]>
Commit | Line | Data |
---|---|---|
86039bd3 AA |
1 | /* |
2 | * fs/userfaultfd.c | |
3 | * | |
4 | * Copyright (C) 2007 Davide Libenzi <[email protected]> | |
5 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
6 | * Copyright (C) 2015 Red Hat, Inc. | |
7 | * | |
8 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
9 | * the COPYING file in the top-level directory. | |
10 | * | |
11 | * Some part derived from fs/eventfd.c (anon inode setup) and | |
12 | * mm/ksm.c (mm hashing). | |
13 | */ | |
14 | ||
9cd75c3c | 15 | #include <linux/list.h> |
86039bd3 AA |
16 | #include <linux/hashtable.h> |
17 | #include <linux/sched.h> | |
18 | #include <linux/mm.h> | |
19 | #include <linux/poll.h> | |
20 | #include <linux/slab.h> | |
21 | #include <linux/seq_file.h> | |
22 | #include <linux/file.h> | |
23 | #include <linux/bug.h> | |
24 | #include <linux/anon_inodes.h> | |
25 | #include <linux/syscalls.h> | |
26 | #include <linux/userfaultfd_k.h> | |
27 | #include <linux/mempolicy.h> | |
28 | #include <linux/ioctl.h> | |
29 | #include <linux/security.h> | |
cab350af | 30 | #include <linux/hugetlb.h> |
86039bd3 | 31 | |
3004ec9c AA |
32 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
33 | ||
86039bd3 AA |
34 | enum userfaultfd_state { |
35 | UFFD_STATE_WAIT_API, | |
36 | UFFD_STATE_RUNNING, | |
37 | }; | |
38 | ||
3004ec9c AA |
39 | /* |
40 | * Start with fault_pending_wqh and fault_wqh so they're more likely | |
41 | * to be in the same cacheline. | |
42 | */ | |
86039bd3 | 43 | struct userfaultfd_ctx { |
15b726ef AA |
44 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
45 | wait_queue_head_t fault_pending_wqh; | |
46 | /* waitqueue head for the userfaults */ | |
86039bd3 AA |
47 | wait_queue_head_t fault_wqh; |
48 | /* waitqueue head for the pseudo fd to wakeup poll/read */ | |
49 | wait_queue_head_t fd_wqh; | |
9cd75c3c PE |
50 | /* waitqueue head for events */ |
51 | wait_queue_head_t event_wqh; | |
2c5b7e1b AA |
52 | /* a refile sequence protected by fault_pending_wqh lock */ |
53 | struct seqcount refile_seq; | |
3004ec9c AA |
54 | /* pseudo fd refcounting */ |
55 | atomic_t refcount; | |
86039bd3 AA |
56 | /* userfaultfd syscall flags */ |
57 | unsigned int flags; | |
9cd75c3c PE |
58 | /* features requested from the userspace */ |
59 | unsigned int features; | |
86039bd3 AA |
60 | /* state machine */ |
61 | enum userfaultfd_state state; | |
62 | /* released */ | |
63 | bool released; | |
64 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ | |
65 | struct mm_struct *mm; | |
66 | }; | |
67 | ||
893e26e6 PE |
68 | struct userfaultfd_fork_ctx { |
69 | struct userfaultfd_ctx *orig; | |
70 | struct userfaultfd_ctx *new; | |
71 | struct list_head list; | |
72 | }; | |
73 | ||
86039bd3 | 74 | struct userfaultfd_wait_queue { |
a9b85f94 | 75 | struct uffd_msg msg; |
86039bd3 | 76 | wait_queue_t wq; |
86039bd3 | 77 | struct userfaultfd_ctx *ctx; |
15a77c6f | 78 | bool waken; |
86039bd3 AA |
79 | }; |
80 | ||
81 | struct userfaultfd_wake_range { | |
82 | unsigned long start; | |
83 | unsigned long len; | |
84 | }; | |
85 | ||
86 | static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, | |
87 | int wake_flags, void *key) | |
88 | { | |
89 | struct userfaultfd_wake_range *range = key; | |
90 | int ret; | |
91 | struct userfaultfd_wait_queue *uwq; | |
92 | unsigned long start, len; | |
93 | ||
94 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
95 | ret = 0; | |
86039bd3 AA |
96 | /* len == 0 means wake all */ |
97 | start = range->start; | |
98 | len = range->len; | |
a9b85f94 AA |
99 | if (len && (start > uwq->msg.arg.pagefault.address || |
100 | start + len <= uwq->msg.arg.pagefault.address)) | |
86039bd3 | 101 | goto out; |
15a77c6f AA |
102 | WRITE_ONCE(uwq->waken, true); |
103 | /* | |
104 | * The implicit smp_mb__before_spinlock in try_to_wake_up() | |
105 | * renders uwq->waken visible to other CPUs before the task is | |
106 | * waken. | |
107 | */ | |
86039bd3 AA |
108 | ret = wake_up_state(wq->private, mode); |
109 | if (ret) | |
110 | /* | |
111 | * Wake only once, autoremove behavior. | |
112 | * | |
113 | * After the effect of list_del_init is visible to the | |
114 | * other CPUs, the waitqueue may disappear from under | |
115 | * us, see the !list_empty_careful() in | |
116 | * handle_userfault(). try_to_wake_up() has an | |
117 | * implicit smp_mb__before_spinlock, and the | |
118 | * wq->private is read before calling the extern | |
119 | * function "wake_up_state" (which in turns calls | |
120 | * try_to_wake_up). While the spin_lock;spin_unlock; | |
121 | * wouldn't be enough, the smp_mb__before_spinlock is | |
122 | * enough to avoid an explicit smp_mb() here. | |
123 | */ | |
124 | list_del_init(&wq->task_list); | |
125 | out: | |
126 | return ret; | |
127 | } | |
128 | ||
129 | /** | |
130 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | |
131 | * context. | |
132 | * @ctx: [in] Pointer to the userfaultfd context. | |
133 | * | |
134 | * Returns: In case of success, returns not zero. | |
135 | */ | |
136 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | |
137 | { | |
138 | if (!atomic_inc_not_zero(&ctx->refcount)) | |
139 | BUG(); | |
140 | } | |
141 | ||
142 | /** | |
143 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | |
144 | * context. | |
145 | * @ctx: [in] Pointer to userfaultfd context. | |
146 | * | |
147 | * The userfaultfd context reference must have been previously acquired either | |
148 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | |
149 | */ | |
150 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | |
151 | { | |
152 | if (atomic_dec_and_test(&ctx->refcount)) { | |
153 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); | |
154 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | |
155 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | |
156 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | |
9cd75c3c PE |
157 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
158 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); | |
86039bd3 AA |
159 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
160 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | |
d2005e3f | 161 | mmdrop(ctx->mm); |
3004ec9c | 162 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
86039bd3 AA |
163 | } |
164 | } | |
165 | ||
a9b85f94 | 166 | static inline void msg_init(struct uffd_msg *msg) |
86039bd3 | 167 | { |
a9b85f94 AA |
168 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
169 | /* | |
170 | * Must use memset to zero out the paddings or kernel data is | |
171 | * leaked to userland. | |
172 | */ | |
173 | memset(msg, 0, sizeof(struct uffd_msg)); | |
174 | } | |
175 | ||
176 | static inline struct uffd_msg userfault_msg(unsigned long address, | |
177 | unsigned int flags, | |
178 | unsigned long reason) | |
179 | { | |
180 | struct uffd_msg msg; | |
181 | msg_init(&msg); | |
182 | msg.event = UFFD_EVENT_PAGEFAULT; | |
183 | msg.arg.pagefault.address = address; | |
86039bd3 AA |
184 | if (flags & FAULT_FLAG_WRITE) |
185 | /* | |
a4605a61 | 186 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
a9b85f94 AA |
187 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE |
188 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | |
189 | * was a read fault, otherwise if set it means it's | |
190 | * a write fault. | |
86039bd3 | 191 | */ |
a9b85f94 | 192 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
86039bd3 AA |
193 | if (reason & VM_UFFD_WP) |
194 | /* | |
a9b85f94 AA |
195 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
196 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | |
197 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | |
198 | * a missing fault, otherwise if set it means it's a | |
199 | * write protect fault. | |
86039bd3 | 200 | */ |
a9b85f94 AA |
201 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
202 | return msg; | |
86039bd3 AA |
203 | } |
204 | ||
369cd212 MK |
205 | #ifdef CONFIG_HUGETLB_PAGE |
206 | /* | |
207 | * Same functionality as userfaultfd_must_wait below with modifications for | |
