]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
1da177e4 | 2 | * Copyright (C) 2001 Dave Engebretsen IBM Corporation |
d9953105 | 3 | * |
1da177e4 LT |
4 | * This program is free software; you can redistribute it and/or modify |
5 | * it under the terms of the GNU General Public License as published by | |
6 | * the Free Software Foundation; either version 2 of the License, or | |
7 | * (at your option) any later version. | |
d9953105 | 8 | * |
1da177e4 LT |
9 | * This program is distributed in the hope that it will be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
d9953105 | 13 | * |
1da177e4 LT |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write to the Free Software | |
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
17 | */ | |
18 | ||
19 | /* Change Activity: | |
20 | * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support. | |
d9953105 | 21 | * End Change Activity |
1da177e4 LT |
22 | */ |
23 | ||
24 | #include <linux/errno.h> | |
25 | #include <linux/threads.h> | |
26 | #include <linux/kernel_stat.h> | |
27 | #include <linux/signal.h> | |
28 | #include <linux/sched.h> | |
29 | #include <linux/ioport.h> | |
30 | #include <linux/interrupt.h> | |
31 | #include <linux/timex.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/slab.h> | |
34 | #include <linux/pci.h> | |
35 | #include <linux/delay.h> | |
36 | #include <linux/irq.h> | |
37 | #include <linux/random.h> | |
38 | #include <linux/sysrq.h> | |
39 | #include <linux/bitops.h> | |
40 | ||
41 | #include <asm/uaccess.h> | |
42 | #include <asm/system.h> | |
43 | #include <asm/io.h> | |
44 | #include <asm/pgtable.h> | |
45 | #include <asm/irq.h> | |
46 | #include <asm/cache.h> | |
47 | #include <asm/prom.h> | |
48 | #include <asm/ptrace.h> | |
1da177e4 LT |
49 | #include <asm/machdep.h> |
50 | #include <asm/rtas.h> | |
dcad47fc | 51 | #include <asm/udbg.h> |
1da177e4 LT |
52 | |
53 | static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; | |
54 | static DEFINE_SPINLOCK(ras_log_buf_lock); | |
55 | ||
56 | char mce_data_buf[RTAS_ERROR_LOG_MAX] | |
57 | ; | |
58 | /* This is true if we are using the firmware NMI handler (typically LPAR) */ | |
59 | extern int fwnmi_active; | |
60 | ||
1da177e4 LT |
61 | static int ras_get_sensor_state_token; |
62 | static int ras_check_exception_token; | |
63 | ||
64 | #define EPOW_SENSOR_TOKEN 9 | |
65 | #define EPOW_SENSOR_INDEX 0 | |
66 | #define RAS_VECTOR_OFFSET 0x500 | |
67 | ||
68 | static irqreturn_t ras_epow_interrupt(int irq, void *dev_id, | |
69 | struct pt_regs * regs); | |
70 | static irqreturn_t ras_error_interrupt(int irq, void *dev_id, | |
71 | struct pt_regs * regs); | |
72 | ||
73 | /* #define DEBUG */ | |
74 | ||
75 | static void request_ras_irqs(struct device_node *np, char *propname, | |
76 | irqreturn_t (*handler)(int, void *, struct pt_regs *), | |
77 | const char *name) | |
78 | { | |
79 | unsigned int *ireg, len, i; | |
80 | int virq, n_intr; | |
81 | ||
82 | ireg = (unsigned int *)get_property(np, propname, &len); | |
83 | if (ireg == NULL) | |
84 | return; | |
85 | n_intr = prom_n_intr_cells(np); | |
86 | len /= n_intr * sizeof(*ireg); | |
87 | ||
88 | for (i = 0; i < len; i++) { | |
89 | virq = virt_irq_create_mapping(*ireg); | |
90 | if (virq == NO_IRQ) { | |
91 | printk(KERN_ERR "Unable to allocate interrupt " | |
92 | "number for %s\n", np->full_name); | |
93 | return; | |
94 | } | |
95 | if (request_irq(irq_offset_up(virq), handler, 0, name, NULL)) { | |
96 | printk(KERN_ERR "Unable to request interrupt %d for " | |
97 | "%s\n", irq_offset_up(virq), np->full_name); | |
98 | return; | |
99 | } | |
100 | ireg += n_intr; | |
101 | } | |
102 | } | |
103 | ||
104 | /* | |
105 | * Initialize handlers for the set of interrupts caused by hardware errors | |
106 | * and power system events. | |
107 | */ | |
108 | static int __init init_ras_IRQ(void) | |
109 | { | |
110 | struct device_node *np; | |
111 | ||
112 | ras_get_sensor_state_token = rtas_token("get-sensor-state"); | |
113 | ras_check_exception_token = rtas_token("check-exception"); | |
114 | ||
115 | /* Internal Errors */ | |
116 | np = of_find_node_by_path("/event-sources/internal-errors"); | |
117 | if (np != NULL) { | |
118 | request_ras_irqs(np, "open-pic-interrupt", ras_error_interrupt, | |
119 | "RAS_ERROR"); | |
120 | request_ras_irqs(np, "interrupts", ras_error_interrupt, | |
121 | "RAS_ERROR"); | |
