]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
0fe23479 | 2 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
a27bb332 | 22 | #include <linux/uio.h> |
852c788f | 23 | #include <linux/iocontext.h> |
1da177e4 LT |
24 | #include <linux/slab.h> |
25 | #include <linux/init.h> | |
26 | #include <linux/kernel.h> | |
630d9c47 | 27 | #include <linux/export.h> |
1da177e4 LT |
28 | #include <linux/mempool.h> |
29 | #include <linux/workqueue.h> | |
852c788f | 30 | #include <linux/cgroup.h> |
1da177e4 | 31 | |
55782138 | 32 | #include <trace/events/block.h> |
0bfc2455 | 33 | |
392ddc32 JA |
34 | /* |
35 | * Test patch to inline a certain number of bi_io_vec's inside the bio | |
36 | * itself, to shrink a bio data allocation from two mempool calls to one | |
37 | */ | |
38 | #define BIO_INLINE_VECS 4 | |
39 | ||
1da177e4 LT |
40 | /* |
41 | * if you change this list, also change bvec_alloc or things will | |
42 | * break badly! cannot be bigger than what you can fit into an | |
43 | * unsigned short | |
44 | */ | |
1da177e4 | 45 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } |
df677140 | 46 | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { |
1da177e4 LT |
47 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
48 | }; | |
49 | #undef BV | |
50 | ||
1da177e4 LT |
51 | /* |
52 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
53 | * IO code that does not need private memory pools. | |
54 | */ | |
51d654e1 | 55 | struct bio_set *fs_bio_set; |
3f86a82a | 56 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 57 | |
bb799ca0 JA |
58 | /* |
59 | * Our slab pool management | |
60 | */ | |
61 | struct bio_slab { | |
62 | struct kmem_cache *slab; | |
63 | unsigned int slab_ref; | |
64 | unsigned int slab_size; | |
65 | char name[8]; | |
66 | }; | |
67 | static DEFINE_MUTEX(bio_slab_lock); | |
68 | static struct bio_slab *bio_slabs; | |
69 | static unsigned int bio_slab_nr, bio_slab_max; | |
70 | ||
71 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | |
72 | { | |
73 | unsigned int sz = sizeof(struct bio) + extra_size; | |
74 | struct kmem_cache *slab = NULL; | |
389d7b26 | 75 | struct bio_slab *bslab, *new_bio_slabs; |
386bc35a | 76 | unsigned int new_bio_slab_max; |
bb799ca0 JA |
77 | unsigned int i, entry = -1; |
78 | ||
79 | mutex_lock(&bio_slab_lock); | |
80 | ||
81 | i = 0; | |
82 | while (i < bio_slab_nr) { | |
f06f135d | 83 | bslab = &bio_slabs[i]; |
bb799ca0 JA |
84 | |
85 | if (!bslab->slab && entry == -1) | |
86 | entry = i; | |
87 | else if (bslab->slab_size == sz) { | |
88 | slab = bslab->slab; | |
89 | bslab->slab_ref++; | |
90 | break; | |
91 | } | |
92 | i++; | |
93 | } | |
94 | ||
95 | if (slab) | |
96 | goto out_unlock; | |
97 | ||
98 | if (bio_slab_nr == bio_slab_max && entry == -1) { | |
386bc35a | 99 | new_bio_slab_max = bio_slab_max << 1; |
389d7b26 | 100 | new_bio_slabs = krealloc(bio_slabs, |
386bc35a | 101 | new_bio_slab_max * sizeof(struct bio_slab), |
389d7b26 AK |
102 | GFP_KERNEL); |
103 | if (!new_bio_slabs) | |
bb799ca0 | 104 | goto out_unlock; |
386bc35a | 105 | bio_slab_max = new_bio_slab_max; |
389d7b26 | 106 | bio_slabs = new_bio_slabs; |
bb799ca0 JA |
107 | } |
108 | if (entry == -1) | |
109 | entry = bio_slab_nr++; | |
110 | ||
111 | bslab = &bio_slabs[entry]; | |
112 | ||
113 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | |
6a241483 MP |
114 | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, |
115 | SLAB_HWCACHE_ALIGN, NULL); | |
bb799ca0 JA |
116 | if (!slab) |
117 | goto out_unlock; | |
118 | ||
bb799ca0 JA |
119 | bslab->slab = slab; |
120 | bslab->slab_ref = 1; | |
121 | bslab->slab_size = sz; | |
122 | out_unlock: | |
123 | mutex_unlock(&bio_slab_lock); | |
124 | return slab; | |
125 | } | |
126 | ||
127 | static void bio_put_slab(struct bio_set *bs) | |
128 | { | |
129 | struct bio_slab *bslab = NULL; | |
130 | unsigned int i; | |
131 | ||
132 | mutex_lock(&bio_slab_lock); | |
133 | ||
134 | for (i = 0; i < bio_slab_nr; i++) { | |
135 | if (bs->bio_slab == bio_slabs[i].slab) { | |
136 | bslab = &bio_slabs[i]; | |
137 | break; | |
138 | } | |
139 | } | |
140 | ||
141 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | |
142 | goto out; | |
143 | ||
144 | WARN_ON(!bslab->slab_ref); | |
145 | ||
146 | if (--bslab->slab_ref) | |
147 | goto out; | |
148 | ||
149 | kmem_cache_destroy(bslab->slab); | |
150 | bslab->slab = NULL; | |
151 | ||
152 | out: | |
153 | mutex_unlock(&bio_slab_lock); | |
154 | } | |
155 | ||
7ba1ba12 MP |
156 | unsigned int bvec_nr_vecs(unsigned short idx) |
157 | { | |
158 | return bvec_slabs[idx].nr_vecs; | |
159 | } | |
160 | ||
9f060e22 | 161 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
bb799ca0 JA |
162 | { |
163 | BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); | |
164 | ||
165 | if (idx == BIOVEC_MAX_IDX) | |
9f060e22 | 166 | mempool_free(bv, pool); |
bb799ca0 JA |
167 | else { |
168 | struct biovec_slab *bvs = bvec_slabs + idx; | |
169 | ||
170 | kmem_cache_free(bvs->slab, bv); | |
171 | } | |
172 | } | |
173 | ||
9f060e22 KO |
174 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
175 | mempool_t *pool) | |
1da177e4 LT |
176 | { |
177 | struct bio_vec *bvl; | |
1da177e4 | 178 | |
7ff9345f JA |
179 | /* |
180 | * see comment near bvec_array define! | |
181 | */ | |
182 | switch (nr) { | |
183 | case 1: | |
184 | *idx = 0; | |
185 | break; | |
186 | case 2 ... 4: | |
187 | *idx = 1; | |
188 | break; | |
189 | case 5 ... 16: | |
190 | *idx = 2; | |
191 | break; | |
192 | case 17 ... 64: | |
193 | *idx = 3; | |
194 | break; | |
195 | case 65 ... 128: | |
196 | *idx = 4; | |
197 | break; | |
198 | case 129 ... BIO_MAX_PAGES: | |
199 | *idx = 5; | |
200 | break; | |
201 | default: | |
202 | return NULL; | |
203 | } | |
204 | ||
205 | /* | |
206 | * idx now points to the pool we want to allocate from. only the | |
207 | * 1-vec entry pool is mempool backed. | |
208 | */ | |
209 | if (*idx == BIOVEC_MAX_IDX) { | |
210 | fallback: | |
9f060e22 | 211 | bvl = mempool_alloc(pool, gfp_mask); |
7ff9345f JA |
212 | } else { |
213 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
214 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); | |
215 | ||
0a0d96b0 | 216 | /* |
7ff9345f JA |
217 | * Make this allocation restricted and don't dump info on |
218 | * allocation failures, since we'll fallback to the mempool | |
219 | * in case of failure. | |
0a0d96b0 | 220 | */ |
7ff9345f | 221 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 222 | |
0a0d96b0 | 223 | /* |
7ff9345f JA |
224 | * Try a slab allocation. If this fails and __GFP_WAIT |
225 | * is set, retry with the 1-entry mempool | |
0a0d96b0 | 226 | */ |
7ff9345f JA |
227 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
228 | if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { | |
229 | *idx = BIOVEC_MAX_IDX; | |
230 | goto fallback; | |
231 | } | |
232 | } | |
233 | ||
1da177e4 LT |
234 | return bvl; |
235 | } | |
236 | ||
4254bba1 | 237 | static void __bio_free(struct bio *bio) |
1da177e4 | 238 | { |
4254bba1 | 239 | bio_disassociate_task(bio); |
1da177e4 | 240 | |
7ba1ba12 | 241 | if (bio_integrity(bio)) |
1e2a410f | 242 | bio_integrity_free(bio); |
4254bba1 | 243 | } |
7ba1ba12 | 244 | |
4254bba1 KO |
245 | static void bio_free(struct bio *bio) |
246 | { | |
247 | struct bio_set *bs = bio->bi_pool; | |
248 | void *p; | |
249 | ||
250 | __bio_free(bio); | |
251 | ||
252 | if (bs) { | |
a38352e0 | 253 | if (bio_flagged(bio, BIO_OWNS_VEC)) |
9f060e22 | 254 | bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); |
4254bba1 KO |
255 | |
256 | /* | |
257 | * If we have front padding, adjust the bio pointer before freeing | |
258 | */ | |
259 | p = bio; | |
bb799ca0 JA |
260 | p -= bs->front_pad; |
261 | ||
4254bba1 KO |
262 | mempool_free(p, bs->bio_pool); |
263 | } else { | |
264 | /* Bio was allocated by bio_kmalloc() */ | |
265 | kfree(bio); | |
266 | } | |
3676347a PO |
267 | } |
268 | ||
858119e1 | 269 | void bio_init(struct bio *bio) |
1da177e4 | 270 | { |
2b94de55 | 271 | memset(bio, 0, sizeof(*bio)); |
1da177e4 | 272 | bio->bi_flags = 1 << BIO_UPTODATE; |
c4cf5261 | 273 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 274 | atomic_set(&bio->__bi_cnt, 1); |
1da177e4 | 275 | } |
a112a71d | 276 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 277 | |
f44b48c7 KO |
278 | /** |
279 | * bio_reset - reinitialize a bio | |
280 | * @bio: bio to reset | |
281 | * | |
282 | * Description: | |
283 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
284 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
285 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
286 | * comment in struct bio. | |
287 | */ | |
288 | void bio_reset(struct bio *bio) | |
289 | { | |
290 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | |
291 | ||
4254bba1 | 292 | __bio_free(bio); |
f44b48c7 KO |
293 | |
294 | memset(bio, 0, BIO_RESET_BYTES); | |
c4cf5261 JA |
295 | bio->bi_flags = flags | (1 << BIO_UPTODATE); |
296 | atomic_set(&bio->__bi_remaining, 1); | |
f44b48c7 KO |
297 | } |
298 | EXPORT_SYMBOL(bio_reset); | |
299 | ||
196d38bc KO |
300 | static void bio_chain_endio(struct bio *bio, int error) |
301 | { | |
302 | bio_endio(bio->bi_private, error); | |
303 | bio_put(bio); | |
304 | } | |
305 | ||
326e1dbb MS |
306 | /* |
307 | * Increment chain count for the bio. Make sure the CHAIN flag update | |
