]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/slab.c | |
4 | * Written by Mark Hemment, 1996/97. | |
5 | * ([email protected]) | |
6 | * | |
7 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
8 | * | |
9 | * Major cleanup, different bufctl logic, per-cpu arrays | |
10 | * (c) 2000 Manfred Spraul | |
11 | * | |
12 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
13 | * (c) 2002 Manfred Spraul | |
14 | * | |
15 | * An implementation of the Slab Allocator as described in outline in; | |
16 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
17 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
18 | * or with a little more detail in; | |
19 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
20 | * Jeff Bonwick (Sun Microsystems). | |
21 | * Presented at: USENIX Summer 1994 Technical Conference | |
22 | * | |
23 | * The memory is organized in caches, one cache for each object type. | |
24 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
25 | * Each cache consists out of many slabs (they are small (usually one | |
26 | * page long) and always contiguous), and each slab contains multiple | |
27 | * initialized objects. | |
28 | * | |
29 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 30 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
31 | * kmem_cache_free. |
32 | * | |
33 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
34 | * normal). If you need a special memory type, then must create a new | |
35 | * cache for that memory type. | |
36 | * | |
37 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
38 | * full slabs with 0 free objects | |
39 | * partial slabs | |
40 | * empty slabs with no allocated objects | |
41 | * | |
42 | * If partial slabs exist, then new allocations come from these slabs, | |
43 | * otherwise from empty slabs or new slabs are allocated. | |
44 | * | |
45 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
46 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
47 | * | |
48 | * Each cache has a short per-cpu head array, most allocs | |
49 | * and frees go into that array, and if that array overflows, then 1/2 | |
50 | * of the entries in the array are given back into the global cache. | |
51 | * The head array is strictly LIFO and should improve the cache hit rates. | |
52 | * On SMP, it additionally reduces the spinlock operations. | |
53 | * | |
a737b3e2 | 54 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
55 | * it's changed with a smp_call_function(). |
56 | * | |
57 | * SMP synchronization: | |
58 | * constructors and destructors are called without any locking. | |
343e0d7a | 59 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
60 | * are accessed without any locking. |
61 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
62 | * and local interrupts are disabled so slab code is preempt-safe. | |
63 | * The non-constant members are protected with a per-cache irq spinlock. | |
64 | * | |
65 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
66 | * in 2000 - many ideas in the current implementation are derived from | |
67 | * his patch. | |
68 | * | |
69 | * Further notes from the original documentation: | |
70 | * | |
71 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 72 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
73 | * The sem is only needed when accessing/extending the cache-chain, which |
74 | * can never happen inside an interrupt (kmem_cache_create(), | |
75 | * kmem_cache_shrink() and kmem_cache_reap()). | |
76 | * | |
77 | * At present, each engine can be growing a cache. This should be blocked. | |
78 | * | |
e498be7d CL |
79 | * 15 March 2005. NUMA slab allocator. |
80 | * Shai Fultheim <[email protected]>. | |
81 | * Shobhit Dayal <[email protected]> | |
82 | * Alok N Kataria <[email protected]> | |
83 | * Christoph Lameter <[email protected]> | |
84 | * | |
85 | * Modified the slab allocator to be node aware on NUMA systems. | |
86 | * Each node has its own list of partial, free and full slabs. | |
87 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
88 | */ |
89 | ||
1da177e4 LT |
90 | #include <linux/slab.h> |
91 | #include <linux/mm.h> | |
c9cf5528 | 92 | #include <linux/poison.h> |
1da177e4 LT |
93 | #include <linux/swap.h> |
94 | #include <linux/cache.h> | |
95 | #include <linux/interrupt.h> | |
96 | #include <linux/init.h> | |
97 | #include <linux/compiler.h> | |
101a5001 | 98 | #include <linux/cpuset.h> |
a0ec95a8 | 99 | #include <linux/proc_fs.h> |
1da177e4 LT |
100 | #include <linux/seq_file.h> |
101 | #include <linux/notifier.h> | |
102 | #include <linux/kallsyms.h> | |
d3fb45f3 | 103 | #include <linux/kfence.h> |
1da177e4 LT |
104 | #include <linux/cpu.h> |
105 | #include <linux/sysctl.h> | |
106 | #include <linux/module.h> | |
107 | #include <linux/rcupdate.h> | |
543537bd | 108 | #include <linux/string.h> |
138ae663 | 109 | #include <linux/uaccess.h> |
e498be7d | 110 | #include <linux/nodemask.h> |
d5cff635 | 111 | #include <linux/kmemleak.h> |
dc85da15 | 112 | #include <linux/mempolicy.h> |
fc0abb14 | 113 | #include <linux/mutex.h> |
8a8b6502 | 114 | #include <linux/fault-inject.h> |
e7eebaf6 | 115 | #include <linux/rtmutex.h> |
6a2d7a95 | 116 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 117 | #include <linux/debugobjects.h> |
8f9f8d9e | 118 | #include <linux/memory.h> |
268bb0ce | 119 | #include <linux/prefetch.h> |
3f8c2452 | 120 | #include <linux/sched/task_stack.h> |
1da177e4 | 121 | |
381760ea MG |
122 | #include <net/sock.h> |
123 | ||
1da177e4 LT |
124 | #include <asm/cacheflush.h> |
125 | #include <asm/tlbflush.h> | |
126 | #include <asm/page.h> | |
127 | ||
4dee6b64 SR |
128 | #include <trace/events/kmem.h> |
129 | ||
072bb0aa MG |
130 | #include "internal.h" |
131 | ||
b9ce5ef4 GC |
132 | #include "slab.h" |
133 | ||
1da177e4 | 134 | /* |
50953fe9 | 135 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
136 | * 0 for faster, smaller code (especially in the critical paths). |
137 | * | |
138 | * STATS - 1 to collect stats for /proc/slabinfo. | |
139 | * 0 for faster, smaller code (especially in the critical paths). | |
140 | * | |
141 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
142 | */ | |
143 | ||
144 | #ifdef CONFIG_DEBUG_SLAB | |
145 | #define DEBUG 1 | |
146 | #define STATS 1 | |
147 | #define FORCED_DEBUG 1 | |
148 | #else | |
149 | #define DEBUG 0 | |
150 | #define STATS 0 | |
151 | #define FORCED_DEBUG 0 | |
152 | #endif | |
153 | ||
1da177e4 LT |
154 | /* Shouldn't this be in a header file somewhere? */ |
155 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 156 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 157 | |
1da177e4 LT |
158 | #ifndef ARCH_KMALLOC_FLAGS |
159 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
160 | #endif | |
161 | ||
f315e3fa JK |
162 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ |
163 | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | |
164 | ||
165 | #if FREELIST_BYTE_INDEX | |
166 | typedef unsigned char freelist_idx_t; | |
167 | #else | |
168 | typedef unsigned short freelist_idx_t; | |
169 | #endif | |
170 | ||
30321c7b | 171 | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) |
f315e3fa | 172 | |
1da177e4 LT |
173 | /* |
174 | * struct array_cache | |
175 | * | |
1da177e4 LT |
176 | * Purpose: |
177 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
178 | * - reduce the number of linked list operations | |
179 | * - reduce spinlock operations | |
180 | * | |
181 | * The limit is stored in the per-cpu structure to reduce the data cache | |
182 | * footprint. | |
183 | * | |
184 | */ | |
185 | struct array_cache { | |
186 | unsigned int avail; | |
187 | unsigned int limit; | |
188 | unsigned int batchcount; | |
189 | unsigned int touched; | |
bda5b655 | 190 | void *entry[]; /* |
a737b3e2 AM |
191 | * Must have this definition in here for the proper |
192 | * alignment of array_cache. Also simplifies accessing | |
193 | * the entries. | |
a737b3e2 | 194 | */ |
1da177e4 LT |
195 | }; |
196 | ||
c8522a3a JK |
197 | struct alien_cache { |
198 | spinlock_t lock; | |
199 | struct array_cache ac; | |
200 | }; | |
201 | ||
e498be7d CL |
202 | /* |
203 | * Need this for bootstrapping a per node allocator. | |
204 | */ | |
bf0dea23 | 205 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) |
ce8eb6c4 | 206 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
e498be7d | 207 | #define CACHE_CACHE 0 |
bf0dea23 | 208 | #define SIZE_NODE (MAX_NUMNODES) |
e498be7d | 209 | |
ed11d9eb | 210 | static int drain_freelist(struct kmem_cache *cache, |
ce8eb6c4 | 211 | struct kmem_cache_node *n, int tofree); |
ed11d9eb | 212 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
97654dfa JK |
213 | int node, struct list_head *list); |
214 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | |
83b519e8 | 215 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 216 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 217 | |
76b342bd JK |
218 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
219 | void **list); | |
220 | static inline void fixup_slab_list(struct kmem_cache *cachep, | |
221 | struct kmem_cache_node *n, struct page *page, | |
222 | void **list); | |
e0a42726 IM |
223 | static int slab_early_init = 1; |
224 | ||
ce8eb6c4 | 225 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
1da177e4 | 226 | |
ce8eb6c4 | 227 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
e498be7d CL |
228 | { |
229 | INIT_LIST_HEAD(&parent->slabs_full); | |
230 | INIT_LIST_HEAD(&parent->slabs_partial); | |
231 | INIT_LIST_HEAD(&parent->slabs_free); | |
bf00bd34 | 232 | parent->total_slabs = 0; |
f728b0a5 | 233 | parent->free_slabs = 0; |
e498be7d CL |
234 | parent->shared = NULL; |
235 | parent->alien = NULL; | |
2e1217cf | 236 | parent->colour_next = 0; |
e498be7d CL |
237 | spin_lock_init(&parent->list_lock); |
238 | parent->free_objects = 0; | |
239 | parent->free_touched = 0; | |
240 | } | |
241 | ||
a737b3e2 AM |
242 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
243 | do { \ | |
244 | INIT_LIST_HEAD(listp); \ | |
18bf8541 | 245 | list_splice(&get_node(cachep, nodeid)->slab, listp); \ |
e498be7d CL |
246 | } while (0) |
247 | ||
a737b3e2 AM |
248 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
249 | do { \ | |
e498be7d CL |
250 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
251 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
252 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
253 | } while (0) | |
1da177e4 | 254 | |
4fd0b46e AD |
255 | #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U) |
256 | #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U) | |
b03a017b | 257 | #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB) |
1da177e4 LT |
258 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) |
259 | ||
260 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 | 261 | /* |
f0953a1b | 262 | * Optimization question: fewer reaps means less probability for unnecessary |
a737b3e2 | 263 | * cpucache drain/refill cycles. |
1da177e4 | 264 | * |
dc6f3f27 | 265 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
266 | * which could lock up otherwise freeable slabs. |
267 | */ | |
5f0985bb JZ |
268 | #define REAPTIMEOUT_AC (2*HZ) |
269 | #define REAPTIMEOUT_NODE (4*HZ) | |
1da177e4 LT |
270 | |
271 | #if STATS | |
272 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
273 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
274 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
275 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
0b411634 | 276 | #define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) |
a737b3e2 AM |
277 | #define STATS_SET_HIGH(x) \ |
278 | do { \ | |
279 | if ((x)->num_active > (x)->high_mark) \ | |
280 | (x)->high_mark = (x)->num_active; \ | |
281 | } while (0) | |
1da177e4 LT |
282 | #define STATS_INC_ERR(x) ((x)->errors++) |
283 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 284 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 285 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
286 | #define STATS_SET_FREEABLE(x, i) \ |
287 | do { \ | |
288 | if ((x)->max_freeable < i) \ | |
289 | (x)->max_freeable = i; \ | |
290 | } while (0) | |
1da177e4 LT |
291 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
292 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
293 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
294 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
295 | #else | |
296 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
297 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
298 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
299 | #define STATS_INC_GROWN(x) do { } while (0) | |
0b411634 | 300 | #define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) |
1da177e4 LT |
301 | #define STATS_SET_HIGH(x) do { } while (0) |
302 | #define STATS_INC_ERR(x) do { } while (0) | |
303 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 304 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 305 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 306 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
307 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
308 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
309 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
310 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
311 | #endif | |
312 | ||
313 | #if DEBUG | |
1da177e4 | 314 | |
a737b3e2 AM |
315 | /* |
316 | * memory layout of objects: | |
1da177e4 | 317 | * 0 : objp |
3dafccf2 | 318 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
319 | * the end of an object is aligned with the end of the real |
320 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 321 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 322 | * redzone word. |
3dafccf2 | 323 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
324 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
325 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 326 | * [BYTES_PER_WORD long] |
1da177e4 | 327 | */ |
343e0d7a | 328 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 329 | { |
3dafccf2 | 330 | return cachep->obj_offset; |
1da177e4 LT |
331 | } |
332 | ||
b46b8f19 | 333 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
334 | { |
335 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
0b411634 | 336 | return (unsigned long long *) (objp + obj_offset(cachep) - |
b46b8f19 | 337 | sizeof(unsigned long long)); |
1da177e4 LT |
338 | } |
339 | ||
b46b8f19 | 340 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
341 | { |
342 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
343 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 344 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 345 | sizeof(unsigned long long) - |
87a927c7 | 346 | REDZONE_ALIGN); |
3b0efdfa | 347 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 348 | sizeof(unsigned long long)); |
1da177e4 LT |
349 | } |
350 | ||
343e0d7a | 351 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
352 | { |
353 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 354 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
355 | } |
356 | ||
357 | #else | |
358 | ||
3dafccf2 | 359 | #define obj_offset(x) 0 |
b46b8f19 DW |
360 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
361 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
362 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
363 | ||
364 | #endif | |
365 | ||
1da177e4 | 366 | /* |
3df1cccd DR |
367 | * Do not go above this order unless 0 objects fit into the slab or |
368 | * overridden on the command line. | |
1da177e4 | 369 | */ |
543585cc DR |
370 | #define SLAB_MAX_ORDER_HI 1 |
371 | #define SLAB_MAX_ORDER_LO 0 | |
372 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 373 | static bool slab_max_order_set __initdata; |
1da177e4 | 374 | |
8456a648 | 375 | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, |
8fea4e96 PE |
376 | unsigned int idx) |
377 | { | |
8456a648 | 378 | return page->s_mem + cache->size * idx; |
8fea4e96 PE |
379 | } |
380 | ||
6fb92430 | 381 | #define BOOT_CPUCACHE_ENTRIES 1 |
1da177e4 | 382 | /* internal cache of cache description objs */ |
9b030cb8 | 383 | static struct kmem_cache kmem_cache_boot = { |
b28a02de PE |
384 | .batchcount = 1, |
385 | .limit = BOOT_CPUCACHE_ENTRIES, | |
386 | .shared = 1, | |
3b0efdfa | 387 | .size = sizeof(struct kmem_cache), |
b28a02de | 388 | .name = "kmem_cache", |
1da177e4 LT |
389 | }; |
390 | ||
1871e52c | 391 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 392 | |
343e0d7a | 393 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 | 394 | { |
bf0dea23 | 395 | return this_cpu_ptr(cachep->cpu_cache); |
1da177e4 LT |
396 | } |
397 | ||
a737b3e2 AM |
398 | /* |
399 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
400 | */ | |
70f75067 | 401 | static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size, |
d50112ed | 402 | slab_flags_t flags, size_t *left_over) |
fbaccacf | 403 | { |
70f75067 | 404 | unsigned int num; |
fbaccacf | 405 | size_t slab_size = PAGE_SIZE << gfporder; |
1da177e4 | 406 | |
fbaccacf SR |
407 | /* |
408 | * The slab management structure can be either off the slab or | |
409 | * on it. For the latter case, the memory allocated for a | |
410 | * slab is used for: | |
411 | * | |
fbaccacf | 412 | * - @buffer_size bytes for each object |
2e6b3602 JK |
413 | * - One freelist_idx_t for each object |
414 | * | |
415 | * We don't need to consider alignment of freelist because | |
416 | * freelist will be at the end of slab page. The objects will be | |
417 | * at the correct alignment. | |
fbaccacf SR |
418 | * |
419 | * If the slab management structure is off the slab, then the | |
420 | * alignment will already be calculated into the size. Because | |
421 | * the slabs are all pages aligned, the objects will be at the | |
422 | * correct alignment when allocated. | |
423 | */ | |
b03a017b | 424 | if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) { |
70f75067 | 425 | num = slab_size / buffer_size; |
2e6b3602 | 426 | *left_over = slab_size % buffer_size; |
fbaccacf | 427 | } else { |
70f75067 | 428 | num = slab_size / (buffer_size + sizeof(freelist_idx_t)); |
2e6b3602 JK |
429 | *left_over = slab_size % |
430 | (buffer_size + sizeof(freelist_idx_t)); | |
fbaccacf | 431 | } |
70f75067 JK |
432 | |
433 | return num; | |
1da177e4 LT |
434 | } |
435 | ||
f28510d3 | 436 | #if DEBUG |
d40cee24 | 437 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 438 | |
a737b3e2 AM |
439 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
440 | char *msg) | |
1da177e4 | 441 | { |
1170532b | 442 | pr_err("slab error in %s(): cache `%s': %s\n", |
b28a02de | 443 | function, cachep->name, msg); |
1da177e4 | 444 | dump_stack(); |
373d4d09 | 445 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 | 446 | } |
f28510d3 | 447 | #endif |
1da177e4 | 448 | |
3395ee05 PM |
449 | /* |
450 | * By default on NUMA we use alien caches to stage the freeing of | |
451 | * objects allocated from other nodes. This causes massive memory | |
452 | * inefficiencies when using fake NUMA setup to split memory into a | |
453 | * large number of small nodes, so it can be disabled on the command | |
454 | * line | |
455 | */ | |
456 | ||
457 | static int use_alien_caches __read_mostly = 1; | |
458 | static int __init noaliencache_setup(char *s) | |
459 | { | |
460 | use_alien_caches = 0; | |
461 | return 1; | |
462 | } | |
463 | __setup("noaliencache", noaliencache_setup); | |
464 | ||
3df1cccd DR |
465 | static int __init slab_max_order_setup(char *str) |
466 | { | |
467 | get_option(&str, &slab_max_order); | |
468 | slab_max_order = slab_max_order < 0 ? 0 : | |
469 | min(slab_max_order, MAX_ORDER - 1); | |
470 | slab_max_order_set = true; | |
471 | ||
472 | return 1; | |
473 | } | |
474 | __setup("slab_max_order=", slab_max_order_setup); | |
475 | ||
8fce4d8e CL |
476 | #ifdef CONFIG_NUMA |
477 | /* | |
478 | * Special reaping functions for NUMA systems called from cache_reap(). | |
479 | * These take care of doing round robin flushing of alien caches (containing | |
480 | * objects freed on different nodes from which they were allocated) and the | |
481 | * flushing of remote pcps by calling drain_node_pages. | |
482 | */ | |
1871e52c | 483 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
484 | |
485 | static void init_reap_node(int cpu) | |
486 | { | |
0edaf86c AM |
487 | per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu), |
488 | node_online_map); | |