122 | of_node_put(np); | |
123 | } | |
124 | ||
125 | /* EPOW Events */ | |
126 | np = of_find_node_by_path("/event-sources/epow-events"); | |
127 | if (np != NULL) { | |
128 | request_ras_irqs(np, "open-pic-interrupt", ras_epow_interrupt, | |
129 | "RAS_EPOW"); | |
130 | request_ras_irqs(np, "interrupts", ras_epow_interrupt, | |
131 | "RAS_EPOW"); | |
132 | of_node_put(np); | |
133 | } | |
134 | ||
135 | return 1; | |
136 | } | |
137 | __initcall(init_ras_IRQ); | |
138 | ||
139 | /* | |
140 | * Handle power subsystem events (EPOW). | |
141 | * | |
142 | * Presently we just log the event has occurred. This should be fixed | |
143 | * to examine the type of power failure and take appropriate action where | |
144 | * the time horizon permits something useful to be done. | |
145 | */ | |
146 | static irqreturn_t | |
147 | ras_epow_interrupt(int irq, void *dev_id, struct pt_regs * regs) | |
148 | { | |
149 | int status = 0xdeadbeef; | |
150 | int state = 0; | |
151 | int critical; | |
152 | ||
153 | status = rtas_call(ras_get_sensor_state_token, 2, 2, &state, | |
154 | EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX); | |
155 | ||
156 | if (state > 3) | |
157 | critical = 1; /* Time Critical */ | |
158 | else | |
159 | critical = 0; | |
160 | ||
161 | spin_lock(&ras_log_buf_lock); | |
162 | ||
163 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, | |
164 | RAS_VECTOR_OFFSET, | |
165 | virt_irq_to_real(irq_offset_down(irq)), | |
166 | RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS, | |
167 | critical, __pa(&ras_log_buf), | |
168 | rtas_get_error_log_max()); | |
169 | ||
170 | udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n", | |
171 | *((unsigned long *)&ras_log_buf), status, state); | |
172 | printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n", | |
173 | *((unsigned long *)&ras_log_buf), status, state); | |
174 | ||
175 | /* format and print the extended information */ | |
176 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); | |
177 | ||
178 | spin_unlock(&ras_log_buf_lock); | |
179 | return IRQ_HANDLED; | |
180 | } | |
181 | ||
182 | /* | |
183 | * Handle hardware error interrupts. | |
184 | * | |
185 | * RTAS check-exception is called to collect data on the exception. If | |
186 | * the error is deemed recoverable, we log a warning and return. | |
187 | * For nonrecoverable errors, an error is logged and we stop all processing | |
188 | * as quickly as possible in order to prevent propagation of the failure. | |
189 | */ | |
190 | static irqreturn_t | |
191 | ras_error_interrupt(int irq, void *dev_id, struct pt_regs * regs) | |
192 | { | |
193 | struct rtas_error_log *rtas_elog; | |
194 | int status = 0xdeadbeef; | |
195 | int fatal; | |
196 | ||
197 | spin_lock(&ras_log_buf_lock); | |
198 | ||
199 | status = rtas_call(ras_check_exception_token, 6, 1, NULL, | |
200 | RAS_VECTOR_OFFSET, | |
201 | virt_irq_to_real(irq_offset_down(irq)), | |
202 | RTAS_INTERNAL_ERROR, 1 /*Time Critical */, | |
203 | __pa(&ras_log_buf), | |
204 | rtas_get_error_log_max()); | |
205 | ||
206 | rtas_elog = (struct rtas_error_log *)ras_log_buf; | |
207 | ||
208 | if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC)) | |
209 | fatal = 1; | |
210 | else | |
211 | fatal = 0; | |
212 | ||
213 | /* format and print the extended information */ | |
214 | log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); | |
215 | ||
216 | if (fatal) { | |
217 | udbg_printf("Fatal HW Error <0x%lx 0x%x>\n", | |
218 | *((unsigned long *)&ras_log_buf), status); | |
219 | printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n", | |
220 | *((unsigned long *)&ras_log_buf), status); | |
221 | ||
222 | #ifndef DEBUG | |
223 | /* Don't actually power off when debugging so we can test | |
224 | * without actually failing while injecting errors. | |
225 | * Error data will not be logged to syslog. | |
226 | */ | |
227 | ppc_md.power_off(); | |
228 | #endif | |
229 | } else { | |
230 | udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n", | |
231 | *((unsigned long *)&ras_log_buf), status); | |
232 | printk(KERN_WARNING | |
233 | "Warning: Recoverable hardware error <0x%lx 0x%x>\n", | |
234 | *((unsigned long *)&ras_log_buf), status); | |
235 | } | |
236 | ||
237 | spin_unlock(&ras_log_buf_lock); | |
238 | return IRQ_HANDLED; | |
239 | } | |
240 | ||
241 | /* Get the error information for errors coming through the | |