308 | * is visible before the raised count. | |
309 | */ | |
310 | static inline void bio_inc_remaining(struct bio *bio) | |
311 | { | |
312 | bio->bi_flags |= (1 << BIO_CHAIN); | |
313 | smp_mb__before_atomic(); | |
314 | atomic_inc(&bio->__bi_remaining); | |
315 | } | |
316 | ||
196d38bc KO |
317 | /** |
318 | * bio_chain - chain bio completions | |
1051a902 RD |
319 | * @bio: the target bio |
320 | * @parent: the @bio's parent bio | |
196d38bc KO |
321 | * |
322 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
323 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
324 | * completed; the chained bio will also be freed when it completes. | |
325 | * | |
326 | * The caller must not set bi_private or bi_end_io in @bio. | |
327 | */ | |
328 | void bio_chain(struct bio *bio, struct bio *parent) | |
329 | { | |
330 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
331 | ||
332 | bio->bi_private = parent; | |
333 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 334 | bio_inc_remaining(parent); |
196d38bc KO |
335 | } |
336 | EXPORT_SYMBOL(bio_chain); | |
337 | ||
df2cb6da KO |
338 | static void bio_alloc_rescue(struct work_struct *work) |
339 | { | |
340 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
341 | struct bio *bio; | |
342 | ||
343 | while (1) { | |
344 | spin_lock(&bs->rescue_lock); | |
345 | bio = bio_list_pop(&bs->rescue_list); | |
346 | spin_unlock(&bs->rescue_lock); | |
347 | ||
348 | if (!bio) | |
349 | break; | |
350 | ||
351 | generic_make_request(bio); | |
352 | } | |
353 | } | |
354 | ||
355 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
356 | { | |
357 | struct bio_list punt, nopunt; | |
358 | struct bio *bio; | |
359 | ||
360 | /* | |
361 | * In order to guarantee forward progress we must punt only bios that | |
362 | * were allocated from this bio_set; otherwise, if there was a bio on | |
363 | * there for a stacking driver higher up in the stack, processing it | |
364 | * could require allocating bios from this bio_set, and doing that from | |
365 | * our own rescuer would be bad. | |
366 | * | |
367 | * Since bio lists are singly linked, pop them all instead of trying to | |
368 | * remove from the middle of the list: | |
369 | */ | |
370 | ||
371 | bio_list_init(&punt); | |
372 | bio_list_init(&nopunt); | |
373 | ||
374 | while ((bio = bio_list_pop(current->bio_list))) | |
375 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
376 | ||
377 | *current->bio_list = nopunt; | |
378 | ||
379 | spin_lock(&bs->rescue_lock); | |
380 | bio_list_merge(&bs->rescue_list, &punt); | |
381 | spin_unlock(&bs->rescue_lock); | |
382 | ||
383 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
384 | } | |
385 | ||
1da177e4 LT |
386 | /** |
387 | * bio_alloc_bioset - allocate a bio for I/O | |
388 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
389 | * @nr_iovecs: number of iovecs to pre-allocate | |
db18efac | 390 | * @bs: the bio_set to allocate from. |
1da177e4 LT |
391 | * |
392 | * Description: | |
3f86a82a KO |
393 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is |
394 | * backed by the @bs's mempool. | |
395 | * | |
396 | * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be | |
397 | * able to allocate a bio. This is due to the mempool guarantees. To make this | |
398 | * work, callers must never allocate more than 1 bio at a time from this pool. | |
399 | * Callers that need to allocate more than 1 bio must always submit the | |
400 | * previously allocated bio for IO before attempting to allocate a new one. | |
401 | * Failure to do so can cause deadlocks under memory pressure. | |
402 | * | |
df2cb6da KO |
403 | * Note that when running under generic_make_request() (i.e. any block |
404 | * driver), bios are not submitted until after you return - see the code in | |
405 | * generic_make_request() that converts recursion into iteration, to prevent | |
406 | * stack overflows. | |
407 | * | |
408 | * This would normally mean allocating multiple bios under | |
409 | * generic_make_request() would be susceptible to deadlocks, but we have | |
410 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
411 | * thread. | |
412 | * | |
413 | * However, we do not guarantee forward progress for allocations from other | |
414 | * mempools. Doing multiple allocations from the same mempool under | |
415 | * generic_make_request() should be avoided - instead, use bio_set's front_pad | |
416 | * for per bio allocations. | |
417 | * | |
3f86a82a KO |
418 | * RETURNS: |
419 | * Pointer to new bio on success, NULL on failure. | |
420 | */ | |
dd0fc66f | 421 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
1da177e4 | 422 | { |
df2cb6da | 423 | gfp_t saved_gfp = gfp_mask; |
3f86a82a KO |
424 | unsigned front_pad; |
425 | unsigned inline_vecs; | |
451a9ebf | 426 | unsigned long idx = BIO_POOL_NONE; |
34053979 | 427 | struct bio_vec *bvl = NULL; |
451a9ebf TH |
428 | struct bio *bio; |
429 | void *p; | |
430 | ||
3f86a82a KO |
431 | if (!bs) { |
432 | if (nr_iovecs > UIO_MAXIOV) | |
433 | return NULL; | |
434 | ||
435 | p = kmalloc(sizeof(struct bio) + | |
436 | nr_iovecs * sizeof(struct bio_vec), | |
437 | gfp_mask); | |
438 | front_pad = 0; | |
439 | inline_vecs = nr_iovecs; | |
440 | } else { | |
d8f429e1 JN |
441 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
442 | if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) | |
443 | return NULL; | |
df2cb6da KO |
444 | /* |
445 | * generic_make_request() converts recursion to iteration; this | |
446 | * means if we're running beneath it, any bios we allocate and | |
447 | * submit will not be submitted (and thus freed) until after we | |
448 | * return. | |
449 | * | |
450 | * This exposes us to a potential deadlock if we allocate | |
451 | * multiple bios from the same bio_set() while running | |
452 | * underneath generic_make_request(). If we were to allocate | |
453 | * multiple bios (say a stacking block driver that was splitting | |
454 | * bios), we would deadlock if we exhausted the mempool's | |
455 | * reserve. | |
456 | * | |
457 | * We solve this, and guarantee forward progress, with a rescuer | |
458 | * workqueue per bio_set. If we go to allocate and there are | |
459 | * bios on current->bio_list, we first try the allocation | |
460 | * without __GFP_WAIT; if that fails, we punt those bios we | |
461 | * would be blocking to the rescuer workqueue before we retry | |
462 | * with the original gfp_flags. | |
463 | */ | |
464 | ||
465 | if (current->bio_list && !bio_list_empty(current->bio_list)) | |
466 | gfp_mask &= ~__GFP_WAIT; | |
467 | ||
3f86a82a | 468 | p = mempool_alloc(bs->bio_pool, gfp_mask); |
df2cb6da KO |
469 | if (!p && gfp_mask != saved_gfp) { |
470 | punt_bios_to_rescuer(bs); | |
471 | gfp_mask = saved_gfp; | |
472 | p = mempool_alloc(bs->bio_pool, gfp_mask); | |
473 | } | |
474 | ||
3f86a82a KO |
475 | front_pad = bs->front_pad; |
476 | inline_vecs = BIO_INLINE_VECS; | |
477 | } | |
478 | ||
451a9ebf TH |
479 | if (unlikely(!p)) |
480 | return NULL; | |
1da177e4 | 481 | |
3f86a82a | 482 | bio = p + front_pad; |
34053979 IM |
483 | bio_init(bio); |
484 | ||
3f86a82a | 485 | if (nr_iovecs > inline_vecs) { |
9f060e22 | 486 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); |
df2cb6da KO |
487 | if (!bvl && gfp_mask != saved_gfp) { |
488 | punt_bios_to_rescuer(bs); | |
489 | gfp_mask = saved_gfp; | |
9f060e22 | 490 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); |
df2cb6da KO |
491 | } |
492 | ||
34053979 IM |
493 | if (unlikely(!bvl)) |
494 | goto err_free; | |
a38352e0 KO |
495 | |
496 | bio->bi_flags |= 1 << BIO_OWNS_VEC; | |
3f86a82a KO |
497 | } else if (nr_iovecs) { |
498 | bvl = bio->bi_inline_vecs; | |
1da177e4 | 499 | } |
3f86a82a KO |
500 | |
501 | bio->bi_pool = bs; | |
34053979 IM |
502 | bio->bi_flags |= idx << BIO_POOL_OFFSET; |
503 | bio->bi_max_vecs = nr_iovecs; | |
34053979 | 504 | bio->bi_io_vec = bvl; |
1da177e4 | 505 | return bio; |
34053979 IM |
506 | |
507 | err_free: | |
451a9ebf | 508 | mempool_free(p, bs->bio_pool); |
34053979 | 509 | return NULL; |
1da177e4 | 510 | } |
a112a71d | 511 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 512 | |
1da177e4 LT |
513 | void zero_fill_bio(struct bio *bio) |
514 | { | |
515 | unsigned long flags; | |
7988613b KO |
516 | struct bio_vec bv; |
517 | struct bvec_iter iter; | |
1da177e4 | 518 | |
7988613b KO |
519 | bio_for_each_segment(bv, bio, iter) { |
520 | char *data = bvec_kmap_irq(&bv, &flags); | |
521 | memset(data, 0, bv.bv_len); | |
522 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
523 | bvec_kunmap_irq(data, &flags); |
524 | } | |
525 | } | |
526 | EXPORT_SYMBOL(zero_fill_bio); | |
527 | ||
528 | /** | |
529 | * bio_put - release a reference to a bio | |
530 | * @bio: bio to release reference to | |
531 | * | |
532 | * Description: | |
533 | * Put a reference to a &struct bio, either one you have gotten with | |
ad0bf110 | 534 | * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. |
1da177e4 LT |
535 | **/ |
536 | void bio_put(struct bio *bio) | |
537 | { | |
dac56212 | 538 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 539 | bio_free(bio); |
dac56212 JA |
540 | else { |
541 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
542 | ||
543 | /* | |
544 | * last put frees it | |
545 | */ | |
