]>
Commit | Line | Data |
---|---|---|
e399441d JS |
1 | /* |
2 | * Copyright (c) 2016 Avago Technologies. All rights reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of version 2 of the GNU General Public License as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful. | |
9 | * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, | |
10 | * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A | |
11 | * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO | |
12 | * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. | |
13 | * See the GNU General Public License for more details, a copy of which | |
14 | * can be found in the file COPYING included with this package | |
15 | * | |
16 | */ | |
17 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
18 | #include <linux/module.h> | |
19 | #include <linux/parser.h> | |
20 | #include <uapi/scsi/fc/fc_fs.h> | |
21 | #include <uapi/scsi/fc/fc_els.h> | |
22 | ||
23 | #include "nvme.h" | |
24 | #include "fabrics.h" | |
25 | #include <linux/nvme-fc-driver.h> | |
26 | #include <linux/nvme-fc.h> | |
27 | ||
28 | ||
29 | /* *************************** Data Structures/Defines ****************** */ | |
30 | ||
31 | ||
32 | /* | |
33 | * We handle AEN commands ourselves and don't even let the | |
34 | * block layer know about them. | |
35 | */ | |
36 | #define NVME_FC_NR_AEN_COMMANDS 1 | |
37 | #define NVME_FC_AQ_BLKMQ_DEPTH \ | |
38 | (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS) | |
39 | #define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1) | |
40 | ||
41 | enum nvme_fc_queue_flags { | |
42 | NVME_FC_Q_CONNECTED = (1 << 0), | |
43 | }; | |
44 | ||
45 | #define NVMEFC_QUEUE_DELAY 3 /* ms units */ | |
46 | ||
47 | struct nvme_fc_queue { | |
48 | struct nvme_fc_ctrl *ctrl; | |
49 | struct device *dev; | |
50 | struct blk_mq_hw_ctx *hctx; | |
51 | void *lldd_handle; | |
52 | int queue_size; | |
53 | size_t cmnd_capsule_len; | |
54 | u32 qnum; | |
55 | u32 rqcnt; | |
56 | u32 seqno; | |
57 | ||
58 | u64 connection_id; | |
59 | atomic_t csn; | |
60 | ||
61 | unsigned long flags; | |
62 | } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ | |
63 | ||
64 | struct nvmefc_ls_req_op { | |
65 | struct nvmefc_ls_req ls_req; | |
66 | ||
67 | struct nvme_fc_ctrl *ctrl; | |
68 | struct nvme_fc_queue *queue; | |
69 | struct request *rq; | |
70 | ||
71 | int ls_error; | |
72 | struct completion ls_done; | |
73 | struct list_head lsreq_list; /* ctrl->ls_req_list */ | |
74 | bool req_queued; | |
75 | }; | |
76 | ||
77 | enum nvme_fcpop_state { | |
78 | FCPOP_STATE_UNINIT = 0, | |
79 | FCPOP_STATE_IDLE = 1, | |
80 | FCPOP_STATE_ACTIVE = 2, | |
81 | FCPOP_STATE_ABORTED = 3, | |
82 | }; | |
83 | ||
84 | struct nvme_fc_fcp_op { | |
85 | struct nvme_request nreq; /* | |
86 | * nvme/host/core.c | |
87 | * requires this to be | |
88 | * the 1st element in the | |
89 | * private structure | |
90 | * associated with the | |
91 | * request. | |
92 | */ | |
93 | struct nvmefc_fcp_req fcp_req; | |
94 | ||
95 | struct nvme_fc_ctrl *ctrl; | |
96 | struct nvme_fc_queue *queue; | |
97 | struct request *rq; | |
98 | ||
99 | atomic_t state; | |
100 | u32 rqno; | |
101 | u32 nents; | |
102 | ||
103 | struct nvme_fc_cmd_iu cmd_iu; | |
104 | struct nvme_fc_ersp_iu rsp_iu; | |
105 | }; | |
106 | ||
107 | struct nvme_fc_lport { | |
108 | struct nvme_fc_local_port localport; | |
109 | ||
110 | struct ida endp_cnt; | |
111 | struct list_head port_list; /* nvme_fc_port_list */ | |
112 | struct list_head endp_list; | |
113 | struct device *dev; /* physical device for dma */ | |
114 | struct nvme_fc_port_template *ops; | |
115 | struct kref ref; | |
116 | } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ | |
117 | ||
118 | struct nvme_fc_rport { | |
119 | struct nvme_fc_remote_port remoteport; | |
120 | ||