8fce4d8e CL |
489 | } |
490 | ||
491 | static void next_reap_node(void) | |
492 | { | |
909ea964 | 493 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 494 | |
0edaf86c | 495 | node = next_node_in(node, node_online_map); |
909ea964 | 496 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
497 | } |
498 | ||
499 | #else | |
500 | #define init_reap_node(cpu) do { } while (0) | |
501 | #define next_reap_node(void) do { } while (0) | |
502 | #endif | |
503 | ||
1da177e4 LT |
504 | /* |
505 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
506 | * via the workqueue/eventd. | |
507 | * Add the CPU number into the expiration time to minimize the possibility of | |
508 | * the CPUs getting into lockstep and contending for the global cache chain | |
509 | * lock. | |
510 | */ | |
0db0628d | 511 | static void start_cpu_timer(int cpu) |
1da177e4 | 512 | { |
1871e52c | 513 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 | 514 | |
eac0337a | 515 | if (reap_work->work.func == NULL) { |
8fce4d8e | 516 | init_reap_node(cpu); |
203b42f7 | 517 | INIT_DEFERRABLE_WORK(reap_work, cache_reap); |
2b284214 AV |
518 | schedule_delayed_work_on(cpu, reap_work, |
519 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
520 | } |
521 | } | |
522 | ||
1fe00d50 | 523 | static void init_arraycache(struct array_cache *ac, int limit, int batch) |
1da177e4 | 524 | { |
1fe00d50 JK |
525 | if (ac) { |
526 | ac->avail = 0; | |
527 | ac->limit = limit; | |
528 | ac->batchcount = batch; | |
529 | ac->touched = 0; | |
1da177e4 | 530 | } |
1fe00d50 JK |
531 | } |
532 | ||
533 | static struct array_cache *alloc_arraycache(int node, int entries, | |
534 | int batchcount, gfp_t gfp) | |
535 | { | |
5e804789 | 536 | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1fe00d50 JK |
537 | struct array_cache *ac = NULL; |
538 | ||
539 | ac = kmalloc_node(memsize, gfp, node); | |
92d1d07d QC |
540 | /* |
541 | * The array_cache structures contain pointers to free object. | |
542 | * However, when such objects are allocated or transferred to another | |
543 | * cache the pointers are not cleared and they could be counted as | |
544 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
545 | * not scan such objects. | |
546 | */ | |
547 | kmemleak_no_scan(ac); | |
1fe00d50 JK |
548 | init_arraycache(ac, entries, batchcount); |
549 | return ac; | |
1da177e4 LT |
550 | } |
551 | ||
f68f8ddd JK |
552 | static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep, |
553 | struct page *page, void *objp) | |
072bb0aa | 554 | { |
f68f8ddd JK |
555 | struct kmem_cache_node *n; |
556 | int page_node; | |
557 | LIST_HEAD(list); | |
072bb0aa | 558 | |
f68f8ddd JK |
559 | page_node = page_to_nid(page); |
560 | n = get_node(cachep, page_node); | |
381760ea | 561 | |
f68f8ddd JK |
562 | spin_lock(&n->list_lock); |
563 | free_block(cachep, &objp, 1, page_node, &list); | |
564 | spin_unlock(&n->list_lock); | |
381760ea | 565 | |
f68f8ddd | 566 | slabs_destroy(cachep, &list); |
072bb0aa MG |
567 | } |
568 | ||
3ded175a CL |
569 | /* |
570 | * Transfer objects in one arraycache to another. | |
571 | * Locking must be handled by the caller. | |
572 | * | |
573 | * Return the number of entries transferred. | |
574 | */ | |
575 | static int transfer_objects(struct array_cache *to, | |
576 | struct array_cache *from, unsigned int max) | |
577 | { | |
578 | /* Figure out how many entries to transfer */ | |
732eacc0 | 579 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
580 | |
581 | if (!nr) | |
582 | return 0; | |
583 | ||
0b411634 | 584 | memcpy(to->entry + to->avail, from->entry + from->avail - nr, |
3ded175a CL |
585 | sizeof(void *) *nr); |
586 | ||
587 | from->avail -= nr; | |
588 | to->avail += nr; | |
3ded175a CL |
589 | return nr; |
590 | } | |
591 | ||
dabc3e29 KC |
592 | /* &alien->lock must be held by alien callers. */ |
593 | static __always_inline void __free_one(struct array_cache *ac, void *objp) | |
594 | { | |
595 | /* Avoid trivial double-free. */ | |
596 | if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && | |
597 | WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp)) | |
598 | return; | |
599 | ac->entry[ac->avail++] = objp; | |
600 | } | |
601 | ||
765c4507 CL |
602 | #ifndef CONFIG_NUMA |
603 | ||
604 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
ce8eb6c4 | 605 | #define reap_alien(cachep, n) do { } while (0) |
765c4507 | 606 | |
c8522a3a JK |
607 | static inline struct alien_cache **alloc_alien_cache(int node, |
608 | int limit, gfp_t gfp) | |
765c4507 | 609 | { |
8888177e | 610 | return NULL; |
765c4507 CL |
611 | } |
612 | ||
c8522a3a | 613 | static inline void free_alien_cache(struct alien_cache **ac_ptr) |
765c4507 CL |
614 | { |
615 | } | |
616 | ||
617 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
618 | { | |
619 | return 0; | |
620 | } | |
621 | ||
622 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
623 | gfp_t flags) | |
624 | { | |
625 | return NULL; | |
626 | } | |
627 | ||
8b98c169 | 628 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
629 | gfp_t flags, int nodeid) |
630 | { | |
631 | return NULL; | |
632 | } | |
633 | ||
4167e9b2 DR |
634 | static inline gfp_t gfp_exact_node(gfp_t flags) |
635 | { | |
444eb2a4 | 636 | return flags & ~__GFP_NOFAIL; |
4167e9b2 DR |
637 | } |
638 | ||
765c4507 CL |
639 | #else /* CONFIG_NUMA */ |
640 | ||
8b98c169 | 641 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 642 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 643 | |
c8522a3a JK |
644 | static struct alien_cache *__alloc_alien_cache(int node, int entries, |
645 | int batch, gfp_t gfp) | |
646 | { | |
5e804789 | 647 | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); |
c8522a3a JK |
648 | struct alien_cache *alc = NULL; |
649 | ||
650 | alc = kmalloc_node(memsize, gfp, node); | |
09c2e76e | 651 | if (alc) { |
92d1d07d | 652 | kmemleak_no_scan(alc); |
09c2e76e CL |
653 | init_arraycache(&alc->ac, entries, batch); |
654 | spin_lock_init(&alc->lock); | |
655 | } | |
c8522a3a JK |
656 | return alc; |
657 | } | |
658 | ||
659 | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | |
e498be7d | 660 | { |
c8522a3a | 661 | struct alien_cache **alc_ptr; |
e498be7d CL |
662 | int i; |
663 | ||
664 | if (limit > 1) | |
665 | limit = 12; | |
b9726c26 | 666 | alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node); |
c8522a3a JK |
667 | if (!alc_ptr) |
668 | return NULL; | |
669 | ||
670 | for_each_node(i) { | |
671 | if (i == node || !node_online(i)) | |
672 | continue; | |
673 | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | |
674 | if (!alc_ptr[i]) { | |
675 | for (i--; i >= 0; i--) | |
676 | kfree(alc_ptr[i]); | |
677 | kfree(alc_ptr); | |
678 | return NULL; | |
e498be7d CL |
679 | } |
680 | } | |
c8522a3a | 681 | return alc_ptr; |
e498be7d CL |
682 | } |
683 | ||
c8522a3a | 684 | static void free_alien_cache(struct alien_cache **alc_ptr) |
e498be7d CL |
685 | { |
686 | int i; | |
687 | ||
c8522a3a | 688 | if (!alc_ptr) |
e498be7d | 689 | return; |
e498be7d | 690 | for_each_node(i) |
c8522a3a JK |
691 | kfree(alc_ptr[i]); |
692 | kfree(alc_ptr); | |
e498be7d CL |
693 | } |
694 | ||
343e0d7a | 695 | static void __drain_alien_cache(struct kmem_cache *cachep, |
833b706c JK |
696 | struct array_cache *ac, int node, |
697 | struct list_head *list) | |
e498be7d | 698 | { |
18bf8541 | 699 | struct kmem_cache_node *n = get_node(cachep, node); |
e498be7d CL |
700 | |
701 | if (ac->avail) { | |
ce8eb6c4 | 702 | spin_lock(&n->list_lock); |
e00946fe CL |
703 | /* |
704 | * Stuff objects into the remote nodes shared array first. | |
705 | * That way we could avoid the overhead of putting the objects | |
706 | * into the free lists and getting them back later. | |
707 | */ | |
ce8eb6c4 CL |
708 | if (n->shared) |
709 | transfer_objects(n->shared, ac, ac->limit); | |
e00946fe | 710 | |
833b706c | 711 | free_block(cachep, ac->entry, ac->avail, node, list); |
e498be7d | 712 | ac->avail = 0; |
ce8eb6c4 | 713 | spin_unlock(&n->list_lock); |
e498be7d CL |
714 | } |
715 | } | |
716 | ||
8fce4d8e CL |
717 | /* |
718 | * Called from cache_reap() to regularly drain alien caches round robin. | |
719 | */ | |
ce8eb6c4 | 720 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
8fce4d8e | 721 | { |
909ea964 | 722 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 723 | |
ce8eb6c4 | 724 | if (n->alien) { |
c8522a3a JK |
725 | struct alien_cache *alc = n->alien[node]; |
726 | struct array_cache *ac; | |
727 | ||
728 | if (alc) { | |
729 | ac = &alc->ac; | |
49dfc304 | 730 | if (ac->avail && spin_trylock_irq(&alc->lock)) { |
833b706c JK |
731 | LIST_HEAD(list); |
732 | ||
733 | __drain_alien_cache(cachep, ac, node, &list); | |
49dfc304 | 734 | spin_unlock_irq(&alc->lock); |
833b706c | 735 | slabs_destroy(cachep, &list); |
c8522a3a | 736 | } |
8fce4d8e CL |
737 | } |
738 | } | |
739 | } | |
740 | ||
a737b3e2 | 741 | static void drain_alien_cache(struct kmem_cache *cachep, |
c8522a3a | 742 | struct alien_cache **alien) |
e498be7d | 743 | { |
b28a02de | 744 | int i = 0; |
c8522a3a | 745 | struct alien_cache *alc; |
e498be7d CL |
746 | struct array_cache *ac; |
747 | unsigned long flags; | |
748 | ||
749 | for_each_online_node(i) { | |
c8522a3a JK |
750 | alc = alien[i]; |
751 | if (alc) { | |
833b706c JK |
752 | LIST_HEAD(list); |
753 | ||
c8522a3a | 754 | ac = &alc->ac; |
49dfc304 | 755 | spin_lock_irqsave(&alc->lock, flags); |
833b706c | 756 | __drain_alien_cache(cachep, ac, i, &list); |
49dfc304 | 757 | spin_unlock_irqrestore(&alc->lock, flags); |
833b706c | 758 | slabs_destroy(cachep, &list); |
e498be7d CL |
759 | } |
760 | } | |
761 | } | |
729bd0b7 | 762 | |
25c4f304 JK |
763 | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, |
764 | int node, int page_node) | |
729bd0b7 | 765 | { |
ce8eb6c4 | 766 | struct kmem_cache_node *n; |
c8522a3a JK |
767 | struct alien_cache *alien = NULL; |
768 | struct array_cache *ac; | |
97654dfa | 769 | LIST_HEAD(list); |
1ca4cb24 | 770 | |
18bf8541 | 771 | n = get_node(cachep, node); |
729bd0b7 | 772 | STATS_INC_NODEFREES(cachep); |
25c4f304 JK |
773 | if (n->alien && n->alien[page_node]) { |
774 | alien = n->alien[page_node]; | |
c8522a3a | 775 | ac = &alien->ac; |
49dfc304 | 776 | spin_lock(&alien->lock); |
c8522a3a | 777 | if (unlikely(ac->avail == ac->limit)) { |
729bd0b7 | 778 | STATS_INC_ACOVERFLOW(cachep); |
25c4f304 | 779 | __drain_alien_cache(cachep, ac, page_node, &list); |
729bd0b7 | 780 | } |
dabc3e29 | 781 | __free_one(ac, objp); |
49dfc304 | 782 | spin_unlock(&alien->lock); |
833b706c | 783 | slabs_destroy(cachep, &list); |
729bd0b7 | 784 | } else { |
25c4f304 | 785 | n = get_node(cachep, page_node); |
18bf8541 | 786 | spin_lock(&n->list_lock); |
25c4f304 | 787 | free_block(cachep, &objp, 1, page_node, &list); |
18bf8541 | 788 | spin_unlock(&n->list_lock); |
97654dfa | 789 | slabs_destroy(cachep, &list); |
729bd0b7 PE |
790 | } |
791 | return 1; | |
792 | } | |
25c4f304 JK |
793 | |
794 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
795 | { | |
796 | int page_node = page_to_nid(virt_to_page(objp)); | |
797 | int node = numa_mem_id(); | |
798 | /* | |
799 | * Make sure we are not freeing a object from another node to the array | |
800 | * cache on this cpu. | |
801 | */ | |
802 | if (likely(node == page_node)) | |
803 | return 0; | |
804 | ||
805 | return __cache_free_alien(cachep, objp, node, page_node); | |
806 | } | |
4167e9b2 DR |
807 | |
808 | /* | |
444eb2a4 MG |
809 | * Construct gfp mask to allocate from a specific node but do not reclaim or |
810 | * warn about failures. | |
4167e9b2 DR |
811 | */ |
812 | static inline gfp_t gfp_exact_node(gfp_t flags) | |
813 | { | |
444eb2a4 | 814 | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
4167e9b2 | 815 | } |
e498be7d CL |
816 | #endif |
817 | ||
ded0ecf6 JK |
818 | static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp) |
819 | { | |
820 | struct kmem_cache_node *n; | |
821 | ||
822 | /* | |
823 | * Set up the kmem_cache_node for cpu before we can | |
824 | * begin anything. Make sure some other cpu on this | |
825 | * node has not already allocated this | |
826 | */ | |
827 | n = get_node(cachep, node); | |
828 | if (n) { | |
829 | spin_lock_irq(&n->list_lock); | |
830 | n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount + | |
831 | cachep->num; | |
832 | spin_unlock_irq(&n->list_lock); | |
833 | ||
834 | return 0; | |
835 | } | |
836 | ||
837 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | |
838 | if (!n) | |
839 | return -ENOMEM; | |
840 | ||
841 | kmem_cache_node_init(n); | |
842 | n->next_reap = jiffies + REAPTIMEOUT_NODE + | |
843 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
844 | ||
845 | n->free_limit = | |
846 | (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num; | |
847 | ||
848 | /* | |
849 | * The kmem_cache_nodes don't come and go as CPUs | |
850 | * come and go. slab_mutex is sufficient | |
851 | * protection here. | |
852 | */ | |
853 | cachep->node[node] = n; | |
854 | ||
855 | return 0; | |
856 | } | |
857 | ||
6731d4f1 | 858 | #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP) |
8f9f8d9e | 859 | /* |
6a67368c | 860 | * Allocates and initializes node for a node on each slab cache, used for |
ce8eb6c4 | 861 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
8f9f8d9e | 862 | * will be allocated off-node since memory is not yet online for the new node. |
6a67368c | 863 | * When hotplugging memory or a cpu, existing node are not replaced if |
8f9f8d9e DR |
864 | * already in use. |
865 | * | |
18004c5d | 866 | * Must hold slab_mutex. |
8f9f8d9e | 867 | */ |
6a67368c | 868 | static int init_cache_node_node(int node) |
8f9f8d9e | 869 | { |
ded0ecf6 | 870 | int ret; |
8f9f8d9e | 871 | struct kmem_cache *cachep; |
8f9f8d9e | 872 | |
18004c5d | 873 | list_for_each_entry(cachep, &slab_caches, list) { |
ded0ecf6 JK |
874 | ret = init_cache_node(cachep, node, GFP_KERNEL); |
875 | if (ret) | |
876 | return ret; | |
8f9f8d9e | 877 | } |
ded0ecf6 | 878 | |
8f9f8d9e DR |
879 | return 0; |
880 | } | |
6731d4f1 | 881 | #endif |
8f9f8d9e | 882 | |
c3d332b6 JK |
883 | static int setup_kmem_cache_node(struct kmem_cache *cachep, |
884 | int node, gfp_t gfp, bool force_change) | |
885 | { | |
886 | int ret = -ENOMEM; | |
887 | struct kmem_cache_node *n; | |
888 | struct array_cache *old_shared = NULL; | |
889 | struct array_cache *new_shared = NULL; | |
890 | struct alien_cache **new_alien = NULL; | |
891 | LIST_HEAD(list); | |
892 | ||
893 | if (use_alien_caches) { | |
894 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | |
895 | if (!new_alien) | |
896 | goto fail; | |
897 | } | |
898 | ||
899 | if (cachep->shared) { | |
900 | new_shared = alloc_arraycache(node, | |
901 | cachep->shared * cachep->batchcount, 0xbaadf00d, gfp); | |
902 | if (!new_shared) | |
903 | goto fail; | |
904 | } | |
905 | ||
906 | ret = init_cache_node(cachep, node, gfp); | |
907 | if (ret) | |
908 | goto fail; | |
909 | ||
910 | n = get_node(cachep, node); | |
911 | spin_lock_irq(&n->list_lock); | |
912 | if (n->shared && force_change) { | |
913 | free_block(cachep, n->shared->entry, | |
914 | n->shared->avail, node, &list); | |
915 | n->shared->avail = 0; | |
916 | } | |
917 | ||
918 | if (!n->shared || force_change) { | |
919 | old_shared = n->shared; | |
920 | n->shared = new_shared; | |
921 | new_shared = NULL; | |
922 | } | |
923 | ||
924 | if (!n->alien) { | |
925 | n->alien = new_alien; | |
926 | new_alien = NULL; | |
927 | } | |
928 | ||
929 | spin_unlock_irq(&n->list_lock); | |
930 | slabs_destroy(cachep, &list); | |
931 | ||
801faf0d JK |
932 | /* |
933 | * To protect lockless access to n->shared during irq disabled context. | |
934 | * If n->shared isn't NULL in irq disabled context, accessing to it is | |
935 | * guaranteed to be valid until irq is re-enabled, because it will be | |
6564a25e | 936 | * freed after synchronize_rcu(). |
801faf0d | 937 | */ |
86d9f485 | 938 | if (old_shared && force_change) |
6564a25e | 939 | synchronize_rcu(); |
801faf0d | 940 | |
c3d332b6 JK |
941 | fail: |
942 | kfree(old_shared); | |
943 | kfree(new_shared); | |
944 | free_alien_cache(new_alien); | |
945 | ||
946 | return ret; | |
947 | } | |
948 | ||
6731d4f1 SAS |
949 | #ifdef CONFIG_SMP |
950 | ||
0db0628d | 951 | static void cpuup_canceled(long cpu) |
fbf1e473 AM |
952 | { |
953 | struct kmem_cache *cachep; | |
ce8eb6c4 | 954 | struct kmem_cache_node *n = NULL; |
7d6e6d09 | 955 | int node = cpu_to_mem(cpu); |
a70f7302 | 956 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 957 | |
18004c5d | 958 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
959 | struct array_cache *nc; |
960 | struct array_cache *shared; | |
c8522a3a | 961 | struct alien_cache **alien; |
97654dfa | 962 | LIST_HEAD(list); |
fbf1e473 | 963 | |
18bf8541 | 964 | n = get_node(cachep, node); |
ce8eb6c4 | 965 | if (!n) |
bf0dea23 | 966 | continue; |
fbf1e473 | 967 | |
ce8eb6c4 | 968 | spin_lock_irq(&n->list_lock); |
fbf1e473 | 969 | |
ce8eb6c4 CL |
970 | /* Free limit for this kmem_cache_node */ |
971 | n->free_limit -= cachep->batchcount; | |
bf0dea23 JK |
972 | |
973 | /* cpu is dead; no one can alloc from it. */ | |
974 | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | |
517f9f1e LR |
975 | free_block(cachep, nc->entry, nc->avail, node, &list); |
976 | nc->avail = 0; | |
fbf1e473 | 977 | |
58463c1f | 978 | if (!cpumask_empty(mask)) { |
ce8eb6c4 | 979 | spin_unlock_irq(&n->list_lock); |
bf0dea23 | 980 | goto free_slab; |
fbf1e473 AM |
981 | } |
982 | ||
ce8eb6c4 | 983 | shared = n->shared; |
fbf1e473 AM |
984 | if (shared) { |
985 | free_block(cachep, shared->entry, | |
97654dfa | 986 | shared->avail, node, &list); |
ce8eb6c4 | 987 | n->shared = NULL; |
fbf1e473 AM |
988 | } |
989 | ||
ce8eb6c4 CL |
990 | alien = n->alien; |
991 | n->alien = NULL; | |
fbf1e473 | 992 | |
ce8eb6c4 | 993 | spin_unlock_irq(&n->list_lock); |
fbf1e473 AM |
994 | |
995 | kfree(shared); | |
996 | if (alien) { | |
997 | drain_alien_cache(cachep, alien); | |
998 | free_alien_cache(alien); | |
999 | } | |
bf0dea23 JK |
1000 | |
1001 | free_slab: | |
97654dfa | 1002 | slabs_destroy(cachep, &list); |
fbf1e473 AM |
1003 | } |
1004 | /* | |
1005 | * In the previous loop, all the objects were freed to | |
1006 | * the respective cache's slabs, now we can go ahead and | |
1007 | * shrink each nodelist to its limit. | |
1008 | */ | |
18004c5d | 1009 | list_for_each_entry(cachep, &slab_caches, list) { |
18bf8541 | 1010 | n = get_node(cachep, node); |
ce8eb6c4 | 1011 | if (!n) |
fbf1e473 | 1012 | continue; |
a5aa63a5 | 1013 | drain_freelist(cachep, n, INT_MAX); |
fbf1e473 AM |
1014 | } |
1015 | } | |
1016 | ||
0db0628d | 1017 | static int cpuup_prepare(long cpu) |
1da177e4 | 1018 | { |
343e0d7a | 1019 | struct kmem_cache *cachep; |
7d6e6d09 | 1020 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1021 | int err; |
1da177e4 | 1022 | |
fbf1e473 AM |
1023 | /* |
1024 | * We need to do this right in the beginning since | |
1025 | * alloc_arraycache's are going to use this list. | |
1026 | * kmalloc_node allows us to add the slab to the right | |
ce8eb6c4 | 1027 | * kmem_cache_node and not this cpu's kmem_cache_node |
fbf1e473 | 1028 | */ |
6a67368c | 1029 | err = init_cache_node_node(node); |
8f9f8d9e DR |
1030 | if (err < 0) |
1031 | goto bad; | |
fbf1e473 AM |
1032 | |
1033 | /* | |
1034 | * Now we can go ahead with allocating the shared arrays and | |
1035 | * array caches | |
1036 | */ | |
18004c5d | 1037 | list_for_each_entry(cachep, &slab_caches, list) { |
c3d332b6 JK |
1038 | err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false); |
1039 | if (err) | |
1040 | goto bad; | |
fbf1e473 | 1041 | } |
ce79ddc8 | 1042 | |
fbf1e473 AM |
1043 | return 0; |
1044 | bad: | |
12d00f6a | 1045 | cpuup_canceled(cpu); |
fbf1e473 AM |
1046 | return -ENOMEM; |
1047 | } | |
1048 | ||
6731d4f1 | 1049 | int slab_prepare_cpu(unsigned int cpu) |
fbf1e473 | 1050 | { |
6731d4f1 | 1051 | int err; |
fbf1e473 | 1052 | |
6731d4f1 SAS |
1053 | mutex_lock(&slab_mutex); |
1054 | err = cpuup_prepare(cpu); | |
1055 | mutex_unlock(&slab_mutex); | |
1056 | return err; | |
1057 | } | |
1058 | ||
1059 | /* | |
1060 | * This is called for a failed online attempt and for a successful | |
1061 | * offline. | |
1062 | * | |
1063 | * Even if all the cpus of a node are down, we don't free the | |
221503e1 | 1064 | * kmem_cache_node of any cache. This to avoid a race between cpu_down, and |
6731d4f1 | 1065 | * a kmalloc allocation from another cpu for memory from the node of |
