]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
0fe23479 | 2 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
a27bb332 | 22 | #include <linux/uio.h> |
852c788f | 23 | #include <linux/iocontext.h> |
1da177e4 LT |
24 | #include <linux/slab.h> |
25 | #include <linux/init.h> | |
26 | #include <linux/kernel.h> | |
630d9c47 | 27 | #include <linux/export.h> |
1da177e4 LT |
28 | #include <linux/mempool.h> |
29 | #include <linux/workqueue.h> | |
852c788f | 30 | #include <linux/cgroup.h> |
1da177e4 | 31 | |
55782138 | 32 | #include <trace/events/block.h> |
0bfc2455 | 33 | |
392ddc32 JA |
34 | /* |
35 | * Test patch to inline a certain number of bi_io_vec's inside the bio | |
36 | * itself, to shrink a bio data allocation from two mempool calls to one | |
37 | */ | |
38 | #define BIO_INLINE_VECS 4 | |
39 | ||
1da177e4 LT |
40 | /* |
41 | * if you change this list, also change bvec_alloc or things will | |
42 | * break badly! cannot be bigger than what you can fit into an | |
43 | * unsigned short | |
44 | */ | |
1da177e4 | 45 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } |
ed996a52 | 46 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { |
1da177e4 LT |
47 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
48 | }; | |
49 | #undef BV | |
50 | ||
1da177e4 LT |
51 | /* |
52 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
53 | * IO code that does not need private memory pools. | |
54 | */ | |
51d654e1 | 55 | struct bio_set *fs_bio_set; |
3f86a82a | 56 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 57 | |
bb799ca0 JA |
58 | /* |
59 | * Our slab pool management | |
60 | */ | |
61 | struct bio_slab { | |
62 | struct kmem_cache *slab; | |
63 | unsigned int slab_ref; | |
64 | unsigned int slab_size; | |
65 | char name[8]; | |
66 | }; | |
67 | static DEFINE_MUTEX(bio_slab_lock); | |
68 | static struct bio_slab *bio_slabs; | |
69 | static unsigned int bio_slab_nr, bio_slab_max; | |
70 | ||
71 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | |
72 | { | |
73 | unsigned int sz = sizeof(struct bio) + extra_size; | |
74 | struct kmem_cache *slab = NULL; | |
389d7b26 | 75 | struct bio_slab *bslab, *new_bio_slabs; |
386bc35a | 76 | unsigned int new_bio_slab_max; |
bb799ca0 JA |
77 | unsigned int i, entry = -1; |
78 | ||
79 | mutex_lock(&bio_slab_lock); | |
80 | ||
81 | i = 0; | |
82 | while (i < bio_slab_nr) { | |
f06f135d | 83 | bslab = &bio_slabs[i]; |
bb799ca0 JA |
84 | |
85 | if (!bslab->slab && entry == -1) | |
86 | entry = i; | |
87 | else if (bslab->slab_size == sz) { | |
88 | slab = bslab->slab; | |
89 | bslab->slab_ref++; | |
90 | break; | |
91 | } | |
92 | i++; | |
93 | } | |
94 | ||
95 | if (slab) | |
96 | goto out_unlock; | |
97 | ||
98 | if (bio_slab_nr == bio_slab_max && entry == -1) { | |
386bc35a | 99 | new_bio_slab_max = bio_slab_max << 1; |
389d7b26 | 100 | new_bio_slabs = krealloc(bio_slabs, |
386bc35a | 101 | new_bio_slab_max * sizeof(struct bio_slab), |
389d7b26 AK |
102 | GFP_KERNEL); |
103 | if (!new_bio_slabs) | |
bb799ca0 | 104 | goto out_unlock; |
386bc35a | 105 | bio_slab_max = new_bio_slab_max; |
389d7b26 | 106 | bio_slabs = new_bio_slabs; |
bb799ca0 JA |
107 | } |
108 | if (entry == -1) | |
109 | entry = bio_slab_nr++; | |
110 | ||
111 | bslab = &bio_slabs[entry]; | |
112 | ||
113 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | |
6a241483 MP |
114 | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, |
115 | SLAB_HWCACHE_ALIGN, NULL); | |
bb799ca0 JA |
116 | if (!slab) |
117 | goto out_unlock; | |
118 | ||
bb799ca0 JA |
119 | bslab->slab = slab; |
120 | bslab->slab_ref = 1; | |
121 | bslab->slab_size = sz; | |
122 | out_unlock: | |
123 | mutex_unlock(&bio_slab_lock); | |
124 | return slab; | |
125 | } | |
126 | ||
127 | static void bio_put_slab(struct bio_set *bs) | |
128 | { | |
129 | struct bio_slab *bslab = NULL; | |
130 | unsigned int i; | |
131 | ||
132 | mutex_lock(&bio_slab_lock); | |
133 | ||
134 | for (i = 0; i < bio_slab_nr; i++) { | |
135 | if (bs->bio_slab == bio_slabs[i].slab) { | |
136 | bslab = &bio_slabs[i]; | |
137 | break; | |
138 | } | |
139 | } | |
140 | ||
141 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | |
142 | goto out; | |
143 | ||
144 | WARN_ON(!bslab->slab_ref); | |
145 | ||
146 | if (--bslab->slab_ref) | |
147 | goto out; | |
148 | ||
149 | kmem_cache_destroy(bslab->slab); | |
150 | bslab->slab = NULL; | |
151 | ||
152 | out: | |
153 | mutex_unlock(&bio_slab_lock); | |
154 | } | |
155 | ||
7ba1ba12 MP |
156 | unsigned int bvec_nr_vecs(unsigned short idx) |
157 | { | |
158 | return bvec_slabs[idx].nr_vecs; | |
159 | } | |
160 | ||
9f060e22 | 161 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
bb799ca0 | 162 | { |
ed996a52 CH |
163 | if (!idx) |
164 | return; | |
165 | idx--; | |
166 | ||
167 | BIO_BUG_ON(idx >= BVEC_POOL_NR); | |
bb799ca0 | 168 | |
ed996a52 | 169 | if (idx == BVEC_POOL_MAX) { |
9f060e22 | 170 | mempool_free(bv, pool); |
ed996a52 | 171 | } else { |
bb799ca0 JA |
172 | struct biovec_slab *bvs = bvec_slabs + idx; |
173 | ||
174 | kmem_cache_free(bvs->slab, bv); | |
175 | } | |
176 | } | |
177 | ||
9f060e22 KO |
178 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
179 | mempool_t *pool) | |
1da177e4 LT |
180 | { |
181 | struct bio_vec *bvl; | |
1da177e4 | 182 | |
7ff9345f JA |
183 | /* |
184 | * see comment near bvec_array define! | |
185 | */ | |
186 | switch (nr) { | |
187 | case 1: | |
188 | *idx = 0; | |
189 | break; | |
190 | case 2 ... 4: | |
191 | *idx = 1; | |
192 | break; | |
193 | case 5 ... 16: | |
194 | *idx = 2; | |
195 | break; | |
196 | case 17 ... 64: | |
197 | *idx = 3; | |
198 | break; | |
199 | case 65 ... 128: | |
200 | *idx = 4; | |
201 | break; | |
202 | case 129 ... BIO_MAX_PAGES: | |
203 | *idx = 5; | |
204 | break; | |
205 | default: | |
206 | return NULL; | |
207 | } | |
208 | ||
209 | /* | |
210 | * idx now points to the pool we want to allocate from. only the | |
211 | * 1-vec entry pool is mempool backed. | |
212 | */ | |
ed996a52 | 213 | if (*idx == BVEC_POOL_MAX) { |
7ff9345f | 214 | fallback: |
9f060e22 | 215 | bvl = mempool_alloc(pool, gfp_mask); |
7ff9345f JA |
216 | } else { |
217 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
d0164adc | 218 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); |
7ff9345f | 219 | |
0a0d96b0 | 220 | /* |
7ff9345f JA |
221 | * Make this allocation restricted and don't dump info on |
222 | * allocation failures, since we'll fallback to the mempool | |
223 | * in case of failure. | |
0a0d96b0 | 224 | */ |
7ff9345f | 225 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 226 | |
0a0d96b0 | 227 | /* |
d0164adc | 228 | * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM |
7ff9345f | 229 | * is set, retry with the 1-entry mempool |
0a0d96b0 | 230 | */ |
7ff9345f | 231 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
d0164adc | 232 | if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { |
ed996a52 | 233 | *idx = BVEC_POOL_MAX; |
7ff9345f JA |
234 | goto fallback; |
235 | } | |
236 | } | |
237 | ||
ed996a52 | 238 | (*idx)++; |
1da177e4 LT |
239 | return bvl; |
240 | } | |
241 | ||
4254bba1 | 242 | static void __bio_free(struct bio *bio) |
1da177e4 | 243 | { |
4254bba1 | 244 | bio_disassociate_task(bio); |
1da177e4 | 245 | |
7ba1ba12 | 246 | if (bio_integrity(bio)) |
1e2a410f | 247 | bio_integrity_free(bio); |
4254bba1 | 248 | } |
7ba1ba12 | 249 | |
4254bba1 KO |
250 | static void bio_free(struct bio *bio) |
251 | { | |
252 | struct bio_set *bs = bio->bi_pool; | |
253 | void *p; | |
254 | ||
255 | __bio_free(bio); | |
256 | ||
257 | if (bs) { | |
ed996a52 | 258 | bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); |
4254bba1 KO |
259 | |
260 | /* | |
261 | * If we have front padding, adjust the bio pointer before freeing | |
262 | */ | |
263 | p = bio; | |
bb799ca0 JA |
264 | p -= bs->front_pad; |
265 | ||
4254bba1 KO |
266 | mempool_free(p, bs->bio_pool); |
267 | } else { | |
268 | /* Bio was allocated by bio_kmalloc() */ | |
269 | kfree(bio); | |
270 | } | |
3676347a PO |
271 | } |
272 | ||
3a83f467 ML |
273 | void bio_init(struct bio *bio, struct bio_vec *table, |
274 | unsigned short max_vecs) | |
1da177e4 | 275 | { |
2b94de55 | 276 | memset(bio, 0, sizeof(*bio)); |
c4cf5261 | 277 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 278 | atomic_set(&bio->__bi_cnt, 1); |
3a83f467 ML |
279 | |
280 | bio->bi_io_vec = table; | |
281 | bio->bi_max_vecs = max_vecs; | |
1da177e4 | 282 | } |
a112a71d | 283 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 284 | |
f44b48c7 KO |
285 | /** |
286 | * bio_reset - reinitialize a bio | |
287 | * @bio: bio to reset | |
288 | * | |
289 | * Description: | |
290 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
291 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
292 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
293 | * comment in struct bio. | |
294 | */ | |
295 | void bio_reset(struct bio *bio) | |
296 | { | |
297 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | |
298 | ||
4254bba1 | 299 | __bio_free(bio); |
f44b48c7 KO |
300 | |
301 | memset(bio, 0, BIO_RESET_BYTES); | |
4246a0b6 | 302 | bio->bi_flags = flags; |
c4cf5261 | 303 | atomic_set(&bio->__bi_remaining, 1); |
f44b48c7 KO |
304 | } |
305 | EXPORT_SYMBOL(bio_reset); | |
306 | ||
38f8baae | 307 | static struct bio *__bio_chain_endio(struct bio *bio) |