546 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
547 | bio_free(bio); | |
548 | } | |
1da177e4 | 549 | } |
a112a71d | 550 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 551 | |
165125e1 | 552 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
553 | { |
554 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
555 | blk_recount_segments(q, bio); | |
556 | ||
557 | return bio->bi_phys_segments; | |
558 | } | |
a112a71d | 559 | EXPORT_SYMBOL(bio_phys_segments); |
1da177e4 | 560 | |
59d276fe KO |
561 | /** |
562 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
563 | * @bio: destination bio | |
564 | * @bio_src: bio to clone | |
565 | * | |
566 | * Clone a &bio. Caller will own the returned bio, but not | |
567 | * the actual data it points to. Reference count of returned | |
568 | * bio will be one. | |
569 | * | |
570 | * Caller must ensure that @bio_src is not freed before @bio. | |
571 | */ | |
572 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
573 | { | |
574 | BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); | |
575 | ||
576 | /* | |
577 | * most users will be overriding ->bi_bdev with a new target, | |
578 | * so we don't set nor calculate new physical/hw segment counts here | |
579 | */ | |
580 | bio->bi_bdev = bio_src->bi_bdev; | |
581 | bio->bi_flags |= 1 << BIO_CLONED; | |
582 | bio->bi_rw = bio_src->bi_rw; | |
583 | bio->bi_iter = bio_src->bi_iter; | |
584 | bio->bi_io_vec = bio_src->bi_io_vec; | |
585 | } | |
586 | EXPORT_SYMBOL(__bio_clone_fast); | |
587 | ||
588 | /** | |
589 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
590 | * @bio: bio to clone | |
591 | * @gfp_mask: allocation priority | |
592 | * @bs: bio_set to allocate from | |
593 | * | |
594 | * Like __bio_clone_fast, only also allocates the returned bio | |
595 | */ | |
596 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
597 | { | |
598 | struct bio *b; | |
599 | ||
600 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
601 | if (!b) | |
602 | return NULL; | |
603 | ||
604 | __bio_clone_fast(b, bio); | |
605 | ||
606 | if (bio_integrity(bio)) { | |
607 | int ret; | |
608 | ||
609 | ret = bio_integrity_clone(b, bio, gfp_mask); | |
610 | ||
611 | if (ret < 0) { | |
612 | bio_put(b); | |
613 | return NULL; | |
614 | } | |
615 | } | |
616 | ||
617 | return b; | |
618 | } | |
619 | EXPORT_SYMBOL(bio_clone_fast); | |
620 | ||
1da177e4 | 621 | /** |
bdb53207 KO |
622 | * bio_clone_bioset - clone a bio |
623 | * @bio_src: bio to clone | |
1da177e4 | 624 | * @gfp_mask: allocation priority |
bf800ef1 | 625 | * @bs: bio_set to allocate from |
1da177e4 | 626 | * |
bdb53207 KO |
627 | * Clone bio. Caller will own the returned bio, but not the actual data it |
628 | * points to. Reference count of returned bio will be one. | |
1da177e4 | 629 | */ |
bdb53207 | 630 | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, |
bf800ef1 | 631 | struct bio_set *bs) |
1da177e4 | 632 | { |
bdb53207 KO |
633 | struct bvec_iter iter; |
634 | struct bio_vec bv; | |
635 | struct bio *bio; | |
1da177e4 | 636 | |
bdb53207 KO |
637 | /* |
638 | * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | |
639 | * bio_src->bi_io_vec to bio->bi_io_vec. | |
640 | * | |
641 | * We can't do that anymore, because: | |
642 | * | |
643 | * - The point of cloning the biovec is to produce a bio with a biovec | |
644 | * the caller can modify: bi_idx and bi_bvec_done should be 0. | |
645 | * | |
646 | * - The original bio could've had more than BIO_MAX_PAGES biovecs; if | |
647 | * we tried to clone the whole thing bio_alloc_bioset() would fail. | |
648 | * But the clone should succeed as long as the number of biovecs we | |
649 | * actually need to allocate is fewer than BIO_MAX_PAGES. | |
650 | * | |
651 | * - Lastly, bi_vcnt should not be looked at or relied upon by code | |
652 | * that does not own the bio - reason being drivers don't use it for | |
653 | * iterating over the biovec anymore, so expecting it to be kept up | |
654 | * to date (i.e. for clones that share the parent biovec) is just | |
655 | * asking for trouble and would force extra work on | |
656 | * __bio_clone_fast() anyways. | |
657 | */ | |
658 | ||
8423ae3d | 659 | bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); |
bdb53207 | 660 | if (!bio) |
7ba1ba12 MP |
661 | return NULL; |
662 | ||
bdb53207 KO |
663 | bio->bi_bdev = bio_src->bi_bdev; |
664 | bio->bi_rw = bio_src->bi_rw; | |
665 | bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; | |
666 | bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; | |
7ba1ba12 | 667 | |
8423ae3d KO |
668 | if (bio->bi_rw & REQ_DISCARD) |
669 | goto integrity_clone; | |
670 | ||
671 | if (bio->bi_rw & REQ_WRITE_SAME) { | |
672 | bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; | |
673 | goto integrity_clone; | |
674 | } | |
675 | ||
bdb53207 KO |
676 | bio_for_each_segment(bv, bio_src, iter) |
677 | bio->bi_io_vec[bio->bi_vcnt++] = bv; | |
7ba1ba12 | 678 | |
8423ae3d | 679 | integrity_clone: |
bdb53207 KO |
680 | if (bio_integrity(bio_src)) { |
681 | int ret; | |
7ba1ba12 | 682 | |
bdb53207 | 683 | ret = bio_integrity_clone(bio, bio_src, gfp_mask); |
059ea331 | 684 | if (ret < 0) { |
bdb53207 | 685 | bio_put(bio); |
7ba1ba12 | 686 | return NULL; |
059ea331 | 687 | } |
3676347a | 688 | } |
1da177e4 | 689 | |
bdb53207 | 690 | return bio; |
1da177e4 | 691 | } |
bf800ef1 | 692 | EXPORT_SYMBOL(bio_clone_bioset); |
1da177e4 LT |
693 | |
694 | /** | |
695 | * bio_get_nr_vecs - return approx number of vecs | |
696 | * @bdev: I/O target | |
697 | * | |
698 | * Return the approximate number of pages we can send to this target. | |
699 | * There's no guarantee that you will be able to fit this number of pages | |
700 | * into a bio, it does not account for dynamic restrictions that vary | |
701 | * on offset. | |
702 | */ | |
703 | int bio_get_nr_vecs(struct block_device *bdev) | |
704 | { | |
165125e1 | 705 | struct request_queue *q = bdev_get_queue(bdev); |
f908ee94 BS |
706 | int nr_pages; |
707 | ||
708 | nr_pages = min_t(unsigned, | |
5abebfdd KO |
709 | queue_max_segments(q), |
710 | queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); | |
f908ee94 BS |
711 | |
712 | return min_t(unsigned, nr_pages, BIO_MAX_PAGES); | |
713 | ||
1da177e4 | 714 | } |
a112a71d | 715 | EXPORT_SYMBOL(bio_get_nr_vecs); |
1da177e4 | 716 | |
165125e1 | 717 | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page |
defd94b7 | 718 | *page, unsigned int len, unsigned int offset, |
34f2fd8d | 719 | unsigned int max_sectors) |
1da177e4 LT |
720 | { |
721 | int retried_segments = 0; | |
722 | struct bio_vec *bvec; | |
723 | ||
724 | /* | |
725 | * cloned bio must not modify vec list | |
726 | */ | |
727 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
728 | return 0; | |
729 | ||
4f024f37 | 730 | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
731 | return 0; |
732 | ||
80cfd548 JA |
733 | /* |
734 | * For filesystems with a blocksize smaller than the pagesize | |
735 | * we will often be called with the same page as last time and | |
736 | * a consecutive offset. Optimize this special case. | |
737 | */ | |
738 | if (bio->bi_vcnt > 0) { | |
739 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
740 | ||
741 | if (page == prev->bv_page && | |
742 | offset == prev->bv_offset + prev->bv_len) { | |
1d616585 | 743 | unsigned int prev_bv_len = prev->bv_len; |
80cfd548 | 744 | prev->bv_len += len; |
cc371e66 AK |
745 | |
746 | if (q->merge_bvec_fn) { | |
747 | struct bvec_merge_data bvm = { | |
1d616585 DM |
748 | /* prev_bvec is already charged in |
749 | bi_size, discharge it in order to | |
750 | simulate merging updated prev_bvec | |
751 | as new bvec. */ | |
cc371e66 | 752 | .bi_bdev = bio->bi_bdev, |
4f024f37 KO |
753 | .bi_sector = bio->bi_iter.bi_sector, |
754 | .bi_size = bio->bi_iter.bi_size - | |
755 | prev_bv_len, | |
cc371e66 AK |
756 | .bi_rw = bio->bi_rw, |
757 | }; | |
758 | ||
8bf8c376 | 759 | if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { |
cc371e66 AK |
760 | prev->bv_len -= len; |
761 | return 0; | |
762 | } | |
80cfd548 JA |
763 | } |
764 | ||
fcbf6a08 | 765 | bio->bi_iter.bi_size += len; |
80cfd548 JA |
766 | goto done; |
767 | } | |
66cb45aa JA |
768 | |
769 | /* | |
770 | * If the queue doesn't support SG gaps and adding this | |
771 | * offset would create a gap, disallow it. | |
772 | */ | |
773 | if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) && | |
774 | bvec_gap_to_prev(prev, offset)) | |
775 | return 0; | |
80cfd548 JA |
776 | } |
777 | ||
778 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
1da177e4 LT |
779 | return 0; |
780 | ||
781 | /* | |
fcbf6a08 ML |
782 | * setup the new entry, we might clear it again later if we |
783 | * cannot add the page | |
784 | */ | |
785 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
786 | bvec->bv_page = page; | |
787 | bvec->bv_len = len; | |
788 | bvec->bv_offset = offset; | |
789 | bio->bi_vcnt++; | |
790 | bio->bi_phys_segments++; | |
791 | bio->bi_iter.bi_size += len; | |
792 | ||
793 | /* | |
794 | * Perform a recount if the number of segments is greater | |
795 | * than queue_max_segments(q). | |
1da177e4 LT |
796 | */ |
797 | ||
fcbf6a08 | 798 | while (bio->bi_phys_segments > queue_max_segments(q)) { |
1da177e4 LT |
799 | |
800 | if (retried_segments) | |