70b6d25e | 1066 | * the cpu going down. The kmem_cache_node structure is usually allocated from |
6731d4f1 SAS |
1067 | * kmem_cache_create() and gets destroyed at kmem_cache_destroy(). |
1068 | */ | |
1069 | int slab_dead_cpu(unsigned int cpu) | |
1070 | { | |
1071 | mutex_lock(&slab_mutex); | |
1072 | cpuup_canceled(cpu); | |
1073 | mutex_unlock(&slab_mutex); | |
1074 | return 0; | |
1075 | } | |
8f5be20b | 1076 | #endif |
6731d4f1 SAS |
1077 | |
1078 | static int slab_online_cpu(unsigned int cpu) | |
1079 | { | |
1080 | start_cpu_timer(cpu); | |
1081 | return 0; | |
1da177e4 LT |
1082 | } |
1083 | ||
6731d4f1 SAS |
1084 | static int slab_offline_cpu(unsigned int cpu) |
1085 | { | |
1086 | /* | |
1087 | * Shutdown cache reaper. Note that the slab_mutex is held so | |
1088 | * that if cache_reap() is invoked it cannot do anything | |
1089 | * expensive but will only modify reap_work and reschedule the | |
1090 | * timer. | |
1091 | */ | |
1092 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); | |
1093 | /* Now the cache_reaper is guaranteed to be not running. */ | |
1094 | per_cpu(slab_reap_work, cpu).work.func = NULL; | |
1095 | return 0; | |
1096 | } | |
1da177e4 | 1097 | |
8f9f8d9e DR |
1098 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1099 | /* | |
1100 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1101 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1102 | * removed. | |
1103 | * | |
18004c5d | 1104 | * Must hold slab_mutex. |
8f9f8d9e | 1105 | */ |
6a67368c | 1106 | static int __meminit drain_cache_node_node(int node) |
8f9f8d9e DR |
1107 | { |
1108 | struct kmem_cache *cachep; | |
1109 | int ret = 0; | |
1110 | ||
18004c5d | 1111 | list_for_each_entry(cachep, &slab_caches, list) { |
ce8eb6c4 | 1112 | struct kmem_cache_node *n; |
8f9f8d9e | 1113 | |
18bf8541 | 1114 | n = get_node(cachep, node); |
ce8eb6c4 | 1115 | if (!n) |
8f9f8d9e DR |
1116 | continue; |
1117 | ||
a5aa63a5 | 1118 | drain_freelist(cachep, n, INT_MAX); |
8f9f8d9e | 1119 | |
ce8eb6c4 CL |
1120 | if (!list_empty(&n->slabs_full) || |
1121 | !list_empty(&n->slabs_partial)) { | |
8f9f8d9e DR |
1122 | ret = -EBUSY; |
1123 | break; | |
1124 | } | |
1125 | } | |
1126 | return ret; | |
1127 | } | |
1128 | ||
1129 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1130 | unsigned long action, void *arg) | |
1131 | { | |
1132 | struct memory_notify *mnb = arg; | |
1133 | int ret = 0; | |
1134 | int nid; | |
1135 | ||
1136 | nid = mnb->status_change_nid; | |
1137 | if (nid < 0) | |
1138 | goto out; | |
1139 | ||
1140 | switch (action) { | |
1141 | case MEM_GOING_ONLINE: | |
18004c5d | 1142 | mutex_lock(&slab_mutex); |
6a67368c | 1143 | ret = init_cache_node_node(nid); |
18004c5d | 1144 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1145 | break; |
1146 | case MEM_GOING_OFFLINE: | |
18004c5d | 1147 | mutex_lock(&slab_mutex); |
6a67368c | 1148 | ret = drain_cache_node_node(nid); |
18004c5d | 1149 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1150 | break; |
1151 | case MEM_ONLINE: | |
1152 | case MEM_OFFLINE: | |
1153 | case MEM_CANCEL_ONLINE: | |
1154 | case MEM_CANCEL_OFFLINE: | |
1155 | break; | |
1156 | } | |
1157 | out: | |
5fda1bd5 | 1158 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1159 | } |
1160 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1161 | ||
e498be7d | 1162 | /* |
ce8eb6c4 | 1163 | * swap the static kmem_cache_node with kmalloced memory |
e498be7d | 1164 | */ |
6744f087 | 1165 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
8f9f8d9e | 1166 | int nodeid) |
e498be7d | 1167 | { |
6744f087 | 1168 | struct kmem_cache_node *ptr; |
e498be7d | 1169 | |
6744f087 | 1170 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
e498be7d CL |
1171 | BUG_ON(!ptr); |
1172 | ||
6744f087 | 1173 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
2b2d5493 IM |
1174 | /* |
1175 | * Do not assume that spinlocks can be initialized via memcpy: | |
1176 | */ | |
1177 | spin_lock_init(&ptr->list_lock); | |
1178 | ||
e498be7d | 1179 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
6a67368c | 1180 | cachep->node[nodeid] = ptr; |
e498be7d CL |
1181 | } |
1182 | ||
556a169d | 1183 | /* |
ce8eb6c4 CL |
1184 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1185 | * size of kmem_cache_node. | |
556a169d | 1186 | */ |
ce8eb6c4 | 1187 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
556a169d PE |
1188 | { |
1189 | int node; | |
1190 | ||
1191 | for_each_online_node(node) { | |
ce8eb6c4 | 1192 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
6a67368c | 1193 | cachep->node[node]->next_reap = jiffies + |
5f0985bb JZ |
1194 | REAPTIMEOUT_NODE + |
1195 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
556a169d PE |
1196 | } |
1197 | } | |
1198 | ||
a737b3e2 AM |
1199 | /* |
1200 | * Initialisation. Called after the page allocator have been initialised and | |
1201 | * before smp_init(). | |
1da177e4 LT |
1202 | */ |
1203 | void __init kmem_cache_init(void) | |
1204 | { | |
e498be7d CL |
1205 | int i; |
1206 | ||
9b030cb8 CL |
1207 | kmem_cache = &kmem_cache_boot; |
1208 | ||
8888177e | 1209 | if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1) |
62918a03 SS |
1210 | use_alien_caches = 0; |
1211 | ||
3c583465 | 1212 | for (i = 0; i < NUM_INIT_LISTS; i++) |
ce8eb6c4 | 1213 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
3c583465 | 1214 | |
1da177e4 LT |
1215 | /* |
1216 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1217 | * page orders on machines with more than 32MB of memory if |
1218 | * not overridden on the command line. | |
1da177e4 | 1219 | */ |
ca79b0c2 | 1220 | if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1221 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1222 | |
1da177e4 LT |
1223 | /* Bootstrap is tricky, because several objects are allocated |
1224 | * from caches that do not exist yet: | |
9b030cb8 CL |
1225 | * 1) initialize the kmem_cache cache: it contains the struct |
1226 | * kmem_cache structures of all caches, except kmem_cache itself: | |
1227 | * kmem_cache is statically allocated. | |
e498be7d | 1228 | * Initially an __init data area is used for the head array and the |
ce8eb6c4 | 1229 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
e498be7d | 1230 | * array at the end of the bootstrap. |
1da177e4 | 1231 | * 2) Create the first kmalloc cache. |
343e0d7a | 1232 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1233 | * An __init data area is used for the head array. |
1234 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1235 | * head arrays. | |
9b030cb8 | 1236 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1da177e4 | 1237 | * kmalloc cache with kmalloc allocated arrays. |
ce8eb6c4 | 1238 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
e498be7d CL |
1239 | * the other cache's with kmalloc allocated memory. |
1240 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1241 | */ |
1242 | ||
9b030cb8 | 1243 | /* 1) create the kmem_cache */ |
1da177e4 | 1244 | |
8da3430d | 1245 | /* |
b56efcf0 | 1246 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1247 | */ |
2f9baa9f | 1248 | create_boot_cache(kmem_cache, "kmem_cache", |
bf0dea23 | 1249 | offsetof(struct kmem_cache, node) + |
6744f087 | 1250 | nr_node_ids * sizeof(struct kmem_cache_node *), |
8eb8284b | 1251 | SLAB_HWCACHE_ALIGN, 0, 0); |
2f9baa9f | 1252 | list_add(&kmem_cache->list, &slab_caches); |
bf0dea23 | 1253 | slab_state = PARTIAL; |
1da177e4 | 1254 | |
a737b3e2 | 1255 | /* |
bf0dea23 JK |
1256 | * Initialize the caches that provide memory for the kmem_cache_node |
1257 | * structures first. Without this, further allocations will bug. | |
e498be7d | 1258 | */ |
cc252eae | 1259 | kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache( |
cb5d9fb3 | 1260 | kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL], |
dc0a7f75 PL |
1261 | kmalloc_info[INDEX_NODE].size, |
1262 | ARCH_KMALLOC_FLAGS, 0, | |
1263 | kmalloc_info[INDEX_NODE].size); | |
bf0dea23 | 1264 | slab_state = PARTIAL_NODE; |
34cc6990 | 1265 | setup_kmalloc_cache_index_table(); |
e498be7d | 1266 | |
e0a42726 IM |
1267 | slab_early_init = 0; |
1268 | ||
ce8eb6c4 | 1269 | /* 5) Replace the bootstrap kmem_cache_node */ |
e498be7d | 1270 | { |
1ca4cb24 PE |
1271 | int nid; |
1272 | ||
9c09a95c | 1273 | for_each_online_node(nid) { |
ce8eb6c4 | 1274 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
556a169d | 1275 | |
cc252eae | 1276 | init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE], |
ce8eb6c4 | 1277 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
e498be7d CL |
1278 | } |
1279 | } | |
1da177e4 | 1280 | |
f97d5f63 | 1281 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
8429db5c PE |
1282 | } |
1283 | ||
1284 | void __init kmem_cache_init_late(void) | |
1285 | { | |
1286 | struct kmem_cache *cachep; | |
1287 | ||
8429db5c | 1288 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1289 | mutex_lock(&slab_mutex); |
1290 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1291 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1292 | BUG(); | |
18004c5d | 1293 | mutex_unlock(&slab_mutex); |
056c6241 | 1294 | |
97d06609 CL |
1295 | /* Done! */ |
1296 | slab_state = FULL; | |
1297 | ||
8f9f8d9e DR |
1298 | #ifdef CONFIG_NUMA |
1299 | /* | |
1300 | * Register a memory hotplug callback that initializes and frees | |
6a67368c | 1301 | * node. |
8f9f8d9e DR |
1302 | */ |
1303 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1304 | #endif | |
1305 | ||
a737b3e2 AM |
1306 | /* |
1307 | * The reap timers are started later, with a module init call: That part | |
1308 | * of the kernel is not yet operational. | |
1da177e4 LT |
1309 | */ |
1310 | } | |
1311 | ||
1312 | static int __init cpucache_init(void) | |
1313 | { | |
6731d4f1 | 1314 | int ret; |
1da177e4 | 1315 | |
a737b3e2 AM |
1316 | /* |
1317 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1318 | */ |
6731d4f1 SAS |
1319 | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online", |
1320 | slab_online_cpu, slab_offline_cpu); | |
1321 | WARN_ON(ret < 0); | |
a164f896 | 1322 | |
1da177e4 LT |
1323 | return 0; |
1324 | } | |
1da177e4 LT |
1325 | __initcall(cpucache_init); |
1326 | ||
8bdec192 RA |
1327 | static noinline void |
1328 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1329 | { | |
9a02d699 | 1330 | #if DEBUG |
ce8eb6c4 | 1331 | struct kmem_cache_node *n; |
8bdec192 RA |
1332 | unsigned long flags; |
1333 | int node; | |
9a02d699 DR |
1334 | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
1335 | DEFAULT_RATELIMIT_BURST); | |
1336 | ||
1337 | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | |
1338 | return; | |
8bdec192 | 1339 | |
5b3810e5 VB |
1340 | pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
1341 | nodeid, gfpflags, &gfpflags); | |
1342 | pr_warn(" cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1343 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 | 1344 | |
18bf8541 | 1345 | for_each_kmem_cache_node(cachep, node, n) { |
bf00bd34 | 1346 | unsigned long total_slabs, free_slabs, free_objs; |
8bdec192 | 1347 | |
ce8eb6c4 | 1348 | spin_lock_irqsave(&n->list_lock, flags); |
bf00bd34 DR |
1349 | total_slabs = n->total_slabs; |
1350 | free_slabs = n->free_slabs; | |
1351 | free_objs = n->free_objects; | |
ce8eb6c4 | 1352 | spin_unlock_irqrestore(&n->list_lock, flags); |
8bdec192 | 1353 | |
bf00bd34 DR |
1354 | pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n", |
1355 | node, total_slabs - free_slabs, total_slabs, | |
1356 | (total_slabs * cachep->num) - free_objs, | |
1357 | total_slabs * cachep->num); | |
8bdec192 | 1358 | } |
9a02d699 | 1359 | #endif |
8bdec192 RA |
1360 | } |
1361 | ||
1da177e4 | 1362 | /* |
8a7d9b43 WSH |
1363 | * Interface to system's page allocator. No need to hold the |
1364 | * kmem_cache_node ->list_lock. | |
1da177e4 LT |
1365 | * |
1366 | * If we requested dmaable memory, we will get it. Even if we | |
1367 | * did not request dmaable memory, we might get it, but that | |
1368 | * would be relatively rare and ignorable. | |
1369 | */ | |
0c3aa83e JK |
1370 | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, |
1371 | int nodeid) | |
1da177e4 LT |
1372 | { |
1373 | struct page *page; | |
765c4507 | 1374 | |
a618e89f | 1375 | flags |= cachep->allocflags; |
e1b6aa6f | 1376 | |
75f296d9 | 1377 | page = __alloc_pages_node(nodeid, flags, cachep->gfporder); |
8bdec192 | 1378 | if (!page) { |
9a02d699 | 1379 | slab_out_of_memory(cachep, flags, nodeid); |
1da177e4 | 1380 | return NULL; |
8bdec192 | 1381 | } |
1da177e4 | 1382 | |
2e9bd483 | 1383 | account_slab_page(page, cachep->gfporder, cachep, flags); |
a57a4988 | 1384 | __SetPageSlab(page); |
f68f8ddd JK |
1385 | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ |
1386 | if (sk_memalloc_socks() && page_is_pfmemalloc(page)) | |
a57a4988 | 1387 | SetPageSlabPfmemalloc(page); |
072bb0aa | 1388 | |
0c3aa83e | 1389 | return page; |
1da177e4 LT |
1390 | } |
1391 | ||
1392 | /* | |
1393 | * Interface to system's page release. | |
1394 | */ | |
0c3aa83e | 1395 | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 1396 | { |
27ee57c9 | 1397 | int order = cachep->gfporder; |
73293c2f | 1398 | |
a57a4988 | 1399 | BUG_ON(!PageSlab(page)); |
73293c2f | 1400 | __ClearPageSlabPfmemalloc(page); |
a57a4988 | 1401 | __ClearPageSlab(page); |
8456a648 | 1402 | page_mapcount_reset(page); |
0c06dd75 VB |
1403 | /* In union with page->mapping where page allocator expects NULL */ |
1404 | page->slab_cache = NULL; | |
1f458cbf | 1405 | |
1da177e4 | 1406 | if (current->reclaim_state) |
6cea1d56 | 1407 | current->reclaim_state->reclaimed_slab += 1 << order; |
74d555be | 1408 | unaccount_slab_page(page, order, cachep); |
27ee57c9 | 1409 | __free_pages(page, order); |
1da177e4 LT |
1410 | } |
1411 | ||
1412 | static void kmem_rcu_free(struct rcu_head *head) | |
1413 | { | |
68126702 JK |
1414 | struct kmem_cache *cachep; |
1415 | struct page *page; | |
1da177e4 | 1416 | |
68126702 JK |
1417 | page = container_of(head, struct page, rcu_head); |
1418 | cachep = page->slab_cache; | |
1419 | ||
1420 | kmem_freepages(cachep, page); | |
1da177e4 LT |
1421 | } |
1422 | ||
1423 | #if DEBUG | |
40b44137 JK |
1424 | static bool is_debug_pagealloc_cache(struct kmem_cache *cachep) |
1425 | { | |
8e57f8ac | 1426 | if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) && |
40b44137 JK |
1427 | (cachep->size % PAGE_SIZE) == 0) |
1428 | return true; | |
1429 | ||
1430 | return false; | |
1431 | } | |
1da177e4 LT |
1432 | |
1433 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
80552f0f | 1434 | static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map) |
40b44137 JK |
1435 | { |
1436 | if (!is_debug_pagealloc_cache(cachep)) | |
1437 | return; | |
1438 | ||
77bc7fd6 | 1439 | __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map); |
40b44137 JK |
1440 | } |
1441 | ||
1442 | #else | |
1443 | static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp, | |
80552f0f | 1444 | int map) {} |
40b44137 | 1445 | |
1da177e4 LT |
1446 | #endif |
1447 | ||
343e0d7a | 1448 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1449 | { |
8c138bc0 | 1450 | int size = cachep->object_size; |
3dafccf2 | 1451 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1452 | |
1453 | memset(addr, val, size); | |
b28a02de | 1454 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1455 | } |
1456 | ||
1457 | static void dump_line(char *data, int offset, int limit) | |
1458 | { | |
1459 | int i; | |
aa83aa40 DJ |
1460 | unsigned char error = 0; |
1461 | int bad_count = 0; | |
1462 | ||
1170532b | 1463 | pr_err("%03x: ", offset); |
aa83aa40 DJ |
1464 | for (i = 0; i < limit; i++) { |
1465 | if (data[offset + i] != POISON_FREE) { | |
1466 | error = data[offset + i]; | |
1467 | bad_count++; | |
1468 | } | |
aa83aa40 | 1469 | } |
fdde6abb SAS |
1470 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1471 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1472 | |
1473 | if (bad_count == 1) { | |
1474 | error ^= POISON_FREE; | |
1475 | if (!(error & (error - 1))) { | |
1170532b | 1476 | pr_err("Single bit error detected. Probably bad RAM.\n"); |
aa83aa40 | 1477 | #ifdef CONFIG_X86 |
1170532b | 1478 | pr_err("Run memtest86+ or a similar memory test tool.\n"); |
aa83aa40 | 1479 | #else |
1170532b | 1480 | pr_err("Run a memory test tool.\n"); |
aa83aa40 DJ |
1481 | #endif |
1482 | } | |
1483 | } | |
1da177e4 LT |
1484 | } |
1485 | #endif | |
1486 | ||
1487 | #if DEBUG | |
1488 | ||
343e0d7a | 1489 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1490 | { |
1491 | int i, size; | |
1492 | char *realobj; | |
1493 | ||
1494 | if (cachep->flags & SLAB_RED_ZONE) { | |
1170532b JP |
1495 | pr_err("Redzone: 0x%llx/0x%llx\n", |
1496 | *dbg_redzone1(cachep, objp), | |
1497 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1498 | } |
1499 | ||
85c3e4a5 GU |
1500 | if (cachep->flags & SLAB_STORE_USER) |
1501 | pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp)); | |
3dafccf2 | 1502 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1503 | size = cachep->object_size; |
b28a02de | 1504 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1505 | int limit; |
1506 | limit = 16; | |
b28a02de PE |
1507 | if (i + limit > size) |
1508 | limit = size - i; | |
1da177e4 LT |
1509 | dump_line(realobj, i, limit); |
1510 | } | |
1511 | } | |
1512 | ||
343e0d7a | 1513 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1514 | { |
1515 | char *realobj; | |
1516 | int size, i; | |
1517 | int lines = 0; | |
1518 | ||
40b44137 JK |
1519 | if (is_debug_pagealloc_cache(cachep)) |
1520 | return; | |
1521 | ||
3dafccf2 | 1522 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1523 | size = cachep->object_size; |
1da177e4 | 1524 | |
b28a02de | 1525 | for (i = 0; i < size; i++) { |
1da177e4 | 1526 | char exp = POISON_FREE; |
b28a02de | 1527 | if (i == size - 1) |
1da177e4 LT |
1528 | exp = POISON_END; |
1529 | if (realobj[i] != exp) { | |
1530 | int limit; | |
1531 | /* Mismatch ! */ | |
1532 | /* Print header */ | |
1533 | if (lines == 0) { | |
85c3e4a5 | 1534 | pr_err("Slab corruption (%s): %s start=%px, len=%d\n", |
1170532b JP |
1535 | print_tainted(), cachep->name, |
1536 | realobj, size); | |
1da177e4 LT |
1537 | print_objinfo(cachep, objp, 0); |
1538 | } | |
1539 | /* Hexdump the affected line */ | |
b28a02de | 1540 | i = (i / 16) * 16; |
1da177e4 | 1541 | limit = 16; |
b28a02de PE |
1542 | if (i + limit > size) |
1543 | limit = size - i; | |
1da177e4 LT |
1544 | dump_line(realobj, i, limit); |
1545 | i += 16; | |
1546 | lines++; | |
1547 | /* Limit to 5 lines */ | |
1548 | if (lines > 5) | |
1549 | break; | |
1550 | } | |
1551 | } | |
1552 | if (lines != 0) { | |
1553 | /* Print some data about the neighboring objects, if they | |
1554 | * exist: | |
1555 | */ | |
8456a648 | 1556 | struct page *page = virt_to_head_page(objp); |
8fea4e96 | 1557 | unsigned int objnr; |
1da177e4 | 1558 | |
8456a648 | 1559 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 | 1560 | if (objnr) { |
8456a648 | 1561 | objp = index_to_obj(cachep, page, objnr - 1); |
3dafccf2 | 1562 | realobj = (char *)objp + obj_offset(cachep); |
85c3e4a5 | 1563 | pr_err("Prev obj: start=%px, len=%d\n", realobj, size); |
1da177e4 LT |
1564 | print_objinfo(cachep, objp, 2); |
1565 | } | |
b28a02de | 1566 | if (objnr + 1 < cachep->num) { |
8456a648 | 1567 | objp = index_to_obj(cachep, page, objnr + 1); |
3dafccf2 | 1568 | realobj = (char *)objp + obj_offset(cachep); |
85c3e4a5 | 1569 | pr_err("Next obj: start=%px, len=%d\n", realobj, size); |
1da177e4 LT |
1570 | print_objinfo(cachep, objp, 2); |
1571 | } | |
1572 | } | |
1573 | } | |
1574 | #endif | |
1575 | ||
12dd36fa | 1576 | #if DEBUG |
8456a648 JK |
1577 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1578 | struct page *page) | |
1da177e4 | 1579 | { |
1da177e4 | 1580 | int i; |
b03a017b JK |
1581 | |
1582 | if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) { | |
1583 | poison_obj(cachep, page->freelist - obj_offset(cachep), | |
1584 | POISON_FREE); | |
1585 | } | |
1586 | ||
1da177e4 | 1587 | for (i = 0; i < cachep->num; i++) { |
8456a648 | 1588 | void *objp = index_to_obj(cachep, page, i); |
1da177e4 LT |
1589 | |
1590 | if (cachep->flags & SLAB_POISON) { | |
1da177e4 | 1591 | check_poison_obj(cachep, objp); |
80552f0f | 1592 | slab_kernel_map(cachep, objp, 1); |
1da177e4 LT |
1593 | } |
1594 | if (cachep->flags & SLAB_RED_ZONE) { | |
1595 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
