]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 71 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
105 | #include <linux/rcupdate.h> | |
543537bd | 106 | #include <linux/string.h> |
138ae663 | 107 | #include <linux/uaccess.h> |
e498be7d | 108 | #include <linux/nodemask.h> |
d5cff635 | 109 | #include <linux/kmemleak.h> |
dc85da15 | 110 | #include <linux/mempolicy.h> |
fc0abb14 | 111 | #include <linux/mutex.h> |
8a8b6502 | 112 | #include <linux/fault-inject.h> |
e7eebaf6 | 113 | #include <linux/rtmutex.h> |
6a2d7a95 | 114 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 115 | #include <linux/debugobjects.h> |
c175eea4 | 116 | #include <linux/kmemcheck.h> |
8f9f8d9e | 117 | #include <linux/memory.h> |
268bb0ce | 118 | #include <linux/prefetch.h> |
1da177e4 | 119 | |
381760ea MG |
120 | #include <net/sock.h> |
121 | ||
1da177e4 LT |
122 | #include <asm/cacheflush.h> |
123 | #include <asm/tlbflush.h> | |
124 | #include <asm/page.h> | |
125 | ||
4dee6b64 SR |
126 | #include <trace/events/kmem.h> |
127 | ||
072bb0aa MG |
128 | #include "internal.h" |
129 | ||
b9ce5ef4 GC |
130 | #include "slab.h" |
131 | ||
1da177e4 | 132 | /* |
50953fe9 | 133 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
134 | * 0 for faster, smaller code (especially in the critical paths). |
135 | * | |
136 | * STATS - 1 to collect stats for /proc/slabinfo. | |
137 | * 0 for faster, smaller code (especially in the critical paths). | |
138 | * | |
139 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
140 | */ | |
141 | ||
142 | #ifdef CONFIG_DEBUG_SLAB | |
143 | #define DEBUG 1 | |
144 | #define STATS 1 | |
145 | #define FORCED_DEBUG 1 | |
146 | #else | |
147 | #define DEBUG 0 | |
148 | #define STATS 0 | |
149 | #define FORCED_DEBUG 0 | |
150 | #endif | |
151 | ||
1da177e4 LT |
152 | /* Shouldn't this be in a header file somewhere? */ |
153 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 154 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 155 | |
1da177e4 LT |
156 | #ifndef ARCH_KMALLOC_FLAGS |
157 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
158 | #endif | |
159 | ||
f315e3fa JK |
160 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
161 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
162 | ||
163 | #if FREELIST_BYTE_INDEX | |
164 | typedef unsigned char freelist_idx_t; | |
165 | #else | |
166 | typedef unsigned short freelist_idx_t; | |
167 | #endif | |
168 | ||
30321c7b | 169 | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
f315e3fa | 170 | |
072bb0aa MG |
171 | /* |
172 | * true if a page was allocated from pfmemalloc reserves for network-based | |
173 | * swap | |
174 | */ | |
175 | static bool pfmemalloc_active __read_mostly; | |
176 | ||
1da177e4 LT |
177 | /* |
178 | * struct array_cache | |
179 | * | |
1da177e4 LT |
180 | * Purpose: |
181 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
182 | * - reduce the number of linked list operations | |
183 | * - reduce spinlock operations | |
184 | * | |
185 | * The limit is stored in the per-cpu structure to reduce the data cache | |
186 | * footprint. | |
187 | * | |
188 | */ | |
189 | struct array_cache { | |
190 | unsigned int avail; | |
191 | unsigned int limit; | |
192 | unsigned int batchcount; | |
193 | unsigned int touched; | |
bda5b655 | 194 | void *entry[]; /* |
a737b3e2 AM |
195 | * Must have this definition in here for the proper |
196 | * alignment of array_cache. Also simplifies accessing | |
197 | * the entries. | |
072bb0aa MG |
198 | * |
199 | * Entries should not be directly dereferenced as | |
200 | * entries belonging to slabs marked pfmemalloc will | |
201 | * have the lower bits set SLAB_OBJ_PFMEMALLOC | |
a737b3e2 | 202 | */ |
1da177e4 LT |
203 | }; |
204 | ||
c8522a3a JK |
205 | struct alien_cache { |
206 | spinlock_t lock; | |
207 | struct array_cache ac; | |
208 | }; | |
209 | ||
072bb0aa MG |
210 | #define SLAB_OBJ_PFMEMALLOC 1 |
211 | static inline bool is_obj_pfmemalloc(void *objp) | |
212 | { | |
213 | return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; | |
214 | } | |
215 | ||
216 | static inline void set_obj_pfmemalloc(void **objp) | |
217 | { | |
218 | *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); | |
219 | return; | |
220 | } | |
221 | ||
222 | static inline void clear_obj_pfmemalloc(void **objp) | |
223 | { | |
224 | *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); | |
225 | } | |
226 | ||
a737b3e2 AM |
227 | /* |
228 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
229 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
230 | */ |
231 | #define BOOT_CPUCACHE_ENTRIES 1 | |
232 | struct arraycache_init { | |
233 | struct array_cache cache; | |
b28a02de | 234 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
235 | }; |
236 | ||
e498be7d CL |
237 | /* |
238 | * Need this for bootstrapping a per node allocator. | |
239 | */ | |
bf0dea23 | 240 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
ce8eb6c4 | 241 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 242 | #define CACHE_CACHE 0 |
bf0dea23 | 243 | #define SIZE_NODE (MAX_NUMNODES) |
e498be7d | 244 | |
ed11d9eb | 245 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 246 | struct kmem_cache_node *n, int tofree); |
ed11d9eb | 247 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
97654dfa JK |
248 | int node, struct list_head *list); |
249 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | |
83b519e8 | 250 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 251 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 252 | |
e0a42726 IM |
253 | static int slab_early_init = 1; |
254 | ||
ce8eb6c4 | 255 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 256 | |
ce8eb6c4 | 257 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
258 | { |
259 | INIT_LIST_HEAD(&parent->slabs_full); | |
260 | INIT_LIST_HEAD(&parent->slabs_partial); | |
261 | INIT_LIST_HEAD(&parent->slabs_free); | |
262 | parent->shared = NULL; | |
263 | parent->alien = NULL; | |
2e1217cf | 264 | parent->colour_next = 0; |
e498be7d CL |
265 | spin_lock_init(&parent->list_lock); |
266 | parent->free_objects = 0; | |
267 | parent->free_touched = 0; | |
268 | } | |
269 | ||
a737b3e2 AM |
270 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
271 | do { \ | |
272 | INIT_LIST_HEAD(listp); \ | |
18bf8541 | 273 | list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
e498be7d CL |
274 | } while (0) |
275 | ||
a737b3e2 AM |
276 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
277 | do { \ | |
e498be7d CL |
278 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
279 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
280 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
281 | } while (0) | |
1da177e4 | 282 | |
1da177e4 LT |
283 | #define CFLGS_OFF_SLAB (0x80000000UL) |
284 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
285 | ||
286 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
287 | /* |
288 | * Optimization question: fewer reaps means less probability for unnessary | |
289 | * cpucache drain/refill cycles. | |
1da177e4 | 290 | * |
dc6f3f27 | 291 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
292 | * which could lock up otherwise freeable slabs. |
293 | */ | |
5f0985bb JZ |
294 | #define REAPTIMEOUT_AC (2*HZ) |
295 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
296 | |
297 | #if STATS | |
298 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
299 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
300 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
301 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 302 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
303 | #define STATS_SET_HIGH(x) \ |
304 | do { \ | |
305 | if ((x)->num_active > (x)->high_mark) \ | |
306 | (x)->high_mark = (x)->num_active; \ | |
307 | } while (0) | |
1da177e4 LT |
308 | #define STATS_INC_ERR(x) ((x)->errors++) |
309 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 310 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 311 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
312 | #define STATS_SET_FREEABLE(x, i) \ |
313 | do { \ | |
314 | if ((x)->max_freeable < i) \ | |
315 | (x)->max_freeable = i; \ | |
316 | } while (0) | |
1da177e4 LT |
317 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
318 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
319 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
320 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
321 | #else | |
322 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
323 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
324 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
325 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 326 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
327 | #define STATS_SET_HIGH(x) do { } while (0) |
328 | #define STATS_INC_ERR(x) do { } while (0) | |
329 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 330 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 331 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 332 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
333 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
334 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
335 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
336 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
337 | #endif | |
338 | ||
339 | #if DEBUG | |
1da177e4 | 340 | |
a737b3e2 AM |
341 | /* |
342 | * memory layout of objects: | |
1da177e4 | 343 | * 0 : objp |
3dafccf2 | 344 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
345 | * the end of an object is aligned with the end of the real |
346 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 347 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 348 | * redzone word. |
3dafccf2 | 349 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
350 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
351 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 352 | * [BYTES_PER_WORD long] |
1da177e4 | 353 | */ |
343e0d7a | 354 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 355 | { |
3dafccf2 | 356 | return cachep->obj_offset; |
1da177e4 LT |
357 | } |
358 | ||
b46b8f19 | 359 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
360 | { |
361 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
362 | return (unsigned long long*) (objp + obj_offset(cachep) - |
363 | sizeof(unsigned long long)); | |
1da177e4 LT |
364 | } |
365 | ||
b46b8f19 | 366 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
367 | { |
368 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
369 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 370 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 371 | sizeof(unsigned long long) - |
87a927c7 | 372 | REDZONE_ALIGN); |
3b0efdfa | 373 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 374 | sizeof(unsigned long long)); |
1da177e4 LT |
375 | } |
376 | ||
343e0d7a | 377 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
378 | { |
379 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 380 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
381 | } |
382 | ||
383 | #else | |
384 | ||
3dafccf2 | 385 | #define obj_offset(x) 0 |
b46b8f19 DW |
386 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
387 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
388 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
389 | ||
390 | #endif | |
391 | ||
03787301 JK |
392 | #define OBJECT_FREE (0) |
393 | #define OBJECT_ACTIVE (1) | |
394 | ||
395 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
396 | ||
397 | static void set_obj_status(struct page *page, int idx, int val) | |
398 | { | |
399 | int freelist_size; | |
400 | char *status; | |
401 | struct kmem_cache *cachep = page->slab_cache; | |
402 | ||
403 | freelist_size = cachep->num * sizeof(freelist_idx_t); | |
404 | status = (char *)page->freelist + freelist_size; | |
405 | status[idx] = val; | |
406 | } | |
407 | ||
408 | static inline unsigned int get_obj_status(struct page *page, int idx) | |
409 | { | |
410 | int freelist_size; | |
411 | char *status; | |
412 | struct kmem_cache *cachep = page->slab_cache; | |
413 | ||
414 | freelist_size = cachep->num * sizeof(freelist_idx_t); | |
415 | status = (char *)page->freelist + freelist_size; | |
416 | ||
417 | return status[idx]; | |
418 | } | |
419 | ||
420 | #else | |
421 | static inline void set_obj_status(struct page *page, int idx, int val) {} | |
422 | ||
423 | #endif | |
424 | ||
1da177e4 | 425 | /* |
3df1cccd DR |
426 | * Do not go above this order unless 0 objects fit into the slab or |
427 | * overridden on the command line. | |
1da177e4 | 428 | */ |
543585cc DR |
429 | #define SLAB_MAX_ORDER_HI 1 |
430 | #define SLAB_MAX_ORDER_LO 0 | |
431 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 432 | static bool slab_max_order_set __initdata; |
1da177e4 | 433 | |
6ed5eb22 PE |
434 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
435 | { | |
b49af68f | 436 | struct page *page = virt_to_head_page(obj); |
35026088 | 437 | return page->slab_cache; |
6ed5eb22 PE |
438 | } |
439 | ||
8456a648 | 440 | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, |
8fea4e96 PE |
441 | unsigned int idx) |
442 | { | |
8456a648 | 443 | return page->s_mem + cache->size * idx; |
8fea4e96 PE |
444 | } |
445 | ||
6a2d7a95 | 446 | /* |
3b0efdfa CL |
447 | * We want to avoid an expensive divide : (offset / cache->size) |
448 | * Using the fact that size is a constant for a particular cache, | |
449 | * we can replace (offset / cache->size) by | |
6a2d7a95 ED |
450 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) |
451 | */ | |
452 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
8456a648 | 453 | const struct page *page, void *obj) |
8fea4e96 | 454 | { |
8456a648 | 455 | u32 offset = (obj - page->s_mem); |
6a2d7a95 | 456 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); |
8fea4e96 PE |
457 | } |
458 | ||
1da177e4 | 459 | /* internal cache of cache description objs */ |
9b030cb8 | 460 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
461 | .batchcount = 1, |
462 | .limit = BOOT_CPUCACHE_ENTRIES, | |
463 | .shared = 1, | |
3b0efdfa | 464 | .size = sizeof(struct kmem_cache), |
b28a02de | 465 | .name = "kmem_cache", |
1da177e4 LT |
466 | }; |
467 | ||
edcad250 JK |
468 | #define BAD_ALIEN_MAGIC 0x01020304ul |
469 | ||
1871e52c | 470 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 471 | |
343e0d7a | 472 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 | 473 | { |
bf0dea23 | 474 | return this_cpu_ptr(cachep->cpu_cache); |
1da177e4 LT |
475 | } |
476 | ||
03787301 JK |
477 | static size_t calculate_freelist_size(int nr_objs, size_t align) |
478 | { | |
479 | size_t freelist_size; | |
480 | ||
481 | freelist_size = nr_objs * sizeof(freelist_idx_t); | |
482 | if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) | |
483 | freelist_size += nr_objs * sizeof(char); | |
484 | ||
485 | if (align) | |
486 | freelist_size = ALIGN(freelist_size, align); | |
487 | ||
488 | return freelist_size; | |
489 | } | |
490 | ||
9cef2e2b JK |
491 | static int calculate_nr_objs(size_t slab_size, size_t buffer_size, |
492 | size_t idx_size, size_t align) | |
1da177e4 | 493 | { |
9cef2e2b | 494 | int nr_objs; |
03787301 | 495 | size_t remained_size; |
9cef2e2b | 496 | size_t freelist_size; |
03787301 | 497 | int extra_space = 0; |
9cef2e2b | 498 | |
03787301 JK |
499 | if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) |
500 | extra_space = sizeof(char); | |
9cef2e2b JK |
501 | /* |
502 | * Ignore padding for the initial guess. The padding | |
503 | * is at most @align-1 bytes, and @buffer_size is at | |
504 | * least @align. In the worst case, this result will | |
505 | * be one greater than the number of objects that fit | |
506 | * into the memory allocation when taking the padding | |
507 | * into account. | |
508 | */ | |
03787301 | 509 | nr_objs = slab_size / (buffer_size + idx_size + extra_space); |
9cef2e2b JK |
510 | |
511 | /* | |
512 | * This calculated number will be either the right | |
513 | * amount, or one greater than what we want. | |
514 | */ | |
03787301 JK |
515 | remained_size = slab_size - nr_objs * buffer_size; |
516 | freelist_size = calculate_freelist_size(nr_objs, align); | |
517 | if (remained_size < freelist_size) | |
9cef2e2b JK |
518 | nr_objs--; |
519 | ||
520 | return nr_objs; | |
fbaccacf | 521 | } |
1da177e4 | 522 | |
a737b3e2 AM |
523 | /* |
524 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
525 | */ | |
fbaccacf SR |
526 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
527 | size_t align, int flags, size_t *left_over, | |
528 | unsigned int *num) | |
529 | { | |
530 | int nr_objs; | |
531 | size_t mgmt_size; | |
532 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 533 | |
fbaccacf SR |
534 | /* |
535 | * The slab management structure can be either off the slab or | |
536 | * on it. For the latter case, the memory allocated for a | |
537 | * slab is used for: | |
538 | * | |
16025177 | 539 | * - One unsigned int for each object |
fbaccacf SR |
540 | * - Padding to respect alignment of @align |
541 | * - @buffer_size bytes for each object | |
542 | * | |
543 | * If the slab management structure is off the slab, then the | |
544 | * alignment will already be calculated into the size. Because | |
545 | * the slabs are all pages aligned, the objects will be at the | |
546 | * correct alignment when allocated. | |
547 | */ | |
548 | if (flags & CFLGS_OFF_SLAB) { | |
549 | mgmt_size = 0; | |
550 | nr_objs = slab_size / buffer_size; | |
551 | ||
fbaccacf | 552 | } else { |
9cef2e2b | 553 | nr_objs = calculate_nr_objs(slab_size, buffer_size, |
a41adfaa | 554 | sizeof(freelist_idx_t), align); |
03787301 | 555 | mgmt_size = calculate_freelist_size(nr_objs, align); |
fbaccacf SR |
556 | } |
557 | *num = nr_objs; | |
558 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
559 | } |
560 | ||
f28510d3 | 561 | #if DEBUG |
d40cee24 | 562 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 563 | |
a737b3e2 AM |
564 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
565 | char *msg) | |
1da177e4 LT |
566 | { |
567 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 568 | function, cachep->name, msg); |
1da177e4 | 569 | dump_stack(); |
373d4d09 | 570 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 571 | } |
f28510d3 | 572 | #endif |
1da177e4 | 573 | |
3395ee05 PM |
574 | /* |
575 | * By default on NUMA we use alien caches to stage the freeing of | |
576 | * objects allocated from other nodes. This causes massive memory | |
577 | * inefficiencies when using fake NUMA setup to split memory into a | |
578 | * large number of small nodes, so it can be disabled on the command | |
579 | * line | |
580 | */ | |
581 | ||
582 | static int use_alien_caches __read_mostly = 1; | |
583 | static int __init noaliencache_setup(char *s) | |
584 | { | |
585 | use_alien_caches = 0; | |
586 | return 1; | |
587 | } | |
588 | __setup("noaliencache", noaliencache_setup); | |
589 | ||
3df1cccd DR |
590 | static int __init slab_max_order_setup(char *str) |
591 | { | |
592 | get_option(&str, &slab_max_order); | |
593 | slab_max_order = slab_max_order < 0 ? 0 : | |
594 | min(slab_max_order, MAX_ORDER - 1); | |
595 | slab_max_order_set = true; | |
596 | ||
597 | return 1; | |
598 | } | |
599 | __setup("slab_max_order=", slab_max_order_setup); | |
600 | ||
8fce4d8e CL |
601 | #ifdef CONFIG_NUMA |
602 | /* | |
603 | * Special reaping functions for NUMA systems called from cache_reap(). | |
604 | * These take care of doing round robin flushing of alien caches (containing | |
605 | * objects freed on different nodes from which they were allocated) and the | |
