } | |
589 | ||
590 | static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, | |
591 | int sector_nr) | |
592 | { | |
593 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
594 | ||
595 | return offset_in_page(sector_nr << fs_info->sectorsize_bits); | |
596 | } | |
597 | ||
97cf8f37 | 598 | static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) |
a3ddbaeb QW |
599 | { |
600 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
601 | const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; | |
602 | const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); | |
603 | const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); | |
604 | const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); | |
605 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); | |
606 | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | |
607 | u8 calculated_csum[BTRFS_CSUM_SIZE]; | |
608 | struct btrfs_header *header; | |
609 | ||
610 | /* | |
611 | * Here we don't have a good way to attach the pages (and subpages) | |
612 | * to a dummy extent buffer, thus we have to directly grab the members | |
613 | * from pages. | |
614 | */ | |
615 | header = (struct btrfs_header *)(page_address(first_page) + first_off); | |
616 | memcpy(on_disk_csum, header->csum, fs_info->csum_size); | |
617 | ||
618 | if (logical != btrfs_stack_header_bytenr(header)) { | |
619 | bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); | |
620 | bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); | |
621 | btrfs_warn_rl(fs_info, | |
622 | "tree block %llu mirror %u has bad bytenr, has %llu want %llu", | |
623 | logical, stripe->mirror_num, | |
624 | btrfs_stack_header_bytenr(header), logical); | |
625 | return; | |
626 | } | |
b471965f AJ |
627 | if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, |
628 | BTRFS_FSID_SIZE) != 0) { | |
a3ddbaeb QW |
629 | bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); |
630 | bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); | |
631 | btrfs_warn_rl(fs_info, | |
632 | "tree block %llu mirror %u has bad fsid, has %pU want %pU", | |
633 | logical, stripe->mirror_num, | |
634 | header->fsid, fs_info->fs_devices->fsid); | |
635 | return; | |
636 | } | |
637 | if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, | |
638 | BTRFS_UUID_SIZE) != 0) { | |
639 | bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); | |
640 | bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); | |
641 | btrfs_warn_rl(fs_info, | |
642 | "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", | |
643 | logical, stripe->mirror_num, | |
644 | header->chunk_tree_uuid, fs_info->chunk_tree_uuid); | |
645 | return; | |
646 | } | |
647 | ||
648 | /* Now check tree block csum. */ | |
649 | shash->tfm = fs_info->csum_shash; | |
650 | crypto_shash_init(shash); | |
651 | crypto_shash_update(shash, page_address(first_page) + first_off + | |
652 | BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); | |
653 | ||
654 | for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { | |
655 | struct page *page = scrub_stripe_get_page(stripe, i); | |
656 | unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); | |
657 | ||
658 | crypto_shash_update(shash, page_address(page) + page_off, | |
659 | fs_info->sectorsize); | |
660 | } | |
661 | ||
662 | crypto_shash_final(shash, calculated_csum); | |
663 | if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { | |
664 | bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); | |
665 | bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); | |
666 | btrfs_warn_rl(fs_info, | |
667 | "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, | |
668 | logical, stripe->mirror_num, | |
669 | CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), | |
670 | CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); | |
671 | return; | |
672 | } | |
673 | if (stripe->sectors[sector_nr].generation != | |
674 | btrfs_stack_header_generation(header)) { | |
675 | bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); | |
676 | bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); | |
677 | btrfs_warn_rl(fs_info, | |
678 | "tree block %llu mirror %u has bad generation, has %llu want %llu", | |
679 | logical, stripe->mirror_num, | |
680 | btrfs_stack_header_generation(header), | |
681 | stripe->sectors[sector_nr].generation); | |
682 | return; | |
683 | } | |
684 | bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); | |
685 | bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); | |
686 | bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); | |
687 | } | |
688 | ||
97cf8f37 QW |
689 | static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) |
690 | { | |
691 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
692 | struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; | |
693 | const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; | |
694 | struct page *page = scrub_stripe_get_page(stripe, sector_nr); | |
695 | unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); | |
696 | u8 csum_buf[BTRFS_CSUM_SIZE]; | |
697 | int ret; | |
698 | ||
699 | ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); | |
700 | ||
701 | /* Sector not utilized, skip it. */ | |
702 | if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) | |
703 | return; | |
704 | ||
705 | /* IO error, no need to check. */ | |
706 | if (test_bit(sector_nr, &stripe->io_error_bitmap)) | |
707 | return; | |
708 | ||
709 | /* Metadata, verify the full tree block. */ | |
710 | if (sector->is_metadata) { | |
711 | /* | |
eefaf0a1 | 712 | * Check if the tree block crosses the stripe boundary. If |
97cf8f37 QW |
713 | * crossed the boundary, we cannot verify it but only give a |
714 | * warning. | |
715 | * | |
716 | * This can only happen on a very old filesystem where chunks | |
717 | * are not ensured to be stripe aligned. | |
718 | */ | |
719 | if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { | |
720 | btrfs_warn_rl(fs_info, | |
721 | "tree block at %llu crosses stripe boundary %llu", | |
722 | stripe->logical + | |
723 | (sector_nr << fs_info->sectorsize_bits), | |
724 | stripe->logical); | |
725 | return; | |
726 | } | |
727 | scrub_verify_one_metadata(stripe, sector_nr); | |
728 | return; | |
729 | } | |
730 | ||
731 | /* | |
732 | * Data is easier, we just verify the data csum (if we have it). For | |
733 | * cases without csum, we have no other choice but to trust it. | |
734 | */ | |
735 | if (!sector->csum) { | |
736 | clear_bit(sector_nr, &stripe->error_bitmap); | |
737 | return; | |
738 | } | |
739 | ||
740 | ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); | |
741 | if (ret < 0) { | |
742 | set_bit(sector_nr, &stripe->csum_error_bitmap); | |
743 | set_bit(sector_nr, &stripe->error_bitmap); | |
744 | } else { | |
745 | clear_bit(sector_nr, &stripe->csum_error_bitmap); | |
746 | clear_bit(sector_nr, &stripe->error_bitmap); | |
747 | } | |
748 | } | |
749 | ||
750 | /* Verify specified sectors of a stripe. */ | |
9ecb5ef5 | 751 | static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) |
97cf8f37 QW |
752 | { |
753 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
754 | const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; | |
755 | int sector_nr; | |
756 | ||
757 | for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { | |
758 | scrub_verify_one_sector(stripe, sector_nr); | |
759 | if (stripe->sectors[sector_nr].is_metadata) | |
760 | sector_nr += sectors_per_tree - 1; | |
761 | } | |
762 | } | |
763 | ||
9ecb5ef5 QW |
764 | static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) |
765 | { | |
766 | int i; | |
767 | ||
768 | for (i = 0; i < stripe->nr_sectors; i++) { | |
769 | if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && | |
770 | scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) | |
771 | break; | |
772 | } | |
773 | ASSERT(i < stripe->nr_sectors); | |
774 | return i; | |
775 | } | |
776 | ||
777 | /* | |
778 | * Repair read is different to the regular read: | |
779 | * | |
780 | * - Only reads the failed sectors | |
781 | * - May have extra blocksize limits | |
782 | */ | |
783 | static void scrub_repair_read_endio(struct btrfs_bio *bbio) | |
784 | { | |
785 | struct scrub_stripe *stripe = bbio->private; | |
786 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
787 | struct bio_vec *bvec; | |
788 | int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); | |
789 | u32 bio_size = 0; | |
790 | int i; | |
791 | ||
792 | ASSERT(sector_nr < stripe->nr_sectors); | |
793 | ||
794 | bio_for_each_bvec_all(bvec, &bbio->bio, i) | |
795 | bio_size += bvec->bv_len; | |
796 | ||
797 | if (bbio->bio.bi_status) { | |
798 | bitmap_set(&stripe->io_error_bitmap, sector_nr, | |
799 | bio_size >> fs_info->sectorsize_bits); | |
800 | bitmap_set(&stripe->error_bitmap, sector_nr, | |
801 | bio_size >> fs_info->sectorsize_bits); | |
802 | } else { | |
803 | bitmap_clear(&stripe->io_error_bitmap, sector_nr, | |
804 | bio_size >> fs_info->sectorsize_bits); | |
805 | } | |
806 | bio_put(&bbio->bio); | |
807 | if (atomic_dec_and_test(&stripe->pending_io)) | |
808 | wake_up(&stripe->io_wait); | |
809 | } | |
810 | ||
811 | static int calc_next_mirror(int mirror, int num_copies) | |
812 | { | |
813 | ASSERT(mirror <= num_copies); | |
814 | return (mirror + 1 > num_copies) ? 1 : mirror + 1; | |
815 | } | |
816 | ||
817 | static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, | |
818 | int mirror, int blocksize, bool wait) | |
819 | { | |
820 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
821 | struct btrfs_bio *bbio = NULL; | |
822 | const unsigned long old_error_bitmap = stripe->error_bitmap; | |
823 | int i; | |
824 | ||
825 | ASSERT(stripe->mirror_num >= 1); | |
826 | ASSERT(atomic_read(&stripe->pending_io) == 0); | |
827 | ||
828 | for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { | |
829 | struct page *page; | |
830 | int pgoff; | |
831 | int ret; | |
832 | ||
833 | page = scrub_stripe_get_page(stripe, i); | |
834 | pgoff = scrub_stripe_get_page_offset(stripe, i); | |
835 | ||
836 | /* The current sector cannot be merged, submit the bio. */ | |
837 | if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || | |
838 | bbio->bio.bi_iter.bi_size >= blocksize)) { | |
839 | ASSERT(bbio->bio.bi_iter.bi_size); | |
840 | atomic_inc(&stripe->pending_io); | |
841 | btrfs_submit_bio(bbio, mirror); | |
842 | if (wait) | |
843 | wait_scrub_stripe_io(stripe); | |
844 | bbio = NULL; | |
845 | } | |
846 | ||
847 | if (!bbio) { | |
848 | bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, | |
849 | fs_info, scrub_repair_read_endio, stripe); | |
850 | bbio->bio.bi_iter.bi_sector = (stripe->logical + | |
851 | (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; | |
852 | } | |
853 | ||
854 | ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); | |
855 | ASSERT(ret == fs_info->sectorsize); | |
856 | } | |
857 | if (bbio) { | |
858 | ASSERT(bbio->bio.bi_iter.bi_size); | |
859 | atomic_inc(&stripe->pending_io); | |
860 | btrfs_submit_bio(bbio, mirror); | |
861 | if (wait) | |
862 | wait_scrub_stripe_io(stripe); | |
863 | } | |
864 | } | |
865 | ||
00965807 QW |
866 | static void scrub_stripe_report_errors(struct scrub_ctx *sctx, |
867 | struct scrub_stripe *stripe) | |
868 | { | |
869 | static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, | |
870 | DEFAULT_RATELIMIT_BURST); | |
871 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
872 | struct btrfs_device *dev = NULL; | |
873 | u64 physical = 0; | |
874 | int nr_data_sectors = 0; | |
875 | int nr_meta_sectors = 0; | |
876 | int nr_nodatacsum_sectors = 0; | |
877 | int nr_repaired_sectors = 0; | |
878 | int sector_nr; | |
879 | ||
1009254b QW |
880 | if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) |
881 | return; | |
882 | ||
00965807 QW |
883 | /* |
884 | * Init needed infos for error reporting. | |
885 | * | |
eefaf0a1 | 886 | * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() |
00965807 QW |
887 | * thus no need for dev/physical, error reporting still needs dev and physical. |
888 | */ | |
889 | if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { | |
890 | u64 mapped_len = fs_info->sectorsize; | |
891 | struct btrfs_io_context *bioc = NULL; | |
892 | int stripe_index = stripe->mirror_num - 1; | |
893 | int ret; | |
894 | ||
895 | /* For scrub, our mirror_num should always start at 1. */ | |
896 | ASSERT(stripe->mirror_num >= 1); | |
723b8bb1 CH |
897 | ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
898 | stripe->logical, &mapped_len, &bioc, | |
9fb2acc2 | 899 | NULL, NULL); |
00965807 QW |
900 | /* |
901 | * If we failed, dev will be NULL, and later detailed reports | |
902 | * will just be skipped. | |
903 | */ | |
904 | if (ret < 0) | |
905 | goto skip; | |
906 | physical = bioc->stripes[stripe_index].physical; | |
907 | dev = bioc->stripes[stripe_index].dev; | |
908 | btrfs_put_bioc(bioc); | |
909 | } | |
910 | ||
911 | skip: | |
912 | for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { | |
913 | bool repaired = false; | |
914 | ||
915 | if (stripe->sectors[sector_nr].is_metadata) { | |