756a025f | 1596 | slab_error(cachep, "start of a freed object was overwritten"); |
1da177e4 | 1597 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
756a025f | 1598 | slab_error(cachep, "end of a freed object was overwritten"); |
1da177e4 | 1599 | } |
1da177e4 | 1600 | } |
12dd36fa | 1601 | } |
1da177e4 | 1602 | #else |
8456a648 JK |
1603 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, |
1604 | struct page *page) | |
12dd36fa | 1605 | { |
12dd36fa | 1606 | } |
1da177e4 LT |
1607 | #endif |
1608 | ||
911851e6 RD |
1609 | /** |
1610 | * slab_destroy - destroy and release all objects in a slab | |
1611 | * @cachep: cache pointer being destroyed | |
cb8ee1a3 | 1612 | * @page: page pointer being destroyed |
911851e6 | 1613 | * |
8a7d9b43 WSH |
1614 | * Destroy all the objs in a slab page, and release the mem back to the system. |
1615 | * Before calling the slab page must have been unlinked from the cache. The | |
1616 | * kmem_cache_node ->list_lock is not held/needed. | |
12dd36fa | 1617 | */ |
8456a648 | 1618 | static void slab_destroy(struct kmem_cache *cachep, struct page *page) |
12dd36fa | 1619 | { |
7e007355 | 1620 | void *freelist; |
12dd36fa | 1621 | |
8456a648 JK |
1622 | freelist = page->freelist; |
1623 | slab_destroy_debugcheck(cachep, page); | |
5f0d5a3a | 1624 | if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU)) |
bc4f610d KS |
1625 | call_rcu(&page->rcu_head, kmem_rcu_free); |
1626 | else | |
0c3aa83e | 1627 | kmem_freepages(cachep, page); |
68126702 JK |
1628 | |
1629 | /* | |
8456a648 | 1630 | * From now on, we don't use freelist |
68126702 JK |
1631 | * although actual page can be freed in rcu context |
1632 | */ | |
1633 | if (OFF_SLAB(cachep)) | |
8456a648 | 1634 | kmem_cache_free(cachep->freelist_cache, freelist); |
1da177e4 LT |
1635 | } |
1636 | ||
678ff6a7 SB |
1637 | /* |
1638 | * Update the size of the caches before calling slabs_destroy as it may | |
1639 | * recursively call kfree. | |
1640 | */ | |
97654dfa JK |
1641 | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) |
1642 | { | |
1643 | struct page *page, *n; | |
1644 | ||
16cb0ec7 TH |
1645 | list_for_each_entry_safe(page, n, list, slab_list) { |
1646 | list_del(&page->slab_list); | |
97654dfa JK |
1647 | slab_destroy(cachep, page); |
1648 | } | |
1649 | } | |
1650 | ||
4d268eba | 1651 | /** |
a70773dd RD |
1652 | * calculate_slab_order - calculate size (page order) of slabs |
1653 | * @cachep: pointer to the cache that is being created | |
1654 | * @size: size of objects to be created in this cache. | |
a70773dd RD |
1655 | * @flags: slab allocation flags |
1656 | * | |
1657 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1658 | * |
1659 | * This could be made much more intelligent. For now, try to avoid using | |
1660 | * high order pages for slabs. When the gfp() functions are more friendly | |
1661 | * towards high-order requests, this should be changed. | |
a862f68a MR |
1662 | * |
1663 | * Return: number of left-over bytes in a slab | |
4d268eba | 1664 | */ |
a737b3e2 | 1665 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
d50112ed | 1666 | size_t size, slab_flags_t flags) |
4d268eba PE |
1667 | { |
1668 | size_t left_over = 0; | |
9888e6fa | 1669 | int gfporder; |
4d268eba | 1670 | |
0aa817f0 | 1671 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1672 | unsigned int num; |
1673 | size_t remainder; | |
1674 | ||
70f75067 | 1675 | num = cache_estimate(gfporder, size, flags, &remainder); |
4d268eba PE |
1676 | if (!num) |
1677 | continue; | |
9888e6fa | 1678 | |
f315e3fa JK |
1679 | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ |
1680 | if (num > SLAB_OBJ_MAX_NUM) | |
1681 | break; | |
1682 | ||
b1ab41c4 | 1683 | if (flags & CFLGS_OFF_SLAB) { |
3217fd9b JK |
1684 | struct kmem_cache *freelist_cache; |
1685 | size_t freelist_size; | |
1686 | ||
1687 | freelist_size = num * sizeof(freelist_idx_t); | |
1688 | freelist_cache = kmalloc_slab(freelist_size, 0u); | |
1689 | if (!freelist_cache) | |
1690 | continue; | |
1691 | ||
b1ab41c4 | 1692 | /* |
3217fd9b | 1693 | * Needed to avoid possible looping condition |
76b342bd | 1694 | * in cache_grow_begin() |
b1ab41c4 | 1695 | */ |
3217fd9b JK |
1696 | if (OFF_SLAB(freelist_cache)) |
1697 | continue; | |
b1ab41c4 | 1698 | |
3217fd9b JK |
1699 | /* check if off slab has enough benefit */ |
1700 | if (freelist_cache->size > cachep->size / 2) | |
1701 | continue; | |
b1ab41c4 | 1702 | } |
4d268eba | 1703 | |
9888e6fa | 1704 | /* Found something acceptable - save it away */ |
4d268eba | 1705 | cachep->num = num; |
9888e6fa | 1706 | cachep->gfporder = gfporder; |
4d268eba PE |
1707 | left_over = remainder; |
1708 | ||
f78bb8ad LT |
1709 | /* |
1710 | * A VFS-reclaimable slab tends to have most allocations | |
1711 | * as GFP_NOFS and we really don't want to have to be allocating | |
1712 | * higher-order pages when we are unable to shrink dcache. | |
1713 | */ | |
1714 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1715 | break; | |
1716 | ||
4d268eba PE |
1717 | /* |
1718 | * Large number of objects is good, but very large slabs are | |
1719 | * currently bad for the gfp()s. | |
1720 | */ | |
543585cc | 1721 | if (gfporder >= slab_max_order) |
4d268eba PE |
1722 | break; |
1723 | ||
9888e6fa LT |
1724 | /* |
1725 | * Acceptable internal fragmentation? | |
1726 | */ | |
a737b3e2 | 1727 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
1728 | break; |
1729 | } | |
1730 | return left_over; | |
1731 | } | |
1732 | ||
bf0dea23 JK |
1733 | static struct array_cache __percpu *alloc_kmem_cache_cpus( |
1734 | struct kmem_cache *cachep, int entries, int batchcount) | |
1735 | { | |
1736 | int cpu; | |
1737 | size_t size; | |
1738 | struct array_cache __percpu *cpu_cache; | |
1739 | ||
1740 | size = sizeof(void *) * entries + sizeof(struct array_cache); | |
85c9f4b0 | 1741 | cpu_cache = __alloc_percpu(size, sizeof(void *)); |
bf0dea23 JK |
1742 | |
1743 | if (!cpu_cache) | |
1744 | return NULL; | |
1745 | ||
1746 | for_each_possible_cpu(cpu) { | |
1747 | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | |
1748 | entries, batchcount); | |
1749 | } | |
1750 | ||
1751 | return cpu_cache; | |
1752 | } | |
1753 | ||
bd721ea7 | 1754 | static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 1755 | { |
97d06609 | 1756 | if (slab_state >= FULL) |
83b519e8 | 1757 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 1758 | |
bf0dea23 JK |
1759 | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); |
1760 | if (!cachep->cpu_cache) | |
1761 | return 1; | |
1762 | ||
97d06609 | 1763 | if (slab_state == DOWN) { |
bf0dea23 JK |
1764 | /* Creation of first cache (kmem_cache). */ |
1765 | set_up_node(kmem_cache, CACHE_CACHE); | |
2f9baa9f | 1766 | } else if (slab_state == PARTIAL) { |
bf0dea23 JK |
1767 | /* For kmem_cache_node */ |
1768 | set_up_node(cachep, SIZE_NODE); | |
f30cf7d1 | 1769 | } else { |
bf0dea23 | 1770 | int node; |
f30cf7d1 | 1771 | |
bf0dea23 JK |
1772 | for_each_online_node(node) { |
1773 | cachep->node[node] = kmalloc_node( | |
1774 | sizeof(struct kmem_cache_node), gfp, node); | |
1775 | BUG_ON(!cachep->node[node]); | |
1776 | kmem_cache_node_init(cachep->node[node]); | |
f30cf7d1 PE |
1777 | } |
1778 | } | |
bf0dea23 | 1779 | |
6a67368c | 1780 | cachep->node[numa_mem_id()]->next_reap = |
5f0985bb JZ |
1781 | jiffies + REAPTIMEOUT_NODE + |
1782 | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | |
f30cf7d1 PE |
1783 | |
1784 | cpu_cache_get(cachep)->avail = 0; | |
1785 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
1786 | cpu_cache_get(cachep)->batchcount = 1; | |
1787 | cpu_cache_get(cachep)->touched = 0; | |
1788 | cachep->batchcount = 1; | |
1789 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 1790 | return 0; |
f30cf7d1 PE |
1791 | } |
1792 | ||
0293d1fd | 1793 | slab_flags_t kmem_cache_flags(unsigned int object_size, |
37540008 | 1794 | slab_flags_t flags, const char *name) |
12220dea JK |
1795 | { |
1796 | return flags; | |
1797 | } | |
1798 | ||
1799 | struct kmem_cache * | |
f4957d5b | 1800 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, |
d50112ed | 1801 | slab_flags_t flags, void (*ctor)(void *)) |
12220dea JK |
1802 | { |
1803 | struct kmem_cache *cachep; | |
1804 | ||
1805 | cachep = find_mergeable(size, align, flags, name, ctor); | |
1806 | if (cachep) { | |
1807 | cachep->refcount++; | |
1808 | ||
1809 | /* | |
1810 | * Adjust the object sizes so that we clear | |
1811 | * the complete object on kzalloc. | |
1812 | */ | |
1813 | cachep->object_size = max_t(int, cachep->object_size, size); | |
1814 | } | |
1815 | return cachep; | |
1816 | } | |
1817 | ||
b03a017b | 1818 | static bool set_objfreelist_slab_cache(struct kmem_cache *cachep, |
d50112ed | 1819 | size_t size, slab_flags_t flags) |
b03a017b JK |
1820 | { |
1821 | size_t left; | |
1822 | ||
1823 | cachep->num = 0; | |
1824 | ||
6471384a AP |
1825 | /* |
1826 | * If slab auto-initialization on free is enabled, store the freelist | |
1827 | * off-slab, so that its contents don't end up in one of the allocated | |
1828 | * objects. | |
1829 | */ | |
1830 | if (unlikely(slab_want_init_on_free(cachep))) | |
1831 | return false; | |
1832 | ||
5f0d5a3a | 1833 | if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU) |
b03a017b JK |
1834 | return false; |
1835 | ||
1836 | left = calculate_slab_order(cachep, size, | |
1837 | flags | CFLGS_OBJFREELIST_SLAB); | |
1838 | if (!cachep->num) | |
1839 | return false; | |
1840 | ||
1841 | if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size) | |
1842 | return false; | |
1843 | ||
1844 | cachep->colour = left / cachep->colour_off; | |
1845 | ||
1846 | return true; | |
1847 | } | |
1848 | ||
158e319b | 1849 | static bool set_off_slab_cache(struct kmem_cache *cachep, |
d50112ed | 1850 | size_t size, slab_flags_t flags) |
158e319b JK |
1851 | { |
1852 | size_t left; | |
1853 | ||
1854 | cachep->num = 0; | |
1855 | ||
1856 | /* | |
3217fd9b JK |
1857 | * Always use on-slab management when SLAB_NOLEAKTRACE |
1858 | * to avoid recursive calls into kmemleak. | |
158e319b | 1859 | */ |
158e319b JK |
1860 | if (flags & SLAB_NOLEAKTRACE) |
1861 | return false; | |
1862 | ||
1863 | /* | |
1864 | * Size is large, assume best to place the slab management obj | |
1865 | * off-slab (should allow better packing of objs). | |
1866 | */ | |
1867 | left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB); | |
1868 | if (!cachep->num) | |
1869 | return false; | |
1870 | ||
1871 | /* | |
1872 | * If the slab has been placed off-slab, and we have enough space then | |
1873 | * move it on-slab. This is at the expense of any extra colouring. | |
1874 | */ | |
1875 | if (left >= cachep->num * sizeof(freelist_idx_t)) | |
1876 | return false; | |
1877 | ||
1878 | cachep->colour = left / cachep->colour_off; | |
1879 | ||
1880 | return true; | |
1881 | } | |
1882 | ||
1883 | static bool set_on_slab_cache(struct kmem_cache *cachep, | |
d50112ed | 1884 | size_t size, slab_flags_t flags) |
158e319b JK |
1885 | { |
1886 | size_t left; | |
1887 | ||
1888 | cachep->num = 0; | |
1889 | ||
1890 | left = calculate_slab_order(cachep, size, flags); | |
1891 | if (!cachep->num) | |
1892 | return false; | |
1893 | ||
1894 | cachep->colour = left / cachep->colour_off; | |
1895 | ||
1896 | return true; | |
1897 | } | |
1898 | ||
1da177e4 | 1899 | /** |
039363f3 | 1900 | * __kmem_cache_create - Create a cache. |
a755b76a | 1901 | * @cachep: cache management descriptor |
1da177e4 | 1902 | * @flags: SLAB flags |
1da177e4 LT |
1903 | * |
1904 | * Returns a ptr to the cache on success, NULL on failure. | |
1905 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 1906 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 | 1907 | * |
1da177e4 LT |
1908 | * The flags are |
1909 | * | |
1910 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
1911 | * to catch references to uninitialised memory. | |
1912 | * | |
1913 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
1914 | * for buffer overruns. | |
1915 | * | |
1da177e4 LT |
1916 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
1917 | * cacheline. This can be beneficial if you're counting cycles as closely | |
1918 | * as davem. | |
a862f68a MR |
1919 | * |
1920 | * Return: a pointer to the created cache or %NULL in case of error | |
1da177e4 | 1921 | */ |
d50112ed | 1922 | int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags) |
1da177e4 | 1923 | { |
d4a5fca5 | 1924 | size_t ralign = BYTES_PER_WORD; |
83b519e8 | 1925 | gfp_t gfp; |
278b1bb1 | 1926 | int err; |
be4a7988 | 1927 | unsigned int size = cachep->size; |
1da177e4 | 1928 | |
1da177e4 | 1929 | #if DEBUG |
1da177e4 LT |
1930 | #if FORCED_DEBUG |
1931 | /* | |
1932 | * Enable redzoning and last user accounting, except for caches with | |
1933 | * large objects, if the increased size would increase the object size | |
1934 | * above the next power of two: caches with object sizes just above a | |
1935 | * power of two have a significant amount of internal fragmentation. | |
1936 | */ | |
87a927c7 DW |
1937 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
1938 | 2 * sizeof(unsigned long long))) | |
b28a02de | 1939 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
5f0d5a3a | 1940 | if (!(flags & SLAB_TYPESAFE_BY_RCU)) |
1da177e4 LT |
1941 | flags |= SLAB_POISON; |
1942 | #endif | |
1da177e4 | 1943 | #endif |
1da177e4 | 1944 | |
a737b3e2 AM |
1945 | /* |
1946 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
1947 | * unaligned accesses for some archs when redzoning is used, and makes |
1948 | * sure any on-slab bufctl's are also correctly aligned. | |
1949 | */ | |
e0771950 | 1950 | size = ALIGN(size, BYTES_PER_WORD); |
1da177e4 | 1951 | |
87a927c7 DW |
1952 | if (flags & SLAB_RED_ZONE) { |
1953 | ralign = REDZONE_ALIGN; | |
1954 | /* If redzoning, ensure that the second redzone is suitably | |
1955 | * aligned, by adjusting the object size accordingly. */ | |
e0771950 | 1956 | size = ALIGN(size, REDZONE_ALIGN); |
87a927c7 | 1957 | } |
ca5f9703 | 1958 | |
a44b56d3 | 1959 | /* 3) caller mandated alignment */ |
8a13a4cc CL |
1960 | if (ralign < cachep->align) { |
1961 | ralign = cachep->align; | |
1da177e4 | 1962 | } |
3ff84a7f PE |
1963 | /* disable debug if necessary */ |
1964 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 1965 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 1966 | /* |
ca5f9703 | 1967 | * 4) Store it. |
1da177e4 | 1968 | */ |
8a13a4cc | 1969 | cachep->align = ralign; |
158e319b JK |
1970 | cachep->colour_off = cache_line_size(); |
1971 | /* Offset must be a multiple of the alignment. */ | |
1972 | if (cachep->colour_off < cachep->align) | |
1973 | cachep->colour_off = cachep->align; | |
1da177e4 | 1974 | |
83b519e8 PE |
1975 | if (slab_is_available()) |
1976 | gfp = GFP_KERNEL; | |
1977 | else | |
1978 | gfp = GFP_NOWAIT; | |
1979 | ||
1da177e4 | 1980 | #if DEBUG |
1da177e4 | 1981 | |
ca5f9703 PE |
1982 | /* |
1983 | * Both debugging options require word-alignment which is calculated | |
1984 | * into align above. | |
1985 | */ | |
1da177e4 | 1986 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 1987 | /* add space for red zone words */ |
3ff84a7f PE |
1988 | cachep->obj_offset += sizeof(unsigned long long); |
1989 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
1990 | } |
1991 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 1992 | /* user store requires one word storage behind the end of |
87a927c7 DW |
1993 | * the real object. But if the second red zone needs to be |
1994 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 1995 | */ |
87a927c7 DW |
1996 | if (flags & SLAB_RED_ZONE) |
1997 | size += REDZONE_ALIGN; | |
1998 | else | |
1999 | size += BYTES_PER_WORD; | |
1da177e4 | 2000 | } |
832a15d2 JK |
2001 | #endif |
2002 | ||
7ed2f9e6 AP |
2003 | kasan_cache_create(cachep, &size, &flags); |
2004 | ||
832a15d2 JK |
2005 | size = ALIGN(size, cachep->align); |
2006 | /* | |
2007 | * We should restrict the number of objects in a slab to implement | |
2008 | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | |
2009 | */ | |
2010 | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | |
2011 | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | |
2012 | ||
2013 | #if DEBUG | |
03a2d2a3 JK |
2014 | /* |
2015 | * To activate debug pagealloc, off-slab management is necessary | |
2016 | * requirement. In early phase of initialization, small sized slab | |
2017 | * doesn't get initialized so it would not be possible. So, we need | |
2018 | * to check size >= 256. It guarantees that all necessary small | |
2019 | * sized slab is initialized in current slab initialization sequence. | |
2020 | */ | |
8e57f8ac | 2021 | if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) && |
f3a3c320 JK |
2022 | size >= 256 && cachep->object_size > cache_line_size()) { |
2023 | if (size < PAGE_SIZE || size % PAGE_SIZE == 0) { | |
2024 | size_t tmp_size = ALIGN(size, PAGE_SIZE); | |
2025 | ||
2026 | if (set_off_slab_cache(cachep, tmp_size, flags)) { | |
2027 | flags |= CFLGS_OFF_SLAB; | |
2028 | cachep->obj_offset += tmp_size - size; | |
2029 | size = tmp_size; | |
2030 | goto done; | |
2031 | } | |
2032 | } | |
1da177e4 | 2033 | } |
1da177e4 LT |
2034 | #endif |
2035 | ||
b03a017b JK |
2036 | if (set_objfreelist_slab_cache(cachep, size, flags)) { |
2037 | flags |= CFLGS_OBJFREELIST_SLAB; | |
2038 | goto done; | |
2039 | } | |
2040 | ||
158e319b | 2041 | if (set_off_slab_cache(cachep, size, flags)) { |
1da177e4 | 2042 | flags |= CFLGS_OFF_SLAB; |
158e319b | 2043 | goto done; |
832a15d2 | 2044 | } |
1da177e4 | 2045 | |
158e319b JK |
2046 | if (set_on_slab_cache(cachep, size, flags)) |
2047 | goto done; | |
1da177e4 | 2048 | |
158e319b | 2049 | return -E2BIG; |
1da177e4 | 2050 | |
158e319b JK |
2051 | done: |
2052 | cachep->freelist_size = cachep->num * sizeof(freelist_idx_t); | |
1da177e4 | 2053 | cachep->flags = flags; |
a57a4988 | 2054 | cachep->allocflags = __GFP_COMP; |
a3187e43 | 2055 | if (flags & SLAB_CACHE_DMA) |
a618e89f | 2056 | cachep->allocflags |= GFP_DMA; |
6d6ea1e9 NB |
2057 | if (flags & SLAB_CACHE_DMA32) |
2058 | cachep->allocflags |= GFP_DMA32; | |
a3ba0744 DR |
2059 | if (flags & SLAB_RECLAIM_ACCOUNT) |
2060 | cachep->allocflags |= __GFP_RECLAIMABLE; | |
3b0efdfa | 2061 | cachep->size = size; |
6a2d7a95 | 2062 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2063 | |
40b44137 JK |
2064 | #if DEBUG |
2065 | /* | |
2066 | * If we're going to use the generic kernel_map_pages() | |
2067 | * poisoning, then it's going to smash the contents of | |
2068 | * the redzone and userword anyhow, so switch them off. | |
2069 | */ | |
2070 | if (IS_ENABLED(CONFIG_PAGE_POISONING) && | |
2071 | (cachep->flags & SLAB_POISON) && | |
2072 | is_debug_pagealloc_cache(cachep)) | |
2073 | cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2074 | #endif | |
2075 | ||
2076 | if (OFF_SLAB(cachep)) { | |
158e319b JK |
2077 | cachep->freelist_cache = |
2078 | kmalloc_slab(cachep->freelist_size, 0u); | |
e5ac9c5a | 2079 | } |
1da177e4 | 2080 | |
278b1bb1 CL |
2081 | err = setup_cpu_cache(cachep, gfp); |
2082 | if (err) { | |
52b4b950 | 2083 | __kmem_cache_release(cachep); |
278b1bb1 | 2084 | return err; |
2ed3a4ef | 2085 | } |
1da177e4 | 2086 | |
278b1bb1 | 2087 | return 0; |
1da177e4 | 2088 | } |
1da177e4 LT |
2089 | |
2090 | #if DEBUG | |
2091 | static void check_irq_off(void) | |
2092 | { | |
2093 | BUG_ON(!irqs_disabled()); | |
2094 | } | |
2095 | ||
2096 | static void check_irq_on(void) | |
2097 | { | |
2098 | BUG_ON(irqs_disabled()); | |
2099 | } | |
2100 | ||
18726ca8 JK |
2101 | static void check_mutex_acquired(void) |
2102 | { | |
2103 | BUG_ON(!mutex_is_locked(&slab_mutex)); | |
2104 | } | |
2105 | ||
343e0d7a | 2106 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2107 | { |
2108 | #ifdef CONFIG_SMP | |
2109 | check_irq_off(); | |
18bf8541 | 2110 | assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); |
1da177e4 LT |
2111 | #endif |
2112 | } | |
e498be7d | 2113 | |
343e0d7a | 2114 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2115 | { |
2116 | #ifdef CONFIG_SMP | |
2117 | check_irq_off(); | |
18bf8541 | 2118 | assert_spin_locked(&get_node(cachep, node)->list_lock); |
e498be7d CL |
2119 | #endif |
2120 | } | |
2121 | ||
1da177e4 LT |
2122 | #else |
2123 | #define check_irq_off() do { } while(0) | |
2124 | #define check_irq_on() do { } while(0) | |
18726ca8 | 2125 | #define check_mutex_acquired() do { } while(0) |