fcbf6a08 | 801 | goto failed; |
1da177e4 LT |
802 | |
803 | retried_segments = 1; | |
804 | blk_recount_segments(q, bio); | |
805 | } | |
806 | ||
1da177e4 LT |
807 | /* |
808 | * if queue has other restrictions (eg varying max sector size | |
809 | * depending on offset), it can specify a merge_bvec_fn in the | |
810 | * queue to get further control | |
811 | */ | |
812 | if (q->merge_bvec_fn) { | |
cc371e66 AK |
813 | struct bvec_merge_data bvm = { |
814 | .bi_bdev = bio->bi_bdev, | |
4f024f37 | 815 | .bi_sector = bio->bi_iter.bi_sector, |
fcbf6a08 | 816 | .bi_size = bio->bi_iter.bi_size - len, |
cc371e66 AK |
817 | .bi_rw = bio->bi_rw, |
818 | }; | |
819 | ||
1da177e4 LT |
820 | /* |
821 | * merge_bvec_fn() returns number of bytes it can accept | |
822 | * at this offset | |
823 | */ | |
fcbf6a08 ML |
824 | if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) |
825 | goto failed; | |
1da177e4 LT |
826 | } |
827 | ||
828 | /* If we may be able to merge these biovecs, force a recount */ | |
fcbf6a08 | 829 | if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
1da177e4 LT |
830 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); |
831 | ||
80cfd548 | 832 | done: |
1da177e4 | 833 | return len; |
fcbf6a08 ML |
834 | |
835 | failed: | |
836 | bvec->bv_page = NULL; | |
837 | bvec->bv_len = 0; | |
838 | bvec->bv_offset = 0; | |
839 | bio->bi_vcnt--; | |
840 | bio->bi_iter.bi_size -= len; | |
841 | blk_recount_segments(q, bio); | |
842 | return 0; | |
1da177e4 LT |
843 | } |
844 | ||
6e68af66 MC |
845 | /** |
846 | * bio_add_pc_page - attempt to add page to bio | |
fddfdeaf | 847 | * @q: the target queue |
6e68af66 MC |
848 | * @bio: destination bio |
849 | * @page: page to add | |
850 | * @len: vec entry length | |
851 | * @offset: vec entry offset | |
852 | * | |
853 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
c6428084 AG |
854 | * number of reasons, such as the bio being full or target block device |
855 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
856 | * so it is always possible to add a single page to an empty bio. | |
857 | * | |
858 | * This should only be used by REQ_PC bios. | |
6e68af66 | 859 | */ |
165125e1 | 860 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, |
6e68af66 MC |
861 | unsigned int len, unsigned int offset) |
862 | { | |
ae03bf63 MP |
863 | return __bio_add_page(q, bio, page, len, offset, |
864 | queue_max_hw_sectors(q)); | |
6e68af66 | 865 | } |
a112a71d | 866 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 867 | |
1da177e4 LT |
868 | /** |
869 | * bio_add_page - attempt to add page to bio | |
870 | * @bio: destination bio | |
871 | * @page: page to add | |
872 | * @len: vec entry length | |
873 | * @offset: vec entry offset | |
874 | * | |
875 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
c6428084 AG |
876 | * number of reasons, such as the bio being full or target block device |
877 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
878 | * so it is always possible to add a single page to an empty bio. | |
1da177e4 LT |
879 | */ |
880 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | |
881 | unsigned int offset) | |
882 | { | |
defd94b7 | 883 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
58a4915a | 884 | unsigned int max_sectors; |
762380ad | 885 | |
58a4915a JA |
886 | max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); |
887 | if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) | |
888 | max_sectors = len >> 9; | |
889 | ||
890 | return __bio_add_page(q, bio, page, len, offset, max_sectors); | |
1da177e4 | 891 | } |
a112a71d | 892 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 893 | |
9e882242 KO |
894 | struct submit_bio_ret { |
895 | struct completion event; | |
896 | int error; | |
897 | }; | |
898 | ||
899 | static void submit_bio_wait_endio(struct bio *bio, int error) | |
900 | { | |
901 | struct submit_bio_ret *ret = bio->bi_private; | |
902 | ||
903 | ret->error = error; | |
904 | complete(&ret->event); | |
905 | } | |
906 | ||
907 | /** | |
908 | * submit_bio_wait - submit a bio, and wait until it completes | |
909 | * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) | |
910 | * @bio: The &struct bio which describes the I/O | |
911 | * | |
912 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
913 | * bio_endio() on failure. | |
914 | */ | |
915 | int submit_bio_wait(int rw, struct bio *bio) | |
916 | { | |
917 | struct submit_bio_ret ret; | |
918 | ||
919 | rw |= REQ_SYNC; | |
920 | init_completion(&ret.event); | |
921 | bio->bi_private = &ret; | |
922 | bio->bi_end_io = submit_bio_wait_endio; | |
923 | submit_bio(rw, bio); | |
924 | wait_for_completion(&ret.event); | |
925 | ||
926 | return ret.error; | |
927 | } | |
928 | EXPORT_SYMBOL(submit_bio_wait); | |
929 | ||
054bdf64 KO |
930 | /** |
931 | * bio_advance - increment/complete a bio by some number of bytes | |
932 | * @bio: bio to advance | |
933 | * @bytes: number of bytes to complete | |
934 | * | |
935 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
936 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
937 | * be updated on the last bvec as well. | |
938 | * | |
939 | * @bio will then represent the remaining, uncompleted portion of the io. | |
940 | */ | |
941 | void bio_advance(struct bio *bio, unsigned bytes) | |
942 | { | |
943 | if (bio_integrity(bio)) | |
944 | bio_integrity_advance(bio, bytes); | |
945 | ||
4550dd6c | 946 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
947 | } |
948 | EXPORT_SYMBOL(bio_advance); | |
949 | ||
a0787606 KO |
950 | /** |
951 | * bio_alloc_pages - allocates a single page for each bvec in a bio | |
952 | * @bio: bio to allocate pages for | |
953 | * @gfp_mask: flags for allocation | |
954 | * | |
955 | * Allocates pages up to @bio->bi_vcnt. | |
956 | * | |
957 | * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are | |
958 | * freed. | |
959 | */ | |
960 | int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) | |
961 | { | |
962 | int i; | |
963 | struct bio_vec *bv; | |
964 | ||
965 | bio_for_each_segment_all(bv, bio, i) { | |
966 | bv->bv_page = alloc_page(gfp_mask); | |
967 | if (!bv->bv_page) { | |
968 | while (--bv >= bio->bi_io_vec) | |
969 | __free_page(bv->bv_page); | |
970 | return -ENOMEM; | |
971 | } | |
972 | } | |
973 | ||
974 | return 0; | |
975 | } | |
976 | EXPORT_SYMBOL(bio_alloc_pages); | |
977 | ||
16ac3d63 KO |
978 | /** |
979 | * bio_copy_data - copy contents of data buffers from one chain of bios to | |
980 | * another | |
981 | * @src: source bio list | |
982 | * @dst: destination bio list | |
983 | * | |
984 | * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats | |
985 | * @src and @dst as linked lists of bios. | |
986 | * | |
987 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
988 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
989 | */ | |
990 | void bio_copy_data(struct bio *dst, struct bio *src) | |
991 | { | |
1cb9dda4 KO |
992 | struct bvec_iter src_iter, dst_iter; |
993 | struct bio_vec src_bv, dst_bv; | |
16ac3d63 | 994 | void *src_p, *dst_p; |
1cb9dda4 | 995 | unsigned bytes; |
16ac3d63 | 996 | |
1cb9dda4 KO |
997 | src_iter = src->bi_iter; |
998 | dst_iter = dst->bi_iter; | |
16ac3d63 KO |
999 | |
1000 | while (1) { | |
1cb9dda4 KO |
1001 | if (!src_iter.bi_size) { |
1002 | src = src->bi_next; | |
1003 | if (!src) | |
1004 | break; | |
16ac3d63 | 1005 | |
1cb9dda4 | 1006 | src_iter = src->bi_iter; |
16ac3d63 KO |
1007 | } |
1008 | ||
1cb9dda4 KO |
1009 | if (!dst_iter.bi_size) { |
1010 | dst = dst->bi_next; | |
1011 | if (!dst) | |
1012 | break; | |
16ac3d63 | 1013 | |
1cb9dda4 | 1014 | dst_iter = dst->bi_iter; |
16ac3d63 KO |
1015 | } |
1016 | ||
1cb9dda4 KO |
1017 | src_bv = bio_iter_iovec(src, src_iter); |
1018 | dst_bv = bio_iter_iovec(dst, dst_iter); | |
1019 | ||
1020 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1021 | |
1cb9dda4 KO |
1022 | src_p = kmap_atomic(src_bv.bv_page); |
1023 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1024 | |
1cb9dda4 KO |
1025 | memcpy(dst_p + dst_bv.bv_offset, |
1026 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1027 | bytes); |
1028 | ||
1029 | kunmap_atomic(dst_p); | |
1030 | kunmap_atomic(src_p); | |
1031 | ||
1cb9dda4 KO |
1032 | bio_advance_iter(src, &src_iter, bytes); |
1033 | bio_advance_iter(dst, &dst_iter, bytes); | |
16ac3d63 KO |
1034 | } |
1035 | } | |
1036 | EXPORT_SYMBOL(bio_copy_data); | |
1037 | ||
1da177e4 | 1038 | struct bio_map_data { |
152e283f | 1039 | int is_our_pages; |
26e49cfc KO |
1040 | struct iov_iter iter; |
1041 | struct iovec iov[]; | |
1da177e4 LT |
1042 | }; |
1043 | ||
7410b3c6 | 1044 | static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, |
76029ff3 | 1045 | gfp_t gfp_mask) |
1da177e4 | 1046 | { |
f3f63c1c JA |
1047 | if (iov_count > UIO_MAXIOV) |
1048 | return NULL; | |
1da177e4 | 1049 | |
c8db4448 | 1050 | return kmalloc(sizeof(struct bio_map_data) + |
26e49cfc | 1051 | sizeof(struct iovec) * iov_count, gfp_mask); |
1da177e4 LT |
1052 | } |
1053 | ||
9124d3fe DP |
1054 | /** |
1055 | * bio_copy_from_iter - copy all pages from iov_iter to bio | |
1056 | * @bio: The &struct bio which describes the I/O as destination | |
1057 | * @iter: iov_iter as source | |
1058 | * | |
1059 | * Copy all pages from iov_iter to bio. | |
1060 | * Returns 0 on success, or error on failure. | |