606 | * flushing of remote pcps by calling drain_node_pages. | |
607 | */ | |
1871e52c | 608 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
609 | |
610 | static void init_reap_node(int cpu) | |
611 | { | |
612 | int node; | |
613 | ||
7d6e6d09 | 614 | node = next_node(cpu_to_mem(cpu), node_online_map); |
8fce4d8e | 615 | if (node == MAX_NUMNODES) |
442295c9 | 616 | node = first_node(node_online_map); |
8fce4d8e | 617 | |
1871e52c | 618 | per_cpu(slab_reap_node, cpu) = node; |
8fce4d8e CL |
619 | } |
620 | ||
621 | static void next_reap_node(void) | |
622 | { | |
909ea964 | 623 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 624 | |
8fce4d8e CL |
625 | node = next_node(node, node_online_map); |
626 | if (unlikely(node >= MAX_NUMNODES)) | |
627 | node = first_node(node_online_map); | |
909ea964 | 628 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
629 | } |
630 | ||
631 | #else | |
632 | #define init_reap_node(cpu) do { } while (0) | |
633 | #define next_reap_node(void) do { } while (0) | |
634 | #endif | |
635 | ||
1da177e4 LT |
636 | /* |
637 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
638 | * via the workqueue/eventd. | |
639 | * Add the CPU number into the expiration time to minimize the possibility of | |
640 | * the CPUs getting into lockstep and contending for the global cache chain | |
641 | * lock. | |
642 | */ | |
0db0628d | 643 | static void start_cpu_timer(int cpu) |
1da177e4 | 644 | { |
1871e52c | 645 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
646 | |
647 | /* | |
648 | * When this gets called from do_initcalls via cpucache_init(), | |
649 | * init_workqueues() has already run, so keventd will be setup | |
650 | * at that time. | |
651 | */ | |
52bad64d | 652 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 653 | init_reap_node(cpu); |
203b42f7 | 654 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
655 | schedule_delayed_work_on(cpu, reap_work, |
656 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
657 | } |
658 | } | |
659 | ||
1fe00d50 | 660 | static void init_arraycache(struct array_cache *ac, int limit, int batch) |
1da177e4 | 661 | { |
d5cff635 CM |
662 | /* |
663 | * The array_cache structures contain pointers to free object. | |
25985edc | 664 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
665 | * cache the pointers are not cleared and they could be counted as |
666 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
667 | * not scan such objects. | |
668 | */ | |
1fe00d50 JK |
669 | kmemleak_no_scan(ac); |
670 | if (ac) { | |
671 | ac->avail = 0; | |
672 | ac->limit = limit; | |
673 | ac->batchcount = batch; | |
674 | ac->touched = 0; | |
1da177e4 | 675 | } |
1fe00d50 JK |
676 | } |
677 | ||
678 | static struct array_cache *alloc_arraycache(int node, int entries, | |
679 | int batchcount, gfp_t gfp) | |
680 | { | |
5e804789 | 681 | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1fe00d50 JK |
682 | struct array_cache *ac = NULL; |
683 | ||
684 | ac = kmalloc_node(memsize, gfp, node); | |
685 | init_arraycache(ac, entries, batchcount); | |
686 | return ac; | |
1da177e4 LT |
687 | } |
688 | ||
8456a648 | 689 | static inline bool is_slab_pfmemalloc(struct page *page) |
072bb0aa | 690 | { |
072bb0aa MG |
691 | return PageSlabPfmemalloc(page); |
692 | } | |
693 | ||
694 | /* Clears pfmemalloc_active if no slabs have pfmalloc set */ | |
695 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | |
696 | struct array_cache *ac) | |
697 | { | |
18bf8541 | 698 | struct kmem_cache_node *n = get_node(cachep, numa_mem_id()); |
8456a648 | 699 | struct page *page; |
072bb0aa MG |
700 | unsigned long flags; |
701 | ||
702 | if (!pfmemalloc_active) | |
703 | return; | |
704 | ||
ce8eb6c4 | 705 | spin_lock_irqsave(&n->list_lock, flags); |
8456a648 JK |
706 | list_for_each_entry(page, &n->slabs_full, lru) |
707 | if (is_slab_pfmemalloc(page)) | |
072bb0aa MG |
708 | goto out; |
709 | ||
8456a648 JK |
710 | list_for_each_entry(page, &n->slabs_partial, lru) |
711 | if (is_slab_pfmemalloc(page)) | |
072bb0aa MG |
712 | goto out; |
713 | ||
8456a648 JK |
714 | list_for_each_entry(page, &n->slabs_free, lru) |
715 | if (is_slab_pfmemalloc(page)) | |
072bb0aa MG |
716 | goto out; |
717 | ||
718 | pfmemalloc_active = false; | |
719 | out: | |
ce8eb6c4 | 720 | spin_unlock_irqrestore(&n->list_lock, flags); |
072bb0aa MG |
721 | } |
722 | ||
381760ea | 723 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, |
072bb0aa MG |
724 | gfp_t flags, bool force_refill) |
725 | { | |
726 | int i; | |
727 | void *objp = ac->entry[--ac->avail]; | |
728 | ||
729 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | |
730 | if (unlikely(is_obj_pfmemalloc(objp))) { | |
ce8eb6c4 | 731 | struct kmem_cache_node *n; |
072bb0aa MG |
732 | |
733 | if (gfp_pfmemalloc_allowed(flags)) { | |
734 | clear_obj_pfmemalloc(&objp); | |
735 | return objp; | |
736 | } | |
737 | ||
738 | /* The caller cannot use PFMEMALLOC objects, find another one */ | |
d014dc2e | 739 | for (i = 0; i < ac->avail; i++) { |
072bb0aa MG |
740 | /* If a !PFMEMALLOC object is found, swap them */ |
741 | if (!is_obj_pfmemalloc(ac->entry[i])) { | |
742 | objp = ac->entry[i]; | |
743 | ac->entry[i] = ac->entry[ac->avail]; | |
744 | ac->entry[ac->avail] = objp; | |
745 | return objp; | |
746 | } | |
747 | } | |
748 | ||
749 | /* | |
750 | * If there are empty slabs on the slabs_free list and we are | |
751 | * being forced to refill the cache, mark this one !pfmemalloc. | |
752 | */ | |
18bf8541 | 753 | n = get_node(cachep, numa_mem_id()); |
ce8eb6c4 | 754 | if (!list_empty(&n->slabs_free) && force_refill) { |
8456a648 | 755 | struct page *page = virt_to_head_page(objp); |
7ecccf9d | 756 | ClearPageSlabPfmemalloc(page); |
072bb0aa MG |
757 | clear_obj_pfmemalloc(&objp); |
758 | recheck_pfmemalloc_active(cachep, ac); | |
759 | return objp; | |
760 | } | |
761 | ||
762 | /* No !PFMEMALLOC objects available */ | |
763 | ac->avail++; | |
764 | objp = NULL; | |
765 | } | |
766 | ||
767 | return objp; | |
768 | } | |
769 | ||
381760ea MG |
770 | static inline void *ac_get_obj(struct kmem_cache *cachep, |
771 | struct array_cache *ac, gfp_t flags, bool force_refill) | |
772 | { | |
773 | void *objp; | |
774 | ||
775 | if (unlikely(sk_memalloc_socks())) | |
776 | objp = __ac_get_obj(cachep, ac, flags, force_refill); | |
777 | else | |
778 | objp = ac->entry[--ac->avail]; | |
779 | ||
780 | return objp; | |
781 | } | |
782 | ||
d3aec344 JK |
783 | static noinline void *__ac_put_obj(struct kmem_cache *cachep, |
784 | struct array_cache *ac, void *objp) | |
072bb0aa MG |
785 | { |
786 | if (unlikely(pfmemalloc_active)) { | |
787 | /* Some pfmemalloc slabs exist, check if this is one */ | |
30c29bea | 788 | struct page *page = virt_to_head_page(objp); |
072bb0aa MG |
789 | if (PageSlabPfmemalloc(page)) |
790 | set_obj_pfmemalloc(&objp); | |
791 | } | |
792 | ||
381760ea MG |
793 | return objp; |
794 | } | |
795 | ||
796 | static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | |
797 | void *objp) | |
798 | { | |
799 | if (unlikely(sk_memalloc_socks())) | |
800 | objp = __ac_put_obj(cachep, ac, objp); | |
801 | ||
072bb0aa MG |
802 | ac->entry[ac->avail++] = objp; |
803 | } | |
804 | ||
3ded175a CL |
805 | /* |
806 | * Transfer objects in one arraycache to another. | |
807 | * Locking must be handled by the caller. | |
808 | * | |
809 | * Return the number of entries transferred. | |
810 | */ | |
811 | static int transfer_objects(struct array_cache *to, | |
812 | struct array_cache *from, unsigned int max) | |
813 | { | |
814 | /* Figure out how many entries to transfer */ | |
732eacc0 | 815 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
816 | |
817 | if (!nr) | |
818 | return 0; | |
819 | ||
820 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
821 | sizeof(void *) *nr); | |
822 | ||
823 | from->avail -= nr; | |
824 | to->avail += nr; | |
3ded175a CL |
825 | return nr; |
826 | } | |
827 | ||
765c4507 CL |
828 | #ifndef CONFIG_NUMA |
829 | ||
830 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 831 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 832 | |
c8522a3a JK |
833 | static inline struct alien_cache **alloc_alien_cache(int node, |
834 | int limit, gfp_t gfp) | |
765c4507 | 835 | { |
edcad250 | 836 | return (struct alien_cache **)BAD_ALIEN_MAGIC; |
765c4507 CL |
837 | } |
838 | ||
c8522a3a | 839 | static inline void free_alien_cache(struct alien_cache **ac_ptr) |
765c4507 CL |
840 | { |
841 | } | |
842 | ||
843 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
844 | { | |
845 | return 0; | |
846 | } | |
847 | ||
848 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
849 | gfp_t flags) | |
850 | { | |
851 | return NULL; | |
852 | } | |
853 | ||
8b98c169 | 854 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
855 | gfp_t flags, int nodeid) |
856 | { | |
857 | return NULL; | |
858 | } | |
859 | ||
4167e9b2 DR |
860 | static inline gfp_t gfp_exact_node(gfp_t flags) |
861 | { | |
862 | return flags; | |
863 | } | |
864 | ||
765c4507 CL |
865 | #else /* CONFIG_NUMA */ |
866 | ||
8b98c169 | 867 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 868 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 869 | |
c8522a3a JK |
870 | static struct alien_cache *__alloc_alien_cache(int node, int entries, |
871 | int batch, gfp_t gfp) | |
872 | { | |
5e804789 | 873 | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
c8522a3a JK |
874 | struct alien_cache *alc = NULL; |
875 | ||
876 | alc = kmalloc_node(memsize, gfp, node); | |
877 | init_arraycache(&alc->ac, entries, batch); | |
49dfc304 | 878 | spin_lock_init(&alc->lock); |
c8522a3a JK |
879 | return alc; |
880 | } | |
881 | ||
882 | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | |
e498be7d | 883 | { |
c8522a3a | 884 | struct alien_cache **alc_ptr; |
5e804789 | 885 | size_t memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
886 | int i; |
887 | ||
888 | if (limit > 1) | |
889 | limit = 12; | |
c8522a3a JK |
890 | alc_ptr = kzalloc_node(memsize, gfp, node); |
891 | if (!alc_ptr) | |
892 | return NULL; | |
893 | ||
894 | for_each_node(i) { | |
895 | if (i == node || !node_online(i)) | |
896 | continue; | |
897 | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | |
898 | if (!alc_ptr[i]) { | |
899 | for (i--; i >= 0; i--) | |
900 | kfree(alc_ptr[i]); | |
901 | kfree(alc_ptr); | |
902 | return NULL; | |
e498be7d CL |
903 | } |
904 | } | |
c8522a3a | 905 | return alc_ptr; |
e498be7d CL |
906 | } |
907 | ||
c8522a3a | 908 | static void free_alien_cache(struct alien_cache **alc_ptr) |
e498be7d CL |
909 | { |
910 | int i; | |
911 | ||
c8522a3a | 912 | if (!alc_ptr) |
e498be7d | 913 | return; |
e498be7d | 914 | for_each_node(i) |
c8522a3a JK |
915 | kfree(alc_ptr[i]); |
916 | kfree(alc_ptr); | |
e498be7d CL |
917 | } |
918 | ||
343e0d7a | 919 | static void __drain_alien_cache(struct kmem_cache *cachep, |
833b706c JK |
920 | struct array_cache *ac, int node, |
921 | struct list_head *list) | |
e498be7d | 922 | { |
18bf8541 | 923 | struct kmem_cache_node *n = get_node(cachep, node); |
e498be7d CL |
924 | |
925 | if (ac->avail) { | |
ce8eb6c4 | 926 | spin_lock(&n->list_lock); |
e00946fe CL |
927 | /* |
928 | * Stuff objects into the remote nodes shared array first. | |
929 | * That way we could avoid the overhead of putting the objects | |
930 | * into the free lists and getting them back later. | |
931 | */ | |
ce8eb6c4 CL |
932 | if (n->shared) |
933 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 934 | |
833b706c | 935 | free_block(cachep, ac->entry, ac->avail, node, list); |
e498be7d | 936 | ac->avail = 0; |
ce8eb6c4 | 937 | spin_unlock(&n->list_lock); |
e498be7d CL |
938 | } |
939 | } | |
940 | ||
8fce4d8e CL |
941 | /* |
942 | * Called from cache_reap() to regularly drain alien caches round robin. | |
943 | */ | |
ce8eb6c4 | 944 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 945 | { |
909ea964 | 946 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 947 | |
ce8eb6c4 | 948 | if (n->alien) { |
c8522a3a JK |
949 | struct alien_cache *alc = n->alien[node]; |
950 | struct array_cache *ac; | |
951 | ||
952 | if (alc) { | |
953 | ac = &alc->ac; | |
49dfc304 | 954 | if (ac->avail && spin_trylock_irq(&alc->lock)) { |
833b706c JK |
955 | LIST_HEAD(list); |
956 | ||
957 | __drain_alien_cache(cachep, ac, node, &list); | |
49dfc304 | 958 | spin_unlock_irq(&alc->lock); |
833b706c | 959 | slabs_destroy(cachep, &list); |
c8522a3a | 960 | } |
8fce4d8e CL |
961 | } |
962 | } | |
963 | } | |
964 | ||
a737b3e2 | 965 | static void drain_alien_cache(struct kmem_cache *cachep, |
c8522a3a | 966 | struct alien_cache **alien) |
e498be7d | 967 | { |
b28a02de | 968 | int i = 0; |
c8522a3a | 969 | struct alien_cache *alc; |
e498be7d CL |
970 | struct array_cache *ac; |
971 | unsigned long flags; | |
972 | ||
973 | for_each_online_node(i) { | |
c8522a3a JK |
974 | alc = alien[i]; |
975 | if (alc) { | |
833b706c JK |
976 | LIST_HEAD(list); |
977 | ||
c8522a3a | 978 | ac = &alc->ac; |
49dfc304 | 979 | spin_lock_irqsave(&alc->lock, flags); |
833b706c | 980 | __drain_alien_cache(cachep, ac, i, &list); |
49dfc304 | 981 | spin_unlock_irqrestore(&alc->lock, flags); |
833b706c | 982 | slabs_destroy(cachep, &list); |
e498be7d CL |
983 | } |
984 | } | |
985 | } | |
729bd0b7 | 986 | |
25c4f304 JK |
987 | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
988 | int node, int page_node) | |
729bd0b7 | 989 | { |
ce8eb6c4 | 990 | struct kmem_cache_node *n; |
c8522a3a JK |
991 | struct alien_cache *alien = NULL; |
992 | struct array_cache *ac; | |
97654dfa | 993 | LIST_HEAD(list); |
1ca4cb24 | 994 | |
18bf8541 | 995 | n = get_node(cachep, node); |
729bd0b7 | 996 | STATS_INC_NODEFREES(cachep); |
25c4f304 JK |
997 | if (n->alien && n->alien[page_node]) { |
998 | alien = n->alien[page_node]; | |
c8522a3a | 999 | ac = &alien->ac; |
49dfc304 | 1000 | spin_lock(&alien->lock); |
c8522a3a | 1001 | if (unlikely(ac->avail == ac->limit)) { |
729bd0b7 | 1002 | STATS_INC_ACOVERFLOW(cachep); |
25c4f304 | 1003 | __drain_alien_cache(cachep, ac, page_node, &list); |
729bd0b7 | 1004 | } |
c8522a3a | 1005 | ac_put_obj(cachep, ac, objp); |
49dfc304 | 1006 | spin_unlock(&alien->lock); |
833b706c | 1007 | slabs_destroy(cachep, &list); |
729bd0b7 | 1008 | } else { |
25c4f304 | 1009 | n = get_node(cachep, page_node); |
18bf8541 | 1010 | spin_lock(&n->list_lock); |
25c4f304 | 1011 | free_block(cachep, &objp, 1, page_node, &list); |
18bf8541 | 1012 | spin_unlock(&n->list_lock); |
97654dfa | 1013 | slabs_destroy(cachep, &list); |
729bd0b7 PE |
1014 | } |
1015 | return 1; | |
1016 | } | |
25c4f304 JK |
1017 | |
1018 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
1019 | { | |
1020 | int page_node = page_to_nid(virt_to_page(objp)); | |
1021 | int node = numa_mem_id(); | |
1022 | /* | |
1023 | * Make sure we are not freeing a object from another node to the array | |
1024 | * cache on this cpu. | |
1025 | */ | |
1026 | if (likely(node == page_node)) | |
1027 | return 0; | |
1028 | ||
1029 | return __cache_free_alien(cachep, objp, node, page_node); | |
1030 | } | |
4167e9b2 DR |
1031 | |
1032 | /* | |
1033 | * Construct gfp mask to allocate from a specific node but do not invoke reclaim | |
1034 | * or warn about failures. | |
1035 | */ | |
1036 | static inline gfp_t gfp_exact_node(gfp_t flags) | |
1037 | { | |
1038 | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT; | |
1039 | } | |
e498be7d CL |
1040 | #endif |
1041 | ||
8f9f8d9e | 1042 | /* |
6a67368c | 1043 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 1044 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 1045 | * will be allocated off-node since memory is not yet online for the new node. |
6a67368c | 1046 | * When hotplugging memory or a cpu, existing node are not replaced if |
8f9f8d9e DR |
1047 | * already in use. |
1048 | * | |
18004c5d | 1049 | * Must hold slab_mutex. |
8f9f8d9e | 1050 | */ |
6a67368c | 1051 | static int init_cache_node_node(int node) |
8f9f8d9e DR |
1052 | { |
1053 | struct kmem_cache *cachep; | |
ce8eb6c4 | 1054 | struct kmem_cache_node *n; |
5e804789 | 1055 | const size_t memsize = sizeof(struct kmem_cache_node); |
8f9f8d9e | 1056 | |
18004c5d | 1057 | list_for_each_entry(cachep, &slab_caches, list) { |
8f9f8d9e | 1058 | /* |
5f0985bb | 1059 | * Set up the kmem_cache_node for cpu before we can |
8f9f8d9e DR |
1060 | * begin anything. Make sure some other cpu on this |
1061 | * node has not already allocated this | |
1062 | */ | |
18bf8541 CL |
1063 | n = get_node(cachep, node); |
1064 | if (!n) { | |
ce8eb6c4 CL |
1065 | n = kmalloc_node(memsize, GFP_KERNEL, node); |
1066 | if (!n) | |
8f9f8d9e | 1067 | return -ENOMEM; |
ce8eb6c4 | 1068 | kmem_cache_node_init(n); |
5f0985bb JZ |
1069 | n->next_reap = jiffies + REAPTIMEOUT_NODE + |
1070 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
8f9f8d9e DR |
1071 | |
1072 | /* | |
5f0985bb JZ |
1073 | * The kmem_cache_nodes don't come and go as CPUs |
1074 | * come and go. slab_mutex is sufficient | |
8f9f8d9e DR |
1075 | * protection here. |
1076 | */ | |
ce8eb6c4 | 1077 | cachep->node[node] = n; |
8f9f8d9e DR |
1078 | } |
1079 | ||
18bf8541 CL |
1080 | spin_lock_irq(&n->list_lock); |
1081 | n->free_limit = | |
8f9f8d9e DR |
1082 | (1 + nr_cpus_node(node)) * |
1083 | cachep->batchcount + cachep->num; | |
18bf8541 | 1084 | spin_unlock_irq(&n->list_lock); |
8f9f8d9e DR |
1085 | } |
1086 | return 0; | |
1087 | } | |
1088 | ||
0fa8103b WL |
1089 | static inline int slabs_tofree(struct kmem_cache *cachep, |
1090 | struct kmem_cache_node *n) | |
1091 | { | |
1092 | return (n->free_objects + cachep->num - 1) / cachep->num; | |
1093 | } | |
1094 | ||
0db0628d | 1095 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
1096 | { |
1097 | struct kmem_cache *cachep; | |
ce8eb6c4 | 1098 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 1099 | int node = cpu_to_mem(cpu); |
a70f7302 | 1100 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 1101 | |
18004c5d | 1102 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1103 | struct array_cache *nc; |
1104 | struct array_cache *shared; | |
c8522a3a | 1105 | struct alien_cache **alien; |
97654dfa | 1106 | LIST_HEAD(list); |
fbf1e473 | 1107 | |
18bf8541 | 1108 | n = get_node(cachep, node); |
ce8eb6c4 | 1109 | if (!n) |
bf0dea23 | 1110 | continue; |
fbf1e473 | 1111 | |
ce8eb6c4 | 1112 | spin_lock_irq(&n->list_lock); |
fbf1e473 | 1113 | |
ce8eb6c4 CL |
1114 | /* Free limit for this kmem_cache_node */ |
1115 | n->free_limit -= cachep->batchcount; | |
bf0dea23 JK |
1116 | |
1117 | /* cpu is dead; no one can alloc from it. */ | |
1118 | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | |
1119 | if (nc) { | |
97654dfa | 1120 | free_block(cachep, nc->entry, nc->avail, node, &list); |
bf0dea23 JK |
1121 | nc->avail = 0; |
1122 | } | |
fbf1e473 | 1123 | |
58463c1f | 1124 | if (!cpumask_empty(mask)) { |
ce8eb6c4 | 1125 | spin_unlock_irq(&n->list_lock); |
bf0dea23 | 1126 | goto free_slab; |
fbf1e473 AM |
1127 | } |
1128 | ||
ce8eb6c4 | 1129 | shared = n->shared; |
fbf1e473 AM |
1130 | if (shared) { |
1131 | free_block(cachep, shared->entry, | |
97654dfa | 1132 | shared->avail, node, &list); |
ce8eb6c4 | 1133 | n->shared = NULL; |
fbf1e473 AM |
1134 | } |
1135 | ||
ce8eb6c4 CL |
1136 | alien = n->alien; |
1137 | n->alien = NULL; | |
fbf1e473 | 1138 | |
ce8eb6c4 | 1139 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1140 | |
1141 | kfree(shared); | |
1142 | if (alien) { | |
1143 | drain_alien_cache(cachep, alien); | |
1144 | free_alien_cache(alien); | |
1145 | } | |
bf0dea23 JK |
1146 | |
1147 | free_slab: | |
97654dfa | 1148 | slabs_destroy(cachep, &list); |
fbf1e473 AM |
1149 | } |
1150 | /* | |
1151 | * In the previous loop, all the objects were freed to | |