916 | nr_meta_sectors++; | |
917 | } else { | |
918 | nr_data_sectors++; | |
919 | if (!stripe->sectors[sector_nr].csum) | |
920 | nr_nodatacsum_sectors++; | |
921 | } | |
922 | ||
923 | if (test_bit(sector_nr, &stripe->init_error_bitmap) && | |
924 | !test_bit(sector_nr, &stripe->error_bitmap)) { | |
925 | nr_repaired_sectors++; | |
926 | repaired = true; | |
927 | } | |
928 | ||
929 | /* Good sector from the beginning, nothing need to be done. */ | |
930 | if (!test_bit(sector_nr, &stripe->init_error_bitmap)) | |
931 | continue; | |
932 | ||
933 | /* | |
934 | * Report error for the corrupted sectors. If repaired, just | |
935 | * output the message of repaired message. | |
936 | */ | |
937 | if (repaired) { | |
938 | if (dev) { | |
939 | btrfs_err_rl_in_rcu(fs_info, | |
940 | "fixed up error at logical %llu on dev %s physical %llu", | |
941 | stripe->logical, btrfs_dev_name(dev), | |
942 | physical); | |
943 | } else { | |
944 | btrfs_err_rl_in_rcu(fs_info, | |
945 | "fixed up error at logical %llu on mirror %u", | |
946 | stripe->logical, stripe->mirror_num); | |
947 | } | |
948 | continue; | |
949 | } | |
950 | ||
951 | /* The remaining are all for unrepaired. */ | |
952 | if (dev) { | |
953 | btrfs_err_rl_in_rcu(fs_info, | |
954 | "unable to fixup (regular) error at logical %llu on dev %s physical %llu", | |
955 | stripe->logical, btrfs_dev_name(dev), | |
956 | physical); | |
957 | } else { | |
958 | btrfs_err_rl_in_rcu(fs_info, | |
959 | "unable to fixup (regular) error at logical %llu on mirror %u", | |
960 | stripe->logical, stripe->mirror_num); | |
961 | } | |
962 | ||
963 | if (test_bit(sector_nr, &stripe->io_error_bitmap)) | |
964 | if (__ratelimit(&rs) && dev) | |
965 | scrub_print_common_warning("i/o error", dev, false, | |
966 | stripe->logical, physical); | |
967 | if (test_bit(sector_nr, &stripe->csum_error_bitmap)) | |
968 | if (__ratelimit(&rs) && dev) | |
969 | scrub_print_common_warning("checksum error", dev, false, | |
970 | stripe->logical, physical); | |
971 | if (test_bit(sector_nr, &stripe->meta_error_bitmap)) | |
972 | if (__ratelimit(&rs) && dev) | |
973 | scrub_print_common_warning("header error", dev, false, | |
974 | stripe->logical, physical); | |
975 | } | |
976 | ||
977 | spin_lock(&sctx->stat_lock); | |
978 | sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; | |
979 | sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; | |
980 | sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; | |
981 | sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; | |
982 | sctx->stat.no_csum += nr_nodatacsum_sectors; | |
79b8ee70 QW |
983 | sctx->stat.read_errors += stripe->init_nr_io_errors; |
984 | sctx->stat.csum_errors += stripe->init_nr_csum_errors; | |
985 | sctx->stat.verify_errors += stripe->init_nr_meta_errors; | |
00965807 QW |
986 | sctx->stat.uncorrectable_errors += |
987 | bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); | |
988 | sctx->stat.corrected_errors += nr_repaired_sectors; | |
989 | spin_unlock(&sctx->stat_lock); | |
990 | } | |
991 | ||
4fe44f9d QW |
992 | static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, |
993 | unsigned long write_bitmap, bool dev_replace); | |
994 | ||
9ecb5ef5 QW |
995 | /* |
996 | * The main entrance for all read related scrub work, including: | |
997 | * | |
998 | * - Wait for the initial read to finish | |
999 | * - Verify and locate any bad sectors | |
1000 | * - Go through the remaining mirrors and try to read as large blocksize as | |
1001 | * possible | |
1002 | * - Go through all mirrors (including the failed mirror) sector-by-sector | |
4fe44f9d | 1003 | * - Submit writeback for repaired sectors |
9ecb5ef5 | 1004 | * |
4fe44f9d QW |
1005 | * Writeback for dev-replace does not happen here, it needs extra |
1006 | * synchronization for zoned devices. | |
9ecb5ef5 QW |
1007 | */ |
1008 | static void scrub_stripe_read_repair_worker(struct work_struct *work) | |
1009 | { | |
1010 | struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); | |
4fe44f9d QW |
1011 | struct scrub_ctx *sctx = stripe->sctx; |
1012 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
9ecb5ef5 QW |
1013 | int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, |
1014 | stripe->bg->length); | |
7192833c | 1015 | unsigned long repaired; |
9ecb5ef5 QW |
1016 | int mirror; |
1017 | int i; | |
1018 | ||
1019 | ASSERT(stripe->mirror_num > 0); | |
1020 | ||
1021 | wait_scrub_stripe_io(stripe); | |
1022 | scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); | |
1023 | /* Save the initial failed bitmap for later repair and report usage. */ | |
1024 | stripe->init_error_bitmap = stripe->error_bitmap; | |
79b8ee70 QW |
1025 | stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, |
1026 | stripe->nr_sectors); | |
1027 | stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, | |
1028 | stripe->nr_sectors); | |
1029 | stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, | |
1030 | stripe->nr_sectors); | |
9ecb5ef5 QW |
1031 | |
1032 | if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) | |
1033 | goto out; | |
1034 | ||
1035 | /* | |
1036 | * Try all remaining mirrors. | |
1037 | * | |
1038 | * Here we still try to read as large block as possible, as this is | |
1039 | * faster and we have extra safety nets to rely on. | |
1040 | */ | |
1041 | for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); | |
1042 | mirror != stripe->mirror_num; | |
1043 | mirror = calc_next_mirror(mirror, num_copies)) { | |
1044 | const unsigned long old_error_bitmap = stripe->error_bitmap; | |
1045 | ||
1046 | scrub_stripe_submit_repair_read(stripe, mirror, | |
1047 | BTRFS_STRIPE_LEN, false); | |
1048 | wait_scrub_stripe_io(stripe); | |
1049 | scrub_verify_one_stripe(stripe, old_error_bitmap); | |
1050 | if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) | |
1051 | goto out; | |
1052 | } | |
1053 | ||
1054 | /* | |
1055 | * Last safety net, try re-checking all mirrors, including the failed | |
1056 | * one, sector-by-sector. | |
1057 | * | |
1058 | * As if one sector failed the drive's internal csum, the whole read | |
1059 | * containing the offending sector would be marked as error. | |
1060 | * Thus here we do sector-by-sector read. | |
1061 | * | |
1062 | * This can be slow, thus we only try it as the last resort. | |
1063 | */ | |
1064 | ||
1065 | for (i = 0, mirror = stripe->mirror_num; | |
1066 | i < num_copies; | |
1067 | i++, mirror = calc_next_mirror(mirror, num_copies)) { | |
1068 | const unsigned long old_error_bitmap = stripe->error_bitmap; | |
1069 | ||
1070 | scrub_stripe_submit_repair_read(stripe, mirror, | |
1071 | fs_info->sectorsize, true); | |
1072 | wait_scrub_stripe_io(stripe); | |
1073 | scrub_verify_one_stripe(stripe, old_error_bitmap); | |
1074 | if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) | |
1075 | goto out; | |
1076 | } | |
1077 | out: | |
4fe44f9d QW |
1078 | /* |
1079 | * Submit the repaired sectors. For zoned case, we cannot do repair | |
1080 | * in-place, but queue the bg to be relocated. | |
1081 | */ | |
7192833c NA |
1082 | bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap, |
1083 | stripe->nr_sectors); | |
1084 | if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) { | |
1085 | if (btrfs_is_zoned(fs_info)) { | |
4fe44f9d | 1086 | btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); |
7192833c NA |
1087 | } else { |
1088 | scrub_write_sectors(sctx, stripe, repaired, false); | |
1089 | wait_scrub_stripe_io(stripe); | |
1090 | } | |
4fe44f9d QW |
1091 | } |
1092 | ||
1093 | scrub_stripe_report_errors(sctx, stripe); | |
9ecb5ef5 QW |
1094 | set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); |
1095 | wake_up(&stripe->repair_wait); | |
1096 | } | |
1097 | ||
54765392 | 1098 | static void scrub_read_endio(struct btrfs_bio *bbio) |
9ecb5ef5 QW |
1099 | { |
1100 | struct scrub_stripe *stripe = bbio->private; | |
f546c428 QW |
1101 | struct bio_vec *bvec; |
1102 | int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); | |
1103 | int num_sectors; | |
1104 | u32 bio_size = 0; | |
1105 | int i; | |
1106 | ||
1107 | ASSERT(sector_nr < stripe->nr_sectors); | |
1108 | bio_for_each_bvec_all(bvec, &bbio->bio, i) | |
1109 | bio_size += bvec->bv_len; | |
1110 | num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; | |
9ecb5ef5 QW |
1111 | |
1112 | if (bbio->bio.bi_status) { | |
f546c428 QW |
1113 | bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors); |
1114 | bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors); | |
9ecb5ef5 | 1115 | } else { |
f546c428 | 1116 | bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors); |
9ecb5ef5 QW |
1117 | } |
1118 | bio_put(&bbio->bio); | |
1119 | if (atomic_dec_and_test(&stripe->pending_io)) { | |
1120 | wake_up(&stripe->io_wait); | |
1121 | INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); | |
1122 | queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); | |
1123 | } | |
1124 | } | |
1125 | ||
058e09e6 QW |
1126 | static void scrub_write_endio(struct btrfs_bio *bbio) |
1127 | { | |
1128 | struct scrub_stripe *stripe = bbio->private; | |
1129 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
1130 | struct bio_vec *bvec; | |
1131 | int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); | |
1132 | u32 bio_size = 0; | |
1133 | int i; | |
1134 | ||
1135 | bio_for_each_bvec_all(bvec, &bbio->bio, i) | |
1136 | bio_size += bvec->bv_len; | |
1137 | ||
1138 | if (bbio->bio.bi_status) { | |
1139 | unsigned long flags; | |
1140 | ||
1141 | spin_lock_irqsave(&stripe->write_error_lock, flags); | |
1142 | bitmap_set(&stripe->write_error_bitmap, sector_nr, | |
1143 | bio_size >> fs_info->sectorsize_bits); | |
1144 | spin_unlock_irqrestore(&stripe->write_error_lock, flags); | |
1145 | } | |
1146 | bio_put(&bbio->bio); | |
1147 | ||
1148 | if (atomic_dec_and_test(&stripe->pending_io)) | |
1149 | wake_up(&stripe->io_wait); | |
1150 | } | |
1151 | ||
b675df02 QW |
1152 | static void scrub_submit_write_bio(struct scrub_ctx *sctx, |
1153 | struct scrub_stripe *stripe, | |
1154 | struct btrfs_bio *bbio, bool dev_replace) | |
1155 | { | |
1156 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
1157 | u32 bio_len = bbio->bio.bi_iter.bi_size; | |
1158 | u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - | |
1159 | stripe->logical; | |
1160 | ||
1161 | fill_writer_pointer_gap(sctx, stripe->physical + bio_off); | |
1162 | atomic_inc(&stripe->pending_io); | |
1163 | btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); | |
1164 | if (!btrfs_is_zoned(fs_info)) | |
1165 | return; | |
1166 | /* | |
1167 | * For zoned writeback, queue depth must be 1, thus we must wait for | |
1168 | * the write to finish before the next write. | |
1169 | */ | |
1170 | wait_scrub_stripe_io(stripe); | |
1171 | ||
1172 | /* | |
1173 | * And also need to update the write pointer if write finished | |
1174 | * successfully. | |
1175 | */ | |
1176 | if (!test_bit(bio_off >> fs_info->sectorsize_bits, | |
1177 | &stripe->write_error_bitmap)) | |
1178 | sctx->write_pointer += bio_len; | |
1179 | } | |
1180 | ||
058e09e6 QW |
1181 | /* |
1182 | * Submit the write bio(s) for the sectors specified by @write_bitmap. | |
1183 | * | |
1184 | * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: | |
1185 | * | |
1186 | * - Only needs logical bytenr and mirror_num | |
1187 | * Just like the scrub read path | |
1188 | * | |
1189 | * - Would only result in writes to the specified mirror | |
1190 | * Unlike the regular writeback path, which would write back to all stripes | |
1191 | * | |
1192 | * - Handle dev-replace and read-repair writeback differently | |
1193 | */ | |
54765392 QW |
1194 | static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, |
1195 | unsigned long write_bitmap, bool dev_replace) | |
058e09e6 QW |
1196 | { |
1197 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
1198 | struct btrfs_bio *bbio = NULL; | |
058e09e6 QW |
1199 | int sector_nr; |
1200 | ||
1201 | for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { | |
1202 | struct page *page = scrub_stripe_get_page(stripe, sector_nr); | |
1203 | unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); | |
1204 | int ret; | |
1205 | ||
1206 | /* We should only writeback sectors covered by an extent. */ | |
1207 | ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); | |
1208 | ||
1209 | /* Cannot merge with previous sector, submit the current one. */ | |
1210 | if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { | |
b675df02 | 1211 | scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); |
058e09e6 QW |
1212 | bbio = NULL; |
1213 | } | |
1214 | if (!bbio) { | |
1215 | bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, | |
1216 | fs_info, scrub_write_endio, stripe); | |
1217 | bbio->bio.bi_iter.bi_sector = (stripe->logical + | |
1218 | (sector_nr << fs_info->sectorsize_bits)) >> | |
1219 | SECTOR_SHIFT; | |
1220 | } | |
1221 | ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); | |
1222 | ASSERT(ret == fs_info->sectorsize); | |
1223 | } | |
b675df02 QW |
1224 | if (bbio) |
1225 | scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); | |