196d38bc | 308 | { |
4246a0b6 CH |
309 | struct bio *parent = bio->bi_private; |
310 | ||
af3e3a52 CH |
311 | if (!parent->bi_error) |
312 | parent->bi_error = bio->bi_error; | |
196d38bc | 313 | bio_put(bio); |
38f8baae CH |
314 | return parent; |
315 | } | |
316 | ||
317 | static void bio_chain_endio(struct bio *bio) | |
318 | { | |
319 | bio_endio(__bio_chain_endio(bio)); | |
196d38bc KO |
320 | } |
321 | ||
322 | /** | |
323 | * bio_chain - chain bio completions | |
1051a902 RD |
324 | * @bio: the target bio |
325 | * @parent: the @bio's parent bio | |
196d38bc KO |
326 | * |
327 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
328 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
329 | * completed; the chained bio will also be freed when it completes. | |
330 | * | |
331 | * The caller must not set bi_private or bi_end_io in @bio. | |
332 | */ | |
333 | void bio_chain(struct bio *bio, struct bio *parent) | |
334 | { | |
335 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
336 | ||
337 | bio->bi_private = parent; | |
338 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 339 | bio_inc_remaining(parent); |
196d38bc KO |
340 | } |
341 | EXPORT_SYMBOL(bio_chain); | |
342 | ||
df2cb6da KO |
343 | static void bio_alloc_rescue(struct work_struct *work) |
344 | { | |
345 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
346 | struct bio *bio; | |
347 | ||
348 | while (1) { | |
349 | spin_lock(&bs->rescue_lock); | |
350 | bio = bio_list_pop(&bs->rescue_list); | |
351 | spin_unlock(&bs->rescue_lock); | |
352 | ||
353 | if (!bio) | |
354 | break; | |
355 | ||
356 | generic_make_request(bio); | |
357 | } | |
358 | } | |
359 | ||
360 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
361 | { | |
362 | struct bio_list punt, nopunt; | |
363 | struct bio *bio; | |
364 | ||
365 | /* | |
366 | * In order to guarantee forward progress we must punt only bios that | |
367 | * were allocated from this bio_set; otherwise, if there was a bio on | |
368 | * there for a stacking driver higher up in the stack, processing it | |
369 | * could require allocating bios from this bio_set, and doing that from | |
370 | * our own rescuer would be bad. | |
371 | * | |
372 | * Since bio lists are singly linked, pop them all instead of trying to | |
373 | * remove from the middle of the list: | |
374 | */ | |
375 | ||
376 | bio_list_init(&punt); | |
377 | bio_list_init(&nopunt); | |
378 | ||
379 | while ((bio = bio_list_pop(current->bio_list))) | |
380 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
381 | ||
382 | *current->bio_list = nopunt; | |
383 | ||
384 | spin_lock(&bs->rescue_lock); | |
385 | bio_list_merge(&bs->rescue_list, &punt); | |
386 | spin_unlock(&bs->rescue_lock); | |
387 | ||
388 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
389 | } | |
390 | ||
1da177e4 LT |
391 | /** |
392 | * bio_alloc_bioset - allocate a bio for I/O | |
393 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
394 | * @nr_iovecs: number of iovecs to pre-allocate | |
db18efac | 395 | * @bs: the bio_set to allocate from. |
1da177e4 LT |
396 | * |
397 | * Description: | |
3f86a82a KO |
398 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is |
399 | * backed by the @bs's mempool. | |
400 | * | |
d0164adc MG |
401 | * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will |
402 | * always be able to allocate a bio. This is due to the mempool guarantees. | |
403 | * To make this work, callers must never allocate more than 1 bio at a time | |
404 | * from this pool. Callers that need to allocate more than 1 bio must always | |
405 | * submit the previously allocated bio for IO before attempting to allocate | |
406 | * a new one. Failure to do so can cause deadlocks under memory pressure. | |
3f86a82a | 407 | * |
df2cb6da KO |
408 | * Note that when running under generic_make_request() (i.e. any block |
409 | * driver), bios are not submitted until after you return - see the code in | |
410 | * generic_make_request() that converts recursion into iteration, to prevent | |
411 | * stack overflows. | |
412 | * | |
413 | * This would normally mean allocating multiple bios under | |
414 | * generic_make_request() would be susceptible to deadlocks, but we have | |
415 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
416 | * thread. | |
417 | * | |
418 | * However, we do not guarantee forward progress for allocations from other | |
419 | * mempools. Doing multiple allocations from the same mempool under | |
420 | * generic_make_request() should be avoided - instead, use bio_set's front_pad | |
421 | * for per bio allocations. | |
422 | * | |
3f86a82a KO |
423 | * RETURNS: |
424 | * Pointer to new bio on success, NULL on failure. | |
425 | */ | |
dd0fc66f | 426 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
1da177e4 | 427 | { |
df2cb6da | 428 | gfp_t saved_gfp = gfp_mask; |
3f86a82a KO |
429 | unsigned front_pad; |
430 | unsigned inline_vecs; | |
34053979 | 431 | struct bio_vec *bvl = NULL; |
451a9ebf TH |
432 | struct bio *bio; |
433 | void *p; | |
434 | ||
3f86a82a KO |
435 | if (!bs) { |
436 | if (nr_iovecs > UIO_MAXIOV) | |
437 | return NULL; | |
438 | ||
439 | p = kmalloc(sizeof(struct bio) + | |
440 | nr_iovecs * sizeof(struct bio_vec), | |
441 | gfp_mask); | |
442 | front_pad = 0; | |
443 | inline_vecs = nr_iovecs; | |
444 | } else { | |
d8f429e1 JN |
445 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
446 | if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) | |
447 | return NULL; | |
df2cb6da KO |
448 | /* |
449 | * generic_make_request() converts recursion to iteration; this | |
450 | * means if we're running beneath it, any bios we allocate and | |
451 | * submit will not be submitted (and thus freed) until after we | |
452 | * return. | |
453 | * | |
454 | * This exposes us to a potential deadlock if we allocate | |
455 | * multiple bios from the same bio_set() while running | |
456 | * underneath generic_make_request(). If we were to allocate | |
457 | * multiple bios (say a stacking block driver that was splitting | |
458 | * bios), we would deadlock if we exhausted the mempool's | |
459 | * reserve. | |
460 | * | |
461 | * We solve this, and guarantee forward progress, with a rescuer | |
462 | * workqueue per bio_set. If we go to allocate and there are | |
463 | * bios on current->bio_list, we first try the allocation | |
d0164adc MG |
464 | * without __GFP_DIRECT_RECLAIM; if that fails, we punt those |
465 | * bios we would be blocking to the rescuer workqueue before | |
466 | * we retry with the original gfp_flags. | |
df2cb6da KO |
467 | */ |
468 | ||
469 | if (current->bio_list && !bio_list_empty(current->bio_list)) | |
d0164adc | 470 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; |
df2cb6da | 471 | |
3f86a82a | 472 | p = mempool_alloc(bs->bio_pool, gfp_mask); |
df2cb6da KO |
473 | if (!p && gfp_mask != saved_gfp) { |
474 | punt_bios_to_rescuer(bs); | |
475 | gfp_mask = saved_gfp; | |
476 | p = mempool_alloc(bs->bio_pool, gfp_mask); | |
477 | } | |
478 | ||
3f86a82a KO |
479 | front_pad = bs->front_pad; |
480 | inline_vecs = BIO_INLINE_VECS; | |
481 | } | |
482 | ||
451a9ebf TH |
483 | if (unlikely(!p)) |
484 | return NULL; | |
1da177e4 | 485 | |
3f86a82a | 486 | bio = p + front_pad; |
3a83f467 | 487 | bio_init(bio, NULL, 0); |
34053979 | 488 | |
3f86a82a | 489 | if (nr_iovecs > inline_vecs) { |
ed996a52 CH |
490 | unsigned long idx = 0; |
491 | ||
9f060e22 | 492 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); |
df2cb6da KO |
493 | if (!bvl && gfp_mask != saved_gfp) { |
494 | punt_bios_to_rescuer(bs); | |
495 | gfp_mask = saved_gfp; | |
9f060e22 | 496 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); |
df2cb6da KO |
497 | } |
498 | ||
34053979 IM |
499 | if (unlikely(!bvl)) |
500 | goto err_free; | |
a38352e0 | 501 | |
ed996a52 | 502 | bio->bi_flags |= idx << BVEC_POOL_OFFSET; |
3f86a82a KO |
503 | } else if (nr_iovecs) { |
504 | bvl = bio->bi_inline_vecs; | |
1da177e4 | 505 | } |
3f86a82a KO |
506 | |
507 | bio->bi_pool = bs; | |
34053979 | 508 | bio->bi_max_vecs = nr_iovecs; |
34053979 | 509 | bio->bi_io_vec = bvl; |
1da177e4 | 510 | return bio; |
34053979 IM |
511 | |
512 | err_free: | |
451a9ebf | 513 | mempool_free(p, bs->bio_pool); |
34053979 | 514 | return NULL; |
1da177e4 | 515 | } |
a112a71d | 516 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 517 | |
1da177e4 LT |
518 | void zero_fill_bio(struct bio *bio) |
519 | { | |
520 | unsigned long flags; | |
7988613b KO |
521 | struct bio_vec bv; |
522 | struct bvec_iter iter; | |
1da177e4 | 523 | |
7988613b KO |
524 | bio_for_each_segment(bv, bio, iter) { |
525 | char *data = bvec_kmap_irq(&bv, &flags); | |
526 | memset(data, 0, bv.bv_len); | |
527 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
528 | bvec_kunmap_irq(data, &flags); |
529 | } | |
530 | } | |
531 | EXPORT_SYMBOL(zero_fill_bio); | |
532 | ||
533 | /** | |
534 | * bio_put - release a reference to a bio | |
535 | * @bio: bio to release reference to | |
536 | * | |
537 | * Description: | |
538 | * Put a reference to a &struct bio, either one you have gotten with | |
ad0bf110 | 539 | * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. |
1da177e4 LT |
540 | **/ |
541 | void bio_put(struct bio *bio) | |
542 | { | |