1061 | */ | |
1062 | static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) | |
c5dec1c3 | 1063 | { |
9124d3fe | 1064 | int i; |
c5dec1c3 | 1065 | struct bio_vec *bvec; |
c5dec1c3 | 1066 | |
d74c6d51 | 1067 | bio_for_each_segment_all(bvec, bio, i) { |
9124d3fe | 1068 | ssize_t ret; |
c5dec1c3 | 1069 | |
9124d3fe DP |
1070 | ret = copy_page_from_iter(bvec->bv_page, |
1071 | bvec->bv_offset, | |
1072 | bvec->bv_len, | |
1073 | &iter); | |
1074 | ||
1075 | if (!iov_iter_count(&iter)) | |
1076 | break; | |
1077 | ||
1078 | if (ret < bvec->bv_len) | |
1079 | return -EFAULT; | |
c5dec1c3 FT |
1080 | } |
1081 | ||
9124d3fe DP |
1082 | return 0; |
1083 | } | |
1084 | ||
1085 | /** | |
1086 | * bio_copy_to_iter - copy all pages from bio to iov_iter | |
1087 | * @bio: The &struct bio which describes the I/O as source | |
1088 | * @iter: iov_iter as destination | |
1089 | * | |
1090 | * Copy all pages from bio to iov_iter. | |
1091 | * Returns 0 on success, or error on failure. | |
1092 | */ | |
1093 | static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) | |
1094 | { | |
1095 | int i; | |
1096 | struct bio_vec *bvec; | |
1097 | ||
1098 | bio_for_each_segment_all(bvec, bio, i) { | |
1099 | ssize_t ret; | |
1100 | ||
1101 | ret = copy_page_to_iter(bvec->bv_page, | |
1102 | bvec->bv_offset, | |
1103 | bvec->bv_len, | |
1104 | &iter); | |
1105 | ||
1106 | if (!iov_iter_count(&iter)) | |
1107 | break; | |
1108 | ||
1109 | if (ret < bvec->bv_len) | |
1110 | return -EFAULT; | |
1111 | } | |
1112 | ||
1113 | return 0; | |
c5dec1c3 FT |
1114 | } |
1115 | ||
1dfa0f68 CH |
1116 | static void bio_free_pages(struct bio *bio) |
1117 | { | |
1118 | struct bio_vec *bvec; | |
1119 | int i; | |
1120 | ||
1121 | bio_for_each_segment_all(bvec, bio, i) | |
1122 | __free_page(bvec->bv_page); | |
1123 | } | |
1124 | ||
1da177e4 LT |
1125 | /** |
1126 | * bio_uncopy_user - finish previously mapped bio | |
1127 | * @bio: bio being terminated | |
1128 | * | |
ddad8dd0 | 1129 | * Free pages allocated from bio_copy_user_iov() and write back data |
1da177e4 LT |
1130 | * to user space in case of a read. |
1131 | */ | |
1132 | int bio_uncopy_user(struct bio *bio) | |
1133 | { | |
1134 | struct bio_map_data *bmd = bio->bi_private; | |
1dfa0f68 | 1135 | int ret = 0; |
1da177e4 | 1136 | |
35dc2483 RD |
1137 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) { |
1138 | /* | |
1139 | * if we're in a workqueue, the request is orphaned, so | |
1140 | * don't copy into a random user address space, just free. | |
1141 | */ | |
9124d3fe DP |
1142 | if (current->mm && bio_data_dir(bio) == READ) |
1143 | ret = bio_copy_to_iter(bio, bmd->iter); | |
1dfa0f68 CH |
1144 | if (bmd->is_our_pages) |
1145 | bio_free_pages(bio); | |
35dc2483 | 1146 | } |
c8db4448 | 1147 | kfree(bmd); |
1da177e4 LT |
1148 | bio_put(bio); |
1149 | return ret; | |
1150 | } | |
a112a71d | 1151 | EXPORT_SYMBOL(bio_uncopy_user); |
1da177e4 LT |
1152 | |
1153 | /** | |
c5dec1c3 | 1154 | * bio_copy_user_iov - copy user data to bio |
26e49cfc KO |
1155 | * @q: destination block queue |
1156 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | |
1157 | * @iter: iovec iterator | |
1158 | * @gfp_mask: memory allocation flags | |
1da177e4 LT |
1159 | * |
1160 | * Prepares and returns a bio for indirect user io, bouncing data | |
1161 | * to/from kernel pages as necessary. Must be paired with | |
1162 | * call bio_uncopy_user() on io completion. | |
1163 | */ | |
152e283f FT |
1164 | struct bio *bio_copy_user_iov(struct request_queue *q, |
1165 | struct rq_map_data *map_data, | |
26e49cfc KO |
1166 | const struct iov_iter *iter, |
1167 | gfp_t gfp_mask) | |
1da177e4 | 1168 | { |
1da177e4 | 1169 | struct bio_map_data *bmd; |
1da177e4 LT |
1170 | struct page *page; |
1171 | struct bio *bio; | |
1172 | int i, ret; | |
c5dec1c3 | 1173 | int nr_pages = 0; |
26e49cfc | 1174 | unsigned int len = iter->count; |
56c451f4 | 1175 | unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; |
1da177e4 | 1176 | |
26e49cfc | 1177 | for (i = 0; i < iter->nr_segs; i++) { |
c5dec1c3 FT |
1178 | unsigned long uaddr; |
1179 | unsigned long end; | |
1180 | unsigned long start; | |
1181 | ||
26e49cfc KO |
1182 | uaddr = (unsigned long) iter->iov[i].iov_base; |
1183 | end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) | |
1184 | >> PAGE_SHIFT; | |
c5dec1c3 FT |
1185 | start = uaddr >> PAGE_SHIFT; |
1186 | ||
cb4644ca JA |
1187 | /* |
1188 | * Overflow, abort | |
1189 | */ | |
1190 | if (end < start) | |
1191 | return ERR_PTR(-EINVAL); | |
1192 | ||
c5dec1c3 | 1193 | nr_pages += end - start; |
c5dec1c3 FT |
1194 | } |
1195 | ||
69838727 FT |
1196 | if (offset) |
1197 | nr_pages++; | |
1198 | ||
26e49cfc | 1199 | bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); |
1da177e4 LT |
1200 | if (!bmd) |
1201 | return ERR_PTR(-ENOMEM); | |
1202 | ||
26e49cfc KO |
1203 | /* |
1204 | * We need to do a deep copy of the iov_iter including the iovecs. | |
1205 | * The caller provided iov might point to an on-stack or otherwise | |
1206 | * shortlived one. | |
1207 | */ | |
1208 | bmd->is_our_pages = map_data ? 0 : 1; | |
1209 | memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); | |
1210 | iov_iter_init(&bmd->iter, iter->type, bmd->iov, | |
1211 | iter->nr_segs, iter->count); | |
1212 | ||
1da177e4 | 1213 | ret = -ENOMEM; |
a9e9dc24 | 1214 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1215 | if (!bio) |
1216 | goto out_bmd; | |
1217 | ||
26e49cfc | 1218 | if (iter->type & WRITE) |
7b6d91da | 1219 | bio->bi_rw |= REQ_WRITE; |
1da177e4 LT |
1220 | |
1221 | ret = 0; | |
56c451f4 FT |
1222 | |
1223 | if (map_data) { | |
e623ddb4 | 1224 | nr_pages = 1 << map_data->page_order; |
56c451f4 FT |
1225 | i = map_data->offset / PAGE_SIZE; |
1226 | } | |
1da177e4 | 1227 | while (len) { |
e623ddb4 | 1228 | unsigned int bytes = PAGE_SIZE; |
1da177e4 | 1229 | |
56c451f4 FT |
1230 | bytes -= offset; |
1231 | ||
1da177e4 LT |
1232 | if (bytes > len) |
1233 | bytes = len; | |
1234 | ||
152e283f | 1235 | if (map_data) { |
e623ddb4 | 1236 | if (i == map_data->nr_entries * nr_pages) { |
152e283f FT |
1237 | ret = -ENOMEM; |
1238 | break; | |
1239 | } | |
e623ddb4 FT |
1240 | |
1241 | page = map_data->pages[i / nr_pages]; | |
1242 | page += (i % nr_pages); | |
1243 | ||
1244 | i++; | |
1245 | } else { | |
152e283f | 1246 | page = alloc_page(q->bounce_gfp | gfp_mask); |
e623ddb4 FT |
1247 | if (!page) { |
1248 | ret = -ENOMEM; | |
1249 | break; | |
1250 | } | |
1da177e4 LT |
1251 | } |
1252 | ||
56c451f4 | 1253 | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) |
1da177e4 | 1254 | break; |
1da177e4 LT |
1255 | |
1256 | len -= bytes; | |
56c451f4 | 1257 | offset = 0; |
1da177e4 LT |
1258 | } |
1259 | ||
1260 | if (ret) | |
1261 | goto cleanup; | |
1262 | ||
1263 | /* | |
1264 | * success | |
1265 | */ | |
26e49cfc | 1266 | if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || |
ecb554a8 | 1267 | (map_data && map_data->from_user)) { |
9124d3fe | 1268 | ret = bio_copy_from_iter(bio, *iter); |
c5dec1c3 FT |
1269 | if (ret) |
1270 | goto cleanup; | |
1da177e4 LT |
1271 | } |
1272 | ||
26e49cfc | 1273 | bio->bi_private = bmd; |
1da177e4 LT |
1274 | return bio; |
1275 | cleanup: | |
152e283f | 1276 | if (!map_data) |
1dfa0f68 | 1277 | bio_free_pages(bio); |
1da177e4 LT |
1278 | bio_put(bio); |
1279 | out_bmd: | |
c8db4448 | 1280 | kfree(bmd); |
1da177e4 LT |
1281 | return ERR_PTR(ret); |
1282 | } | |
1283 | ||
37f19e57 CH |
1284 | /** |
1285 | * bio_map_user_iov - map user iovec into bio | |
1286 | * @q: the struct request_queue for the bio | |
1287 | * @iter: iovec iterator | |
1288 | * @gfp_mask: memory allocation flags | |
1289 | * | |
1290 | * Map the user space address into a bio suitable for io to a block | |
1291 | * device. Returns an error pointer in case of error. | |
1292 | */ | |
1293 | struct bio *bio_map_user_iov(struct request_queue *q, | |
1294 | const struct iov_iter *iter, | |
1295 | gfp_t gfp_mask) | |
1da177e4 | 1296 | { |
26e49cfc | 1297 | int j; |
f1970baf | 1298 | int nr_pages = 0; |
1da177e4 LT |
1299 | struct page **pages; |
1300 | struct bio *bio; | |
f1970baf JB |
1301 | int cur_page = 0; |
1302 | int ret, offset; | |
26e49cfc KO |
1303 | struct iov_iter i; |
1304 | struct iovec iov; | |
1da177e4 | 1305 | |
26e49cfc KO |
1306 | iov_for_each(iov, i, *iter) { |
1307 | unsigned long uaddr = (unsigned long) iov.iov_base; | |
1308 | unsigned long len = iov.iov_len; | |
f1970baf JB |
1309 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1310 | unsigned long start = uaddr >> PAGE_SHIFT; | |
1311 | ||
cb4644ca JA |
1312 | /* |
1313 | * Overflow, abort | |
1314 | */ | |
1315 | if (end < start) | |
1316 | return ERR_PTR(-EINVAL); | |
1317 | ||
f1970baf JB |
1318 | nr_pages += end - start; |
1319 | /* | |
ad2d7225 | 1320 | * buffer must be aligned to at least hardsector size for now |
f1970baf | 1321 | */ |
ad2d7225 | 1322 | if (uaddr & queue_dma_alignment(q)) |
f1970baf JB |
1323 | return ERR_PTR(-EINVAL); |
1324 | } | |
1325 | ||
1326 | if (!nr_pages) | |
1da177e4 LT |
1327 | return ERR_PTR(-EINVAL); |
1328 | ||
a9e9dc24 | 1329 | bio = bio_kmalloc(gfp_mask, nr_pages); |
1da177e4 LT |
1330 | if (!bio) |
1331 | return ERR_PTR(-ENOMEM); | |
1332 | ||
1333 | ret = -ENOMEM; | |