121 | struct list_head endp_list; /* for lport->endp_list */ | |
122 | struct list_head ctrl_list; | |
123 | spinlock_t lock; | |
124 | struct kref ref; | |
125 | } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ | |
126 | ||
127 | enum nvme_fcctrl_state { | |
128 | FCCTRL_INIT = 0, | |
129 | FCCTRL_ACTIVE = 1, | |
130 | }; | |
131 | ||
132 | struct nvme_fc_ctrl { | |
133 | spinlock_t lock; | |
134 | struct nvme_fc_queue *queues; | |
135 | u32 queue_count; | |
136 | ||
137 | struct device *dev; | |
138 | struct nvme_fc_lport *lport; | |
139 | struct nvme_fc_rport *rport; | |
140 | u32 cnum; | |
141 | ||
142 | u64 association_id; | |
143 | ||
144 | u64 cap; | |
145 | ||
146 | struct list_head ctrl_list; /* rport->ctrl_list */ | |
147 | struct list_head ls_req_list; | |
148 | ||
149 | struct blk_mq_tag_set admin_tag_set; | |
150 | struct blk_mq_tag_set tag_set; | |
151 | ||
152 | struct work_struct delete_work; | |
153 | struct kref ref; | |
154 | int state; | |
155 | ||
156 | struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS]; | |
157 | ||
158 | struct nvme_ctrl ctrl; | |
159 | }; | |
160 | ||
161 | static inline struct nvme_fc_ctrl * | |
162 | to_fc_ctrl(struct nvme_ctrl *ctrl) | |
163 | { | |
164 | return container_of(ctrl, struct nvme_fc_ctrl, ctrl); | |
165 | } | |
166 | ||
167 | static inline struct nvme_fc_lport * | |
168 | localport_to_lport(struct nvme_fc_local_port *portptr) | |
169 | { | |
170 | return container_of(portptr, struct nvme_fc_lport, localport); | |
171 | } | |
172 | ||
173 | static inline struct nvme_fc_rport * | |
174 | remoteport_to_rport(struct nvme_fc_remote_port *portptr) | |
175 | { | |
176 | return container_of(portptr, struct nvme_fc_rport, remoteport); | |
177 | } | |
178 | ||
179 | static inline struct nvmefc_ls_req_op * | |
180 | ls_req_to_lsop(struct nvmefc_ls_req *lsreq) | |
181 | { | |
182 | return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); | |
183 | } | |
184 | ||
185 | static inline struct nvme_fc_fcp_op * | |
186 | fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) | |
187 | { | |
188 | return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); | |
189 | } | |
190 | ||
191 | ||
192 | ||
193 | /* *************************** Globals **************************** */ | |
194 | ||
195 | ||
196 | static DEFINE_SPINLOCK(nvme_fc_lock); | |
197 | ||
198 | static LIST_HEAD(nvme_fc_lport_list); | |
199 | static DEFINE_IDA(nvme_fc_local_port_cnt); | |
200 | static DEFINE_IDA(nvme_fc_ctrl_cnt); | |
201 | ||
202 | static struct workqueue_struct *nvme_fc_wq; | |
203 | ||
204 | ||
205 | ||
206 | /* *********************** FC-NVME Port Management ************************ */ | |
207 | ||
208 | static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *); | |
209 | static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, | |
210 | struct nvme_fc_queue *, unsigned int); | |
211 | ||
212 | ||
213 | /** | |
214 | * nvme_fc_register_localport - transport entry point called by an | |
215 | * LLDD to register the existence of a NVME | |
216 | * host FC port. | |
217 | * @pinfo: pointer to information about the port to be registered | |
218 | * @template: LLDD entrypoints and operational parameters for the port | |
219 | * @dev: physical hardware device node port corresponds to. Will be | |
220 | * used for DMA mappings | |
221 | * @lport_p: pointer to a local port pointer. Upon success, the routine | |
222 | * will allocate a nvme_fc_local_port structure and place its | |
223 | * address in the local port pointer. Upon failure, local port | |
224 | * pointer will be set to 0. | |
225 | * | |
226 | * Returns: | |
227 | * a completion status. Must be 0 upon success; a negative errno | |
228 | * (ex: -ENXIO) upon failure. | |
229 | */ | |
230 | int | |
231 | nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, | |