dac56212 | 543 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 544 | bio_free(bio); |
dac56212 JA |
545 | else { |
546 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
547 | ||
548 | /* | |
549 | * last put frees it | |
550 | */ | |
551 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
552 | bio_free(bio); | |
553 | } | |
1da177e4 | 554 | } |
a112a71d | 555 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 556 | |
165125e1 | 557 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
558 | { |
559 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
560 | blk_recount_segments(q, bio); | |
561 | ||
562 | return bio->bi_phys_segments; | |
563 | } | |
a112a71d | 564 | EXPORT_SYMBOL(bio_phys_segments); |
1da177e4 | 565 | |
59d276fe KO |
566 | /** |
567 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
568 | * @bio: destination bio | |
569 | * @bio_src: bio to clone | |
570 | * | |
571 | * Clone a &bio. Caller will own the returned bio, but not | |
572 | * the actual data it points to. Reference count of returned | |
573 | * bio will be one. | |
574 | * | |
575 | * Caller must ensure that @bio_src is not freed before @bio. | |
576 | */ | |
577 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
578 | { | |
ed996a52 | 579 | BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); |
59d276fe KO |
580 | |
581 | /* | |
582 | * most users will be overriding ->bi_bdev with a new target, | |
583 | * so we don't set nor calculate new physical/hw segment counts here | |
584 | */ | |
585 | bio->bi_bdev = bio_src->bi_bdev; | |
b7c44ed9 | 586 | bio_set_flag(bio, BIO_CLONED); |
1eff9d32 | 587 | bio->bi_opf = bio_src->bi_opf; |
59d276fe KO |
588 | bio->bi_iter = bio_src->bi_iter; |
589 | bio->bi_io_vec = bio_src->bi_io_vec; | |
20bd723e PV |
590 | |
591 | bio_clone_blkcg_association(bio, bio_src); | |
59d276fe KO |
592 | } |
593 | EXPORT_SYMBOL(__bio_clone_fast); | |
594 | ||
595 | /** | |
596 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
597 | * @bio: bio to clone | |
598 | * @gfp_mask: allocation priority | |
599 | * @bs: bio_set to allocate from | |
600 | * | |
601 | * Like __bio_clone_fast, only also allocates the returned bio | |
602 | */ | |
603 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
604 | { | |
605 | struct bio *b; | |
606 | ||
607 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
608 | if (!b) | |
609 | return NULL; | |
610 | ||
611 | __bio_clone_fast(b, bio); | |
612 | ||
613 | if (bio_integrity(bio)) { | |
614 | int ret; | |
615 | ||
616 | ret = bio_integrity_clone(b, bio, gfp_mask); | |
617 | ||
618 | if (ret < 0) { | |
619 | bio_put(b); | |
620 | return NULL; | |
621 | } | |
622 | } | |
623 | ||
624 | return b; | |
625 | } | |
626 | EXPORT_SYMBOL(bio_clone_fast); | |
627 | ||
1da177e4 | 628 | /** |
bdb53207 KO |
629 | * bio_clone_bioset - clone a bio |
630 | * @bio_src: bio to clone | |
1da177e4 | 631 | * @gfp_mask: allocation priority |
bf800ef1 | 632 | * @bs: bio_set to allocate from |
1da177e4 | 633 | * |
bdb53207 KO |
634 | * Clone bio. Caller will own the returned bio, but not the actual data it |
635 | * points to. Reference count of returned bio will be one. | |
1da177e4 | 636 | */ |
bdb53207 | 637 | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, |
bf800ef1 | 638 | struct bio_set *bs) |
1da177e4 | 639 | { |
bdb53207 KO |
640 | struct bvec_iter iter; |
641 | struct bio_vec bv; | |
642 | struct bio *bio; | |
1da177e4 | 643 | |
bdb53207 KO |
644 | /* |
645 | * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | |
646 | * bio_src->bi_io_vec to bio->bi_io_vec. | |
647 | * | |
648 | * We can't do that anymore, because: | |
649 | * | |
650 | * - The point of cloning the biovec is to produce a bio with a biovec | |
651 | * the caller can modify: bi_idx and bi_bvec_done should be 0. | |
652 | * | |
653 | * - The original bio could've had more than BIO_MAX_PAGES biovecs; if | |
654 | * we tried to clone the whole thing bio_alloc_bioset() would fail. | |
655 | * But the clone should succeed as long as the number of biovecs we | |
656 | * actually need to allocate is fewer than BIO_MAX_PAGES. | |
657 | * | |
658 | * - Lastly, bi_vcnt should not be looked at or relied upon by code | |
659 | * that does not own the bio - reason being drivers don't use it for | |
660 | * iterating over the biovec anymore, so expecting it to be kept up | |
661 | * to date (i.e. for clones that share the parent biovec) is just | |
662 | * asking for trouble and would force extra work on | |
663 | * __bio_clone_fast() anyways. | |
664 | */ | |
665 | ||
8423ae3d | 666 | bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); |
bdb53207 | 667 | if (!bio) |
7ba1ba12 | 668 | return NULL; |
bdb53207 | 669 | bio->bi_bdev = bio_src->bi_bdev; |
1eff9d32 | 670 | bio->bi_opf = bio_src->bi_opf; |
bdb53207 KO |
671 | bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; |
672 | bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; | |
7ba1ba12 | 673 | |
7afafc8a AH |
674 | switch (bio_op(bio)) { |
675 | case REQ_OP_DISCARD: | |
676 | case REQ_OP_SECURE_ERASE: | |
a6f0788e | 677 | case REQ_OP_WRITE_ZEROES: |
7afafc8a AH |
678 | break; |
679 | case REQ_OP_WRITE_SAME: | |
8423ae3d | 680 | bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; |
7afafc8a AH |
681 | break; |
682 | default: | |
683 | bio_for_each_segment(bv, bio_src, iter) | |
684 | bio->bi_io_vec[bio->bi_vcnt++] = bv; | |
685 | break; | |
8423ae3d KO |
686 | } |
687 | ||
bdb53207 KO |
688 | if (bio_integrity(bio_src)) { |
689 | int ret; | |
7ba1ba12 | 690 | |
bdb53207 | 691 | ret = bio_integrity_clone(bio, bio_src, gfp_mask); |
059ea331 | 692 | if (ret < 0) { |
bdb53207 | 693 | bio_put(bio); |
7ba1ba12 | 694 | return NULL; |
059ea331 | 695 | } |
3676347a | 696 | } |
1da177e4 | 697 | |
20bd723e PV |
698 | bio_clone_blkcg_association(bio, bio_src); |
699 | ||
bdb53207 | 700 | return bio; |
1da177e4 | 701 | } |
bf800ef1 | 702 | EXPORT_SYMBOL(bio_clone_bioset); |
1da177e4 LT |
703 | |
704 | /** | |
c66a14d0 KO |
705 | * bio_add_pc_page - attempt to add page to bio |
706 | * @q: the target queue | |
707 | * @bio: destination bio | |
708 | * @page: page to add | |
709 | * @len: vec entry length | |
710 | * @offset: vec entry offset | |
1da177e4 | 711 | * |
c66a14d0 KO |
712 | * Attempt to add a page to the bio_vec maplist. This can fail for a |
713 | * number of reasons, such as the bio being full or target block device | |
714 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
715 | * so it is always possible to add a single page to an empty bio. | |
716 | * | |
717 | * This should only be used by REQ_PC bios. | |
1da177e4 | 718 | */ |
c66a14d0 KO |
719 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page |
720 | *page, unsigned int len, unsigned int offset) | |
1da177e4 LT |
721 | { |
722 | int retried_segments = 0; | |
723 | struct bio_vec *bvec; | |
724 | ||
725 | /* | |
726 | * cloned bio must not modify vec list | |
727 | */ | |
728 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
729 | return 0; | |
730 | ||
c66a14d0 | 731 | if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) |
1da177e4 LT |
732 | return 0; |
733 | ||
80cfd548 JA |
734 | /* |
735 | * For filesystems with a blocksize smaller than the pagesize | |
736 | * we will often be called with the same page as last time and | |
737 | * a consecutive offset. Optimize this special case. | |
738 | */ | |
739 | if (bio->bi_vcnt > 0) { | |
740 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
741 | ||
742 | if (page == prev->bv_page && | |
743 | offset == prev->bv_offset + prev->bv_len) { | |
744 | prev->bv_len += len; | |
fcbf6a08 | 745 | bio->bi_iter.bi_size += len; |
80cfd548 JA |
746 | goto done; |
747 | } | |
66cb45aa JA |
748 | |
749 | /* | |
750 | * If the queue doesn't support SG gaps and adding this | |
751 | * offset would create a gap, disallow it. | |
752 | */ | |
03100aad | 753 | if (bvec_gap_to_prev(q, prev, offset)) |
66cb45aa | 754 | return 0; |
80cfd548 JA |
755 | } |
756 | ||
757 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
1da177e4 LT |
758 | return 0; |
759 | ||
760 | /* | |
fcbf6a08 ML |
761 | * setup the new entry, we might clear it again later if we |
762 | * cannot add the page | |
763 | */ | |
764 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
765 | bvec->bv_page = page; | |
766 | bvec->bv_len = len; | |
767 | bvec->bv_offset = offset; | |
768 | bio->bi_vcnt++; | |
769 | bio->bi_phys_segments++; | |
770 | bio->bi_iter.bi_size += len; | |
771 | ||
772 | /* | |
773 | * Perform a recount if the number of segments is greater | |
774 | * than queue_max_segments(q). | |
1da177e4 LT |
775 | */ |
776 | ||
fcbf6a08 | 777 | while (bio->bi_phys_segments > queue_max_segments(q)) { |
1da177e4 LT |
778 | |
779 | if (retried_segments) | |
fcbf6a08 | 780 | goto failed; |
1da177e4 LT |
781 | |
782 | retried_segments = 1; | |
783 | blk_recount_segments(q, bio); | |
784 | } | |
785 | ||
1da177e4 | 786 | /* If we may be able to merge these biovecs, force a recount */ |
fcbf6a08 | 787 | if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
b7c44ed9 | 788 | bio_clear_flag(bio, BIO_SEG_VALID); |
1da177e4 | 789 | |
80cfd548 | 790 | done: |
1da177e4 | 791 | return len; |
fcbf6a08 ML |
792 | |
793 | failed: | |
794 | bvec->bv_page = NULL; | |
795 | bvec->bv_len = 0; | |
796 | bvec->bv_offset = 0; | |