208 | * hugepmd ranges. | |
209 | */ | |
210 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
211 | unsigned long address, | |
212 | unsigned long flags, | |
213 | unsigned long reason) | |
214 | { | |
215 | struct mm_struct *mm = ctx->mm; | |
216 | pte_t *pte; | |
217 | bool ret = true; | |
218 | ||
219 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
220 | ||
221 | pte = huge_pte_offset(mm, address); | |
222 | if (!pte) | |
223 | goto out; | |
224 | ||
225 | ret = false; | |
226 | ||
227 | /* | |
228 | * Lockless access: we're in a wait_event so it's ok if it | |
229 | * changes under us. | |
230 | */ | |
231 | if (huge_pte_none(*pte)) | |
232 | ret = true; | |
233 | if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) | |
234 | ret = true; | |
235 | out: | |
236 | return ret; | |
237 | } | |
238 | #else | |
239 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
240 | unsigned long address, | |
241 | unsigned long flags, | |
242 | unsigned long reason) | |
243 | { | |
244 | return false; /* should never get here */ | |
245 | } | |
246 | #endif /* CONFIG_HUGETLB_PAGE */ | |
247 | ||
8d2afd96 AA |
248 | /* |
249 | * Verify the pagetables are still not ok after having reigstered into | |
250 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | |
251 | * userfault that has already been resolved, if userfaultfd_read and | |
252 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | |
253 | * threads. | |
254 | */ | |
255 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | |
256 | unsigned long address, | |
257 | unsigned long flags, | |
258 | unsigned long reason) | |
259 | { | |
260 | struct mm_struct *mm = ctx->mm; | |
261 | pgd_t *pgd; | |
262 | pud_t *pud; | |
263 | pmd_t *pmd, _pmd; | |
264 | pte_t *pte; | |
265 | bool ret = true; | |
266 | ||
267 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
268 | ||
269 | pgd = pgd_offset(mm, address); | |
270 | if (!pgd_present(*pgd)) | |
271 | goto out; | |
272 | pud = pud_offset(pgd, address); | |
273 | if (!pud_present(*pud)) | |
274 | goto out; | |
275 | pmd = pmd_offset(pud, address); | |
276 | /* | |
277 | * READ_ONCE must function as a barrier with narrower scope | |
278 | * and it must be equivalent to: | |
279 | * _pmd = *pmd; barrier(); | |
280 | * | |
281 | * This is to deal with the instability (as in | |
282 | * pmd_trans_unstable) of the pmd. | |
283 | */ | |
284 | _pmd = READ_ONCE(*pmd); | |
285 | if (!pmd_present(_pmd)) | |
286 | goto out; | |
287 | ||
288 | ret = false; | |
289 | if (pmd_trans_huge(_pmd)) | |
290 | goto out; | |
291 | ||
292 | /* | |
293 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | |
294 | * and use the standard pte_offset_map() instead of parsing _pmd. | |
295 | */ | |
296 | pte = pte_offset_map(pmd, address); | |
297 | /* | |
298 | * Lockless access: we're in a wait_event so it's ok if it | |
299 | * changes under us. | |
300 | */ | |
301 | if (pte_none(*pte)) | |
302 | ret = true; | |
303 | pte_unmap(pte); | |
304 | ||
305 | out: | |
306 | return ret; | |
307 | } | |
308 | ||
86039bd3 AA |
309 | /* |
310 | * The locking rules involved in returning VM_FAULT_RETRY depending on | |
311 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | |
312 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | |
313 | * recommendation in __lock_page_or_retry is not an understatement. | |
314 | * | |
315 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | |
316 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | |
317 | * not set. | |
318 | * | |
319 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | |
320 | * set, VM_FAULT_RETRY can still be returned if and only if there are | |
321 | * fatal_signal_pending()s, and the mmap_sem must be released before | |
322 | * returning it. | |
323 | */ | |
82b0f8c3 | 324 | int handle_userfault(struct vm_fault *vmf, unsigned long reason) |
86039bd3 | 325 | { |
82b0f8c3 | 326 | struct mm_struct *mm = vmf->vma->vm_mm; |
86039bd3 AA |
327 | struct userfaultfd_ctx *ctx; |
328 | struct userfaultfd_wait_queue uwq; | |
ba85c702 | 329 | int ret; |
dfa37dc3 | 330 | bool must_wait, return_to_userland; |
15a77c6f | 331 | long blocking_state; |
86039bd3 AA |
332 | |
333 | BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
334 | ||
ba85c702 | 335 | ret = VM_FAULT_SIGBUS; |
82b0f8c3 | 336 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
86039bd3 | 337 | if (!ctx) |
ba85c702 | 338 | goto out; |
86039bd3 AA |
339 | |
340 | BUG_ON(ctx->mm != mm); | |
341 | ||
342 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | |
343 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | |
344 | ||
345 | /* | |
346 | * If it's already released don't get it. This avoids to loop | |
347 | * in __get_user_pages if userfaultfd_release waits on the | |
348 | * caller of handle_userfault to release the mmap_sem. | |
349 | */ | |
350 | if (unlikely(ACCESS_ONCE(ctx->released))) | |
ba85c702 | 351 | goto out; |
86039bd3 | 352 | |
39680f50 LT |
353 | /* |
354 | * We don't do userfault handling for the final child pid update. | |
355 | */ | |
356 | if (current->flags & PF_EXITING) | |
357 | goto out; | |
358 | ||
86039bd3 AA |
359 | /* |
360 | * Check that we can return VM_FAULT_RETRY. | |
361 | * | |
362 | * NOTE: it should become possible to return VM_FAULT_RETRY | |
363 | * even if FAULT_FLAG_TRIED is set without leading to gup() | |
364 | * -EBUSY failures, if the userfaultfd is to be extended for | |
365 | * VM_UFFD_WP tracking and we intend to arm the userfault | |
366 | * without first stopping userland access to the memory. For | |
367 | * VM_UFFD_MISSING userfaults this is enough for now. | |
368 | */ | |
82b0f8c3 | 369 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
86039bd3 AA |
370 | /* |
371 | * Validate the invariant that nowait must allow retry | |
372 | * to be sure not to return SIGBUS erroneously on | |
373 | * nowait invocations. | |
374 | */ | |
82b0f8c3 | 375 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
86039bd3 AA |
376 | #ifdef CONFIG_DEBUG_VM |
377 | if (printk_ratelimit()) { | |
378 | printk(KERN_WARNING | |
82b0f8c3 JK |
379 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
380 | vmf->flags); | |
86039bd3 AA |
381 | dump_stack(); |
382 | } | |
383 | #endif | |
ba85c702 | 384 | goto out; |
86039bd3 AA |
385 | } |
386 | ||
387 | /* | |
388 | * Handle nowait, not much to do other than tell it to retry | |
389 | * and wait. | |
390 | */ | |
ba85c702 | 391 | ret = VM_FAULT_RETRY; |
82b0f8c3 | 392 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
ba85c702 | 393 | goto out; |
86039bd3 AA |
394 | |
395 | /* take the reference before dropping the mmap_sem */ | |
396 | userfaultfd_ctx_get(ctx); | |
397 | ||
86039bd3 AA |
398 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
399 | uwq.wq.private = current; | |
82b0f8c3 | 400 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); |
86039bd3 | 401 | uwq.ctx = ctx; |
15a77c6f | 402 | uwq.waken = false; |
86039bd3 | 403 | |
bae473a4 | 404 | return_to_userland = |
82b0f8c3 | 405 | (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == |
dfa37dc3 | 406 | (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); |
15a77c6f AA |
407 | blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : |
408 | TASK_KILLABLE; | |
dfa37dc3 | 409 | |
15b726ef | 410 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
411 | /* |
412 | * After the __add_wait_queue the uwq is visible to userland | |
413 | * through poll/read(). | |
414 | */ | |
15b726ef AA |
415 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
416 | /* | |
417 | * The smp_mb() after __set_current_state prevents the reads | |
418 | * following the spin_unlock to happen before the list_add in | |
419 | * __add_wait_queue. | |
420 | */ | |
15a77c6f | 421 | set_current_state(blocking_state); |
15b726ef | 422 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 423 | |
369cd212 MK |
424 | if (!is_vm_hugetlb_page(vmf->vma)) |
425 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, | |
426 | reason); | |
427 | else | |
428 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->address, | |