1da177e4 | 2126 | #define check_spinlock_acquired(x) do { } while(0) |
e498be7d | 2127 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2128 | #endif |
2129 | ||
18726ca8 JK |
2130 | static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac, |
2131 | int node, bool free_all, struct list_head *list) | |
2132 | { | |
2133 | int tofree; | |
2134 | ||
2135 | if (!ac || !ac->avail) | |
2136 | return; | |
2137 | ||
2138 | tofree = free_all ? ac->avail : (ac->limit + 4) / 5; | |
2139 | if (tofree > ac->avail) | |
2140 | tofree = (ac->avail + 1) / 2; | |
2141 | ||
2142 | free_block(cachep, ac->entry, tofree, node, list); | |
2143 | ac->avail -= tofree; | |
2144 | memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail); | |
2145 | } | |
aab2207c | 2146 | |
1da177e4 LT |
2147 | static void do_drain(void *arg) |
2148 | { | |
a737b3e2 | 2149 | struct kmem_cache *cachep = arg; |
1da177e4 | 2150 | struct array_cache *ac; |
7d6e6d09 | 2151 | int node = numa_mem_id(); |
18bf8541 | 2152 | struct kmem_cache_node *n; |
97654dfa | 2153 | LIST_HEAD(list); |
1da177e4 LT |
2154 | |
2155 | check_irq_off(); | |
9a2dba4b | 2156 | ac = cpu_cache_get(cachep); |
18bf8541 CL |
2157 | n = get_node(cachep, node); |
2158 | spin_lock(&n->list_lock); | |
97654dfa | 2159 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 2160 | spin_unlock(&n->list_lock); |
1da177e4 | 2161 | ac->avail = 0; |
678ff6a7 | 2162 | slabs_destroy(cachep, &list); |
1da177e4 LT |
2163 | } |
2164 | ||
343e0d7a | 2165 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2166 | { |
ce8eb6c4 | 2167 | struct kmem_cache_node *n; |
e498be7d | 2168 | int node; |
18726ca8 | 2169 | LIST_HEAD(list); |
e498be7d | 2170 | |
15c8b6c1 | 2171 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2172 | check_irq_on(); |
18bf8541 CL |
2173 | for_each_kmem_cache_node(cachep, node, n) |
2174 | if (n->alien) | |
ce8eb6c4 | 2175 | drain_alien_cache(cachep, n->alien); |
a4523a8b | 2176 | |
18726ca8 JK |
2177 | for_each_kmem_cache_node(cachep, node, n) { |
2178 | spin_lock_irq(&n->list_lock); | |
2179 | drain_array_locked(cachep, n->shared, node, true, &list); | |
2180 | spin_unlock_irq(&n->list_lock); | |
2181 | ||
2182 | slabs_destroy(cachep, &list); | |
2183 | } | |
1da177e4 LT |
2184 | } |
2185 | ||
ed11d9eb CL |
2186 | /* |
2187 | * Remove slabs from the list of free slabs. | |
2188 | * Specify the number of slabs to drain in tofree. | |
2189 | * | |
2190 | * Returns the actual number of slabs released. | |
2191 | */ | |
2192 | static int drain_freelist(struct kmem_cache *cache, | |
ce8eb6c4 | 2193 | struct kmem_cache_node *n, int tofree) |
1da177e4 | 2194 | { |
ed11d9eb CL |
2195 | struct list_head *p; |
2196 | int nr_freed; | |
8456a648 | 2197 | struct page *page; |
1da177e4 | 2198 | |
ed11d9eb | 2199 | nr_freed = 0; |
ce8eb6c4 | 2200 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
1da177e4 | 2201 | |
ce8eb6c4 CL |
2202 | spin_lock_irq(&n->list_lock); |
2203 | p = n->slabs_free.prev; | |
2204 | if (p == &n->slabs_free) { | |
2205 | spin_unlock_irq(&n->list_lock); | |
ed11d9eb CL |
2206 | goto out; |
2207 | } | |
1da177e4 | 2208 | |
16cb0ec7 TH |
2209 | page = list_entry(p, struct page, slab_list); |
2210 | list_del(&page->slab_list); | |
f728b0a5 | 2211 | n->free_slabs--; |
bf00bd34 | 2212 | n->total_slabs--; |
ed11d9eb CL |
2213 | /* |
2214 | * Safe to drop the lock. The slab is no longer linked | |
2215 | * to the cache. | |
2216 | */ | |
ce8eb6c4 CL |
2217 | n->free_objects -= cache->num; |
2218 | spin_unlock_irq(&n->list_lock); | |
8456a648 | 2219 | slab_destroy(cache, page); |
ed11d9eb | 2220 | nr_freed++; |
1da177e4 | 2221 | } |
ed11d9eb CL |
2222 | out: |
2223 | return nr_freed; | |
1da177e4 LT |
2224 | } |
2225 | ||
f9e13c0a SB |
2226 | bool __kmem_cache_empty(struct kmem_cache *s) |
2227 | { | |
2228 | int node; | |
2229 | struct kmem_cache_node *n; | |
2230 | ||
2231 | for_each_kmem_cache_node(s, node, n) | |
2232 | if (!list_empty(&n->slabs_full) || | |
2233 | !list_empty(&n->slabs_partial)) | |
2234 | return false; | |
2235 | return true; | |
2236 | } | |
2237 | ||
c9fc5864 | 2238 | int __kmem_cache_shrink(struct kmem_cache *cachep) |
e498be7d | 2239 | { |
18bf8541 CL |
2240 | int ret = 0; |
2241 | int node; | |
ce8eb6c4 | 2242 | struct kmem_cache_node *n; |
e498be7d CL |
2243 | |
2244 | drain_cpu_caches(cachep); | |
2245 | ||
2246 | check_irq_on(); | |
18bf8541 | 2247 | for_each_kmem_cache_node(cachep, node, n) { |
a5aa63a5 | 2248 | drain_freelist(cachep, n, INT_MAX); |
ed11d9eb | 2249 | |
ce8eb6c4 CL |
2250 | ret += !list_empty(&n->slabs_full) || |
2251 | !list_empty(&n->slabs_partial); | |
e498be7d CL |
2252 | } |
2253 | return (ret ? 1 : 0); | |
2254 | } | |
2255 | ||
945cf2b6 | 2256 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
52b4b950 | 2257 | { |
c9fc5864 | 2258 | return __kmem_cache_shrink(cachep); |
52b4b950 DS |
2259 | } |
2260 | ||
2261 | void __kmem_cache_release(struct kmem_cache *cachep) | |
1da177e4 | 2262 | { |
12c3667f | 2263 | int i; |
ce8eb6c4 | 2264 | struct kmem_cache_node *n; |
1da177e4 | 2265 | |
c7ce4f60 TG |
2266 | cache_random_seq_destroy(cachep); |
2267 | ||
bf0dea23 | 2268 | free_percpu(cachep->cpu_cache); |
1da177e4 | 2269 | |
ce8eb6c4 | 2270 | /* NUMA: free the node structures */ |
18bf8541 CL |
2271 | for_each_kmem_cache_node(cachep, i, n) { |
2272 | kfree(n->shared); | |
2273 | free_alien_cache(n->alien); | |
2274 | kfree(n); | |
2275 | cachep->node[i] = NULL; | |
12c3667f | 2276 | } |
1da177e4 | 2277 | } |
1da177e4 | 2278 | |
e5ac9c5a RT |
2279 | /* |
2280 | * Get the memory for a slab management obj. | |
5f0985bb JZ |
2281 | * |
2282 | * For a slab cache when the slab descriptor is off-slab, the | |
2283 | * slab descriptor can't come from the same cache which is being created, | |
2284 | * Because if it is the case, that means we defer the creation of | |
2285 | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | |
2286 | * And we eventually call down to __kmem_cache_create(), which | |
80d01558 | 2287 | * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one. |
5f0985bb JZ |
2288 | * This is a "chicken-and-egg" problem. |
2289 | * | |
2290 | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | |
2291 | * which are all initialized during kmem_cache_init(). | |
e5ac9c5a | 2292 | */ |
7e007355 | 2293 | static void *alloc_slabmgmt(struct kmem_cache *cachep, |
0c3aa83e JK |
2294 | struct page *page, int colour_off, |
2295 | gfp_t local_flags, int nodeid) | |
1da177e4 | 2296 | { |
7e007355 | 2297 | void *freelist; |
0c3aa83e | 2298 | void *addr = page_address(page); |
b28a02de | 2299 | |
51dedad0 | 2300 | page->s_mem = addr + colour_off; |
2e6b3602 JK |
2301 | page->active = 0; |
2302 | ||
b03a017b JK |
2303 | if (OBJFREELIST_SLAB(cachep)) |
2304 | freelist = NULL; | |
2305 | else if (OFF_SLAB(cachep)) { | |
1da177e4 | 2306 | /* Slab management obj is off-slab. */ |
8456a648 | 2307 | freelist = kmem_cache_alloc_node(cachep->freelist_cache, |
8759ec50 | 2308 | local_flags, nodeid); |
1da177e4 | 2309 | } else { |
2e6b3602 JK |
2310 | /* We will use last bytes at the slab for freelist */ |
2311 | freelist = addr + (PAGE_SIZE << cachep->gfporder) - | |
2312 | cachep->freelist_size; | |
1da177e4 | 2313 | } |
2e6b3602 | 2314 | |
8456a648 | 2315 | return freelist; |
1da177e4 LT |
2316 | } |
2317 | ||
7cc68973 | 2318 | static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) |
1da177e4 | 2319 | { |
a41adfaa | 2320 | return ((freelist_idx_t *)page->freelist)[idx]; |
e5c58dfd JK |
2321 | } |
2322 | ||
2323 | static inline void set_free_obj(struct page *page, | |
7cc68973 | 2324 | unsigned int idx, freelist_idx_t val) |
e5c58dfd | 2325 | { |
a41adfaa | 2326 | ((freelist_idx_t *)(page->freelist))[idx] = val; |
1da177e4 LT |
2327 | } |
2328 | ||
10b2e9e8 | 2329 | static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page) |
1da177e4 | 2330 | { |
10b2e9e8 | 2331 | #if DEBUG |
1da177e4 LT |
2332 | int i; |
2333 | ||
2334 | for (i = 0; i < cachep->num; i++) { | |
8456a648 | 2335 | void *objp = index_to_obj(cachep, page, i); |
10b2e9e8 | 2336 | |
1da177e4 LT |
2337 | if (cachep->flags & SLAB_STORE_USER) |
2338 | *dbg_userword(cachep, objp) = NULL; | |
2339 | ||
2340 | if (cachep->flags & SLAB_RED_ZONE) { | |
2341 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2342 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2343 | } | |
2344 | /* | |
a737b3e2 AM |
2345 | * Constructors are not allowed to allocate memory from the same |
2346 | * cache which they are a constructor for. Otherwise, deadlock. | |
2347 | * They must also be threaded. | |
1da177e4 | 2348 | */ |
7ed2f9e6 AP |
2349 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) { |
2350 | kasan_unpoison_object_data(cachep, | |
2351 | objp + obj_offset(cachep)); | |
51cc5068 | 2352 | cachep->ctor(objp + obj_offset(cachep)); |
7ed2f9e6 AP |
2353 | kasan_poison_object_data( |
2354 | cachep, objp + obj_offset(cachep)); | |
2355 | } | |
1da177e4 LT |
2356 | |
2357 | if (cachep->flags & SLAB_RED_ZONE) { | |
2358 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
756a025f | 2359 | slab_error(cachep, "constructor overwrote the end of an object"); |
1da177e4 | 2360 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
756a025f | 2361 | slab_error(cachep, "constructor overwrote the start of an object"); |
1da177e4 | 2362 | } |
40b44137 JK |
2363 | /* need to poison the objs? */ |
2364 | if (cachep->flags & SLAB_POISON) { | |
2365 | poison_obj(cachep, objp, POISON_FREE); | |
80552f0f | 2366 | slab_kernel_map(cachep, objp, 0); |
40b44137 | 2367 | } |
10b2e9e8 | 2368 | } |
1da177e4 | 2369 | #endif |
10b2e9e8 JK |
2370 | } |
2371 | ||
c7ce4f60 TG |
2372 | #ifdef CONFIG_SLAB_FREELIST_RANDOM |
2373 | /* Hold information during a freelist initialization */ | |
2374 | union freelist_init_state { | |
2375 | struct { | |
2376 | unsigned int pos; | |
7c00fce9 | 2377 | unsigned int *list; |
c7ce4f60 | 2378 | unsigned int count; |
c7ce4f60 TG |
2379 | }; |
2380 | struct rnd_state rnd_state; | |
2381 | }; | |
2382 | ||
2383 | /* | |
f0953a1b IM |
2384 | * Initialize the state based on the randomization method available. |
2385 | * return true if the pre-computed list is available, false otherwise. | |
c7ce4f60 TG |
2386 | */ |
2387 | static bool freelist_state_initialize(union freelist_init_state *state, | |
2388 | struct kmem_cache *cachep, | |
2389 | unsigned int count) | |
2390 | { | |
2391 | bool ret; | |
2392 | unsigned int rand; | |
2393 | ||
2394 | /* Use best entropy available to define a random shift */ | |
7c00fce9 | 2395 | rand = get_random_int(); |
c7ce4f60 TG |
2396 | |
2397 | /* Use a random state if the pre-computed list is not available */ | |
2398 | if (!cachep->random_seq) { | |
2399 | prandom_seed_state(&state->rnd_state, rand); | |
2400 | ret = false; | |
2401 | } else { | |
2402 | state->list = cachep->random_seq; | |
2403 | state->count = count; | |
c4e490cf | 2404 | state->pos = rand % count; |
c7ce4f60 TG |
2405 | ret = true; |
2406 | } | |
2407 | return ret; | |
2408 | } | |
2409 | ||
2410 | /* Get the next entry on the list and randomize it using a random shift */ | |
2411 | static freelist_idx_t next_random_slot(union freelist_init_state *state) | |
2412 | { | |
c4e490cf JS |
2413 | if (state->pos >= state->count) |
2414 | state->pos = 0; | |
2415 | return state->list[state->pos++]; | |
c7ce4f60 TG |
2416 | } |
2417 | ||
7c00fce9 TG |
2418 | /* Swap two freelist entries */ |
2419 | static void swap_free_obj(struct page *page, unsigned int a, unsigned int b) | |
2420 | { | |
2421 | swap(((freelist_idx_t *)page->freelist)[a], | |
2422 | ((freelist_idx_t *)page->freelist)[b]); | |
2423 | } | |
2424 | ||
c7ce4f60 TG |
2425 | /* |
2426 | * Shuffle the freelist initialization state based on pre-computed lists. | |
2427 | * return true if the list was successfully shuffled, false otherwise. | |
2428 | */ | |
2429 | static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page) | |
2430 | { | |
7c00fce9 | 2431 | unsigned int objfreelist = 0, i, rand, count = cachep->num; |
c7ce4f60 TG |
2432 | union freelist_init_state state; |
2433 | bool precomputed; | |
2434 | ||
2435 | if (count < 2) | |
2436 | return false; | |
2437 | ||
2438 | precomputed = freelist_state_initialize(&state, cachep, count); | |
2439 | ||
2440 | /* Take a random entry as the objfreelist */ | |
2441 | if (OBJFREELIST_SLAB(cachep)) { | |
2442 | if (!precomputed) | |
2443 | objfreelist = count - 1; | |
2444 | else | |
2445 | objfreelist = next_random_slot(&state); | |
2446 | page->freelist = index_to_obj(cachep, page, objfreelist) + | |
2447 | obj_offset(cachep); | |
2448 | count--; | |
2449 | } | |
2450 | ||
2451 | /* | |
2452 | * On early boot, generate the list dynamically. | |
2453 | * Later use a pre-computed list for speed. | |
2454 | */ | |
2455 | if (!precomputed) { | |
7c00fce9 TG |
2456 | for (i = 0; i < count; i++) |
2457 | set_free_obj(page, i, i); | |
2458 | ||
2459 | /* Fisher-Yates shuffle */ | |
2460 | for (i = count - 1; i > 0; i--) { | |
2461 | rand = prandom_u32_state(&state.rnd_state); | |
2462 | rand %= (i + 1); | |
2463 | swap_free_obj(page, i, rand); | |
2464 | } | |
c7ce4f60 TG |
2465 | } else { |
2466 | for (i = 0; i < count; i++) | |
2467 | set_free_obj(page, i, next_random_slot(&state)); | |
2468 | } | |
2469 | ||
2470 | if (OBJFREELIST_SLAB(cachep)) | |
2471 | set_free_obj(page, cachep->num - 1, objfreelist); | |
2472 | ||
2473 | return true; | |
2474 | } | |
2475 | #else | |
2476 | static inline bool shuffle_freelist(struct kmem_cache *cachep, | |
2477 | struct page *page) | |
2478 | { | |
2479 | return false; | |
2480 | } | |
2481 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | |
2482 | ||
10b2e9e8 JK |
2483 | static void cache_init_objs(struct kmem_cache *cachep, |
2484 | struct page *page) | |
2485 | { | |
2486 | int i; | |
7ed2f9e6 | 2487 | void *objp; |
c7ce4f60 | 2488 | bool shuffled; |
10b2e9e8 JK |
2489 | |
2490 | cache_init_objs_debug(cachep, page); | |
2491 | ||
c7ce4f60 TG |
2492 | /* Try to randomize the freelist if enabled */ |
2493 | shuffled = shuffle_freelist(cachep, page); | |
2494 | ||
2495 | if (!shuffled && OBJFREELIST_SLAB(cachep)) { | |
b03a017b JK |
2496 | page->freelist = index_to_obj(cachep, page, cachep->num - 1) + |
2497 | obj_offset(cachep); | |
2498 | } | |
2499 | ||
10b2e9e8 | 2500 | for (i = 0; i < cachep->num; i++) { |
b3cbd9bf | 2501 | objp = index_to_obj(cachep, page, i); |
4d176711 | 2502 | objp = kasan_init_slab_obj(cachep, objp); |
b3cbd9bf | 2503 | |
10b2e9e8 | 2504 | /* constructor could break poison info */ |
7ed2f9e6 | 2505 | if (DEBUG == 0 && cachep->ctor) { |
7ed2f9e6 AP |
2506 | kasan_unpoison_object_data(cachep, objp); |
2507 | cachep->ctor(objp); | |
2508 | kasan_poison_object_data(cachep, objp); | |
2509 | } | |
10b2e9e8 | 2510 | |
c7ce4f60 TG |
2511 | if (!shuffled) |
2512 | set_free_obj(page, i, i); | |
1da177e4 | 2513 | } |
1da177e4 LT |
2514 | } |
2515 | ||
260b61dd | 2516 | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page) |
78d382d7 | 2517 | { |
b1cb0982 | 2518 | void *objp; |
78d382d7 | 2519 | |
e5c58dfd | 2520 | objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); |
8456a648 | 2521 | page->active++; |
78d382d7 MD |
2522 | |
2523 | return objp; | |
2524 | } | |
2525 | ||
260b61dd JK |
2526 | static void slab_put_obj(struct kmem_cache *cachep, |
2527 | struct page *page, void *objp) | |
78d382d7 | 2528 | { |
8456a648 | 2529 | unsigned int objnr = obj_to_index(cachep, page, objp); |
78d382d7 | 2530 | #if DEBUG |
16025177 | 2531 | unsigned int i; |
b1cb0982 | 2532 | |
b1cb0982 | 2533 | /* Verify double free bug */ |
8456a648 | 2534 | for (i = page->active; i < cachep->num; i++) { |
e5c58dfd | 2535 | if (get_free_obj(page, i) == objnr) { |
85c3e4a5 | 2536 | pr_err("slab: double free detected in cache '%s', objp %px\n", |
756a025f | 2537 | cachep->name, objp); |
b1cb0982 JK |
2538 | BUG(); |
2539 | } | |
78d382d7 MD |
2540 | } |
2541 | #endif | |
8456a648 | 2542 | page->active--; |
b03a017b JK |
2543 | if (!page->freelist) |
2544 | page->freelist = objp + obj_offset(cachep); | |
2545 | ||
e5c58dfd | 2546 | set_free_obj(page, page->active, objnr); |
78d382d7 MD |
2547 | } |
2548 | ||
4776874f PE |
2549 | /* |
2550 | * Map pages beginning at addr to the given cache and slab. This is required | |
2551 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2552 | * virtual address for kfree, ksize, and slab debugging. |
4776874f | 2553 | */ |
8456a648 | 2554 | static void slab_map_pages(struct kmem_cache *cache, struct page *page, |
7e007355 | 2555 | void *freelist) |
1da177e4 | 2556 | { |
a57a4988 | 2557 | page->slab_cache = cache; |
8456a648 | 2558 | page->freelist = freelist; |
1da177e4 LT |
2559 | } |
2560 | ||
2561 | /* | |
2562 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2563 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2564 | */ | |
76b342bd JK |
2565 | static struct page *cache_grow_begin(struct kmem_cache *cachep, |
2566 | gfp_t flags, int nodeid) | |
1da177e4 | 2567 | { |
7e007355 | 2568 | void *freelist; |
b28a02de PE |
2569 | size_t offset; |
2570 | gfp_t local_flags; | |
511e3a05 | 2571 | int page_node; |
ce8eb6c4 | 2572 | struct kmem_cache_node *n; |
511e3a05 | 2573 | struct page *page; |
1da177e4 | 2574 | |
a737b3e2 AM |
2575 | /* |
2576 | * Be lazy and only check for valid flags here, keeping it out of the | |
2577 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2578 | */ |
44405099 LL |
2579 | if (unlikely(flags & GFP_SLAB_BUG_MASK)) |
2580 | flags = kmalloc_fix_flags(flags); | |
2581 | ||
128227e7 | 2582 | WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
6cb06229 | 2583 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
1da177e4 | 2584 | |
1da177e4 | 2585 | check_irq_off(); |
d0164adc | 2586 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 LT |
2587 | local_irq_enable(); |
2588 | ||
a737b3e2 AM |
2589 | /* |
2590 | * Get mem for the objs. Attempt to allocate a physical page from | |
2591 | * 'nodeid'. | |
e498be7d | 2592 | */ |
511e3a05 | 2593 | page = kmem_getpages(cachep, local_flags, nodeid); |
0c3aa83e | 2594 | if (!page) |
1da177e4 LT |
2595 | goto failed; |
2596 | ||
511e3a05 JK |
2597 | page_node = page_to_nid(page); |
2598 | n = get_node(cachep, page_node); | |
03d1d43a JK |
2599 | |
2600 | /* Get colour for the slab, and cal the next value. */ | |
2601 | n->colour_next++; | |
2602 | if (n->colour_next >= cachep->colour) | |
2603 | n->colour_next = 0; | |
2604 | ||
2605 | offset = n->colour_next; | |
2606 | if (offset >= cachep->colour) | |
2607 | offset = 0; | |
2608 | ||
2609 | offset *= cachep->colour_off; | |
2610 | ||
51dedad0 AK |
2611 | /* |
2612 | * Call kasan_poison_slab() before calling alloc_slabmgmt(), so | |
2613 | * page_address() in the latter returns a non-tagged pointer, | |
2614 | * as it should be for slab pages. | |
2615 | */ | |
2616 | kasan_poison_slab(page); | |
2617 | ||
1da177e4 | 2618 | /* Get slab management. */ |
8456a648 | 2619 | freelist = alloc_slabmgmt(cachep, page, offset, |
511e3a05 | 2620 | local_flags & ~GFP_CONSTRAINT_MASK, page_node); |
b03a017b | 2621 | if (OFF_SLAB(cachep) && !freelist) |
1da177e4 LT |
2622 | goto opps1; |
2623 | ||
8456a648 | 2624 | slab_map_pages(cachep, page, freelist); |
1da177e4 | 2625 | |
8456a648 | 2626 | cache_init_objs(cachep, page); |
1da177e4 | 2627 | |
d0164adc | 2628 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2629 | local_irq_disable(); |
1da177e4 | 2630 | |
76b342bd JK |
2631 | return page; |
2632 | ||
a737b3e2 | 2633 | opps1: |
0c3aa83e | 2634 | kmem_freepages(cachep, page); |
a737b3e2 | 2635 | failed: |
d0164adc | 2636 | if (gfpflags_allow_blocking(local_flags)) |
1da177e4 | 2637 | local_irq_disable(); |
76b342bd JK |
2638 | return NULL; |
2639 | } | |
2640 | ||
2641 | static void cache_grow_end(struct kmem_cache *cachep, struct page *page) | |
2642 | { | |
2643 | struct kmem_cache_node *n; | |
2644 | void *list = NULL; | |
2645 | ||
2646 | check_irq_off(); | |
2647 | ||
2648 | if (!page) | |
2649 | return; | |
2650 | ||
16cb0ec7 | 2651 | INIT_LIST_HEAD(&page->slab_list); |
76b342bd JK |
2652 | n = get_node(cachep, page_to_nid(page)); |
2653 | ||
2654 | spin_lock(&n->list_lock); | |
bf00bd34 | 2655 | n->total_slabs++; |
f728b0a5 | 2656 | if (!page->active) { |
16cb0ec7 | 2657 | list_add_tail(&page->slab_list, &n->slabs_free); |
f728b0a5 | 2658 | n->free_slabs++; |
bf00bd34 | 2659 | } else |
76b342bd | 2660 | fixup_slab_list(cachep, n, page, &list); |
