]> Git Repo - linux.git/blame - drivers/net/fec.c
Merge branch 'batman-adv/next' of git://git.open-mesh.org/ecsv/linux-merge
[linux.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek ([email protected])
4 *
7dd6a2aa 5 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
562d2f8c
GU
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer ([email protected])
7dd6a2aa
GU
17 *
18 * Bug fixes and cleanup by Philippe De Muyter ([email protected])
677177c5 19 * Copyright (c) 2004-2006 Macq Electronique SA.
b5680e0b
SG
20 *
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
1da177e4
LT
22 */
23
1da177e4
LT
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/pci.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/spinlock.h>
39#include <linux/workqueue.h>
40#include <linux/bitops.h>
6f501b17
SH
41#include <linux/io.h>
42#include <linux/irq.h>
196719ec 43#include <linux/clk.h>
ead73183 44#include <linux/platform_device.h>
e6b043d5 45#include <linux/phy.h>
5eb32bd0 46#include <linux/fec.h>
1da177e4 47
080853af 48#include <asm/cacheflush.h>
196719ec 49
b5680e0b 50#ifndef CONFIG_ARM
1da177e4
LT
51#include <asm/coldfire.h>
52#include <asm/mcfsim.h>
196719ec 53#endif
6f501b17 54
1da177e4 55#include "fec.h"
1da177e4 56
085e79ed 57#if defined(CONFIG_ARM)
196719ec
SH
58#define FEC_ALIGNMENT 0xf
59#else
60#define FEC_ALIGNMENT 0x3
61#endif
62
b5680e0b
SG
63#define DRIVER_NAME "fec"
64
65/* Controller is ENET-MAC */
66#define FEC_QUIRK_ENET_MAC (1 << 0)
67/* Controller needs driver to swap frame */
68#define FEC_QUIRK_SWAP_FRAME (1 << 1)
69
70static struct platform_device_id fec_devtype[] = {
71 {
72 .name = DRIVER_NAME,
73 .driver_data = 0,
74 }, {
75 .name = "imx28-fec",
76 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
9eb0e6f2
AL
77 },
78 { }
b5680e0b
SG
79};
80
49da97dc
SG
81static unsigned char macaddr[ETH_ALEN];
82module_param_array(macaddr, byte, NULL, 0);
83MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
1da177e4 84
49da97dc 85#if defined(CONFIG_M5272)
1da177e4
LT
86/*
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
89 */
90#if defined(CONFIG_NETtel)
91#define FEC_FLASHMAC 0xf0006006
92#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
94#elif defined(CONFIG_CANCam)
95#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
96#elif defined (CONFIG_M5272C3)
97#define FEC_FLASHMAC (0xffe04000 + 4)
98#elif defined(CONFIG_MOD5272)
99#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
100#else
101#define FEC_FLASHMAC 0
102#endif
43be6366 103#endif /* CONFIG_M5272 */
ead73183 104
1da177e4
LT
105/* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
110 */
111#define FEC_ENET_RX_PAGES 8
112#define FEC_ENET_RX_FRSIZE 2048
113#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115#define FEC_ENET_TX_FRSIZE 2048
116#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117#define TX_RING_SIZE 16 /* Must be power of two */
118#define TX_RING_MOD_MASK 15 /* for this to work */
119
562d2f8c 120#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 121#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
122#endif
123
22f6b860 124/* Interrupt events/masks. */
1da177e4
LT
125#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
135
4bee1f9a
WS
136#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
137
1da177e4
LT
138/* The FEC stores dest/src/type, data, and checksum for receive packets.
139 */
140#define PKT_MAXBUF_SIZE 1518
141#define PKT_MINBUF_SIZE 64
142#define PKT_MAXBLR_SIZE 1520
143
144
145/*
6b265293 146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
149 */
562d2f8c 150#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
085e79ed 151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
1da177e4
LT
152#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
153#else
154#define OPT_FRAME_SIZE 0
155#endif
156
157/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
164 */
165struct fec_enet_private {
166 /* Hardware registers of the FEC device */
f44d6305 167 void __iomem *hwp;
1da177e4 168
cb84d6e7
GU
169 struct net_device *netdev;
170
ead73183
SH
171 struct clk *clk;
172
1da177e4
LT
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce[TX_RING_SIZE];
175 struct sk_buff* tx_skbuff[TX_RING_SIZE];
f0b3fbea 176 struct sk_buff* rx_skbuff[RX_RING_SIZE];
1da177e4
LT
177 ushort skb_cur;
178 ushort skb_dirty;
179
22f6b860 180 /* CPM dual port RAM relative addresses */
4661e75b 181 dma_addr_t bd_dma;
22f6b860 182 /* Address of Rx and Tx buffers */
2e28532f
SH
183 struct bufdesc *rx_bd_base;
184 struct bufdesc *tx_bd_base;
185 /* The next free ring entry */
db8880bc 186 struct bufdesc *cur_rx, *cur_tx;
22f6b860 187 /* The ring entries to be free()ed */
2e28532f
SH
188 struct bufdesc *dirty_tx;
189
1da177e4 190 uint tx_full;
3b2b74ca
SS
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
192 spinlock_t hw_lock;
1da177e4 193
db8880bc 194 struct platform_device *pdev;
1da177e4 195
e6b043d5 196 int opened;
1da177e4 197
e6b043d5 198 /* Phylib and MDIO interface */
db8880bc
UKK
199 struct mii_bus *mii_bus;
200 struct phy_device *phy_dev;
201 int mii_timeout;
202 uint phy_speed;
5eb32bd0 203 phy_interface_t phy_interface;
1da177e4 204 int link;
1da177e4 205 int full_duplex;
97b72e43 206 struct completion mdio_done;
1da177e4
LT
207};
208
e6b043d5
BW
209/* FEC MII MMFR bits definition */
210#define FEC_MMFR_ST (1 << 30)
211#define FEC_MMFR_OP_READ (2 << 28)
212#define FEC_MMFR_OP_WRITE (1 << 28)
213#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
214#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
215#define FEC_MMFR_TA (2 << 16)
216#define FEC_MMFR_DATA(v) (v & 0xffff)
1da177e4 217
97b72e43 218#define FEC_MII_TIMEOUT 1000 /* us */
1da177e4 219
22f6b860
SH
220/* Transmitter timeout */
221#define TX_TIMEOUT (2 * HZ)
1da177e4 222
b5680e0b
SG
223static void *swap_buffer(void *bufaddr, int len)
224{
225 int i;
226 unsigned int *buf = bufaddr;
227
228 for (i = 0; i < (len + 3) / 4; i++, buf++)
229 *buf = cpu_to_be32(*buf);
230
231 return bufaddr;
232}
233
c7621cb3 234static netdev_tx_t
c556167f 235fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1da177e4 236{
c556167f 237 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
238 const struct platform_device_id *id_entry =
239 platform_get_device_id(fep->pdev);
2e28532f 240 struct bufdesc *bdp;
9555b31e 241 void *bufaddr;
0e702ab3 242 unsigned short status;
3b2b74ca 243 unsigned long flags;
1da177e4 244
1da177e4
LT
245 if (!fep->link) {
246 /* Link is down or autonegotiation is in progress. */
5b548140 247 return NETDEV_TX_BUSY;
1da177e4
LT
248 }
249
3b2b74ca 250 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4
LT
251 /* Fill in a Tx ring entry */
252 bdp = fep->cur_tx;
253
0e702ab3 254 status = bdp->cbd_sc;
22f6b860 255
0e702ab3 256 if (status & BD_ENET_TX_READY) {
1da177e4 257 /* Ooops. All transmit buffers are full. Bail out.
c556167f 258 * This should not happen, since ndev->tbusy should be set.