429 | vmf->flags, reason); | |
8d2afd96 AA |
430 | up_read(&mm->mmap_sem); |
431 | ||
432 | if (likely(must_wait && !ACCESS_ONCE(ctx->released) && | |
dfa37dc3 AA |
433 | (return_to_userland ? !signal_pending(current) : |
434 | !fatal_signal_pending(current)))) { | |
86039bd3 AA |
435 | wake_up_poll(&ctx->fd_wqh, POLLIN); |
436 | schedule(); | |
ba85c702 | 437 | ret |= VM_FAULT_MAJOR; |
15a77c6f AA |
438 | |
439 | /* | |
440 | * False wakeups can orginate even from rwsem before | |
441 | * up_read() however userfaults will wait either for a | |
442 | * targeted wakeup on the specific uwq waitqueue from | |
443 | * wake_userfault() or for signals or for uffd | |
444 | * release. | |
445 | */ | |
446 | while (!READ_ONCE(uwq.waken)) { | |
447 | /* | |
448 | * This needs the full smp_store_mb() | |
449 | * guarantee as the state write must be | |
450 | * visible to other CPUs before reading | |
451 | * uwq.waken from other CPUs. | |
452 | */ | |
453 | set_current_state(blocking_state); | |
454 | if (READ_ONCE(uwq.waken) || | |
455 | READ_ONCE(ctx->released) || | |
456 | (return_to_userland ? signal_pending(current) : | |
457 | fatal_signal_pending(current))) | |
458 | break; | |
459 | schedule(); | |
460 | } | |
ba85c702 | 461 | } |
86039bd3 | 462 | |
ba85c702 | 463 | __set_current_state(TASK_RUNNING); |
15b726ef | 464 | |
dfa37dc3 AA |
465 | if (return_to_userland) { |
466 | if (signal_pending(current) && | |
467 | !fatal_signal_pending(current)) { | |
468 | /* | |
469 | * If we got a SIGSTOP or SIGCONT and this is | |
470 | * a normal userland page fault, just let | |
471 | * userland return so the signal will be | |
472 | * handled and gdb debugging works. The page | |
473 | * fault code immediately after we return from | |
474 | * this function is going to release the | |
475 | * mmap_sem and it's not depending on it | |
476 | * (unlike gup would if we were not to return | |
477 | * VM_FAULT_RETRY). | |
478 | * | |
479 | * If a fatal signal is pending we still take | |
480 | * the streamlined VM_FAULT_RETRY failure path | |
481 | * and there's no need to retake the mmap_sem | |
482 | * in such case. | |
483 | */ | |
484 | down_read(&mm->mmap_sem); | |
485 | ret = 0; | |
486 | } | |
487 | } | |
488 | ||
15b726ef AA |
489 | /* |
490 | * Here we race with the list_del; list_add in | |
491 | * userfaultfd_ctx_read(), however because we don't ever run | |
492 | * list_del_init() to refile across the two lists, the prev | |
493 | * and next pointers will never point to self. list_add also | |
494 | * would never let any of the two pointers to point to | |
495 | * self. So list_empty_careful won't risk to see both pointers | |
496 | * pointing to self at any time during the list refile. The | |
497 | * only case where list_del_init() is called is the full | |
498 | * removal in the wake function and there we don't re-list_add | |
499 | * and it's fine not to block on the spinlock. The uwq on this | |
500 | * kernel stack can be released after the list_del_init. | |
501 | */ | |
ba85c702 | 502 | if (!list_empty_careful(&uwq.wq.task_list)) { |
15b726ef AA |
503 | spin_lock(&ctx->fault_pending_wqh.lock); |
504 | /* | |
505 | * No need of list_del_init(), the uwq on the stack | |
506 | * will be freed shortly anyway. | |
507 | */ | |
508 | list_del(&uwq.wq.task_list); | |
509 | spin_unlock(&ctx->fault_pending_wqh.lock); | |
86039bd3 | 510 | } |
86039bd3 AA |
511 | |
512 | /* | |
513 | * ctx may go away after this if the userfault pseudo fd is | |
514 | * already released. | |
515 | */ | |
516 | userfaultfd_ctx_put(ctx); | |
517 | ||
ba85c702 AA |
518 | out: |
519 | return ret; | |
86039bd3 AA |
520 | } |
521 | ||
893e26e6 PE |
522 | static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
523 | struct userfaultfd_wait_queue *ewq) | |
9cd75c3c PE |
524 | { |
525 | int ret = 0; | |
526 | ||
527 | ewq->ctx = ctx; | |
528 | init_waitqueue_entry(&ewq->wq, current); | |
529 | ||
530 | spin_lock(&ctx->event_wqh.lock); | |
531 | /* | |
532 | * After the __add_wait_queue the uwq is visible to userland | |
533 | * through poll/read(). | |
534 | */ | |
535 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); | |
536 | for (;;) { | |
537 | set_current_state(TASK_KILLABLE); | |
538 | if (ewq->msg.event == 0) | |
539 | break; | |
540 | if (ACCESS_ONCE(ctx->released) || | |
541 | fatal_signal_pending(current)) { | |
542 | ret = -1; | |
543 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
544 | break; | |
545 | } | |
546 | ||
547 | spin_unlock(&ctx->event_wqh.lock); | |
548 | ||
549 | wake_up_poll(&ctx->fd_wqh, POLLIN); | |
550 | schedule(); | |
551 | ||
552 | spin_lock(&ctx->event_wqh.lock); | |
553 | } | |
554 | __set_current_state(TASK_RUNNING); | |
555 | spin_unlock(&ctx->event_wqh.lock); | |
556 | ||
557 | /* | |
558 | * ctx may go away after this if the userfault pseudo fd is | |
559 | * already released. | |
560 | */ | |
561 | ||
562 | userfaultfd_ctx_put(ctx); | |
563 | return ret; | |
564 | } | |
565 | ||
566 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, | |
567 | struct userfaultfd_wait_queue *ewq) | |
568 | { | |
569 | ewq->msg.event = 0; | |
570 | wake_up_locked(&ctx->event_wqh); | |
571 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
572 | } | |
573 | ||
893e26e6 PE |
574 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
575 | { | |
576 | struct userfaultfd_ctx *ctx = NULL, *octx; | |
577 | struct userfaultfd_fork_ctx *fctx; | |
578 | ||
579 | octx = vma->vm_userfaultfd_ctx.ctx; | |
580 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { | |
581 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
582 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
583 | return 0; | |
584 | } | |
585 | ||
586 | list_for_each_entry(fctx, fcs, list) | |
587 | if (fctx->orig == octx) { | |
588 | ctx = fctx->new; | |
589 | break; | |
590 | } | |
591 | ||
592 | if (!ctx) { | |
593 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); | |
594 | if (!fctx) | |
595 | return -ENOMEM; | |
596 | ||
597 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | |
598 | if (!ctx) { | |
599 | kfree(fctx); | |
600 | return -ENOMEM; | |
601 | } | |
602 | ||
603 | atomic_set(&ctx->refcount, 1); | |
604 | ctx->flags = octx->flags; | |
605 | ctx->state = UFFD_STATE_RUNNING; | |
606 | ctx->features = octx->features; | |
607 | ctx->released = false; | |
608 | ctx->mm = vma->vm_mm; | |
d3aadc8e | 609 | atomic_inc(&ctx->mm->mm_count); |
893e26e6 PE |
610 | |
611 | userfaultfd_ctx_get(octx); | |
612 | fctx->orig = octx; | |
613 | fctx->new = ctx; | |
614 | list_add_tail(&fctx->list, fcs); | |
615 | } | |
616 | ||
617 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
618 | return 0; | |
619 | } | |
620 | ||
621 | static int dup_fctx(struct userfaultfd_fork_ctx *fctx) | |
622 | { | |
623 | struct userfaultfd_ctx *ctx = fctx->orig; | |
624 | struct userfaultfd_wait_queue ewq; | |
625 | ||
626 | msg_init(&ewq.msg); | |
627 | ||
628 | ewq.msg.event = UFFD_EVENT_FORK; | |
629 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; | |
630 | ||
631 | return userfaultfd_event_wait_completion(ctx, &ewq); | |
632 | } | |
633 | ||
634 | void dup_userfaultfd_complete(struct list_head *fcs) | |
635 | { | |
636 | int ret = 0; | |
637 | struct userfaultfd_fork_ctx *fctx, *n; | |
638 | ||
639 | list_for_each_entry_safe(fctx, n, fcs, list) { | |
640 | if (!ret) | |
641 | ret = dup_fctx(fctx); | |
642 | list_del(&fctx->list); | |
643 | kfree(fctx); | |
644 | } | |
645 | } | |
646 | ||
72f87654 PE |
647 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
648 | struct vm_userfaultfd_ctx *vm_ctx) | |
649 | { | |
650 | struct userfaultfd_ctx *ctx; | |
651 | ||
652 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
653 | if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { | |
654 | vm_ctx->ctx = ctx; | |
655 | userfaultfd_ctx_get(ctx); | |
656 | } | |
657 | } | |
658 | ||
90794bf1 | 659 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
72f87654 PE |
660 | unsigned long from, unsigned long to, |
661 | unsigned long len) | |