a3bce90e | 1334 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); |
1da177e4 LT |
1335 | if (!pages) |
1336 | goto out; | |
1337 | ||
26e49cfc KO |
1338 | iov_for_each(iov, i, *iter) { |
1339 | unsigned long uaddr = (unsigned long) iov.iov_base; | |
1340 | unsigned long len = iov.iov_len; | |
f1970baf JB |
1341 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1342 | unsigned long start = uaddr >> PAGE_SHIFT; | |
1343 | const int local_nr_pages = end - start; | |
1344 | const int page_limit = cur_page + local_nr_pages; | |
cb4644ca | 1345 | |
f5dd33c4 | 1346 | ret = get_user_pages_fast(uaddr, local_nr_pages, |
26e49cfc KO |
1347 | (iter->type & WRITE) != WRITE, |
1348 | &pages[cur_page]); | |
99172157 JA |
1349 | if (ret < local_nr_pages) { |
1350 | ret = -EFAULT; | |
f1970baf | 1351 | goto out_unmap; |
99172157 | 1352 | } |
f1970baf JB |
1353 | |
1354 | offset = uaddr & ~PAGE_MASK; | |
1355 | for (j = cur_page; j < page_limit; j++) { | |
1356 | unsigned int bytes = PAGE_SIZE - offset; | |
1357 | ||
1358 | if (len <= 0) | |
1359 | break; | |
1360 | ||
1361 | if (bytes > len) | |
1362 | bytes = len; | |
1363 | ||
1364 | /* | |
1365 | * sorry... | |
1366 | */ | |
defd94b7 MC |
1367 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
1368 | bytes) | |
f1970baf JB |
1369 | break; |
1370 | ||
1371 | len -= bytes; | |
1372 | offset = 0; | |
1373 | } | |
1da177e4 | 1374 | |
f1970baf | 1375 | cur_page = j; |
1da177e4 | 1376 | /* |
f1970baf | 1377 | * release the pages we didn't map into the bio, if any |
1da177e4 | 1378 | */ |
f1970baf JB |
1379 | while (j < page_limit) |
1380 | page_cache_release(pages[j++]); | |
1da177e4 LT |
1381 | } |
1382 | ||
1da177e4 LT |
1383 | kfree(pages); |
1384 | ||
1385 | /* | |
1386 | * set data direction, and check if mapped pages need bouncing | |
1387 | */ | |
26e49cfc | 1388 | if (iter->type & WRITE) |
7b6d91da | 1389 | bio->bi_rw |= REQ_WRITE; |
1da177e4 LT |
1390 | |
1391 | bio->bi_flags |= (1 << BIO_USER_MAPPED); | |
37f19e57 CH |
1392 | |
1393 | /* | |
1394 | * subtle -- if __bio_map_user() ended up bouncing a bio, | |
1395 | * it would normally disappear when its bi_end_io is run. | |
1396 | * however, we need it for the unmap, so grab an extra | |
1397 | * reference to it | |
1398 | */ | |
1399 | bio_get(bio); | |
1da177e4 | 1400 | return bio; |
f1970baf JB |
1401 | |
1402 | out_unmap: | |
26e49cfc KO |
1403 | for (j = 0; j < nr_pages; j++) { |
1404 | if (!pages[j]) | |
f1970baf | 1405 | break; |
26e49cfc | 1406 | page_cache_release(pages[j]); |
f1970baf JB |
1407 | } |
1408 | out: | |
1da177e4 LT |
1409 | kfree(pages); |
1410 | bio_put(bio); | |
1411 | return ERR_PTR(ret); | |
1412 | } | |
1413 | ||
1da177e4 LT |
1414 | static void __bio_unmap_user(struct bio *bio) |
1415 | { | |
1416 | struct bio_vec *bvec; | |
1417 | int i; | |
1418 | ||
1419 | /* | |
1420 | * make sure we dirty pages we wrote to | |
1421 | */ | |
d74c6d51 | 1422 | bio_for_each_segment_all(bvec, bio, i) { |
1da177e4 LT |
1423 | if (bio_data_dir(bio) == READ) |
1424 | set_page_dirty_lock(bvec->bv_page); | |
1425 | ||
1426 | page_cache_release(bvec->bv_page); | |
1427 | } | |
1428 | ||
1429 | bio_put(bio); | |
1430 | } | |
1431 | ||
1432 | /** | |
1433 | * bio_unmap_user - unmap a bio | |
1434 | * @bio: the bio being unmapped | |
1435 | * | |
1436 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | |
1437 | * a process context. | |
1438 | * | |
1439 | * bio_unmap_user() may sleep. | |
1440 | */ | |
1441 | void bio_unmap_user(struct bio *bio) | |
1442 | { | |
1443 | __bio_unmap_user(bio); | |
1444 | bio_put(bio); | |
1445 | } | |
a112a71d | 1446 | EXPORT_SYMBOL(bio_unmap_user); |
1da177e4 | 1447 | |
6712ecf8 | 1448 | static void bio_map_kern_endio(struct bio *bio, int err) |
b823825e | 1449 | { |
b823825e | 1450 | bio_put(bio); |
b823825e JA |
1451 | } |
1452 | ||
75c72b83 CH |
1453 | /** |
1454 | * bio_map_kern - map kernel address into bio | |
1455 | * @q: the struct request_queue for the bio | |
1456 | * @data: pointer to buffer to map | |
1457 | * @len: length in bytes | |
1458 | * @gfp_mask: allocation flags for bio allocation | |
1459 | * | |
1460 | * Map the kernel address into a bio suitable for io to a block | |
1461 | * device. Returns an error pointer in case of error. | |
1462 | */ | |
1463 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | |
1464 | gfp_t gfp_mask) | |
df46b9a4 MC |
1465 | { |
1466 | unsigned long kaddr = (unsigned long)data; | |
1467 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1468 | unsigned long start = kaddr >> PAGE_SHIFT; | |
1469 | const int nr_pages = end - start; | |
1470 | int offset, i; | |
1471 | struct bio *bio; | |
1472 | ||
a9e9dc24 | 1473 | bio = bio_kmalloc(gfp_mask, nr_pages); |
df46b9a4 MC |
1474 | if (!bio) |
1475 | return ERR_PTR(-ENOMEM); | |
1476 | ||
1477 | offset = offset_in_page(kaddr); | |
1478 | for (i = 0; i < nr_pages; i++) { | |
1479 | unsigned int bytes = PAGE_SIZE - offset; | |
1480 | ||
1481 | if (len <= 0) | |
1482 | break; | |
1483 | ||
1484 | if (bytes > len) | |
1485 | bytes = len; | |
1486 | ||
defd94b7 | 1487 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
75c72b83 CH |
1488 | offset) < bytes) { |
1489 | /* we don't support partial mappings */ | |
1490 | bio_put(bio); | |
1491 | return ERR_PTR(-EINVAL); | |
1492 | } | |
df46b9a4 MC |
1493 | |
1494 | data += bytes; | |
1495 | len -= bytes; | |
1496 | offset = 0; | |
1497 | } | |
1498 | ||
b823825e | 1499 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
1500 | return bio; |
1501 | } | |
a112a71d | 1502 | EXPORT_SYMBOL(bio_map_kern); |
df46b9a4 | 1503 | |
68154e90 FT |
1504 | static void bio_copy_kern_endio(struct bio *bio, int err) |
1505 | { | |
1dfa0f68 CH |
1506 | bio_free_pages(bio); |
1507 | bio_put(bio); | |
1508 | } | |
1509 | ||
1510 | static void bio_copy_kern_endio_read(struct bio *bio, int err) | |
1511 | { | |
42d2683a | 1512 | char *p = bio->bi_private; |
1dfa0f68 | 1513 | struct bio_vec *bvec; |
68154e90 FT |
1514 | int i; |
1515 | ||
d74c6d51 | 1516 | bio_for_each_segment_all(bvec, bio, i) { |
1dfa0f68 | 1517 | memcpy(p, page_address(bvec->bv_page), bvec->bv_len); |
c8db4448 | 1518 | p += bvec->bv_len; |
68154e90 FT |
1519 | } |
1520 | ||
1dfa0f68 | 1521 | bio_copy_kern_endio(bio, err); |
68154e90 FT |
1522 | } |
1523 | ||
1524 | /** | |
1525 | * bio_copy_kern - copy kernel address into bio | |
1526 | * @q: the struct request_queue for the bio | |
1527 | * @data: pointer to buffer to copy | |
1528 | * @len: length in bytes | |
1529 | * @gfp_mask: allocation flags for bio and page allocation | |
ffee0259 | 1530 | * @reading: data direction is READ |
68154e90 FT |
1531 | * |
1532 | * copy the kernel address into a bio suitable for io to a block | |
1533 | * device. Returns an error pointer in case of error. | |
1534 | */ | |
1535 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | |
1536 | gfp_t gfp_mask, int reading) | |
1537 | { | |
42d2683a CH |
1538 | unsigned long kaddr = (unsigned long)data; |
1539 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
1540 | unsigned long start = kaddr >> PAGE_SHIFT; | |
42d2683a CH |
1541 | struct bio *bio; |
1542 | void *p = data; | |
1dfa0f68 | 1543 | int nr_pages = 0; |
68154e90 | 1544 | |
42d2683a CH |
1545 | /* |
1546 | * Overflow, abort | |
1547 | */ | |
1548 | if (end < start) | |
1549 | return ERR_PTR(-EINVAL); | |
68154e90 | 1550 | |
42d2683a CH |
1551 | nr_pages = end - start; |
1552 | bio = bio_kmalloc(gfp_mask, nr_pages); | |
1553 | if (!bio) | |
1554 | return ERR_PTR(-ENOMEM); | |
68154e90 | 1555 | |
42d2683a CH |
1556 | while (len) { |
1557 | struct page *page; | |
1558 | unsigned int bytes = PAGE_SIZE; | |
68154e90 | 1559 | |
42d2683a CH |
1560 | if (bytes > len) |
1561 | bytes = len; | |
1562 | ||
1563 | page = alloc_page(q->bounce_gfp | gfp_mask); | |
1564 | if (!page) | |
1565 | goto cleanup; | |
1566 | ||
1567 | if (!reading) | |
1568 | memcpy(page_address(page), p, bytes); | |
1569 | ||
1570 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | |
1571 | break; | |
1572 | ||
1573 | len -= bytes; | |
1574 | p += bytes; | |
68154e90 FT |
1575 | } |
1576 | ||
1dfa0f68 CH |
1577 | if (reading) { |
1578 | bio->bi_end_io = bio_copy_kern_endio_read; | |
1579 | bio->bi_private = data; | |
1580 | } else { | |
1581 | bio->bi_end_io = bio_copy_kern_endio; | |
42d2683a | 1582 | bio->bi_rw |= REQ_WRITE; |
1dfa0f68 | 1583 | } |
76029ff3 | 1584 | |
68154e90 | 1585 | return bio; |
42d2683a CH |
1586 | |
1587 | cleanup: | |
1dfa0f68 | 1588 | bio_free_pages(bio); |
42d2683a CH |
1589 | bio_put(bio); |
1590 | return ERR_PTR(-ENOMEM); | |
68154e90 | 1591 | } |
a112a71d | 1592 | EXPORT_SYMBOL(bio_copy_kern); |
68154e90 | 1593 | |
1da177e4 LT |
1594 | /* |
1595 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1596 | * for performing direct-IO in BIOs. | |
1597 | * | |
1598 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1599 | * because the required locks are not interrupt-safe. So what we can do is to | |
1600 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1601 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1602 | * in process context. | |
1603 | * | |
1604 | * We special-case compound pages here: normally this means reads into hugetlb | |
1605 | * pages. The logic in here doesn't really work right for compound pages | |