1da177e4 259 */
c556167f 260 printk("%s: tx queue full!.\n", ndev->name);
3b2b74ca 261 spin_unlock_irqrestore(&fep->hw_lock, flags);
5b548140 262 return NETDEV_TX_BUSY;
1da177e4 263 }
1da177e4 264
22f6b860 265 /* Clear all of the status flags */
0e702ab3 266 status &= ~BD_ENET_TX_STATS;
1da177e4 267
22f6b860 268 /* Set buffer length and buffer pointer */
9555b31e 269 bufaddr = skb->data;
1da177e4
LT
270 bdp->cbd_datlen = skb->len;
271
272 /*
22f6b860
SH
273 * On some FEC implementations data must be aligned on
274 * 4-byte boundaries. Use bounce buffers to copy data
275 * and get it aligned. Ugh.
1da177e4 276 */
9555b31e 277 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
1da177e4
LT
278 unsigned int index;
279 index = bdp - fep->tx_bd_base;
8a73b0bc 280 memcpy(fep->tx_bounce[index], skb->data, skb->len);
9555b31e 281 bufaddr = fep->tx_bounce[index];
1da177e4
LT
282 }
283
b5680e0b
SG
284 /*
285 * Some design made an incorrect assumption on endian mode of
286 * the system that it's running on. As the result, driver has to
287 * swap every frame going to and coming from the controller.
288 */
289 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
290 swap_buffer(bufaddr, skb->len);
291
22f6b860 292 /* Save skb pointer */
1da177e4
LT
293 fep->tx_skbuff[fep->skb_cur] = skb;
294
c556167f 295 ndev->stats.tx_bytes += skb->len;
1da177e4 296 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 297
1da177e4
LT
298 /* Push the data cache so the CPM does not get stale memory
299 * data.
300 */
d1ab1f54 301 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
f0b3fbea 302 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
1da177e4 303
0e702ab3
GU
304 /* Send it on its way. Tell FEC it's ready, interrupt when done,
305 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4 306 */
0e702ab3 307 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 308 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 309 bdp->cbd_sc = status;
1da177e4 310
1da177e4 311 /* Trigger transmission start */
f44d6305 312 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1da177e4 313
22f6b860
SH
314 /* If this was the last BD in the ring, start at the beginning again. */
315 if (status & BD_ENET_TX_WRAP)
1da177e4 316 bdp = fep->tx_bd_base;
22f6b860 317 else
1da177e4 318 bdp++;
1da177e4
LT
319
320 if (bdp == fep->dirty_tx) {
321 fep->tx_full = 1;
c556167f 322 netif_stop_queue(ndev);
1da177e4
LT
323 }
324
2e28532f 325 fep->cur_tx = bdp;
1da177e4 326
3b2b74ca 327 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 328
6ed10654 329 return NETDEV_TX_OK;
1da177e4
LT
330}
331
45993653
UKK
332/* This function is called to start or restart the FEC during a link
333 * change. This only happens when switching between half and full
334 * duplex.
335 */
1da177e4 336static void
45993653 337fec_restart(struct net_device *ndev, int duplex)
1da177e4 338{
c556167f 339 struct fec_enet_private *fep = netdev_priv(ndev);
45993653
UKK
340 const struct platform_device_id *id_entry =
341 platform_get_device_id(fep->pdev);
342 int i;
cd1f402c
UKK
343 u32 temp_mac[2];
344 u32 rcntl = OPT_FRAME_SIZE | 0x04;
1da177e4 345
45993653
UKK
346 /* Whack a reset. We should wait for this. */
347 writel(1, fep->hwp + FEC_ECNTRL);
348 udelay(10);
1da177e4 349
45993653
UKK
350 /*
351 * enet-mac reset will reset mac address registers too,
352 * so need to reconfigure it.
353 */
354 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
355 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
356 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
357 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
358 }
1da177e4 359
45993653
UKK
360 /* Clear any outstanding interrupt. */
361 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1da177e4 362
45993653
UKK
363 /* Reset all multicast. */
364 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
365 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
366#ifndef CONFIG_M5272
367 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
368 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
369#endif
1da177e4 370
45993653
UKK
371 /* Set maximum receive buffer size. */
372 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1da177e4 373
45993653
UKK
374 /* Set receive and transmit descriptor base. */
375 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
376 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
377 fep->hwp + FEC_X_DES_START);
378
379 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
380 fep->cur_rx = fep->rx_bd_base;
381
382 /* Reset SKB transmit buffers. */
383 fep->skb_cur = fep->skb_dirty = 0;
384 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
385 if (fep->tx_skbuff[i]) {
386 dev_kfree_skb_any(fep->tx_skbuff[i]);
387 fep->tx_skbuff[i] = NULL;
1da177e4 388 }
45993653 389 }
97b72e43 390
45993653
UKK
391 /* Enable MII mode */
392 if (duplex) {
cd1f402c 393 /* FD enable */
45993653
UKK
394 writel(0x04, fep->hwp + FEC_X_CNTRL);
395 } else {
cd1f402c
UKK
396 /* No Rcv on Xmit */
397 rcntl |= 0x02;
45993653
UKK
398 writel(0x0, fep->hwp + FEC_X_CNTRL);
399 }
cd1f402c 400
45993653
UKK
401 fep->full_duplex = duplex;
402
403 /* Set MII speed */
404 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
405
406 /*
407 * The phy interface and speed need to get configured
408 * differently on enet-mac.