797 | bio->bi_vcnt--; | |
798 | bio->bi_iter.bi_size -= len; | |
799 | blk_recount_segments(q, bio); | |
800 | return 0; | |
1da177e4 | 801 | } |
a112a71d | 802 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 803 | |
1da177e4 LT |
804 | /** |
805 | * bio_add_page - attempt to add page to bio | |
806 | * @bio: destination bio | |
807 | * @page: page to add | |
808 | * @len: vec entry length | |
809 | * @offset: vec entry offset | |
810 | * | |
c66a14d0 KO |
811 | * Attempt to add a page to the bio_vec maplist. This will only fail |
812 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. | |
1da177e4 | 813 | */ |
c66a14d0 KO |
814 | int bio_add_page(struct bio *bio, struct page *page, |
815 | unsigned int len, unsigned int offset) | |
1da177e4 | 816 | { |
c66a14d0 KO |
817 | struct bio_vec *bv; |
818 | ||
819 | /* | |
820 | * cloned bio must not modify vec list | |
821 | */ | |
822 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) | |
823 | return 0; | |
762380ad | 824 | |
c66a14d0 KO |
825 | /* |
826 | * For filesystems with a blocksize smaller than the pagesize | |
827 | * we will often be called with the same page as last time and | |
828 | * a consecutive offset. Optimize this special case. | |
829 | */ | |
830 | if (bio->bi_vcnt > 0) { | |
831 | bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
58a4915a | 832 | |
c66a14d0 KO |
833 | if (page == bv->bv_page && |
834 | offset == bv->bv_offset + bv->bv_len) { | |
835 | bv->bv_len += len; | |
836 | goto done; | |
837 | } | |
838 | } | |
839 | ||
840 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
841 | return 0; | |
842 | ||
843 | bv = &bio->bi_io_vec[bio->bi_vcnt]; | |
844 | bv->bv_page = page; | |
845 | bv->bv_len = len; | |
846 | bv->bv_offset = offset; | |
847 | ||
848 | bio->bi_vcnt++; | |
849 | done: | |
850 | bio->bi_iter.bi_size += len; | |
851 | return len; | |
1da177e4 | 852 | } |
a112a71d | 853 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 854 | |
2cefe4db KO |
855 | /** |
856 | * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio | |
857 | * @bio: bio to add pages to | |
858 | * @iter: iov iterator describing the region to be mapped | |
859 | * | |
860 | * Pins as many pages from *iter and appends them to @bio's bvec array. The | |
861 | * pages will have to be released using put_page() when done. | |
862 | */ | |
863 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | |
864 | { | |
865 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; | |
866 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; | |
867 | struct page **pages = (struct page **)bv; | |
868 | size_t offset, diff; | |
869 | ssize_t size; | |
870 | ||
871 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
872 | if (unlikely(size <= 0)) | |
873 | return size ? size : -EFAULT; | |
874 | nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE; | |
875 | ||
876 | /* | |
877 | * Deep magic below: We need to walk the pinned pages backwards | |
878 | * because we are abusing the space allocated for the bio_vecs | |
879 | * for the page array. Because the bio_vecs are larger than the | |
880 | * page pointers by definition this will always work. But it also | |
881 | * means we can't use bio_add_page, so any changes to it's semantics | |
882 | * need to be reflected here as well. | |
883 | */ | |
884 | bio->bi_iter.bi_size += size; | |
885 | bio->bi_vcnt += nr_pages; | |
886 | ||
887 | diff = (nr_pages * PAGE_SIZE - offset) - size; | |
888 | while (nr_pages--) { | |
889 | bv[nr_pages].bv_page = pages[nr_pages]; | |
890 | bv[nr_pages].bv_len = PAGE_SIZE; | |
891 | bv[nr_pages].bv_offset = 0; | |
892 | } | |
893 | ||
894 | bv[0].bv_offset += offset; | |
895 | bv[0].bv_len -= offset; | |
896 | if (diff) | |
897 | bv[bio->bi_vcnt - 1].bv_len -= diff; | |
898 | ||
899 | iov_iter_advance(iter, size); | |
900 | return 0; | |
901 | } | |
902 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); | |
903 | ||
9e882242 KO |
904 | struct submit_bio_ret { |
905 | struct completion event; | |
906 | int error; | |
907 | }; | |
908 | ||
4246a0b6 | 909 | static void submit_bio_wait_endio(struct bio *bio) |
9e882242 KO |
910 | { |
911 | struct submit_bio_ret *ret = bio->bi_private; | |
912 | ||
4246a0b6 | 913 | ret->error = bio->bi_error; |
9e882242 KO |
914 | complete(&ret->event); |
915 | } | |
916 | ||
917 | /** | |
918 | * submit_bio_wait - submit a bio, and wait until it completes | |
9e882242 KO |
919 | * @bio: The &struct bio which describes the I/O |
920 | * | |
921 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
922 | * bio_endio() on failure. | |
923 | */ | |
4e49ea4a | 924 | int submit_bio_wait(struct bio *bio) |
9e882242 KO |
925 | { |
926 | struct submit_bio_ret ret; | |
927 | ||
9e882242 KO |
928 | init_completion(&ret.event); |
929 | bio->bi_private = &ret; | |
930 | bio->bi_end_io = submit_bio_wait_endio; | |
1eff9d32 | 931 | bio->bi_opf |= REQ_SYNC; |
4e49ea4a | 932 | submit_bio(bio); |
d57d6115 | 933 | wait_for_completion_io(&ret.event); |
9e882242 KO |
934 | |
935 | return ret.error; | |
936 | } | |
937 | EXPORT_SYMBOL(submit_bio_wait); | |
938 | ||
054bdf64 KO |
939 | /** |
940 | * bio_advance - increment/complete a bio by some number of bytes | |
941 | * @bio: bio to advance | |
942 | * @bytes: number of bytes to complete | |
943 | * | |
944 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
945 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
946 | * be updated on the last bvec as well. | |
947 | * | |
948 | * @bio will then represent the remaining, uncompleted portion of the io. | |
949 | */ | |
950 | void bio_advance(struct bio *bio, unsigned bytes) | |
951 | { | |
952 | if (bio_integrity(bio)) | |
953 | bio_integrity_advance(bio, bytes); | |
954 | ||
4550dd6c | 955 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
956 | } |
957 | EXPORT_SYMBOL(bio_advance); | |
958 | ||
a0787606 KO |
959 | /** |
960 | * bio_alloc_pages - allocates a single page for each bvec in a bio | |
961 | * @bio: bio to allocate pages for | |
962 | * @gfp_mask: flags for allocation | |
963 | * | |
964 | * Allocates pages up to @bio->bi_vcnt. | |
965 | * | |
966 | * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are | |
967 | * freed. | |
968 | */ | |
969 | int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) | |
970 | { | |
971 | int i; | |
972 | struct bio_vec *bv; | |
973 | ||
974 | bio_for_each_segment_all(bv, bio, i) { | |
975 | bv->bv_page = alloc_page(gfp_mask); | |
976 | if (!bv->bv_page) { | |
977 | while (--bv >= bio->bi_io_vec) | |
978 | __free_page(bv->bv_page); | |
979 | return -ENOMEM; | |
980 | } | |
981 | } | |
982 | ||
983 | return 0; | |
984 | } | |
985 | EXPORT_SYMBOL(bio_alloc_pages); | |
986 | ||
16ac3d63 KO |
987 | /** |
988 | * bio_copy_data - copy contents of data buffers from one chain of bios to | |
989 | * another | |
990 | * @src: source bio list | |
991 | * @dst: destination bio list | |
992 | * | |
993 | * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats | |
994 | * @src and @dst as linked lists of bios. | |
995 | * | |
996 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
997 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
998 | */ | |
999 | void bio_copy_data(struct bio *dst, struct bio *src) | |
1000 | { | |
1cb9dda4 KO |
1001 | struct bvec_iter src_iter, dst_iter; |
1002 | struct bio_vec src_bv, dst_bv; | |
16ac3d63 | 1003 | void *src_p, *dst_p; |
1cb9dda4 | 1004 | unsigned bytes; |
16ac3d63 | 1005 | |
1cb9dda4 KO |
1006 | src_iter = src->bi_iter; |
1007 | dst_iter = dst->bi_iter; | |
16ac3d63 KO |
1008 | |
1009 | while (1) { | |
1cb9dda4 KO |
1010 | if (!src_iter.bi_size) { |
1011 | src = src->bi_next; | |
1012 | if (!src) | |
1013 | break; | |
16ac3d63 | 1014 | |
1cb9dda4 | 1015 | src_iter = src->bi_iter; |
16ac3d63 KO |
1016 | } |
1017 | ||
1cb9dda4 KO |
1018 | if (!dst_iter.bi_size) { |
1019 | dst = dst->bi_next; | |
1020 | if (!dst) | |
1021 | break; | |
16ac3d63 | 1022 | |
1cb9dda4 | 1023 | dst_iter = dst->bi_iter; |
16ac3d63 KO |
1024 | } |
1025 | ||
1cb9dda4 KO |
1026 | src_bv = bio_iter_iovec(src, src_iter); |
1027 | dst_bv = bio_iter_iovec(dst, dst_iter); | |
1028 | ||
1029 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1030 | |
1cb9dda4 KO |
1031 | src_p = kmap_atomic(src_bv.bv_page); |
1032 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1033 | |
1cb9dda4 KO |
1034 | memcpy(dst_p + dst_bv.bv_offset, |
1035 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1036 | bytes); |
1037 | ||
1038 | kunmap_atomic(dst_p); | |
1039 | kunmap_atomic(src_p); | |
1040 | ||
1cb9dda4 KO |
1041 | bio_advance_iter(src, &src_iter, bytes); |
1042 | bio_advance_iter(dst, &dst_iter, bytes); | |
16ac3d63 KO |
1043 | } |
1044 | } | |
1045 | EXPORT_SYMBOL(bio_copy_data); | |
1046 | ||
1da177e4 | 1047 | struct bio_map_data { |
152e283f | 1048 | int is_our_pages; |
26e49cfc KO |
1049 | struct iov_iter iter; |
1050 | struct iovec iov[]; | |
1da177e4 LT |
1051 | }; |
1052 | ||
7410b3c6 | 1053 | static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, |
76029ff3 | 1054 | gfp_t gfp_mask) |
1da177e4 | 1055 | { |
f3f63c1c JA |
1056 | if (iov_count > UIO_MAXIOV) |
1057 | return NULL; | |
1da177e4 | 1058 | |
c8db4448 | 1059 | return kmalloc(sizeof(struct bio_map_data) + |
26e49cfc | 1060 | sizeof(struct iovec) * iov_count, gfp_mask); |
1da177e4 LT |