058e09e6 QW |
1226 | } |
1227 | ||
13a62fd9 QW |
1228 | /* |
1229 | * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 | |
1230 | * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. | |
1231 | */ | |
e02ee89b QW |
1232 | static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, |
1233 | unsigned int bio_size) | |
eb3b5053 DS |
1234 | { |
1235 | const int time_slice = 1000; | |
eb3b5053 DS |
1236 | s64 delta; |
1237 | ktime_t now; | |
1238 | u32 div; | |
1239 | u64 bwlimit; | |
1240 | ||
eb3b5053 DS |
1241 | bwlimit = READ_ONCE(device->scrub_speed_max); |
1242 | if (bwlimit == 0) | |
1243 | return; | |
1244 | ||
1245 | /* | |
1246 | * Slice is divided into intervals when the IO is submitted, adjust by | |
1247 | * bwlimit and maximum of 64 intervals. | |
1248 | */ | |
1249 | div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); | |
1250 | div = min_t(u32, 64, div); | |
1251 | ||
1252 | /* Start new epoch, set deadline */ | |
1253 | now = ktime_get(); | |
1254 | if (sctx->throttle_deadline == 0) { | |
1255 | sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); | |
1256 | sctx->throttle_sent = 0; | |
1257 | } | |
1258 | ||
1259 | /* Still in the time to send? */ | |
1260 | if (ktime_before(now, sctx->throttle_deadline)) { | |
1261 | /* If current bio is within the limit, send it */ | |
e02ee89b | 1262 | sctx->throttle_sent += bio_size; |
eb3b5053 DS |
1263 | if (sctx->throttle_sent <= div_u64(bwlimit, div)) |
1264 | return; | |
1265 | ||
1266 | /* We're over the limit, sleep until the rest of the slice */ | |
1267 | delta = ktime_ms_delta(sctx->throttle_deadline, now); | |
1268 | } else { | |
1269 | /* New request after deadline, start new epoch */ | |
1270 | delta = 0; | |
1271 | } | |
1272 | ||
1273 | if (delta) { | |
1274 | long timeout; | |
1275 | ||
1276 | timeout = div_u64(delta * HZ, 1000); | |
1277 | schedule_timeout_interruptible(timeout); | |
1278 | } | |
1279 | ||
1280 | /* Next call will start the deadline period */ | |
1281 | sctx->throttle_deadline = 0; | |
1282 | } | |
1283 | ||
3b080b25 WS |
1284 | /* |
1285 | * Given a physical address, this will calculate it's | |
1286 | * logical offset. if this is a parity stripe, it will return | |
1287 | * the most left data stripe's logical offset. | |
1288 | * | |
1289 | * return 0 if it is a data stripe, 1 means parity stripe. | |
1290 | */ | |
1291 | static int get_raid56_logic_offset(u64 physical, int num, | |
7dc66abb | 1292 | struct btrfs_chunk_map *map, u64 *offset, |
5a6ac9ea | 1293 | u64 *stripe_start) |
3b080b25 WS |
1294 | { |
1295 | int i; | |
1296 | int j = 0; | |
3b080b25 | 1297 | u64 last_offset; |
cff82672 | 1298 | const int data_stripes = nr_data_stripes(map); |
3b080b25 | 1299 | |
cff82672 | 1300 | last_offset = (physical - map->stripes[num].physical) * data_stripes; |
5a6ac9ea MX |
1301 | if (stripe_start) |
1302 | *stripe_start = last_offset; | |
1303 | ||
3b080b25 | 1304 | *offset = last_offset; |
cff82672 | 1305 | for (i = 0; i < data_stripes; i++) { |
6ded22c1 QW |
1306 | u32 stripe_nr; |
1307 | u32 stripe_index; | |
1308 | u32 rot; | |
1309 | ||
cb091225 | 1310 | *offset = last_offset + btrfs_stripe_nr_to_offset(i); |
3b080b25 | 1311 | |
6ded22c1 | 1312 | stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; |
3b080b25 WS |
1313 | |
1314 | /* Work out the disk rotation on this stripe-set */ | |
6ded22c1 | 1315 | rot = stripe_nr % map->num_stripes; |
3b080b25 WS |
1316 | /* calculate which stripe this data locates */ |
1317 | rot += i; | |
e4fbaee2 | 1318 | stripe_index = rot % map->num_stripes; |
3b080b25 WS |
1319 | if (stripe_index == num) |
1320 | return 0; | |
1321 | if (stripe_index < num) | |
1322 | j++; | |
1323 | } | |
cb091225 | 1324 | *offset = last_offset + btrfs_stripe_nr_to_offset(j); |
3b080b25 WS |
1325 | return 1; |
1326 | } | |
1327 | ||
416bd7e7 QW |
1328 | /* |
1329 | * Return 0 if the extent item range covers any byte of the range. | |
1330 | * Return <0 if the extent item is before @search_start. | |
1331 | * Return >0 if the extent item is after @start_start + @search_len. | |
1332 | */ | |
1333 | static int compare_extent_item_range(struct btrfs_path *path, | |
1334 | u64 search_start, u64 search_len) | |
1335 | { | |
1336 | struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; | |
1337 | u64 len; | |
1338 | struct btrfs_key key; | |
1339 | ||
1340 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1341 | ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || | |
1342 | key.type == BTRFS_METADATA_ITEM_KEY); | |
1343 | if (key.type == BTRFS_METADATA_ITEM_KEY) | |
1344 | len = fs_info->nodesize; | |
1345 | else | |
1346 | len = key.offset; | |
1347 | ||
1348 | if (key.objectid + len <= search_start) | |
1349 | return -1; | |
1350 | if (key.objectid >= search_start + search_len) | |
1351 | return 1; | |
1352 | return 0; | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * Locate one extent item which covers any byte in range | |
1357 | * [@search_start, @search_start + @search_length) | |
1358 | * | |
1359 | * If the path is not initialized, we will initialize the search by doing | |
1360 | * a btrfs_search_slot(). | |
1361 | * If the path is already initialized, we will use the path as the initial | |
1362 | * slot, to avoid duplicated btrfs_search_slot() calls. | |
1363 | * | |
1364 | * NOTE: If an extent item starts before @search_start, we will still | |
1365 | * return the extent item. This is for data extent crossing stripe boundary. | |
1366 | * | |
1367 | * Return 0 if we found such extent item, and @path will point to the extent item. | |
1368 | * Return >0 if no such extent item can be found, and @path will be released. | |
1369 | * Return <0 if hit fatal error, and @path will be released. | |
1370 | */ | |
1371 | static int find_first_extent_item(struct btrfs_root *extent_root, | |
1372 | struct btrfs_path *path, | |
1373 | u64 search_start, u64 search_len) | |
1374 | { | |
1375 | struct btrfs_fs_info *fs_info = extent_root->fs_info; | |
1376 | struct btrfs_key key; | |
1377 | int ret; | |
1378 | ||
1379 | /* Continue using the existing path */ | |
1380 | if (path->nodes[0]) | |
1381 | goto search_forward; | |
1382 | ||
1383 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | |
1384 | key.type = BTRFS_METADATA_ITEM_KEY; | |
1385 | else | |
1386 | key.type = BTRFS_EXTENT_ITEM_KEY; | |
1387 | key.objectid = search_start; | |
1388 | key.offset = (u64)-1; | |
1389 | ||
1390 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | |
1391 | if (ret < 0) | |
1392 | return ret; | |
f626a0f5 DS |
1393 | if (ret == 0) { |
1394 | /* | |
1395 | * Key with offset -1 found, there would have to exist an extent | |
1396 | * item with such offset, but this is out of the valid range. | |
1397 | */ | |
1398 | btrfs_release_path(path); | |
1399 | return -EUCLEAN; | |
1400 | } | |
416bd7e7 | 1401 | |
416bd7e7 QW |
1402 | /* |
1403 | * Here we intentionally pass 0 as @min_objectid, as there could be | |
1404 | * an extent item starting before @search_start. | |
1405 | */ | |
1406 | ret = btrfs_previous_extent_item(extent_root, path, 0); | |
1407 | if (ret < 0) | |
1408 | return ret; | |
1409 | /* | |
1410 | * No matter whether we have found an extent item, the next loop will | |
1411 | * properly do every check on the key. | |
1412 | */ | |
1413 | search_forward: | |
1414 | while (true) { | |
1415 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1416 | if (key.objectid >= search_start + search_len) | |
1417 | break; | |
1418 | if (key.type != BTRFS_METADATA_ITEM_KEY && | |
1419 | key.type != BTRFS_EXTENT_ITEM_KEY) | |
1420 | goto next; | |
1421 | ||
1422 | ret = compare_extent_item_range(path, search_start, search_len); | |
1423 | if (ret == 0) | |
1424 | return ret; | |
1425 | if (ret > 0) | |
1426 | break; | |
1427 | next: | |
ebb0beca FM |
1428 | ret = btrfs_next_item(extent_root, path); |
1429 | if (ret) { | |
1430 | /* Either no more items or a fatal error. */ | |
1431 | btrfs_release_path(path); | |
1432 | return ret; | |
416bd7e7 QW |
1433 | } |
1434 | } | |
1435 | btrfs_release_path(path); | |
1436 | return 1; | |
1437 | } | |
1438 | ||
09022b14 QW |
1439 | static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, |
1440 | u64 *size_ret, u64 *flags_ret, u64 *generation_ret) | |
1441 | { | |
1442 | struct btrfs_key key; | |
1443 | struct btrfs_extent_item *ei; | |
1444 | ||
1445 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1446 | ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || | |
1447 | key.type == BTRFS_EXTENT_ITEM_KEY); | |
1448 | *extent_start_ret = key.objectid; | |
1449 | if (key.type == BTRFS_METADATA_ITEM_KEY) | |
1450 | *size_ret = path->nodes[0]->fs_info->nodesize; | |
1451 | else | |
1452 | *size_ret = key.offset; | |
1453 | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); | |
1454 | *flags_ret = btrfs_extent_flags(path->nodes[0], ei); | |
1455 | *generation_ret = btrfs_extent_generation(path->nodes[0], ei); | |
1456 | } | |
1457 | ||
7db1c5d1 NA |
1458 | static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, |
1459 | u64 physical, u64 physical_end) | |
1460 | { | |
1461 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
1462 | int ret = 0; | |
1463 | ||
1464 | if (!btrfs_is_zoned(fs_info)) | |
1465 | return 0; | |
1466 | ||
7db1c5d1 NA |
1467 | mutex_lock(&sctx->wr_lock); |
1468 | if (sctx->write_pointer < physical_end) { | |
1469 | ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, | |
1470 | physical, | |
1471 | sctx->write_pointer); | |
1472 | if (ret) | |
1473 | btrfs_err(fs_info, | |
1474 | "zoned: failed to recover write pointer"); | |
1475 | } | |
1476 | mutex_unlock(&sctx->wr_lock); | |
1477 | btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); | |
1478 | ||
1479 | return ret; | |
1480 | } | |
1481 | ||
b9795475 QW |
1482 | static void fill_one_extent_info(struct btrfs_fs_info *fs_info, |
1483 | struct scrub_stripe *stripe, | |
1484 | u64 extent_start, u64 extent_len, | |
1485 | u64 extent_flags, u64 extent_gen) | |
1486 | { | |
1487 | for (u64 cur_logical = max(stripe->logical, extent_start); | |
1488 | cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, | |
1489 | extent_start + extent_len); | |
1490 | cur_logical += fs_info->sectorsize) { | |
1491 | const int nr_sector = (cur_logical - stripe->logical) >> | |
1492 | fs_info->sectorsize_bits; | |
1493 | struct scrub_sector_verification *sector = | |
1494 | &stripe->sectors[nr_sector]; | |
1495 | ||
1496 | set_bit(nr_sector, &stripe->extent_sector_bitmap); | |
1497 | if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | |
1498 | sector->is_metadata = true; | |
1499 | sector->generation = extent_gen; | |
1500 | } | |
1501 | } | |
1502 | } | |
1503 | ||
1504 | static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) | |
1505 | { | |
1506 | stripe->extent_sector_bitmap = 0; | |
1507 | stripe->init_error_bitmap = 0; | |
79b8ee70 QW |
1508 | stripe->init_nr_io_errors = 0; |
1509 | stripe->init_nr_csum_errors = 0; | |
1510 | stripe->init_nr_meta_errors = 0; | |
b9795475 QW |
1511 | stripe->error_bitmap = 0; |
1512 | stripe->io_error_bitmap = 0; | |
1513 | stripe->csum_error_bitmap = 0; | |
1514 | stripe->meta_error_bitmap = 0; | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * Locate one stripe which has at least one extent in its range. | |
1519 | * | |
1520 | * Return 0 if found such stripe, and store its info into @stripe. | |
1521 | * Return >0 if there is no such stripe in the specified range. | |
1522 | * Return <0 for error. | |
1523 | */ | |
54765392 | 1524 | static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, |
1dc4888e | 1525 | struct btrfs_path *extent_path, |
3c771c19 | 1526 | struct btrfs_path *csum_path, |
54765392 QW |
1527 | struct btrfs_device *dev, u64 physical, |
1528 | int mirror_num, u64 logical_start, | |
1529 | u32 logical_len, | |
1530 | struct scrub_stripe *stripe) | |
b9795475 QW |
1531 | { |
1532 | struct btrfs_fs_info *fs_info = bg->fs_info; | |
1533 | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); | |
1534 | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); | |
1535 | const u64 logical_end = logical_start + logical_len; | |
b9795475 QW |
1536 | u64 cur_logical = logical_start; |
1537 | u64 stripe_end; | |
1538 | u64 extent_start; | |
1539 | u64 extent_len; | |
1540 | u64 extent_flags; | |
1541 | u64 extent_gen; | |
1542 | int ret; | |
1543 | ||
1544 | memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * | |
1545 | stripe->nr_sectors); | |
1546 | scrub_stripe_reset_bitmaps(stripe); | |
1547 | ||
1548 | /* The range must be inside the bg. */ | |
1549 | ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); | |
1550 | ||
1dc4888e QW |
1551 | ret = find_first_extent_item(extent_root, extent_path, logical_start, |
1552 | logical_len); | |
b9795475 QW |
1553 | /* Either error or not found. */ |
1554 | if (ret) | |
1555 | goto out; | |
1dc4888e QW |
1556 | get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, |
1557 | &extent_gen); | |
00965807 QW |
1558 | if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
1559 | stripe->nr_meta_extents++; | |