409 */
410 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
cd1f402c
UKK
411 /* Enable flow control and length check */
412 rcntl |= 0x40000000 | 0x00000020;
45993653
UKK
413
414 /* MII or RMII */
415 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
cd1f402c 416 rcntl |= (1 << 8);
45993653 417 else
cd1f402c 418 rcntl &= ~(1 << 8);
45993653
UKK
419
420 /* 10M or 100M */
421 if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
cd1f402c 422 rcntl &= ~(1 << 9);
45993653 423 else
cd1f402c 424 rcntl |= (1 << 9);
45993653 425
45993653
UKK
426 } else {
427#ifdef FEC_MIIGSK_ENR
428 if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) {
429 /* disable the gasket and wait */
430 writel(0, fep->hwp + FEC_MIIGSK_ENR);
431 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
432 udelay(1);
433
434 /*
435 * configure the gasket:
436 * RMII, 50 MHz, no loopback, no echo
437 */
438 writel(1, fep->hwp + FEC_MIIGSK_CFGR);
439
440 /* re-enable the gasket */
441 writel(2, fep->hwp + FEC_MIIGSK_ENR);
97b72e43 442 }
45993653
UKK
443#endif
444 }
cd1f402c 445 writel(rcntl, fep->hwp + FEC_R_CNTRL);
3b2b74ca 446
45993653
UKK
447 /* And last, enable the transmit and receive processing */
448 writel(2, fep->hwp + FEC_ECNTRL);
449 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
450
451 /* Enable interrupts we wish to service */
452 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
453}
454
455static void
456fec_stop(struct net_device *ndev)
457{
458 struct fec_enet_private *fep = netdev_priv(ndev);
459
460 /* We cannot expect a graceful transmit stop without link !!! */
461 if (fep->link) {
462 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
463 udelay(10);
464 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
465 printk("fec_stop : Graceful transmit stop did not complete !\n");
466 }
467
468 /* Whack a reset. We should wait for this. */
469 writel(1, fep->hwp + FEC_ECNTRL);
470 udelay(10);
471 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
472 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1da177e4
LT
473}
474
475
45993653
UKK
476static void
477fec_timeout(struct net_device *ndev)
478{
479 struct fec_enet_private *fep = netdev_priv(ndev);
480
481 ndev->stats.tx_errors++;
482
483 fec_restart(ndev, fep->full_duplex);
484 netif_wake_queue(ndev);
485}
486
1da177e4 487static void
c556167f 488fec_enet_tx(struct net_device *ndev)
1da177e4
LT
489{
490 struct fec_enet_private *fep;
2e28532f 491 struct bufdesc *bdp;
0e702ab3 492 unsigned short status;
1da177e4
LT
493 struct sk_buff *skb;
494
c556167f 495 fep = netdev_priv(ndev);
81538e74 496 spin_lock(&fep->hw_lock);
1da177e4
LT
497 bdp = fep->dirty_tx;
498
0e702ab3 499 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
f0b3fbea
SH
500 if (bdp == fep->cur_tx && fep->tx_full == 0)
501 break;
502
d1ab1f54
UKK
503 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
504 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
f0b3fbea 505 bdp->cbd_bufaddr = 0;
1da177e4
LT
506
507 skb = fep->tx_skbuff[fep->skb_dirty];
508 /* Check for errors. */
0e702ab3 509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
510 BD_ENET_TX_RL | BD_ENET_TX_UN |
511 BD_ENET_TX_CSL)) {
c556167f 512 ndev->stats.tx_errors++;
0e702ab3 513 if (status & BD_ENET_TX_HB) /* No heartbeat */
c556167f 514 ndev->stats.tx_heartbeat_errors++;
0e702ab3 515 if (status & BD_ENET_TX_LC) /* Late collision */
c556167f 516 ndev->stats.tx_window_errors++;
0e702ab3 517 if (status & BD_ENET_TX_RL) /* Retrans limit */
c556167f 518 ndev->stats.tx_aborted_errors++;
0e702ab3 519 if (status & BD_ENET_TX_UN) /* Underrun */
c556167f 520 ndev->stats.tx_fifo_errors++;
0e702ab3 521 if (status & BD_ENET_TX_CSL) /* Carrier lost */
c556167f 522 ndev->stats.tx_carrier_errors++;
1da177e4 523 } else {
c556167f 524 ndev->stats.tx_packets++;
1da177e4
LT
525 }
526
0e702ab3 527 if (status & BD_ENET_TX_READY)
1da177e4 528 printk("HEY! Enet xmit interrupt and TX_READY.\n");
22f6b860 529
1da177e4
LT
530 /* Deferred means some collisions occurred during transmit,
531 * but we eventually sent the packet OK.
532 */
0e702ab3 533 if (status & BD_ENET_TX_DEF)
c556167f 534 ndev->stats.collisions++;
6aa20a22 535
22f6b860 536 /* Free the sk buffer associated with this last transmit */
1da177e4
LT
537 dev_kfree_skb_any(skb);
538 fep->tx_skbuff[fep->skb_dirty] = NULL;
539 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 540
22f6b860 541 /* Update pointer to next buffer descriptor to be transmitted */
0e702ab3 542 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
543 bdp = fep->tx_bd_base;
544 else
545 bdp++;
6aa20a22 546
22f6b860 547 /* Since we have freed up a buffer, the ring is no longer full
1da177e4
LT
548 */
549 if (fep->tx_full) {
550 fep->tx_full = 0;
c556167f
UKK
551 if (netif_queue_stopped(ndev))
552 netif_wake_queue(ndev);
1da177e4
LT
553 }
554 }
2e28532f 555 fep->dirty_tx = bdp;
81538e74 556 spin_unlock(&fep->hw_lock);
1da177e4
LT
557}
558
559
560/* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
564 */
565static void
c556167f 566fec_enet_rx(struct net_device *ndev)
1da177e4 567{
c556167f 568 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
569 const struct platform_device_id *id_entry =
570 platform_get_device_id(fep->pdev);
2e28532f 571 struct bufdesc *bdp;
0e702ab3 572 unsigned short status;
1da177e4
LT
573 struct sk_buff *skb;
574 ushort pkt_len;
575 __u8 *data;
6aa20a22 576
0e702ab3
GU
577#ifdef CONFIG_M532x
578 flush_cache_all();
6aa20a22 579#endif
1da177e4 580
81538e74 581 spin_lock(&fep->hw_lock);
3b2b74ca 582
1da177e4
LT
583 /* First, grab all of the stats for the incoming packet.
584 * These get messed up if we get called due to a busy condition.
585 */
586 bdp = fep->cur_rx;
587
22f6b860 588 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4 589
22f6b860
SH
590 /* Since we have allocated space to hold a complete frame,
591 * the last indicator should be set.
592 */
593 if ((status & BD_ENET_RX_LAST) == 0)
594 printk("FEC ENET: rcv is not +last\n");
1da177e4 595
22f6b860
SH
596 if (!fep->opened)
597 goto rx_processing_done;
1da177e4 598
22f6b860
SH
599 /* Check for errors. */
600 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 601 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
c556167f 602 ndev->stats.rx_errors++;
22f6b860
SH
603 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
604 /* Frame too long or too short. */
c556167f 605 ndev->stats.rx_length_errors++;
22f6b860
SH
606 }
607 if (status & BD_ENET_RX_NO) /* Frame alignment */
c556167f 608 ndev->stats.rx_frame_errors++;
22f6b860 609 if (status & BD_ENET_RX_CR) /* CRC Error */
c556167f 610 ndev->stats.rx_crc_errors++;
22f6b860 611 if (status & BD_ENET_RX_OV) /* FIFO overrun */
c556167f 612 ndev->stats.rx_fifo_errors++;
1da177e4 613 }
1da177e4 614
22f6b860
SH
615 /* Report late collisions as a frame error.
616 * On this error, the BD is closed, but we don't know what we
617 * have in the buffer. So, just drop this frame on the floor.