1061 | } |
1062 | ||
9124d3fe DP |
1063 | /** |
1064 | * bio_copy_from_iter - copy all pages from iov_iter to bio | |
1065 | * @bio: The &struct bio which describes the I/O as destination | |
1066 | * @iter: iov_iter as source | |
1067 | * | |
1068 | * Copy all pages from iov_iter to bio. | |
1069 | * Returns 0 on success, or error on failure. | |
1070 | */ | |
1071 | static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) | |
c5dec1c3 | 1072 | { |
9124d3fe | 1073 | int i; |
c5dec1c3 | 1074 | struct bio_vec *bvec; |
c5dec1c3 | 1075 | |
d74c6d51 | 1076 | bio_for_each_segment_all(bvec, bio, i) { |
9124d3fe | 1077 | ssize_t ret; |
c5dec1c3 | 1078 | |
9124d3fe DP |
1079 | ret = copy_page_from_iter(bvec->bv_page, |
1080 | bvec->bv_offset, | |
1081 | bvec->bv_len, | |
1082 | &iter); | |
1083 | ||
1084 | if (!iov_iter_count(&iter)) | |
1085 | break; | |
1086 | ||
1087 | if (ret < bvec->bv_len) | |
1088 | return -EFAULT; | |
c5dec1c3 FT |
1089 | } |
1090 | ||
9124d3fe DP |
1091 | return 0; |
1092 | } | |
1093 | ||
1094 | /** | |
1095 | * bio_copy_to_iter - copy all pages from bio to iov_iter | |
1096 | * @bio: The &struct bio which describes the I/O as source | |
1097 | * @iter: iov_iter as destination | |
1098 | * | |
1099 | * Copy all pages from bio to iov_iter. | |
1100 | * Returns 0 on success, or error on failure. | |
1101 | */ | |
1102 | static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) | |
1103 | { | |
1104 | int i; | |
1105 | struct bio_vec *bvec; | |
1106 | ||
1107 | bio_for_each_segment_all(bvec, bio, i) { | |
1108 | ssize_t ret; | |
1109 | ||
1110 | ret = copy_page_to_iter(bvec->bv_page, | |
1111 | bvec->bv_offset, | |
1112 | bvec->bv_len, | |
1113 | &iter); | |
1114 | ||
1115 | if (!iov_iter_count(&iter)) | |
1116 | break; | |
1117 | ||
1118 | if (ret < bvec->bv_len) | |
1119 | return -EFAULT; | |
1120 | } | |
1121 | ||
1122 | return 0; | |
c5dec1c3 FT |
1123 | } |
1124 | ||
491221f8 | 1125 | void bio_free_pages(struct bio *bio) |
1dfa0f68 CH |
1126 | { |
1127 | struct bio_vec *bvec; | |
1128 | int i; | |
1129 | ||
1130 | bio_for_each_segment_all(bvec, bio, i) | |
1131 | __free_page(bvec->bv_page); | |
1132 | } | |
491221f8 | 1133 | EXPORT_SYMBOL(bio_free_pages); |
1dfa0f68 | 1134 | |
1da177e4 LT |
1135 | /** |
1136 | * bio_uncopy_user - finish previously mapped bio | |
1137 | * @bio: bio being terminated | |
1138 | * | |
ddad8dd0 | 1139 | * Free pages allocated from bio_copy_user_iov() and write back data |
1da177e4 LT |
1140 | * to user space in case of a read. |
1141 | */ | |
1142 | int bio_uncopy_user(struct bio *bio) | |
1143 | { | |
1144 | struct bio_map_data *bmd = bio->bi_private; | |
1dfa0f68 | 1145 | int ret = 0; |
1da177e4 | 1146 | |
35dc2483 RD |
1147 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) { |
1148 | /* | |
1149 | * if we're in a workqueue, the request is orphaned, so | |
2d99b55d HR |
1150 | * don't copy into a random user address space, just free |
1151 | * and return -EINTR so user space doesn't expect any data. | |
35dc2483 | 1152 | */ |
2d99b55d HR |
1153 | if (!current->mm) |
1154 | ret = -EINTR; | |
1155 | else if (bio_data_dir(bio) == READ) | |
9124d3fe | 1156 | ret = bio_copy_to_iter(bio, bmd->iter); |
1dfa0f68 CH |
1157 | if (bmd->is_our_pages) |
1158 | bio_free_pages(bio); | |
35dc2483 | 1159 | } |
c8db4448 | 1160 | kfree(bmd); |
1da177e4 LT |
1161 | bio_put(bio); |
1162 | return ret; | |
1163 | } | |
1164 | ||
1165 | /** | |
c5dec1c3 | 1166 | * bio_copy_user_iov - copy user data to bio |
26e49cfc KO |
1167 | * @q: destination block queue |
1168 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | |
1169 | * @iter: iovec iterator | |
1170 | * @gfp_mask: memory allocation flags | |
1da177e4 LT |
1171 | * |
1172 | * Prepares and returns a bio for indirect user io, bouncing data | |
1173 | * to/from kernel pages as necessary. Must be paired with | |
1174 | * call bio_uncopy_user() on io completion. | |
1175 | */ | |
152e283f FT |
1176 | struct bio *bio_copy_user_iov(struct request_queue *q, |
1177 | struct rq_map_data *map_data, | |
26e49cfc KO |
1178 | const struct iov_iter *iter, |
1179 | gfp_t gfp_mask) | |
1da177e4 | 1180 | { |
1da177e4 | 1181 | struct bio_map_data *bmd; |
1da177e4 LT |
1182 | struct page *page; |
1183 | struct bio *bio; | |
1184 | int i, ret; | |
c5dec1c3 | 1185 | int nr_pages = 0; |
26e49cfc | 1186 | unsigned int len = iter->count; |
bd5cecea | 1187 | unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; |
1da177e4 | 1188 | |
26e49cfc | 1189 | for (i = 0; i < iter->nr_segs; i++) { |
c5dec1c3 FT |
1190 | unsigned long uaddr; |
1191 | unsigned long end; | |
1192 | unsigned long start; | |
1193 | ||
26e49cfc KO |
1194 | uaddr = (unsigned long) iter->iov[i].iov_base; |
1195 | end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) | |
1196 | >> PAGE_SHIFT; | |
c5dec1c3 FT |
1197 | start = uaddr >> PAGE_SHIFT; |
1198 | ||
cb4644ca JA |
1199 | /* |
1200 | * Overflow, abort | |
1201 | */ | |
1202 | if (end < start) | |
1203 | return ERR_PTR(-EINVAL); | |
1204 | ||
c5dec1c3 | 1205 | nr_pages += end - start; |
c5dec1c3 FT |
1206 | } |
1207 | ||
69838727 FT |
1208 | if (offset) |
1209 | nr_pages++; | |
1210 | ||
26e49cfc | 1211 | bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); |
1da177e4 LT |
1212 | if (!bmd) |
1213 | return ERR_PTR(-ENOMEM); | |
1214 | ||
26e49cfc KO |
1215 | /* |
1216 | * We need to do a deep copy of the iov_iter including the iovecs. | |
1217 | * The caller provided iov might point to an on-stack or otherwise | |
1218 | * shortlived one. | |
1219 | */ | |
1220 | bmd->is_our_pages = map_data ? 0 : 1; | |
1221 | memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); | |
1222 | iov_iter_init(&bmd->iter, iter->type, bmd->iov, | |
1223 | iter->nr_segs, iter->count); | |
1224 | ||
1da177e4 | 1225 | ret = -ENOMEM; |
a9e9dc24 | 1226 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1227 | if (!bio) |
1228 | goto out_bmd; | |
1229 | ||
26e49cfc | 1230 | if (iter->type & WRITE) |
95fe6c1a | 1231 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
1da177e4 LT |
1232 | |
1233 | ret = 0; | |
56c451f4 FT |
1234 | |
1235 | if (map_data) { | |
e623ddb4 | 1236 | nr_pages = 1 << map_data->page_order; |
56c451f4 FT |
1237 | i = map_data->offset / PAGE_SIZE; |
1238 | } | |
1da177e4 | 1239 | while (len) { |
e623ddb4 | 1240 | unsigned int bytes = PAGE_SIZE; |
1da177e4 | 1241 | |
56c451f4 FT |
1242 | bytes -= offset; |
1243 | ||
1da177e4 LT |
1244 | if (bytes > len) |
1245 | bytes = len; | |
1246 | ||
152e283f | 1247 | if (map_data) { |
e623ddb4 | 1248 | if (i == map_data->nr_entries * nr_pages) { |
152e283f FT |
1249 | ret = -ENOMEM; |
1250 | break; | |
1251 | } | |
e623ddb4 FT |
1252 | |
1253 | page = map_data->pages[i / nr_pages]; | |
1254 | page += (i % nr_pages); | |
1255 | ||
1256 | i++; | |
1257 | } else { | |
152e283f | 1258 | page = alloc_page(q->bounce_gfp | gfp_mask); |
e623ddb4 FT |
1259 | if (!page) { |
1260 | ret = -ENOMEM; | |
1261 | break; | |
1262 | } | |
1da177e4 LT |
1263 | } |
1264 | ||
56c451f4 | 1265 | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) |
1da177e4 | 1266 | break; |
1da177e4 LT |
1267 | |
1268 | len -= bytes; | |
56c451f4 | 1269 | offset = 0; |
1da177e4 LT |
1270 | } |
1271 | ||
1272 | if (ret) | |
1273 | goto cleanup; | |
1274 | ||
1275 | /* | |
1276 | * success | |
1277 | */ | |
26e49cfc | 1278 | if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || |
ecb554a8 | 1279 | (map_data && map_data->from_user)) { |
9124d3fe | 1280 | ret = bio_copy_from_iter(bio, *iter); |
c5dec1c3 FT |
1281 | if (ret) |
1282 | goto cleanup; | |
1da177e4 LT |
1283 | } |
1284 | ||
26e49cfc | 1285 | bio->bi_private = bmd; |
1da177e4 LT |
1286 | return bio; |
1287 | cleanup: | |
152e283f | 1288 | if (!map_data) |
1dfa0f68 | 1289 | bio_free_pages(bio); |
1da177e4 LT |
1290 | bio_put(bio); |
1291 | out_bmd: | |
c8db4448 | 1292 | kfree(bmd); |
1da177e4 LT |
1293 | return ERR_PTR(ret); |
1294 | } | |
1295 | ||
37f19e57 CH |
1296 | /** |
1297 | * bio_map_user_iov - map user iovec into bio | |
1298 | * @q: the struct request_queue for the bio | |
1299 | * @iter: iovec iterator | |
1300 | * @gfp_mask: memory allocation flags | |
1301 | * | |
1302 | * Map the user space address into a bio suitable for io to a block | |
1303 | * device. Returns an error pointer in case of error. | |
1304 | */ | |
1305 | struct bio *bio_map_user_iov(struct request_queue *q, | |
1306 | const struct iov_iter *iter, | |
1307 | gfp_t gfp_mask) | |
1da177e4 | 1308 | { |
26e49cfc | 1309 | int j; |
f1970baf | 1310 | int nr_pages = 0; |
1da177e4 LT |
1311 | struct page **pages; |
1312 | struct bio *bio; | |
f1970baf JB |
1313 | int cur_page = 0; |
1314 | int ret, offset; | |
26e49cfc KO |
1315 | struct iov_iter i; |
1316 | struct iovec iov; | |
1da177e4 | 1317 | |
26e49cfc KO |
1318 | iov_for_each(iov, i, *iter) { |
1319 | unsigned long uaddr = (unsigned long) iov.iov_base; | |
1320 | unsigned long len = iov.iov_len; | |
f1970baf JB |
1321 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1322 | unsigned long start = uaddr >> PAGE_SHIFT; | |
1323 | ||
cb4644ca JA |
1324 | /* |
1325 | * Overflow, abort | |
1326 | */ | |
1327 | if (end < start) | |
1328 | return ERR_PTR(-EINVAL); | |
1329 | ||
f1970baf JB |
1330 | nr_pages += end - start; |
1331 | /* | |