232 | struct nvme_fc_port_template *template, | |
233 | struct device *dev, | |
234 | struct nvme_fc_local_port **portptr) | |
235 | { | |
236 | struct nvme_fc_lport *newrec; | |
237 | unsigned long flags; | |
238 | int ret, idx; | |
239 | ||
240 | if (!template->localport_delete || !template->remoteport_delete || | |
241 | !template->ls_req || !template->fcp_io || | |
242 | !template->ls_abort || !template->fcp_abort || | |
243 | !template->max_hw_queues || !template->max_sgl_segments || | |
244 | !template->max_dif_sgl_segments || !template->dma_boundary) { | |
245 | ret = -EINVAL; | |
246 | goto out_reghost_failed; | |
247 | } | |
248 | ||
249 | newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), | |
250 | GFP_KERNEL); | |
251 | if (!newrec) { | |
252 | ret = -ENOMEM; | |
253 | goto out_reghost_failed; | |
254 | } | |
255 | ||
256 | idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); | |
257 | if (idx < 0) { | |
258 | ret = -ENOSPC; | |
259 | goto out_fail_kfree; | |
260 | } | |
261 | ||
262 | if (!get_device(dev) && dev) { | |
263 | ret = -ENODEV; | |
264 | goto out_ida_put; | |
265 | } | |
266 | ||
267 | INIT_LIST_HEAD(&newrec->port_list); | |
268 | INIT_LIST_HEAD(&newrec->endp_list); | |
269 | kref_init(&newrec->ref); | |
270 | newrec->ops = template; | |
271 | newrec->dev = dev; | |
272 | ida_init(&newrec->endp_cnt); | |
273 | newrec->localport.private = &newrec[1]; | |
274 | newrec->localport.node_name = pinfo->node_name; | |
275 | newrec->localport.port_name = pinfo->port_name; | |
276 | newrec->localport.port_role = pinfo->port_role; | |
277 | newrec->localport.port_id = pinfo->port_id; | |
278 | newrec->localport.port_state = FC_OBJSTATE_ONLINE; | |
279 | newrec->localport.port_num = idx; | |
280 | ||
281 | spin_lock_irqsave(&nvme_fc_lock, flags); | |
282 | list_add_tail(&newrec->port_list, &nvme_fc_lport_list); | |
283 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
284 | ||
285 | if (dev) | |
286 | dma_set_seg_boundary(dev, template->dma_boundary); | |
287 | ||
288 | *portptr = &newrec->localport; | |
289 | return 0; | |
290 | ||
291 | out_ida_put: | |
292 | ida_simple_remove(&nvme_fc_local_port_cnt, idx); | |
293 | out_fail_kfree: | |
294 | kfree(newrec); | |
295 | out_reghost_failed: | |
296 | *portptr = NULL; | |
297 | ||
298 | return ret; | |
299 | } | |
300 | EXPORT_SYMBOL_GPL(nvme_fc_register_localport); | |
301 | ||
302 | static void | |
303 | nvme_fc_free_lport(struct kref *ref) | |
304 | { | |
305 | struct nvme_fc_lport *lport = | |
306 | container_of(ref, struct nvme_fc_lport, ref); | |
307 | unsigned long flags; | |
308 | ||
309 | WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); | |
310 | WARN_ON(!list_empty(&lport->endp_list)); | |
311 | ||
312 | /* remove from transport list */ | |
313 | spin_lock_irqsave(&nvme_fc_lock, flags); | |
314 | list_del(&lport->port_list); | |
315 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
316 | ||
317 | /* let the LLDD know we've finished tearing it down */ | |
318 | lport->ops->localport_delete(&lport->localport); | |
319 | ||
320 | ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); | |
321 | ida_destroy(&lport->endp_cnt); | |
322 | ||
323 | put_device(lport->dev); | |
324 | ||
325 | kfree(lport); | |
326 | } | |
327 | ||
328 | static void | |
329 | nvme_fc_lport_put(struct nvme_fc_lport *lport) | |
330 | { | |
331 | kref_put(&lport->ref, nvme_fc_free_lport); | |
332 | } | |
333 | ||
334 | static int | |
335 | nvme_fc_lport_get(struct nvme_fc_lport *lport) | |
336 | { | |
337 | return kref_get_unless_zero(&lport->ref); | |
338 | } | |
339 | ||
340 | /** | |
341 | * nvme_fc_unregister_localport - transport entry point called by an | |
342 | * LLDD to deregister/remove a previously | |
343 | * registered a NVME host FC port. | |