618 */
619 if (status & BD_ENET_RX_CL) {
c556167f
UKK
620 ndev->stats.rx_errors++;
621 ndev->stats.rx_frame_errors++;
22f6b860
SH
622 goto rx_processing_done;
623 }
1da177e4 624
22f6b860 625 /* Process the incoming frame. */
c556167f 626 ndev->stats.rx_packets++;
22f6b860 627 pkt_len = bdp->cbd_datlen;
c556167f 628 ndev->stats.rx_bytes += pkt_len;
22f6b860 629 data = (__u8*)__va(bdp->cbd_bufaddr);
1da177e4 630
d1ab1f54
UKK
631 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
632 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
ccdc4f19 633
b5680e0b
SG
634 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
635 swap_buffer(data, pkt_len);
636
22f6b860
SH
637 /* This does 16 byte alignment, exactly what we need.
638 * The packet length includes FCS, but we don't want to
639 * include that when passing upstream as it messes up
640 * bridging applications.
641 */
8549889c 642 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
1da177e4 643
8549889c 644 if (unlikely(!skb)) {
22f6b860 645 printk("%s: Memory squeeze, dropping packet.\n",
c556167f
UKK
646 ndev->name);
647 ndev->stats.rx_dropped++;
22f6b860 648 } else {
8549889c 649 skb_reserve(skb, NET_IP_ALIGN);
22f6b860
SH
650 skb_put(skb, pkt_len - 4); /* Make room */
651 skb_copy_to_linear_data(skb, data, pkt_len - 4);
c556167f 652 skb->protocol = eth_type_trans(skb, ndev);
22f6b860
SH
653 netif_rx(skb);
654 }
f0b3fbea 655
d1ab1f54
UKK
656 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
657 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
22f6b860
SH
658rx_processing_done:
659 /* Clear the status flags for this buffer */
660 status &= ~BD_ENET_RX_STATS;
1da177e4 661
22f6b860
SH
662 /* Mark the buffer empty */
663 status |= BD_ENET_RX_EMPTY;
664 bdp->cbd_sc = status;
6aa20a22 665
22f6b860
SH
666 /* Update BD pointer to next entry */
667 if (status & BD_ENET_RX_WRAP)
668 bdp = fep->rx_bd_base;
669 else
670 bdp++;
671 /* Doing this here will keep the FEC running while we process
672 * incoming frames. On a heavily loaded network, we should be
673 * able to keep up at the expense of system resources.
674 */
675 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
676 }
2e28532f 677 fep->cur_rx = bdp;
1da177e4 678
81538e74 679 spin_unlock(&fep->hw_lock);
1da177e4
LT
680}
681
45993653
UKK
682static irqreturn_t
683fec_enet_interrupt(int irq, void *dev_id)
684{
685 struct net_device *ndev = dev_id;
686 struct fec_enet_private *fep = netdev_priv(ndev);
687 uint int_events;
688 irqreturn_t ret = IRQ_NONE;
689
690 do {
691 int_events = readl(fep->hwp + FEC_IEVENT);
692 writel(int_events, fep->hwp + FEC_IEVENT);
693
694 if (int_events & FEC_ENET_RXF) {
695 ret = IRQ_HANDLED;
696 fec_enet_rx(ndev);
697 }
698
699 /* Transmit OK, or non-fatal error. Update the buffer
700 * descriptors. FEC handles all errors, we just discover
701 * them as part of the transmit process.
702 */
703 if (int_events & FEC_ENET_TXF) {
704 ret = IRQ_HANDLED;
705 fec_enet_tx(ndev);
706 }
707
708 if (int_events & FEC_ENET_MII) {
709 ret = IRQ_HANDLED;
710 complete(&fep->mdio_done);
711 }
712 } while (int_events);
713
714 return ret;
715}
716
717
718
e6b043d5 719/* ------------------------------------------------------------------------- */
c556167f 720static void __inline__ fec_get_mac(struct net_device *ndev)
1da177e4 721{
c556167f 722 struct fec_enet_private *fep = netdev_priv(ndev);
49da97dc 723 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
e6b043d5 724 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4 725
49da97dc
SG
726 /*
727 * try to get mac address in following order:
728 *
729 * 1) module parameter via kernel command line in form
730 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
731 */
732 iap = macaddr;
733
734 /*
735 * 2) from flash or fuse (via platform data)
736 */
737 if (!is_valid_ether_addr(iap)) {
738#ifdef CONFIG_M5272
739 if (FEC_FLASHMAC)
740 iap = (unsigned char *)FEC_FLASHMAC;
741#else
742 if (pdata)
743 memcpy(iap, pdata->mac, ETH_ALEN);
744#endif
745 }
746
747 /*
748 * 3) FEC mac registers set by bootloader
749 */
750 if (!is_valid_ether_addr(iap)) {
751 *((unsigned long *) &tmpaddr[0]) =
752 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
753 *((unsigned short *) &tmpaddr[4]) =
754 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
e6b043d5 755 iap = &tmpaddr[0];
1da177e4
LT
756 }
757
c556167f 758 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1da177e4 759
49da97dc
SG
760 /* Adjust MAC if using macaddr */
761 if (iap == macaddr)
c556167f 762 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
1da177e4
LT
763}
764
e6b043d5 765/* ------------------------------------------------------------------------- */
1da177e4 766
e6b043d5
BW
767/*
768 * Phy section
769 */
c556167f 770static void fec_enet_adjust_link(struct net_device *ndev)
1da177e4 771{
c556167f 772 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5
BW
773 struct phy_device *phy_dev = fep->phy_dev;
774 unsigned long flags;
1da177e4 775
e6b043d5 776 int status_change = 0;
1da177e4 777
e6b043d5 778 spin_lock_irqsave(&fep->hw_lock, flags);
1da177e4 779
e6b043d5
BW
780 /* Prevent a state halted on mii error */
781 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
782 phy_dev->state = PHY_RESUMING;
783 goto spin_unlock;
784 }
1da177e4 785
e6b043d5
BW
786 /* Duplex link change */
787 if (phy_dev->link) {
788 if (fep->full_duplex != phy_dev->duplex) {
c556167f 789 fec_restart(ndev, phy_dev->duplex);
e6b043d5
BW