1152 | * the respective cache's slabs, now we can go ahead and | |
1153 | * shrink each nodelist to its limit. | |
1154 | */ | |
18004c5d | 1155 | list_for_each_entry(cachep, &slab_caches, list) { |
18bf8541 | 1156 | n = get_node(cachep, node); |
ce8eb6c4 | 1157 | if (!n) |
fbf1e473 | 1158 | continue; |
0fa8103b | 1159 | drain_freelist(cachep, n, slabs_tofree(cachep, n)); |
fbf1e473 AM |
1160 | } |
1161 | } | |
1162 | ||
0db0628d | 1163 | static int cpuup_prepare(long cpu) |
1da177e4 | 1164 | { |
343e0d7a | 1165 | struct kmem_cache *cachep; |
ce8eb6c4 | 1166 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 1167 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1168 | int err; |
1da177e4 | 1169 | |
fbf1e473 AM |
1170 | /* |
1171 | * We need to do this right in the beginning since | |
1172 | * alloc_arraycache's are going to use this list. | |
1173 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1174 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1175 | */ |
6a67368c | 1176 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1177 | if (err < 0) |
1178 | goto bad; | |
fbf1e473 AM |
1179 | |
1180 | /* | |
1181 | * Now we can go ahead with allocating the shared arrays and | |
1182 | * array caches | |
1183 | */ | |
18004c5d | 1184 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 | 1185 | struct array_cache *shared = NULL; |
c8522a3a | 1186 | struct alien_cache **alien = NULL; |
fbf1e473 | 1187 | |
fbf1e473 AM |
1188 | if (cachep->shared) { |
1189 | shared = alloc_arraycache(node, | |
1190 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1191 | 0xbaadf00d, GFP_KERNEL); |
bf0dea23 | 1192 | if (!shared) |
1da177e4 | 1193 | goto bad; |
fbf1e473 AM |
1194 | } |
1195 | if (use_alien_caches) { | |
83b519e8 | 1196 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1197 | if (!alien) { |
1198 | kfree(shared); | |
fbf1e473 | 1199 | goto bad; |
12d00f6a | 1200 | } |
fbf1e473 | 1201 | } |
18bf8541 | 1202 | n = get_node(cachep, node); |
ce8eb6c4 | 1203 | BUG_ON(!n); |
fbf1e473 | 1204 | |
ce8eb6c4 CL |
1205 | spin_lock_irq(&n->list_lock); |
1206 | if (!n->shared) { | |
fbf1e473 AM |
1207 | /* |
1208 | * We are serialised from CPU_DEAD or | |
1209 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1210 | */ | |
ce8eb6c4 | 1211 | n->shared = shared; |
fbf1e473 AM |
1212 | shared = NULL; |
1213 | } | |
4484ebf1 | 1214 | #ifdef CONFIG_NUMA |
ce8eb6c4 CL |
1215 | if (!n->alien) { |
1216 | n->alien = alien; | |
fbf1e473 | 1217 | alien = NULL; |
1da177e4 | 1218 | } |
fbf1e473 | 1219 | #endif |
ce8eb6c4 | 1220 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
1221 | kfree(shared); |
1222 | free_alien_cache(alien); | |
1223 | } | |
ce79ddc8 | 1224 | |
fbf1e473 AM |
1225 | return 0; |
1226 | bad: | |
12d00f6a | 1227 | cpuup_canceled(cpu); |
fbf1e473 AM |
1228 | return -ENOMEM; |
1229 | } | |
1230 | ||
0db0628d | 1231 | static int cpuup_callback(struct notifier_block *nfb, |
fbf1e473 AM |
1232 | unsigned long action, void *hcpu) |
1233 | { | |
1234 | long cpu = (long)hcpu; | |
1235 | int err = 0; | |
1236 | ||
1237 | switch (action) { | |
fbf1e473 AM |
1238 | case CPU_UP_PREPARE: |
1239 | case CPU_UP_PREPARE_FROZEN: | |
18004c5d | 1240 | mutex_lock(&slab_mutex); |
fbf1e473 | 1241 | err = cpuup_prepare(cpu); |
18004c5d | 1242 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
1243 | break; |
1244 | case CPU_ONLINE: | |
8bb78442 | 1245 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1246 | start_cpu_timer(cpu); |
1247 | break; | |
1248 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1249 | case CPU_DOWN_PREPARE: |
8bb78442 | 1250 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 | 1251 | /* |
18004c5d | 1252 | * Shutdown cache reaper. Note that the slab_mutex is |
5830c590 CL |
1253 | * held so that if cache_reap() is invoked it cannot do |
1254 | * anything expensive but will only modify reap_work | |
1255 | * and reschedule the timer. | |
1256 | */ | |
afe2c511 | 1257 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1258 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1259 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1260 | break; |
1261 | case CPU_DOWN_FAILED: | |
8bb78442 | 1262 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1263 | start_cpu_timer(cpu); |
1264 | break; | |
1da177e4 | 1265 | case CPU_DEAD: |
8bb78442 | 1266 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1267 | /* |
1268 | * Even if all the cpus of a node are down, we don't free the | |
ce8eb6c4 | 1269 | * kmem_cache_node of any cache. This to avoid a race between |
4484ebf1 | 1270 | * cpu_down, and a kmalloc allocation from another cpu for |
ce8eb6c4 | 1271 | * memory from the node of the cpu going down. The node |
4484ebf1 RT |
1272 | * structure is usually allocated from kmem_cache_create() and |
1273 | * gets destroyed at kmem_cache_destroy(). | |
1274 | */ | |
183ff22b | 1275 | /* fall through */ |
8f5be20b | 1276 | #endif |
1da177e4 | 1277 | case CPU_UP_CANCELED: |
8bb78442 | 1278 | case CPU_UP_CANCELED_FROZEN: |
18004c5d | 1279 | mutex_lock(&slab_mutex); |
fbf1e473 | 1280 | cpuup_canceled(cpu); |
18004c5d | 1281 | mutex_unlock(&slab_mutex); |
1da177e4 | 1282 | break; |
1da177e4 | 1283 | } |
eac40680 | 1284 | return notifier_from_errno(err); |
1da177e4 LT |
1285 | } |
1286 | ||
0db0628d | 1287 | static struct notifier_block cpucache_notifier = { |
74b85f37 CS |
1288 | &cpuup_callback, NULL, 0 |
1289 | }; | |
1da177e4 | 1290 | |
8f9f8d9e DR |
1291 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1292 | /* | |
1293 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1294 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1295 | * removed. | |
1296 | * | |
18004c5d | 1297 | * Must hold slab_mutex. |
8f9f8d9e | 1298 | */ |
6a67368c | 1299 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1300 | { |
1301 | struct kmem_cache *cachep; | |
1302 | int ret = 0; | |
1303 | ||
18004c5d | 1304 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1305 | struct kmem_cache_node *n; |
8f9f8d9e | 1306 | |
18bf8541 | 1307 | n = get_node(cachep, node); |
ce8eb6c4 | 1308 | if (!n) |
8f9f8d9e DR |
1309 | continue; |
1310 | ||
0fa8103b | 1311 | drain_freelist(cachep, n, slabs_tofree(cachep, n)); |
8f9f8d9e | 1312 | |
ce8eb6c4 CL |
1313 | if (!list_empty(&n->slabs_full) || |
1314 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1315 | ret = -EBUSY; |
1316 | break; | |
1317 | } | |
1318 | } | |
1319 | return ret; | |
1320 | } | |
1321 | ||
1322 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1323 | unsigned long action, void *arg) | |
1324 | { | |
1325 | struct memory_notify *mnb = arg; | |
1326 | int ret = 0; | |
1327 | int nid; | |
1328 | ||
1329 | nid = mnb->status_change_nid; | |
1330 | if (nid < 0) | |
1331 | goto out; | |
1332 | ||
1333 | switch (action) { | |
1334 | case MEM_GOING_ONLINE: | |
18004c5d | 1335 | mutex_lock(&slab_mutex); |
6a67368c | 1336 | ret = init_cache_node_node(nid); |
18004c5d | 1337 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1338 | break; |
1339 | case MEM_GOING_OFFLINE: | |
18004c5d | 1340 | mutex_lock(&slab_mutex); |
6a67368c | 1341 | ret = drain_cache_node_node(nid); |
18004c5d | 1342 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1343 | break; |
1344 | case MEM_ONLINE: | |
1345 | case MEM_OFFLINE: | |
1346 | case MEM_CANCEL_ONLINE: | |
1347 | case MEM_CANCEL_OFFLINE: | |
1348 | break; | |
1349 | } | |
1350 | out: | |
5fda1bd5 | 1351 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1352 | } |
1353 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1354 | ||
e498be7d | 1355 | /* |
ce8eb6c4 | 1356 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1357 | */ |
6744f087 | 1358 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1359 | int nodeid) |
e498be7d | 1360 | { |
6744f087 | 1361 | struct kmem_cache_node *ptr; |
e498be7d | 1362 | |
6744f087 | 1363 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1364 | BUG_ON(!ptr); |
1365 | ||
6744f087 | 1366 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1367 | /* |
1368 | * Do not assume that spinlocks can be initialized via memcpy: | |
1369 | */ | |
1370 | spin_lock_init(&ptr->list_lock); | |
1371 | ||
e498be7d | 1372 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1373 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1374 | } |
1375 | ||
556a169d | 1376 | /* |
ce8eb6c4 CL |
1377 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1378 | * size of kmem_cache_node. | |
556a169d | 1379 | */ |
ce8eb6c4 | 1380 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1381 | { |
1382 | int node; | |
1383 | ||
1384 | for_each_online_node(node) { | |
ce8eb6c4 | 1385 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1386 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1387 | REAPTIMEOUT_NODE + |
1388 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1389 | } |
1390 | } | |
1391 | ||
a737b3e2 AM |
1392 | /* |
1393 | * Initialisation. Called after the page allocator have been initialised and | |
1394 | * before smp_init(). | |
1da177e4 LT |
1395 | */ |
1396 | void __init kmem_cache_init(void) | |
1397 | { | |
e498be7d CL |
1398 | int i; |
1399 | ||
68126702 JK |
1400 | BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < |
1401 | sizeof(struct rcu_head)); | |
9b030cb8 CL |
1402 | kmem_cache = &kmem_cache_boot; |
1403 | ||
b6e68bc1 | 1404 | if (num_possible_nodes() == 1) |
62918a03 SS |
1405 | use_alien_caches = 0; |
1406 | ||
3c583465 | 1407 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1408 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1409 | |
1da177e4 LT |
1410 | /* |
1411 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1412 | * page orders on machines with more than 32MB of memory if |
1413 | * not overridden on the command line. | |
1da177e4 | 1414 | */ |
3df1cccd | 1415 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1416 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1417 | |
1da177e4 LT |
1418 | /* Bootstrap is tricky, because several objects are allocated |
1419 | * from caches that do not exist yet: | |
9b030cb8 CL |
1420 | * 1) initialize the kmem_cache cache: it contains the struct |
1421 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1422 | * kmem_cache is statically allocated. | |
e498be7d | 1423 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1424 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1425 | * array at the end of the bootstrap. |
1da177e4 | 1426 | * 2) Create the first kmalloc cache. |
343e0d7a | 1427 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1428 | * An __init data area is used for the head array. |
1429 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1430 | * head arrays. | |
9b030cb8 | 1431 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1432 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1433 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1434 | * the other cache's with kmalloc allocated memory. |
1435 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1436 | */ |
1437 | ||
9b030cb8 | 1438 | /* 1) create the kmem_cache */ |
1da177e4 | 1439 | |
8da3430d | 1440 | /* |
b56efcf0 | 1441 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1442 | */ |
2f9baa9f | 1443 | create_boot_cache(kmem_cache, "kmem_cache", |
bf0dea23 | 1444 | offsetof(struct kmem_cache, node) + |
6744f087 | 1445 | nr_node_ids * sizeof(struct kmem_cache_node *), |
2f9baa9f CL |
1446 | SLAB_HWCACHE_ALIGN); |
1447 | list_add(&kmem_cache->list, &slab_caches); | |
bf0dea23 | 1448 | slab_state = PARTIAL; |
1da177e4 | 1449 | |
a737b3e2 | 1450 | /* |
bf0dea23 JK |
1451 | * Initialize the caches that provide memory for the kmem_cache_node |
1452 | * structures first. Without this, further allocations will bug. | |
e498be7d | 1453 | */ |
bf0dea23 | 1454 | kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", |
ce8eb6c4 | 1455 | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); |
bf0dea23 | 1456 | slab_state = PARTIAL_NODE; |
e498be7d | 1457 | |
e0a42726 IM |
1458 | slab_early_init = 0; |
1459 | ||
ce8eb6c4 | 1460 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1461 | { |
1ca4cb24 PE |
1462 | int nid; |
1463 | ||
9c09a95c | 1464 | for_each_online_node(nid) { |
ce8eb6c4 | 1465 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1466 | |
bf0dea23 | 1467 | init_list(kmalloc_caches[INDEX_NODE], |
ce8eb6c4 | 1468 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
e498be7d CL |
1469 | } |
1470 | } | |
1da177e4 | 1471 | |
f97d5f63 | 1472 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1473 | } |
1474 | ||
1475 | void __init kmem_cache_init_late(void) | |
1476 | { | |
1477 | struct kmem_cache *cachep; | |
1478 | ||
97d06609 | 1479 | slab_state = UP; |
52cef189 | 1480 | |
8429db5c | 1481 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1482 | mutex_lock(&slab_mutex); |
1483 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1484 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1485 | BUG(); | |
18004c5d | 1486 | mutex_unlock(&slab_mutex); |
056c6241 | 1487 | |
97d06609 CL |
1488 | /* Done! */ |
1489 | slab_state = FULL; | |
1490 | ||
a737b3e2 AM |
1491 | /* |
1492 | * Register a cpu startup notifier callback that initializes | |
1493 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1494 | */ |
1495 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1496 | |
8f9f8d9e DR |
1497 | #ifdef CONFIG_NUMA |
1498 | /* | |
1499 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1500 | * node. |
8f9f8d9e DR |
1501 | */ |
1502 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1503 | #endif | |
1504 | ||
a737b3e2 AM |
1505 | /* |
1506 | * The reap timers are started later, with a module init call: That part | |
1507 | * of the kernel is not yet operational. | |
1da177e4 LT |
1508 | */ |
1509 | } | |
1510 | ||
1511 | static int __init cpucache_init(void) | |
1512 | { | |
1513 | int cpu; | |
1514 | ||
a737b3e2 AM |
1515 | /* |
1516 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1517 | */ |
e498be7d | 1518 | for_each_online_cpu(cpu) |
a737b3e2 | 1519 | start_cpu_timer(cpu); |
a164f896 GC |
1520 | |
1521 | /* Done! */ | |
97d06609 | 1522 | slab_state = FULL; |
1da177e4 LT |
1523 | return 0; |
1524 | } | |
1da177e4 LT |
1525 | __initcall(cpucache_init); |
1526 | ||
8bdec192 RA |
1527 | static noinline void |
1528 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1529 | { | |
9a02d699 | 1530 | #if DEBUG |
ce8eb6c4 | 1531 | struct kmem_cache_node *n; |
8456a648 | 1532 | struct page *page; |
8bdec192 RA |
1533 | unsigned long flags; |
1534 | int node; | |
9a02d699 DR |
1535 | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1536 | DEFAULT_RATELIMIT_BURST); | |
1537 | ||
1538 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | |
1539 | return; | |
8bdec192 RA |
1540 | |
1541 | printk(KERN_WARNING | |
1542 | "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1543 | nodeid, gfpflags); | |
1544 | printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1545 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 | 1546 | |
18bf8541 | 1547 | for_each_kmem_cache_node(cachep, node, n) { |
8bdec192 RA |
1548 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; |
1549 | unsigned long active_slabs = 0, num_slabs = 0; | |
1550 | ||
ce8eb6c4 | 1551 | spin_lock_irqsave(&n->list_lock, flags); |
8456a648 | 1552 | list_for_each_entry(page, &n->slabs_full, lru) { |
8bdec192 RA |
1553 | active_objs += cachep->num; |
1554 | active_slabs++; | |
1555 | } | |
8456a648 JK |
1556 | list_for_each_entry(page, &n->slabs_partial, lru) { |
1557 | active_objs += page->active; | |
8bdec192 RA |
1558 | active_slabs++; |
1559 | } | |
8456a648 | 1560 | list_for_each_entry(page, &n->slabs_free, lru) |
8bdec192 RA |
1561 | num_slabs++; |
1562 | ||
ce8eb6c4 CL |
1563 | free_objects += n->free_objects; |
1564 | spin_unlock_irqrestore(&n->list_lock, flags); | |
8bdec192 RA |
1565 | |
1566 | num_slabs += active_slabs; | |
1567 | num_objs = num_slabs * cachep->num; | |
1568 | printk(KERN_WARNING | |
1569 | " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | |
1570 | node, active_slabs, num_slabs, active_objs, num_objs, | |
1571 | free_objects); | |
1572 | } | |
9a02d699 | 1573 | #endif |
8bdec192 RA |
1574 | } |
1575 | ||
1da177e4 | 1576 | /* |
8a7d9b43 WSH |
1577 | * Interface to system's page allocator. No need to hold the |
1578 | * kmem_cache_node ->list_lock. | |
1da177e4 LT |
1579 | * |
1580 | * If we requested dmaable memory, we will get it. Even if we | |
1581 | * did not request dmaable memory, we might get it, but that | |
1582 | * would be relatively rare and ignorable. | |
1583 | */ | |
0c3aa83e JK |
1584 | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
1585 | int nodeid) | |
1da177e4 LT |
1586 | { |
1587 | struct page *page; | |
e1b6aa6f | 1588 | int nr_pages; |
765c4507 | 1589 | |
a618e89f | 1590 | flags |= cachep->allocflags; |
e12ba74d MG |
1591 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1592 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1593 | |
5dfb4175 VD |
1594 | if (memcg_charge_slab(cachep, flags, cachep->gfporder)) |
1595 | return NULL; | |
1596 | ||
517d0869 | 1597 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 | 1598 | if (!page) { |
5dfb4175 | 1599 | memcg_uncharge_slab(cachep, cachep->gfporder); |
9a02d699 | 1600 | slab_out_of_memory(cachep, flags, nodeid); |
1da177e4 | 1601 | return NULL; |
8bdec192 | 1602 | } |
1da177e4 | 1603 | |
b37f1dd0 | 1604 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
072bb0aa MG |
1605 | if (unlikely(page->pfmemalloc)) |
1606 | pfmemalloc_active = true; | |
1607 | ||
e1b6aa6f | 1608 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1609 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1610 | add_zone_page_state(page_zone(page), |
1611 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1612 | else | |
1613 | add_zone_page_state(page_zone(page), | |
1614 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
a57a4988 JK |
1615 | __SetPageSlab(page); |
1616 | if (page->pfmemalloc) | |
1617 | SetPageSlabPfmemalloc(page); | |
072bb0aa | 1618 | |
b1eeab67 VN |
1619 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1620 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1621 | ||
1622 | if (cachep->ctor) | |
1623 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1624 | else | |
1625 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1626 | } | |
c175eea4 | 1627 | |
0c3aa83e | 1628 | return page; |
1da177e4 LT |
1629 | } |
1630 | ||
1631 | /* | |
1632 | * Interface to system's page release. | |
1633 | */ | |
0c3aa83e | 1634 | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 1635 | { |
a57a4988 | 1636 | const unsigned long nr_freed = (1 << cachep->gfporder); |
1da177e4 | 1637 | |
b1eeab67 | 1638 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1639 | |
972d1a7b CL |
1640 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1641 | sub_zone_page_state(page_zone(page), | |
1642 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1643 | else | |
1644 | sub_zone_page_state(page_zone(page), | |
1645 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
73293c2f | 1646 | |
a57a4988 | 1647 | BUG_ON(!PageSlab(page)); |
73293c2f | 1648 | __ClearPageSlabPfmemalloc(page); |
a57a4988 | 1649 | __ClearPageSlab(page); |
8456a648 JK |
1650 | page_mapcount_reset(page); |
1651 | page->mapping = NULL; | |
1f458cbf | 1652 | |
1da177e4 LT |
1653 | if (current->reclaim_state) |
1654 | current->reclaim_state->reclaimed_slab += nr_freed; | |
5dfb4175 VD |
1655 | __free_pages(page, cachep->gfporder); |
1656 | memcg_uncharge_slab(cachep, cachep->gfporder); | |
1da177e4 LT |
1657 | } |
1658 | ||
1659 | static void kmem_rcu_free(struct rcu_head *head) | |
1660 | { | |