662 | { | |
90794bf1 | 663 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
72f87654 PE |
664 | struct userfaultfd_wait_queue ewq; |
665 | ||
666 | if (!ctx) | |
667 | return; | |
668 | ||
669 | if (to & ~PAGE_MASK) { | |
670 | userfaultfd_ctx_put(ctx); | |
671 | return; | |
672 | } | |
673 | ||
674 | msg_init(&ewq.msg); | |
675 | ||
676 | ewq.msg.event = UFFD_EVENT_REMAP; | |
677 | ewq.msg.arg.remap.from = from; | |
678 | ewq.msg.arg.remap.to = to; | |
679 | ewq.msg.arg.remap.len = len; | |
680 | ||
681 | userfaultfd_event_wait_completion(ctx, &ewq); | |
682 | } | |
683 | ||
d811914d MR |
684 | void userfaultfd_remove(struct vm_area_struct *vma, |
685 | struct vm_area_struct **prev, | |
686 | unsigned long start, unsigned long end) | |
05ce7724 PE |
687 | { |
688 | struct mm_struct *mm = vma->vm_mm; | |
689 | struct userfaultfd_ctx *ctx; | |
690 | struct userfaultfd_wait_queue ewq; | |
691 | ||
692 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
d811914d | 693 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
05ce7724 PE |
694 | return; |
695 | ||
696 | userfaultfd_ctx_get(ctx); | |
697 | up_read(&mm->mmap_sem); | |
698 | ||
699 | *prev = NULL; /* We wait for ACK w/o the mmap semaphore */ | |
700 | ||
701 | msg_init(&ewq.msg); | |
702 | ||
d811914d MR |
703 | ewq.msg.event = UFFD_EVENT_REMOVE; |
704 | ewq.msg.arg.remove.start = start; | |
705 | ewq.msg.arg.remove.end = end; | |
05ce7724 PE |
706 | |
707 | userfaultfd_event_wait_completion(ctx, &ewq); | |
708 | ||
709 | down_read(&mm->mmap_sem); | |
710 | } | |
711 | ||
86039bd3 AA |
712 | static int userfaultfd_release(struct inode *inode, struct file *file) |
713 | { | |
714 | struct userfaultfd_ctx *ctx = file->private_data; | |
715 | struct mm_struct *mm = ctx->mm; | |
716 | struct vm_area_struct *vma, *prev; | |
717 | /* len == 0 means wake all */ | |
718 | struct userfaultfd_wake_range range = { .len = 0, }; | |
719 | unsigned long new_flags; | |
720 | ||
721 | ACCESS_ONCE(ctx->released) = true; | |
722 | ||
d2005e3f ON |
723 | if (!mmget_not_zero(mm)) |
724 | goto wakeup; | |
725 | ||
86039bd3 AA |
726 | /* |
727 | * Flush page faults out of all CPUs. NOTE: all page faults | |
728 | * must be retried without returning VM_FAULT_SIGBUS if | |
729 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | |
730 | * changes while handle_userfault released the mmap_sem. So | |
731 | * it's critical that released is set to true (above), before | |
732 | * taking the mmap_sem for writing. | |
733 | */ | |
734 | down_write(&mm->mmap_sem); | |
735 | prev = NULL; | |
736 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
737 | cond_resched(); | |
738 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | |
739 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
740 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | |
741 | prev = vma; | |
742 | continue; | |
743 | } | |
744 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
745 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | |
746 | new_flags, vma->anon_vma, | |
747 | vma->vm_file, vma->vm_pgoff, | |
748 | vma_policy(vma), | |
749 | NULL_VM_UFFD_CTX); | |
750 | if (prev) | |
751 | vma = prev; | |
752 | else | |
753 | prev = vma; | |
754 | vma->vm_flags = new_flags; | |
755 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
756 | } | |
757 | up_write(&mm->mmap_sem); | |
d2005e3f ON |
758 | mmput(mm); |
759 | wakeup: | |
86039bd3 | 760 | /* |
15b726ef | 761 | * After no new page faults can wait on this fault_*wqh, flush |
86039bd3 | 762 | * the last page faults that may have been already waiting on |
15b726ef | 763 | * the fault_*wqh. |
86039bd3 | 764 | */ |
15b726ef | 765 | spin_lock(&ctx->fault_pending_wqh.lock); |
ac5be6b4 AA |
766 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
767 | __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); | |
15b726ef | 768 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
769 | |
770 | wake_up_poll(&ctx->fd_wqh, POLLHUP); | |
771 | userfaultfd_ctx_put(ctx); | |
772 | return 0; | |
773 | } | |
774 | ||
15b726ef | 775 | /* fault_pending_wqh.lock must be hold by the caller */ |
6dcc27fd PE |
776 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
777 | wait_queue_head_t *wqh) | |
86039bd3 AA |
778 | { |
779 | wait_queue_t *wq; | |
15b726ef | 780 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 781 | |
6dcc27fd | 782 | VM_BUG_ON(!spin_is_locked(&wqh->lock)); |
86039bd3 | 783 | |
15b726ef | 784 | uwq = NULL; |
6dcc27fd | 785 | if (!waitqueue_active(wqh)) |
15b726ef AA |
786 | goto out; |
787 | /* walk in reverse to provide FIFO behavior to read userfaults */ | |
6dcc27fd | 788 | wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); |
15b726ef AA |
789 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
790 | out: | |
791 | return uwq; | |
86039bd3 | 792 | } |
6dcc27fd PE |
793 | |
794 | static inline struct userfaultfd_wait_queue *find_userfault( | |
795 | struct userfaultfd_ctx *ctx) | |
796 | { | |
797 | return find_userfault_in(&ctx->fault_pending_wqh); | |
798 | } | |
86039bd3 | 799 | |
9cd75c3c PE |
800 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
801 | struct userfaultfd_ctx *ctx) | |
802 | { | |
803 | return find_userfault_in(&ctx->event_wqh); | |
804 | } | |
805 | ||
86039bd3 AA |
806 | static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) |
807 | { | |
808 | struct userfaultfd_ctx *ctx = file->private_data; | |
809 | unsigned int ret; | |
810 | ||
811 | poll_wait(file, &ctx->fd_wqh, wait); | |
812 | ||
813 | switch (ctx->state) { | |
814 | case UFFD_STATE_WAIT_API: | |
815 | return POLLERR; | |
816 | case UFFD_STATE_RUNNING: | |
ba85c702 AA |
817 | /* |
818 | * poll() never guarantees that read won't block. | |
819 | * userfaults can be waken before they're read(). | |
820 | */ | |
821 | if (unlikely(!(file->f_flags & O_NONBLOCK))) | |
822 | return POLLERR; | |
15b726ef AA |
823 | /* |
824 | * lockless access to see if there are pending faults | |
825 | * __pollwait last action is the add_wait_queue but | |
826 | * the spin_unlock would allow the waitqueue_active to | |
827 | * pass above the actual list_add inside | |
828 | * add_wait_queue critical section. So use a full | |
829 | * memory barrier to serialize the list_add write of | |
830 | * add_wait_queue() with the waitqueue_active read | |
831 | * below. | |
832 | */ | |
833 | ret = 0; | |
834 | smp_mb(); | |
835 | if (waitqueue_active(&ctx->fault_pending_wqh)) | |
836 | ret = POLLIN; | |
9cd75c3c PE |
837 | else if (waitqueue_active(&ctx->event_wqh)) |
838 | ret = POLLIN; | |
839 | ||
86039bd3 AA |
840 | return ret; |
841 | default: | |
8474901a AA |
842 | WARN_ON_ONCE(1); |
843 | return POLLERR; | |
86039bd3 AA |
844 | } |
845 | } | |
846 | ||
893e26e6 PE |
847 | static const struct file_operations userfaultfd_fops; |
848 | ||
849 | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, | |
850 | struct userfaultfd_ctx *new, | |
851 | struct uffd_msg *msg) | |
852 | { | |
853 | int fd; | |
854 | struct file *file; | |
855 | unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; | |
856 | ||
857 | fd = get_unused_fd_flags(flags); | |
858 | if (fd < 0) | |
859 | return fd; | |
860 | ||
861 | file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, | |
862 | O_RDWR | flags); | |
863 | if (IS_ERR(file)) { | |
864 | put_unused_fd(fd); | |
865 | return PTR_ERR(file); | |
866 | } | |
867 | ||
868 | fd_install(fd, file); | |
869 | msg->arg.reserved.reserved1 = 0; | |
870 | msg->arg.fork.ufd = fd; | |
871 | ||
872 | return 0; | |
873 | } | |
874 | ||
86039bd3 | 875 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
a9b85f94 | 876 | struct uffd_msg *msg) |
86039bd3 AA |
877 | { |
878 | ssize_t ret; | |
879 | DECLARE_WAITQUEUE(wait, current); | |
15b726ef | 880 | struct userfaultfd_wait_queue *uwq; |
893e26e6 PE |
881 | /* |
882 | * Handling fork event requires sleeping operations, so | |
883 | * we drop the event_wqh lock, then do these ops, then | |
884 | * lock it back and wake up the waiter. While the lock is | |
885 | * dropped the ewq may go away so we keep track of it | |