07a63c41 | 2661 | |
76b342bd JK |
2662 | STATS_INC_GROWN(cachep); |
2663 | n->free_objects += cachep->num - page->active; | |
2664 | spin_unlock(&n->list_lock); | |
2665 | ||
2666 | fixup_objfreelist_debug(cachep, &list); | |
1da177e4 LT |
2667 | } |
2668 | ||
2669 | #if DEBUG | |
2670 | ||
2671 | /* | |
2672 | * Perform extra freeing checks: | |
2673 | * - detect bad pointers. | |
2674 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2675 | */ |
2676 | static void kfree_debugcheck(const void *objp) | |
2677 | { | |
1da177e4 | 2678 | if (!virt_addr_valid(objp)) { |
1170532b | 2679 | pr_err("kfree_debugcheck: out of range ptr %lxh\n", |
b28a02de PE |
2680 | (unsigned long)objp); |
2681 | BUG(); | |
1da177e4 | 2682 | } |
1da177e4 LT |
2683 | } |
2684 | ||
58ce1fd5 PE |
2685 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2686 | { | |
b46b8f19 | 2687 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2688 | |
2689 | redzone1 = *dbg_redzone1(cache, obj); | |
2690 | redzone2 = *dbg_redzone2(cache, obj); | |
2691 | ||
2692 | /* | |
2693 | * Redzone is ok. | |
2694 | */ | |
2695 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2696 | return; | |
2697 | ||
2698 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2699 | slab_error(cache, "double free detected"); | |
2700 | else | |
2701 | slab_error(cache, "memory outside object was overwritten"); | |
2702 | ||
85c3e4a5 | 2703 | pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
1170532b | 2704 | obj, redzone1, redzone2); |
58ce1fd5 PE |
2705 | } |
2706 | ||
343e0d7a | 2707 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
7c0cb9c6 | 2708 | unsigned long caller) |
1da177e4 | 2709 | { |
1da177e4 | 2710 | unsigned int objnr; |
8456a648 | 2711 | struct page *page; |
1da177e4 | 2712 | |
80cbd911 MW |
2713 | BUG_ON(virt_to_cache(objp) != cachep); |
2714 | ||
3dafccf2 | 2715 | objp -= obj_offset(cachep); |
1da177e4 | 2716 | kfree_debugcheck(objp); |
b49af68f | 2717 | page = virt_to_head_page(objp); |
1da177e4 | 2718 | |
1da177e4 | 2719 | if (cachep->flags & SLAB_RED_ZONE) { |
58ce1fd5 | 2720 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2721 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2722 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2723 | } | |
7878c231 | 2724 | if (cachep->flags & SLAB_STORE_USER) |
7c0cb9c6 | 2725 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 | 2726 | |
8456a648 | 2727 | objnr = obj_to_index(cachep, page, objp); |
1da177e4 LT |
2728 | |
2729 | BUG_ON(objnr >= cachep->num); | |
8456a648 | 2730 | BUG_ON(objp != index_to_obj(cachep, page, objnr)); |
1da177e4 | 2731 | |
1da177e4 | 2732 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2733 | poison_obj(cachep, objp, POISON_FREE); |
80552f0f | 2734 | slab_kernel_map(cachep, objp, 0); |
1da177e4 LT |
2735 | } |
2736 | return objp; | |
2737 | } | |
2738 | ||
1da177e4 LT |
2739 | #else |
2740 | #define kfree_debugcheck(x) do { } while(0) | |
0b411634 | 2741 | #define cache_free_debugcheck(x, objp, z) (objp) |
1da177e4 LT |
2742 | #endif |
2743 | ||
b03a017b JK |
2744 | static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, |
2745 | void **list) | |
2746 | { | |
2747 | #if DEBUG | |
2748 | void *next = *list; | |
2749 | void *objp; | |
2750 | ||
2751 | while (next) { | |
2752 | objp = next - obj_offset(cachep); | |
2753 | next = *(void **)next; | |
2754 | poison_obj(cachep, objp, POISON_FREE); | |
2755 | } | |
2756 | #endif | |
2757 | } | |
2758 | ||
d8410234 | 2759 | static inline void fixup_slab_list(struct kmem_cache *cachep, |
b03a017b JK |
2760 | struct kmem_cache_node *n, struct page *page, |
2761 | void **list) | |
d8410234 JK |
2762 | { |
2763 | /* move slabp to correct slabp list: */ | |
16cb0ec7 | 2764 | list_del(&page->slab_list); |
b03a017b | 2765 | if (page->active == cachep->num) { |
16cb0ec7 | 2766 | list_add(&page->slab_list, &n->slabs_full); |
b03a017b JK |
2767 | if (OBJFREELIST_SLAB(cachep)) { |
2768 | #if DEBUG | |
2769 | /* Poisoning will be done without holding the lock */ | |
2770 | if (cachep->flags & SLAB_POISON) { | |
2771 | void **objp = page->freelist; | |
2772 | ||
2773 | *objp = *list; | |
2774 | *list = objp; | |
2775 | } | |
2776 | #endif | |
2777 | page->freelist = NULL; | |
2778 | } | |
2779 | } else | |
16cb0ec7 | 2780 | list_add(&page->slab_list, &n->slabs_partial); |
d8410234 JK |
2781 | } |
2782 | ||
f68f8ddd JK |
2783 | /* Try to find non-pfmemalloc slab if needed */ |
2784 | static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n, | |
bf00bd34 | 2785 | struct page *page, bool pfmemalloc) |
f68f8ddd JK |
2786 | { |
2787 | if (!page) | |
2788 | return NULL; | |
2789 | ||
2790 | if (pfmemalloc) | |
2791 | return page; | |
2792 | ||
2793 | if (!PageSlabPfmemalloc(page)) | |
2794 | return page; | |
2795 | ||
2796 | /* No need to keep pfmemalloc slab if we have enough free objects */ | |
2797 | if (n->free_objects > n->free_limit) { | |
2798 | ClearPageSlabPfmemalloc(page); | |
2799 | return page; | |
2800 | } | |
2801 | ||
2802 | /* Move pfmemalloc slab to the end of list to speed up next search */ | |
16cb0ec7 | 2803 | list_del(&page->slab_list); |
bf00bd34 | 2804 | if (!page->active) { |
16cb0ec7 | 2805 | list_add_tail(&page->slab_list, &n->slabs_free); |
bf00bd34 | 2806 | n->free_slabs++; |
f728b0a5 | 2807 | } else |
16cb0ec7 | 2808 | list_add_tail(&page->slab_list, &n->slabs_partial); |
f68f8ddd | 2809 | |
16cb0ec7 | 2810 | list_for_each_entry(page, &n->slabs_partial, slab_list) { |
f68f8ddd JK |
2811 | if (!PageSlabPfmemalloc(page)) |
2812 | return page; | |
2813 | } | |
2814 | ||
f728b0a5 | 2815 | n->free_touched = 1; |
16cb0ec7 | 2816 | list_for_each_entry(page, &n->slabs_free, slab_list) { |
f728b0a5 | 2817 | if (!PageSlabPfmemalloc(page)) { |
bf00bd34 | 2818 | n->free_slabs--; |
f68f8ddd | 2819 | return page; |
f728b0a5 | 2820 | } |
f68f8ddd JK |
2821 | } |
2822 | ||
2823 | return NULL; | |
2824 | } | |
2825 | ||
2826 | static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc) | |
7aa0d227 GT |
2827 | { |
2828 | struct page *page; | |
2829 | ||
f728b0a5 | 2830 | assert_spin_locked(&n->list_lock); |
16cb0ec7 TH |
2831 | page = list_first_entry_or_null(&n->slabs_partial, struct page, |
2832 | slab_list); | |
7aa0d227 GT |
2833 | if (!page) { |
2834 | n->free_touched = 1; | |
bf00bd34 | 2835 | page = list_first_entry_or_null(&n->slabs_free, struct page, |
16cb0ec7 | 2836 | slab_list); |
f728b0a5 | 2837 | if (page) |
bf00bd34 | 2838 | n->free_slabs--; |
7aa0d227 GT |
2839 | } |
2840 | ||
f68f8ddd | 2841 | if (sk_memalloc_socks()) |
bf00bd34 | 2842 | page = get_valid_first_slab(n, page, pfmemalloc); |
f68f8ddd | 2843 | |
7aa0d227 GT |
2844 | return page; |
2845 | } | |
2846 | ||
f68f8ddd JK |
2847 | static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep, |
2848 | struct kmem_cache_node *n, gfp_t flags) | |
2849 | { | |
2850 | struct page *page; | |
2851 | void *obj; | |
2852 | void *list = NULL; | |
2853 | ||
2854 | if (!gfp_pfmemalloc_allowed(flags)) | |
2855 | return NULL; | |
2856 | ||
2857 | spin_lock(&n->list_lock); | |
2858 | page = get_first_slab(n, true); | |
2859 | if (!page) { | |
2860 | spin_unlock(&n->list_lock); | |
2861 | return NULL; | |
2862 | } | |
2863 | ||
2864 | obj = slab_get_obj(cachep, page); | |
2865 | n->free_objects--; | |
2866 | ||
2867 | fixup_slab_list(cachep, n, page, &list); | |
2868 | ||
2869 | spin_unlock(&n->list_lock); | |
2870 | fixup_objfreelist_debug(cachep, &list); | |
2871 | ||
2872 | return obj; | |
2873 | } | |
2874 | ||
213b4695 JK |
2875 | /* |
2876 | * Slab list should be fixed up by fixup_slab_list() for existing slab | |
2877 | * or cache_grow_end() for new slab | |
2878 | */ | |
2879 | static __always_inline int alloc_block(struct kmem_cache *cachep, | |
2880 | struct array_cache *ac, struct page *page, int batchcount) | |
2881 | { | |
2882 | /* | |
2883 | * There must be at least one object available for | |
2884 | * allocation. | |
2885 | */ | |
2886 | BUG_ON(page->active >= cachep->num); | |
2887 | ||
2888 | while (page->active < cachep->num && batchcount--) { | |
2889 | STATS_INC_ALLOCED(cachep); | |
2890 | STATS_INC_ACTIVE(cachep); | |
2891 | STATS_SET_HIGH(cachep); | |
2892 | ||
2893 | ac->entry[ac->avail++] = slab_get_obj(cachep, page); | |
2894 | } | |
2895 | ||
2896 | return batchcount; | |
2897 | } | |
2898 | ||
f68f8ddd | 2899 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
2900 | { |
2901 | int batchcount; | |
ce8eb6c4 | 2902 | struct kmem_cache_node *n; |
801faf0d | 2903 | struct array_cache *ac, *shared; |
1ca4cb24 | 2904 | int node; |
b03a017b | 2905 | void *list = NULL; |
76b342bd | 2906 | struct page *page; |
1ca4cb24 | 2907 | |
1da177e4 | 2908 | check_irq_off(); |
7d6e6d09 | 2909 | node = numa_mem_id(); |
f68f8ddd | 2910 | |
9a2dba4b | 2911 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2912 | batchcount = ac->batchcount; |
2913 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2914 | /* |
2915 | * If there was little recent activity on this cache, then | |
2916 | * perform only a partial refill. Otherwise we could generate | |
2917 | * refill bouncing. | |
1da177e4 LT |
2918 | */ |
2919 | batchcount = BATCHREFILL_LIMIT; | |
2920 | } | |
18bf8541 | 2921 | n = get_node(cachep, node); |
e498be7d | 2922 | |
ce8eb6c4 | 2923 | BUG_ON(ac->avail > 0 || !n); |
801faf0d JK |
2924 | shared = READ_ONCE(n->shared); |
2925 | if (!n->free_objects && (!shared || !shared->avail)) | |
2926 | goto direct_grow; | |
2927 | ||
ce8eb6c4 | 2928 | spin_lock(&n->list_lock); |
801faf0d | 2929 | shared = READ_ONCE(n->shared); |
1da177e4 | 2930 | |
3ded175a | 2931 | /* See if we can refill from the shared array */ |
801faf0d JK |
2932 | if (shared && transfer_objects(ac, shared, batchcount)) { |
2933 | shared->touched = 1; | |
3ded175a | 2934 | goto alloc_done; |
44b57f1c | 2935 | } |
3ded175a | 2936 | |
1da177e4 | 2937 | while (batchcount > 0) { |
1da177e4 | 2938 | /* Get slab alloc is to come from. */ |
f68f8ddd | 2939 | page = get_first_slab(n, false); |
7aa0d227 GT |
2940 | if (!page) |
2941 | goto must_grow; | |
1da177e4 | 2942 | |
1da177e4 | 2943 | check_spinlock_acquired(cachep); |
714b8171 | 2944 | |
213b4695 | 2945 | batchcount = alloc_block(cachep, ac, page, batchcount); |
b03a017b | 2946 | fixup_slab_list(cachep, n, page, &list); |
1da177e4 LT |
2947 | } |
2948 | ||
a737b3e2 | 2949 | must_grow: |
ce8eb6c4 | 2950 | n->free_objects -= ac->avail; |
a737b3e2 | 2951 | alloc_done: |
ce8eb6c4 | 2952 | spin_unlock(&n->list_lock); |
b03a017b | 2953 | fixup_objfreelist_debug(cachep, &list); |
1da177e4 | 2954 | |
801faf0d | 2955 | direct_grow: |
1da177e4 | 2956 | if (unlikely(!ac->avail)) { |
f68f8ddd JK |
2957 | /* Check if we can use obj in pfmemalloc slab */ |
2958 | if (sk_memalloc_socks()) { | |
2959 | void *obj = cache_alloc_pfmemalloc(cachep, n, flags); | |
2960 | ||
2961 | if (obj) | |
2962 | return obj; | |
2963 | } | |
2964 | ||
76b342bd | 2965 | page = cache_grow_begin(cachep, gfp_exact_node(flags), node); |
e498be7d | 2966 | |
76b342bd JK |
2967 | /* |
2968 | * cache_grow_begin() can reenable interrupts, | |
2969 | * then ac could change. | |
2970 | */ | |
9a2dba4b | 2971 | ac = cpu_cache_get(cachep); |
213b4695 JK |
2972 | if (!ac->avail && page) |
2973 | alloc_block(cachep, ac, page, batchcount); | |
2974 | cache_grow_end(cachep, page); | |
072bb0aa | 2975 | |
213b4695 | 2976 | if (!ac->avail) |
1da177e4 | 2977 | return NULL; |
1da177e4 LT |
2978 | } |
2979 | ac->touched = 1; | |
072bb0aa | 2980 | |
f68f8ddd | 2981 | return ac->entry[--ac->avail]; |
1da177e4 LT |
2982 | } |
2983 | ||
a737b3e2 AM |
2984 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
2985 | gfp_t flags) | |
1da177e4 | 2986 | { |
d0164adc | 2987 | might_sleep_if(gfpflags_allow_blocking(flags)); |
1da177e4 LT |
2988 | } |
2989 | ||
2990 | #if DEBUG | |
a737b3e2 | 2991 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
7c0cb9c6 | 2992 | gfp_t flags, void *objp, unsigned long caller) |
1da177e4 | 2993 | { |
128227e7 | 2994 | WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); |
df3ae2c9 | 2995 | if (!objp || is_kfence_address(objp)) |
1da177e4 | 2996 | return objp; |
b28a02de | 2997 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 2998 | check_poison_obj(cachep, objp); |
80552f0f | 2999 | slab_kernel_map(cachep, objp, 1); |
1da177e4 LT |
3000 | poison_obj(cachep, objp, POISON_INUSE); |
3001 | } | |
3002 | if (cachep->flags & SLAB_STORE_USER) | |
7c0cb9c6 | 3003 | *dbg_userword(cachep, objp) = (void *)caller; |
1da177e4 LT |
3004 | |
3005 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3006 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3007 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
756a025f | 3008 | slab_error(cachep, "double free, or memory outside object was overwritten"); |
85c3e4a5 | 3009 | pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n", |
1170532b JP |
3010 | objp, *dbg_redzone1(cachep, objp), |
3011 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3012 | } |
3013 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3014 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3015 | } | |
03787301 | 3016 | |
3dafccf2 | 3017 | objp += obj_offset(cachep); |
4f104934 | 3018 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3019 | cachep->ctor(objp); |
7ea466f2 TH |
3020 | if (ARCH_SLAB_MINALIGN && |
3021 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
85c3e4a5 | 3022 | pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3023 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3024 | } |
1da177e4 LT |
3025 | return objp; |
3026 | } | |
3027 | #else | |
0b411634 | 3028 | #define cache_alloc_debugcheck_after(a, b, objp, d) (objp) |
1da177e4 LT |
3029 | #endif |
3030 | ||
343e0d7a | 3031 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3032 | { |
b28a02de | 3033 | void *objp; |
1da177e4 LT |
3034 | struct array_cache *ac; |
3035 | ||
5c382300 | 3036 | check_irq_off(); |
8a8b6502 | 3037 | |
9a2dba4b | 3038 | ac = cpu_cache_get(cachep); |
1da177e4 | 3039 | if (likely(ac->avail)) { |
1da177e4 | 3040 | ac->touched = 1; |
f68f8ddd | 3041 | objp = ac->entry[--ac->avail]; |
072bb0aa | 3042 | |
f68f8ddd JK |
3043 | STATS_INC_ALLOCHIT(cachep); |
3044 | goto out; | |
1da177e4 | 3045 | } |
072bb0aa MG |
3046 | |
3047 | STATS_INC_ALLOCMISS(cachep); | |
f68f8ddd | 3048 | objp = cache_alloc_refill(cachep, flags); |
072bb0aa MG |
3049 | /* |
3050 | * the 'ac' may be updated by cache_alloc_refill(), | |
3051 | * and kmemleak_erase() requires its correct value. | |
3052 | */ | |
3053 | ac = cpu_cache_get(cachep); | |
3054 | ||
3055 | out: | |
d5cff635 CM |
3056 | /* |
3057 | * To avoid a false negative, if an object that is in one of the | |
3058 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3059 | * treat the array pointers as a reference to the object. | |
3060 | */ | |
f3d8b53a O |
3061 | if (objp) |
3062 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3063 | return objp; |
3064 | } | |
3065 | ||
e498be7d | 3066 | #ifdef CONFIG_NUMA |
c61afb18 | 3067 | /* |
2ad654bc | 3068 | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. |
c61afb18 PJ |
3069 | * |
3070 | * If we are in_interrupt, then process context, including cpusets and | |
3071 | * mempolicy, may not apply and should not be used for allocation policy. | |
3072 | */ | |
3073 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3074 | { | |
3075 | int nid_alloc, nid_here; | |
3076 | ||
765c4507 | 3077 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3078 | return NULL; |
7d6e6d09 | 3079 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3080 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3081 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3082 | else if (current->mempolicy) |
2a389610 | 3083 | nid_alloc = mempolicy_slab_node(); |
c61afb18 | 3084 | if (nid_alloc != nid_here) |
8b98c169 | 3085 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3086 | return NULL; |
3087 | } | |
3088 | ||
765c4507 CL |
3089 | /* |
3090 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 | 3091 | * certain node and fall back is permitted. First we scan all the |
6a67368c | 3092 | * available node for available objects. If that fails then we |
3c517a61 CL |
3093 | * perform an allocation without specifying a node. This allows the page |
3094 | * allocator to do its reclaim / fallback magic. We then insert the | |
3095 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3096 | */ |
8c8cc2c1 | 3097 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3098 | { |
8c8cc2c1 | 3099 | struct zonelist *zonelist; |
dd1a239f | 3100 | struct zoneref *z; |
54a6eb5c | 3101 | struct zone *zone; |
97a225e6 | 3102 | enum zone_type highest_zoneidx = gfp_zone(flags); |
765c4507 | 3103 | void *obj = NULL; |
76b342bd | 3104 | struct page *page; |
3c517a61 | 3105 | int nid; |
cc9a6c87 | 3106 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3107 | |
3108 | if (flags & __GFP_THISNODE) | |
3109 | return NULL; | |
3110 | ||
cc9a6c87 | 3111 | retry_cpuset: |
d26914d1 | 3112 | cpuset_mems_cookie = read_mems_allowed_begin(); |
2a389610 | 3113 | zonelist = node_zonelist(mempolicy_slab_node(), flags); |
cc9a6c87 | 3114 | |
3c517a61 CL |
3115 | retry: |
3116 | /* | |
3117 | * Look through allowed nodes for objects available | |
3118 | * from existing per node queues. | |
3119 | */ | |
97a225e6 | 3120 | for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { |
54a6eb5c | 3121 | nid = zone_to_nid(zone); |
aedb0eb1 | 3122 | |
061d7074 | 3123 | if (cpuset_zone_allowed(zone, flags) && |
18bf8541 CL |
3124 | get_node(cache, nid) && |
3125 | get_node(cache, nid)->free_objects) { | |
3c517a61 | 3126 | obj = ____cache_alloc_node(cache, |
4167e9b2 | 3127 | gfp_exact_node(flags), nid); |
481c5346 CL |
3128 | if (obj) |
3129 | break; | |
3130 | } | |
3c517a61 CL |
3131 | } |
3132 | ||
cfce6604 | 3133 | if (!obj) { |
3c517a61 CL |
3134 | /* |
3135 | * This allocation will be performed within the constraints | |
3136 | * of the current cpuset / memory policy requirements. | |
3137 | * We may trigger various forms of reclaim on the allowed | |
3138 | * set and go into memory reserves if necessary. | |
3139 | */ | |
76b342bd JK |
3140 | page = cache_grow_begin(cache, flags, numa_mem_id()); |
3141 | cache_grow_end(cache, page); | |
3142 | if (page) { | |
3143 | nid = page_to_nid(page); | |
511e3a05 JK |
3144 | obj = ____cache_alloc_node(cache, |
3145 | gfp_exact_node(flags), nid); | |
0c3aa83e | 3146 | |
3c517a61 | 3147 | /* |
511e3a05 JK |
3148 | * Another processor may allocate the objects in |
3149 | * the slab since we are not holding any locks. | |
3c517a61 | 3150 | */ |
511e3a05 JK |
3151 | if (!obj) |
3152 | goto retry; | |
3c517a61 | 3153 | } |
aedb0eb1 | 3154 | } |
cc9a6c87 | 3155 | |
d26914d1 | 3156 | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 | 3157 | goto retry_cpuset; |
765c4507 CL |
3158 | return obj; |
3159 | } | |
3160 | ||
e498be7d CL |
3161 | /* |
3162 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3163 | */ |
8b98c169 | 3164 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3165 | int nodeid) |
e498be7d | 3166 | { |
8456a648 | 3167 | struct page *page; |
ce8eb6c4 | 3168 | struct kmem_cache_node *n; |
213b4695 | 3169 | void *obj = NULL; |
b03a017b | 3170 | void *list = NULL; |
b28a02de | 3171 | |
7c3fbbdd | 3172 | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); |
18bf8541 | 3173 | n = get_node(cachep, nodeid); |
ce8eb6c4 | 3174 | BUG_ON(!n); |
b28a02de | 3175 | |
ca3b9b91 | 3176 | check_irq_off(); |
ce8eb6c4 | 3177 | spin_lock(&n->list_lock); |
f68f8ddd | 3178 | page = get_first_slab(n, false); |
7aa0d227 GT |
3179 | if (!page) |
3180 | goto must_grow; | |
b28a02de | 3181 | |
b28a02de | 3182 | check_spinlock_acquired_node(cachep, nodeid); |
b28a02de PE |
3183 | |
3184 | STATS_INC_NODEALLOCS(cachep); | |
3185 | STATS_INC_ACTIVE(cachep); | |
3186 | STATS_SET_HIGH(cachep); | |
3187 | ||
8456a648 | 3188 | BUG_ON(page->active == cachep->num); |
b28a02de | 3189 | |
260b61dd | 3190 | obj = slab_get_obj(cachep, page); |
ce8eb6c4 | 3191 | n->free_objects--; |
b28a02de | 3192 | |
b03a017b | 3193 | fixup_slab_list(cachep, n, page, &list); |
e498be7d | 3194 | |
ce8eb6c4 | 3195 | spin_unlock(&n->list_lock); |
b03a017b | 3196 | fixup_objfreelist_debug(cachep, &list); |
213b4695 | 3197 | return obj; |
e498be7d | 3198 | |
a737b3e2 | 3199 | must_grow: |
ce8eb6c4 | 3200 | spin_unlock(&n->list_lock); |
76b342bd | 3201 | page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid); |