1560 | if (extent_flags & BTRFS_EXTENT_FLAG_DATA) | |
1561 | stripe->nr_data_extents++; | |
b9795475 QW |
1562 | cur_logical = max(extent_start, cur_logical); |
1563 | ||
1564 | /* | |
1565 | * Round down to stripe boundary. | |
1566 | * | |
1567 | * The extra calculation against bg->start is to handle block groups | |
1568 | * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. | |
1569 | */ | |
1570 | stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + | |
1571 | bg->start; | |
1572 | stripe->physical = physical + stripe->logical - logical_start; | |
1573 | stripe->dev = dev; | |
1574 | stripe->bg = bg; | |
1575 | stripe->mirror_num = mirror_num; | |
1576 | stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; | |
1577 | ||
1578 | /* Fill the first extent info into stripe->sectors[] array. */ | |
1579 | fill_one_extent_info(fs_info, stripe, extent_start, extent_len, | |
1580 | extent_flags, extent_gen); | |
1581 | cur_logical = extent_start + extent_len; | |
1582 | ||
1583 | /* Fill the extent info for the remaining sectors. */ | |
1584 | while (cur_logical <= stripe_end) { | |
1dc4888e | 1585 | ret = find_first_extent_item(extent_root, extent_path, cur_logical, |
b9795475 QW |
1586 | stripe_end - cur_logical + 1); |
1587 | if (ret < 0) | |
1588 | goto out; | |
1589 | if (ret > 0) { | |
1590 | ret = 0; | |
1591 | break; | |
1592 | } | |
1dc4888e | 1593 | get_extent_info(extent_path, &extent_start, &extent_len, |
b9795475 | 1594 | &extent_flags, &extent_gen); |
00965807 QW |
1595 | if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
1596 | stripe->nr_meta_extents++; | |
1597 | if (extent_flags & BTRFS_EXTENT_FLAG_DATA) | |
1598 | stripe->nr_data_extents++; | |
b9795475 QW |
1599 | fill_one_extent_info(fs_info, stripe, extent_start, extent_len, |
1600 | extent_flags, extent_gen); | |
1601 | cur_logical = extent_start + extent_len; | |
1602 | } | |
1603 | ||
1604 | /* Now fill the data csum. */ | |
1605 | if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { | |
1606 | int sector_nr; | |
1607 | unsigned long csum_bitmap = 0; | |
1608 | ||
1609 | /* Csum space should have already been allocated. */ | |
1610 | ASSERT(stripe->csums); | |
1611 | ||
1612 | /* | |
1613 | * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN | |
1614 | * should contain at most 16 sectors. | |
1615 | */ | |
1616 | ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); | |
1617 | ||
3c771c19 QW |
1618 | ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, |
1619 | stripe->logical, stripe_end, | |
1620 | stripe->csums, &csum_bitmap); | |
b9795475 QW |
1621 | if (ret < 0) |
1622 | goto out; | |
1623 | if (ret > 0) | |
1624 | ret = 0; | |
1625 | ||
1626 | for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { | |
1627 | stripe->sectors[sector_nr].csum = stripe->csums + | |
1628 | sector_nr * fs_info->csum_size; | |
1629 | } | |
1630 | } | |
1631 | set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); | |
1632 | out: | |
b9795475 QW |
1633 | return ret; |
1634 | } | |
1635 | ||
54765392 QW |
1636 | static void scrub_reset_stripe(struct scrub_stripe *stripe) |
1637 | { | |
1638 | scrub_stripe_reset_bitmaps(stripe); | |
1639 | ||
1640 | stripe->nr_meta_extents = 0; | |
1641 | stripe->nr_data_extents = 0; | |
1642 | stripe->state = 0; | |
1643 | ||
1644 | for (int i = 0; i < stripe->nr_sectors; i++) { | |
1645 | stripe->sectors[i].is_metadata = false; | |
1646 | stripe->sectors[i].csum = NULL; | |
1647 | stripe->sectors[i].generation = 0; | |
1648 | } | |
1649 | } | |
1650 | ||
33eb1e5d QW |
1651 | static u32 stripe_length(const struct scrub_stripe *stripe) |
1652 | { | |
1653 | ASSERT(stripe->bg); | |
1654 | ||
1655 | return min(BTRFS_STRIPE_LEN, | |
1656 | stripe->bg->start + stripe->bg->length - stripe->logical); | |
1657 | } | |
1658 | ||
9acaa641 JT |
1659 | static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx, |
1660 | struct scrub_stripe *stripe) | |
1661 | { | |
1662 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
1663 | struct btrfs_bio *bbio = NULL; | |
33eb1e5d | 1664 | unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; |
9acaa641 JT |
1665 | u64 stripe_len = BTRFS_STRIPE_LEN; |
1666 | int mirror = stripe->mirror_num; | |
1667 | int i; | |
1668 | ||
1669 | atomic_inc(&stripe->pending_io); | |
1670 | ||
1671 | for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) { | |
1672 | struct page *page = scrub_stripe_get_page(stripe, i); | |
1673 | unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i); | |
1674 | ||
7f2d219e QW |
1675 | /* We're beyond the chunk boundary, no need to read anymore. */ |
1676 | if (i >= nr_sectors) | |
1677 | break; | |
1678 | ||
9acaa641 JT |
1679 | /* The current sector cannot be merged, submit the bio. */ |
1680 | if (bbio && | |
1681 | ((i > 0 && | |
1682 | !test_bit(i - 1, &stripe->extent_sector_bitmap)) || | |
1683 | bbio->bio.bi_iter.bi_size >= stripe_len)) { | |
1684 | ASSERT(bbio->bio.bi_iter.bi_size); | |
1685 | atomic_inc(&stripe->pending_io); | |
1686 | btrfs_submit_bio(bbio, mirror); | |
1687 | bbio = NULL; | |
1688 | } | |
1689 | ||
1690 | if (!bbio) { | |
1691 | struct btrfs_io_stripe io_stripe = {}; | |
1692 | struct btrfs_io_context *bioc = NULL; | |
1693 | const u64 logical = stripe->logical + | |
1694 | (i << fs_info->sectorsize_bits); | |
1695 | int err; | |
1696 | ||
9acaa641 | 1697 | io_stripe.is_scrub = true; |
2c499086 QW |
1698 | stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits; |
1699 | /* | |
1700 | * For RST cases, we need to manually split the bbio to | |
1701 | * follow the RST boundary. | |
1702 | */ | |
9acaa641 | 1703 | err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, |
2c499086 | 1704 | &stripe_len, &bioc, &io_stripe, &mirror); |
9acaa641 | 1705 | btrfs_put_bioc(bioc); |
2c499086 QW |
1706 | if (err < 0) { |
1707 | set_bit(i, &stripe->io_error_bitmap); | |
1708 | set_bit(i, &stripe->error_bitmap); | |
1709 | continue; | |
9acaa641 | 1710 | } |
2c499086 QW |
1711 | |
1712 | bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, | |
1713 | fs_info, scrub_read_endio, stripe); | |
1714 | bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; | |
9acaa641 JT |
1715 | } |
1716 | ||
1717 | __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); | |
1718 | } | |
1719 | ||
1720 | if (bbio) { | |
1721 | ASSERT(bbio->bio.bi_iter.bi_size); | |
1722 | atomic_inc(&stripe->pending_io); | |
1723 | btrfs_submit_bio(bbio, mirror); | |
1724 | } | |
1725 | ||
1726 | if (atomic_dec_and_test(&stripe->pending_io)) { | |
1727 | wake_up(&stripe->io_wait); | |
1728 | INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); | |
1729 | queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); | |
1730 | } | |
1731 | } | |
1732 | ||
54765392 QW |
1733 | static void scrub_submit_initial_read(struct scrub_ctx *sctx, |
1734 | struct scrub_stripe *stripe) | |
1735 | { | |
1736 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
1737 | struct btrfs_bio *bbio; | |
33eb1e5d | 1738 | unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; |
54765392 QW |
1739 | int mirror = stripe->mirror_num; |
1740 | ||
1741 | ASSERT(stripe->bg); | |
1742 | ASSERT(stripe->mirror_num > 0); | |
1743 | ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); | |
1744 | ||
9acaa641 JT |
1745 | if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { |
1746 | scrub_submit_extent_sector_read(sctx, stripe); | |
1747 | return; | |
1748 | } | |
1749 | ||
54765392 QW |
1750 | bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, |
1751 | scrub_read_endio, stripe); | |
1752 | ||
54765392 | 1753 | bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; |
f546c428 QW |
1754 | /* Read the whole range inside the chunk boundary. */ |
1755 | for (unsigned int cur = 0; cur < nr_sectors; cur++) { | |
1756 | struct page *page = scrub_stripe_get_page(stripe, cur); | |
1757 | unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur); | |
54765392 QW |
1758 | int ret; |
1759 | ||
f546c428 | 1760 | ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); |
54765392 | 1761 | /* We should have allocated enough bio vectors. */ |
f546c428 | 1762 | ASSERT(ret == fs_info->sectorsize); |
54765392 QW |
1763 | } |
1764 | atomic_inc(&stripe->pending_io); | |
1765 | ||
1766 | /* | |
1767 | * For dev-replace, either user asks to avoid the source dev, or | |
1768 | * the device is missing, we try the next mirror instead. | |
1769 | */ | |
1770 | if (sctx->is_dev_replace && | |
1771 | (fs_info->dev_replace.cont_reading_from_srcdev_mode == | |
1772 | BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || | |
1773 | !stripe->dev->bdev)) { | |
1774 | int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, | |
1775 | stripe->bg->length); | |
1776 | ||
1777 | mirror = calc_next_mirror(mirror, num_copies); | |
1778 | } | |
1779 | btrfs_submit_bio(bbio, mirror); | |
1780 | } | |
1781 | ||
8eb3dd17 QW |
1782 | static bool stripe_has_metadata_error(struct scrub_stripe *stripe) |
1783 | { | |
1784 | int i; | |
1785 | ||
1786 | for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { | |
1787 | if (stripe->sectors[i].is_metadata) { | |
1788 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; | |
1789 | ||
1790 | btrfs_err(fs_info, | |
1791 | "stripe %llu has unrepaired metadata sector at %llu", | |
1792 | stripe->logical, | |
1793 | stripe->logical + (i << fs_info->sectorsize_bits)); | |
1794 | return true; | |
1795 | } | |
1796 | } | |
1797 | return false; | |
1798 | } | |
1799 | ||
ae76d8e3 QW |
1800 | static void submit_initial_group_read(struct scrub_ctx *sctx, |
1801 | unsigned int first_slot, | |
1802 | unsigned int nr_stripes) | |
1803 | { | |
1804 | struct blk_plug plug; | |
1805 | ||
1806 | ASSERT(first_slot < SCRUB_TOTAL_STRIPES); | |
1807 | ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); | |
1808 | ||
1809 | scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, | |
1810 | btrfs_stripe_nr_to_offset(nr_stripes)); | |
1811 | blk_start_plug(&plug); | |
1812 | for (int i = 0; i < nr_stripes; i++) { | |
1813 | struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; | |
1814 | ||
1815 | /* Those stripes should be initialized. */ | |
1816 | ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); | |
1817 | scrub_submit_initial_read(sctx, stripe); | |
1818 | } | |
1819 | blk_finish_plug(&plug); | |
1820 | } | |
1821 | ||
8eb3dd17 | 1822 | static int flush_scrub_stripes(struct scrub_ctx *sctx) |
54765392 QW |
1823 | { |
1824 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
1825 | struct scrub_stripe *stripe; | |
1826 | const int nr_stripes = sctx->cur_stripe; | |
8eb3dd17 | 1827 | int ret = 0; |
54765392 QW |
1828 | |
1829 | if (!nr_stripes) | |
8eb3dd17 | 1830 | return 0; |
54765392 QW |
1831 | |
1832 | ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); | |
e02ee89b | 1833 | |
ae76d8e3 QW |
1834 | /* Submit the stripes which are populated but not submitted. */ |
1835 | if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { | |
1836 | const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); | |
1837 | ||
1838 | submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); | |
54765392 QW |
1839 | } |
1840 | ||
1841 | for (int i = 0; i < nr_stripes; i++) { | |
1842 | stripe = &sctx->stripes[i]; | |
1843 | ||
1844 | wait_event(stripe->repair_wait, | |
1845 | test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); | |
1846 | } | |
1847 | ||
54765392 QW |
1848 | /* Submit for dev-replace. */ |
1849 | if (sctx->is_dev_replace) { | |
8eb3dd17 QW |
1850 | /* |
1851 | * For dev-replace, if we know there is something wrong with | |
eefaf0a1 | 1852 | * metadata, we should immediately abort. |
8eb3dd17 QW |
1853 | */ |
1854 | for (int i = 0; i < nr_stripes; i++) { | |
1855 | if (stripe_has_metadata_error(&sctx->stripes[i])) { | |
1856 | ret = -EIO; | |
1857 | goto out; | |
1858 | } | |
1859 | } | |
54765392 QW |
1860 | for (int i = 0; i < nr_stripes; i++) { |
1861 | unsigned long good; | |
1862 | ||
1863 | stripe = &sctx->stripes[i]; | |
1864 | ||
1865 | ASSERT(stripe->dev == fs_info->dev_replace.srcdev); | |
1866 | ||
1867 | bitmap_andnot(&good, &stripe->extent_sector_bitmap, | |
1868 | &stripe->error_bitmap, stripe->nr_sectors); | |
1869 | scrub_write_sectors(sctx, stripe, good, true); | |
1870 | } | |
1871 | } | |
1872 | ||
1873 | /* Wait for the above writebacks to finish. */ | |
1874 | for (int i = 0; i < nr_stripes; i++) { | |
1875 | stripe = &sctx->stripes[i]; | |
1876 | ||
1877 | wait_scrub_stripe_io(stripe); | |
63447b7d QW |
1878 | spin_lock(&sctx->stat_lock); |
1879 | sctx->stat.last_physical = stripe->physical + stripe_length(stripe); | |
1880 | spin_unlock(&sctx->stat_lock); | |
54765392 QW |
1881 | scrub_reset_stripe(stripe); |
1882 | } | |
8eb3dd17 | 1883 | out: |
54765392 | 1884 | sctx->cur_stripe = 0; |
8eb3dd17 | 1885 | return ret; |
54765392 QW |
1886 | } |
1887 | ||
1009254b QW |
1888 | static void raid56_scrub_wait_endio(struct bio *bio) |
1889 | { | |
1890 | complete(bio->bi_private); | |
1891 | } | |
1892 | ||
e02ee89b QW |
1893 | static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, |