68126702 JK |
1661 | struct kmem_cache *cachep; |
1662 | struct page *page; | |
1da177e4 | 1663 | |
68126702 JK |
1664 | page = container_of(head, struct page, rcu_head); |
1665 | cachep = page->slab_cache; | |
1666 | ||
1667 | kmem_freepages(cachep, page); | |
1da177e4 LT |
1668 | } |
1669 | ||
1670 | #if DEBUG | |
1671 | ||
1672 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1673 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1674 | unsigned long caller) |
1da177e4 | 1675 | { |
8c138bc0 | 1676 | int size = cachep->object_size; |
1da177e4 | 1677 | |
3dafccf2 | 1678 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1679 | |
b28a02de | 1680 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1681 | return; |
1682 | ||
b28a02de PE |
1683 | *addr++ = 0x12345678; |
1684 | *addr++ = caller; | |
1685 | *addr++ = smp_processor_id(); | |
1686 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1687 | { |
1688 | unsigned long *sptr = &caller; | |
1689 | unsigned long svalue; | |
1690 | ||
1691 | while (!kstack_end(sptr)) { | |
1692 | svalue = *sptr++; | |
1693 | if (kernel_text_address(svalue)) { | |
b28a02de | 1694 | *addr++ = svalue; |
1da177e4 LT |
1695 | size -= sizeof(unsigned long); |
1696 | if (size <= sizeof(unsigned long)) | |
1697 | break; | |
1698 | } | |
1699 | } | |
1700 | ||
1701 | } | |
b28a02de | 1702 | *addr++ = 0x87654321; |
1da177e4 LT |
1703 | } |
1704 | #endif | |
1705 | ||
343e0d7a | 1706 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1707 | { |
8c138bc0 | 1708 | int size = cachep->object_size; |
3dafccf2 | 1709 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1710 | |
1711 | memset(addr, val, size); | |
b28a02de | 1712 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1713 | } |
1714 | ||
1715 | static void dump_line(char *data, int offset, int limit) | |
1716 | { | |
1717 | int i; | |
aa83aa40 DJ |
1718 | unsigned char error = 0; |
1719 | int bad_count = 0; | |
1720 | ||
fdde6abb | 1721 | printk(KERN_ERR "%03x: ", offset); |
aa83aa40 DJ |
1722 | for (i = 0; i < limit; i++) { |
1723 | if (data[offset + i] != POISON_FREE) { | |
1724 | error = data[offset + i]; | |
1725 | bad_count++; | |
1726 | } | |
aa83aa40 | 1727 | } |
fdde6abb SAS |
1728 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1729 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1730 | |
1731 | if (bad_count == 1) { | |
1732 | error ^= POISON_FREE; | |
1733 | if (!(error & (error - 1))) { | |
1734 | printk(KERN_ERR "Single bit error detected. Probably " | |
1735 | "bad RAM.\n"); | |
1736 | #ifdef CONFIG_X86 | |
1737 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1738 | "test tool.\n"); | |
1739 | #else | |
1740 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1741 | #endif | |
1742 | } | |
1743 | } | |
1da177e4 LT |
1744 | } |
1745 | #endif | |
1746 | ||
1747 | #if DEBUG | |
1748 | ||
343e0d7a | 1749 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1750 | { |
1751 | int i, size; | |
1752 | char *realobj; | |
1753 | ||
1754 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 1755 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
1756 | *dbg_redzone1(cachep, objp), |
1757 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1758 | } |
1759 | ||
1760 | if (cachep->flags & SLAB_STORE_USER) { | |
071361d3 JP |
1761 | printk(KERN_ERR "Last user: [<%p>](%pSR)\n", |
1762 | *dbg_userword(cachep, objp), | |
1763 | *dbg_userword(cachep, objp)); | |
1da177e4 | 1764 | } |
3dafccf2 | 1765 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1766 | size = cachep->object_size; |
b28a02de | 1767 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1768 | int limit; |
1769 | limit = 16; | |
b28a02de PE |
1770 | if (i + limit > size) |
1771 | limit = size - i; | |
1da177e4 LT |
1772 | dump_line(realobj, i, limit); |
1773 | } | |
1774 | } | |
1775 | ||
343e0d7a | 1776 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1777 | { |
1778 | char *realobj; | |
1779 | int size, i; | |
1780 | int lines = 0; | |
1781 | ||
3dafccf2 | 1782 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1783 | size = cachep->object_size; |
1da177e4 | 1784 | |
b28a02de | 1785 | for (i = 0; i < size; i++) { |
1da177e4 | 1786 | char exp = POISON_FREE; |
b28a02de | 1787 | if (i == size - 1) |
1da177e4 LT |
1788 | exp = POISON_END; |
1789 | if (realobj[i] != exp) { | |
1790 | int limit; | |
1791 | /* Mismatch ! */ | |
1792 | /* Print header */ | |
1793 | if (lines == 0) { | |
b28a02de | 1794 | printk(KERN_ERR |
face37f5 DJ |
1795 | "Slab corruption (%s): %s start=%p, len=%d\n", |
1796 | print_tainted(), cachep->name, realobj, size); | |
1da177e4 LT |
1797 | print_objinfo(cachep, objp, 0); |
1798 | } | |
1799 | /* Hexdump the affected line */ | |
b28a02de | 1800 | i = (i / 16) * 16; |
1da177e4 | 1801 | limit = 16; |
b28a02de PE |
1802 | if (i + limit > size) |
1803 | limit = size - i; | |
1da177e4 LT |
1804 | dump_line(realobj, i, limit); |
1805 | i += 16; | |
1806 | lines++; | |
1807 | /* Limit to 5 lines */ | |
1808 | if (lines > 5) | |
1809 | break; | |
1810 | } | |
1811 | } | |
1812 | if (lines != 0) { | |
1813 | /* Print some data about the neighboring objects, if they | |
1814 | * exist: | |
1815 | */ | |
8456a648 | 1816 | struct page *page = virt_to_head_page(objp); |
8fea4e96 | 1817 | unsigned int objnr; |
1da177e4 | 1818 | |
8456a648 | 1819 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 | 1820 | if (objnr) { |
8456a648 | 1821 | objp = index_to_obj(cachep, page, objnr - 1); |
3dafccf2 | 1822 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1823 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 1824 | realobj, size); |
1da177e4 LT |
1825 | print_objinfo(cachep, objp, 2); |
1826 | } | |
b28a02de | 1827 | if (objnr + 1 < cachep->num) { |
8456a648 | 1828 | objp = index_to_obj(cachep, page, objnr + 1); |
3dafccf2 | 1829 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1830 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 1831 | realobj, size); |
1da177e4 LT |
1832 | print_objinfo(cachep, objp, 2); |
1833 | } | |
1834 | } | |
1835 | } | |
1836 | #endif | |
1837 | ||
12dd36fa | 1838 | #if DEBUG |
8456a648 JK |
1839 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1840 | struct page *page) | |
1da177e4 | 1841 | { |
1da177e4 LT |
1842 | int i; |
1843 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 1844 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
1845 | |
1846 | if (cachep->flags & SLAB_POISON) { | |
1847 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 1848 | if (cachep->size % PAGE_SIZE == 0 && |
a737b3e2 | 1849 | OFF_SLAB(cachep)) |
b28a02de | 1850 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 1851 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
1852 | else |
1853 | check_poison_obj(cachep, objp); | |
1854 | #else | |
1855 | check_poison_obj(cachep, objp); | |
1856 | #endif | |
1857 | } | |
1858 | if (cachep->flags & SLAB_RED_ZONE) { | |
1859 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1860 | slab_error(cachep, "start of a freed object " | |
b28a02de | 1861 | "was overwritten"); |
1da177e4 LT |
1862 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
1863 | slab_error(cachep, "end of a freed object " | |
b28a02de | 1864 | "was overwritten"); |
1da177e4 | 1865 | } |
1da177e4 | 1866 | } |
12dd36fa | 1867 | } |
1da177e4 | 1868 | #else |
8456a648 JK |
1869 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1870 | struct page *page) | |
12dd36fa | 1871 | { |
12dd36fa | 1872 | } |
1da177e4 LT |
1873 | #endif |
1874 | ||
911851e6 RD |
1875 | /** |
1876 | * slab_destroy - destroy and release all objects in a slab | |
1877 | * @cachep: cache pointer being destroyed | |
cb8ee1a3 | 1878 | * @page: page pointer being destroyed |
911851e6 | 1879 | * |
8a7d9b43 WSH |
1880 | * Destroy all the objs in a slab page, and release the mem back to the system. |
1881 | * Before calling the slab page must have been unlinked from the cache. The | |
1882 | * kmem_cache_node ->list_lock is not held/needed. | |
12dd36fa | 1883 | */ |
8456a648 | 1884 | static void slab_destroy(struct kmem_cache *cachep, struct page *page) |
12dd36fa | 1885 | { |
7e007355 | 1886 | void *freelist; |
12dd36fa | 1887 | |
8456a648 JK |
1888 | freelist = page->freelist; |
1889 | slab_destroy_debugcheck(cachep, page); | |
1da177e4 | 1890 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
68126702 JK |
1891 | struct rcu_head *head; |
1892 | ||
1893 | /* | |
1894 | * RCU free overloads the RCU head over the LRU. | |
1895 | * slab_page has been overloeaded over the LRU, | |
1896 | * however it is not used from now on so that | |
1897 | * we can use it safely. | |
1898 | */ | |
1899 | head = (void *)&page->rcu_head; | |
1900 | call_rcu(head, kmem_rcu_free); | |
1da177e4 | 1901 | |
1da177e4 | 1902 | } else { |
0c3aa83e | 1903 | kmem_freepages(cachep, page); |
1da177e4 | 1904 | } |
68126702 JK |
1905 | |
1906 | /* | |
8456a648 | 1907 | * From now on, we don't use freelist |
68126702 JK |
1908 | * although actual page can be freed in rcu context |
1909 | */ | |
1910 | if (OFF_SLAB(cachep)) | |
8456a648 | 1911 | kmem_cache_free(cachep->freelist_cache, freelist); |
1da177e4 LT |
1912 | } |
1913 | ||
97654dfa JK |
1914 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
1915 | { | |
1916 | struct page *page, *n; | |
1917 | ||
1918 | list_for_each_entry_safe(page, n, list, lru) { | |
1919 | list_del(&page->lru); | |
1920 | slab_destroy(cachep, page); | |
1921 | } | |
1922 | } | |
1923 | ||
4d268eba | 1924 | /** |
a70773dd RD |
1925 | * calculate_slab_order - calculate size (page order) of slabs |
1926 | * @cachep: pointer to the cache that is being created | |
1927 | * @size: size of objects to be created in this cache. | |
1928 | * @align: required alignment for the objects. | |
1929 | * @flags: slab allocation flags | |
1930 | * | |
1931 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1932 | * |
1933 | * This could be made much more intelligent. For now, try to avoid using | |
1934 | * high order pages for slabs. When the gfp() functions are more friendly | |
1935 | * towards high-order requests, this should be changed. | |
1936 | */ | |
a737b3e2 | 1937 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 1938 | size_t size, size_t align, unsigned long flags) |
4d268eba | 1939 | { |
b1ab41c4 | 1940 | unsigned long offslab_limit; |
4d268eba | 1941 | size_t left_over = 0; |
9888e6fa | 1942 | int gfporder; |
4d268eba | 1943 | |
0aa817f0 | 1944 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1945 | unsigned int num; |
1946 | size_t remainder; | |
1947 | ||
9888e6fa | 1948 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
1949 | if (!num) |
1950 | continue; | |
9888e6fa | 1951 | |
f315e3fa JK |
1952 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
1953 | if (num > SLAB_OBJ_MAX_NUM) | |
1954 | break; | |
1955 | ||
b1ab41c4 | 1956 | if (flags & CFLGS_OFF_SLAB) { |
03787301 | 1957 | size_t freelist_size_per_obj = sizeof(freelist_idx_t); |
b1ab41c4 IM |
1958 | /* |
1959 | * Max number of objs-per-slab for caches which | |
1960 | * use off-slab slabs. Needed to avoid a possible | |
1961 | * looping condition in cache_grow(). | |
1962 | */ | |
03787301 JK |
1963 | if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) |
1964 | freelist_size_per_obj += sizeof(char); | |
8456a648 | 1965 | offslab_limit = size; |
03787301 | 1966 | offslab_limit /= freelist_size_per_obj; |
b1ab41c4 IM |
1967 | |
1968 | if (num > offslab_limit) | |
1969 | break; | |
1970 | } | |
4d268eba | 1971 | |
9888e6fa | 1972 | /* Found something acceptable - save it away */ |
4d268eba | 1973 | cachep->num = num; |
9888e6fa | 1974 | cachep->gfporder = gfporder; |
4d268eba PE |
1975 | left_over = remainder; |
1976 | ||
f78bb8ad LT |
1977 | /* |
1978 | * A VFS-reclaimable slab tends to have most allocations | |
1979 | * as GFP_NOFS and we really don't want to have to be allocating | |
1980 | * higher-order pages when we are unable to shrink dcache. | |
1981 | */ | |
1982 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1983 | break; | |
1984 | ||
4d268eba PE |
1985 | /* |
1986 | * Large number of objects is good, but very large slabs are | |
1987 | * currently bad for the gfp()s. | |
1988 | */ | |
543585cc | 1989 | if (gfporder >= slab_max_order) |
4d268eba PE |
1990 | break; |
1991 | ||
9888e6fa LT |
1992 | /* |
1993 | * Acceptable internal fragmentation? | |
1994 | */ | |
a737b3e2 | 1995 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
1996 | break; |
1997 | } | |
1998 | return left_over; | |
1999 | } | |
2000 | ||
bf0dea23 JK |
2001 | static struct array_cache __percpu *alloc_kmem_cache_cpus( |
2002 | struct kmem_cache *cachep, int entries, int batchcount) | |
2003 | { | |
2004 | int cpu; | |
2005 | size_t size; | |
2006 | struct array_cache __percpu *cpu_cache; | |
2007 | ||
2008 | size = sizeof(void *) * entries + sizeof(struct array_cache); | |
85c9f4b0 | 2009 | cpu_cache = __alloc_percpu(size, sizeof(void *)); |
bf0dea23 JK |
2010 | |
2011 | if (!cpu_cache) | |
2012 | return NULL; | |
2013 | ||
2014 | for_each_possible_cpu(cpu) { | |
2015 | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | |
2016 | entries, batchcount); | |
2017 | } | |
2018 | ||
2019 | return cpu_cache; | |
2020 | } | |
2021 | ||
83b519e8 | 2022 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2023 | { |
97d06609 | 2024 | if (slab_state >= FULL) |
83b519e8 | 2025 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2026 | |
bf0dea23 JK |
2027 | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
2028 | if (!cachep->cpu_cache) | |
2029 | return 1; | |
2030 | ||
97d06609 | 2031 | if (slab_state == DOWN) { |
bf0dea23 JK |
2032 | /* Creation of first cache (kmem_cache). */ |
2033 | set_up_node(kmem_cache, CACHE_CACHE); | |
2f9baa9f | 2034 | } else if (slab_state == PARTIAL) { |
bf0dea23 JK |
2035 | /* For kmem_cache_node */ |
2036 | set_up_node(cachep, SIZE_NODE); | |
f30cf7d1 | 2037 | } else { |
bf0dea23 | 2038 | int node; |
f30cf7d1 | 2039 | |
bf0dea23 JK |
2040 | for_each_online_node(node) { |
2041 | cachep->node[node] = kmalloc_node( | |
2042 | sizeof(struct kmem_cache_node), gfp, node); | |
2043 | BUG_ON(!cachep->node[node]); | |
2044 | kmem_cache_node_init(cachep->node[node]); | |
f30cf7d1 PE |
2045 | } |
2046 | } | |
bf0dea23 | 2047 | |
6a67368c | 2048 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
2049 | jiffies + REAPTIMEOUT_NODE + |
2050 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
2051 | |
2052 | cpu_cache_get(cachep)->avail = 0; | |
2053 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2054 | cpu_cache_get(cachep)->batchcount = 1; | |
2055 | cpu_cache_get(cachep)->touched = 0; | |
2056 | cachep->batchcount = 1; | |
2057 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2058 | return 0; |
f30cf7d1 PE |
2059 | } |
2060 | ||
12220dea JK |
2061 | unsigned long kmem_cache_flags(unsigned long object_size, |
2062 | unsigned long flags, const char *name, | |
2063 | void (*ctor)(void *)) | |
2064 | { | |
2065 | return flags; | |
2066 | } | |
2067 | ||
2068 | struct kmem_cache * | |
2069 | __kmem_cache_alias(const char *name, size_t size, size_t align, | |
2070 | unsigned long flags, void (*ctor)(void *)) | |
2071 | { | |
2072 | struct kmem_cache *cachep; | |
2073 | ||
2074 | cachep = find_mergeable(size, align, flags, name, ctor); | |
2075 | if (cachep) { | |
2076 | cachep->refcount++; | |
2077 | ||
2078 | /* | |
2079 | * Adjust the object sizes so that we clear | |
2080 | * the complete object on kzalloc. | |
2081 | */ | |
2082 | cachep->object_size = max_t(int, cachep->object_size, size); | |
2083 | } | |
2084 | return cachep; | |
2085 | } | |
2086 | ||
1da177e4 | 2087 | /** |
039363f3 | 2088 | * __kmem_cache_create - Create a cache. |
a755b76a | 2089 | * @cachep: cache management descriptor |
1da177e4 | 2090 | * @flags: SLAB flags |
1da177e4 LT |
2091 | * |
2092 | * Returns a ptr to the cache on success, NULL on failure. | |
2093 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2094 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 2095 | * |
1da177e4 LT |
2096 | * The flags are |
2097 | * | |
2098 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2099 | * to catch references to uninitialised memory. | |
2100 | * | |
2101 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2102 | * for buffer overruns. | |
2103 | * | |
1da177e4 LT |
2104 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2105 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2106 | * as davem. | |
2107 | */ | |
278b1bb1 | 2108 | int |
8a13a4cc | 2109 | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) |
1da177e4 | 2110 | { |
d4a5fca5 DR |
2111 | size_t left_over, freelist_size; |
2112 | size_t ralign = BYTES_PER_WORD; | |
83b519e8 | 2113 | gfp_t gfp; |
278b1bb1 | 2114 | int err; |
8a13a4cc | 2115 | size_t size = cachep->size; |
1da177e4 | 2116 | |
1da177e4 | 2117 | #if DEBUG |
1da177e4 LT |
2118 | #if FORCED_DEBUG |
2119 | /* | |
2120 | * Enable redzoning and last user accounting, except for caches with | |
2121 | * large objects, if the increased size would increase the object size | |
2122 | * above the next power of two: caches with object sizes just above a | |
2123 | * power of two have a significant amount of internal fragmentation. | |
2124 | */ | |
87a927c7 DW |
2125 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2126 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2127 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2128 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2129 | flags |= SLAB_POISON; | |
2130 | #endif | |
2131 | if (flags & SLAB_DESTROY_BY_RCU) | |
2132 | BUG_ON(flags & SLAB_POISON); | |
2133 | #endif | |
1da177e4 | 2134 | |
a737b3e2 AM |
2135 | /* |
2136 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2137 | * unaligned accesses for some archs when redzoning is used, and makes |
2138 | * sure any on-slab bufctl's are also correctly aligned. | |
2139 | */ | |
b28a02de PE |
2140 | if (size & (BYTES_PER_WORD - 1)) { |
2141 | size += (BYTES_PER_WORD - 1); | |
2142 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2143 | } |
2144 | ||
87a927c7 DW |
2145 | if (flags & SLAB_RED_ZONE) { |
2146 | ralign = REDZONE_ALIGN; | |
2147 | /* If redzoning, ensure that the second redzone is suitably | |
2148 | * aligned, by adjusting the object size accordingly. */ | |
2149 | size += REDZONE_ALIGN - 1; | |
2150 | size &= ~(REDZONE_ALIGN - 1); | |
2151 | } | |
ca5f9703 | 2152 | |
a44b56d3 | 2153 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
2154 | if (ralign < cachep->align) { |
2155 | ralign = cachep->align; | |
1da177e4 | 2156 | } |
3ff84a7f PE |
2157 | /* disable debug if necessary */ |
2158 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2159 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2160 | /* |
ca5f9703 | 2161 | * 4) Store it. |
1da177e4 | 2162 | */ |
8a13a4cc | 2163 | cachep->align = ralign; |
1da177e4 | 2164 | |
83b519e8 PE |
2165 | if (slab_is_available()) |
2166 | gfp = GFP_KERNEL; | |
2167 | else | |
2168 | gfp = GFP_NOWAIT; | |
2169 | ||
1da177e4 | 2170 | #if DEBUG |
1da177e4 | 2171 | |
ca5f9703 PE |
2172 | /* |
2173 | * Both debugging options require word-alignment which is calculated | |
2174 | * into align above. | |
2175 | */ | |
1da177e4 | 2176 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2177 | /* add space for red zone words */ |
3ff84a7f PE |
2178 | cachep->obj_offset += sizeof(unsigned long long); |
2179 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2180 | } |
2181 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2182 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2183 | * the real object. But if the second red zone needs to be |