1606 | * because the VM does not uniformly chase down the head page in all cases. | |
1607 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1608 | * handle them at all. So we skip compound pages here at an early stage. | |
1609 | * | |
1610 | * Note that this code is very hard to test under normal circumstances because | |
1611 | * direct-io pins the pages with get_user_pages(). This makes | |
1612 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1613 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1614 | * pagecache. |
1615 | * | |
1616 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1617 | * deferred bio dirtying paths. | |
1618 | */ | |
1619 | ||
1620 | /* | |
1621 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1622 | */ | |
1623 | void bio_set_pages_dirty(struct bio *bio) | |
1624 | { | |
cb34e057 | 1625 | struct bio_vec *bvec; |
1da177e4 LT |
1626 | int i; |
1627 | ||
cb34e057 KO |
1628 | bio_for_each_segment_all(bvec, bio, i) { |
1629 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1630 | |
1631 | if (page && !PageCompound(page)) | |
1632 | set_page_dirty_lock(page); | |
1633 | } | |
1634 | } | |
1635 | ||
86b6c7a7 | 1636 | static void bio_release_pages(struct bio *bio) |
1da177e4 | 1637 | { |
cb34e057 | 1638 | struct bio_vec *bvec; |
1da177e4 LT |
1639 | int i; |
1640 | ||
cb34e057 KO |
1641 | bio_for_each_segment_all(bvec, bio, i) { |
1642 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1643 | |
1644 | if (page) | |
1645 | put_page(page); | |
1646 | } | |
1647 | } | |
1648 | ||
1649 | /* | |
1650 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1651 | * If they are, then fine. If, however, some pages are clean then they must | |
1652 | * have been written out during the direct-IO read. So we take another ref on | |
1653 | * the BIO and the offending pages and re-dirty the pages in process context. | |
1654 | * | |
1655 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
1656 | * here on. It will run one page_cache_release() against each page and will | |
1657 | * run one bio_put() against the BIO. | |
1658 | */ | |
1659 | ||
65f27f38 | 1660 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1661 | |
65f27f38 | 1662 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1663 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1664 | static struct bio *bio_dirty_list; | |
1665 | ||
1666 | /* | |
1667 | * This runs in process context | |
1668 | */ | |
65f27f38 | 1669 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 LT |
1670 | { |
1671 | unsigned long flags; | |
1672 | struct bio *bio; | |
1673 | ||
1674 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1675 | bio = bio_dirty_list; | |
1676 | bio_dirty_list = NULL; | |
1677 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1678 | ||
1679 | while (bio) { | |
1680 | struct bio *next = bio->bi_private; | |
1681 | ||
1682 | bio_set_pages_dirty(bio); | |
1683 | bio_release_pages(bio); | |
1684 | bio_put(bio); | |
1685 | bio = next; | |
1686 | } | |
1687 | } | |
1688 | ||
1689 | void bio_check_pages_dirty(struct bio *bio) | |
1690 | { | |
cb34e057 | 1691 | struct bio_vec *bvec; |
1da177e4 LT |
1692 | int nr_clean_pages = 0; |
1693 | int i; | |
1694 | ||
cb34e057 KO |
1695 | bio_for_each_segment_all(bvec, bio, i) { |
1696 | struct page *page = bvec->bv_page; | |
1da177e4 LT |
1697 | |
1698 | if (PageDirty(page) || PageCompound(page)) { | |
1699 | page_cache_release(page); | |
cb34e057 | 1700 | bvec->bv_page = NULL; |
1da177e4 LT |
1701 | } else { |
1702 | nr_clean_pages++; | |
1703 | } | |
1704 | } | |
1705 | ||
1706 | if (nr_clean_pages) { | |
1707 | unsigned long flags; | |
1708 | ||
1709 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1710 | bio->bi_private = bio_dirty_list; | |
1711 | bio_dirty_list = bio; | |
1712 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1713 | schedule_work(&bio_dirty_work); | |
1714 | } else { | |
1715 | bio_put(bio); | |
1716 | } | |
1717 | } | |
1718 | ||
394ffa50 GZ |
1719 | void generic_start_io_acct(int rw, unsigned long sectors, |
1720 | struct hd_struct *part) | |
1721 | { | |
1722 | int cpu = part_stat_lock(); | |
1723 | ||
1724 | part_round_stats(cpu, part); | |
1725 | part_stat_inc(cpu, part, ios[rw]); | |
1726 | part_stat_add(cpu, part, sectors[rw], sectors); | |
1727 | part_inc_in_flight(part, rw); | |
1728 | ||
1729 | part_stat_unlock(); | |
1730 | } | |
1731 | EXPORT_SYMBOL(generic_start_io_acct); | |
1732 | ||
1733 | void generic_end_io_acct(int rw, struct hd_struct *part, | |
1734 | unsigned long start_time) | |
1735 | { | |
1736 | unsigned long duration = jiffies - start_time; | |
1737 | int cpu = part_stat_lock(); | |
1738 | ||
1739 | part_stat_add(cpu, part, ticks[rw], duration); | |
1740 | part_round_stats(cpu, part); | |
1741 | part_dec_in_flight(part, rw); | |
1742 | ||
1743 | part_stat_unlock(); | |
1744 | } | |
1745 | EXPORT_SYMBOL(generic_end_io_acct); | |
1746 | ||
2d4dc890 IL |
1747 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE |
1748 | void bio_flush_dcache_pages(struct bio *bi) | |
1749 | { | |
7988613b KO |
1750 | struct bio_vec bvec; |
1751 | struct bvec_iter iter; | |
2d4dc890 | 1752 | |
7988613b KO |
1753 | bio_for_each_segment(bvec, bi, iter) |
1754 | flush_dcache_page(bvec.bv_page); | |
2d4dc890 IL |
1755 | } |
1756 | EXPORT_SYMBOL(bio_flush_dcache_pages); | |
1757 | #endif | |
1758 | ||
c4cf5261 JA |
1759 | static inline bool bio_remaining_done(struct bio *bio) |
1760 | { | |
1761 | /* | |
1762 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1763 | * we always end io on the first invocation. | |
1764 | */ | |
1765 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1766 | return true; | |
1767 | ||
1768 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1769 | ||
326e1dbb MS |
1770 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
1771 | clear_bit(BIO_CHAIN, &bio->bi_flags); | |
c4cf5261 | 1772 | return true; |
326e1dbb | 1773 | } |
c4cf5261 JA |
1774 | |
1775 | return false; | |
1776 | } | |
1777 | ||
1da177e4 LT |
1778 | /** |
1779 | * bio_endio - end I/O on a bio | |
1780 | * @bio: bio | |
1da177e4 LT |
1781 | * @error: error, if any |
1782 | * | |
1783 | * Description: | |
6712ecf8 | 1784 | * bio_endio() will end I/O on the whole bio. bio_endio() is the |
5bb23a68 N |
1785 | * preferred way to end I/O on a bio, it takes care of clearing |
1786 | * BIO_UPTODATE on error. @error is 0 on success, and and one of the | |
1787 | * established -Exxxx (-EIO, for instance) error values in case | |
25985edc | 1788 | * something went wrong. No one should call bi_end_io() directly on a |
5bb23a68 N |
1789 | * bio unless they own it and thus know that it has an end_io |
1790 | * function. | |
1da177e4 | 1791 | **/ |
6712ecf8 | 1792 | void bio_endio(struct bio *bio, int error) |
1da177e4 | 1793 | { |
196d38bc | 1794 | while (bio) { |
196d38bc KO |
1795 | if (error) |
1796 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | |
1797 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | |
1798 | error = -EIO; | |
1799 | ||
c4cf5261 JA |
1800 | if (unlikely(!bio_remaining_done(bio))) |
1801 | break; | |
1da177e4 | 1802 | |
196d38bc KO |
1803 | /* |
1804 | * Need to have a real endio function for chained bios, | |
1805 | * otherwise various corner cases will break (like stacking | |
1806 | * block devices that save/restore bi_end_io) - however, we want | |
1807 | * to avoid unbounded recursion and blowing the stack. Tail call | |
1808 | * optimization would handle this, but compiling with frame | |
1809 | * pointers also disables gcc's sibling call optimization. | |
1810 | */ | |
1811 | if (bio->bi_end_io == bio_chain_endio) { | |
1812 | struct bio *parent = bio->bi_private; | |
1813 | bio_put(bio); | |
1814 | bio = parent; | |
1815 | } else { | |
1816 | if (bio->bi_end_io) | |
1817 | bio->bi_end_io(bio, error); | |
1818 | bio = NULL; | |
1819 | } | |
1820 | } | |
1da177e4 | 1821 | } |
a112a71d | 1822 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1823 | |
20d0189b KO |
1824 | /** |
1825 | * bio_split - split a bio | |
1826 | * @bio: bio to split | |
1827 | * @sectors: number of sectors to split from the front of @bio | |
1828 | * @gfp: gfp mask | |
1829 | * @bs: bio set to allocate from | |
1830 | * | |
1831 | * Allocates and returns a new bio which represents @sectors from the start of | |
1832 | * @bio, and updates @bio to represent the remaining sectors. | |
1833 | * | |
f3f5da62 MP |
1834 | * Unless this is a discard request the newly allocated bio will point |
1835 | * to @bio's bi_io_vec; it is the caller's responsibility to ensure that | |
1836 | * @bio is not freed before the split. | |
20d0189b KO |
1837 | */ |
1838 | struct bio *bio_split(struct bio *bio, int sectors, | |
1839 | gfp_t gfp, struct bio_set *bs) | |
1840 | { | |
1841 | struct bio *split = NULL; | |
1842 | ||
1843 | BUG_ON(sectors <= 0); | |
1844 | BUG_ON(sectors >= bio_sectors(bio)); | |
1845 | ||
f3f5da62 MP |
1846 | /* |
1847 | * Discards need a mutable bio_vec to accommodate the payload | |
1848 | * required by the DSM TRIM and UNMAP commands. | |
1849 | */ | |
1850 | if (bio->bi_rw & REQ_DISCARD) | |
1851 | split = bio_clone_bioset(bio, gfp, bs); | |
1852 | else | |
1853 | split = bio_clone_fast(bio, gfp, bs); | |
1854 | ||
20d0189b KO |
1855 | if (!split) |
1856 | return NULL; | |
1857 | ||