790 status_change = 1;
791 }
792 }
1da177e4 793
e6b043d5
BW
794 /* Link on or off change */
795 if (phy_dev->link != fep->link) {
796 fep->link = phy_dev->link;
797 if (phy_dev->link)
c556167f 798 fec_restart(ndev, phy_dev->duplex);
1da177e4 799 else
c556167f 800 fec_stop(ndev);
e6b043d5 801 status_change = 1;
1da177e4 802 }
6aa20a22 803
e6b043d5
BW
804spin_unlock:
805 spin_unlock_irqrestore(&fep->hw_lock, flags);
1da177e4 806
e6b043d5
BW
807 if (status_change)
808 phy_print_status(phy_dev);
809}
1da177e4 810
e6b043d5 811static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1da177e4 812{
e6b043d5 813 struct fec_enet_private *fep = bus->priv;
97b72e43 814 unsigned long time_left;
1da177e4 815
e6b043d5 816 fep->mii_timeout = 0;
97b72e43 817 init_completion(&fep->mdio_done);
e6b043d5
BW
818
819 /* start a read op */
820 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
821 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
822 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
823
824 /* wait for end of transfer */
97b72e43
BS
825 time_left = wait_for_completion_timeout(&fep->mdio_done,
826 usecs_to_jiffies(FEC_MII_TIMEOUT));
827 if (time_left == 0) {
828 fep->mii_timeout = 1;
829 printk(KERN_ERR "FEC: MDIO read timeout\n");
830 return -ETIMEDOUT;
1da177e4 831 }
1da177e4 832
e6b043d5
BW
833 /* return value */
834 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
7dd6a2aa 835}
6aa20a22 836
e6b043d5
BW
837static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
838 u16 value)
1da177e4 839{
e6b043d5 840 struct fec_enet_private *fep = bus->priv;
97b72e43 841 unsigned long time_left;
1da177e4 842
e6b043d5 843 fep->mii_timeout = 0;
97b72e43 844 init_completion(&fep->mdio_done);
1da177e4 845
862f0982
SG
846 /* start a write op */
847 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
e6b043d5
BW
848 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
849 FEC_MMFR_TA | FEC_MMFR_DATA(value),
850 fep->hwp + FEC_MII_DATA);
851
852 /* wait for end of transfer */
97b72e43
BS
853 time_left = wait_for_completion_timeout(&fep->mdio_done,
854 usecs_to_jiffies(FEC_MII_TIMEOUT));
855 if (time_left == 0) {
856 fep->mii_timeout = 1;
857 printk(KERN_ERR "FEC: MDIO write timeout\n");
858 return -ETIMEDOUT;
e6b043d5 859 }
1da177e4 860
e6b043d5
BW
861 return 0;
862}
1da177e4 863
e6b043d5 864static int fec_enet_mdio_reset(struct mii_bus *bus)
1da177e4 865{
e6b043d5 866 return 0;
1da177e4
LT
867}
868
c556167f 869static int fec_enet_mii_probe(struct net_device *ndev)
562d2f8c 870{
c556167f 871 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 872 struct phy_device *phy_dev = NULL;
6fcc040f
GU
873 char mdio_bus_id[MII_BUS_ID_SIZE];
874 char phy_name[MII_BUS_ID_SIZE + 3];
875 int phy_id;
b5680e0b 876 int dev_id = fep->pdev->id;
562d2f8c 877
418bd0d4
BW
878 fep->phy_dev = NULL;
879
6fcc040f
GU
880 /* check for attached phy */
881 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
882 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
883 continue;
884 if (fep->mii_bus->phy_map[phy_id] == NULL)
885 continue;
886 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
887 continue;
b5680e0b
SG
888 if (dev_id--)
889 continue;
6fcc040f
GU
890 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
891 break;
e6b043d5 892 }
1da177e4 893
6fcc040f
GU
894 if (phy_id >= PHY_MAX_ADDR) {
895 printk(KERN_INFO "%s: no PHY, assuming direct connection "
c556167f 896 "to switch\n", ndev->name);
6fcc040f
GU
897 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
898 phy_id = 0;
899 }
900
901 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
c556167f 902 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
6fcc040f
GU
903 PHY_INTERFACE_MODE_MII);
904 if (IS_ERR(phy_dev)) {
c556167f 905 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
6fcc040f 906 return PTR_ERR(phy_dev);
e6b043d5 907 }
1da177e4 908
e6b043d5
BW
909 /* mask with MAC supported features */
910 phy_dev->supported &= PHY_BASIC_FEATURES;
911 phy_dev->advertising = phy_dev->supported;
1da177e4 912
e6b043d5
BW
913 fep->phy_dev = phy_dev;
914 fep->link = 0;
915 fep->full_duplex = 0;
1da177e4 916
418bd0d4 917 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
c556167f 918 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
418bd0d4
BW
919 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
920 fep->phy_dev->irq);
921
e6b043d5 922 return 0;
1da177e4
LT
923}
924
e6b043d5 925static int fec_enet_mii_init(struct platform_device *pdev)
562d2f8c 926{
b5680e0b 927 static struct mii_bus *fec0_mii_bus;
c556167f
UKK
928 struct net_device *ndev = platform_get_drvdata(pdev);
929 struct fec_enet_private *fep = netdev_priv(ndev);
b5680e0b
SG
930 const struct platform_device_id *id_entry =
931 platform_get_device_id(fep->pdev);
e6b043d5 932 int err = -ENXIO, i;
6b265293 933
b5680e0b
SG
934 /*
935 * The dual fec interfaces are not equivalent with enet-mac.
936 * Here are the differences:
937 *
938 * - fec0 supports MII & RMII modes while fec1 only supports RMII
939 * - fec0 acts as the 1588 time master while fec1 is slave
940 * - external phys can only be configured by fec0
941 *
942 * That is to say fec1 can not work independently. It only works
943 * when fec0 is working. The reason behind this design is that the
944 * second interface is added primarily for Switch mode.
945 *
946 * Because of the last point above, both phys are attached on fec0
947 * mdio interface in board design, and need to be configured by
948 * fec0 mii_bus.