2184 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2185 | */ |
87a927c7 DW |
2186 | if (flags & SLAB_RED_ZONE) |
2187 | size += REDZONE_ALIGN; | |
2188 | else | |
2189 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2190 | } |
2191 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
ce8eb6c4 | 2192 | if (size >= kmalloc_size(INDEX_NODE + 1) |
608da7e3 TH |
2193 | && cachep->object_size > cache_line_size() |
2194 | && ALIGN(size, cachep->align) < PAGE_SIZE) { | |
2195 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | |
1da177e4 LT |
2196 | size = PAGE_SIZE; |
2197 | } | |
2198 | #endif | |
2199 | #endif | |
2200 | ||
e0a42726 IM |
2201 | /* |
2202 | * Determine if the slab management is 'on' or 'off' slab. | |
2203 | * (bootstrapping cannot cope with offslab caches so don't do | |
e7cb55b9 CM |
2204 | * it too early on. Always use on-slab management when |
2205 | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | |
e0a42726 | 2206 | */ |
8fc9cf42 | 2207 | if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && |
e7cb55b9 | 2208 | !(flags & SLAB_NOLEAKTRACE)) |
1da177e4 LT |
2209 | /* |
2210 | * Size is large, assume best to place the slab management obj | |
2211 | * off-slab (should allow better packing of objs). | |
2212 | */ | |
2213 | flags |= CFLGS_OFF_SLAB; | |
2214 | ||
8a13a4cc | 2215 | size = ALIGN(size, cachep->align); |
f315e3fa JK |
2216 | /* |
2217 | * We should restrict the number of objects in a slab to implement | |
2218 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
2219 | */ | |
2220 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
2221 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
1da177e4 | 2222 | |
8a13a4cc | 2223 | left_over = calculate_slab_order(cachep, size, cachep->align, flags); |
1da177e4 | 2224 | |
8a13a4cc | 2225 | if (!cachep->num) |
278b1bb1 | 2226 | return -E2BIG; |
1da177e4 | 2227 | |
03787301 | 2228 | freelist_size = calculate_freelist_size(cachep->num, cachep->align); |
1da177e4 LT |
2229 | |
2230 | /* | |
2231 | * If the slab has been placed off-slab, and we have enough space then | |
2232 | * move it on-slab. This is at the expense of any extra colouring. | |
2233 | */ | |
8456a648 | 2234 | if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { |
1da177e4 | 2235 | flags &= ~CFLGS_OFF_SLAB; |
8456a648 | 2236 | left_over -= freelist_size; |
1da177e4 LT |
2237 | } |
2238 | ||
2239 | if (flags & CFLGS_OFF_SLAB) { | |
2240 | /* really off slab. No need for manual alignment */ | |
03787301 | 2241 | freelist_size = calculate_freelist_size(cachep->num, 0); |
67461365 RL |
2242 | |
2243 | #ifdef CONFIG_PAGE_POISONING | |
2244 | /* If we're going to use the generic kernel_map_pages() | |
2245 | * poisoning, then it's going to smash the contents of | |
2246 | * the redzone and userword anyhow, so switch them off. | |
2247 | */ | |
2248 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2249 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2250 | #endif | |
1da177e4 LT |
2251 | } |
2252 | ||
2253 | cachep->colour_off = cache_line_size(); | |
2254 | /* Offset must be a multiple of the alignment. */ | |
8a13a4cc CL |
2255 | if (cachep->colour_off < cachep->align) |
2256 | cachep->colour_off = cachep->align; | |
b28a02de | 2257 | cachep->colour = left_over / cachep->colour_off; |
8456a648 | 2258 | cachep->freelist_size = freelist_size; |
1da177e4 | 2259 | cachep->flags = flags; |
a57a4988 | 2260 | cachep->allocflags = __GFP_COMP; |
4b51d669 | 2261 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
a618e89f | 2262 | cachep->allocflags |= GFP_DMA; |
3b0efdfa | 2263 | cachep->size = size; |
6a2d7a95 | 2264 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2265 | |
e5ac9c5a | 2266 | if (flags & CFLGS_OFF_SLAB) { |
8456a648 | 2267 | cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); |
e5ac9c5a | 2268 | /* |
5f0985bb | 2269 | * This is a possibility for one of the kmalloc_{dma,}_caches. |
e5ac9c5a | 2270 | * But since we go off slab only for object size greater than |
5f0985bb JZ |
2271 | * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created |
2272 | * in ascending order,this should not happen at all. | |
e5ac9c5a RT |
2273 | * But leave a BUG_ON for some lucky dude. |
2274 | */ | |
8456a648 | 2275 | BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); |
e5ac9c5a | 2276 | } |
1da177e4 | 2277 | |
278b1bb1 CL |
2278 | err = setup_cpu_cache(cachep, gfp); |
2279 | if (err) { | |
12c3667f | 2280 | __kmem_cache_shutdown(cachep); |
278b1bb1 | 2281 | return err; |
2ed3a4ef | 2282 | } |
1da177e4 | 2283 | |
278b1bb1 | 2284 | return 0; |
1da177e4 | 2285 | } |
1da177e4 LT |
2286 | |
2287 | #if DEBUG | |
2288 | static void check_irq_off(void) | |
2289 | { | |
2290 | BUG_ON(!irqs_disabled()); | |
2291 | } | |
2292 | ||
2293 | static void check_irq_on(void) | |
2294 | { | |
2295 | BUG_ON(irqs_disabled()); | |
2296 | } | |
2297 | ||
343e0d7a | 2298 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2299 | { |
2300 | #ifdef CONFIG_SMP | |
2301 | check_irq_off(); | |
18bf8541 | 2302 | assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
1da177e4 LT |
2303 | #endif |
2304 | } | |
e498be7d | 2305 | |
343e0d7a | 2306 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2307 | { |
2308 | #ifdef CONFIG_SMP | |
2309 | check_irq_off(); | |
18bf8541 | 2310 | assert_spin_locked(&get_node(cachep, node)->list_lock); |
e498be7d CL |
2311 | #endif |
2312 | } | |
2313 | ||
1da177e4 LT |
2314 | #else |
2315 | #define check_irq_off() do { } while(0) | |
2316 | #define check_irq_on() do { } while(0) | |
2317 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2318 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2319 | #endif |
2320 | ||
ce8eb6c4 | 2321 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
aab2207c CL |
2322 | struct array_cache *ac, |
2323 | int force, int node); | |
2324 | ||
1da177e4 LT |
2325 | static void do_drain(void *arg) |
2326 | { | |
a737b3e2 | 2327 | struct kmem_cache *cachep = arg; |
1da177e4 | 2328 | struct array_cache *ac; |
7d6e6d09 | 2329 | int node = numa_mem_id(); |
18bf8541 | 2330 | struct kmem_cache_node *n; |
97654dfa | 2331 | LIST_HEAD(list); |
1da177e4 LT |
2332 | |
2333 | check_irq_off(); | |
9a2dba4b | 2334 | ac = cpu_cache_get(cachep); |
18bf8541 CL |
2335 | n = get_node(cachep, node); |
2336 | spin_lock(&n->list_lock); | |
97654dfa | 2337 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 2338 | spin_unlock(&n->list_lock); |
97654dfa | 2339 | slabs_destroy(cachep, &list); |
1da177e4 LT |
2340 | ac->avail = 0; |
2341 | } | |
2342 | ||
343e0d7a | 2343 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2344 | { |
ce8eb6c4 | 2345 | struct kmem_cache_node *n; |
e498be7d CL |
2346 | int node; |
2347 | ||
15c8b6c1 | 2348 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2349 | check_irq_on(); |
18bf8541 CL |
2350 | for_each_kmem_cache_node(cachep, node, n) |
2351 | if (n->alien) | |
ce8eb6c4 | 2352 | drain_alien_cache(cachep, n->alien); |
a4523a8b | 2353 | |
18bf8541 CL |
2354 | for_each_kmem_cache_node(cachep, node, n) |
2355 | drain_array(cachep, n, n->shared, 1, node); | |
1da177e4 LT |
2356 | } |
2357 | ||
ed11d9eb CL |
2358 | /* |
2359 | * Remove slabs from the list of free slabs. | |
2360 | * Specify the number of slabs to drain in tofree. | |
2361 | * | |
2362 | * Returns the actual number of slabs released. | |
2363 | */ | |
2364 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2365 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2366 | { |
ed11d9eb CL |
2367 | struct list_head *p; |
2368 | int nr_freed; | |
8456a648 | 2369 | struct page *page; |
1da177e4 | 2370 | |
ed11d9eb | 2371 | nr_freed = 0; |
ce8eb6c4 | 2372 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2373 | |
ce8eb6c4 CL |
2374 | spin_lock_irq(&n->list_lock); |
2375 | p = n->slabs_free.prev; | |
2376 | if (p == &n->slabs_free) { | |
2377 | spin_unlock_irq(&n->list_lock); | |
ed11d9eb CL |
2378 | goto out; |
2379 | } | |
1da177e4 | 2380 | |
8456a648 | 2381 | page = list_entry(p, struct page, lru); |
1da177e4 | 2382 | #if DEBUG |
8456a648 | 2383 | BUG_ON(page->active); |
1da177e4 | 2384 | #endif |
8456a648 | 2385 | list_del(&page->lru); |
ed11d9eb CL |
2386 | /* |
2387 | * Safe to drop the lock. The slab is no longer linked | |
2388 | * to the cache. | |
2389 | */ | |
ce8eb6c4 CL |
2390 | n->free_objects -= cache->num; |
2391 | spin_unlock_irq(&n->list_lock); | |
8456a648 | 2392 | slab_destroy(cache, page); |
ed11d9eb | 2393 | nr_freed++; |
1da177e4 | 2394 | } |
ed11d9eb CL |
2395 | out: |
2396 | return nr_freed; | |
1da177e4 LT |
2397 | } |
2398 | ||
d6e0b7fa | 2399 | int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) |
e498be7d | 2400 | { |
18bf8541 CL |
2401 | int ret = 0; |
2402 | int node; | |
ce8eb6c4 | 2403 | struct kmem_cache_node *n; |
e498be7d CL |
2404 | |
2405 | drain_cpu_caches(cachep); | |
2406 | ||
2407 | check_irq_on(); | |
18bf8541 | 2408 | for_each_kmem_cache_node(cachep, node, n) { |
0fa8103b | 2409 | drain_freelist(cachep, n, slabs_tofree(cachep, n)); |
ed11d9eb | 2410 | |
ce8eb6c4 CL |
2411 | ret += !list_empty(&n->slabs_full) || |
2412 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2413 | } |
2414 | return (ret ? 1 : 0); | |
2415 | } | |
2416 | ||
945cf2b6 | 2417 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
1da177e4 | 2418 | { |
12c3667f | 2419 | int i; |
ce8eb6c4 | 2420 | struct kmem_cache_node *n; |
d6e0b7fa | 2421 | int rc = __kmem_cache_shrink(cachep, false); |
1da177e4 | 2422 | |
12c3667f CL |
2423 | if (rc) |
2424 | return rc; | |
1da177e4 | 2425 | |
bf0dea23 | 2426 | free_percpu(cachep->cpu_cache); |
1da177e4 | 2427 | |
ce8eb6c4 | 2428 | /* NUMA: free the node structures */ |
18bf8541 CL |
2429 | for_each_kmem_cache_node(cachep, i, n) { |
2430 | kfree(n->shared); | |
2431 | free_alien_cache(n->alien); | |
2432 | kfree(n); | |
2433 | cachep->node[i] = NULL; | |
12c3667f CL |
2434 | } |
2435 | return 0; | |
1da177e4 | 2436 | } |
1da177e4 | 2437 | |
e5ac9c5a RT |
2438 | /* |
2439 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2440 | * |
2441 | * For a slab cache when the slab descriptor is off-slab, the | |
2442 | * slab descriptor can't come from the same cache which is being created, | |
2443 | * Because if it is the case, that means we defer the creation of | |
2444 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2445 | * And we eventually call down to __kmem_cache_create(), which | |
2446 | * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. | |
2447 | * This is a "chicken-and-egg" problem. | |
2448 | * | |
2449 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2450 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2451 | */ |
7e007355 | 2452 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
0c3aa83e JK |
2453 | struct page *page, int colour_off, |
2454 | gfp_t local_flags, int nodeid) | |
1da177e4 | 2455 | { |
7e007355 | 2456 | void *freelist; |
0c3aa83e | 2457 | void *addr = page_address(page); |
b28a02de | 2458 | |
1da177e4 LT |
2459 | if (OFF_SLAB(cachep)) { |
2460 | /* Slab management obj is off-slab. */ | |
8456a648 | 2461 | freelist = kmem_cache_alloc_node(cachep->freelist_cache, |
8759ec50 | 2462 | local_flags, nodeid); |
8456a648 | 2463 | if (!freelist) |
1da177e4 LT |
2464 | return NULL; |
2465 | } else { | |
8456a648 JK |
2466 | freelist = addr + colour_off; |
2467 | colour_off += cachep->freelist_size; | |
1da177e4 | 2468 | } |
8456a648 JK |
2469 | page->active = 0; |
2470 | page->s_mem = addr + colour_off; | |
2471 | return freelist; | |
1da177e4 LT |
2472 | } |
2473 | ||
7cc68973 | 2474 | static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) |
1da177e4 | 2475 | { |
a41adfaa | 2476 | return ((freelist_idx_t *)page->freelist)[idx]; |
e5c58dfd JK |
2477 | } |
2478 | ||
2479 | static inline void set_free_obj(struct page *page, | |
7cc68973 | 2480 | unsigned int idx, freelist_idx_t val) |
e5c58dfd | 2481 | { |
a41adfaa | 2482 | ((freelist_idx_t *)(page->freelist))[idx] = val; |
1da177e4 LT |
2483 | } |
2484 | ||
343e0d7a | 2485 | static void cache_init_objs(struct kmem_cache *cachep, |
8456a648 | 2486 | struct page *page) |
1da177e4 LT |
2487 | { |
2488 | int i; | |
2489 | ||
2490 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 2491 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
2492 | #if DEBUG |
2493 | /* need to poison the objs? */ | |
2494 | if (cachep->flags & SLAB_POISON) | |
2495 | poison_obj(cachep, objp, POISON_FREE); | |
2496 | if (cachep->flags & SLAB_STORE_USER) | |
2497 | *dbg_userword(cachep, objp) = NULL; | |
2498 | ||
2499 | if (cachep->flags & SLAB_RED_ZONE) { | |
2500 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2501 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2502 | } | |
2503 | /* | |
a737b3e2 AM |
2504 | * Constructors are not allowed to allocate memory from the same |
2505 | * cache which they are a constructor for. Otherwise, deadlock. | |
2506 | * They must also be threaded. | |
1da177e4 LT |
2507 | */ |
2508 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2509 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2510 | |
2511 | if (cachep->flags & SLAB_RED_ZONE) { | |
2512 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2513 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2514 | " end of an object"); |
1da177e4 LT |
2515 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2516 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2517 | " start of an object"); |
1da177e4 | 2518 | } |
3b0efdfa | 2519 | if ((cachep->size % PAGE_SIZE) == 0 && |
a737b3e2 | 2520 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) |
b28a02de | 2521 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2522 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2523 | #else |
2524 | if (cachep->ctor) | |
51cc5068 | 2525 | cachep->ctor(objp); |
1da177e4 | 2526 | #endif |
03787301 | 2527 | set_obj_status(page, i, OBJECT_FREE); |
e5c58dfd | 2528 | set_free_obj(page, i, i); |
1da177e4 | 2529 | } |
1da177e4 LT |
2530 | } |
2531 | ||
343e0d7a | 2532 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2533 | { |
4b51d669 CL |
2534 | if (CONFIG_ZONE_DMA_FLAG) { |
2535 | if (flags & GFP_DMA) | |
a618e89f | 2536 | BUG_ON(!(cachep->allocflags & GFP_DMA)); |
4b51d669 | 2537 | else |
a618e89f | 2538 | BUG_ON(cachep->allocflags & GFP_DMA); |
4b51d669 | 2539 | } |
1da177e4 LT |
2540 | } |
2541 | ||
8456a648 | 2542 | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, |
a737b3e2 | 2543 | int nodeid) |
78d382d7 | 2544 | { |
b1cb0982 | 2545 | void *objp; |
78d382d7 | 2546 | |
e5c58dfd | 2547 | objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); |
8456a648 | 2548 | page->active++; |
78d382d7 | 2549 | #if DEBUG |
1ea991b0 | 2550 | WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); |
78d382d7 | 2551 | #endif |
78d382d7 MD |
2552 | |
2553 | return objp; | |
2554 | } | |
2555 | ||
8456a648 | 2556 | static void slab_put_obj(struct kmem_cache *cachep, struct page *page, |
a737b3e2 | 2557 | void *objp, int nodeid) |
78d382d7 | 2558 | { |
8456a648 | 2559 | unsigned int objnr = obj_to_index(cachep, page, objp); |
78d382d7 | 2560 | #if DEBUG |
16025177 | 2561 | unsigned int i; |
b1cb0982 | 2562 | |
78d382d7 | 2563 | /* Verify that the slab belongs to the intended node */ |
1ea991b0 | 2564 | WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); |
78d382d7 | 2565 | |
b1cb0982 | 2566 | /* Verify double free bug */ |
8456a648 | 2567 | for (i = page->active; i < cachep->num; i++) { |
e5c58dfd | 2568 | if (get_free_obj(page, i) == objnr) { |
b1cb0982 JK |
2569 | printk(KERN_ERR "slab: double free detected in cache " |
2570 | "'%s', objp %p\n", cachep->name, objp); | |
2571 | BUG(); | |
2572 | } | |
78d382d7 MD |
2573 | } |
2574 | #endif | |
8456a648 | 2575 | page->active--; |
e5c58dfd | 2576 | set_free_obj(page, page->active, objnr); |
78d382d7 MD |
2577 | } |
2578 | ||
4776874f PE |
2579 | /* |
2580 | * Map pages beginning at addr to the given cache and slab. This is required | |
2581 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2582 | * virtual address for kfree, ksize, and slab debugging. |
4776874f | 2583 | */ |
8456a648 | 2584 | static void slab_map_pages(struct kmem_cache *cache, struct page *page, |
7e007355 | 2585 | void *freelist) |
1da177e4 | 2586 | { |
a57a4988 | 2587 | page->slab_cache = cache; |
8456a648 | 2588 | page->freelist = freelist; |
1da177e4 LT |
2589 | } |
2590 | ||
2591 | /* | |
2592 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2593 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2594 | */ | |
3c517a61 | 2595 | static int cache_grow(struct kmem_cache *cachep, |
0c3aa83e | 2596 | gfp_t flags, int nodeid, struct page *page) |
1da177e4 | 2597 | { |
7e007355 | 2598 | void *freelist; |
b28a02de PE |
2599 | size_t offset; |
2600 | gfp_t local_flags; | |
ce8eb6c4 | 2601 | struct kmem_cache_node *n; |
1da177e4 | 2602 | |
a737b3e2 AM |
2603 | /* |
2604 | * Be lazy and only check for valid flags here, keeping it out of the | |
2605 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2606 | */ |
c871ac4e AM |
2607 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { |
2608 | pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); | |
2609 | BUG(); | |
2610 | } | |
6cb06229 | 2611 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
1da177e4 | 2612 | |
ce8eb6c4 | 2613 | /* Take the node list lock to change the colour_next on this node */ |
1da177e4 | 2614 | check_irq_off(); |
18bf8541 | 2615 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 2616 | spin_lock(&n->list_lock); |
1da177e4 LT |
2617 | |
2618 | /* Get colour for the slab, and cal the next value. */ | |
ce8eb6c4 CL |
2619 | offset = n->colour_next; |
2620 | n->colour_next++; | |
2621 | if (n->colour_next >= cachep->colour) | |
2622 | n->colour_next = 0; | |
2623 | spin_unlock(&n->list_lock); | |
1da177e4 | 2624 | |
2e1217cf | 2625 | offset *= cachep->colour_off; |
1da177e4 LT |
2626 | |
2627 | if (local_flags & __GFP_WAIT) | |
2628 | local_irq_enable(); | |
2629 | ||
2630 | /* | |
2631 | * The test for missing atomic flag is performed here, rather than | |
2632 | * the more obvious place, simply to reduce the critical path length | |
2633 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2634 | * will eventually be caught here (where it matters). | |
2635 | */ | |
2636 | kmem_flagcheck(cachep, flags); | |
2637 | ||
a737b3e2 AM |
2638 | /* |
2639 | * Get mem for the objs. Attempt to allocate a physical page from | |
2640 | * 'nodeid'. | |
e498be7d | 2641 | */ |
0c3aa83e JK |
2642 | if (!page) |
2643 | page = kmem_getpages(cachep, local_flags, nodeid); | |
2644 | if (!page) | |
1da177e4 LT |
2645 | goto failed; |
2646 | ||
2647 | /* Get slab management. */ | |
8456a648 | 2648 | freelist = alloc_slabmgmt(cachep, page, offset, |
6cb06229 | 2649 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
8456a648 | 2650 | if (!freelist) |
1da177e4 LT |
2651 | goto opps1; |
2652 | ||
8456a648 | 2653 | slab_map_pages(cachep, page, freelist); |
1da177e4 | 2654 | |
8456a648 | 2655 | cache_init_objs(cachep, page); |
1da177e4 LT |
2656 | |
2657 | if (local_flags & __GFP_WAIT) | |
2658 | local_irq_disable(); | |
2659 | check_irq_off(); | |
ce8eb6c4 | 2660 | spin_lock(&n->list_lock); |
1da177e4 LT |
2661 | |
2662 | /* Make slab active. */ | |
8456a648 | 2663 | list_add_tail(&page->lru, &(n->slabs_free)); |
1da177e4 | 2664 | STATS_INC_GROWN(cachep); |
ce8eb6c4 CL |
2665 | n->free_objects += cachep->num; |
2666 | spin_unlock(&n->list_lock); | |
1da177e4 | 2667 | return 1; |
a737b3e2 | 2668 | opps1: |
0c3aa83e | 2669 | kmem_freepages(cachep, page); |
a737b3e2 | 2670 | failed: |
1da177e4 LT |
2671 | if (local_flags & __GFP_WAIT) |
2672 | local_irq_disable(); | |