886 | * carefully. | |
887 | */ | |
888 | LIST_HEAD(fork_event); | |
889 | struct userfaultfd_ctx *fork_nctx = NULL; | |
86039bd3 | 890 | |
15b726ef | 891 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
86039bd3 AA |
892 | spin_lock(&ctx->fd_wqh.lock); |
893 | __add_wait_queue(&ctx->fd_wqh, &wait); | |
894 | for (;;) { | |
895 | set_current_state(TASK_INTERRUPTIBLE); | |
15b726ef AA |
896 | spin_lock(&ctx->fault_pending_wqh.lock); |
897 | uwq = find_userfault(ctx); | |
898 | if (uwq) { | |
2c5b7e1b AA |
899 | /* |
900 | * Use a seqcount to repeat the lockless check | |
901 | * in wake_userfault() to avoid missing | |
902 | * wakeups because during the refile both | |
903 | * waitqueue could become empty if this is the | |
904 | * only userfault. | |
905 | */ | |
906 | write_seqcount_begin(&ctx->refile_seq); | |
907 | ||
86039bd3 | 908 | /* |
15b726ef AA |
909 | * The fault_pending_wqh.lock prevents the uwq |
910 | * to disappear from under us. | |
911 | * | |
912 | * Refile this userfault from | |
913 | * fault_pending_wqh to fault_wqh, it's not | |
914 | * pending anymore after we read it. | |
915 | * | |
916 | * Use list_del() by hand (as | |
917 | * userfaultfd_wake_function also uses | |
918 | * list_del_init() by hand) to be sure nobody | |
919 | * changes __remove_wait_queue() to use | |
920 | * list_del_init() in turn breaking the | |
921 | * !list_empty_careful() check in | |
922 | * handle_userfault(). The uwq->wq.task_list | |
923 | * must never be empty at any time during the | |
924 | * refile, or the waitqueue could disappear | |
925 | * from under us. The "wait_queue_head_t" | |
926 | * parameter of __remove_wait_queue() is unused | |
927 | * anyway. | |
86039bd3 | 928 | */ |
15b726ef AA |
929 | list_del(&uwq->wq.task_list); |
930 | __add_wait_queue(&ctx->fault_wqh, &uwq->wq); | |
931 | ||
2c5b7e1b AA |
932 | write_seqcount_end(&ctx->refile_seq); |
933 | ||
a9b85f94 AA |
934 | /* careful to always initialize msg if ret == 0 */ |
935 | *msg = uwq->msg; | |
15b726ef | 936 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
937 | ret = 0; |
938 | break; | |
939 | } | |
15b726ef | 940 | spin_unlock(&ctx->fault_pending_wqh.lock); |
9cd75c3c PE |
941 | |
942 | spin_lock(&ctx->event_wqh.lock); | |
943 | uwq = find_userfault_evt(ctx); | |
944 | if (uwq) { | |
945 | *msg = uwq->msg; | |
946 | ||
893e26e6 PE |
947 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
948 | fork_nctx = (struct userfaultfd_ctx *) | |
949 | (unsigned long) | |
950 | uwq->msg.arg.reserved.reserved1; | |
951 | list_move(&uwq->wq.task_list, &fork_event); | |
952 | spin_unlock(&ctx->event_wqh.lock); | |
953 | ret = 0; | |
954 | break; | |
955 | } | |
956 | ||
9cd75c3c PE |
957 | userfaultfd_event_complete(ctx, uwq); |
958 | spin_unlock(&ctx->event_wqh.lock); | |
959 | ret = 0; | |
960 | break; | |
961 | } | |
962 | spin_unlock(&ctx->event_wqh.lock); | |
963 | ||
86039bd3 AA |
964 | if (signal_pending(current)) { |
965 | ret = -ERESTARTSYS; | |
966 | break; | |
967 | } | |
968 | if (no_wait) { | |
969 | ret = -EAGAIN; | |
970 | break; | |
971 | } | |
972 | spin_unlock(&ctx->fd_wqh.lock); | |
973 | schedule(); | |
974 | spin_lock(&ctx->fd_wqh.lock); | |
975 | } | |
976 | __remove_wait_queue(&ctx->fd_wqh, &wait); | |
977 | __set_current_state(TASK_RUNNING); | |
978 | spin_unlock(&ctx->fd_wqh.lock); | |
979 | ||
893e26e6 PE |
980 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
981 | ret = resolve_userfault_fork(ctx, fork_nctx, msg); | |
982 | ||
983 | if (!ret) { | |
984 | spin_lock(&ctx->event_wqh.lock); | |
985 | if (!list_empty(&fork_event)) { | |
986 | uwq = list_first_entry(&fork_event, | |
987 | typeof(*uwq), | |
988 | wq.task_list); | |
989 | list_del(&uwq->wq.task_list); | |
990 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); | |
991 | userfaultfd_event_complete(ctx, uwq); | |
992 | } | |
993 | spin_unlock(&ctx->event_wqh.lock); | |
994 | } | |
995 | } | |
996 | ||
86039bd3 AA |
997 | return ret; |
998 | } | |
999 | ||
1000 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | |
1001 | size_t count, loff_t *ppos) | |
1002 | { | |
1003 | struct userfaultfd_ctx *ctx = file->private_data; | |
1004 | ssize_t _ret, ret = 0; | |
a9b85f94 | 1005 | struct uffd_msg msg; |
86039bd3 AA |
1006 | int no_wait = file->f_flags & O_NONBLOCK; |
1007 | ||
1008 | if (ctx->state == UFFD_STATE_WAIT_API) | |
1009 | return -EINVAL; | |
86039bd3 AA |
1010 | |
1011 | for (;;) { | |
a9b85f94 | 1012 | if (count < sizeof(msg)) |
86039bd3 | 1013 | return ret ? ret : -EINVAL; |
a9b85f94 | 1014 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
86039bd3 AA |
1015 | if (_ret < 0) |
1016 | return ret ? ret : _ret; | |
a9b85f94 | 1017 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
86039bd3 | 1018 | return ret ? ret : -EFAULT; |
a9b85f94 AA |
1019 | ret += sizeof(msg); |
1020 | buf += sizeof(msg); | |
1021 | count -= sizeof(msg); | |
86039bd3 AA |
1022 | /* |
1023 | * Allow to read more than one fault at time but only | |
1024 | * block if waiting for the very first one. | |
1025 | */ | |
1026 | no_wait = O_NONBLOCK; | |
1027 | } | |
1028 | } | |
1029 | ||
1030 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | |
1031 | struct userfaultfd_wake_range *range) | |
1032 | { | |
1033 | unsigned long start, end; | |
1034 | ||
1035 | start = range->start; | |
1036 | end = range->start + range->len; | |
1037 | ||
15b726ef | 1038 | spin_lock(&ctx->fault_pending_wqh.lock); |
86039bd3 | 1039 | /* wake all in the range and autoremove */ |
15b726ef | 1040 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
ac5be6b4 | 1041 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
15b726ef AA |
1042 | range); |
1043 | if (waitqueue_active(&ctx->fault_wqh)) | |
ac5be6b4 | 1044 | __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); |
15b726ef | 1045 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1046 | } |
1047 | ||
1048 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | |
1049 | struct userfaultfd_wake_range *range) | |
1050 | { | |
2c5b7e1b AA |
1051 | unsigned seq; |
1052 | bool need_wakeup; | |
1053 | ||
86039bd3 AA |
1054 | /* |
1055 | * To be sure waitqueue_active() is not reordered by the CPU | |
1056 | * before the pagetable update, use an explicit SMP memory | |
1057 | * barrier here. PT lock release or up_read(mmap_sem) still | |
1058 | * have release semantics that can allow the | |
1059 | * waitqueue_active() to be reordered before the pte update. | |
1060 | */ | |
1061 | smp_mb(); | |
1062 | ||
1063 | /* | |
1064 | * Use waitqueue_active because it's very frequent to | |
1065 | * change the address space atomically even if there are no | |
1066 | * userfaults yet. So we take the spinlock only when we're | |
1067 | * sure we've userfaults to wake. | |
1068 | */ | |
2c5b7e1b AA |
1069 | do { |
1070 | seq = read_seqcount_begin(&ctx->refile_seq); | |
1071 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | |
1072 | waitqueue_active(&ctx->fault_wqh); | |
1073 | cond_resched(); | |
1074 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | |
1075 | if (need_wakeup) | |
86039bd3 AA |
1076 | __wake_userfault(ctx, range); |
1077 | } | |
1078 | ||
1079 | static __always_inline int validate_range(struct mm_struct *mm, | |
1080 | __u64 start, __u64 len) | |
1081 | { | |
1082 | __u64 task_size = mm->task_size; | |
1083 | ||
1084 | if (start & ~PAGE_MASK) | |
1085 | return -EINVAL; | |
1086 | if (len & ~PAGE_MASK) | |
1087 | return -EINVAL; | |
1088 | if (!len) | |
1089 | return -EINVAL; | |
1090 | if (start < mmap_min_addr) | |
1091 | return -EINVAL; | |
1092 | if (start >= task_size) | |
1093 | return -EINVAL; | |
1094 | if (len > task_size - start) | |
1095 | return -EINVAL; | |
1096 | return 0; | |
1097 | } | |
1098 | ||
ba6907db MR |
1099 | static inline bool vma_can_userfault(struct vm_area_struct *vma) |
1100 | { | |
cac67329 MR |
1101 | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || |
1102 | vma_is_shmem(vma); | |
ba6907db MR |
1103 | } |
1104 | ||
86039bd3 AA |
1105 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