1894 | struct btrfs_device *dev, int mirror_num, | |
ae76d8e3 QW |
1895 | u64 logical, u32 length, u64 physical, |
1896 | u64 *found_logical_ret) | |
54765392 QW |
1897 | { |
1898 | struct scrub_stripe *stripe; | |
1899 | int ret; | |
1900 | ||
ae76d8e3 QW |
1901 | /* |
1902 | * There should always be one slot left, as caller filling the last | |
1903 | * slot should flush them all. | |
1904 | */ | |
1905 | ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); | |
54765392 | 1906 | |
47e2b06b QW |
1907 | /* @found_logical_ret must be specified. */ |
1908 | ASSERT(found_logical_ret); | |
1909 | ||
54765392 | 1910 | stripe = &sctx->stripes[sctx->cur_stripe]; |
54765392 | 1911 | scrub_reset_stripe(stripe); |
3c771c19 QW |
1912 | ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, |
1913 | &sctx->csum_path, dev, physical, | |
1914 | mirror_num, logical, length, stripe); | |
54765392 QW |
1915 | /* Either >0 as no more extents or <0 for error. */ |
1916 | if (ret) | |
1917 | return ret; | |
47e2b06b | 1918 | *found_logical_ret = stripe->logical; |
54765392 | 1919 | sctx->cur_stripe++; |
ae76d8e3 QW |
1920 | |
1921 | /* We filled one group, submit it. */ | |
1922 | if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { | |
1923 | const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; | |
1924 | ||
1925 | submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); | |
1926 | } | |
1927 | ||
1928 | /* Last slot used, flush them all. */ | |
1929 | if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) | |
1930 | return flush_scrub_stripes(sctx); | |
54765392 QW |
1931 | return 0; |
1932 | } | |
1933 | ||
1009254b QW |
1934 | static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, |
1935 | struct btrfs_device *scrub_dev, | |
1936 | struct btrfs_block_group *bg, | |
7dc66abb | 1937 | struct btrfs_chunk_map *map, |
1009254b QW |
1938 | u64 full_stripe_start) |
1939 | { | |
1940 | DECLARE_COMPLETION_ONSTACK(io_done); | |
1941 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
1942 | struct btrfs_raid_bio *rbio; | |
1943 | struct btrfs_io_context *bioc = NULL; | |
1dc4888e | 1944 | struct btrfs_path extent_path = { 0 }; |
3c771c19 | 1945 | struct btrfs_path csum_path = { 0 }; |
1009254b QW |
1946 | struct bio *bio; |
1947 | struct scrub_stripe *stripe; | |
1948 | bool all_empty = true; | |
1949 | const int data_stripes = nr_data_stripes(map); | |
1950 | unsigned long extent_bitmap = 0; | |
cb091225 | 1951 | u64 length = btrfs_stripe_nr_to_offset(data_stripes); |
1009254b QW |
1952 | int ret; |
1953 | ||
1954 | ASSERT(sctx->raid56_data_stripes); | |
1955 | ||
1dc4888e | 1956 | /* |
3c771c19 QW |
1957 | * For data stripe search, we cannot re-use the same extent/csum paths, |
1958 | * as the data stripe bytenr may be smaller than previous extent. Thus | |
1959 | * we have to use our own extent/csum paths. | |
1dc4888e QW |
1960 | */ |
1961 | extent_path.search_commit_root = 1; | |
1962 | extent_path.skip_locking = 1; | |
3c771c19 QW |
1963 | csum_path.search_commit_root = 1; |
1964 | csum_path.skip_locking = 1; | |
1dc4888e | 1965 | |
1009254b QW |
1966 | for (int i = 0; i < data_stripes; i++) { |
1967 | int stripe_index; | |
1968 | int rot; | |
1969 | u64 physical; | |
1970 | ||
1971 | stripe = &sctx->raid56_data_stripes[i]; | |
1972 | rot = div_u64(full_stripe_start - bg->start, | |
1973 | data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; | |
1974 | stripe_index = (i + rot) % map->num_stripes; | |
1975 | physical = map->stripes[stripe_index].physical + | |
cb091225 | 1976 | btrfs_stripe_nr_to_offset(rot); |
1009254b QW |
1977 | |
1978 | scrub_reset_stripe(stripe); | |
1979 | set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); | |
3c771c19 | 1980 | ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, |
1009254b | 1981 | map->stripes[stripe_index].dev, physical, 1, |
cb091225 | 1982 | full_stripe_start + btrfs_stripe_nr_to_offset(i), |
1009254b QW |
1983 | BTRFS_STRIPE_LEN, stripe); |
1984 | if (ret < 0) | |
1985 | goto out; | |
1986 | /* | |
1987 | * No extent in this data stripe, need to manually mark them | |
1988 | * initialized to make later read submission happy. | |
1989 | */ | |
1990 | if (ret > 0) { | |
1991 | stripe->logical = full_stripe_start + | |
cb091225 | 1992 | btrfs_stripe_nr_to_offset(i); |
1009254b QW |
1993 | stripe->dev = map->stripes[stripe_index].dev; |
1994 | stripe->mirror_num = 1; | |
1995 | set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); | |
1996 | } | |
1997 | } | |
1998 | ||
1999 | /* Check if all data stripes are empty. */ | |
2000 | for (int i = 0; i < data_stripes; i++) { | |
2001 | stripe = &sctx->raid56_data_stripes[i]; | |
2002 | if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { | |
2003 | all_empty = false; | |
2004 | break; | |
2005 | } | |
2006 | } | |
2007 | if (all_empty) { | |
2008 | ret = 0; | |
2009 | goto out; | |
2010 | } | |
2011 | ||
2012 | for (int i = 0; i < data_stripes; i++) { | |
2013 | stripe = &sctx->raid56_data_stripes[i]; | |
2014 | scrub_submit_initial_read(sctx, stripe); | |
2015 | } | |
2016 | for (int i = 0; i < data_stripes; i++) { | |
2017 | stripe = &sctx->raid56_data_stripes[i]; | |
2018 | ||
2019 | wait_event(stripe->repair_wait, | |
2020 | test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); | |
2021 | } | |
2022 | /* For now, no zoned support for RAID56. */ | |
2023 | ASSERT(!btrfs_is_zoned(sctx->fs_info)); | |
2024 | ||
1009254b QW |
2025 | /* |
2026 | * Now all data stripes are properly verified. Check if we have any | |
2027 | * unrepaired, if so abort immediately or we could further corrupt the | |
2028 | * P/Q stripes. | |
2029 | * | |
2030 | * During the loop, also populate extent_bitmap. | |
2031 | */ | |
2032 | for (int i = 0; i < data_stripes; i++) { | |
2033 | unsigned long error; | |
2034 | ||
2035 | stripe = &sctx->raid56_data_stripes[i]; | |
2036 | ||
2037 | /* | |
2038 | * We should only check the errors where there is an extent. | |
2039 | * As we may hit an empty data stripe while it's missing. | |
2040 | */ | |
2041 | bitmap_and(&error, &stripe->error_bitmap, | |
2042 | &stripe->extent_sector_bitmap, stripe->nr_sectors); | |
2043 | if (!bitmap_empty(&error, stripe->nr_sectors)) { | |
2044 | btrfs_err(fs_info, | |
2045 | "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", | |
2046 | full_stripe_start, i, stripe->nr_sectors, | |
2047 | &error); | |
2048 | ret = -EIO; | |
2049 | goto out; | |
2050 | } | |
2051 | bitmap_or(&extent_bitmap, &extent_bitmap, | |
2052 | &stripe->extent_sector_bitmap, stripe->nr_sectors); | |
2053 | } | |
2054 | ||
2055 | /* Now we can check and regenerate the P/Q stripe. */ | |
2056 | bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); | |
2057 | bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; | |
2058 | bio->bi_private = &io_done; | |
2059 | bio->bi_end_io = raid56_scrub_wait_endio; | |
2060 | ||
2061 | btrfs_bio_counter_inc_blocked(fs_info); | |
723b8bb1 | 2062 | ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, |
9fb2acc2 | 2063 | &length, &bioc, NULL, NULL); |
1009254b QW |
2064 | if (ret < 0) { |
2065 | btrfs_put_bioc(bioc); | |
2066 | btrfs_bio_counter_dec(fs_info); | |
2067 | goto out; | |
2068 | } | |
2069 | rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, | |
2070 | BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); | |
2071 | btrfs_put_bioc(bioc); | |
2072 | if (!rbio) { | |
2073 | ret = -ENOMEM; | |
2074 | btrfs_bio_counter_dec(fs_info); | |
2075 | goto out; | |
2076 | } | |
94ead93e QW |
2077 | /* Use the recovered stripes as cache to avoid read them from disk again. */ |
2078 | for (int i = 0; i < data_stripes; i++) { | |
2079 | stripe = &sctx->raid56_data_stripes[i]; | |
2080 | ||
2081 | raid56_parity_cache_data_pages(rbio, stripe->pages, | |
2082 | full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); | |
2083 | } | |
1009254b QW |
2084 | raid56_parity_submit_scrub_rbio(rbio); |
2085 | wait_for_completion_io(&io_done); | |
2086 | ret = blk_status_to_errno(bio->bi_status); | |
2087 | bio_put(bio); | |
2088 | btrfs_bio_counter_dec(fs_info); | |
2089 | ||
1dc4888e | 2090 | btrfs_release_path(&extent_path); |
3c771c19 | 2091 | btrfs_release_path(&csum_path); |
1009254b QW |
2092 | out: |
2093 | return ret; | |
2094 | } | |
2095 | ||
09022b14 QW |
2096 | /* |
2097 | * Scrub one range which can only has simple mirror based profile. | |
2098 | * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in | |
2099 | * RAID0/RAID10). | |
2100 | * | |
2101 | * Since we may need to handle a subset of block group, we need @logical_start | |
2102 | * and @logical_length parameter. | |
2103 | */ | |
2104 | static int scrub_simple_mirror(struct scrub_ctx *sctx, | |
09022b14 | 2105 | struct btrfs_block_group *bg, |
7dc66abb | 2106 | struct btrfs_chunk_map *map, |
09022b14 QW |
2107 | u64 logical_start, u64 logical_length, |
2108 | struct btrfs_device *device, | |
2109 | u64 physical, int mirror_num) | |
2110 | { | |
2111 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
2112 | const u64 logical_end = logical_start + logical_length; | |
09022b14 | 2113 | u64 cur_logical = logical_start; |
b4e585ff | 2114 | int ret = 0; |
09022b14 QW |
2115 | |
2116 | /* The range must be inside the bg */ | |
2117 | ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); | |
2118 | ||
09022b14 QW |
2119 | /* Go through each extent items inside the logical range */ |
2120 | while (cur_logical < logical_end) { | |
47e2b06b | 2121 | u64 found_logical = U64_MAX; |
e02ee89b | 2122 | u64 cur_physical = physical + cur_logical - logical_start; |
09022b14 QW |
2123 | |
2124 | /* Canceled? */ | |
2125 | if (atomic_read(&fs_info->scrub_cancel_req) || | |
2126 | atomic_read(&sctx->cancel_req)) { | |
2127 | ret = -ECANCELED; | |
2128 | break; | |
2129 | } | |
2130 | /* Paused? */ | |
2131 | if (atomic_read(&fs_info->scrub_pause_req)) { | |
2132 | /* Push queued extents */ | |
09022b14 QW |
2133 | scrub_blocked_if_needed(fs_info); |
2134 | } | |
2135 | /* Block group removed? */ | |
2136 | spin_lock(&bg->lock); | |
3349b57f | 2137 | if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { |
09022b14 QW |
2138 | spin_unlock(&bg->lock); |
2139 | ret = 0; | |
2140 | break; | |
2141 | } | |
2142 | spin_unlock(&bg->lock); | |
2143 | ||
e02ee89b QW |
2144 | ret = queue_scrub_stripe(sctx, bg, device, mirror_num, |
2145 | cur_logical, logical_end - cur_logical, | |
ae76d8e3 | 2146 | cur_physical, &found_logical); |
09022b14 QW |
2147 | if (ret > 0) { |
2148 | /* No more extent, just update the accounting */ | |
63447b7d | 2149 | spin_lock(&sctx->stat_lock); |
09022b14 | 2150 | sctx->stat.last_physical = physical + logical_length; |
63447b7d | 2151 | spin_unlock(&sctx->stat_lock); |
09022b14 QW |
2152 | ret = 0; |
2153 | break; | |
2154 | } | |
2155 | if (ret < 0) | |
2156 | break; | |
09022b14 | 2157 | |
47e2b06b QW |
2158 | /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ |
2159 | ASSERT(found_logical != U64_MAX); | |
ae76d8e3 | 2160 | cur_logical = found_logical + BTRFS_STRIPE_LEN; |
e02ee89b | 2161 | |
09022b14 QW |
2162 | /* Don't hold CPU for too long time */ |
2163 | cond_resched(); | |
2164 | } | |
09022b14 QW |
2165 | return ret; |
2166 | } | |
2167 | ||
8557635e | 2168 | /* Calculate the full stripe length for simple stripe based profiles */ |
7dc66abb | 2169 | static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) |
8557635e QW |
2170 | { |
2171 | ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | | |
2172 | BTRFS_BLOCK_GROUP_RAID10)); | |
2173 | ||
cb091225 | 2174 | return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); |
8557635e QW |
2175 | } |
2176 | ||
2177 | /* Get the logical bytenr for the stripe */ | |
7dc66abb | 2178 | static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, |
8557635e QW |
2179 | struct btrfs_block_group *bg, |
2180 | int stripe_index) | |
2181 | { | |
2182 | ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | | |
2183 | BTRFS_BLOCK_GROUP_RAID10)); | |
2184 | ASSERT(stripe_index < map->num_stripes); | |
2185 | ||
2186 | /* | |
2187 | * (stripe_index / sub_stripes) gives how many data stripes we need to | |
2188 | * skip. | |
2189 | */ | |
cb091225 | 2190 | return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + |
a97699d1 | 2191 | bg->start; |
8557635e QW |
2192 | } |
2193 | ||
2194 | /* Get the mirror number for the stripe */ | |
7dc66abb | 2195 | static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) |
8557635e QW |
2196 | { |
2197 | ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | | |
2198 | BTRFS_BLOCK_GROUP_RAID10)); | |
2199 | ASSERT(stripe_index < map->num_stripes); | |
2200 | ||
2201 | /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ | |
2202 | return stripe_index % map->sub_stripes + 1; | |
2203 | } | |
2204 | ||
2205 | static int scrub_simple_stripe(struct scrub_ctx *sctx, | |
8557635e | 2206 | struct btrfs_block_group *bg, |
7dc66abb | 2207 | struct btrfs_chunk_map *map, |
8557635e QW |
2208 | struct btrfs_device *device, |
2209 | int stripe_index) | |
2210 | { | |
2211 | const u64 logical_increment = simple_stripe_full_stripe_len(map); | |