344 | * @localport: pointer to the (registered) local port that is to be | |
345 | * deregistered. | |
346 | * | |
347 | * Returns: | |
348 | * a completion status. Must be 0 upon success; a negative errno | |
349 | * (ex: -ENXIO) upon failure. | |
350 | */ | |
351 | int | |
352 | nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) | |
353 | { | |
354 | struct nvme_fc_lport *lport = localport_to_lport(portptr); | |
355 | unsigned long flags; | |
356 | ||
357 | if (!portptr) | |
358 | return -EINVAL; | |
359 | ||
360 | spin_lock_irqsave(&nvme_fc_lock, flags); | |
361 | ||
362 | if (portptr->port_state != FC_OBJSTATE_ONLINE) { | |
363 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
364 | return -EINVAL; | |
365 | } | |
366 | portptr->port_state = FC_OBJSTATE_DELETED; | |
367 | ||
368 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
369 | ||
370 | nvme_fc_lport_put(lport); | |
371 | ||
372 | return 0; | |
373 | } | |
374 | EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); | |
375 | ||
376 | /** | |
377 | * nvme_fc_register_remoteport - transport entry point called by an | |
378 | * LLDD to register the existence of a NVME | |
379 | * subsystem FC port on its fabric. | |
380 | * @localport: pointer to the (registered) local port that the remote | |
381 | * subsystem port is connected to. | |
382 | * @pinfo: pointer to information about the port to be registered | |
383 | * @rport_p: pointer to a remote port pointer. Upon success, the routine | |
384 | * will allocate a nvme_fc_remote_port structure and place its | |
385 | * address in the remote port pointer. Upon failure, remote port | |
386 | * pointer will be set to 0. | |
387 | * | |
388 | * Returns: | |
389 | * a completion status. Must be 0 upon success; a negative errno | |
390 | * (ex: -ENXIO) upon failure. | |
391 | */ | |
392 | int | |
393 | nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, | |
394 | struct nvme_fc_port_info *pinfo, | |
395 | struct nvme_fc_remote_port **portptr) | |
396 | { | |
397 | struct nvme_fc_lport *lport = localport_to_lport(localport); | |
398 | struct nvme_fc_rport *newrec; | |
399 | unsigned long flags; | |
400 | int ret, idx; | |
401 | ||
402 | newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), | |
403 | GFP_KERNEL); | |
404 | if (!newrec) { | |
405 | ret = -ENOMEM; | |
406 | goto out_reghost_failed; | |
407 | } | |
408 | ||
409 | if (!nvme_fc_lport_get(lport)) { | |
410 | ret = -ESHUTDOWN; | |
411 | goto out_kfree_rport; | |
412 | } | |
413 | ||
414 | idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); | |
415 | if (idx < 0) { | |
416 | ret = -ENOSPC; | |
417 | goto out_lport_put; | |
418 | } | |
419 | ||
420 | INIT_LIST_HEAD(&newrec->endp_list); | |
421 | INIT_LIST_HEAD(&newrec->ctrl_list); | |
422 | kref_init(&newrec->ref); | |
423 | spin_lock_init(&newrec->lock); | |
424 | newrec->remoteport.localport = &lport->localport; | |
425 | newrec->remoteport.private = &newrec[1]; | |
426 | newrec->remoteport.port_role = pinfo->port_role; | |
427 | newrec->remoteport.node_name = pinfo->node_name; | |
428 | newrec->remoteport.port_name = pinfo->port_name; | |
429 | newrec->remoteport.port_id = pinfo->port_id; | |
430 | newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; | |
431 | newrec->remoteport.port_num = idx; | |
432 | ||
433 | spin_lock_irqsave(&nvme_fc_lock, flags); | |
434 | list_add_tail(&newrec->endp_list, &lport->endp_list); | |
435 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
436 | ||
437 | *portptr = &newrec->remoteport; | |
438 | return 0; | |
439 | ||
440 | out_lport_put: | |
441 | nvme_fc_lport_put(lport); | |
442 | out_kfree_rport: | |
443 | kfree(newrec); | |
444 | out_reghost_failed: | |
445 | *portptr = NULL; | |
446 | return ret; | |
447 | ||
448 | } | |