949 */
950 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
951 /* fec1 uses fec0 mii_bus */
952 fep->mii_bus = fec0_mii_bus;
953 return 0;
954 }
955
e6b043d5 956 fep->mii_timeout = 0;
1da177e4 957
e6b043d5
BW
958 /*
959 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
960 */
961 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
962 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1da177e4 963
e6b043d5
BW
964 fep->mii_bus = mdiobus_alloc();
965 if (fep->mii_bus == NULL) {
966 err = -ENOMEM;
967 goto err_out;
1da177e4
LT
968 }
969
e6b043d5
BW
970 fep->mii_bus->name = "fec_enet_mii_bus";
971 fep->mii_bus->read = fec_enet_mdio_read;
972 fep->mii_bus->write = fec_enet_mdio_write;
973 fep->mii_bus->reset = fec_enet_mdio_reset;
6fcc040f 974 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
e6b043d5
BW
975 fep->mii_bus->priv = fep;
976 fep->mii_bus->parent = &pdev->dev;
977
978 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
979 if (!fep->mii_bus->irq) {
980 err = -ENOMEM;
981 goto err_out_free_mdiobus;
1da177e4
LT
982 }
983
e6b043d5
BW
984 for (i = 0; i < PHY_MAX_ADDR; i++)
985 fep->mii_bus->irq[i] = PHY_POLL;
1da177e4 986
e6b043d5
BW
987 if (mdiobus_register(fep->mii_bus))
988 goto err_out_free_mdio_irq;
1da177e4 989
b5680e0b
SG
990 /* save fec0 mii_bus */
991 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
992 fec0_mii_bus = fep->mii_bus;
993
e6b043d5 994 return 0;
1da177e4 995
e6b043d5
BW
996err_out_free_mdio_irq:
997 kfree(fep->mii_bus->irq);
998err_out_free_mdiobus:
999 mdiobus_free(fep->mii_bus);
1000err_out:
1001 return err;
1da177e4
LT
1002}
1003
e6b043d5 1004static void fec_enet_mii_remove(struct fec_enet_private *fep)
1da177e4 1005{
e6b043d5
BW
1006 if (fep->phy_dev)
1007 phy_disconnect(fep->phy_dev);
1008 mdiobus_unregister(fep->mii_bus);
1009 kfree(fep->mii_bus->irq);
1010 mdiobus_free(fep->mii_bus);
1da177e4
LT
1011}
1012
c556167f 1013static int fec_enet_get_settings(struct net_device *ndev,
e6b043d5 1014 struct ethtool_cmd *cmd)
1da177e4 1015{
c556167f 1016 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1017 struct phy_device *phydev = fep->phy_dev;
1da177e4 1018
e6b043d5
BW
1019 if (!phydev)
1020 return -ENODEV;
1da177e4 1021
e6b043d5 1022 return phy_ethtool_gset(phydev, cmd);
1da177e4
LT
1023}
1024
c556167f 1025static int fec_enet_set_settings(struct net_device *ndev,
e6b043d5 1026 struct ethtool_cmd *cmd)
1da177e4 1027{
c556167f 1028 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1029 struct phy_device *phydev = fep->phy_dev;
1da177e4 1030
e6b043d5
BW
1031 if (!phydev)
1032 return -ENODEV;
1da177e4 1033
e6b043d5 1034 return phy_ethtool_sset(phydev, cmd);
1da177e4
LT
1035}
1036
c556167f 1037static void fec_enet_get_drvinfo(struct net_device *ndev,
e6b043d5 1038 struct ethtool_drvinfo *info)
1da177e4 1039{
c556167f 1040 struct fec_enet_private *fep = netdev_priv(ndev);
6aa20a22 1041
e6b043d5
BW
1042 strcpy(info->driver, fep->pdev->dev.driver->name);
1043 strcpy(info->version, "Revision: 1.0");
c556167f 1044 strcpy(info->bus_info, dev_name(&ndev->dev));
1da177e4
LT
1045}
1046
e6b043d5
BW
1047static struct ethtool_ops fec_enet_ethtool_ops = {
1048 .get_settings = fec_enet_get_settings,
1049 .set_settings = fec_enet_set_settings,
1050 .get_drvinfo = fec_enet_get_drvinfo,
1051 .get_link = ethtool_op_get_link,
1052};
1da177e4 1053
c556167f 1054static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1da177e4 1055{
c556167f 1056 struct fec_enet_private *fep = netdev_priv(ndev);
e6b043d5 1057 struct phy_device *phydev = fep->phy_dev;
1da177e4 1058
c556167f 1059 if (!netif_running(ndev))
e6b043d5 1060 return -EINVAL;
1da177e4 1061
e6b043d5
BW
1062 if (!phydev)
1063 return -ENODEV;
1064
28b04113 1065 return phy_mii_ioctl(phydev, rq, cmd);
1da177e4
LT
1066}
1067
c556167f 1068static void fec_enet_free_buffers(struct net_device *ndev)
f0b3fbea 1069{
c556167f 1070 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1071 int i;
1072 struct sk_buff *skb;
1073 struct bufdesc *bdp;
1074
1075 bdp = fep->rx_bd_base;
1076 for (i = 0; i < RX_RING_SIZE; i++) {
1077 skb = fep->rx_skbuff[i];
1078
1079 if (bdp->cbd_bufaddr)
d1ab1f54 1080 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
f0b3fbea
SH
1081 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1082 if (skb)
1083 dev_kfree_skb(skb);
1084 bdp++;
1085 }
1086
1087 bdp = fep->tx_bd_base;
1088 for (i = 0; i < TX_RING_SIZE; i++)
1089 kfree(fep->tx_bounce[i]);
1090}
1091
c556167f 1092static int fec_enet_alloc_buffers(struct net_device *ndev)
f0b3fbea 1093{
c556167f 1094 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea
SH
1095 int i;
1096 struct sk_buff *skb;
1097 struct bufdesc *bdp;
1098
1099 bdp = fep->rx_bd_base;
1100 for (i = 0; i < RX_RING_SIZE; i++) {
1101 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1102 if (!skb) {
c556167f 1103 fec_enet_free_buffers(ndev);
f0b3fbea
SH
1104 return -ENOMEM;
1105 }
1106 fep->rx_skbuff[i] = skb;
1107
d1ab1f54 1108 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
f0b3fbea
SH
1109 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1110 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1111 bdp++;
1112 }
1113
1114 /* Set the last buffer to wrap. */
1115 bdp--;
1116 bdp->cbd_sc |= BD_SC_WRAP;
1117
1118 bdp = fep->tx_bd_base;
1119 for (i = 0; i < TX_RING_SIZE; i++) {
1120 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1121
1122 bdp->cbd_sc = 0;
1123 bdp->cbd_bufaddr = 0;
1124 bdp++;
1125 }
1126
1127 /* Set the last buffer to wrap. */
1128 bdp--;
1129 bdp->cbd_sc |= BD_SC_WRAP;
1130
1131 return 0;
1132}
1133
1da177e4 1134static int
c556167f 1135fec_enet_open(struct net_device *ndev)
1da177e4 1136{
c556167f 1137 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1138 int ret;
1da177e4
LT
1139
1140 /* I should reset the ring buffers here, but I don't yet know
1141 * a simple way to do that.
1142 */
1da177e4 1143
c556167f 1144 ret = fec_enet_alloc_buffers(ndev);
f0b3fbea
SH
1145 if (ret)
1146 return ret;
1147
418bd0d4 1148 /* Probe and connect to PHY when open the interface */
c556167f 1149 ret = fec_enet_mii_probe(ndev);
418bd0d4 1150 if (ret) {
c556167f 1151 fec_enet_free_buffers(ndev);
418bd0d4
BW
1152 return ret;
1153 }
e6b043d5 1154 phy_start(fep->phy_dev);
c556167f 1155 netif_start_queue(ndev);
1da177e4 1156 fep->opened = 1;
22f6b860 1157 return 0;
1da177e4
LT
1158}
1159
1160static int
c556167f 1161fec_enet_close(struct net_device *ndev)
1da177e4 1162{
c556167f 1163 struct fec_enet_private *fep = netdev_priv(ndev);
1da177e4 1164
22f6b860 1165 /* Don't know what to do yet. */
1da177e4 1166 fep->opened = 0;
c556167f
UKK
1167 netif_stop_queue(ndev);
1168 fec_stop(ndev);
1da177e4 1169
e497ba82
UKK
1170 if (fep->phy_dev) {
1171 phy_stop(fep->phy_dev);
418bd0d4 1172 phy_disconnect(fep->phy_dev);
e497ba82 1173 }
418bd0d4 1174
db8880bc 1175 fec_enet_free_buffers(ndev);
f0b3fbea 1176
1da177e4
LT
1177 return 0;
1178}
1179
1da177e4
LT
1180/* Set or clear the multicast filter for this adaptor.
1181 * Skeleton taken from sunlance driver.