2673 | return 0; | |
2674 | } | |
2675 | ||
2676 | #if DEBUG | |
2677 | ||
2678 | /* | |
2679 | * Perform extra freeing checks: | |
2680 | * - detect bad pointers. | |
2681 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2682 | */ |
2683 | static void kfree_debugcheck(const void *objp) | |
2684 | { | |
1da177e4 LT |
2685 | if (!virt_addr_valid(objp)) { |
2686 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2687 | (unsigned long)objp); |
2688 | BUG(); | |
1da177e4 | 2689 | } |
1da177e4 LT |
2690 | } |
2691 | ||
58ce1fd5 PE |
2692 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2693 | { | |
b46b8f19 | 2694 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2695 | |
2696 | redzone1 = *dbg_redzone1(cache, obj); | |
2697 | redzone2 = *dbg_redzone2(cache, obj); | |
2698 | ||
2699 | /* | |
2700 | * Redzone is ok. | |
2701 | */ | |
2702 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2703 | return; | |
2704 | ||
2705 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2706 | slab_error(cache, "double free detected"); | |
2707 | else | |
2708 | slab_error(cache, "memory outside object was overwritten"); | |
2709 | ||
b46b8f19 | 2710 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
2711 | obj, redzone1, redzone2); |
2712 | } | |
2713 | ||
343e0d7a | 2714 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2715 | unsigned long caller) |
1da177e4 | 2716 | { |
1da177e4 | 2717 | unsigned int objnr; |
8456a648 | 2718 | struct page *page; |
1da177e4 | 2719 | |
80cbd911 MW |
2720 | BUG_ON(virt_to_cache(objp) != cachep); |
2721 | ||
3dafccf2 | 2722 | objp -= obj_offset(cachep); |
1da177e4 | 2723 | kfree_debugcheck(objp); |
b49af68f | 2724 | page = virt_to_head_page(objp); |
1da177e4 | 2725 | |
1da177e4 | 2726 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2727 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2728 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2729 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2730 | } | |
2731 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 2732 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 | 2733 | |
8456a648 | 2734 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 LT |
2735 | |
2736 | BUG_ON(objnr >= cachep->num); | |
8456a648 | 2737 | BUG_ON(objp != index_to_obj(cachep, page, objnr)); |
1da177e4 | 2738 | |
03787301 | 2739 | set_obj_status(page, objnr, OBJECT_FREE); |
1da177e4 LT |
2740 | if (cachep->flags & SLAB_POISON) { |
2741 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 2742 | if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
7c0cb9c6 | 2743 | store_stackinfo(cachep, objp, caller); |
b28a02de | 2744 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2745 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2746 | } else { |
2747 | poison_obj(cachep, objp, POISON_FREE); | |
2748 | } | |
2749 | #else | |
2750 | poison_obj(cachep, objp, POISON_FREE); | |
2751 | #endif | |
2752 | } | |
2753 | return objp; | |
2754 | } | |
2755 | ||
1da177e4 LT |
2756 | #else |
2757 | #define kfree_debugcheck(x) do { } while(0) | |
2758 | #define cache_free_debugcheck(x,objp,z) (objp) | |
1da177e4 LT |
2759 | #endif |
2760 | ||
072bb0aa MG |
2761 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, |
2762 | bool force_refill) | |
1da177e4 LT |
2763 | { |
2764 | int batchcount; | |
ce8eb6c4 | 2765 | struct kmem_cache_node *n; |
1da177e4 | 2766 | struct array_cache *ac; |
1ca4cb24 PE |
2767 | int node; |
2768 | ||
1da177e4 | 2769 | check_irq_off(); |
7d6e6d09 | 2770 | node = numa_mem_id(); |
072bb0aa MG |
2771 | if (unlikely(force_refill)) |
2772 | goto force_grow; | |
2773 | retry: | |
9a2dba4b | 2774 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2775 | batchcount = ac->batchcount; |
2776 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2777 | /* |
2778 | * If there was little recent activity on this cache, then | |
2779 | * perform only a partial refill. Otherwise we could generate | |
2780 | * refill bouncing. | |
1da177e4 LT |
2781 | */ |
2782 | batchcount = BATCHREFILL_LIMIT; | |
2783 | } | |
18bf8541 | 2784 | n = get_node(cachep, node); |
e498be7d | 2785 | |
ce8eb6c4 CL |
2786 | BUG_ON(ac->avail > 0 || !n); |
2787 | spin_lock(&n->list_lock); | |
1da177e4 | 2788 | |
3ded175a | 2789 | /* See if we can refill from the shared array */ |
ce8eb6c4 CL |
2790 | if (n->shared && transfer_objects(ac, n->shared, batchcount)) { |
2791 | n->shared->touched = 1; | |
3ded175a | 2792 | goto alloc_done; |
44b57f1c | 2793 | } |
3ded175a | 2794 | |
1da177e4 LT |
2795 | while (batchcount > 0) { |
2796 | struct list_head *entry; | |
8456a648 | 2797 | struct page *page; |
1da177e4 | 2798 | /* Get slab alloc is to come from. */ |
ce8eb6c4 CL |
2799 | entry = n->slabs_partial.next; |
2800 | if (entry == &n->slabs_partial) { | |
2801 | n->free_touched = 1; | |
2802 | entry = n->slabs_free.next; | |
2803 | if (entry == &n->slabs_free) | |
1da177e4 LT |
2804 | goto must_grow; |
2805 | } | |
2806 | ||
8456a648 | 2807 | page = list_entry(entry, struct page, lru); |
1da177e4 | 2808 | check_spinlock_acquired(cachep); |
714b8171 PE |
2809 | |
2810 | /* | |
2811 | * The slab was either on partial or free list so | |
2812 | * there must be at least one object available for | |
2813 | * allocation. | |
2814 | */ | |
8456a648 | 2815 | BUG_ON(page->active >= cachep->num); |
714b8171 | 2816 | |
8456a648 | 2817 | while (page->active < cachep->num && batchcount--) { |
1da177e4 LT |
2818 | STATS_INC_ALLOCED(cachep); |
2819 | STATS_INC_ACTIVE(cachep); | |
2820 | STATS_SET_HIGH(cachep); | |
2821 | ||
8456a648 | 2822 | ac_put_obj(cachep, ac, slab_get_obj(cachep, page, |
072bb0aa | 2823 | node)); |
1da177e4 | 2824 | } |
1da177e4 LT |
2825 | |
2826 | /* move slabp to correct slabp list: */ | |
8456a648 JK |
2827 | list_del(&page->lru); |
2828 | if (page->active == cachep->num) | |
34bf6ef9 | 2829 | list_add(&page->lru, &n->slabs_full); |
1da177e4 | 2830 | else |
34bf6ef9 | 2831 | list_add(&page->lru, &n->slabs_partial); |
1da177e4 LT |
2832 | } |
2833 | ||
a737b3e2 | 2834 | must_grow: |
ce8eb6c4 | 2835 | n->free_objects -= ac->avail; |
a737b3e2 | 2836 | alloc_done: |
ce8eb6c4 | 2837 | spin_unlock(&n->list_lock); |
1da177e4 LT |
2838 | |
2839 | if (unlikely(!ac->avail)) { | |
2840 | int x; | |
072bb0aa | 2841 | force_grow: |
4167e9b2 | 2842 | x = cache_grow(cachep, gfp_exact_node(flags), node, NULL); |
e498be7d | 2843 | |
a737b3e2 | 2844 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 2845 | ac = cpu_cache_get(cachep); |
51cd8e6f | 2846 | node = numa_mem_id(); |
072bb0aa MG |
2847 | |
2848 | /* no objects in sight? abort */ | |
2849 | if (!x && (ac->avail == 0 || force_refill)) | |
1da177e4 LT |
2850 | return NULL; |
2851 | ||
a737b3e2 | 2852 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
2853 | goto retry; |
2854 | } | |
2855 | ac->touched = 1; | |
072bb0aa MG |
2856 | |
2857 | return ac_get_obj(cachep, ac, flags, force_refill); | |
1da177e4 LT |
2858 | } |
2859 | ||
a737b3e2 AM |
2860 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
2861 | gfp_t flags) | |
1da177e4 LT |
2862 | { |
2863 | might_sleep_if(flags & __GFP_WAIT); | |
2864 | #if DEBUG | |
2865 | kmem_flagcheck(cachep, flags); | |
2866 | #endif | |
2867 | } | |
2868 | ||
2869 | #if DEBUG | |
a737b3e2 | 2870 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 2871 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 2872 | { |
03787301 JK |
2873 | struct page *page; |
2874 | ||
b28a02de | 2875 | if (!objp) |
1da177e4 | 2876 | return objp; |
b28a02de | 2877 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2878 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3b0efdfa | 2879 | if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 2880 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2881 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
2882 | else |
2883 | check_poison_obj(cachep, objp); | |
2884 | #else | |
2885 | check_poison_obj(cachep, objp); | |
2886 | #endif | |
2887 | poison_obj(cachep, objp, POISON_INUSE); | |
2888 | } | |
2889 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 2890 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
2891 | |
2892 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
2893 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
2894 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
2895 | slab_error(cachep, "double free, or memory outside" | |
2896 | " object was overwritten"); | |
b28a02de | 2897 | printk(KERN_ERR |
b46b8f19 | 2898 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
2899 | objp, *dbg_redzone1(cachep, objp), |
2900 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
2901 | } |
2902 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
2903 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
2904 | } | |
03787301 JK |
2905 | |
2906 | page = virt_to_head_page(objp); | |
2907 | set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE); | |
3dafccf2 | 2908 | objp += obj_offset(cachep); |
4f104934 | 2909 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 2910 | cachep->ctor(objp); |
7ea466f2 TH |
2911 | if (ARCH_SLAB_MINALIGN && |
2912 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
a44b56d3 | 2913 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 2914 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 2915 | } |
1da177e4 LT |
2916 | return objp; |
2917 | } | |
2918 | #else | |
2919 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
2920 | #endif | |
2921 | ||
773ff60e | 2922 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 | 2923 | { |
8a9c61d4 | 2924 | if (unlikely(cachep == kmem_cache)) |
773ff60e | 2925 | return false; |
8a8b6502 | 2926 | |
8c138bc0 | 2927 | return should_failslab(cachep->object_size, flags, cachep->flags); |
8a8b6502 AM |
2928 | } |
2929 | ||
343e0d7a | 2930 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2931 | { |
b28a02de | 2932 | void *objp; |
1da177e4 | 2933 | struct array_cache *ac; |
072bb0aa | 2934 | bool force_refill = false; |
1da177e4 | 2935 | |
5c382300 | 2936 | check_irq_off(); |
8a8b6502 | 2937 | |
9a2dba4b | 2938 | ac = cpu_cache_get(cachep); |
1da177e4 | 2939 | if (likely(ac->avail)) { |
1da177e4 | 2940 | ac->touched = 1; |
072bb0aa MG |
2941 | objp = ac_get_obj(cachep, ac, flags, false); |
2942 | ||
ddbf2e83 | 2943 | /* |
072bb0aa MG |
2944 | * Allow for the possibility all avail objects are not allowed |
2945 | * by the current flags | |
ddbf2e83 | 2946 | */ |
072bb0aa MG |
2947 | if (objp) { |
2948 | STATS_INC_ALLOCHIT(cachep); | |
2949 | goto out; | |
2950 | } | |
2951 | force_refill = true; | |
1da177e4 | 2952 | } |
072bb0aa MG |
2953 | |
2954 | STATS_INC_ALLOCMISS(cachep); | |
2955 | objp = cache_alloc_refill(cachep, flags, force_refill); | |
2956 | /* | |
2957 | * the 'ac' may be updated by cache_alloc_refill(), | |
2958 | * and kmemleak_erase() requires its correct value. | |
2959 | */ | |
2960 | ac = cpu_cache_get(cachep); | |
2961 | ||
2962 | out: | |
d5cff635 CM |
2963 | /* |
2964 | * To avoid a false negative, if an object that is in one of the | |
2965 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
2966 | * treat the array pointers as a reference to the object. | |
2967 | */ | |
f3d8b53a O |
2968 | if (objp) |
2969 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
2970 | return objp; |
2971 | } | |
2972 | ||
e498be7d | 2973 | #ifdef CONFIG_NUMA |
c61afb18 | 2974 | /* |
2ad654bc | 2975 | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
2976 | * |
2977 | * If we are in_interrupt, then process context, including cpusets and | |
2978 | * mempolicy, may not apply and should not be used for allocation policy. | |
2979 | */ | |
2980 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
2981 | { | |
2982 | int nid_alloc, nid_here; | |
2983 | ||
765c4507 | 2984 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 2985 | return NULL; |
7d6e6d09 | 2986 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 2987 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 2988 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 2989 | else if (current->mempolicy) |
2a389610 | 2990 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 2991 | if (nid_alloc != nid_here) |
8b98c169 | 2992 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
2993 | return NULL; |
2994 | } | |
2995 | ||
765c4507 CL |
2996 | /* |
2997 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 2998 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 2999 | * available node for available objects. If that fails then we |
3c517a61 CL |
3000 | * perform an allocation without specifying a node. This allows the page |
3001 | * allocator to do its reclaim / fallback magic. We then insert the | |
3002 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3003 | */ |
8c8cc2c1 | 3004 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3005 | { |
8c8cc2c1 PE |
3006 | struct zonelist *zonelist; |
3007 | gfp_t local_flags; | |
dd1a239f | 3008 | struct zoneref *z; |
54a6eb5c MG |
3009 | struct zone *zone; |
3010 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3011 | void *obj = NULL; |
3c517a61 | 3012 | int nid; |
cc9a6c87 | 3013 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3014 | |
3015 | if (flags & __GFP_THISNODE) | |
3016 | return NULL; | |
3017 | ||
6cb06229 | 3018 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3019 | |
cc9a6c87 | 3020 | retry_cpuset: |
d26914d1 | 3021 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3022 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3023 | |
3c517a61 CL |
3024 | retry: |
3025 | /* | |
3026 | * Look through allowed nodes for objects available | |
3027 | * from existing per node queues. | |
3028 | */ | |
54a6eb5c MG |
3029 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3030 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3031 | |
061d7074 | 3032 | if (cpuset_zone_allowed(zone, flags) && |
18bf8541 CL |
3033 | get_node(cache, nid) && |
3034 | get_node(cache, nid)->free_objects) { | |
3c517a61 | 3035 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3036 | gfp_exact_node(flags), nid); |
481c5346 CL |
3037 | if (obj) |
3038 | break; | |
3039 | } | |
3c517a61 CL |
3040 | } |
3041 | ||
cfce6604 | 3042 | if (!obj) { |
3c517a61 CL |
3043 | /* |
3044 | * This allocation will be performed within the constraints | |
3045 | * of the current cpuset / memory policy requirements. | |
3046 | * We may trigger various forms of reclaim on the allowed | |
3047 | * set and go into memory reserves if necessary. | |
3048 | */ | |
0c3aa83e JK |
3049 | struct page *page; |
3050 | ||
dd47ea75 CL |
3051 | if (local_flags & __GFP_WAIT) |
3052 | local_irq_enable(); | |
3053 | kmem_flagcheck(cache, flags); | |
0c3aa83e | 3054 | page = kmem_getpages(cache, local_flags, numa_mem_id()); |
dd47ea75 CL |
3055 | if (local_flags & __GFP_WAIT) |
3056 | local_irq_disable(); | |
0c3aa83e | 3057 | if (page) { |
3c517a61 CL |
3058 | /* |
3059 | * Insert into the appropriate per node queues | |
3060 | */ | |
0c3aa83e JK |
3061 | nid = page_to_nid(page); |
3062 | if (cache_grow(cache, flags, nid, page)) { | |
3c517a61 | 3063 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3064 | gfp_exact_node(flags), nid); |
3c517a61 CL |
3065 | if (!obj) |
3066 | /* | |
3067 | * Another processor may allocate the | |
3068 | * objects in the slab since we are | |
3069 | * not holding any locks. | |
3070 | */ | |
3071 | goto retry; | |
3072 | } else { | |
b6a60451 | 3073 | /* cache_grow already freed obj */ |
3c517a61 CL |
3074 | obj = NULL; |
3075 | } | |
3076 | } | |
aedb0eb1 | 3077 | } |
cc9a6c87 | 3078 | |
d26914d1 | 3079 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3080 | goto retry_cpuset; |
765c4507 CL |
3081 | return obj; |
3082 | } | |
3083 | ||
e498be7d CL |
3084 | /* |
3085 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3086 | */ |
8b98c169 | 3087 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3088 | int nodeid) |
e498be7d CL |
3089 | { |
3090 | struct list_head *entry; | |
8456a648 | 3091 | struct page *page; |
ce8eb6c4 | 3092 | struct kmem_cache_node *n; |
b28a02de | 3093 | void *obj; |
b28a02de PE |
3094 | int x; |
3095 | ||
7c3fbbdd | 3096 | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
18bf8541 | 3097 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 3098 | BUG_ON(!n); |
b28a02de | 3099 | |
a737b3e2 | 3100 | retry: |
ca3b9b91 | 3101 | check_irq_off(); |
ce8eb6c4 CL |
3102 | spin_lock(&n->list_lock); |
3103 | entry = n->slabs_partial.next; | |
3104 | if (entry == &n->slabs_partial) { | |
3105 | n->free_touched = 1; | |
3106 | entry = n->slabs_free.next; | |
3107 | if (entry == &n->slabs_free) | |
b28a02de PE |
3108 | goto must_grow; |
3109 | } | |
3110 | ||
8456a648 | 3111 | page = list_entry(entry, struct page, lru); |
b28a02de | 3112 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3113 | |
3114 | STATS_INC_NODEALLOCS(cachep); | |
3115 | STATS_INC_ACTIVE(cachep); | |
3116 | STATS_SET_HIGH(cachep); | |
3117 | ||
8456a648 | 3118 | BUG_ON(page->active == cachep->num); |
b28a02de | 3119 | |
8456a648 | 3120 | obj = slab_get_obj(cachep, page, nodeid); |
ce8eb6c4 | 3121 | n->free_objects--; |
b28a02de | 3122 | /* move slabp to correct slabp list: */ |
8456a648 | 3123 | list_del(&page->lru); |
b28a02de | 3124 | |
8456a648 JK |
3125 | if (page->active == cachep->num) |
3126 | list_add(&page->lru, &n->slabs_full); | |
a737b3e2 | 3127 | else |
8456a648 | 3128 | list_add(&page->lru, &n->slabs_partial); |
e498be7d | 3129 | |
ce8eb6c4 | 3130 | spin_unlock(&n->list_lock); |
b28a02de | 3131 | goto done; |
e498be7d | 3132 | |
a737b3e2 | 3133 | must_grow: |
ce8eb6c4 | 3134 | spin_unlock(&n->list_lock); |
4167e9b2 | 3135 | x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL); |
765c4507 CL |
3136 | if (x) |
3137 | goto retry; | |
1da177e4 | 3138 | |
8c8cc2c1 | 3139 | return fallback_alloc(cachep, flags); |
e498be7d | 3140 | |
a737b3e2 | 3141 | done: |
b28a02de | 3142 | return obj; |
e498be7d | 3143 | } |
8c8cc2c1 | 3144 | |
8c8cc2c1 | 3145 | static __always_inline void * |
48356303 | 3146 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, |
7c0cb9c6 | 3147 | unsigned long caller) |
8c8cc2c1 PE |
3148 | { |
3149 | unsigned long save_flags; | |
3150 | void *ptr; | |
7d6e6d09 | 3151 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3152 | |
dcce284a | 3153 | flags &= gfp_allowed_mask; |
7e85ee0c | 3154 | |
cf40bd16 NP |
3155 | lockdep_trace_alloc(flags); |
3156 | ||
773ff60e | 3157 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3158 | return NULL; |
3159 | ||
d79923fa GC |
3160 | cachep = memcg_kmem_get_cache(cachep, flags); |
3161 | ||
8c8cc2c1 PE |
3162 | cache_alloc_debugcheck_before(cachep, flags); |
3163 | local_irq_save(save_flags); | |
3164 | ||
eacbbae3 | 3165 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3166 | nodeid = slab_node; |
8c8cc2c1 | 3167 | |
18bf8541 | 3168 | if (unlikely(!get_node(cachep, nodeid))) { |
8c8cc2c1 PE |
3169 | /* Node not bootstrapped yet */ |
3170 | ptr = fallback_alloc(cachep, flags); | |
3171 | goto out; | |
3172 | } | |
3173 | ||
7d6e6d09 | 3174 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3175 | /* |
3176 | * Use the locally cached objects if possible. | |
3177 | * However ____cache_alloc does not allow fallback | |
3178 | * to other nodes. It may fail while we still have | |
3179 | * objects on other nodes available. | |
3180 | */ | |
3181 | ptr = ____cache_alloc(cachep, flags); | |
3182 | if (ptr) | |
3183 | goto out; | |
3184 | } | |
3185 | /* ___cache_alloc_node can fall back to other nodes */ | |
3186 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3187 | out: | |
3188 | local_irq_restore(save_flags); | |
3189 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