2212 | const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); | |
2213 | const u64 orig_physical = map->stripes[stripe_index].physical; | |
2214 | const int mirror_num = simple_stripe_mirror_num(map, stripe_index); | |
2215 | u64 cur_logical = orig_logical; | |
2216 | u64 cur_physical = orig_physical; | |
2217 | int ret = 0; | |
2218 | ||
2219 | while (cur_logical < bg->start + bg->length) { | |
2220 | /* | |
2221 | * Inside each stripe, RAID0 is just SINGLE, and RAID10 is | |
2222 | * just RAID1, so we can reuse scrub_simple_mirror() to scrub | |
2223 | * this stripe. | |
2224 | */ | |
6b4d375a QW |
2225 | ret = scrub_simple_mirror(sctx, bg, map, cur_logical, |
2226 | BTRFS_STRIPE_LEN, device, cur_physical, | |
2227 | mirror_num); | |
8557635e QW |
2228 | if (ret) |
2229 | return ret; | |
2230 | /* Skip to next stripe which belongs to the target device */ | |
2231 | cur_logical += logical_increment; | |
2232 | /* For physical offset, we just go to next stripe */ | |
a97699d1 | 2233 | cur_physical += BTRFS_STRIPE_LEN; |
8557635e QW |
2234 | } |
2235 | return ret; | |
2236 | } | |
2237 | ||
d9d181c1 | 2238 | static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, |
2ae8ae3d | 2239 | struct btrfs_block_group *bg, |
7dc66abb | 2240 | struct btrfs_chunk_map *map, |
a36cf8b8 | 2241 | struct btrfs_device *scrub_dev, |
bc88b486 | 2242 | int stripe_index) |
a2de733c | 2243 | { |
fb456252 | 2244 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
09022b14 | 2245 | const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; |
2ae8ae3d | 2246 | const u64 chunk_logical = bg->start; |
a2de733c | 2247 | int ret; |
8eb3dd17 | 2248 | int ret2; |
1194a824 | 2249 | u64 physical = map->stripes[stripe_index].physical; |
7dc66abb | 2250 | const u64 dev_stripe_len = btrfs_calc_stripe_length(map); |
bc88b486 | 2251 | const u64 physical_end = physical + dev_stripe_len; |
a2de733c | 2252 | u64 logical; |
625f1c8d | 2253 | u64 logic_end; |
18d30ab9 | 2254 | /* The logical increment after finishing one stripe */ |
5c07c53f | 2255 | u64 increment; |
18d30ab9 | 2256 | /* Offset inside the chunk */ |
a2de733c | 2257 | u64 offset; |
5a6ac9ea | 2258 | u64 stripe_logical; |
3b080b25 | 2259 | int stop_loop = 0; |
53b381b3 | 2260 | |
1dc4888e QW |
2261 | /* Extent_path should be released by now. */ |
2262 | ASSERT(sctx->extent_path.nodes[0] == NULL); | |
2263 | ||
cb7ab021 | 2264 | scrub_blocked_if_needed(fs_info); |
7a26285e | 2265 | |
de17addc NA |
2266 | if (sctx->is_dev_replace && |
2267 | btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { | |
2268 | mutex_lock(&sctx->wr_lock); | |
2269 | sctx->write_pointer = physical; | |
2270 | mutex_unlock(&sctx->wr_lock); | |
de17addc NA |
2271 | } |
2272 | ||
1009254b QW |
2273 | /* Prepare the extra data stripes used by RAID56. */ |
2274 | if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { | |
2275 | ASSERT(sctx->raid56_data_stripes == NULL); | |
2276 | ||
2277 | sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), | |
2278 | sizeof(struct scrub_stripe), | |
2279 | GFP_KERNEL); | |
2280 | if (!sctx->raid56_data_stripes) { | |
2281 | ret = -ENOMEM; | |
2282 | goto out; | |
2283 | } | |
2284 | for (int i = 0; i < nr_data_stripes(map); i++) { | |
2285 | ret = init_scrub_stripe(fs_info, | |
2286 | &sctx->raid56_data_stripes[i]); | |
2287 | if (ret < 0) | |
2288 | goto out; | |
2289 | sctx->raid56_data_stripes[i].bg = bg; | |
2290 | sctx->raid56_data_stripes[i].sctx = sctx; | |
2291 | } | |
2292 | } | |
09022b14 QW |
2293 | /* |
2294 | * There used to be a big double loop to handle all profiles using the | |
2295 | * same routine, which grows larger and more gross over time. | |
2296 | * | |
2297 | * So here we handle each profile differently, so simpler profiles | |
2298 | * have simpler scrubbing function. | |
2299 | */ | |
2300 | if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | | |
2301 | BTRFS_BLOCK_GROUP_RAID56_MASK))) { | |
2302 | /* | |
2303 | * Above check rules out all complex profile, the remaining | |
2304 | * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple | |
2305 | * mirrored duplication without stripe. | |
2306 | * | |
2307 | * Only @physical and @mirror_num needs to calculated using | |
2308 | * @stripe_index. | |
2309 | */ | |
6b4d375a QW |
2310 | ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, |
2311 | scrub_dev, map->stripes[stripe_index].physical, | |
09022b14 | 2312 | stripe_index + 1); |
e430c428 | 2313 | offset = 0; |
09022b14 QW |
2314 | goto out; |
2315 | } | |
8557635e | 2316 | if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { |
6b4d375a | 2317 | ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); |
cb091225 | 2318 | offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); |
8557635e QW |
2319 | goto out; |
2320 | } | |
2321 | ||
2322 | /* Only RAID56 goes through the old code */ | |
2323 | ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); | |
a2de733c | 2324 | ret = 0; |
e430c428 QW |
2325 | |
2326 | /* Calculate the logical end of the stripe */ | |
2327 | get_raid56_logic_offset(physical_end, stripe_index, | |
2328 | map, &logic_end, NULL); | |
2329 | logic_end += chunk_logical; | |
2330 | ||
2331 | /* Initialize @offset in case we need to go to out: label */ | |
2332 | get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); | |
cb091225 | 2333 | increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); |
e430c428 | 2334 | |
18d30ab9 QW |
2335 | /* |
2336 | * Due to the rotation, for RAID56 it's better to iterate each stripe | |
2337 | * using their physical offset. | |
2338 | */ | |
3b080b25 | 2339 | while (physical < physical_end) { |
18d30ab9 QW |
2340 | ret = get_raid56_logic_offset(physical, stripe_index, map, |
2341 | &logical, &stripe_logical); | |
e430c428 QW |
2342 | logical += chunk_logical; |
2343 | if (ret) { | |
2344 | /* it is parity strip */ | |
2345 | stripe_logical += chunk_logical; | |
1009254b QW |
2346 | ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, |
2347 | map, stripe_logical); | |
63447b7d QW |
2348 | spin_lock(&sctx->stat_lock); |
2349 | sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN, | |
2350 | physical_end); | |
2351 | spin_unlock(&sctx->stat_lock); | |
e430c428 QW |
2352 | if (ret) |
2353 | goto out; | |
18d30ab9 | 2354 | goto next; |
f2f66a2f ZL |
2355 | } |
2356 | ||
18d30ab9 QW |
2357 | /* |
2358 | * Now we're at a data stripe, scrub each extents in the range. | |
2359 | * | |
2360 | * At this stage, if we ignore the repair part, inside each data | |
2361 | * stripe it is no different than SINGLE profile. | |
2362 | * We can reuse scrub_simple_mirror() here, as the repair part | |
2363 | * is still based on @mirror_num. | |
2364 | */ | |
6b4d375a | 2365 | ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, |
18d30ab9 | 2366 | scrub_dev, physical, 1); |
a2de733c AJ |
2367 | if (ret < 0) |
2368 | goto out; | |
a2de733c | 2369 | next: |
a2de733c | 2370 | logical += increment; |
a97699d1 | 2371 | physical += BTRFS_STRIPE_LEN; |
d9d181c1 | 2372 | spin_lock(&sctx->stat_lock); |
625f1c8d | 2373 | if (stop_loop) |
bc88b486 QW |
2374 | sctx->stat.last_physical = |
2375 | map->stripes[stripe_index].physical + dev_stripe_len; | |
625f1c8d LB |
2376 | else |
2377 | sctx->stat.last_physical = physical; | |
d9d181c1 | 2378 | spin_unlock(&sctx->stat_lock); |
625f1c8d LB |
2379 | if (stop_loop) |
2380 | break; | |
a2de733c | 2381 | } |
ff023aac | 2382 | out: |
8eb3dd17 | 2383 | ret2 = flush_scrub_stripes(sctx); |
b50f2d04 | 2384 | if (!ret) |
8eb3dd17 | 2385 | ret = ret2; |
1dc4888e | 2386 | btrfs_release_path(&sctx->extent_path); |
3c771c19 | 2387 | btrfs_release_path(&sctx->csum_path); |
1dc4888e | 2388 | |
1009254b QW |
2389 | if (sctx->raid56_data_stripes) { |
2390 | for (int i = 0; i < nr_data_stripes(map); i++) | |
2391 | release_scrub_stripe(&sctx->raid56_data_stripes[i]); | |
2392 | kfree(sctx->raid56_data_stripes); | |
2393 | sctx->raid56_data_stripes = NULL; | |
2394 | } | |
7db1c5d1 NA |
2395 | |
2396 | if (sctx->is_dev_replace && ret >= 0) { | |
2397 | int ret2; | |
2398 | ||
2ae8ae3d QW |
2399 | ret2 = sync_write_pointer_for_zoned(sctx, |
2400 | chunk_logical + offset, | |
2401 | map->stripes[stripe_index].physical, | |
2402 | physical_end); | |
7db1c5d1 NA |
2403 | if (ret2) |
2404 | ret = ret2; | |
2405 | } | |
2406 | ||
a2de733c AJ |
2407 | return ret < 0 ? ret : 0; |
2408 | } | |
2409 | ||
d9d181c1 | 2410 | static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, |
d04fbe19 | 2411 | struct btrfs_block_group *bg, |
a36cf8b8 | 2412 | struct btrfs_device *scrub_dev, |
020d5b73 | 2413 | u64 dev_offset, |
d04fbe19 | 2414 | u64 dev_extent_len) |
a2de733c | 2415 | { |
fb456252 | 2416 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
7dc66abb | 2417 | struct btrfs_chunk_map *map; |
a2de733c | 2418 | int i; |
ff023aac | 2419 | int ret = 0; |
a2de733c | 2420 | |
7dc66abb FM |
2421 | map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); |
2422 | if (!map) { | |
020d5b73 FM |
2423 | /* |
2424 | * Might have been an unused block group deleted by the cleaner | |
2425 | * kthread or relocation. | |
2426 | */ | |
d04fbe19 | 2427 | spin_lock(&bg->lock); |
3349b57f | 2428 | if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) |
020d5b73 | 2429 | ret = -EINVAL; |
d04fbe19 | 2430 | spin_unlock(&bg->lock); |
020d5b73 FM |
2431 | |
2432 | return ret; | |
2433 | } | |
7dc66abb | 2434 | if (map->start != bg->start) |
a2de733c | 2435 | goto out; |
7dc66abb | 2436 | if (map->chunk_len < dev_extent_len) |
a2de733c AJ |
2437 | goto out; |
2438 | ||
2439 | for (i = 0; i < map->num_stripes; ++i) { | |
a36cf8b8 | 2440 | if (map->stripes[i].dev->bdev == scrub_dev->bdev && |
859acaf1 | 2441 | map->stripes[i].physical == dev_offset) { |
7dc66abb | 2442 | ret = scrub_stripe(sctx, bg, map, scrub_dev, i); |
a2de733c AJ |
2443 | if (ret) |
2444 | goto out; | |
2445 | } | |
2446 | } | |
2447 | out: | |
7dc66abb | 2448 | btrfs_free_chunk_map(map); |
a2de733c AJ |
2449 | |
2450 | return ret; | |
2451 | } | |
2452 | ||
de17addc NA |
2453 | static int finish_extent_writes_for_zoned(struct btrfs_root *root, |
2454 | struct btrfs_block_group *cache) | |
2455 | { | |
2456 | struct btrfs_fs_info *fs_info = cache->fs_info; | |
de17addc NA |
2457 | |
2458 | if (!btrfs_is_zoned(fs_info)) | |
2459 | return 0; | |
2460 | ||
2461 | btrfs_wait_block_group_reservations(cache); | |
2462 | btrfs_wait_nocow_writers(cache); | |
42317ab4 | 2463 | btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); |
de17addc | 2464 | |
ded980eb | 2465 | return btrfs_commit_current_transaction(root); |
de17addc NA |
2466 | } |
2467 | ||
a2de733c | 2468 | static noinline_for_stack |
a36cf8b8 | 2469 | int scrub_enumerate_chunks(struct scrub_ctx *sctx, |
32934280 | 2470 | struct btrfs_device *scrub_dev, u64 start, u64 end) |
a2de733c AJ |
2471 | { |
2472 | struct btrfs_dev_extent *dev_extent = NULL; | |
2473 | struct btrfs_path *path; | |
0b246afa JM |
2474 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
2475 | struct btrfs_root *root = fs_info->dev_root; | |
a2de733c | 2476 | u64 chunk_offset; |
55e3a601 | 2477 | int ret = 0; |
76a8efa1 | 2478 | int ro_set; |
a2de733c AJ |
2479 | int slot; |
2480 | struct extent_buffer *l; | |
2481 | struct btrfs_key key; | |
2482 | struct btrfs_key found_key; | |
32da5386 | 2483 | struct btrfs_block_group *cache; |
ff023aac | 2484 | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
a2de733c AJ |
2485 | |
2486 | path = btrfs_alloc_path(); | |
2487 | if (!path) | |
2488 | return -ENOMEM; | |
2489 | ||
e4058b54 | 2490 | path->reada = READA_FORWARD; |
a2de733c AJ |
2491 | path->search_commit_root = 1; |
2492 | path->skip_locking = 1; | |
2493 | ||
a36cf8b8 | 2494 | key.objectid = scrub_dev->devid; |
a2de733c AJ |
2495 | key.offset = 0ull; |
2496 | key.type = BTRFS_DEV_EXTENT_KEY; | |
2497 | ||
a2de733c | 2498 | while (1) { |
d04fbe19 QW |
2499 | u64 dev_extent_len; |
2500 | ||
a2de733c AJ |
2501 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
2502 | if (ret < 0) | |
8c51032f AJ |
2503 | break; |
2504 | if (ret > 0) { | |
2505 | if (path->slots[0] >= | |
2506 | btrfs_header_nritems(path->nodes[0])) { | |
2507 | ret = btrfs_next_leaf(root, path); | |
55e3a601 Z |
2508 | if (ret < 0) |
2509 | break; | |
2510 | if (ret > 0) { | |
2511 | ret = 0; | |
8c51032f | 2512 | break; |
55e3a601 Z |
2513 | } |
2514 | } else { | |
2515 | ret = 0; | |
8c51032f AJ |
2516 | } |
2517 | } | |
a2de733c AJ |
2518 | |
2519 | l = path->nodes[0]; | |
2520 | slot = path->slots[0]; | |
2521 | ||
2522 | btrfs_item_key_to_cpu(l, &found_key, slot); | |
2523 | ||
a36cf8b8 | 2524 | if (found_key.objectid != scrub_dev->devid) |
a2de733c AJ |
2525 | break; |
2526 | ||
962a298f | 2527 | if (found_key.type != BTRFS_DEV_EXTENT_KEY) |
a2de733c AJ |
2528 | break; |
2529 | ||
2530 | if (found_key.offset >= end) | |
2531 | break; | |
2532 | ||
2533 | if (found_key.offset < key.offset) | |
2534 | break; | |
2535 | ||
2536 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | |
d04fbe19 | 2537 | dev_extent_len = btrfs_dev_extent_length(l, dev_extent); |
a2de733c | 2538 | |