1106 | unsigned long arg) | |
1107 | { | |
1108 | struct mm_struct *mm = ctx->mm; | |
1109 | struct vm_area_struct *vma, *prev, *cur; | |
1110 | int ret; | |
1111 | struct uffdio_register uffdio_register; | |
1112 | struct uffdio_register __user *user_uffdio_register; | |
1113 | unsigned long vm_flags, new_flags; | |
1114 | bool found; | |
cac67329 | 1115 | bool non_anon_pages; |
86039bd3 AA |
1116 | unsigned long start, end, vma_end; |
1117 | ||
1118 | user_uffdio_register = (struct uffdio_register __user *) arg; | |
1119 | ||
1120 | ret = -EFAULT; | |
1121 | if (copy_from_user(&uffdio_register, user_uffdio_register, | |
1122 | sizeof(uffdio_register)-sizeof(__u64))) | |
1123 | goto out; | |
1124 | ||
1125 | ret = -EINVAL; | |
1126 | if (!uffdio_register.mode) | |
1127 | goto out; | |
1128 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | |
1129 | UFFDIO_REGISTER_MODE_WP)) | |
1130 | goto out; | |
1131 | vm_flags = 0; | |
1132 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | |
1133 | vm_flags |= VM_UFFD_MISSING; | |
1134 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | |
1135 | vm_flags |= VM_UFFD_WP; | |
1136 | /* | |
1137 | * FIXME: remove the below error constraint by | |
1138 | * implementing the wprotect tracking mode. | |
1139 | */ | |
1140 | ret = -EINVAL; | |
1141 | goto out; | |
1142 | } | |
1143 | ||
1144 | ret = validate_range(mm, uffdio_register.range.start, | |
1145 | uffdio_register.range.len); | |
1146 | if (ret) | |
1147 | goto out; | |
1148 | ||
1149 | start = uffdio_register.range.start; | |
1150 | end = start + uffdio_register.range.len; | |
1151 | ||
d2005e3f ON |
1152 | ret = -ENOMEM; |
1153 | if (!mmget_not_zero(mm)) | |
1154 | goto out; | |
1155 | ||
86039bd3 AA |
1156 | down_write(&mm->mmap_sem); |
1157 | vma = find_vma_prev(mm, start, &prev); | |
86039bd3 AA |
1158 | if (!vma) |
1159 | goto out_unlock; | |
1160 | ||
1161 | /* check that there's at least one vma in the range */ | |
1162 | ret = -EINVAL; | |
1163 | if (vma->vm_start >= end) | |
1164 | goto out_unlock; | |
1165 | ||
cab350af MK |
1166 | /* |
1167 | * If the first vma contains huge pages, make sure start address | |
1168 | * is aligned to huge page size. | |
1169 | */ | |
1170 | if (is_vm_hugetlb_page(vma)) { | |
1171 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1172 | ||
1173 | if (start & (vma_hpagesize - 1)) | |
1174 | goto out_unlock; | |
1175 | } | |
1176 | ||
86039bd3 AA |
1177 | /* |
1178 | * Search for not compatible vmas. | |
86039bd3 AA |
1179 | */ |
1180 | found = false; | |
cac67329 | 1181 | non_anon_pages = false; |
86039bd3 AA |
1182 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
1183 | cond_resched(); | |
1184 | ||
1185 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1186 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1187 | ||
1188 | /* check not compatible vmas */ | |
1189 | ret = -EINVAL; | |
ba6907db | 1190 | if (!vma_can_userfault(cur)) |
86039bd3 | 1191 | goto out_unlock; |
cab350af MK |
1192 | /* |
1193 | * If this vma contains ending address, and huge pages | |
1194 | * check alignment. | |
1195 | */ | |
1196 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && | |
1197 | end > cur->vm_start) { | |
1198 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); | |
1199 | ||
1200 | ret = -EINVAL; | |
1201 | ||
1202 | if (end & (vma_hpagesize - 1)) | |
1203 | goto out_unlock; | |
1204 | } | |
86039bd3 AA |
1205 | |
1206 | /* | |
1207 | * Check that this vma isn't already owned by a | |
1208 | * different userfaultfd. We can't allow more than one | |
1209 | * userfaultfd to own a single vma simultaneously or we | |
1210 | * wouldn't know which one to deliver the userfaults to. | |
1211 | */ | |
1212 | ret = -EBUSY; | |
1213 | if (cur->vm_userfaultfd_ctx.ctx && | |
1214 | cur->vm_userfaultfd_ctx.ctx != ctx) | |
1215 | goto out_unlock; | |
1216 | ||
cab350af MK |
1217 | /* |
1218 | * Note vmas containing huge pages | |
1219 | */ | |
cac67329 MR |
1220 | if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) |
1221 | non_anon_pages = true; | |
cab350af | 1222 | |
86039bd3 AA |
1223 | found = true; |
1224 | } | |
1225 | BUG_ON(!found); | |
1226 | ||
1227 | if (vma->vm_start < start) | |
1228 | prev = vma; | |
1229 | ||
1230 | ret = 0; | |
1231 | do { | |
1232 | cond_resched(); | |
1233 | ||
ba6907db | 1234 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1235 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
1236 | vma->vm_userfaultfd_ctx.ctx != ctx); | |
1237 | ||
1238 | /* | |
1239 | * Nothing to do: this vma is already registered into this | |
1240 | * userfaultfd and with the right tracking mode too. | |
1241 | */ | |
1242 | if (vma->vm_userfaultfd_ctx.ctx == ctx && | |
1243 | (vma->vm_flags & vm_flags) == vm_flags) | |
1244 | goto skip; | |
1245 | ||
1246 | if (vma->vm_start > start) | |
1247 | start = vma->vm_start; | |
1248 | vma_end = min(end, vma->vm_end); | |
1249 | ||
1250 | new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; | |
1251 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1252 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1253 | vma_policy(vma), | |
1254 | ((struct vm_userfaultfd_ctx){ ctx })); | |
1255 | if (prev) { | |
1256 | vma = prev; | |
1257 | goto next; | |
1258 | } | |
1259 | if (vma->vm_start < start) { | |
1260 | ret = split_vma(mm, vma, start, 1); | |
1261 | if (ret) | |
1262 | break; | |
1263 | } | |
1264 | if (vma->vm_end > end) { | |
1265 | ret = split_vma(mm, vma, end, 0); | |
1266 | if (ret) | |
1267 | break; | |
1268 | } | |
1269 | next: | |
1270 | /* | |
1271 | * In the vma_merge() successful mprotect-like case 8: | |
1272 | * the next vma was merged into the current one and | |
1273 | * the current one has not been updated yet. | |
1274 | */ | |
1275 | vma->vm_flags = new_flags; | |
1276 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
1277 | ||
1278 | skip: | |
1279 | prev = vma; | |
1280 | start = vma->vm_end; | |
1281 | vma = vma->vm_next; | |
1282 | } while (vma && vma->vm_start < end); | |
1283 | out_unlock: | |
1284 | up_write(&mm->mmap_sem); | |
d2005e3f | 1285 | mmput(mm); |
86039bd3 AA |
1286 | if (!ret) { |
1287 | /* | |
1288 | * Now that we scanned all vmas we can already tell | |
1289 | * userland which ioctls methods are guaranteed to | |
1290 | * succeed on this range. | |
1291 | */ | |
cac67329 | 1292 | if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : |
cab350af | 1293 | UFFD_API_RANGE_IOCTLS, |
86039bd3 AA |
1294 | &user_uffdio_register->ioctls)) |
1295 | ret = -EFAULT; | |
1296 | } | |
1297 | out: | |
1298 | return ret; | |
1299 | } | |
1300 | ||
1301 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | |
1302 | unsigned long arg) | |
1303 | { | |
1304 | struct mm_struct *mm = ctx->mm; | |
1305 | struct vm_area_struct *vma, *prev, *cur; | |
1306 | int ret; | |
1307 | struct uffdio_range uffdio_unregister; | |
1308 | unsigned long new_flags; | |
1309 | bool found; | |
1310 | unsigned long start, end, vma_end; | |
1311 | const void __user *buf = (void __user *)arg; | |
1312 | ||
1313 | ret = -EFAULT; | |
1314 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | |
1315 | goto out; | |
1316 | ||
1317 | ret = validate_range(mm, uffdio_unregister.start, | |
1318 | uffdio_unregister.len); | |
1319 | if (ret) | |
1320 | goto out; | |
1321 | ||
1322 | start = uffdio_unregister.start; | |
1323 | end = start + uffdio_unregister.len; | |
1324 | ||
d2005e3f ON |
1325 | ret = -ENOMEM; |
1326 | if (!mmget_not_zero(mm)) | |
1327 | goto out; | |
1328 | ||
86039bd3 AA |
1329 | down_write(&mm->mmap_sem); |
1330 | vma = find_vma_prev(mm, start, &prev); | |
86039bd3 AA |
1331 | if (!vma) |
1332 | goto out_unlock; | |
1333 | ||
1334 | /* check that there's at least one vma in the range */ | |
1335 | ret = -EINVAL; | |
1336 | if (vma->vm_start >= end) | |
1337 | goto out_unlock; | |
1338 | ||
cab350af MK |
1339 | /* |
1340 | * If the first vma contains huge pages, make sure start address | |
1341 | * is aligned to huge page size. | |
1342 | */ | |
1343 | if (is_vm_hugetlb_page(vma)) { | |