a441b0d0 | 1332 | * buffer must be aligned to at least logical block size for now |
f1970baf | 1333 | */ |
ad2d7225 | 1334 | if (uaddr & queue_dma_alignment(q)) |
f1970baf JB |
1335 | return ERR_PTR(-EINVAL); |
1336 | } | |
1337 | ||
1338 | if (!nr_pages) | |
1da177e4 LT |
1339 | return ERR_PTR(-EINVAL); |
1340 | ||
a9e9dc24 | 1341 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1342 | if (!bio) |
1343 | return ERR_PTR(-ENOMEM); | |
1344 | ||
1345 | ret = -ENOMEM; | |
a3bce90e | 1346 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); |
1da177e4 LT |
1347 | if (!pages) |
1348 | goto out; | |
1349 | ||
26e49cfc KO |
1350 | iov_for_each(iov, i, *iter) { |
1351 | unsigned long uaddr = (unsigned long) iov.iov_base; | |
1352 | unsigned long len = iov.iov_len; | |
f1970baf JB |
1353 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1354 | unsigned long start = uaddr >> PAGE_SHIFT; | |
1355 | const int local_nr_pages = end - start; | |
1356 | const int page_limit = cur_page + local_nr_pages; | |
cb4644ca | 1357 | |
f5dd33c4 | 1358 | ret = get_user_pages_fast(uaddr, local_nr_pages, |
26e49cfc KO |
1359 | (iter->type & WRITE) != WRITE, |
1360 | &pages[cur_page]); | |
99172157 JA |
1361 | if (ret < local_nr_pages) { |
1362 | ret = -EFAULT; | |
f1970baf | 1363 | goto out_unmap; |
99172157 | 1364 | } |
f1970baf | 1365 | |
bd5cecea | 1366 | offset = offset_in_page(uaddr); |
f1970baf JB |
1367 | for (j = cur_page; j < page_limit; j++) { |
1368 | unsigned int bytes = PAGE_SIZE - offset; | |
1369 | ||
1370 | if (len <= 0) | |
1371 | break; | |
1372 | ||
1373 | if (bytes > len) | |
1374 | bytes = len; | |
1375 | ||
1376 | /* | |
1377 | * sorry... | |
1378 | */ | |
defd94b7 MC |
1379 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
1380 | bytes) | |
f1970baf JB |
1381 | break; |
1382 | ||
1383 | len -= bytes; | |
1384 | offset = 0; | |
1385 | } | |
1da177e4 | 1386 | |
f1970baf | 1387 | cur_page = j; |
1da177e4 | 1388 | /* |
f1970baf | 1389 | * release the pages we didn't map into the bio, if any |
1da177e4 | 1390 | */ |
f1970baf | 1391 | while (j < page_limit) |
09cbfeaf | 1392 | put_page(pages[j++]); |
1da177e4 LT |
1393 | } |
1394 | ||
1da177e4 LT |
1395 | kfree(pages); |
1396 | ||
1397 | /* | |
1398 | * set data direction, and check if mapped pages need bouncing | |
1399 | */ | |
26e49cfc | 1400 | if (iter->type & WRITE) |
95fe6c1a | 1401 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
1da177e4 | 1402 | |
b7c44ed9 | 1403 | bio_set_flag(bio, BIO_USER_MAPPED); |
37f19e57 CH |
1404 | |
1405 | /* | |
1406 | * subtle -- if __bio_map_user() ended up bouncing a bio, | |
1407 | * it would normally disappear when its bi_end_io is run. | |
1408 | * however, we need it for the unmap, so grab an extra | |
1409 | * reference to it | |
1410 | */ | |
1411 | bio_get(bio); | |
1da177e4 | 1412 | return bio; |
f1970baf JB |
1413 | |
1414 | out_unmap: | |
26e49cfc KO |
1415 | for (j = 0; j < nr_pages; j++) { |
1416 | if (!pages[j]) | |
f1970baf | 1417 | break; |
09cbfeaf | 1418 | put_page(pages[j]); |
f1970baf JB |
1419 | } |
1420 | out: | |
1da177e4 LT |
1421 | kfree(pages); |
1422 | bio_put(bio); | |
1423 | return ERR_PTR(ret); | |
1424 | } | |
1425 | ||
1da177e4 LT |
1426 | static void __bio_unmap_user(struct bio *bio) |
1427 | { | |
1428 | struct bio_vec *bvec; | |
1429 | int i; | |
1430 | ||
1431 | /* | |
1432 | * make sure we dirty pages we wrote to | |
1433 | */ | |
d74c6d51 | 1434 | bio_for_each_segment_all(bvec, bio, i) { |
1da177e4 LT |
1435 | if (bio_data_dir(bio) == READ) |
1436 | set_page_dirty_lock(bvec->bv_page); | |
1437 | ||
09cbfeaf | 1438 | put_page(bvec->bv_page); |
1da177e4 LT |
1439 | } |
1440 | ||
1441 | bio_put(bio); | |
1442 | } | |
1443 | ||
1444 | /** | |
1445 | * bio_unmap_user - unmap a bio | |
1446 | * @bio: the bio being unmapped | |
1447 | * | |
1448 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | |
1449 | * a process context. | |
1450 | * | |
1451 | * bio_unmap_user() may sleep. | |
1452 | */ | |
1453 | void bio_unmap_user(struct bio *bio) | |
1454 | { | |
1455 | __bio_unmap_user(bio); | |
1456 | bio_put(bio); | |
1457 | } | |
1458 | ||
4246a0b6 | 1459 | static void bio_map_kern_endio(struct bio *bio) |
b823825e | 1460 | { |
b823825e | 1461 | bio_put(bio); |
b823825e JA |
1462 | } |
1463 | ||
75c72b83 CH |
1464 | /** |
1465 | * bio_map_kern - map kernel address into bio | |
1466 | * @q: the struct request_queue for the bio | |
1467 | * @data: pointer to buffer to map | |
1468 | * @len: length in bytes | |
1469 | * @gfp_mask: allocation flags for bio allocation | |
1470 | * | |
1471 | * Map the kernel address into a bio suitable for io to a block | |
1472 | * device. Returns an error pointer in case of error. | |
1473 | */ | |
1474 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | |
1475 | gfp_t gfp_mask) | |
df46b9a4 MC |
1476 | { |
1477 | unsigned long kaddr = (unsigned long)data; | |
1478 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1479 | unsigned long start = kaddr >> PAGE_SHIFT; | |
1480 | const int nr_pages = end - start; | |
1481 | int offset, i; | |
1482 | struct bio *bio; | |
1483 | ||
a9e9dc24 | 1484 | bio = bio_kmalloc(gfp_mask, nr_pages); |
df46b9a4 MC |
1485 | if (!bio) |
1486 | return ERR_PTR(-ENOMEM); | |
1487 | ||
1488 | offset = offset_in_page(kaddr); | |
1489 | for (i = 0; i < nr_pages; i++) { | |
1490 | unsigned int bytes = PAGE_SIZE - offset; | |
1491 | ||
1492 | if (len <= 0) | |
1493 | break; | |
1494 | ||
1495 | if (bytes > len) | |
1496 | bytes = len; | |
1497 | ||
defd94b7 | 1498 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
75c72b83 CH |
1499 | offset) < bytes) { |
1500 | /* we don't support partial mappings */ | |
1501 | bio_put(bio); | |
1502 | return ERR_PTR(-EINVAL); | |
1503 | } | |
df46b9a4 MC |
1504 | |
1505 | data += bytes; | |
1506 | len -= bytes; | |
1507 | offset = 0; | |
1508 | } | |
1509 | ||
b823825e | 1510 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
1511 | return bio; |
1512 | } | |
a112a71d | 1513 | EXPORT_SYMBOL(bio_map_kern); |
df46b9a4 | 1514 | |
4246a0b6 | 1515 | static void bio_copy_kern_endio(struct bio *bio) |
68154e90 | 1516 | { |
1dfa0f68 CH |
1517 | bio_free_pages(bio); |
1518 | bio_put(bio); | |
1519 | } | |
1520 | ||
4246a0b6 | 1521 | static void bio_copy_kern_endio_read(struct bio *bio) |
1dfa0f68 | 1522 | { |
42d2683a | 1523 | char *p = bio->bi_private; |
1dfa0f68 | 1524 | struct bio_vec *bvec; |
68154e90 FT |
1525 | int i; |
1526 | ||
d74c6d51 | 1527 | bio_for_each_segment_all(bvec, bio, i) { |
1dfa0f68 | 1528 | memcpy(p, page_address(bvec->bv_page), bvec->bv_len); |
c8db4448 | 1529 | p += bvec->bv_len; |
68154e90 FT |
1530 | } |
1531 | ||
4246a0b6 | 1532 | bio_copy_kern_endio(bio); |
68154e90 FT |
1533 | } |
1534 | ||
1535 | /** | |
1536 | * bio_copy_kern - copy kernel address into bio | |
1537 | * @q: the struct request_queue for the bio | |
1538 | * @data: pointer to buffer to copy | |
1539 | * @len: length in bytes | |
1540 | * @gfp_mask: allocation flags for bio and page allocation | |
ffee0259 | 1541 | * @reading: data direction is READ |
68154e90 FT |
1542 | * |
1543 | * copy the kernel address into a bio suitable for io to a block | |
1544 | * device. Returns an error pointer in case of error. | |
1545 | */ | |
1546 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | |
1547 | gfp_t gfp_mask, int reading) | |
1548 | { | |
42d2683a CH |
1549 | unsigned long kaddr = (unsigned long)data; |
1550 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1551 | unsigned long start = kaddr >> PAGE_SHIFT; | |
42d2683a CH |
1552 | struct bio *bio; |
1553 | void *p = data; | |
1dfa0f68 | 1554 | int nr_pages = 0; |
68154e90 | 1555 | |
42d2683a CH |
1556 | /* |
1557 | * Overflow, abort | |
1558 | */ | |
1559 | if (end < start) | |
1560 | return ERR_PTR(-EINVAL); | |
68154e90 | 1561 | |
42d2683a CH |
1562 | nr_pages = end - start; |
1563 | bio = bio_kmalloc(gfp_mask, nr_pages); | |
1564 | if (!bio) | |
1565 | return ERR_PTR(-ENOMEM); | |
68154e90 | 1566 | |
42d2683a CH |
1567 | while (len) { |
1568 | struct page *page; | |
1569 | unsigned int bytes = PAGE_SIZE; | |
68154e90 | 1570 | |
42d2683a CH |
1571 | if (bytes > len) |
1572 | bytes = len; | |
1573 | ||
1574 | page = alloc_page(q->bounce_gfp | gfp_mask); | |
1575 | if (!page) | |
1576 | goto cleanup; | |
1577 | ||
1578 | if (!reading) | |
1579 | memcpy(page_address(page), p, bytes); | |
1580 | ||
1581 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | |
1582 | break; | |
1583 | ||
1584 | len -= bytes; | |
1585 | p += bytes; | |
68154e90 FT |
1586 | } |
1587 | ||
1dfa0f68 CH |
1588 | if (reading) { |
1589 | bio->bi_end_io = bio_copy_kern_endio_read; | |
1590 | bio->bi_private = data; | |
1591 | } else { | |
1592 | bio->bi_end_io = bio_copy_kern_endio; | |
95fe6c1a | 1593 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
1dfa0f68 | 1594 | } |
76029ff3 | 1595 | |
68154e90 | 1596 | return bio; |
42d2683a CH |
1597 | |
1598 | cleanup: | |
1dfa0f68 | 1599 | bio_free_pages(bio); |
42d2683a CH |
1600 | bio_put(bio); |
1601 | return ERR_PTR(-ENOMEM); | |
68154e90 FT |
1602 | } |
1603 | ||
1da177e4 LT |
1604 | /* |
1605 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1606 | * for performing direct-IO in BIOs. | |
1607 | * | |