1858 | split->bi_iter.bi_size = sectors << 9; | |
1859 | ||
1860 | if (bio_integrity(split)) | |
1861 | bio_integrity_trim(split, 0, sectors); | |
1862 | ||
1863 | bio_advance(bio, split->bi_iter.bi_size); | |
1864 | ||
1865 | return split; | |
1866 | } | |
1867 | EXPORT_SYMBOL(bio_split); | |
1868 | ||
6678d83f KO |
1869 | /** |
1870 | * bio_trim - trim a bio | |
1871 | * @bio: bio to trim | |
1872 | * @offset: number of sectors to trim from the front of @bio | |
1873 | * @size: size we want to trim @bio to, in sectors | |
1874 | */ | |
1875 | void bio_trim(struct bio *bio, int offset, int size) | |
1876 | { | |
1877 | /* 'bio' is a cloned bio which we need to trim to match | |
1878 | * the given offset and size. | |
6678d83f | 1879 | */ |
6678d83f KO |
1880 | |
1881 | size <<= 9; | |
4f024f37 | 1882 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1883 | return; |
1884 | ||
1885 | clear_bit(BIO_SEG_VALID, &bio->bi_flags); | |
1886 | ||
1887 | bio_advance(bio, offset << 9); | |
1888 | ||
4f024f37 | 1889 | bio->bi_iter.bi_size = size; |
6678d83f KO |
1890 | } |
1891 | EXPORT_SYMBOL_GPL(bio_trim); | |
1892 | ||
1da177e4 LT |
1893 | /* |
1894 | * create memory pools for biovec's in a bio_set. | |
1895 | * use the global biovec slabs created for general use. | |
1896 | */ | |
a6c39cb4 | 1897 | mempool_t *biovec_create_pool(int pool_entries) |
1da177e4 | 1898 | { |
7ff9345f | 1899 | struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; |
1da177e4 | 1900 | |
9f060e22 | 1901 | return mempool_create_slab_pool(pool_entries, bp->slab); |
1da177e4 LT |
1902 | } |
1903 | ||
1904 | void bioset_free(struct bio_set *bs) | |
1905 | { | |
df2cb6da KO |
1906 | if (bs->rescue_workqueue) |
1907 | destroy_workqueue(bs->rescue_workqueue); | |
1908 | ||
1da177e4 LT |
1909 | if (bs->bio_pool) |
1910 | mempool_destroy(bs->bio_pool); | |
1911 | ||
9f060e22 KO |
1912 | if (bs->bvec_pool) |
1913 | mempool_destroy(bs->bvec_pool); | |
1914 | ||
7878cba9 | 1915 | bioset_integrity_free(bs); |
bb799ca0 | 1916 | bio_put_slab(bs); |
1da177e4 LT |
1917 | |
1918 | kfree(bs); | |
1919 | } | |
a112a71d | 1920 | EXPORT_SYMBOL(bioset_free); |
1da177e4 | 1921 | |
d8f429e1 JN |
1922 | static struct bio_set *__bioset_create(unsigned int pool_size, |
1923 | unsigned int front_pad, | |
1924 | bool create_bvec_pool) | |
1da177e4 | 1925 | { |
392ddc32 | 1926 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
1b434498 | 1927 | struct bio_set *bs; |
1da177e4 | 1928 | |
1b434498 | 1929 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
1da177e4 LT |
1930 | if (!bs) |
1931 | return NULL; | |
1932 | ||
bb799ca0 | 1933 | bs->front_pad = front_pad; |
1b434498 | 1934 | |
df2cb6da KO |
1935 | spin_lock_init(&bs->rescue_lock); |
1936 | bio_list_init(&bs->rescue_list); | |
1937 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1938 | ||
392ddc32 | 1939 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
bb799ca0 JA |
1940 | if (!bs->bio_slab) { |
1941 | kfree(bs); | |
1942 | return NULL; | |
1943 | } | |
1944 | ||
1945 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | |
1da177e4 LT |
1946 | if (!bs->bio_pool) |
1947 | goto bad; | |
1948 | ||
d8f429e1 JN |
1949 | if (create_bvec_pool) { |
1950 | bs->bvec_pool = biovec_create_pool(pool_size); | |
1951 | if (!bs->bvec_pool) | |
1952 | goto bad; | |
1953 | } | |
df2cb6da KO |
1954 | |
1955 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1956 | if (!bs->rescue_workqueue) | |
1957 | goto bad; | |
1da177e4 | 1958 | |
df2cb6da | 1959 | return bs; |
1da177e4 LT |
1960 | bad: |
1961 | bioset_free(bs); | |
1962 | return NULL; | |
1963 | } | |
d8f429e1 JN |
1964 | |
1965 | /** | |
1966 | * bioset_create - Create a bio_set | |
1967 | * @pool_size: Number of bio and bio_vecs to cache in the mempool | |
1968 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1969 | * | |
1970 | * Description: | |
1971 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1972 | * to ask for a number of bytes to be allocated in front of the bio. | |
1973 | * Front pad allocation is useful for embedding the bio inside | |
1974 | * another structure, to avoid allocating extra data to go with the bio. | |
1975 | * Note that the bio must be embedded at the END of that structure always, | |
1976 | * or things will break badly. | |
1977 | */ | |
1978 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | |
1979 | { | |
1980 | return __bioset_create(pool_size, front_pad, true); | |
1981 | } | |
a112a71d | 1982 | EXPORT_SYMBOL(bioset_create); |
1da177e4 | 1983 | |
d8f429e1 JN |
1984 | /** |
1985 | * bioset_create_nobvec - Create a bio_set without bio_vec mempool | |
1986 | * @pool_size: Number of bio to cache in the mempool | |
1987 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1988 | * | |
1989 | * Description: | |
1990 | * Same functionality as bioset_create() except that mempool is not | |
1991 | * created for bio_vecs. Saving some memory for bio_clone_fast() users. | |
1992 | */ | |
1993 | struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) | |
1994 | { | |
1995 | return __bioset_create(pool_size, front_pad, false); | |
1996 | } | |
1997 | EXPORT_SYMBOL(bioset_create_nobvec); | |
1998 | ||
852c788f | 1999 | #ifdef CONFIG_BLK_CGROUP |
1d933cf0 TH |
2000 | |
2001 | /** | |
2002 | * bio_associate_blkcg - associate a bio with the specified blkcg | |
2003 | * @bio: target bio | |
2004 | * @blkcg_css: css of the blkcg to associate | |
2005 | * | |
2006 | * Associate @bio with the blkcg specified by @blkcg_css. Block layer will | |
2007 | * treat @bio as if it were issued by a task which belongs to the blkcg. | |
2008 | * | |
2009 | * This function takes an extra reference of @blkcg_css which will be put | |
2010 | * when @bio is released. The caller must own @bio and is responsible for | |
2011 | * synchronizing calls to this function. | |
2012 | */ | |
2013 | int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) | |
2014 | { | |
2015 | if (unlikely(bio->bi_css)) | |
2016 | return -EBUSY; | |
2017 | css_get(blkcg_css); | |
2018 | bio->bi_css = blkcg_css; | |
2019 | return 0; | |
2020 | } | |
5aa2a96b | 2021 | EXPORT_SYMBOL_GPL(bio_associate_blkcg); |
1d933cf0 | 2022 | |
852c788f TH |
2023 | /** |
2024 | * bio_associate_current - associate a bio with %current | |
2025 | * @bio: target bio | |
2026 | * | |
2027 | * Associate @bio with %current if it hasn't been associated yet. Block | |
2028 | * layer will treat @bio as if it were issued by %current no matter which | |
2029 | * task actually issues it. | |
2030 | * | |
2031 | * This function takes an extra reference of @task's io_context and blkcg | |
2032 | * which will be put when @bio is released. The caller must own @bio, | |
2033 | * ensure %current->io_context exists, and is responsible for synchronizing | |
2034 | * calls to this function. | |
2035 | */ | |
2036 | int bio_associate_current(struct bio *bio) | |
2037 | { | |
2038 | struct io_context *ioc; | |
852c788f | 2039 | |
1d933cf0 | 2040 | if (bio->bi_css) |
852c788f TH |
2041 | return -EBUSY; |
2042 | ||
2043 | ioc = current->io_context; | |
2044 | if (!ioc) | |
2045 | return -ENOENT; | |
2046 | ||
852c788f TH |
2047 | get_io_context_active(ioc); |
2048 | bio->bi_ioc = ioc; | |
ec438699 | 2049 | bio->bi_css = task_get_css(current, blkio_cgrp_id); |
852c788f TH |
2050 | return 0; |
2051 | } | |
5aa2a96b | 2052 | EXPORT_SYMBOL_GPL(bio_associate_current); |
852c788f TH |
2053 | |
2054 | /** | |
2055 | * bio_disassociate_task - undo bio_associate_current() | |
2056 | * @bio: target bio | |
2057 | */ | |
2058 | void bio_disassociate_task(struct bio *bio) | |
2059 | { | |
2060 | if (bio->bi_ioc) { | |
2061 | put_io_context(bio->bi_ioc); | |
2062 | bio->bi_ioc = NULL; | |
2063 | } | |
2064 | if (bio->bi_css) { | |
2065 | css_put(bio->bi_css); | |
2066 | bio->bi_css = NULL; | |
2067 | } | |
2068 | } | |
2069 | ||
2070 | #endif /* CONFIG_BLK_CGROUP */ | |
2071 | ||
1da177e4 LT |
2072 | static void __init biovec_init_slabs(void) |
2073 | { | |
2074 | int i; | |
2075 | ||
2076 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
2077 | int size; | |
2078 | struct biovec_slab *bvs = bvec_slabs + i; | |
2079 | ||
a7fcd37c JA |
2080 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
2081 | bvs->slab = NULL; | |
2082 | continue; | |
2083 | } | |
a7fcd37c | 2084 | |
1da177e4 LT |
2085 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
2086 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 2087 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
2088 | } |
2089 | } | |
2090 | ||
2091 | static int __init init_bio(void) | |
2092 | { | |
bb799ca0 JA |
2093 | bio_slab_max = 2; |
2094 | bio_slab_nr = 0; | |
2095 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | |
2096 | if (!bio_slabs) | |
2097 | panic("bio: can't allocate bios\n"); | |
1da177e4 | 2098 | |
7878cba9 | 2099 | bio_integrity_init(); |
1da177e4 LT |
2100 | biovec_init_slabs(); |
2101 | ||
bb799ca0 | 2102 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); |
1da177e4 LT |
2103 | if (!fs_bio_set) |
2104 | panic("bio: can't allocate bios\n"); | |
2105 | ||
a91a2785 MP |
2106 | if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) |
2107 | panic("bio: can't create integrity pool\n"); | |
2108 | ||
1da177e4 LT |
2109 | return 0; |
2110 | } | |
1da177e4 | 2111 | subsys_initcall(init_bio); |