1344 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1345 | ||
1346 | if (start & (vma_hpagesize - 1)) | |
1347 | goto out_unlock; | |
1348 | } | |
1349 | ||
86039bd3 AA |
1350 | /* |
1351 | * Search for not compatible vmas. | |
86039bd3 AA |
1352 | */ |
1353 | found = false; | |
1354 | ret = -EINVAL; | |
1355 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
1356 | cond_resched(); | |
1357 | ||
1358 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1359 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1360 | ||
1361 | /* | |
1362 | * Check not compatible vmas, not strictly required | |
1363 | * here as not compatible vmas cannot have an | |
1364 | * userfaultfd_ctx registered on them, but this | |
1365 | * provides for more strict behavior to notice | |
1366 | * unregistration errors. | |
1367 | */ | |
ba6907db | 1368 | if (!vma_can_userfault(cur)) |
86039bd3 AA |
1369 | goto out_unlock; |
1370 | ||
1371 | found = true; | |
1372 | } | |
1373 | BUG_ON(!found); | |
1374 | ||
1375 | if (vma->vm_start < start) | |
1376 | prev = vma; | |
1377 | ||
1378 | ret = 0; | |
1379 | do { | |
1380 | cond_resched(); | |
1381 | ||
ba6907db | 1382 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1383 | |
1384 | /* | |
1385 | * Nothing to do: this vma is already registered into this | |
1386 | * userfaultfd and with the right tracking mode too. | |
1387 | */ | |
1388 | if (!vma->vm_userfaultfd_ctx.ctx) | |
1389 | goto skip; | |
1390 | ||
1391 | if (vma->vm_start > start) | |
1392 | start = vma->vm_start; | |
1393 | vma_end = min(end, vma->vm_end); | |
1394 | ||
09fa5296 AA |
1395 | if (userfaultfd_missing(vma)) { |
1396 | /* | |
1397 | * Wake any concurrent pending userfault while | |
1398 | * we unregister, so they will not hang | |
1399 | * permanently and it avoids userland to call | |
1400 | * UFFDIO_WAKE explicitly. | |
1401 | */ | |
1402 | struct userfaultfd_wake_range range; | |
1403 | range.start = start; | |
1404 | range.len = vma_end - start; | |
1405 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); | |
1406 | } | |
1407 | ||
86039bd3 AA |
1408 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
1409 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1410 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1411 | vma_policy(vma), | |
1412 | NULL_VM_UFFD_CTX); | |
1413 | if (prev) { | |
1414 | vma = prev; | |
1415 | goto next; | |
1416 | } | |
1417 | if (vma->vm_start < start) { | |
1418 | ret = split_vma(mm, vma, start, 1); | |
1419 | if (ret) | |
1420 | break; | |
1421 | } | |
1422 | if (vma->vm_end > end) { | |
1423 | ret = split_vma(mm, vma, end, 0); | |
1424 | if (ret) | |
1425 | break; | |
1426 | } | |
1427 | next: | |
1428 | /* | |
1429 | * In the vma_merge() successful mprotect-like case 8: | |
1430 | * the next vma was merged into the current one and | |
1431 | * the current one has not been updated yet. | |
1432 | */ | |
1433 | vma->vm_flags = new_flags; | |
1434 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
1435 | ||
1436 | skip: | |
1437 | prev = vma; | |
1438 | start = vma->vm_end; | |
1439 | vma = vma->vm_next; | |
1440 | } while (vma && vma->vm_start < end); | |
1441 | out_unlock: | |
1442 | up_write(&mm->mmap_sem); | |
d2005e3f | 1443 | mmput(mm); |
86039bd3 AA |
1444 | out: |
1445 | return ret; | |
1446 | } | |
1447 | ||
1448 | /* | |
ba85c702 AA |
1449 | * userfaultfd_wake may be used in combination with the |
1450 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | |
86039bd3 AA |
1451 | */ |
1452 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | |
1453 | unsigned long arg) | |
1454 | { | |
1455 | int ret; | |
1456 | struct uffdio_range uffdio_wake; | |
1457 | struct userfaultfd_wake_range range; | |
1458 | const void __user *buf = (void __user *)arg; | |
1459 | ||
1460 | ret = -EFAULT; | |
1461 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | |
1462 | goto out; | |
1463 | ||
1464 | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); | |
1465 | if (ret) | |
1466 | goto out; | |
1467 | ||
1468 | range.start = uffdio_wake.start; | |
1469 | range.len = uffdio_wake.len; | |
1470 | ||
1471 | /* | |
1472 | * len == 0 means wake all and we don't want to wake all here, | |
1473 | * so check it again to be sure. | |
1474 | */ | |
1475 | VM_BUG_ON(!range.len); | |
1476 | ||
1477 | wake_userfault(ctx, &range); | |
1478 | ret = 0; | |
1479 | ||
1480 | out: | |
1481 | return ret; | |
1482 | } | |
1483 | ||
ad465cae AA |
1484 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
1485 | unsigned long arg) | |
1486 | { | |
1487 | __s64 ret; | |
1488 | struct uffdio_copy uffdio_copy; | |
1489 | struct uffdio_copy __user *user_uffdio_copy; | |
1490 | struct userfaultfd_wake_range range; | |
1491 | ||
1492 | user_uffdio_copy = (struct uffdio_copy __user *) arg; | |
1493 | ||
1494 | ret = -EFAULT; | |
1495 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | |
1496 | /* don't copy "copy" last field */ | |
1497 | sizeof(uffdio_copy)-sizeof(__s64))) | |
1498 | goto out; | |
1499 | ||
1500 | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); | |
1501 | if (ret) | |
1502 | goto out; | |
1503 | /* | |
1504 | * double check for wraparound just in case. copy_from_user() | |
1505 | * will later check uffdio_copy.src + uffdio_copy.len to fit | |
1506 | * in the userland range. | |
1507 | */ | |
1508 | ret = -EINVAL; | |
1509 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | |
1510 | goto out; | |
1511 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | |
1512 | goto out; | |
d2005e3f ON |
1513 | if (mmget_not_zero(ctx->mm)) { |
1514 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | |
1515 | uffdio_copy.len); | |
1516 | mmput(ctx->mm); | |
1517 | } | |
ad465cae AA |
1518 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
1519 | return -EFAULT; | |
1520 | if (ret < 0) | |
1521 | goto out; | |
1522 | BUG_ON(!ret); | |
1523 | /* len == 0 would wake all */ | |
1524 | range.len = ret; | |
1525 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | |
1526 | range.start = uffdio_copy.dst; | |
1527 | wake_userfault(ctx, &range); | |
1528 | } | |
1529 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | |
1530 | out: | |
1531 | return ret; | |
1532 | } | |
1533 | ||
1534 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | |
1535 | unsigned long arg) | |
1536 | { | |
1537 | __s64 ret; | |
1538 | struct uffdio_zeropage uffdio_zeropage; | |
1539 | struct uffdio_zeropage __user *user_uffdio_zeropage; | |
1540 | struct userfaultfd_wake_range range; | |
1541 | ||
1542 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | |
1543 | ||
1544 | ret = -EFAULT; | |
1545 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | |
1546 | /* don't copy "zeropage" last field */ | |
1547 | sizeof(uffdio_zeropage)-sizeof(__s64))) | |
1548 | goto out; | |
1549 | ||
1550 | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, | |
1551 | uffdio_zeropage.range.len); | |
1552 | if (ret) | |
1553 | goto out; | |
1554 | ret = -EINVAL; | |
1555 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | |
1556 | goto out; | |
1557 | ||
d2005e3f ON |
1558 | if (mmget_not_zero(ctx->mm)) { |
1559 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | |
1560 | uffdio_zeropage.range.len); | |
1561 | mmput(ctx->mm); | |
1562 | } | |
ad465cae AA |
1563 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
1564 | return -EFAULT; | |
1565 | if (ret < 0) | |
1566 | goto out; | |
1567 | /* len == 0 would wake all */ | |
1568 | BUG_ON(!ret); | |
1569 | range.len = ret; | |
1570 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | |
1571 | range.start = uffdio_zeropage.range.start; | |
1572 | wake_userfault(ctx, &range); | |
1573 | } | |
1574 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | |
1575 | out: | |
1576 | return ret; | |
1577 | } | |
1578 | ||
9cd75c3c PE |
1579 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
1580 | { | |
1581 | /* | |
1582 | * For the current set of features the bits just coincide | |
1583 | */ | |
1584 | return (unsigned int)user_features; | |
1585 | } | |
1586 | ||
86039bd3 AA |