1608 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1609 | * because the required locks are not interrupt-safe. So what we can do is to | |
1610 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1611 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1612 | * in process context. | |
1613 | * | |
1614 | * We special-case compound pages here: normally this means reads into hugetlb | |
1615 | * pages. The logic in here doesn't really work right for compound pages | |
1616 | * because the VM does not uniformly chase down the head page in all cases. | |
1617 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1618 | * handle them at all. So we skip compound pages here at an early stage. | |
1619 | * | |
1620 | * Note that this code is very hard to test under normal circumstances because | |
1621 | * direct-io pins the pages with get_user_pages(). This makes | |
1622 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1623 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1624 | * pagecache. |
1625 | * | |
1626 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1627 | * deferred bio dirtying paths. | |
1628 | */ | |
1629 | ||
1630 | /* | |
1631 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1632 | */ | |
1633 | void bio_set_pages_dirty(struct bio *bio) | |
1634 | { | |
cb34e057 | 1635 | struct bio_vec *bvec; |
1da177e4 LT |
1636 | int i; |
1637 | ||
cb34e057 KO |
1638 | bio_for_each_segment_all(bvec, bio, i) { |
1639 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1640 | |
1641 | if (page && !PageCompound(page)) | |
1642 | set_page_dirty_lock(page); | |
1643 | } | |
1644 | } | |
1645 | ||
86b6c7a7 | 1646 | static void bio_release_pages(struct bio *bio) |
1da177e4 | 1647 | { |
cb34e057 | 1648 | struct bio_vec *bvec; |
1da177e4 LT |
1649 | int i; |
1650 | ||
cb34e057 KO |
1651 | bio_for_each_segment_all(bvec, bio, i) { |
1652 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1653 | |
1654 | if (page) | |
1655 | put_page(page); | |
1656 | } | |
1657 | } | |
1658 | ||
1659 | /* | |
1660 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1661 | * If they are, then fine. If, however, some pages are clean then they must | |
1662 | * have been written out during the direct-IO read. So we take another ref on | |
1663 | * the BIO and the offending pages and re-dirty the pages in process context. | |
1664 | * | |
1665 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
ea1754a0 KS |
1666 | * here on. It will run one put_page() against each page and will run one |
1667 | * bio_put() against the BIO. | |
1da177e4 LT |
1668 | */ |
1669 | ||
65f27f38 | 1670 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1671 | |
65f27f38 | 1672 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1673 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1674 | static struct bio *bio_dirty_list; | |
1675 | ||
1676 | /* | |
1677 | * This runs in process context | |
1678 | */ | |
65f27f38 | 1679 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 LT |
1680 | { |
1681 | unsigned long flags; | |
1682 | struct bio *bio; | |
1683 | ||
1684 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1685 | bio = bio_dirty_list; | |
1686 | bio_dirty_list = NULL; | |
1687 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1688 | ||
1689 | while (bio) { | |
1690 | struct bio *next = bio->bi_private; | |
1691 | ||
1692 | bio_set_pages_dirty(bio); | |
1693 | bio_release_pages(bio); | |
1694 | bio_put(bio); | |
1695 | bio = next; | |
1696 | } | |
1697 | } | |
1698 | ||
1699 | void bio_check_pages_dirty(struct bio *bio) | |
1700 | { | |
cb34e057 | 1701 | struct bio_vec *bvec; |
1da177e4 LT |
1702 | int nr_clean_pages = 0; |
1703 | int i; | |
1704 | ||
cb34e057 KO |
1705 | bio_for_each_segment_all(bvec, bio, i) { |
1706 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1707 | |
1708 | if (PageDirty(page) || PageCompound(page)) { | |
09cbfeaf | 1709 | put_page(page); |
cb34e057 | 1710 | bvec->bv_page = NULL; |
1da177e4 LT |
1711 | } else { |
1712 | nr_clean_pages++; | |
1713 | } | |
1714 | } | |
1715 | ||
1716 | if (nr_clean_pages) { | |
1717 | unsigned long flags; | |
1718 | ||
1719 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1720 | bio->bi_private = bio_dirty_list; | |
1721 | bio_dirty_list = bio; | |
1722 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1723 | schedule_work(&bio_dirty_work); | |
1724 | } else { | |
1725 | bio_put(bio); | |
1726 | } | |
1727 | } | |
1728 | ||
394ffa50 GZ |
1729 | void generic_start_io_acct(int rw, unsigned long sectors, |
1730 | struct hd_struct *part) | |
1731 | { | |
1732 | int cpu = part_stat_lock(); | |
1733 | ||
1734 | part_round_stats(cpu, part); | |
1735 | part_stat_inc(cpu, part, ios[rw]); | |
1736 | part_stat_add(cpu, part, sectors[rw], sectors); | |
1737 | part_inc_in_flight(part, rw); | |
1738 | ||
1739 | part_stat_unlock(); | |
1740 | } | |
1741 | EXPORT_SYMBOL(generic_start_io_acct); | |
1742 | ||
1743 | void generic_end_io_acct(int rw, struct hd_struct *part, | |
1744 | unsigned long start_time) | |
1745 | { | |
1746 | unsigned long duration = jiffies - start_time; | |
1747 | int cpu = part_stat_lock(); | |
1748 | ||
1749 | part_stat_add(cpu, part, ticks[rw], duration); | |
1750 | part_round_stats(cpu, part); | |
1751 | part_dec_in_flight(part, rw); | |
1752 | ||
1753 | part_stat_unlock(); | |
1754 | } | |
1755 | EXPORT_SYMBOL(generic_end_io_acct); | |
1756 | ||
2d4dc890 IL |
1757 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE |
1758 | void bio_flush_dcache_pages(struct bio *bi) | |
1759 | { | |
7988613b KO |
1760 | struct bio_vec bvec; |
1761 | struct bvec_iter iter; | |
2d4dc890 | 1762 | |
7988613b KO |
1763 | bio_for_each_segment(bvec, bi, iter) |
1764 | flush_dcache_page(bvec.bv_page); | |
2d4dc890 IL |
1765 | } |
1766 | EXPORT_SYMBOL(bio_flush_dcache_pages); | |
1767 | #endif | |
1768 | ||
c4cf5261 JA |
1769 | static inline bool bio_remaining_done(struct bio *bio) |
1770 | { | |
1771 | /* | |
1772 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1773 | * we always end io on the first invocation. | |
1774 | */ | |
1775 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1776 | return true; | |
1777 | ||
1778 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1779 | ||
326e1dbb | 1780 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
b7c44ed9 | 1781 | bio_clear_flag(bio, BIO_CHAIN); |
c4cf5261 | 1782 | return true; |
326e1dbb | 1783 | } |
c4cf5261 JA |
1784 | |
1785 | return false; | |
1786 | } | |
1787 | ||
1da177e4 LT |
1788 | /** |
1789 | * bio_endio - end I/O on a bio | |
1790 | * @bio: bio | |
1da177e4 LT |
1791 | * |
1792 | * Description: | |
4246a0b6 CH |
1793 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
1794 | * way to end I/O on a bio. No one should call bi_end_io() directly on a | |
1795 | * bio unless they own it and thus know that it has an end_io function. | |
1da177e4 | 1796 | **/ |
4246a0b6 | 1797 | void bio_endio(struct bio *bio) |
1da177e4 | 1798 | { |
ba8c6967 | 1799 | again: |
2b885517 | 1800 | if (!bio_remaining_done(bio)) |
ba8c6967 | 1801 | return; |
1da177e4 | 1802 | |
ba8c6967 CH |
1803 | /* |
1804 | * Need to have a real endio function for chained bios, otherwise | |
1805 | * various corner cases will break (like stacking block devices that | |
1806 | * save/restore bi_end_io) - however, we want to avoid unbounded | |
1807 | * recursion and blowing the stack. Tail call optimization would | |
1808 | * handle this, but compiling with frame pointers also disables | |
1809 | * gcc's sibling call optimization. | |
1810 | */ | |
1811 | if (bio->bi_end_io == bio_chain_endio) { | |
1812 | bio = __bio_chain_endio(bio); | |
1813 | goto again; | |
196d38bc | 1814 | } |
ba8c6967 CH |
1815 | |
1816 | if (bio->bi_end_io) | |
1817 | bio->bi_end_io(bio); | |
1da177e4 | 1818 | } |
a112a71d | 1819 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1820 | |
20d0189b KO |
1821 | /** |
1822 | * bio_split - split a bio | |
1823 | * @bio: bio to split | |
1824 | * @sectors: number of sectors to split from the front of @bio | |
1825 | * @gfp: gfp mask | |
1826 | * @bs: bio set to allocate from | |
1827 | * | |
1828 | * Allocates and returns a new bio which represents @sectors from the start of | |
1829 | * @bio, and updates @bio to represent the remaining sectors. | |
1830 | * | |
f3f5da62 MP |
1831 | * Unless this is a discard request the newly allocated bio will point |
1832 | * to @bio's bi_io_vec; it is the caller's responsibility to ensure that | |
1833 | * @bio is not freed before the split. | |
20d0189b KO |
1834 | */ |
1835 | struct bio *bio_split(struct bio *bio, int sectors, | |
1836 | gfp_t gfp, struct bio_set *bs) | |
1837 | { | |
1838 | struct bio *split = NULL; | |
1839 | ||
1840 | BUG_ON(sectors <= 0); | |
1841 | BUG_ON(sectors >= bio_sectors(bio)); | |
1842 | ||
f9d03f96 | 1843 | split = bio_clone_fast(bio, gfp, bs); |
20d0189b KO |
1844 | if (!split) |
1845 | return NULL; | |
1846 | ||
1847 | split->bi_iter.bi_size = sectors << 9; | |
1848 | ||
1849 | if (bio_integrity(split)) | |
1850 | bio_integrity_trim(split, 0, sectors); | |
1851 | ||
1852 | bio_advance(bio, split->bi_iter.bi_size); | |
1853 | ||
1854 | return split; | |
1855 | } | |
1856 | EXPORT_SYMBOL(bio_split); | |
1857 | ||
6678d83f KO |
1858 | /** |
1859 | * bio_trim - trim a bio | |
1860 | * @bio: bio to trim | |
1861 | * @offset: number of sectors to trim from the front of @bio | |