1182 * The CPM Ethernet implementation allows Multicast as well as individual
1183 * MAC address filtering. Some of the drivers check to make sure it is
1184 * a group multicast address, and discard those that are not. I guess I
1185 * will do the same for now, but just remove the test if you want
1186 * individual filtering as well (do the upper net layers want or support
1187 * this kind of feature?).
1188 */
1189
1190#define HASH_BITS 6 /* #bits in hash */
1191#define CRC32_POLY 0xEDB88320
1192
c556167f 1193static void set_multicast_list(struct net_device *ndev)
1da177e4 1194{
c556167f 1195 struct fec_enet_private *fep = netdev_priv(ndev);
22bedad3 1196 struct netdev_hw_addr *ha;
48e2f183 1197 unsigned int i, bit, data, crc, tmp;
1da177e4
LT
1198 unsigned char hash;
1199
c556167f 1200 if (ndev->flags & IFF_PROMISC) {
f44d6305
SH
1201 tmp = readl(fep->hwp + FEC_R_CNTRL);
1202 tmp |= 0x8;
1203 writel(tmp, fep->hwp + FEC_R_CNTRL);
4e831836
SH
1204 return;
1205 }
1da177e4 1206
4e831836
SH
1207 tmp = readl(fep->hwp + FEC_R_CNTRL);
1208 tmp &= ~0x8;
1209 writel(tmp, fep->hwp + FEC_R_CNTRL);
1210
c556167f 1211 if (ndev->flags & IFF_ALLMULTI) {
4e831836
SH
1212 /* Catch all multicast addresses, so set the
1213 * filter to all 1's
1214 */
1215 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1216 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1217
1218 return;
1219 }
1220
1221 /* Clear filter and add the addresses in hash register
1222 */
1223 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1224 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1225
c556167f 1226 netdev_for_each_mc_addr(ha, ndev) {
4e831836 1227 /* Only support group multicast for now */
22bedad3 1228 if (!(ha->addr[0] & 1))
4e831836
SH
1229 continue;
1230
1231 /* calculate crc32 value of mac address */
1232 crc = 0xffffffff;
1233
c556167f 1234 for (i = 0; i < ndev->addr_len; i++) {
22bedad3 1235 data = ha->addr[i];
4e831836
SH
1236 for (bit = 0; bit < 8; bit++, data >>= 1) {
1237 crc = (crc >> 1) ^
1238 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1da177e4
LT
1239 }
1240 }
4e831836
SH
1241
1242 /* only upper 6 bits (HASH_BITS) are used
1243 * which point to specific bit in he hash registers
1244 */
1245 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1246
1247 if (hash > 31) {
1248 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1249 tmp |= 1 << (hash - 32);
1250 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1251 } else {
1252 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1253 tmp |= 1 << hash;
1254 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1255 }
1da177e4
LT
1256 }
1257}
1258
22f6b860 1259/* Set a MAC change in hardware. */
009fda83 1260static int
c556167f 1261fec_set_mac_address(struct net_device *ndev, void *p)
1da177e4 1262{
c556167f 1263 struct fec_enet_private *fep = netdev_priv(ndev);
009fda83
SH
1264 struct sockaddr *addr = p;
1265
1266 if (!is_valid_ether_addr(addr->sa_data))
1267 return -EADDRNOTAVAIL;
1268
c556167f 1269 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1da177e4 1270
c556167f
UKK
1271 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1272 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
f44d6305 1273 fep->hwp + FEC_ADDR_LOW);
c556167f 1274 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
7cff0943 1275 fep->hwp + FEC_ADDR_HIGH);
009fda83 1276 return 0;
1da177e4
LT
1277}
1278
009fda83
SH
1279static const struct net_device_ops fec_netdev_ops = {
1280 .ndo_open = fec_enet_open,
1281 .ndo_stop = fec_enet_close,
1282 .ndo_start_xmit = fec_enet_start_xmit,
1283 .ndo_set_multicast_list = set_multicast_list,
635ecaa7 1284 .ndo_change_mtu = eth_change_mtu,
009fda83
SH
1285 .ndo_validate_addr = eth_validate_addr,
1286 .ndo_tx_timeout = fec_timeout,
1287 .ndo_set_mac_address = fec_set_mac_address,
db8880bc 1288 .ndo_do_ioctl = fec_enet_ioctl,
009fda83
SH
1289};
1290
1da177e4
LT
1291 /*
1292 * XXX: We need to clean up on failure exits here.
ead73183 1293 *
1da177e4 1294 */
c556167f 1295static int fec_enet_init(struct net_device *ndev)
1da177e4 1296{
c556167f 1297 struct fec_enet_private *fep = netdev_priv(ndev);
f0b3fbea 1298 struct bufdesc *cbd_base;
633e7533 1299 struct bufdesc *bdp;
f0b3fbea 1300 int i;
1da177e4 1301
8d4dd5cf
SH
1302 /* Allocate memory for buffer descriptors. */
1303 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1304 GFP_KERNEL);
1305 if (!cbd_base) {
562d2f8c
GU
1306 printk("FEC: allocate descriptor memory failed?\n");
1307 return -ENOMEM;
1308 }
1309
3b2b74ca 1310 spin_lock_init(&fep->hw_lock);
3b2b74ca 1311
c556167f 1312 fep->netdev = ndev;
1da177e4 1313
49da97dc 1314 /* Get the Ethernet address */
c556167f 1315 fec_get_mac(ndev);
1da177e4 1316
8d4dd5cf 1317 /* Set receive and transmit descriptor base. */
1da177e4
LT
1318 fep->rx_bd_base = cbd_base;
1319 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1320
22f6b860 1321 /* The FEC Ethernet specific entries in the device structure */
c556167f
UKK
1322 ndev->watchdog_timeo = TX_TIMEOUT;
1323 ndev->netdev_ops = &fec_netdev_ops;
1324 ndev->ethtool_ops = &fec_enet_ethtool_ops;
633e7533
RH
1325
1326 /* Initialize the receive buffer descriptors. */
1327 bdp = fep->rx_bd_base;
1328 for (i = 0; i < RX_RING_SIZE; i++) {
1329
1330 /* Initialize the BD for every fragment in the page. */
1331 bdp->cbd_sc = 0;
1332 bdp++;
1333 }
1334
1335 /* Set the last buffer to wrap */
1336 bdp--;
1337 bdp->cbd_sc |= BD_SC_WRAP;
1338
1339 /* ...and the same for transmit */
1340 bdp = fep->tx_bd_base;
1341 for (i = 0; i < TX_RING_SIZE; i++) {
1342
1343 /* Initialize the BD for every fragment in the page. */