1587 | /* |
1588 | * userland asks for a certain API version and we return which bits | |
1589 | * and ioctl commands are implemented in this kernel for such API | |
1590 | * version or -EINVAL if unknown. | |
1591 | */ | |
1592 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | |
1593 | unsigned long arg) | |
1594 | { | |
1595 | struct uffdio_api uffdio_api; | |
1596 | void __user *buf = (void __user *)arg; | |
1597 | int ret; | |
65603144 | 1598 | __u64 features; |
86039bd3 AA |
1599 | |
1600 | ret = -EINVAL; | |
1601 | if (ctx->state != UFFD_STATE_WAIT_API) | |
1602 | goto out; | |
1603 | ret = -EFAULT; | |
a9b85f94 | 1604 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
86039bd3 | 1605 | goto out; |
65603144 AA |
1606 | features = uffdio_api.features; |
1607 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { | |
86039bd3 AA |
1608 | memset(&uffdio_api, 0, sizeof(uffdio_api)); |
1609 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1610 | goto out; | |
1611 | ret = -EINVAL; | |
1612 | goto out; | |
1613 | } | |
65603144 AA |
1614 | /* report all available features and ioctls to userland */ |
1615 | uffdio_api.features = UFFD_API_FEATURES; | |
86039bd3 AA |
1616 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
1617 | ret = -EFAULT; | |
1618 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1619 | goto out; | |
1620 | ctx->state = UFFD_STATE_RUNNING; | |
65603144 AA |
1621 | /* only enable the requested features for this uffd context */ |
1622 | ctx->features = uffd_ctx_features(features); | |
86039bd3 AA |
1623 | ret = 0; |
1624 | out: | |
1625 | return ret; | |
1626 | } | |
1627 | ||
1628 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | |
1629 | unsigned long arg) | |
1630 | { | |
1631 | int ret = -EINVAL; | |
1632 | struct userfaultfd_ctx *ctx = file->private_data; | |
1633 | ||
e6485a47 AA |
1634 | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) |
1635 | return -EINVAL; | |
1636 | ||
86039bd3 AA |
1637 | switch(cmd) { |
1638 | case UFFDIO_API: | |
1639 | ret = userfaultfd_api(ctx, arg); | |
1640 | break; | |
1641 | case UFFDIO_REGISTER: | |
1642 | ret = userfaultfd_register(ctx, arg); | |
1643 | break; | |
1644 | case UFFDIO_UNREGISTER: | |
1645 | ret = userfaultfd_unregister(ctx, arg); | |
1646 | break; | |
1647 | case UFFDIO_WAKE: | |
1648 | ret = userfaultfd_wake(ctx, arg); | |
1649 | break; | |
ad465cae AA |
1650 | case UFFDIO_COPY: |
1651 | ret = userfaultfd_copy(ctx, arg); | |
1652 | break; | |
1653 | case UFFDIO_ZEROPAGE: | |
1654 | ret = userfaultfd_zeropage(ctx, arg); | |
1655 | break; | |
86039bd3 AA |
1656 | } |
1657 | return ret; | |
1658 | } | |
1659 | ||
1660 | #ifdef CONFIG_PROC_FS | |
1661 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | |
1662 | { | |
1663 | struct userfaultfd_ctx *ctx = f->private_data; | |
1664 | wait_queue_t *wq; | |
1665 | struct userfaultfd_wait_queue *uwq; | |
1666 | unsigned long pending = 0, total = 0; | |
1667 | ||
15b726ef AA |
1668 | spin_lock(&ctx->fault_pending_wqh.lock); |
1669 | list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { | |
1670 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
1671 | pending++; | |
1672 | total++; | |
1673 | } | |
86039bd3 AA |
1674 | list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { |
1675 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
86039bd3 AA |
1676 | total++; |
1677 | } | |
15b726ef | 1678 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1679 | |
1680 | /* | |
1681 | * If more protocols will be added, there will be all shown | |
1682 | * separated by a space. Like this: | |
1683 | * protocols: aa:... bb:... | |
1684 | */ | |
1685 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | |
3f602d27 | 1686 | pending, total, UFFD_API, UFFD_API_FEATURES, |
86039bd3 AA |
1687 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
1688 | } | |
1689 | #endif | |
1690 | ||
1691 | static const struct file_operations userfaultfd_fops = { | |
1692 | #ifdef CONFIG_PROC_FS | |
1693 | .show_fdinfo = userfaultfd_show_fdinfo, | |
1694 | #endif | |
1695 | .release = userfaultfd_release, | |
1696 | .poll = userfaultfd_poll, | |
1697 | .read = userfaultfd_read, | |
1698 | .unlocked_ioctl = userfaultfd_ioctl, | |
1699 | .compat_ioctl = userfaultfd_ioctl, | |
1700 | .llseek = noop_llseek, | |
1701 | }; | |
1702 | ||
3004ec9c AA |
1703 | static void init_once_userfaultfd_ctx(void *mem) |
1704 | { | |
1705 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | |
1706 | ||
1707 | init_waitqueue_head(&ctx->fault_pending_wqh); | |
1708 | init_waitqueue_head(&ctx->fault_wqh); | |
9cd75c3c | 1709 | init_waitqueue_head(&ctx->event_wqh); |
3004ec9c | 1710 | init_waitqueue_head(&ctx->fd_wqh); |
2c5b7e1b | 1711 | seqcount_init(&ctx->refile_seq); |
3004ec9c AA |
1712 | } |
1713 | ||
86039bd3 AA |
1714 | /** |
1715 | * userfaultfd_file_create - Creates an userfaultfd file pointer. | |
1716 | * @flags: Flags for the userfaultfd file. | |
1717 | * | |
1718 | * This function creates an userfaultfd file pointer, w/out installing | |
1719 | * it into the fd table. This is useful when the userfaultfd file is | |
1720 | * used during the initialization of data structures that require | |
1721 | * extra setup after the userfaultfd creation. So the userfaultfd | |
1722 | * creation is split into the file pointer creation phase, and the | |
1723 | * file descriptor installation phase. In this way races with | |
1724 | * userspace closing the newly installed file descriptor can be | |
1725 | * avoided. Returns an userfaultfd file pointer, or a proper error | |
1726 | * pointer. | |
1727 | */ | |
1728 | static struct file *userfaultfd_file_create(int flags) | |
1729 | { | |
1730 | struct file *file; | |
1731 | struct userfaultfd_ctx *ctx; | |
1732 | ||
1733 | BUG_ON(!current->mm); | |
1734 | ||
1735 | /* Check the UFFD_* constants for consistency. */ | |
1736 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | |
1737 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | |
1738 | ||
1739 | file = ERR_PTR(-EINVAL); | |
1740 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) | |
1741 | goto out; | |
1742 | ||
1743 | file = ERR_PTR(-ENOMEM); | |
3004ec9c | 1744 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
86039bd3 AA |
1745 | if (!ctx) |
1746 | goto out; | |
1747 | ||
1748 | atomic_set(&ctx->refcount, 1); | |
86039bd3 | 1749 | ctx->flags = flags; |
9cd75c3c | 1750 | ctx->features = 0; |
86039bd3 AA |
1751 | ctx->state = UFFD_STATE_WAIT_API; |
1752 | ctx->released = false; | |
1753 | ctx->mm = current->mm; | |
1754 | /* prevent the mm struct to be freed */ | |
d2005e3f | 1755 | atomic_inc(&ctx->mm->mm_count); |
86039bd3 AA |
1756 | |
1757 | file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, | |
1758 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | |
c03e946f | 1759 | if (IS_ERR(file)) { |
d2005e3f | 1760 | mmdrop(ctx->mm); |
3004ec9c | 1761 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
c03e946f | 1762 | } |
86039bd3 AA |
1763 | out: |
1764 | return file; | |
1765 | } | |
1766 | ||
1767 | SYSCALL_DEFINE1(userfaultfd, int, flags) | |
1768 | { | |
1769 | int fd, error; | |
1770 | struct file *file; | |
1771 | ||
1772 | error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); | |
1773 | if (error < 0) | |
1774 | return error; | |
1775 | fd = error; | |
1776 | ||
1777 | file = userfaultfd_file_create(flags); | |
1778 | if (IS_ERR(file)) { | |
1779 | error = PTR_ERR(file); | |
1780 | goto err_put_unused_fd; | |
1781 | } | |
1782 | fd_install(fd, file); | |
1783 | ||
1784 | return fd; | |
1785 | ||
1786 | err_put_unused_fd: | |
1787 | put_unused_fd(fd); | |
1788 | ||
1789 | return error; | |
1790 | } | |
3004ec9c AA |
1791 | |
1792 | static int __init userfaultfd_init(void) | |
1793 | { | |
1794 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | |
1795 | sizeof(struct userfaultfd_ctx), | |
1796 | 0, | |
1797 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | |
1798 | init_once_userfaultfd_ctx); | |
1799 | return 0; | |
1800 | } | |
1801 | __initcall(userfaultfd_init); |