213b4695 JK |
3202 | if (page) { |
3203 | /* This slab isn't counted yet so don't update free_objects */ | |
3204 | obj = slab_get_obj(cachep, page); | |
3205 | } | |
76b342bd | 3206 | cache_grow_end(cachep, page); |
1da177e4 | 3207 | |
213b4695 | 3208 | return obj ? obj : fallback_alloc(cachep, flags); |
e498be7d | 3209 | } |
8c8cc2c1 | 3210 | |
8c8cc2c1 | 3211 | static __always_inline void * |
d3fb45f3 | 3212 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size, |
7c0cb9c6 | 3213 | unsigned long caller) |
8c8cc2c1 PE |
3214 | { |
3215 | unsigned long save_flags; | |
3216 | void *ptr; | |
7d6e6d09 | 3217 | int slab_node = numa_mem_id(); |
964d4bd3 | 3218 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3219 | bool init = false; |
8c8cc2c1 | 3220 | |
dcce284a | 3221 | flags &= gfp_allowed_mask; |
964d4bd3 | 3222 | cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); |
011eceaf | 3223 | if (unlikely(!cachep)) |
824ebef1 AM |
3224 | return NULL; |
3225 | ||
d3fb45f3 AP |
3226 | ptr = kfence_alloc(cachep, orig_size, flags); |
3227 | if (unlikely(ptr)) | |
3228 | goto out_hooks; | |
3229 | ||
8c8cc2c1 PE |
3230 | cache_alloc_debugcheck_before(cachep, flags); |
3231 | local_irq_save(save_flags); | |
3232 | ||
eacbbae3 | 3233 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3234 | nodeid = slab_node; |
8c8cc2c1 | 3235 | |
18bf8541 | 3236 | if (unlikely(!get_node(cachep, nodeid))) { |
8c8cc2c1 PE |
3237 | /* Node not bootstrapped yet */ |
3238 | ptr = fallback_alloc(cachep, flags); | |
3239 | goto out; | |
3240 | } | |
3241 | ||
7d6e6d09 | 3242 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3243 | /* |
3244 | * Use the locally cached objects if possible. | |
3245 | * However ____cache_alloc does not allow fallback | |
3246 | * to other nodes. It may fail while we still have | |
3247 | * objects on other nodes available. | |
3248 | */ | |
3249 | ptr = ____cache_alloc(cachep, flags); | |
3250 | if (ptr) | |
3251 | goto out; | |
3252 | } | |
3253 | /* ___cache_alloc_node can fall back to other nodes */ | |
3254 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3255 | out: | |
3256 | local_irq_restore(save_flags); | |
3257 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
da844b78 | 3258 | init = slab_want_init_on_alloc(flags, cachep); |
d07dbea4 | 3259 | |
d3fb45f3 | 3260 | out_hooks: |
da844b78 | 3261 | slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init); |
8c8cc2c1 PE |
3262 | return ptr; |
3263 | } | |
3264 | ||
3265 | static __always_inline void * | |
3266 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3267 | { | |
3268 | void *objp; | |
3269 | ||
2ad654bc | 3270 | if (current->mempolicy || cpuset_do_slab_mem_spread()) { |
8c8cc2c1 PE |
3271 | objp = alternate_node_alloc(cache, flags); |
3272 | if (objp) | |
3273 | goto out; | |
3274 | } | |
3275 | objp = ____cache_alloc(cache, flags); | |
3276 | ||
3277 | /* | |
3278 | * We may just have run out of memory on the local node. | |
3279 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3280 | */ | |
7d6e6d09 LS |
3281 | if (!objp) |
3282 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3283 | |
3284 | out: | |
3285 | return objp; | |
3286 | } | |
3287 | #else | |
3288 | ||
3289 | static __always_inline void * | |
3290 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3291 | { | |
3292 | return ____cache_alloc(cachep, flags); | |
3293 | } | |
3294 | ||
3295 | #endif /* CONFIG_NUMA */ | |
3296 | ||
3297 | static __always_inline void * | |
d3fb45f3 | 3298 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller) |
8c8cc2c1 PE |
3299 | { |
3300 | unsigned long save_flags; | |
3301 | void *objp; | |
964d4bd3 | 3302 | struct obj_cgroup *objcg = NULL; |
da844b78 | 3303 | bool init = false; |
8c8cc2c1 | 3304 | |
dcce284a | 3305 | flags &= gfp_allowed_mask; |
964d4bd3 | 3306 | cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags); |
011eceaf | 3307 | if (unlikely(!cachep)) |
824ebef1 AM |
3308 | return NULL; |
3309 | ||
d3fb45f3 AP |
3310 | objp = kfence_alloc(cachep, orig_size, flags); |
3311 | if (unlikely(objp)) | |
3312 | goto out; | |
3313 | ||
8c8cc2c1 PE |
3314 | cache_alloc_debugcheck_before(cachep, flags); |
3315 | local_irq_save(save_flags); | |
3316 | objp = __do_cache_alloc(cachep, flags); | |
3317 | local_irq_restore(save_flags); | |
3318 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
3319 | prefetchw(objp); | |
da844b78 | 3320 | init = slab_want_init_on_alloc(flags, cachep); |
d07dbea4 | 3321 | |
d3fb45f3 | 3322 | out: |
da844b78 | 3323 | slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init); |
8c8cc2c1 PE |
3324 | return objp; |
3325 | } | |
e498be7d CL |
3326 | |
3327 | /* | |
5f0985bb | 3328 | * Caller needs to acquire correct kmem_cache_node's list_lock |
97654dfa | 3329 | * @list: List of detached free slabs should be freed by caller |
e498be7d | 3330 | */ |
97654dfa JK |
3331 | static void free_block(struct kmem_cache *cachep, void **objpp, |
3332 | int nr_objects, int node, struct list_head *list) | |
1da177e4 LT |
3333 | { |
3334 | int i; | |
25c063fb | 3335 | struct kmem_cache_node *n = get_node(cachep, node); |
6052b788 JK |
3336 | struct page *page; |
3337 | ||
3338 | n->free_objects += nr_objects; | |
1da177e4 LT |
3339 | |
3340 | for (i = 0; i < nr_objects; i++) { | |
072bb0aa | 3341 | void *objp; |
8456a648 | 3342 | struct page *page; |
1da177e4 | 3343 | |
072bb0aa MG |
3344 | objp = objpp[i]; |
3345 | ||
8456a648 | 3346 | page = virt_to_head_page(objp); |
16cb0ec7 | 3347 | list_del(&page->slab_list); |
ff69416e | 3348 | check_spinlock_acquired_node(cachep, node); |
260b61dd | 3349 | slab_put_obj(cachep, page, objp); |
1da177e4 | 3350 | STATS_DEC_ACTIVE(cachep); |
1da177e4 LT |
3351 | |
3352 | /* fixup slab chains */ | |
f728b0a5 | 3353 | if (page->active == 0) { |
16cb0ec7 | 3354 | list_add(&page->slab_list, &n->slabs_free); |
f728b0a5 | 3355 | n->free_slabs++; |
f728b0a5 | 3356 | } else { |
1da177e4 LT |
3357 | /* Unconditionally move a slab to the end of the |
3358 | * partial list on free - maximum time for the | |
3359 | * other objects to be freed, too. | |
3360 | */ | |
16cb0ec7 | 3361 | list_add_tail(&page->slab_list, &n->slabs_partial); |
1da177e4 LT |
3362 | } |
3363 | } | |
6052b788 JK |
3364 | |
3365 | while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) { | |
3366 | n->free_objects -= cachep->num; | |
3367 | ||
16cb0ec7 TH |
3368 | page = list_last_entry(&n->slabs_free, struct page, slab_list); |
3369 | list_move(&page->slab_list, list); | |
f728b0a5 | 3370 | n->free_slabs--; |
bf00bd34 | 3371 | n->total_slabs--; |
6052b788 | 3372 | } |
1da177e4 LT |
3373 | } |
3374 | ||
343e0d7a | 3375 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3376 | { |
3377 | int batchcount; | |
ce8eb6c4 | 3378 | struct kmem_cache_node *n; |
7d6e6d09 | 3379 | int node = numa_mem_id(); |
97654dfa | 3380 | LIST_HEAD(list); |
1da177e4 LT |
3381 | |
3382 | batchcount = ac->batchcount; | |
260b61dd | 3383 | |
1da177e4 | 3384 | check_irq_off(); |
18bf8541 | 3385 | n = get_node(cachep, node); |
ce8eb6c4 CL |
3386 | spin_lock(&n->list_lock); |
3387 | if (n->shared) { | |
3388 | struct array_cache *shared_array = n->shared; | |
b28a02de | 3389 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3390 | if (max) { |
3391 | if (batchcount > max) | |
3392 | batchcount = max; | |
e498be7d | 3393 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3394 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3395 | shared_array->avail += batchcount; |
3396 | goto free_done; | |
3397 | } | |
3398 | } | |
3399 | ||
97654dfa | 3400 | free_block(cachep, ac->entry, batchcount, node, &list); |
a737b3e2 | 3401 | free_done: |
1da177e4 LT |
3402 | #if STATS |
3403 | { | |
3404 | int i = 0; | |
73c0219d | 3405 | struct page *page; |
1da177e4 | 3406 | |
16cb0ec7 | 3407 | list_for_each_entry(page, &n->slabs_free, slab_list) { |
8456a648 | 3408 | BUG_ON(page->active); |
1da177e4 LT |
3409 | |
3410 | i++; | |
1da177e4 LT |
3411 | } |
3412 | STATS_SET_FREEABLE(cachep, i); | |
3413 | } | |
3414 | #endif | |
ce8eb6c4 | 3415 | spin_unlock(&n->list_lock); |
1da177e4 | 3416 | ac->avail -= batchcount; |
a737b3e2 | 3417 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
678ff6a7 | 3418 | slabs_destroy(cachep, &list); |
1da177e4 LT |
3419 | } |
3420 | ||
3421 | /* | |
a737b3e2 AM |
3422 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3423 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3424 | */ |
ee3ce779 DV |
3425 | static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, |
3426 | unsigned long caller) | |
1da177e4 | 3427 | { |
d57a964e AK |
3428 | bool init; |
3429 | ||
d3fb45f3 AP |
3430 | if (is_kfence_address(objp)) { |
3431 | kmemleak_free_recursive(objp, cachep->flags); | |
3432 | __kfence_free(objp); | |
3433 | return; | |
3434 | } | |
3435 | ||
d57a964e AK |
3436 | /* |
3437 | * As memory initialization might be integrated into KASAN, | |
3438 | * kasan_slab_free and initialization memset must be | |
3439 | * kept together to avoid discrepancies in behavior. | |
3440 | */ | |
3441 | init = slab_want_init_on_free(cachep); | |
3442 | if (init && !kasan_has_integrated_init()) | |
a32d654d | 3443 | memset(objp, 0, cachep->object_size); |
d57a964e AK |
3444 | /* KASAN might put objp into memory quarantine, delaying its reuse. */ |
3445 | if (kasan_slab_free(cachep, objp, init)) | |
55834c59 AP |
3446 | return; |
3447 | ||
cfbe1636 ME |
3448 | /* Use KCSAN to help debug racy use-after-free. */ |
3449 | if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU)) | |
3450 | __kcsan_check_access(objp, cachep->object_size, | |
3451 | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); | |
3452 | ||
55834c59 AP |
3453 | ___cache_free(cachep, objp, caller); |
3454 | } | |
1da177e4 | 3455 | |
55834c59 AP |
3456 | void ___cache_free(struct kmem_cache *cachep, void *objp, |
3457 | unsigned long caller) | |
3458 | { | |
3459 | struct array_cache *ac = cpu_cache_get(cachep); | |
7ed2f9e6 | 3460 | |
1da177e4 | 3461 | check_irq_off(); |
d5cff635 | 3462 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3463 | objp = cache_free_debugcheck(cachep, objp, caller); |
d1b2cf6c | 3464 | memcg_slab_free_hook(cachep, &objp, 1); |
1da177e4 | 3465 | |
1807a1aa SS |
3466 | /* |
3467 | * Skip calling cache_free_alien() when the platform is not numa. | |
3468 | * This will avoid cache misses that happen while accessing slabp (which | |
3469 | * is per page memory reference) to get nodeid. Instead use a global | |
3470 | * variable to skip the call, which is mostly likely to be present in | |
3471 | * the cache. | |
3472 | */ | |
b6e68bc1 | 3473 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3474 | return; |
3475 | ||
3d880194 | 3476 | if (ac->avail < ac->limit) { |
1da177e4 | 3477 | STATS_INC_FREEHIT(cachep); |
1da177e4 LT |
3478 | } else { |
3479 | STATS_INC_FREEMISS(cachep); | |
3480 | cache_flusharray(cachep, ac); | |
1da177e4 | 3481 | } |
42c8c99c | 3482 | |
f68f8ddd JK |
3483 | if (sk_memalloc_socks()) { |
3484 | struct page *page = virt_to_head_page(objp); | |
3485 | ||
3486 | if (unlikely(PageSlabPfmemalloc(page))) { | |
3487 | cache_free_pfmemalloc(cachep, page, objp); | |
3488 | return; | |
3489 | } | |
3490 | } | |
3491 | ||
dabc3e29 | 3492 | __free_one(ac, objp); |
1da177e4 LT |
3493 | } |
3494 | ||
3495 | /** | |
3496 | * kmem_cache_alloc - Allocate an object | |
3497 | * @cachep: The cache to allocate from. | |
3498 | * @flags: See kmalloc(). | |
3499 | * | |
3500 | * Allocate an object from this cache. The flags are only relevant | |
3501 | * if the cache has no available objects. | |
a862f68a MR |
3502 | * |
3503 | * Return: pointer to the new object or %NULL in case of error | |
1da177e4 | 3504 | */ |
343e0d7a | 3505 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3506 | { |
d3fb45f3 | 3507 | void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_); |
36555751 | 3508 | |
ca2b84cb | 3509 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3510 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3511 | |
3512 | return ret; | |
1da177e4 LT |
3513 | } |
3514 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3515 | ||
7b0501dd JDB |
3516 | static __always_inline void |
3517 | cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags, | |
3518 | size_t size, void **p, unsigned long caller) | |
3519 | { | |
3520 | size_t i; | |
3521 | ||
3522 | for (i = 0; i < size; i++) | |
3523 | p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller); | |
3524 | } | |
3525 | ||
865762a8 | 3526 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
2a777eac | 3527 | void **p) |
484748f0 | 3528 | { |
2a777eac | 3529 | size_t i; |
964d4bd3 | 3530 | struct obj_cgroup *objcg = NULL; |
2a777eac | 3531 | |
964d4bd3 | 3532 | s = slab_pre_alloc_hook(s, &objcg, size, flags); |
2a777eac JDB |
3533 | if (!s) |
3534 | return 0; | |
3535 | ||
3536 | cache_alloc_debugcheck_before(s, flags); | |
3537 | ||
3538 | local_irq_disable(); | |
3539 | for (i = 0; i < size; i++) { | |
d3fb45f3 | 3540 | void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags); |
2a777eac | 3541 | |
2a777eac JDB |
3542 | if (unlikely(!objp)) |
3543 | goto error; | |
3544 | p[i] = objp; | |
3545 | } | |
3546 | local_irq_enable(); | |
3547 | ||
7b0501dd JDB |
3548 | cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_); |
3549 | ||
da844b78 AK |
3550 | /* |
3551 | * memcg and kmem_cache debug support and memory initialization. | |
3552 | * Done outside of the IRQ disabled section. | |
3553 | */ | |
3554 | slab_post_alloc_hook(s, objcg, flags, size, p, | |
3555 | slab_want_init_on_alloc(flags, s)); | |
2a777eac JDB |
3556 | /* FIXME: Trace call missing. Christoph would like a bulk variant */ |
3557 | return size; | |
3558 | error: | |
3559 | local_irq_enable(); | |
7b0501dd | 3560 | cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_); |
da844b78 | 3561 | slab_post_alloc_hook(s, objcg, flags, i, p, false); |
2a777eac JDB |
3562 | __kmem_cache_free_bulk(s, i, p); |
3563 | return 0; | |
484748f0 CL |
3564 | } |
3565 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | |
3566 | ||
0f24f128 | 3567 | #ifdef CONFIG_TRACING |
85beb586 | 3568 | void * |
4052147c | 3569 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) |
36555751 | 3570 | { |
85beb586 SR |
3571 | void *ret; |
3572 | ||
d3fb45f3 | 3573 | ret = slab_alloc(cachep, flags, size, _RET_IP_); |
85beb586 | 3574 | |
0116523c | 3575 | ret = kasan_kmalloc(cachep, ret, size, flags); |
85beb586 | 3576 | trace_kmalloc(_RET_IP_, ret, |
ff4fcd01 | 3577 | size, cachep->size, flags); |
85beb586 | 3578 | return ret; |
36555751 | 3579 | } |
85beb586 | 3580 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3581 | #endif |
3582 | ||
1da177e4 | 3583 | #ifdef CONFIG_NUMA |
d0d04b78 ZL |
3584 | /** |
3585 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3586 | * @cachep: The cache to allocate from. | |
3587 | * @flags: See kmalloc(). | |
3588 | * @nodeid: node number of the target node. | |
3589 | * | |
3590 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3591 | * node, which can improve the performance for cpu bound structures. | |
3592 | * | |
3593 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
a862f68a MR |
3594 | * |
3595 | * Return: pointer to the new object or %NULL in case of error | |
d0d04b78 | 3596 | */ |
8b98c169 CH |
3597 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3598 | { | |
d3fb45f3 | 3599 | void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_); |
36555751 | 3600 | |
ca2b84cb | 3601 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3602 | cachep->object_size, cachep->size, |
ca2b84cb | 3603 | flags, nodeid); |
36555751 EGM |
3604 | |
3605 | return ret; | |
8b98c169 | 3606 | } |
1da177e4 LT |
3607 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3608 | ||
0f24f128 | 3609 | #ifdef CONFIG_TRACING |
4052147c | 3610 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, |
85beb586 | 3611 | gfp_t flags, |
4052147c EG |
3612 | int nodeid, |
3613 | size_t size) | |
36555751 | 3614 | { |
85beb586 SR |
3615 | void *ret; |
3616 | ||
d3fb45f3 | 3617 | ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_); |
505f5dcb | 3618 | |
0116523c | 3619 | ret = kasan_kmalloc(cachep, ret, size, flags); |
85beb586 | 3620 | trace_kmalloc_node(_RET_IP_, ret, |
ff4fcd01 | 3621 | size, cachep->size, |
85beb586 SR |
3622 | flags, nodeid); |
3623 | return ret; | |
36555751 | 3624 | } |
85beb586 | 3625 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3626 | #endif |
3627 | ||
8b98c169 | 3628 | static __always_inline void * |
7c0cb9c6 | 3629 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) |
97e2bde4 | 3630 | { |
343e0d7a | 3631 | struct kmem_cache *cachep; |
7ed2f9e6 | 3632 | void *ret; |
97e2bde4 | 3633 | |
61448479 DV |
3634 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
3635 | return NULL; | |
2c59dd65 | 3636 | cachep = kmalloc_slab(size, flags); |
6cb8f913 CL |
3637 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3638 | return cachep; | |
7ed2f9e6 | 3639 | ret = kmem_cache_alloc_node_trace(cachep, flags, node, size); |
0116523c | 3640 | ret = kasan_kmalloc(cachep, ret, size, flags); |
7ed2f9e6 AP |
3641 | |
3642 | return ret; | |
97e2bde4 | 3643 | } |
8b98c169 | 3644 | |
8b98c169 CH |
3645 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3646 | { | |
7c0cb9c6 | 3647 | return __do_kmalloc_node(size, flags, node, _RET_IP_); |
8b98c169 | 3648 | } |
dbe5e69d | 3649 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3650 | |
3651 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3652 | int node, unsigned long caller) |
8b98c169 | 3653 | { |
7c0cb9c6 | 3654 | return __do_kmalloc_node(size, flags, node, caller); |
8b98c169 CH |
3655 | } |
3656 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
8b98c169 | 3657 | #endif /* CONFIG_NUMA */ |
1da177e4 | 3658 | |
5bb1bb35 | 3659 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
3660 | void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) |
3661 | { | |
3662 | struct kmem_cache *cachep; | |
3663 | unsigned int objnr; | |
3664 | void *objp; | |
3665 | ||
3666 | kpp->kp_ptr = object; | |
3667 | kpp->kp_page = page; | |
3668 | cachep = page->slab_cache; | |
3669 | kpp->kp_slab_cache = cachep; | |
3670 | objp = object - obj_offset(cachep); | |
3671 | kpp->kp_data_offset = obj_offset(cachep); | |
3672 | page = virt_to_head_page(objp); | |
3673 | objnr = obj_to_index(cachep, page, objp); | |
3674 | objp = index_to_obj(cachep, page, objnr); | |
3675 | kpp->kp_objp = objp; | |
3676 | if (DEBUG && cachep->flags & SLAB_STORE_USER) | |
3677 | kpp->kp_ret = *dbg_userword(cachep, objp); | |
3678 | } | |
5bb1bb35 | 3679 | #endif |
8e7f37f2 | 3680 | |
1da177e4 | 3681 | /** |
800590f5 | 3682 | * __do_kmalloc - allocate memory |
1da177e4 | 3683 | * @size: how many bytes of memory are required. |
800590f5 | 3684 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3685 | * @caller: function caller for debug tracking of the caller |
a862f68a MR |
3686 | * |
3687 | * Return: pointer to the allocated memory or %NULL in case of error | |
1da177e4 | 3688 | */ |
7fd6b141 | 3689 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
7c0cb9c6 | 3690 | unsigned long caller) |
1da177e4 | 3691 | { |
343e0d7a | 3692 | struct kmem_cache *cachep; |
36555751 | 3693 | void *ret; |
1da177e4 | 3694 | |
61448479 DV |
3695 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
3696 | return NULL; | |
2c59dd65 | 3697 | cachep = kmalloc_slab(size, flags); |
a5c96d8a LT |
3698 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3699 | return cachep; | |
d3fb45f3 | 3700 | ret = slab_alloc(cachep, flags, size, caller); |
36555751 | 3701 | |
0116523c | 3702 | ret = kasan_kmalloc(cachep, ret, size, flags); |
7c0cb9c6 | 3703 | trace_kmalloc(caller, ret, |
3b0efdfa | 3704 | size, cachep->size, flags); |
36555751 EGM |
3705 | |
3706 | return ret; | |
7fd6b141 PE |
3707 | } |
3708 | ||
7fd6b141 PE |
3709 | void *__kmalloc(size_t size, gfp_t flags) |
3710 | { | |
7c0cb9c6 | 3711 | return __do_kmalloc(size, flags, _RET_IP_); |
1da177e4 LT |
3712 | } |
3713 | EXPORT_SYMBOL(__kmalloc); | |
3714 | ||
ce71e27c | 3715 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3716 | { |
7c0cb9c6 | 3717 | return __do_kmalloc(size, flags, caller); |
7fd6b141 PE |
3718 | } |
3719 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea | 3720 | |
1da177e4 LT |
3721 | /** |
3722 | * kmem_cache_free - Deallocate an object | |