1344 bdp->cbd_sc = 0;
1345 bdp->cbd_bufaddr = 0;
1346 bdp++;
1347 }
1348
1349 /* Set the last buffer to wrap */
1350 bdp--;
1351 bdp->cbd_sc |= BD_SC_WRAP;
1352
c556167f 1353 fec_restart(ndev, 0);
1da177e4 1354
1da177e4
LT
1355 return 0;
1356}
1357
ead73183
SH
1358static int __devinit
1359fec_probe(struct platform_device *pdev)
1360{
1361 struct fec_enet_private *fep;
5eb32bd0 1362 struct fec_platform_data *pdata;
ead73183
SH
1363 struct net_device *ndev;
1364 int i, irq, ret = 0;
1365 struct resource *r;
1366
1367 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1368 if (!r)
1369 return -ENXIO;
1370
1371 r = request_mem_region(r->start, resource_size(r), pdev->name);
1372 if (!r)
1373 return -EBUSY;
1374
1375 /* Init network device */
1376 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
28e2188e
UKK
1377 if (!ndev) {
1378 ret = -ENOMEM;
1379 goto failed_alloc_etherdev;
1380 }
ead73183
SH
1381
1382 SET_NETDEV_DEV(ndev, &pdev->dev);
1383
1384 /* setup board info structure */
1385 fep = netdev_priv(ndev);
ead73183 1386
24e531b4 1387 fep->hwp = ioremap(r->start, resource_size(r));
e6b043d5 1388 fep->pdev = pdev;
ead73183 1389
24e531b4 1390 if (!fep->hwp) {
ead73183
SH
1391 ret = -ENOMEM;
1392 goto failed_ioremap;
1393 }
1394
1395 platform_set_drvdata(pdev, ndev);
1396
5eb32bd0
BS
1397 pdata = pdev->dev.platform_data;
1398 if (pdata)
1399 fep->phy_interface = pdata->phy;
1400
ead73183
SH
1401 /* This device has up to three irqs on some platforms */
1402 for (i = 0; i < 3; i++) {
1403 irq = platform_get_irq(pdev, i);
1404 if (i && irq < 0)
1405 break;
1406 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1407 if (ret) {
b2b09ad6 1408 while (--i >= 0) {
ead73183
SH
1409 irq = platform_get_irq(pdev, i);
1410 free_irq(irq, ndev);
ead73183
SH
1411 }
1412 goto failed_irq;
1413 }
1414 }
1415
1416 fep->clk = clk_get(&pdev->dev, "fec_clk");
1417 if (IS_ERR(fep->clk)) {
1418 ret = PTR_ERR(fep->clk);
1419 goto failed_clk;
1420 }
1421 clk_enable(fep->clk);
1422
8649a230 1423 ret = fec_enet_init(ndev);
ead73183
SH
1424 if (ret)
1425 goto failed_init;
1426
e6b043d5
BW
1427 ret = fec_enet_mii_init(pdev);
1428 if (ret)
1429 goto failed_mii_init;
1430
03c698c9
OS
1431 /* Carrier starts down, phylib will bring it up */
1432 netif_carrier_off(ndev);
1433
ead73183
SH
1434 ret = register_netdev(ndev);
1435 if (ret)
1436 goto failed_register;
1437
1438 return 0;
1439
1440failed_register:
e6b043d5
BW
1441 fec_enet_mii_remove(fep);
1442failed_mii_init:
ead73183
SH
1443failed_init:
1444 clk_disable(fep->clk);
1445 clk_put(fep->clk);
1446failed_clk:
1447 for (i = 0; i < 3; i++) {
1448 irq = platform_get_irq(pdev, i);
1449 if (irq > 0)
1450 free_irq(irq, ndev);
1451 }
1452failed_irq:
24e531b4 1453 iounmap(fep->hwp);
ead73183
SH
1454failed_ioremap:
1455 free_netdev(ndev);
28e2188e
UKK
1456failed_alloc_etherdev:
1457 release_mem_region(r->start, resource_size(r));
ead73183
SH
1458
1459 return ret;
1460}
1461
1462static int __devexit
1463fec_drv_remove(struct platform_device *pdev)
1464{
1465 struct net_device *ndev = platform_get_drvdata(pdev);
1466 struct fec_enet_private *fep = netdev_priv(ndev);
28e2188e 1467 struct resource *r;
ead73183 1468
ead73183 1469 fec_stop(ndev);
e6b043d5 1470 fec_enet_mii_remove(fep);
ead73183
SH
1471 clk_disable(fep->clk);
1472 clk_put(fep->clk);
24e531b4 1473 iounmap(fep->hwp);
ead73183
SH
1474 unregister_netdev(ndev);
1475 free_netdev(ndev);
28e2188e
UKK
1476
1477 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1478 BUG_ON(!r);
1479 release_mem_region(r->start, resource_size(r));
1480
b3cde36c
UKK
1481 platform_set_drvdata(pdev, NULL);
1482
ead73183
SH
1483 return 0;
1484}
1485
59d4289b 1486#ifdef CONFIG_PM
ead73183 1487static int
87cad5c3 1488fec_suspend(struct device *dev)
ead73183 1489{
87cad5c3 1490 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1491 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1492
04e5216d
UKK
1493 if (netif_running(ndev)) {
1494 fec_stop(ndev);
1495 netif_device_detach(ndev);
ead73183 1496 }
04e5216d
UKK
1497 clk_disable(fep->clk);
1498
ead73183
SH
1499 return 0;
1500}
1501
1502static int
87cad5c3 1503fec_resume(struct device *dev)
ead73183 1504{
87cad5c3 1505 struct net_device *ndev = dev_get_drvdata(dev);
04e5216d 1506 struct fec_enet_private *fep = netdev_priv(ndev);
ead73183 1507
04e5216d
UKK
1508 clk_enable(fep->clk);
1509 if (netif_running(ndev)) {
1510 fec_restart(ndev, fep->full_duplex);
1511 netif_device_attach(ndev);
ead73183 1512 }
04e5216d 1513
ead73183
SH
1514 return 0;
1515}
1516
59d4289b
DK
1517static const struct dev_pm_ops fec_pm_ops = {
1518 .suspend = fec_suspend,
1519 .resume = fec_resume,
1520 .freeze = fec_suspend,
1521 .thaw = fec_resume,
1522 .poweroff = fec_suspend,
1523 .restore = fec_resume,
1524};
87cad5c3 1525#endif
59d4289b 1526
ead73183
SH
1527static struct platform_driver fec_driver = {
1528 .driver = {
b5680e0b 1529 .name = DRIVER_NAME,
87cad5c3
EB
1530 .owner = THIS_MODULE,
1531#ifdef CONFIG_PM
1532 .pm = &fec_pm_ops,
1533#endif
ead73183 1534 },
b5680e0b 1535 .id_table = fec_devtype,
87cad5c3
EB
1536 .probe = fec_probe,
1537 .remove = __devexit_p(fec_drv_remove),
ead73183
SH
1538};
1539
1540static int __init
1541fec_enet_module_init(void)
1542{
1543 printk(KERN_INFO "FEC Ethernet Driver\n");
1544
1545 return platform_driver_register(&fec_driver);
1546}
1547
1548static void __exit
1549fec_enet_cleanup(void)
1550{
1551 platform_driver_unregister(&fec_driver);
1552}
1553
1554module_exit(fec_enet_cleanup);
1da177e4
LT
1555module_init(fec_enet_module_init);
1556
1557MODULE_LICENSE("GPL");
This page took 1.135318 seconds and 4 git commands to generate.