d04fbe19 | 2539 | if (found_key.offset + dev_extent_len <= start) |
ced96edc | 2540 | goto skip; |
a2de733c | 2541 | |
a2de733c AJ |
2542 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
2543 | ||
2544 | /* | |
2545 | * get a reference on the corresponding block group to prevent | |
2546 | * the chunk from going away while we scrub it | |
2547 | */ | |
2548 | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | |
ced96edc QW |
2549 | |
2550 | /* some chunks are removed but not committed to disk yet, | |
2551 | * continue scrubbing */ | |
2552 | if (!cache) | |
2553 | goto skip; | |
2554 | ||
a692e13d FM |
2555 | ASSERT(cache->start <= chunk_offset); |
2556 | /* | |
2557 | * We are using the commit root to search for device extents, so | |
2558 | * that means we could have found a device extent item from a | |
2559 | * block group that was deleted in the current transaction. The | |
2560 | * logical start offset of the deleted block group, stored at | |
2561 | * @chunk_offset, might be part of the logical address range of | |
2562 | * a new block group (which uses different physical extents). | |
2563 | * In this case btrfs_lookup_block_group() has returned the new | |
2564 | * block group, and its start address is less than @chunk_offset. | |
2565 | * | |
2566 | * We skip such new block groups, because it's pointless to | |
2567 | * process them, as we won't find their extents because we search | |
2568 | * for them using the commit root of the extent tree. For a device | |
2569 | * replace it's also fine to skip it, we won't miss copying them | |
2570 | * to the target device because we have the write duplication | |
2571 | * setup through the regular write path (by btrfs_map_block()), | |
2572 | * and we have committed a transaction when we started the device | |
2573 | * replace, right after setting up the device replace state. | |
2574 | */ | |
2575 | if (cache->start < chunk_offset) { | |
2576 | btrfs_put_block_group(cache); | |
2577 | goto skip; | |
2578 | } | |
2579 | ||
78ce9fc2 | 2580 | if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { |
3349b57f | 2581 | if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { |
0dc16ef4 FM |
2582 | btrfs_put_block_group(cache); |
2583 | goto skip; | |
78ce9fc2 | 2584 | } |
78ce9fc2 NA |
2585 | } |
2586 | ||
2473d24f FM |
2587 | /* |
2588 | * Make sure that while we are scrubbing the corresponding block | |
2589 | * group doesn't get its logical address and its device extents | |
2590 | * reused for another block group, which can possibly be of a | |
2591 | * different type and different profile. We do this to prevent | |
2592 | * false error detections and crashes due to bogus attempts to | |
2593 | * repair extents. | |
2594 | */ | |
2595 | spin_lock(&cache->lock); | |
3349b57f | 2596 | if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { |
2473d24f FM |
2597 | spin_unlock(&cache->lock); |
2598 | btrfs_put_block_group(cache); | |
2599 | goto skip; | |
2600 | } | |
6b7304af | 2601 | btrfs_freeze_block_group(cache); |
2473d24f FM |
2602 | spin_unlock(&cache->lock); |
2603 | ||
55e3a601 Z |
2604 | /* |
2605 | * we need call btrfs_inc_block_group_ro() with scrubs_paused, | |
2606 | * to avoid deadlock caused by: | |
2607 | * btrfs_inc_block_group_ro() | |
2608 | * -> btrfs_wait_for_commit() | |
2609 | * -> btrfs_commit_transaction() | |
2610 | * -> btrfs_scrub_pause() | |
2611 | */ | |
2612 | scrub_pause_on(fs_info); | |
b12de528 QW |
2613 | |
2614 | /* | |
2615 | * Don't do chunk preallocation for scrub. | |
2616 | * | |
2617 | * This is especially important for SYSTEM bgs, or we can hit | |
2618 | * -EFBIG from btrfs_finish_chunk_alloc() like: | |
2619 | * 1. The only SYSTEM bg is marked RO. | |
2620 | * Since SYSTEM bg is small, that's pretty common. | |
2621 | * 2. New SYSTEM bg will be allocated | |
2622 | * Due to regular version will allocate new chunk. | |
2623 | * 3. New SYSTEM bg is empty and will get cleaned up | |
2624 | * Before cleanup really happens, it's marked RO again. | |
2625 | * 4. Empty SYSTEM bg get scrubbed | |
2626 | * We go back to 2. | |
2627 | * | |
2628 | * This can easily boost the amount of SYSTEM chunks if cleaner | |
2629 | * thread can't be triggered fast enough, and use up all space | |
2630 | * of btrfs_super_block::sys_chunk_array | |
1bbb97b8 QW |
2631 | * |
2632 | * While for dev replace, we need to try our best to mark block | |
2633 | * group RO, to prevent race between: | |
2634 | * - Write duplication | |
2635 | * Contains latest data | |
2636 | * - Scrub copy | |
2637 | * Contains data from commit tree | |
2638 | * | |
2639 | * If target block group is not marked RO, nocow writes can | |
2640 | * be overwritten by scrub copy, causing data corruption. | |
2641 | * So for dev-replace, it's not allowed to continue if a block | |
2642 | * group is not RO. | |
b12de528 | 2643 | */ |
1bbb97b8 | 2644 | ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); |
de17addc NA |
2645 | if (!ret && sctx->is_dev_replace) { |
2646 | ret = finish_extent_writes_for_zoned(root, cache); | |
2647 | if (ret) { | |
2648 | btrfs_dec_block_group_ro(cache); | |
2649 | scrub_pause_off(fs_info); | |
2650 | btrfs_put_block_group(cache); | |
2651 | break; | |
2652 | } | |
2653 | } | |
2654 | ||
76a8efa1 Z |
2655 | if (ret == 0) { |
2656 | ro_set = 1; | |
7561551e QW |
2657 | } else if (ret == -ENOSPC && !sctx->is_dev_replace && |
2658 | !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { | |
76a8efa1 Z |
2659 | /* |
2660 | * btrfs_inc_block_group_ro return -ENOSPC when it | |
2661 | * failed in creating new chunk for metadata. | |
1bbb97b8 | 2662 | * It is not a problem for scrub, because |
76a8efa1 Z |
2663 | * metadata are always cowed, and our scrub paused |
2664 | * commit_transactions. | |
7561551e QW |
2665 | * |
2666 | * For RAID56 chunks, we have to mark them read-only | |
2667 | * for scrub, as later we would use our own cache | |
2668 | * out of RAID56 realm. | |
2669 | * Thus we want the RAID56 bg to be marked RO to | |
2670 | * prevent RMW from screwing up out cache. | |
76a8efa1 Z |
2671 | */ |
2672 | ro_set = 0; | |
195a49ea FM |
2673 | } else if (ret == -ETXTBSY) { |
2674 | btrfs_warn(fs_info, | |
2675 | "skipping scrub of block group %llu due to active swapfile", | |
2676 | cache->start); | |
2677 | scrub_pause_off(fs_info); | |
2678 | ret = 0; | |
2679 | goto skip_unfreeze; | |
76a8efa1 | 2680 | } else { |
5d163e0e | 2681 | btrfs_warn(fs_info, |
913e1535 | 2682 | "failed setting block group ro: %d", ret); |
6b7304af | 2683 | btrfs_unfreeze_block_group(cache); |
55e3a601 | 2684 | btrfs_put_block_group(cache); |
1bbb97b8 | 2685 | scrub_pause_off(fs_info); |
55e3a601 Z |
2686 | break; |
2687 | } | |
2688 | ||
1bbb97b8 QW |
2689 | /* |
2690 | * Now the target block is marked RO, wait for nocow writes to | |
2691 | * finish before dev-replace. | |
2692 | * COW is fine, as COW never overwrites extents in commit tree. | |
2693 | */ | |
2694 | if (sctx->is_dev_replace) { | |
2695 | btrfs_wait_nocow_writers(cache); | |
42317ab4 | 2696 | btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); |
1bbb97b8 QW |
2697 | } |
2698 | ||
2699 | scrub_pause_off(fs_info); | |
3ec17a67 | 2700 | down_write(&dev_replace->rwsem); |
d04fbe19 | 2701 | dev_replace->cursor_right = found_key.offset + dev_extent_len; |
ff023aac SB |
2702 | dev_replace->cursor_left = found_key.offset; |
2703 | dev_replace->item_needs_writeback = 1; | |
cb5583dd DS |
2704 | up_write(&dev_replace->rwsem); |
2705 | ||
d04fbe19 QW |
2706 | ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, |
2707 | dev_extent_len); | |
78ce9fc2 NA |
2708 | if (sctx->is_dev_replace && |
2709 | !btrfs_finish_block_group_to_copy(dev_replace->srcdev, | |
2710 | cache, found_key.offset)) | |
2711 | ro_set = 0; | |
2712 | ||
3ec17a67 | 2713 | down_write(&dev_replace->rwsem); |
1a1a8b73 FM |
2714 | dev_replace->cursor_left = dev_replace->cursor_right; |
2715 | dev_replace->item_needs_writeback = 1; | |
3ec17a67 | 2716 | up_write(&dev_replace->rwsem); |
1a1a8b73 | 2717 | |
76a8efa1 | 2718 | if (ro_set) |
2ff7e61e | 2719 | btrfs_dec_block_group_ro(cache); |
ff023aac | 2720 | |
758f2dfc FM |
2721 | /* |
2722 | * We might have prevented the cleaner kthread from deleting | |
2723 | * this block group if it was already unused because we raced | |
2724 | * and set it to RO mode first. So add it back to the unused | |
2725 | * list, otherwise it might not ever be deleted unless a manual | |
2726 | * balance is triggered or it becomes used and unused again. | |
2727 | */ | |
2728 | spin_lock(&cache->lock); | |
3349b57f JB |
2729 | if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && |
2730 | !cache->ro && cache->reserved == 0 && cache->used == 0) { | |
758f2dfc | 2731 | spin_unlock(&cache->lock); |
6e80d4f8 DZ |
2732 | if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) |
2733 | btrfs_discard_queue_work(&fs_info->discard_ctl, | |
2734 | cache); | |
2735 | else | |
2736 | btrfs_mark_bg_unused(cache); | |
758f2dfc FM |
2737 | } else { |
2738 | spin_unlock(&cache->lock); | |
2739 | } | |
195a49ea | 2740 | skip_unfreeze: |
6b7304af | 2741 | btrfs_unfreeze_block_group(cache); |
a2de733c AJ |
2742 | btrfs_put_block_group(cache); |
2743 | if (ret) | |
2744 | break; | |
32934280 | 2745 | if (sctx->is_dev_replace && |
af1be4f8 | 2746 | atomic64_read(&dev_replace->num_write_errors) > 0) { |
ff023aac SB |
2747 | ret = -EIO; |
2748 | break; | |
2749 | } | |
2750 | if (sctx->stat.malloc_errors > 0) { | |
2751 | ret = -ENOMEM; | |
2752 | break; | |
2753 | } | |
ced96edc | 2754 | skip: |
d04fbe19 | 2755 | key.offset = found_key.offset + dev_extent_len; |
71267333 | 2756 | btrfs_release_path(path); |
a2de733c AJ |
2757 | } |
2758 | ||
a2de733c | 2759 | btrfs_free_path(path); |
8c51032f | 2760 | |
55e3a601 | 2761 | return ret; |
a2de733c AJ |
2762 | } |
2763 | ||
2a2dc22f QW |
2764 | static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, |
2765 | struct page *page, u64 physical, u64 generation) | |
2766 | { | |
2767 | struct btrfs_fs_info *fs_info = sctx->fs_info; | |
2768 | struct bio_vec bvec; | |
2769 | struct bio bio; | |
2770 | struct btrfs_super_block *sb = page_address(page); | |
2771 | int ret; | |
2772 | ||
2773 | bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); | |
2774 | bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; | |
2775 | __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); | |
2776 | ret = submit_bio_wait(&bio); | |
2777 | bio_uninit(&bio); | |
2778 | ||
2779 | if (ret < 0) | |
2780 | return ret; | |
2781 | ret = btrfs_check_super_csum(fs_info, sb); | |
2782 | if (ret != 0) { | |
2783 | btrfs_err_rl(fs_info, | |
2784 | "super block at physical %llu devid %llu has bad csum", | |
2785 | physical, dev->devid); | |
2786 | return -EIO; | |
2787 | } | |
2788 | if (btrfs_super_generation(sb) != generation) { | |
2789 | btrfs_err_rl(fs_info, | |
2790 | "super block at physical %llu devid %llu has bad generation %llu expect %llu", | |
2791 | physical, dev->devid, | |
2792 | btrfs_super_generation(sb), generation); | |
2793 | return -EUCLEAN; | |
2794 | } | |
2795 | ||
2796 | return btrfs_validate_super(fs_info, sb, -1); | |
2797 | } | |
2798 | ||
a36cf8b8 SB |
2799 | static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, |
2800 | struct btrfs_device *scrub_dev) | |
a2de733c AJ |
2801 | { |
2802 | int i; | |
2803 | u64 bytenr; | |
2804 | u64 gen; | |
2a2dc22f QW |
2805 | int ret = 0; |
2806 | struct page *page; | |
0b246afa | 2807 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
a2de733c | 2808 | |
84961539 | 2809 | if (BTRFS_FS_ERROR(fs_info)) |
fbabd4a3 | 2810 | return -EROFS; |
79787eaa | 2811 | |
2a2dc22f QW |
2812 | page = alloc_page(GFP_KERNEL); |
2813 | if (!page) { | |
2814 | spin_lock(&sctx->stat_lock); | |
2815 | sctx->stat.malloc_errors++; | |
2816 | spin_unlock(&sctx->stat_lock); | |
2817 | return -ENOMEM; | |
2818 | } | |
2819 | ||
5f546063 | 2820 | /* Seed devices of a new filesystem has their own generation. */ |
0b246afa | 2821 | if (scrub_dev->fs_devices != fs_info->fs_devices) |
5f546063 MX |
2822 | gen = scrub_dev->generation; |
2823 | else | |
0124855f | 2824 | gen = btrfs_get_last_trans_committed(fs_info); |
a2de733c AJ |
2825 | |
2826 | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | |
74098a98 JT |
2827 | ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr); |
2828 | if (ret == -ENOENT) | |
2829 | break; | |
2830 | ||
2831 | if (ret) { | |
2832 | spin_lock(&sctx->stat_lock); | |
2833 | sctx->stat.super_errors++; | |
2834 | spin_unlock(&sctx->stat_lock); | |
2835 | continue; | |
2836 | } | |
2837 | ||
935e5cc9 MX |
2838 | if (bytenr + BTRFS_SUPER_INFO_SIZE > |
2839 | scrub_dev->commit_total_bytes) | |
a2de733c | 2840 | break; |
12659251 NA |
2841 | if (!btrfs_check_super_location(scrub_dev, bytenr)) |
2842 | continue; | |
a2de733c | 2843 | |
2a2dc22f QW |
2844 | ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); |
2845 | if (ret) { | |
2846 | spin_lock(&sctx->stat_lock); | |
2847 | sctx->stat.super_errors++; | |
2848 | spin_unlock(&sctx->stat_lock); | |
2849 | } | |
a2de733c | 2850 | } |