8c138bc0 | 3190 | kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3191 | flags); |
8c8cc2c1 | 3192 | |
5087c822 | 3193 | if (likely(ptr)) { |
8c138bc0 | 3194 | kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); |
5087c822 JP |
3195 | if (unlikely(flags & __GFP_ZERO)) |
3196 | memset(ptr, 0, cachep->object_size); | |
3197 | } | |
d07dbea4 | 3198 | |
8135be5a | 3199 | memcg_kmem_put_cache(cachep); |
8c8cc2c1 PE |
3200 | return ptr; |
3201 | } | |
3202 | ||
3203 | static __always_inline void * | |
3204 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3205 | { | |
3206 | void *objp; | |
3207 | ||
2ad654bc | 3208 | if (current->mempolicy || cpuset_do_slab_mem_spread()) { |
8c8cc2c1 PE |
3209 | objp = alternate_node_alloc(cache, flags); |
3210 | if (objp) | |
3211 | goto out; | |
3212 | } | |
3213 | objp = ____cache_alloc(cache, flags); | |
3214 | ||
3215 | /* | |
3216 | * We may just have run out of memory on the local node. | |
3217 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3218 | */ | |
7d6e6d09 LS |
3219 | if (!objp) |
3220 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3221 | |
3222 | out: | |
3223 | return objp; | |
3224 | } | |
3225 | #else | |
3226 | ||
3227 | static __always_inline void * | |
3228 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3229 | { | |
3230 | return ____cache_alloc(cachep, flags); | |
3231 | } | |
3232 | ||
3233 | #endif /* CONFIG_NUMA */ | |
3234 | ||
3235 | static __always_inline void * | |
48356303 | 3236 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) |
8c8cc2c1 PE |
3237 | { |
3238 | unsigned long save_flags; | |
3239 | void *objp; | |
3240 | ||
dcce284a | 3241 | flags &= gfp_allowed_mask; |
7e85ee0c | 3242 | |
cf40bd16 NP |
3243 | lockdep_trace_alloc(flags); |
3244 | ||
773ff60e | 3245 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3246 | return NULL; |
3247 | ||
d79923fa GC |
3248 | cachep = memcg_kmem_get_cache(cachep, flags); |
3249 | ||
8c8cc2c1 PE |
3250 | cache_alloc_debugcheck_before(cachep, flags); |
3251 | local_irq_save(save_flags); | |
3252 | objp = __do_cache_alloc(cachep, flags); | |
3253 | local_irq_restore(save_flags); | |
3254 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
8c138bc0 | 3255 | kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3256 | flags); |
8c8cc2c1 PE |
3257 | prefetchw(objp); |
3258 | ||
5087c822 | 3259 | if (likely(objp)) { |
8c138bc0 | 3260 | kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); |
5087c822 JP |
3261 | if (unlikely(flags & __GFP_ZERO)) |
3262 | memset(objp, 0, cachep->object_size); | |
3263 | } | |
d07dbea4 | 3264 | |
8135be5a | 3265 | memcg_kmem_put_cache(cachep); |
8c8cc2c1 PE |
3266 | return objp; |
3267 | } | |
e498be7d CL |
3268 | |
3269 | /* | |
5f0985bb | 3270 | * Caller needs to acquire correct kmem_cache_node's list_lock |
97654dfa | 3271 | * @list: List of detached free slabs should be freed by caller |
e498be7d | 3272 | */ |
97654dfa JK |
3273 | static void free_block(struct kmem_cache *cachep, void **objpp, |
3274 | int nr_objects, int node, struct list_head *list) | |
1da177e4 LT |
3275 | { |
3276 | int i; | |
25c063fb | 3277 | struct kmem_cache_node *n = get_node(cachep, node); |
1da177e4 LT |
3278 | |
3279 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3280 | void *objp; |
8456a648 | 3281 | struct page *page; |
1da177e4 | 3282 | |
072bb0aa MG |
3283 | clear_obj_pfmemalloc(&objpp[i]); |
3284 | objp = objpp[i]; | |
3285 | ||
8456a648 | 3286 | page = virt_to_head_page(objp); |
8456a648 | 3287 | list_del(&page->lru); |
ff69416e | 3288 | check_spinlock_acquired_node(cachep, node); |
8456a648 | 3289 | slab_put_obj(cachep, page, objp, node); |
1da177e4 | 3290 | STATS_DEC_ACTIVE(cachep); |
ce8eb6c4 | 3291 | n->free_objects++; |
1da177e4 LT |
3292 | |
3293 | /* fixup slab chains */ | |
8456a648 | 3294 | if (page->active == 0) { |
ce8eb6c4 CL |
3295 | if (n->free_objects > n->free_limit) { |
3296 | n->free_objects -= cachep->num; | |
97654dfa | 3297 | list_add_tail(&page->lru, list); |
1da177e4 | 3298 | } else { |
8456a648 | 3299 | list_add(&page->lru, &n->slabs_free); |
1da177e4 LT |
3300 | } |
3301 | } else { | |
3302 | /* Unconditionally move a slab to the end of the | |
3303 | * partial list on free - maximum time for the | |
3304 | * other objects to be freed, too. | |
3305 | */ | |
8456a648 | 3306 | list_add_tail(&page->lru, &n->slabs_partial); |
1da177e4 LT |
3307 | } |
3308 | } | |
3309 | } | |
3310 | ||
343e0d7a | 3311 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3312 | { |
3313 | int batchcount; | |
ce8eb6c4 | 3314 | struct kmem_cache_node *n; |
7d6e6d09 | 3315 | int node = numa_mem_id(); |
97654dfa | 3316 | LIST_HEAD(list); |
1da177e4 LT |
3317 | |
3318 | batchcount = ac->batchcount; | |
3319 | #if DEBUG | |
3320 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3321 | #endif | |
3322 | check_irq_off(); | |
18bf8541 | 3323 | n = get_node(cachep, node); |
ce8eb6c4 CL |
3324 | spin_lock(&n->list_lock); |
3325 | if (n->shared) { | |
3326 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3327 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3328 | if (max) { |
3329 | if (batchcount > max) | |
3330 | batchcount = max; | |
e498be7d | 3331 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3332 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3333 | shared_array->avail += batchcount; |
3334 | goto free_done; | |
3335 | } | |
3336 | } | |
3337 | ||
97654dfa | 3338 | free_block(cachep, ac->entry, batchcount, node, &list); |
a737b3e2 | 3339 | free_done: |
1da177e4 LT |
3340 | #if STATS |
3341 | { | |
3342 | int i = 0; | |
3343 | struct list_head *p; | |
3344 | ||
ce8eb6c4 CL |
3345 | p = n->slabs_free.next; |
3346 | while (p != &(n->slabs_free)) { | |
8456a648 | 3347 | struct page *page; |
1da177e4 | 3348 | |
8456a648 JK |
3349 | page = list_entry(p, struct page, lru); |
3350 | BUG_ON(page->active); | |
1da177e4 LT |
3351 | |
3352 | i++; | |
3353 | p = p->next; | |
3354 | } | |
3355 | STATS_SET_FREEABLE(cachep, i); | |
3356 | } | |
3357 | #endif | |
ce8eb6c4 | 3358 | spin_unlock(&n->list_lock); |
97654dfa | 3359 | slabs_destroy(cachep, &list); |
1da177e4 | 3360 | ac->avail -= batchcount; |
a737b3e2 | 3361 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3362 | } |
3363 | ||
3364 | /* | |
a737b3e2 AM |
3365 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3366 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3367 | */ |
a947eb95 | 3368 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 3369 | unsigned long caller) |
1da177e4 | 3370 | { |
9a2dba4b | 3371 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3372 | |
3373 | check_irq_off(); | |
d5cff635 | 3374 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3375 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3376 | |
8c138bc0 | 3377 | kmemcheck_slab_free(cachep, objp, cachep->object_size); |
c175eea4 | 3378 | |
1807a1aa SS |
3379 | /* |
3380 | * Skip calling cache_free_alien() when the platform is not numa. | |
3381 | * This will avoid cache misses that happen while accessing slabp (which | |
3382 | * is per page memory reference) to get nodeid. Instead use a global | |
3383 | * variable to skip the call, which is mostly likely to be present in | |
3384 | * the cache. | |
3385 | */ | |
b6e68bc1 | 3386 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3387 | return; |
3388 | ||
3d880194 | 3389 | if (ac->avail < ac->limit) { |
1da177e4 | 3390 | STATS_INC_FREEHIT(cachep); |
1da177e4 LT |
3391 | } else { |
3392 | STATS_INC_FREEMISS(cachep); | |
3393 | cache_flusharray(cachep, ac); | |
1da177e4 | 3394 | } |
42c8c99c | 3395 | |
072bb0aa | 3396 | ac_put_obj(cachep, ac, objp); |
1da177e4 LT |
3397 | } |
3398 | ||
3399 | /** | |
3400 | * kmem_cache_alloc - Allocate an object | |
3401 | * @cachep: The cache to allocate from. | |
3402 | * @flags: See kmalloc(). | |
3403 | * | |
3404 | * Allocate an object from this cache. The flags are only relevant | |
3405 | * if the cache has no available objects. | |
3406 | */ | |
343e0d7a | 3407 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3408 | { |
48356303 | 3409 | void *ret = slab_alloc(cachep, flags, _RET_IP_); |
36555751 | 3410 | |
ca2b84cb | 3411 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3412 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3413 | |
3414 | return ret; | |
1da177e4 LT |
3415 | } |
3416 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3417 | ||
0f24f128 | 3418 | #ifdef CONFIG_TRACING |
85beb586 | 3419 | void * |
4052147c | 3420 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3421 | { |
85beb586 SR |
3422 | void *ret; |
3423 | ||
48356303 | 3424 | ret = slab_alloc(cachep, flags, _RET_IP_); |
85beb586 SR |
3425 | |
3426 | trace_kmalloc(_RET_IP_, ret, | |
ff4fcd01 | 3427 | size, cachep->size, flags); |
85beb586 | 3428 | return ret; |
36555751 | 3429 | } |
85beb586 | 3430 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3431 | #endif |
3432 | ||
1da177e4 | 3433 | #ifdef CONFIG_NUMA |
d0d04b78 ZL |
3434 | /** |
3435 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3436 | * @cachep: The cache to allocate from. | |
3437 | * @flags: See kmalloc(). | |
3438 | * @nodeid: node number of the target node. | |
3439 | * | |
3440 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3441 | * node, which can improve the performance for cpu bound structures. | |
3442 | * | |
3443 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3444 | */ | |
8b98c169 CH |
3445 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3446 | { | |
48356303 | 3447 | void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
36555751 | 3448 | |
ca2b84cb | 3449 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3450 | cachep->object_size, cachep->size, |
ca2b84cb | 3451 | flags, nodeid); |
36555751 EGM |
3452 | |
3453 | return ret; | |
8b98c169 | 3454 | } |
1da177e4 LT |
3455 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3456 | ||
0f24f128 | 3457 | #ifdef CONFIG_TRACING |
4052147c | 3458 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3459 | gfp_t flags, |
4052147c EG |
3460 | int nodeid, |
3461 | size_t size) | |
36555751 | 3462 | { |
85beb586 SR |
3463 | void *ret; |
3464 | ||
592f4145 | 3465 | ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); |
7c0cb9c6 | 3466 | |
85beb586 | 3467 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3468 | size, cachep->size, |
85beb586 SR |
3469 | flags, nodeid); |
3470 | return ret; | |
36555751 | 3471 | } |
85beb586 | 3472 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3473 | #endif |
3474 | ||
8b98c169 | 3475 | static __always_inline void * |
7c0cb9c6 | 3476 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3477 | { |
343e0d7a | 3478 | struct kmem_cache *cachep; |
97e2bde4 | 3479 | |
2c59dd65 | 3480 | cachep = kmalloc_slab(size, flags); |
6cb8f913 CL |
3481 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3482 | return cachep; | |
4052147c | 3483 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); |
97e2bde4 | 3484 | } |
8b98c169 | 3485 | |
8b98c169 CH |
3486 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3487 | { | |
7c0cb9c6 | 3488 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3489 | } |
dbe5e69d | 3490 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3491 | |
3492 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3493 | int node, unsigned long caller) |
8b98c169 | 3494 | { |
7c0cb9c6 | 3495 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3496 | } |
3497 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
8b98c169 | 3498 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3499 | |
3500 | /** | |
800590f5 | 3501 | * __do_kmalloc - allocate memory |
1da177e4 | 3502 | * @size: how many bytes of memory are required. |
800590f5 | 3503 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3504 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3505 | */ |
7fd6b141 | 3506 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3507 | unsigned long caller) |
1da177e4 | 3508 | { |
343e0d7a | 3509 | struct kmem_cache *cachep; |
36555751 | 3510 | void *ret; |
1da177e4 | 3511 | |
2c59dd65 | 3512 | cachep = kmalloc_slab(size, flags); |
a5c96d8a LT |
3513 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3514 | return cachep; | |
48356303 | 3515 | ret = slab_alloc(cachep, flags, caller); |
36555751 | 3516 | |
7c0cb9c6 | 3517 | trace_kmalloc(caller, ret, |
3b0efdfa | 3518 | size, cachep->size, flags); |
36555751 EGM |
3519 | |
3520 | return ret; | |
7fd6b141 PE |
3521 | } |
3522 | ||
7fd6b141 PE |
3523 | void *__kmalloc(size_t size, gfp_t flags) |
3524 | { | |
7c0cb9c6 | 3525 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3526 | } |
3527 | EXPORT_SYMBOL(__kmalloc); | |
3528 | ||
ce71e27c | 3529 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3530 | { |
7c0cb9c6 | 3531 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3532 | } |
3533 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea | 3534 | |
1da177e4 LT |
3535 | /** |
3536 | * kmem_cache_free - Deallocate an object | |
3537 | * @cachep: The cache the allocation was from. | |
3538 | * @objp: The previously allocated object. | |
3539 | * | |
3540 | * Free an object which was previously allocated from this | |
3541 | * cache. | |
3542 | */ | |
343e0d7a | 3543 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3544 | { |
3545 | unsigned long flags; | |
b9ce5ef4 GC |
3546 | cachep = cache_from_obj(cachep, objp); |
3547 | if (!cachep) | |
3548 | return; | |
1da177e4 LT |
3549 | |
3550 | local_irq_save(flags); | |
d97d476b | 3551 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3552 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3553 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3554 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 | 3555 | local_irq_restore(flags); |
36555751 | 3556 | |
ca2b84cb | 3557 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3558 | } |
3559 | EXPORT_SYMBOL(kmem_cache_free); | |
3560 | ||
1da177e4 LT |
3561 | /** |
3562 | * kfree - free previously allocated memory | |
3563 | * @objp: pointer returned by kmalloc. | |
3564 | * | |
80e93eff PE |
3565 | * If @objp is NULL, no operation is performed. |
3566 | * | |
1da177e4 LT |
3567 | * Don't free memory not originally allocated by kmalloc() |
3568 | * or you will run into trouble. | |
3569 | */ | |
3570 | void kfree(const void *objp) | |
3571 | { | |
343e0d7a | 3572 | struct kmem_cache *c; |
1da177e4 LT |
3573 | unsigned long flags; |
3574 | ||
2121db74 PE |
3575 | trace_kfree(_RET_IP_, objp); |
3576 | ||
6cb8f913 | 3577 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3578 | return; |
3579 | local_irq_save(flags); | |
3580 | kfree_debugcheck(objp); | |
6ed5eb22 | 3581 | c = virt_to_cache(objp); |
8c138bc0 CL |
3582 | debug_check_no_locks_freed(objp, c->object_size); |
3583 | ||
3584 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3585 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3586 | local_irq_restore(flags); |
3587 | } | |
3588 | EXPORT_SYMBOL(kfree); | |
3589 | ||
e498be7d | 3590 | /* |
ce8eb6c4 | 3591 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3592 | */ |
5f0985bb | 3593 | static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3594 | { |
3595 | int node; | |
ce8eb6c4 | 3596 | struct kmem_cache_node *n; |
cafeb02e | 3597 | struct array_cache *new_shared; |
c8522a3a | 3598 | struct alien_cache **new_alien = NULL; |
e498be7d | 3599 | |
9c09a95c | 3600 | for_each_online_node(node) { |
cafeb02e | 3601 | |
b455def2 L |
3602 | if (use_alien_caches) { |
3603 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | |
3604 | if (!new_alien) | |
3605 | goto fail; | |
3606 | } | |
cafeb02e | 3607 | |
63109846 ED |
3608 | new_shared = NULL; |
3609 | if (cachep->shared) { | |
3610 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3611 | cachep->shared*cachep->batchcount, |
83b519e8 | 3612 | 0xbaadf00d, gfp); |
63109846 ED |
3613 | if (!new_shared) { |
3614 | free_alien_cache(new_alien); | |
3615 | goto fail; | |
3616 | } | |
0718dc2a | 3617 | } |
cafeb02e | 3618 | |
18bf8541 | 3619 | n = get_node(cachep, node); |
ce8eb6c4 CL |
3620 | if (n) { |
3621 | struct array_cache *shared = n->shared; | |
97654dfa | 3622 | LIST_HEAD(list); |
cafeb02e | 3623 | |
ce8eb6c4 | 3624 | spin_lock_irq(&n->list_lock); |
e498be7d | 3625 | |
cafeb02e | 3626 | if (shared) |
0718dc2a | 3627 | free_block(cachep, shared->entry, |
97654dfa | 3628 | shared->avail, node, &list); |
e498be7d | 3629 | |
ce8eb6c4 CL |
3630 | n->shared = new_shared; |
3631 | if (!n->alien) { | |
3632 | n->alien = new_alien; | |
e498be7d CL |
3633 | new_alien = NULL; |
3634 | } | |
ce8eb6c4 | 3635 | n->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3636 | cachep->batchcount + cachep->num; |
ce8eb6c4 | 3637 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3638 | slabs_destroy(cachep, &list); |
cafeb02e | 3639 | kfree(shared); |
e498be7d CL |
3640 | free_alien_cache(new_alien); |
3641 | continue; | |
3642 | } | |
ce8eb6c4 CL |
3643 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); |
3644 | if (!n) { | |
0718dc2a CL |
3645 | free_alien_cache(new_alien); |
3646 | kfree(new_shared); | |
e498be7d | 3647 | goto fail; |
0718dc2a | 3648 | } |
e498be7d | 3649 | |
ce8eb6c4 | 3650 | kmem_cache_node_init(n); |
5f0985bb JZ |
3651 | n->next_reap = jiffies + REAPTIMEOUT_NODE + |
3652 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
ce8eb6c4 CL |
3653 | n->shared = new_shared; |
3654 | n->alien = new_alien; | |
3655 | n->free_limit = (1 + nr_cpus_node(node)) * | |
a737b3e2 | 3656 | cachep->batchcount + cachep->num; |
ce8eb6c4 | 3657 | cachep->node[node] = n; |
e498be7d | 3658 | } |
cafeb02e | 3659 | return 0; |
0718dc2a | 3660 | |
a737b3e2 | 3661 | fail: |
3b0efdfa | 3662 | if (!cachep->list.next) { |
0718dc2a CL |
3663 | /* Cache is not active yet. Roll back what we did */ |
3664 | node--; | |
3665 | while (node >= 0) { | |
18bf8541 CL |
3666 | n = get_node(cachep, node); |
3667 | if (n) { | |
ce8eb6c4 CL |
3668 | kfree(n->shared); |
3669 | free_alien_cache(n->alien); | |
3670 | kfree(n); | |
6a67368c | 3671 | cachep->node[node] = NULL; |
0718dc2a CL |
3672 | } |
3673 | node--; | |
3674 | } | |
3675 | } | |
cafeb02e | 3676 | return -ENOMEM; |
e498be7d CL |
3677 | } |
3678 | ||
18004c5d | 3679 | /* Always called with the slab_mutex held */ |
943a451a | 3680 | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 3681 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 3682 | { |
bf0dea23 JK |
3683 | struct array_cache __percpu *cpu_cache, *prev; |
3684 | int cpu; | |
1da177e4 | 3685 | |
bf0dea23 JK |
3686 | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
3687 | if (!cpu_cache) | |
d2e7b7d0 SS |
3688 | return -ENOMEM; |
3689 | ||
bf0dea23 JK |
3690 | prev = cachep->cpu_cache; |
3691 | cachep->cpu_cache = cpu_cache; | |
3692 | kick_all_cpus_sync(); | |
e498be7d | 3693 | |
1da177e4 | 3694 | check_irq_on(); |
1da177e4 LT |
3695 | cachep->batchcount = batchcount; |
3696 | cachep->limit = limit; | |
e498be7d | 3697 | cachep->shared = shared; |
1da177e4 | 3698 | |
bf0dea23 JK |
3699 | if (!prev) |
3700 | goto alloc_node; | |
3701 | ||
3702 | for_each_online_cpu(cpu) { | |
97654dfa | 3703 | LIST_HEAD(list); |
18bf8541 CL |
3704 | int node; |
3705 | struct kmem_cache_node *n; | |
bf0dea23 | 3706 | struct array_cache *ac = per_cpu_ptr(prev, cpu); |
18bf8541 | 3707 | |
bf0dea23 | 3708 | node = cpu_to_mem(cpu); |
18bf8541 CL |
3709 | n = get_node(cachep, node); |
3710 | spin_lock_irq(&n->list_lock); | |
bf0dea23 | 3711 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 3712 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3713 | slabs_destroy(cachep, &list); |
1da177e4 | 3714 | } |
bf0dea23 JK |