3723 | * @cachep: The cache the allocation was from. | |
3724 | * @objp: The previously allocated object. | |
3725 | * | |
3726 | * Free an object which was previously allocated from this | |
3727 | * cache. | |
3728 | */ | |
343e0d7a | 3729 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3730 | { |
3731 | unsigned long flags; | |
b9ce5ef4 GC |
3732 | cachep = cache_from_obj(cachep, objp); |
3733 | if (!cachep) | |
3734 | return; | |
1da177e4 LT |
3735 | |
3736 | local_irq_save(flags); | |
d97d476b | 3737 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3738 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3739 | debug_check_no_obj_freed(objp, cachep->object_size); |
7c0cb9c6 | 3740 | __cache_free(cachep, objp, _RET_IP_); |
1da177e4 | 3741 | local_irq_restore(flags); |
36555751 | 3742 | |
3544de8e | 3743 | trace_kmem_cache_free(_RET_IP_, objp, cachep->name); |
1da177e4 LT |
3744 | } |
3745 | EXPORT_SYMBOL(kmem_cache_free); | |
3746 | ||
e6cdb58d JDB |
3747 | void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p) |
3748 | { | |
3749 | struct kmem_cache *s; | |
3750 | size_t i; | |
3751 | ||
3752 | local_irq_disable(); | |
3753 | for (i = 0; i < size; i++) { | |
3754 | void *objp = p[i]; | |
3755 | ||
ca257195 JDB |
3756 | if (!orig_s) /* called via kfree_bulk */ |
3757 | s = virt_to_cache(objp); | |
3758 | else | |
3759 | s = cache_from_obj(orig_s, objp); | |
a64b5378 KC |
3760 | if (!s) |
3761 | continue; | |
e6cdb58d JDB |
3762 | |
3763 | debug_check_no_locks_freed(objp, s->object_size); | |
3764 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | |
3765 | debug_check_no_obj_freed(objp, s->object_size); | |
3766 | ||
3767 | __cache_free(s, objp, _RET_IP_); | |
3768 | } | |
3769 | local_irq_enable(); | |
3770 | ||
3771 | /* FIXME: add tracing */ | |
3772 | } | |
3773 | EXPORT_SYMBOL(kmem_cache_free_bulk); | |
3774 | ||
1da177e4 LT |
3775 | /** |
3776 | * kfree - free previously allocated memory | |
3777 | * @objp: pointer returned by kmalloc. | |
3778 | * | |
80e93eff PE |
3779 | * If @objp is NULL, no operation is performed. |
3780 | * | |
1da177e4 LT |
3781 | * Don't free memory not originally allocated by kmalloc() |
3782 | * or you will run into trouble. | |
3783 | */ | |
3784 | void kfree(const void *objp) | |
3785 | { | |
343e0d7a | 3786 | struct kmem_cache *c; |
1da177e4 LT |
3787 | unsigned long flags; |
3788 | ||
2121db74 PE |
3789 | trace_kfree(_RET_IP_, objp); |
3790 | ||
6cb8f913 | 3791 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3792 | return; |
3793 | local_irq_save(flags); | |
3794 | kfree_debugcheck(objp); | |
6ed5eb22 | 3795 | c = virt_to_cache(objp); |
a64b5378 KC |
3796 | if (!c) { |
3797 | local_irq_restore(flags); | |
3798 | return; | |
3799 | } | |
8c138bc0 CL |
3800 | debug_check_no_locks_freed(objp, c->object_size); |
3801 | ||
3802 | debug_check_no_obj_freed(objp, c->object_size); | |
7c0cb9c6 | 3803 | __cache_free(c, (void *)objp, _RET_IP_); |
1da177e4 LT |
3804 | local_irq_restore(flags); |
3805 | } | |
3806 | EXPORT_SYMBOL(kfree); | |
3807 | ||
e498be7d | 3808 | /* |
ce8eb6c4 | 3809 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
e498be7d | 3810 | */ |
c3d332b6 | 3811 | static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d | 3812 | { |
c3d332b6 | 3813 | int ret; |
e498be7d | 3814 | int node; |
ce8eb6c4 | 3815 | struct kmem_cache_node *n; |
e498be7d | 3816 | |
9c09a95c | 3817 | for_each_online_node(node) { |
c3d332b6 JK |
3818 | ret = setup_kmem_cache_node(cachep, node, gfp, true); |
3819 | if (ret) | |
e498be7d CL |
3820 | goto fail; |
3821 | ||
e498be7d | 3822 | } |
c3d332b6 | 3823 | |
cafeb02e | 3824 | return 0; |
0718dc2a | 3825 | |
a737b3e2 | 3826 | fail: |
3b0efdfa | 3827 | if (!cachep->list.next) { |
0718dc2a CL |
3828 | /* Cache is not active yet. Roll back what we did */ |
3829 | node--; | |
3830 | while (node >= 0) { | |
18bf8541 CL |
3831 | n = get_node(cachep, node); |
3832 | if (n) { | |
ce8eb6c4 CL |
3833 | kfree(n->shared); |
3834 | free_alien_cache(n->alien); | |
3835 | kfree(n); | |
6a67368c | 3836 | cachep->node[node] = NULL; |
0718dc2a CL |
3837 | } |
3838 | node--; | |
3839 | } | |
3840 | } | |
cafeb02e | 3841 | return -ENOMEM; |
e498be7d CL |
3842 | } |
3843 | ||
18004c5d | 3844 | /* Always called with the slab_mutex held */ |
10befea9 RG |
3845 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
3846 | int batchcount, int shared, gfp_t gfp) | |
1da177e4 | 3847 | { |
bf0dea23 JK |
3848 | struct array_cache __percpu *cpu_cache, *prev; |
3849 | int cpu; | |
1da177e4 | 3850 | |
bf0dea23 JK |
3851 | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); |
3852 | if (!cpu_cache) | |
d2e7b7d0 SS |
3853 | return -ENOMEM; |
3854 | ||
bf0dea23 JK |
3855 | prev = cachep->cpu_cache; |
3856 | cachep->cpu_cache = cpu_cache; | |
a87c75fb GT |
3857 | /* |
3858 | * Without a previous cpu_cache there's no need to synchronize remote | |
3859 | * cpus, so skip the IPIs. | |
3860 | */ | |
3861 | if (prev) | |
3862 | kick_all_cpus_sync(); | |
e498be7d | 3863 | |
1da177e4 | 3864 | check_irq_on(); |
1da177e4 LT |
3865 | cachep->batchcount = batchcount; |
3866 | cachep->limit = limit; | |
e498be7d | 3867 | cachep->shared = shared; |
1da177e4 | 3868 | |
bf0dea23 | 3869 | if (!prev) |
c3d332b6 | 3870 | goto setup_node; |
bf0dea23 JK |
3871 | |
3872 | for_each_online_cpu(cpu) { | |
97654dfa | 3873 | LIST_HEAD(list); |
18bf8541 CL |
3874 | int node; |
3875 | struct kmem_cache_node *n; | |
bf0dea23 | 3876 | struct array_cache *ac = per_cpu_ptr(prev, cpu); |
18bf8541 | 3877 | |
bf0dea23 | 3878 | node = cpu_to_mem(cpu); |
18bf8541 CL |
3879 | n = get_node(cachep, node); |
3880 | spin_lock_irq(&n->list_lock); | |
bf0dea23 | 3881 | free_block(cachep, ac->entry, ac->avail, node, &list); |
18bf8541 | 3882 | spin_unlock_irq(&n->list_lock); |
97654dfa | 3883 | slabs_destroy(cachep, &list); |
1da177e4 | 3884 | } |
bf0dea23 JK |
3885 | free_percpu(prev); |
3886 | ||
c3d332b6 JK |
3887 | setup_node: |
3888 | return setup_kmem_cache_nodes(cachep, gfp); | |
1da177e4 LT |
3889 | } |
3890 | ||
18004c5d | 3891 | /* Called with slab_mutex held always */ |
83b519e8 | 3892 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3893 | { |
3894 | int err; | |
943a451a GC |
3895 | int limit = 0; |
3896 | int shared = 0; | |
3897 | int batchcount = 0; | |
3898 | ||
7c00fce9 | 3899 | err = cache_random_seq_create(cachep, cachep->num, gfp); |
c7ce4f60 TG |
3900 | if (err) |
3901 | goto end; | |
3902 | ||
943a451a GC |
3903 | if (limit && shared && batchcount) |
3904 | goto skip_setup; | |
a737b3e2 AM |
3905 | /* |
3906 | * The head array serves three purposes: | |
1da177e4 LT |
3907 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3908 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3909 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3910 | * bufctl chains: array operations are cheaper. |
3911 | * The numbers are guessed, we should auto-tune as described by | |
3912 | * Bonwick. | |
3913 | */ | |
3b0efdfa | 3914 | if (cachep->size > 131072) |
1da177e4 | 3915 | limit = 1; |
3b0efdfa | 3916 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 3917 | limit = 8; |
3b0efdfa | 3918 | else if (cachep->size > 1024) |
1da177e4 | 3919 | limit = 24; |
3b0efdfa | 3920 | else if (cachep->size > 256) |
1da177e4 LT |
3921 | limit = 54; |
3922 | else | |
3923 | limit = 120; | |
3924 | ||
a737b3e2 AM |
3925 | /* |
3926 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3927 | * allocation behaviour: Most allocs on one cpu, most free operations |
3928 | * on another cpu. For these cases, an efficient object passing between | |
3929 | * cpus is necessary. This is provided by a shared array. The array | |
3930 | * replaces Bonwick's magazine layer. | |
3931 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3932 | * to a larger limit. Thus disabled by default. | |
3933 | */ | |
3934 | shared = 0; | |
3b0efdfa | 3935 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3936 | shared = 8; |
1da177e4 LT |
3937 | |
3938 | #if DEBUG | |
a737b3e2 AM |
3939 | /* |
3940 | * With debugging enabled, large batchcount lead to excessively long | |
3941 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3942 | */ |
3943 | if (limit > 32) | |
3944 | limit = 32; | |
3945 | #endif | |
943a451a GC |
3946 | batchcount = (limit + 1) / 2; |
3947 | skip_setup: | |
3948 | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | |
c7ce4f60 | 3949 | end: |
1da177e4 | 3950 | if (err) |
1170532b | 3951 | pr_err("enable_cpucache failed for %s, error %d\n", |
b28a02de | 3952 | cachep->name, -err); |
2ed3a4ef | 3953 | return err; |
1da177e4 LT |
3954 | } |
3955 | ||
1b55253a | 3956 | /* |
ce8eb6c4 CL |
3957 | * Drain an array if it contains any elements taking the node lock only if |
3958 | * necessary. Note that the node listlock also protects the array_cache | |
b18e7e65 | 3959 | * if drain_array() is used on the shared array. |
1b55253a | 3960 | */ |
ce8eb6c4 | 3961 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
18726ca8 | 3962 | struct array_cache *ac, int node) |
1da177e4 | 3963 | { |
97654dfa | 3964 | LIST_HEAD(list); |
18726ca8 JK |
3965 | |
3966 | /* ac from n->shared can be freed if we don't hold the slab_mutex. */ | |
3967 | check_mutex_acquired(); | |
1da177e4 | 3968 | |
1b55253a CL |
3969 | if (!ac || !ac->avail) |
3970 | return; | |
18726ca8 JK |
3971 | |
3972 | if (ac->touched) { | |
1da177e4 | 3973 | ac->touched = 0; |
18726ca8 | 3974 | return; |
1da177e4 | 3975 | } |
18726ca8 JK |
3976 | |
3977 | spin_lock_irq(&n->list_lock); | |
3978 | drain_array_locked(cachep, ac, node, false, &list); | |
3979 | spin_unlock_irq(&n->list_lock); | |
3980 | ||
3981 | slabs_destroy(cachep, &list); | |
1da177e4 LT |
3982 | } |
3983 | ||
3984 | /** | |
3985 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 3986 | * @w: work descriptor |
1da177e4 LT |
3987 | * |
3988 | * Called from workqueue/eventd every few seconds. | |
3989 | * Purpose: | |
3990 | * - clear the per-cpu caches for this CPU. | |
3991 | * - return freeable pages to the main free memory pool. | |
3992 | * | |
a737b3e2 AM |
3993 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
3994 | * again on the next iteration. | |
1da177e4 | 3995 | */ |
7c5cae36 | 3996 | static void cache_reap(struct work_struct *w) |
1da177e4 | 3997 | { |
7a7c381d | 3998 | struct kmem_cache *searchp; |
ce8eb6c4 | 3999 | struct kmem_cache_node *n; |
7d6e6d09 | 4000 | int node = numa_mem_id(); |
bf6aede7 | 4001 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4002 | |
18004c5d | 4003 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 4004 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4005 | goto out; |
1da177e4 | 4006 | |
18004c5d | 4007 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
4008 | check_irq_on(); |
4009 | ||
35386e3b | 4010 | /* |
ce8eb6c4 | 4011 | * We only take the node lock if absolutely necessary and we |
35386e3b CL |
4012 | * have established with reasonable certainty that |
4013 | * we can do some work if the lock was obtained. | |
4014 | */ | |
18bf8541 | 4015 | n = get_node(searchp, node); |
35386e3b | 4016 | |
ce8eb6c4 | 4017 | reap_alien(searchp, n); |
1da177e4 | 4018 | |
18726ca8 | 4019 | drain_array(searchp, n, cpu_cache_get(searchp), node); |
1da177e4 | 4020 | |
35386e3b CL |
4021 | /* |
4022 | * These are racy checks but it does not matter | |
4023 | * if we skip one check or scan twice. | |
4024 | */ | |
ce8eb6c4 | 4025 | if (time_after(n->next_reap, jiffies)) |
35386e3b | 4026 | goto next; |
1da177e4 | 4027 | |
5f0985bb | 4028 | n->next_reap = jiffies + REAPTIMEOUT_NODE; |
1da177e4 | 4029 | |
18726ca8 | 4030 | drain_array(searchp, n, n->shared, node); |
1da177e4 | 4031 | |
ce8eb6c4 CL |
4032 | if (n->free_touched) |
4033 | n->free_touched = 0; | |
ed11d9eb CL |
4034 | else { |
4035 | int freed; | |
1da177e4 | 4036 | |
ce8eb6c4 | 4037 | freed = drain_freelist(searchp, n, (n->free_limit + |
ed11d9eb CL |
4038 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4039 | STATS_ADD_REAPED(searchp, freed); | |
4040 | } | |
35386e3b | 4041 | next: |
1da177e4 LT |
4042 | cond_resched(); |
4043 | } | |
4044 | check_irq_on(); | |
18004c5d | 4045 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4046 | next_reap_node(); |
7c5cae36 | 4047 | out: |
a737b3e2 | 4048 | /* Set up the next iteration */ |
a9f2a846 VB |
4049 | schedule_delayed_work_on(smp_processor_id(), work, |
4050 | round_jiffies_relative(REAPTIMEOUT_AC)); | |
1da177e4 LT |
4051 | } |
4052 | ||
0d7561c6 | 4053 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) |
1da177e4 | 4054 | { |
f728b0a5 | 4055 | unsigned long active_objs, num_objs, active_slabs; |
bf00bd34 DR |
4056 | unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0; |
4057 | unsigned long free_slabs = 0; | |
e498be7d | 4058 | int node; |
ce8eb6c4 | 4059 | struct kmem_cache_node *n; |
1da177e4 | 4060 | |
18bf8541 | 4061 | for_each_kmem_cache_node(cachep, node, n) { |
ca3b9b91 | 4062 | check_irq_on(); |
ce8eb6c4 | 4063 | spin_lock_irq(&n->list_lock); |
e498be7d | 4064 | |
bf00bd34 DR |
4065 | total_slabs += n->total_slabs; |
4066 | free_slabs += n->free_slabs; | |
f728b0a5 | 4067 | free_objs += n->free_objects; |
07a63c41 | 4068 | |
ce8eb6c4 CL |
4069 | if (n->shared) |
4070 | shared_avail += n->shared->avail; | |
e498be7d | 4071 | |
ce8eb6c4 | 4072 | spin_unlock_irq(&n->list_lock); |
1da177e4 | 4073 | } |
bf00bd34 DR |
4074 | num_objs = total_slabs * cachep->num; |
4075 | active_slabs = total_slabs - free_slabs; | |
f728b0a5 | 4076 | active_objs = num_objs - free_objs; |
1da177e4 | 4077 | |
0d7561c6 GC |
4078 | sinfo->active_objs = active_objs; |
4079 | sinfo->num_objs = num_objs; | |
4080 | sinfo->active_slabs = active_slabs; | |
bf00bd34 | 4081 | sinfo->num_slabs = total_slabs; |
0d7561c6 GC |
4082 | sinfo->shared_avail = shared_avail; |
4083 | sinfo->limit = cachep->limit; | |
4084 | sinfo->batchcount = cachep->batchcount; | |
4085 | sinfo->shared = cachep->shared; | |
4086 | sinfo->objects_per_slab = cachep->num; | |
4087 | sinfo->cache_order = cachep->gfporder; | |
4088 | } | |
4089 | ||
4090 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | |
4091 | { | |
1da177e4 | 4092 | #if STATS |
ce8eb6c4 | 4093 | { /* node stats */ |
1da177e4 LT |
4094 | unsigned long high = cachep->high_mark; |
4095 | unsigned long allocs = cachep->num_allocations; | |
4096 | unsigned long grown = cachep->grown; | |
4097 | unsigned long reaped = cachep->reaped; | |
4098 | unsigned long errors = cachep->errors; | |
4099 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4100 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4101 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4102 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4103 | |
756a025f | 4104 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu", |
e92dd4fd JP |
4105 | allocs, high, grown, |
4106 | reaped, errors, max_freeable, node_allocs, | |
4107 | node_frees, overflows); | |
1da177e4 LT |
4108 | } |
4109 | /* cpu stats */ | |
4110 | { | |
4111 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4112 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4113 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4114 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4115 | ||
4116 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4117 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4118 | } |
4119 | #endif | |
1da177e4 LT |
4120 | } |
4121 | ||
1da177e4 LT |
4122 | #define MAX_SLABINFO_WRITE 128 |
4123 | /** | |
4124 | * slabinfo_write - Tuning for the slab allocator | |
4125 | * @file: unused | |
4126 | * @buffer: user buffer | |
4127 | * @count: data length | |
4128 | * @ppos: unused | |
a862f68a MR |
4129 | * |
4130 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 4131 | */ |
b7454ad3 | 4132 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4133 | size_t count, loff_t *ppos) |
1da177e4 | 4134 | { |
b28a02de | 4135 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4136 | int limit, batchcount, shared, res; |
7a7c381d | 4137 | struct kmem_cache *cachep; |
b28a02de | 4138 | |
1da177e4 LT |
4139 | if (count > MAX_SLABINFO_WRITE) |
4140 | return -EINVAL; | |
4141 | if (copy_from_user(&kbuf, buffer, count)) | |
4142 | return -EFAULT; | |
b28a02de | 4143 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4144 | |
4145 | tmp = strchr(kbuf, ' '); | |
4146 | if (!tmp) | |
4147 | return -EINVAL; | |
4148 | *tmp = '\0'; | |
4149 | tmp++; | |
4150 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4151 | return -EINVAL; | |
4152 | ||
4153 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4154 | mutex_lock(&slab_mutex); |
1da177e4 | 4155 | res = -EINVAL; |
18004c5d | 4156 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4157 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4158 | if (limit < 1 || batchcount < 1 || |
4159 | batchcount > limit || shared < 0) { | |
e498be7d | 4160 | res = 0; |
1da177e4 | 4161 | } else { |
e498be7d | 4162 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4163 | batchcount, shared, |
4164 | GFP_KERNEL); | |
1da177e4 LT |
4165 | } |
4166 | break; | |
4167 | } | |
4168 | } | |
18004c5d | 4169 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4170 | if (res >= 0) |
4171 | res = count; | |
4172 | return res; | |
4173 | } | |
871751e2 | 4174 | |
04385fc5 KC |
4175 | #ifdef CONFIG_HARDENED_USERCOPY |
4176 | /* | |
afcc90f8 KC |
4177 | * Rejects incorrectly sized objects and objects that are to be copied |
4178 | * to/from userspace but do not fall entirely within the containing slab | |
4179 | * cache's usercopy region. | |
04385fc5 KC |
4180 | * |
4181 | * Returns NULL if check passes, otherwise const char * to name of cache | |
4182 | * to indicate an error. | |
4183 | */ | |
f4e6e289 KC |
4184 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, |
4185 | bool to_user) | |
04385fc5 KC |
4186 | { |
4187 | struct kmem_cache *cachep; | |
4188 | unsigned int objnr; | |
4189 | unsigned long offset; | |
4190 | ||
219667c2 AK |
4191 | ptr = kasan_reset_tag(ptr); |
4192 | ||
04385fc5 KC |
4193 | /* Find and validate object. */ |
4194 | cachep = page->slab_cache; | |
4195 | objnr = obj_to_index(cachep, page, (void *)ptr); | |
4196 | BUG_ON(objnr >= cachep->num); | |
4197 | ||
4198 | /* Find offset within object. */ | |
d3fb45f3 AP |
4199 | if (is_kfence_address(ptr)) |
4200 | offset = ptr - kfence_object_start(ptr); | |
4201 | else | |
4202 | offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); | |
04385fc5 | 4203 | |
afcc90f8 KC |
4204 | /* Allow address range falling entirely within usercopy region. */ |
4205 | if (offset >= cachep->useroffset && | |
4206 | offset - cachep->useroffset <= cachep->usersize && | |
4207 | n <= cachep->useroffset - offset + cachep->usersize) | |
f4e6e289 | 4208 | return; |
04385fc5 | 4209 | |
afcc90f8 KC |
4210 | /* |
4211 | * If the copy is still within the allocated object, produce | |
4212 | * a warning instead of rejecting the copy. This is intended | |
4213 | * to be a temporary method to find any missing usercopy | |
4214 | * whitelists. | |
4215 | */ | |
2d891fbc KC |
4216 | if (usercopy_fallback && |
4217 | offset <= cachep->object_size && | |
afcc90f8 KC |
4218 | n <= cachep->object_size - offset) { |
4219 | usercopy_warn("SLAB object", cachep->name, to_user, offset, n); | |
4220 | return; | |
4221 | } | |
04385fc5 | 4222 | |
f4e6e289 | 4223 | usercopy_abort("SLAB object", cachep->name, to_user, offset, n); |
04385fc5 KC |
4224 | } |
4225 | #endif /* CONFIG_HARDENED_USERCOPY */ | |
4226 | ||
00e145b6 | 4227 | /** |
10d1f8cb | 4228 | * __ksize -- Uninstrumented ksize. |
87bf4f71 | 4229 | * @objp: pointer to the object |
00e145b6 | 4230 | * |
10d1f8cb ME |
4231 | * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same |
4232 | * safety checks as ksize() with KASAN instrumentation enabled. | |
87bf4f71 RD |
4233 | * |
4234 | * Return: size of the actual memory used by @objp in bytes | |
00e145b6 | 4235 | */ |
10d1f8cb | 4236 | size_t __ksize(const void *objp) |
1da177e4 | 4237 | { |
a64b5378 | 4238 | struct kmem_cache *c; |
7ed2f9e6 AP |
4239 | size_t size; |
4240 | ||
ef8b4520 CL |
4241 | BUG_ON(!objp); |
4242 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4243 | return 0; |
1da177e4 | 4244 | |
a64b5378 KC |
4245 | c = virt_to_cache(objp); |
4246 | size = c ? c->object_size : 0; | |
7ed2f9e6 AP |
4247 | |
4248 | return size; | |
1da177e4 | 4249 | } |
10d1f8cb | 4250 | EXPORT_SYMBOL(__ksize); |