1862 | * @size: size we want to trim @bio to, in sectors | |
1863 | */ | |
1864 | void bio_trim(struct bio *bio, int offset, int size) | |
1865 | { | |
1866 | /* 'bio' is a cloned bio which we need to trim to match | |
1867 | * the given offset and size. | |
6678d83f | 1868 | */ |
6678d83f KO |
1869 | |
1870 | size <<= 9; | |
4f024f37 | 1871 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1872 | return; |
1873 | ||
b7c44ed9 | 1874 | bio_clear_flag(bio, BIO_SEG_VALID); |
6678d83f KO |
1875 | |
1876 | bio_advance(bio, offset << 9); | |
1877 | ||
4f024f37 | 1878 | bio->bi_iter.bi_size = size; |
6678d83f KO |
1879 | } |
1880 | EXPORT_SYMBOL_GPL(bio_trim); | |
1881 | ||
1da177e4 LT |
1882 | /* |
1883 | * create memory pools for biovec's in a bio_set. | |
1884 | * use the global biovec slabs created for general use. | |
1885 | */ | |
a6c39cb4 | 1886 | mempool_t *biovec_create_pool(int pool_entries) |
1da177e4 | 1887 | { |
ed996a52 | 1888 | struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; |
1da177e4 | 1889 | |
9f060e22 | 1890 | return mempool_create_slab_pool(pool_entries, bp->slab); |
1da177e4 LT |
1891 | } |
1892 | ||
1893 | void bioset_free(struct bio_set *bs) | |
1894 | { | |
df2cb6da KO |
1895 | if (bs->rescue_workqueue) |
1896 | destroy_workqueue(bs->rescue_workqueue); | |
1897 | ||
1da177e4 LT |
1898 | if (bs->bio_pool) |
1899 | mempool_destroy(bs->bio_pool); | |
1900 | ||
9f060e22 KO |
1901 | if (bs->bvec_pool) |
1902 | mempool_destroy(bs->bvec_pool); | |
1903 | ||
7878cba9 | 1904 | bioset_integrity_free(bs); |
bb799ca0 | 1905 | bio_put_slab(bs); |
1da177e4 LT |
1906 | |
1907 | kfree(bs); | |
1908 | } | |
a112a71d | 1909 | EXPORT_SYMBOL(bioset_free); |
1da177e4 | 1910 | |
d8f429e1 JN |
1911 | static struct bio_set *__bioset_create(unsigned int pool_size, |
1912 | unsigned int front_pad, | |
1913 | bool create_bvec_pool) | |
1da177e4 | 1914 | { |
392ddc32 | 1915 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
1b434498 | 1916 | struct bio_set *bs; |
1da177e4 | 1917 | |
1b434498 | 1918 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
1da177e4 LT |
1919 | if (!bs) |
1920 | return NULL; | |
1921 | ||
bb799ca0 | 1922 | bs->front_pad = front_pad; |
1b434498 | 1923 | |
df2cb6da KO |
1924 | spin_lock_init(&bs->rescue_lock); |
1925 | bio_list_init(&bs->rescue_list); | |
1926 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1927 | ||
392ddc32 | 1928 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
bb799ca0 JA |
1929 | if (!bs->bio_slab) { |
1930 | kfree(bs); | |
1931 | return NULL; | |
1932 | } | |
1933 | ||
1934 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | |
1da177e4 LT |
1935 | if (!bs->bio_pool) |
1936 | goto bad; | |
1937 | ||
d8f429e1 JN |
1938 | if (create_bvec_pool) { |
1939 | bs->bvec_pool = biovec_create_pool(pool_size); | |
1940 | if (!bs->bvec_pool) | |
1941 | goto bad; | |
1942 | } | |
df2cb6da KO |
1943 | |
1944 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1945 | if (!bs->rescue_workqueue) | |
1946 | goto bad; | |
1da177e4 | 1947 | |
df2cb6da | 1948 | return bs; |
1da177e4 LT |
1949 | bad: |
1950 | bioset_free(bs); | |
1951 | return NULL; | |
1952 | } | |
d8f429e1 JN |
1953 | |
1954 | /** | |
1955 | * bioset_create - Create a bio_set | |
1956 | * @pool_size: Number of bio and bio_vecs to cache in the mempool | |
1957 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1958 | * | |
1959 | * Description: | |
1960 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1961 | * to ask for a number of bytes to be allocated in front of the bio. | |
1962 | * Front pad allocation is useful for embedding the bio inside | |
1963 | * another structure, to avoid allocating extra data to go with the bio. | |
1964 | * Note that the bio must be embedded at the END of that structure always, | |
1965 | * or things will break badly. | |
1966 | */ | |
1967 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | |
1968 | { | |
1969 | return __bioset_create(pool_size, front_pad, true); | |
1970 | } | |
a112a71d | 1971 | EXPORT_SYMBOL(bioset_create); |
1da177e4 | 1972 | |
d8f429e1 JN |
1973 | /** |
1974 | * bioset_create_nobvec - Create a bio_set without bio_vec mempool | |
1975 | * @pool_size: Number of bio to cache in the mempool | |
1976 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1977 | * | |
1978 | * Description: | |
1979 | * Same functionality as bioset_create() except that mempool is not | |
1980 | * created for bio_vecs. Saving some memory for bio_clone_fast() users. | |
1981 | */ | |
1982 | struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) | |
1983 | { | |
1984 | return __bioset_create(pool_size, front_pad, false); | |
1985 | } | |
1986 | EXPORT_SYMBOL(bioset_create_nobvec); | |
1987 | ||
852c788f | 1988 | #ifdef CONFIG_BLK_CGROUP |
1d933cf0 TH |
1989 | |
1990 | /** | |
1991 | * bio_associate_blkcg - associate a bio with the specified blkcg | |
1992 | * @bio: target bio | |
1993 | * @blkcg_css: css of the blkcg to associate | |
1994 | * | |
1995 | * Associate @bio with the blkcg specified by @blkcg_css. Block layer will | |
1996 | * treat @bio as if it were issued by a task which belongs to the blkcg. | |
1997 | * | |
1998 | * This function takes an extra reference of @blkcg_css which will be put | |
1999 | * when @bio is released. The caller must own @bio and is responsible for | |
2000 | * synchronizing calls to this function. | |
2001 | */ | |
2002 | int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) | |
2003 | { | |
2004 | if (unlikely(bio->bi_css)) | |
2005 | return -EBUSY; | |
2006 | css_get(blkcg_css); | |
2007 | bio->bi_css = blkcg_css; | |
2008 | return 0; | |
2009 | } | |
5aa2a96b | 2010 | EXPORT_SYMBOL_GPL(bio_associate_blkcg); |
1d933cf0 | 2011 | |
852c788f TH |
2012 | /** |
2013 | * bio_associate_current - associate a bio with %current | |
2014 | * @bio: target bio | |
2015 | * | |
2016 | * Associate @bio with %current if it hasn't been associated yet. Block | |
2017 | * layer will treat @bio as if it were issued by %current no matter which | |
2018 | * task actually issues it. | |
2019 | * | |
2020 | * This function takes an extra reference of @task's io_context and blkcg | |
2021 | * which will be put when @bio is released. The caller must own @bio, | |
2022 | * ensure %current->io_context exists, and is responsible for synchronizing | |
2023 | * calls to this function. | |
2024 | */ | |
2025 | int bio_associate_current(struct bio *bio) | |
2026 | { | |
2027 | struct io_context *ioc; | |
852c788f | 2028 | |
1d933cf0 | 2029 | if (bio->bi_css) |
852c788f TH |
2030 | return -EBUSY; |
2031 | ||
2032 | ioc = current->io_context; | |
2033 | if (!ioc) | |
2034 | return -ENOENT; | |
2035 | ||
852c788f TH |
2036 | get_io_context_active(ioc); |
2037 | bio->bi_ioc = ioc; | |
c165b3e3 | 2038 | bio->bi_css = task_get_css(current, io_cgrp_id); |
852c788f TH |
2039 | return 0; |
2040 | } | |
5aa2a96b | 2041 | EXPORT_SYMBOL_GPL(bio_associate_current); |
852c788f TH |
2042 | |
2043 | /** | |
2044 | * bio_disassociate_task - undo bio_associate_current() | |
2045 | * @bio: target bio | |
2046 | */ | |
2047 | void bio_disassociate_task(struct bio *bio) | |
2048 | { | |
2049 | if (bio->bi_ioc) { | |
2050 | put_io_context(bio->bi_ioc); | |
2051 | bio->bi_ioc = NULL; | |
2052 | } | |
2053 | if (bio->bi_css) { | |
2054 | css_put(bio->bi_css); | |
2055 | bio->bi_css = NULL; | |
2056 | } | |
2057 | } | |
2058 | ||
20bd723e PV |
2059 | /** |
2060 | * bio_clone_blkcg_association - clone blkcg association from src to dst bio | |
2061 | * @dst: destination bio | |
2062 | * @src: source bio | |
2063 | */ | |
2064 | void bio_clone_blkcg_association(struct bio *dst, struct bio *src) | |
2065 | { | |
2066 | if (src->bi_css) | |
2067 | WARN_ON(bio_associate_blkcg(dst, src->bi_css)); | |
2068 | } | |
2069 | ||
852c788f TH |
2070 | #endif /* CONFIG_BLK_CGROUP */ |
2071 | ||
1da177e4 LT |
2072 | static void __init biovec_init_slabs(void) |
2073 | { | |
2074 | int i; | |
2075 | ||
ed996a52 | 2076 | for (i = 0; i < BVEC_POOL_NR; i++) { |
1da177e4 LT |
2077 | int size; |
2078 | struct biovec_slab *bvs = bvec_slabs + i; | |
2079 | ||
a7fcd37c JA |
2080 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
2081 | bvs->slab = NULL; | |
2082 | continue; | |
2083 | } | |
a7fcd37c | 2084 | |
1da177e4 LT |
2085 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
2086 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 2087 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
2088 | } |
2089 | } | |
2090 | ||
2091 | static int __init init_bio(void) | |
2092 | { | |
bb799ca0 JA |
2093 | bio_slab_max = 2; |
2094 | bio_slab_nr = 0; | |
2095 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | |
2096 | if (!bio_slabs) | |
2097 | panic("bio: can't allocate bios\n"); | |
1da177e4 | 2098 | |
7878cba9 | 2099 | bio_integrity_init(); |
1da177e4 LT |
2100 | biovec_init_slabs(); |
2101 | ||
bb799ca0 | 2102 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); |
1da177e4 LT |
2103 | if (!fs_bio_set) |
2104 | panic("bio: can't allocate bios\n"); | |
2105 | ||
a91a2785 MP |
2106 | if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) |
2107 | panic("bio: can't create integrity pool\n"); | |
2108 | ||
1da177e4 LT |
2109 | return 0; |
2110 | } | |
1da177e4 | 2111 | subsys_initcall(init_bio); |