242 | * FWNMI vectors. The pt_regs' r3 will be updated to reflect | |
243 | * the actual r3 if possible, and a ptr to the error log entry | |
244 | * will be returned if found. | |
245 | * | |
246 | * The mce_data_buf does not have any locks or protection around it, | |
247 | * if a second machine check comes in, or a system reset is done | |
248 | * before we have logged the error, then we will get corruption in the | |
249 | * error log. This is preferable over holding off on calling | |
250 | * ibm,nmi-interlock which would result in us checkstopping if a | |
251 | * second machine check did come in. | |
252 | */ | |
253 | static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) | |
254 | { | |
255 | unsigned long errdata = regs->gpr[3]; | |
256 | struct rtas_error_log *errhdr = NULL; | |
257 | unsigned long *savep; | |
258 | ||
259 | if ((errdata >= 0x7000 && errdata < 0x7fff0) || | |
260 | (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) { | |
261 | savep = __va(errdata); | |
262 | regs->gpr[3] = savep[0]; /* restore original r3 */ | |
263 | memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX); | |
264 | memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX); | |
265 | errhdr = (struct rtas_error_log *)mce_data_buf; | |
266 | } else { | |
267 | printk("FWNMI: corrupt r3\n"); | |
268 | } | |
269 | return errhdr; | |
270 | } | |
271 | ||
272 | /* Call this when done with the data returned by FWNMI_get_errinfo. | |
273 | * It will release the saved data area for other CPUs in the | |
274 | * partition to receive FWNMI errors. | |
275 | */ | |
276 | static void fwnmi_release_errinfo(void) | |
277 | { | |
278 | int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); | |
279 | if (ret != 0) | |
280 | printk("FWNMI: nmi-interlock failed: %d\n", ret); | |
281 | } | |
282 | ||
283 | void pSeries_system_reset_exception(struct pt_regs *regs) | |
284 | { | |
285 | if (fwnmi_active) { | |
286 | struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); | |
287 | if (errhdr) { | |
288 | /* XXX Should look at FWNMI information */ | |
289 | } | |
290 | fwnmi_release_errinfo(); | |
291 | } | |
292 | } | |
293 | ||
294 | /* | |
295 | * See if we can recover from a machine check exception. | |
296 | * This is only called on power4 (or above) and only via | |
297 | * the Firmware Non-Maskable Interrupts (fwnmi) handler | |
298 | * which provides the error analysis for us. | |
299 | * | |
300 | * Return 1 if corrected (or delivered a signal). | |
301 | * Return 0 if there is nothing we can do. | |
302 | */ | |
303 | static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err) | |
304 | { | |
305 | int nonfatal = 0; | |
306 | ||
307 | if (err->disposition == RTAS_DISP_FULLY_RECOVERED) { | |
308 | /* Platform corrected itself */ | |
309 | nonfatal = 1; | |
310 | } else if ((regs->msr & MSR_RI) && | |
311 | user_mode(regs) && | |
312 | err->severity == RTAS_SEVERITY_ERROR_SYNC && | |
313 | err->disposition == RTAS_DISP_NOT_RECOVERED && | |
314 | err->target == RTAS_TARGET_MEMORY && | |
315 | err->type == RTAS_TYPE_ECC_UNCORR && | |
316 | !(current->pid == 0 || current->pid == 1)) { | |
317 | /* Kill off a user process with an ECC error */ | |
318 | printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n", | |
319 | current->pid); | |
320 | /* XXX something better for ECC error? */ | |
321 | _exception(SIGBUS, regs, BUS_ADRERR, regs->nip); | |
322 | nonfatal = 1; | |
323 | } | |
324 | ||
d9953105 | 325 | log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal); |
1da177e4 LT |
326 | |
327 | return nonfatal; | |
328 | } | |
329 | ||
330 | /* | |
331 | * Handle a machine check. | |
332 | * | |
333 | * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) | |
334 | * should be present. If so the handler which called us tells us if the | |
335 | * error was recovered (never true if RI=0). | |
336 | * | |
337 | * On hardware prior to Power 4 these exceptions were asynchronous which | |
338 | * means we can't tell exactly where it occurred and so we can't recover. | |
339 | */ | |
340 | int pSeries_machine_check_exception(struct pt_regs *regs) | |
341 | { | |
342 | struct rtas_error_log *errp; | |
343 | ||
344 | if (fwnmi_active) { | |
345 | errp = fwnmi_get_errinfo(regs); | |
346 | fwnmi_release_errinfo(); | |
347 | if (errp && recover_mce(regs, errp)) | |
348 | return 1; | |
349 | } | |
350 | ||
351 | return 0; | |
352 | } |