2a2dc22f | 2851 | __free_page(page); |
a2de733c AJ |
2852 | return 0; |
2853 | } | |
2854 | ||
e89c4a9c JB |
2855 | static void scrub_workers_put(struct btrfs_fs_info *fs_info) |
2856 | { | |
2857 | if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, | |
2858 | &fs_info->scrub_lock)) { | |
be539518 | 2859 | struct workqueue_struct *scrub_workers = fs_info->scrub_workers; |
e89c4a9c JB |
2860 | |
2861 | fs_info->scrub_workers = NULL; | |
e89c4a9c JB |
2862 | mutex_unlock(&fs_info->scrub_lock); |
2863 | ||
be539518 CH |
2864 | if (scrub_workers) |
2865 | destroy_workqueue(scrub_workers); | |
e89c4a9c JB |
2866 | } |
2867 | } | |
2868 | ||
a2de733c AJ |
2869 | /* |
2870 | * get a reference count on fs_info->scrub_workers. start worker if necessary | |
2871 | */ | |
39dc7bd9 | 2872 | static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) |
a2de733c | 2873 | { |
be539518 | 2874 | struct workqueue_struct *scrub_workers = NULL; |
6f011058 | 2875 | unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; |
0339ef2f | 2876 | int max_active = fs_info->thread_pool_size; |
e89c4a9c | 2877 | int ret = -ENOMEM; |
a2de733c | 2878 | |
e89c4a9c JB |
2879 | if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) |
2880 | return 0; | |
eb4318e5 | 2881 | |
39dc7bd9 | 2882 | scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); |
e89c4a9c | 2883 | if (!scrub_workers) |
81db6ae8 | 2884 | return -ENOMEM; |
ff09c4ca | 2885 | |
e89c4a9c JB |
2886 | mutex_lock(&fs_info->scrub_lock); |
2887 | if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { | |
81db6ae8 | 2888 | ASSERT(fs_info->scrub_workers == NULL); |
e89c4a9c | 2889 | fs_info->scrub_workers = scrub_workers; |
ff09c4ca | 2890 | refcount_set(&fs_info->scrub_workers_refcnt, 1); |
e89c4a9c JB |
2891 | mutex_unlock(&fs_info->scrub_lock); |
2892 | return 0; | |
632dd772 | 2893 | } |
e89c4a9c JB |
2894 | /* Other thread raced in and created the workers for us */ |
2895 | refcount_inc(&fs_info->scrub_workers_refcnt); | |
2896 | mutex_unlock(&fs_info->scrub_lock); | |
e82afc52 | 2897 | |
e89c4a9c | 2898 | ret = 0; |
5dc96f8d | 2899 | |
be539518 | 2900 | destroy_workqueue(scrub_workers); |
e89c4a9c | 2901 | return ret; |
a2de733c AJ |
2902 | } |
2903 | ||
aa1b8cd4 SB |
2904 | int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, |
2905 | u64 end, struct btrfs_scrub_progress *progress, | |
63a212ab | 2906 | int readonly, int is_dev_replace) |
a2de733c | 2907 | { |
562d7b15 | 2908 | struct btrfs_dev_lookup_args args = { .devid = devid }; |
d9d181c1 | 2909 | struct scrub_ctx *sctx; |
a2de733c AJ |
2910 | int ret; |
2911 | struct btrfs_device *dev; | |
a5fb1142 | 2912 | unsigned int nofs_flag; |
f9eab5f0 | 2913 | bool need_commit = false; |
a2de733c | 2914 | |
aa1b8cd4 | 2915 | if (btrfs_fs_closing(fs_info)) |
6c3abeda | 2916 | return -EAGAIN; |
a2de733c | 2917 | |
fc65bb53 QW |
2918 | /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ |
2919 | ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); | |
b5d67f64 | 2920 | |
fc65bb53 QW |
2921 | /* |
2922 | * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible | |
2923 | * value (max nodesize / min sectorsize), thus nodesize should always | |
2924 | * be fine. | |
2925 | */ | |
2926 | ASSERT(fs_info->nodesize <= | |
2927 | SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); | |
7a9e9987 | 2928 | |
0e94c4f4 DS |
2929 | /* Allocate outside of device_list_mutex */ |
2930 | sctx = scrub_setup_ctx(fs_info, is_dev_replace); | |
2931 | if (IS_ERR(sctx)) | |
2932 | return PTR_ERR(sctx); | |
a2de733c | 2933 | |
39dc7bd9 | 2934 | ret = scrub_workers_get(fs_info); |
e89c4a9c JB |
2935 | if (ret) |
2936 | goto out_free_ctx; | |
2937 | ||
aa1b8cd4 | 2938 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
562d7b15 | 2939 | dev = btrfs_find_device(fs_info->fs_devices, &args); |
e6e674bd AJ |
2940 | if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && |
2941 | !is_dev_replace)) { | |
aa1b8cd4 | 2942 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
0e94c4f4 | 2943 | ret = -ENODEV; |
e89c4a9c | 2944 | goto out; |
a2de733c | 2945 | } |
a2de733c | 2946 | |
ebbede42 AJ |
2947 | if (!is_dev_replace && !readonly && |
2948 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { | |
5d68da3b | 2949 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
a4852cf2 DS |
2950 | btrfs_err_in_rcu(fs_info, |
2951 | "scrub on devid %llu: filesystem on %s is not writable", | |
cb3e217b | 2952 | devid, btrfs_dev_name(dev)); |
0e94c4f4 | 2953 | ret = -EROFS; |
e89c4a9c | 2954 | goto out; |
5d68da3b MX |
2955 | } |
2956 | ||
3b7a016f | 2957 | mutex_lock(&fs_info->scrub_lock); |
e12c9621 | 2958 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
401e29c1 | 2959 | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { |
a2de733c | 2960 | mutex_unlock(&fs_info->scrub_lock); |
aa1b8cd4 | 2961 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
0e94c4f4 | 2962 | ret = -EIO; |
e89c4a9c | 2963 | goto out; |
a2de733c AJ |
2964 | } |
2965 | ||
cb5583dd | 2966 | down_read(&fs_info->dev_replace.rwsem); |
cadbc0a0 | 2967 | if (dev->scrub_ctx || |
8dabb742 SB |
2968 | (!is_dev_replace && |
2969 | btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { | |
cb5583dd | 2970 | up_read(&fs_info->dev_replace.rwsem); |
a2de733c | 2971 | mutex_unlock(&fs_info->scrub_lock); |
aa1b8cd4 | 2972 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
0e94c4f4 | 2973 | ret = -EINPROGRESS; |
e89c4a9c | 2974 | goto out; |
a2de733c | 2975 | } |
cb5583dd | 2976 | up_read(&fs_info->dev_replace.rwsem); |
3b7a016f | 2977 | |
d9d181c1 | 2978 | sctx->readonly = readonly; |
cadbc0a0 | 2979 | dev->scrub_ctx = sctx; |
3cb0929a | 2980 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
a2de733c | 2981 | |
3cb0929a WS |
2982 | /* |
2983 | * checking @scrub_pause_req here, we can avoid | |
2984 | * race between committing transaction and scrubbing. | |
2985 | */ | |
cb7ab021 | 2986 | __scrub_blocked_if_needed(fs_info); |
a2de733c AJ |
2987 | atomic_inc(&fs_info->scrubs_running); |
2988 | mutex_unlock(&fs_info->scrub_lock); | |
a2de733c | 2989 | |
a5fb1142 FM |
2990 | /* |
2991 | * In order to avoid deadlock with reclaim when there is a transaction | |
2992 | * trying to pause scrub, make sure we use GFP_NOFS for all the | |
46343501 | 2993 | * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() |
a5fb1142 FM |
2994 | * invoked by our callees. The pausing request is done when the |
2995 | * transaction commit starts, and it blocks the transaction until scrub | |
2996 | * is paused (done at specific points at scrub_stripe() or right above | |
2997 | * before incrementing fs_info->scrubs_running). | |
2998 | */ | |
2999 | nofs_flag = memalloc_nofs_save(); | |
ff023aac | 3000 | if (!is_dev_replace) { |
f9eab5f0 QW |
3001 | u64 old_super_errors; |
3002 | ||
3003 | spin_lock(&sctx->stat_lock); | |
3004 | old_super_errors = sctx->stat.super_errors; | |
3005 | spin_unlock(&sctx->stat_lock); | |
3006 | ||
d1e14420 | 3007 | btrfs_info(fs_info, "scrub: started on devid %llu", devid); |
9b011adf WS |
3008 | /* |
3009 | * by holding device list mutex, we can | |
3010 | * kick off writing super in log tree sync. | |
3011 | */ | |
3cb0929a | 3012 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
ff023aac | 3013 | ret = scrub_supers(sctx, dev); |
3cb0929a | 3014 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
f9eab5f0 QW |
3015 | |
3016 | spin_lock(&sctx->stat_lock); | |
3017 | /* | |
3018 | * Super block errors found, but we can not commit transaction | |
3019 | * at current context, since btrfs_commit_transaction() needs | |
3020 | * to pause the current running scrub (hold by ourselves). | |
3021 | */ | |
3022 | if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) | |
3023 | need_commit = true; | |
3024 | spin_unlock(&sctx->stat_lock); | |
ff023aac | 3025 | } |
a2de733c AJ |
3026 | |
3027 | if (!ret) | |
32934280 | 3028 | ret = scrub_enumerate_chunks(sctx, dev, start, end); |
a5fb1142 | 3029 | memalloc_nofs_restore(nofs_flag); |
a2de733c | 3030 | |
a2de733c AJ |
3031 | atomic_dec(&fs_info->scrubs_running); |
3032 | wake_up(&fs_info->scrub_pause_wait); | |
3033 | ||
3034 | if (progress) | |
d9d181c1 | 3035 | memcpy(progress, &sctx->stat, sizeof(*progress)); |
a2de733c | 3036 | |
d1e14420 AJ |
3037 | if (!is_dev_replace) |
3038 | btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", | |
3039 | ret ? "not finished" : "finished", devid, ret); | |
3040 | ||
a2de733c | 3041 | mutex_lock(&fs_info->scrub_lock); |
cadbc0a0 | 3042 | dev->scrub_ctx = NULL; |
a2de733c AJ |
3043 | mutex_unlock(&fs_info->scrub_lock); |
3044 | ||
e89c4a9c | 3045 | scrub_workers_put(fs_info); |
f55985f4 | 3046 | scrub_put_ctx(sctx); |
a2de733c | 3047 | |
f9eab5f0 QW |
3048 | /* |
3049 | * We found some super block errors before, now try to force a | |
3050 | * transaction commit, as scrub has finished. | |
3051 | */ | |
3052 | if (need_commit) { | |
3053 | struct btrfs_trans_handle *trans; | |
3054 | ||
3055 | trans = btrfs_start_transaction(fs_info->tree_root, 0); | |
3056 | if (IS_ERR(trans)) { | |
3057 | ret = PTR_ERR(trans); | |
3058 | btrfs_err(fs_info, | |
3059 | "scrub: failed to start transaction to fix super block errors: %d", ret); | |
3060 | return ret; | |
3061 | } | |
3062 | ret = btrfs_commit_transaction(trans); | |
3063 | if (ret < 0) | |
3064 | btrfs_err(fs_info, | |
3065 | "scrub: failed to commit transaction to fix super block errors: %d", ret); | |
3066 | } | |
0e94c4f4 | 3067 | return ret; |
e89c4a9c JB |
3068 | out: |
3069 | scrub_workers_put(fs_info); | |
0e94c4f4 DS |
3070 | out_free_ctx: |
3071 | scrub_free_ctx(sctx); | |
3072 | ||
a2de733c AJ |
3073 | return ret; |
3074 | } | |
3075 | ||
2ff7e61e | 3076 | void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) |
a2de733c | 3077 | { |
a2de733c AJ |
3078 | mutex_lock(&fs_info->scrub_lock); |
3079 | atomic_inc(&fs_info->scrub_pause_req); | |
3080 | while (atomic_read(&fs_info->scrubs_paused) != | |
3081 | atomic_read(&fs_info->scrubs_running)) { | |
3082 | mutex_unlock(&fs_info->scrub_lock); | |
3083 | wait_event(fs_info->scrub_pause_wait, | |
3084 | atomic_read(&fs_info->scrubs_paused) == | |
3085 | atomic_read(&fs_info->scrubs_running)); | |
3086 | mutex_lock(&fs_info->scrub_lock); | |
3087 | } | |
3088 | mutex_unlock(&fs_info->scrub_lock); | |
a2de733c AJ |
3089 | } |
3090 | ||
2ff7e61e | 3091 | void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) |
a2de733c | 3092 | { |
a2de733c AJ |
3093 | atomic_dec(&fs_info->scrub_pause_req); |
3094 | wake_up(&fs_info->scrub_pause_wait); | |
a2de733c AJ |
3095 | } |
3096 | ||
aa1b8cd4 | 3097 | int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
a2de733c | 3098 | { |
a2de733c AJ |
3099 | mutex_lock(&fs_info->scrub_lock); |
3100 | if (!atomic_read(&fs_info->scrubs_running)) { | |
3101 | mutex_unlock(&fs_info->scrub_lock); | |
3102 | return -ENOTCONN; | |
3103 | } | |
3104 | ||
3105 | atomic_inc(&fs_info->scrub_cancel_req); | |
3106 | while (atomic_read(&fs_info->scrubs_running)) { | |
3107 | mutex_unlock(&fs_info->scrub_lock); | |
3108 | wait_event(fs_info->scrub_pause_wait, | |
3109 | atomic_read(&fs_info->scrubs_running) == 0); | |
3110 | mutex_lock(&fs_info->scrub_lock); | |
3111 | } | |
3112 | atomic_dec(&fs_info->scrub_cancel_req); | |
3113 | mutex_unlock(&fs_info->scrub_lock); | |
3114 | ||
3115 | return 0; | |
3116 | } | |
3117 | ||
163e97ee | 3118 | int btrfs_scrub_cancel_dev(struct btrfs_device *dev) |
49b25e05 | 3119 | { |
163e97ee | 3120 | struct btrfs_fs_info *fs_info = dev->fs_info; |
d9d181c1 | 3121 | struct scrub_ctx *sctx; |
a2de733c AJ |
3122 | |
3123 | mutex_lock(&fs_info->scrub_lock); | |
cadbc0a0 | 3124 | sctx = dev->scrub_ctx; |
d9d181c1 | 3125 | if (!sctx) { |
a2de733c AJ |
3126 | mutex_unlock(&fs_info->scrub_lock); |
3127 | return -ENOTCONN; | |
3128 | } | |
d9d181c1 | 3129 | atomic_inc(&sctx->cancel_req); |
cadbc0a0 | 3130 | while (dev->scrub_ctx) { |
a2de733c AJ |
3131 | mutex_unlock(&fs_info->scrub_lock); |
3132 | wait_event(fs_info->scrub_pause_wait, | |
cadbc0a0 | 3133 | dev->scrub_ctx == NULL); |
a2de733c AJ |
3134 | mutex_lock(&fs_info->scrub_lock); |
3135 | } | |
3136 | mutex_unlock(&fs_info->scrub_lock); | |
3137 | ||
3138 | return 0; | |
3139 | } | |
1623edeb | 3140 | |
2ff7e61e | 3141 | int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, |
a2de733c AJ |
3142 | struct btrfs_scrub_progress *progress) |
3143 | { | |
562d7b15 | 3144 | struct btrfs_dev_lookup_args args = { .devid = devid }; |
a2de733c | 3145 | struct btrfs_device *dev; |
d9d181c1 | 3146 | struct scrub_ctx *sctx = NULL; |
a2de733c | 3147 | |
0b246afa | 3148 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
562d7b15 | 3149 | dev = btrfs_find_device(fs_info->fs_devices, &args); |
a2de733c | 3150 | if (dev) |
cadbc0a0 | 3151 | sctx = dev->scrub_ctx; |
d9d181c1 SB |
3152 | if (sctx) |
3153 | memcpy(progress, &sctx->stat, sizeof(*progress)); | |
0b246afa | 3154 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
a2de733c | 3155 | |
d9d181c1 | 3156 | return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; |
a2de733c | 3157 | } |