3715 | free_percpu(prev); |
3716 | ||
3717 | alloc_node: | |
5f0985bb | 3718 | return alloc_kmem_cache_node(cachep, gfp); |
1da177e4 LT |
3719 | } |
3720 | ||
943a451a GC |
3721 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3722 | int batchcount, int shared, gfp_t gfp) | |
3723 | { | |
3724 | int ret; | |
426589f5 | 3725 | struct kmem_cache *c; |
943a451a GC |
3726 | |
3727 | ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
3728 | ||
3729 | if (slab_state < FULL) | |
3730 | return ret; | |
3731 | ||
3732 | if ((ret < 0) || !is_root_cache(cachep)) | |
3733 | return ret; | |
3734 | ||
426589f5 VD |
3735 | lockdep_assert_held(&slab_mutex); |
3736 | for_each_memcg_cache(c, cachep) { | |
3737 | /* return value determined by the root cache only */ | |
3738 | __do_tune_cpucache(c, limit, batchcount, shared, gfp); | |
943a451a GC |
3739 | } |
3740 | ||
3741 | return ret; | |
3742 | } | |
3743 | ||
18004c5d | 3744 | /* Called with slab_mutex held always */ |
83b519e8 | 3745 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3746 | { |
3747 | int err; | |
943a451a GC |
3748 | int limit = 0; |
3749 | int shared = 0; | |
3750 | int batchcount = 0; | |
3751 | ||
3752 | if (!is_root_cache(cachep)) { | |
3753 | struct kmem_cache *root = memcg_root_cache(cachep); | |
3754 | limit = root->limit; | |
3755 | shared = root->shared; | |
3756 | batchcount = root->batchcount; | |
3757 | } | |
1da177e4 | 3758 | |
943a451a GC |
3759 | if (limit && shared && batchcount) |
3760 | goto skip_setup; | |
a737b3e2 AM |
3761 | /* |
3762 | * The head array serves three purposes: | |
1da177e4 LT |
3763 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3764 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3765 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3766 | * bufctl chains: array operations are cheaper. |
3767 | * The numbers are guessed, we should auto-tune as described by | |
3768 | * Bonwick. | |
3769 | */ | |
3b0efdfa | 3770 | if (cachep->size > 131072) |
1da177e4 | 3771 | limit = 1; |
3b0efdfa | 3772 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 3773 | limit = 8; |
3b0efdfa | 3774 | else if (cachep->size > 1024) |
1da177e4 | 3775 | limit = 24; |
3b0efdfa | 3776 | else if (cachep->size > 256) |
1da177e4 LT |
3777 | limit = 54; |
3778 | else | |
3779 | limit = 120; | |
3780 | ||
a737b3e2 AM |
3781 | /* |
3782 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3783 | * allocation behaviour: Most allocs on one cpu, most free operations |
3784 | * on another cpu. For these cases, an efficient object passing between | |
3785 | * cpus is necessary. This is provided by a shared array. The array | |
3786 | * replaces Bonwick's magazine layer. | |
3787 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3788 | * to a larger limit. Thus disabled by default. | |
3789 | */ | |
3790 | shared = 0; | |
3b0efdfa | 3791 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3792 | shared = 8; |
1da177e4 LT |
3793 | |
3794 | #if DEBUG | |
a737b3e2 AM |
3795 | /* |
3796 | * With debugging enabled, large batchcount lead to excessively long | |
3797 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3798 | */ |
3799 | if (limit > 32) | |
3800 | limit = 32; | |
3801 | #endif | |
943a451a GC |
3802 | batchcount = (limit + 1) / 2; |
3803 | skip_setup: | |
3804 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
1da177e4 LT |
3805 | if (err) |
3806 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 3807 | cachep->name, -err); |
2ed3a4ef | 3808 | return err; |
1da177e4 LT |
3809 | } |
3810 | ||
1b55253a | 3811 | /* |
ce8eb6c4 CL |
3812 | * Drain an array if it contains any elements taking the node lock only if |
3813 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 3814 | * if drain_array() is used on the shared array. |
1b55253a | 3815 | */ |
ce8eb6c4 | 3816 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
1b55253a | 3817 | struct array_cache *ac, int force, int node) |
1da177e4 | 3818 | { |
97654dfa | 3819 | LIST_HEAD(list); |
1da177e4 LT |
3820 | int tofree; |
3821 | ||
1b55253a CL |
3822 | if (!ac || !ac->avail) |
3823 | return; | |
1da177e4 LT |
3824 | if (ac->touched && !force) { |
3825 | ac->touched = 0; | |
b18e7e65 | 3826 | } else { |
ce8eb6c4 | 3827 | spin_lock_irq(&n->list_lock); |
b18e7e65 CL |
3828 | if (ac->avail) { |
3829 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
3830 | if (tofree > ac->avail) | |
3831 | tofree = (ac->avail + 1) / 2; | |
97654dfa | 3832 | free_block(cachep, ac->entry, tofree, node, &list); |
b18e7e65 CL |
3833 | ac->avail -= tofree; |
3834 | memmove(ac->entry, &(ac->entry[tofree]), | |
3835 | sizeof(void *) * ac->avail); | |
3836 | } | |
ce8eb6c4 | 3837 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3838 | slabs_destroy(cachep, &list); |
1da177e4 LT |
3839 | } |
3840 | } | |
3841 | ||
3842 | /** | |
3843 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 3844 | * @w: work descriptor |
1da177e4 LT |
3845 | * |
3846 | * Called from workqueue/eventd every few seconds. | |
3847 | * Purpose: | |
3848 | * - clear the per-cpu caches for this CPU. | |
3849 | * - return freeable pages to the main free memory pool. | |
3850 | * | |
a737b3e2 AM |
3851 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
3852 | * again on the next iteration. | |
1da177e4 | 3853 | */ |
7c5cae36 | 3854 | static void cache_reap(struct work_struct *w) |
1da177e4 | 3855 | { |
7a7c381d | 3856 | struct kmem_cache *searchp; |
ce8eb6c4 | 3857 | struct kmem_cache_node *n; |
7d6e6d09 | 3858 | int node = numa_mem_id(); |
bf6aede7 | 3859 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 3860 | |
18004c5d | 3861 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 3862 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 3863 | goto out; |
1da177e4 | 3864 | |
18004c5d | 3865 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
3866 | check_irq_on(); |
3867 | ||
35386e3b | 3868 | /* |
ce8eb6c4 | 3869 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
3870 | * have established with reasonable certainty that |
3871 | * we can do some work if the lock was obtained. | |
3872 | */ | |
18bf8541 | 3873 | n = get_node(searchp, node); |
35386e3b | 3874 | |
ce8eb6c4 | 3875 | reap_alien(searchp, n); |
1da177e4 | 3876 | |
ce8eb6c4 | 3877 | drain_array(searchp, n, cpu_cache_get(searchp), 0, node); |
1da177e4 | 3878 | |
35386e3b CL |
3879 | /* |
3880 | * These are racy checks but it does not matter | |
3881 | * if we skip one check or scan twice. | |
3882 | */ | |
ce8eb6c4 | 3883 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 3884 | goto next; |
1da177e4 | 3885 | |
5f0985bb | 3886 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 3887 | |
ce8eb6c4 | 3888 | drain_array(searchp, n, n->shared, 0, node); |
1da177e4 | 3889 | |
ce8eb6c4 CL |
3890 | if (n->free_touched) |
3891 | n->free_touched = 0; | |
ed11d9eb CL |
3892 | else { |
3893 | int freed; | |
1da177e4 | 3894 | |
ce8eb6c4 | 3895 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
3896 | 5 * searchp->num - 1) / (5 * searchp->num)); |
3897 | STATS_ADD_REAPED(searchp, freed); | |
3898 | } | |
35386e3b | 3899 | next: |
1da177e4 LT |
3900 | cond_resched(); |
3901 | } | |
3902 | check_irq_on(); | |
18004c5d | 3903 | mutex_unlock(&slab_mutex); |
8fce4d8e | 3904 | next_reap_node(); |
7c5cae36 | 3905 | out: |
a737b3e2 | 3906 | /* Set up the next iteration */ |
5f0985bb | 3907 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); |
1da177e4 LT |
3908 | } |
3909 | ||
158a9624 | 3910 | #ifdef CONFIG_SLABINFO |
0d7561c6 | 3911 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 3912 | { |
8456a648 | 3913 | struct page *page; |
b28a02de PE |
3914 | unsigned long active_objs; |
3915 | unsigned long num_objs; | |
3916 | unsigned long active_slabs = 0; | |
3917 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 3918 | const char *name; |
1da177e4 | 3919 | char *error = NULL; |
e498be7d | 3920 | int node; |
ce8eb6c4 | 3921 | struct kmem_cache_node *n; |
1da177e4 | 3922 | |
1da177e4 LT |
3923 | active_objs = 0; |
3924 | num_slabs = 0; | |
18bf8541 | 3925 | for_each_kmem_cache_node(cachep, node, n) { |
e498be7d | 3926 | |
ca3b9b91 | 3927 | check_irq_on(); |
ce8eb6c4 | 3928 | spin_lock_irq(&n->list_lock); |
e498be7d | 3929 | |
8456a648 JK |
3930 | list_for_each_entry(page, &n->slabs_full, lru) { |
3931 | if (page->active != cachep->num && !error) | |
e498be7d CL |
3932 | error = "slabs_full accounting error"; |
3933 | active_objs += cachep->num; | |
3934 | active_slabs++; | |
3935 | } | |
8456a648 JK |
3936 | list_for_each_entry(page, &n->slabs_partial, lru) { |
3937 | if (page->active == cachep->num && !error) | |
106a74e1 | 3938 | error = "slabs_partial accounting error"; |
8456a648 | 3939 | if (!page->active && !error) |
106a74e1 | 3940 | error = "slabs_partial accounting error"; |
8456a648 | 3941 | active_objs += page->active; |
e498be7d CL |
3942 | active_slabs++; |
3943 | } | |
8456a648 JK |
3944 | list_for_each_entry(page, &n->slabs_free, lru) { |
3945 | if (page->active && !error) | |
106a74e1 | 3946 | error = "slabs_free accounting error"; |
e498be7d CL |
3947 | num_slabs++; |
3948 | } | |
ce8eb6c4 CL |
3949 | free_objects += n->free_objects; |
3950 | if (n->shared) | |
3951 | shared_avail += n->shared->avail; | |
e498be7d | 3952 | |
ce8eb6c4 | 3953 | spin_unlock_irq(&n->list_lock); |
1da177e4 | 3954 | } |
b28a02de PE |
3955 | num_slabs += active_slabs; |
3956 | num_objs = num_slabs * cachep->num; | |
e498be7d | 3957 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
3958 | error = "free_objects accounting error"; |
3959 | ||
b28a02de | 3960 | name = cachep->name; |
1da177e4 LT |
3961 | if (error) |
3962 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
3963 | ||
0d7561c6 GC |
3964 | sinfo->active_objs = active_objs; |
3965 | sinfo->num_objs = num_objs; | |
3966 | sinfo->active_slabs = active_slabs; | |
3967 | sinfo->num_slabs = num_slabs; | |
3968 | sinfo->shared_avail = shared_avail; | |
3969 | sinfo->limit = cachep->limit; | |
3970 | sinfo->batchcount = cachep->batchcount; | |
3971 | sinfo->shared = cachep->shared; | |
3972 | sinfo->objects_per_slab = cachep->num; | |
3973 | sinfo->cache_order = cachep->gfporder; | |
3974 | } | |
3975 | ||
3976 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
3977 | { | |
1da177e4 | 3978 | #if STATS |
ce8eb6c4 | 3979 | { /* node stats */ |
1da177e4 LT |
3980 | unsigned long high = cachep->high_mark; |
3981 | unsigned long allocs = cachep->num_allocations; | |
3982 | unsigned long grown = cachep->grown; | |
3983 | unsigned long reaped = cachep->reaped; | |
3984 | unsigned long errors = cachep->errors; | |
3985 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 3986 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 3987 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 3988 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 3989 | |
e92dd4fd JP |
3990 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
3991 | "%4lu %4lu %4lu %4lu %4lu", | |
3992 | allocs, high, grown, | |
3993 | reaped, errors, max_freeable, node_allocs, | |
3994 | node_frees, overflows); | |
1da177e4 LT |
3995 | } |
3996 | /* cpu stats */ | |
3997 | { | |
3998 | unsigned long allochit = atomic_read(&cachep->allochit); | |
3999 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4000 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4001 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4002 | ||
4003 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4004 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4005 | } |
4006 | #endif | |
1da177e4 LT |
4007 | } |
4008 | ||
1da177e4 LT |
4009 | #define MAX_SLABINFO_WRITE 128 |
4010 | /** | |
4011 | * slabinfo_write - Tuning for the slab allocator | |
4012 | * @file: unused | |
4013 | * @buffer: user buffer | |
4014 | * @count: data length | |
4015 | * @ppos: unused | |
4016 | */ | |
b7454ad3 | 4017 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4018 | size_t count, loff_t *ppos) |
1da177e4 | 4019 | { |
b28a02de | 4020 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4021 | int limit, batchcount, shared, res; |
7a7c381d | 4022 | struct kmem_cache *cachep; |
b28a02de | 4023 | |
1da177e4 LT |
4024 | if (count > MAX_SLABINFO_WRITE) |
4025 | return -EINVAL; | |
4026 | if (copy_from_user(&kbuf, buffer, count)) | |
4027 | return -EFAULT; | |
b28a02de | 4028 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4029 | |
4030 | tmp = strchr(kbuf, ' '); | |
4031 | if (!tmp) | |
4032 | return -EINVAL; | |
4033 | *tmp = '\0'; | |
4034 | tmp++; | |
4035 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4036 | return -EINVAL; | |
4037 | ||
4038 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4039 | mutex_lock(&slab_mutex); |
1da177e4 | 4040 | res = -EINVAL; |
18004c5d | 4041 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4042 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4043 | if (limit < 1 || batchcount < 1 || |
4044 | batchcount > limit || shared < 0) { | |
e498be7d | 4045 | res = 0; |
1da177e4 | 4046 | } else { |
e498be7d | 4047 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4048 | batchcount, shared, |
4049 | GFP_KERNEL); | |
1da177e4 LT |
4050 | } |
4051 | break; | |
4052 | } | |
4053 | } | |
18004c5d | 4054 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4055 | if (res >= 0) |
4056 | res = count; | |
4057 | return res; | |
4058 | } | |
871751e2 AV |
4059 | |
4060 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4061 | ||
871751e2 AV |
4062 | static inline int add_caller(unsigned long *n, unsigned long v) |
4063 | { | |
4064 | unsigned long *p; | |
4065 | int l; | |
4066 | if (!v) | |
4067 | return 1; | |
4068 | l = n[1]; | |
4069 | p = n + 2; | |
4070 | while (l) { | |
4071 | int i = l/2; | |
4072 | unsigned long *q = p + 2 * i; | |
4073 | if (*q == v) { | |
4074 | q[1]++; | |
4075 | return 1; | |
4076 | } | |
4077 | if (*q > v) { | |
4078 | l = i; | |
4079 | } else { | |
4080 | p = q + 2; | |
4081 | l -= i + 1; | |
4082 | } | |
4083 | } | |
4084 | if (++n[1] == n[0]) | |
4085 | return 0; | |
4086 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4087 | p[0] = v; | |
4088 | p[1] = 1; | |
4089 | return 1; | |
4090 | } | |
4091 | ||
8456a648 JK |
4092 | static void handle_slab(unsigned long *n, struct kmem_cache *c, |
4093 | struct page *page) | |
871751e2 AV |
4094 | { |
4095 | void *p; | |
03787301 | 4096 | int i; |
b1cb0982 | 4097 | |
871751e2 AV |
4098 | if (n[0] == n[1]) |
4099 | return; | |
8456a648 | 4100 | for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { |
03787301 | 4101 | if (get_obj_status(page, i) != OBJECT_ACTIVE) |
871751e2 | 4102 | continue; |
b1cb0982 | 4103 | |
871751e2 AV |
4104 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) |
4105 | return; | |
4106 | } | |
4107 | } | |
4108 | ||
4109 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4110 | { | |
4111 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4112 | unsigned long offset, size; |
9281acea | 4113 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4114 | |
a5c43dae | 4115 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4116 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4117 | if (modname[0]) |
871751e2 AV |
4118 | seq_printf(m, " [%s]", modname); |
4119 | return; | |
4120 | } | |
4121 | #endif | |
4122 | seq_printf(m, "%p", (void *)address); | |
4123 | } | |
4124 | ||
4125 | static int leaks_show(struct seq_file *m, void *p) | |
4126 | { | |
0672aa7c | 4127 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
8456a648 | 4128 | struct page *page; |
ce8eb6c4 | 4129 | struct kmem_cache_node *n; |
871751e2 | 4130 | const char *name; |
db845067 | 4131 | unsigned long *x = m->private; |
871751e2 AV |
4132 | int node; |
4133 | int i; | |
4134 | ||
4135 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4136 | return 0; | |
4137 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4138 | return 0; | |
4139 | ||
4140 | /* OK, we can do it */ | |
4141 | ||
db845067 | 4142 | x[1] = 0; |
871751e2 | 4143 | |
18bf8541 | 4144 | for_each_kmem_cache_node(cachep, node, n) { |
871751e2 AV |
4145 | |
4146 | check_irq_on(); | |
ce8eb6c4 | 4147 | spin_lock_irq(&n->list_lock); |
871751e2 | 4148 | |
8456a648 JK |
4149 | list_for_each_entry(page, &n->slabs_full, lru) |
4150 | handle_slab(x, cachep, page); | |
4151 | list_for_each_entry(page, &n->slabs_partial, lru) | |
4152 | handle_slab(x, cachep, page); | |
ce8eb6c4 | 4153 | spin_unlock_irq(&n->list_lock); |
871751e2 AV |
4154 | } |
4155 | name = cachep->name; | |
db845067 | 4156 | if (x[0] == x[1]) { |
871751e2 | 4157 | /* Increase the buffer size */ |
18004c5d | 4158 | mutex_unlock(&slab_mutex); |
db845067 | 4159 | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
871751e2 AV |
4160 | if (!m->private) { |
4161 | /* Too bad, we are really out */ | |
db845067 | 4162 | m->private = x; |
18004c5d | 4163 | mutex_lock(&slab_mutex); |
871751e2 AV |
4164 | return -ENOMEM; |
4165 | } | |
db845067 CL |
4166 | *(unsigned long *)m->private = x[0] * 2; |
4167 | kfree(x); | |
18004c5d | 4168 | mutex_lock(&slab_mutex); |
871751e2 AV |
4169 | /* Now make sure this entry will be retried */ |
4170 | m->count = m->size; | |
4171 | return 0; | |
4172 | } | |
db845067 CL |
4173 | for (i = 0; i < x[1]; i++) { |
4174 | seq_printf(m, "%s: %lu ", name, x[2*i+3]); | |
4175 | show_symbol(m, x[2*i+2]); | |
871751e2 AV |
4176 | seq_putc(m, '\n'); |
4177 | } | |
d2e7b7d0 | 4178 | |
871751e2 AV |
4179 | return 0; |
4180 | } | |
4181 | ||
a0ec95a8 | 4182 | static const struct seq_operations slabstats_op = { |
1df3b26f | 4183 | .start = slab_start, |
276a2439 WL |
4184 | .next = slab_next, |
4185 | .stop = slab_stop, | |
871751e2 AV |
4186 | .show = leaks_show, |
4187 | }; | |
a0ec95a8 AD |
4188 | |
4189 | static int slabstats_open(struct inode *inode, struct file *file) | |
4190 | { | |
b208ce32 RJ |
4191 | unsigned long *n; |
4192 | ||
4193 | n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); | |
4194 | if (!n) | |
4195 | return -ENOMEM; | |
4196 | ||
4197 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4198 | ||
4199 | return 0; | |
a0ec95a8 AD |
4200 | } |
4201 | ||
4202 | static const struct file_operations proc_slabstats_operations = { | |
4203 | .open = slabstats_open, | |
4204 | .read = seq_read, | |
4205 | .llseek = seq_lseek, | |
4206 | .release = seq_release_private, | |
4207 | }; | |
4208 | #endif | |
4209 | ||
4210 | static int __init slab_proc_init(void) | |
4211 | { | |
4212 | #ifdef CONFIG_DEBUG_SLAB_LEAK | |
4213 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4214 | #endif |
a0ec95a8 AD |
4215 | return 0; |
4216 | } | |
4217 | module_init(slab_proc_init); | |
1da177e4 LT |
4218 | #endif |
4219 | ||
00e145b6 MS |
4220 | /** |
4221 | * ksize - get the actual amount of memory allocated for a given object | |
4222 | * @objp: Pointer to the object | |
4223 | * | |
4224 | * kmalloc may internally round up allocations and return more memory | |
4225 | * than requested. ksize() can be used to determine the actual amount of | |
4226 | * memory allocated. The caller may use this additional memory, even though | |
4227 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4228 | * The caller must guarantee that objp points to a valid object previously | |
4229 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4230 | * must not be freed during the duration of the call. | |
4231 | */ | |
fd76bab2 | 4232 | size_t ksize(const void *objp) |
1da177e4 | 4233 | { |
ef8b4520 CL |
4234 | BUG_ON(!objp); |
4235 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4236 | return 0; |
1da177e4 | 4237 | |
8c138bc0 | 4238 | return virt_to_cache(objp)->object_size; |
1da177e4 | 4239 | } |
b1aabecd | 4240 | EXPORT_SYMBOL(ksize); |