449 | EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); | |
450 | ||
451 | static void | |
452 | nvme_fc_free_rport(struct kref *ref) | |
453 | { | |
454 | struct nvme_fc_rport *rport = | |
455 | container_of(ref, struct nvme_fc_rport, ref); | |
456 | struct nvme_fc_lport *lport = | |
457 | localport_to_lport(rport->remoteport.localport); | |
458 | unsigned long flags; | |
459 | ||
460 | WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); | |
461 | WARN_ON(!list_empty(&rport->ctrl_list)); | |
462 | ||
463 | /* remove from lport list */ | |
464 | spin_lock_irqsave(&nvme_fc_lock, flags); | |
465 | list_del(&rport->endp_list); | |
466 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
467 | ||
468 | /* let the LLDD know we've finished tearing it down */ | |
469 | lport->ops->remoteport_delete(&rport->remoteport); | |
470 | ||
471 | ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); | |
472 | ||
473 | kfree(rport); | |
474 | ||
475 | nvme_fc_lport_put(lport); | |
476 | } | |
477 | ||
478 | static void | |
479 | nvme_fc_rport_put(struct nvme_fc_rport *rport) | |
480 | { | |
481 | kref_put(&rport->ref, nvme_fc_free_rport); | |
482 | } | |
483 | ||
484 | static int | |
485 | nvme_fc_rport_get(struct nvme_fc_rport *rport) | |
486 | { | |
487 | return kref_get_unless_zero(&rport->ref); | |
488 | } | |
489 | ||
490 | /** | |
491 | * nvme_fc_unregister_remoteport - transport entry point called by an | |
492 | * LLDD to deregister/remove a previously | |
493 | * registered a NVME subsystem FC port. | |
494 | * @remoteport: pointer to the (registered) remote port that is to be | |
495 | * deregistered. | |
496 | * | |
497 | * Returns: | |
498 | * a completion status. Must be 0 upon success; a negative errno | |
499 | * (ex: -ENXIO) upon failure. | |
500 | */ | |
501 | int | |
502 | nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) | |
503 | { | |
504 | struct nvme_fc_rport *rport = remoteport_to_rport(portptr); | |
505 | struct nvme_fc_ctrl *ctrl; | |
506 | unsigned long flags; | |
507 | ||
508 | if (!portptr) | |
509 | return -EINVAL; | |
510 | ||
511 | spin_lock_irqsave(&rport->lock, flags); | |
512 | ||
513 | if (portptr->port_state != FC_OBJSTATE_ONLINE) { | |
514 | spin_unlock_irqrestore(&rport->lock, flags); | |
515 | return -EINVAL; | |
516 | } | |
517 | portptr->port_state = FC_OBJSTATE_DELETED; | |
518 | ||
519 | /* tear down all associations to the remote port */ | |
520 | list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) | |
521 | __nvme_fc_del_ctrl(ctrl); | |
522 | ||
523 | spin_unlock_irqrestore(&rport->lock, flags); | |
524 | ||
525 | nvme_fc_rport_put(rport); | |
526 | return 0; | |
527 | } | |
528 | EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); | |
529 | ||
530 | ||
531 | /* *********************** FC-NVME DMA Handling **************************** */ | |
532 | ||
533 | /* | |
534 | * The fcloop device passes in a NULL device pointer. Real LLD's will | |
535 | * pass in a valid device pointer. If NULL is passed to the dma mapping | |
536 | * routines, depending on the platform, it may or may not succeed, and | |
537 | * may crash. | |
538 | * | |
539 | * As such: | |
540 | * Wrapper all the dma routines and check the dev pointer. | |
541 | * | |
542 | * If simple mappings (return just a dma address, we'll noop them, | |
543 | * returning a dma address of 0. | |
544 | * | |
545 | * On more complex mappings (dma_map_sg), a pseudo routine fills | |
546 | * in the scatter list, setting all dma addresses to 0. | |
547 | */ | |
548 | ||
549 | static inline dma_addr_t | |
550 | fc_dma_map_single(struct device *dev, void *ptr, size_t size, | |
551 | enum dma_data_direction dir) | |
552 | { | |
553 | return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; | |
554 | } | |
555 | ||
556 | static inline int | |
557 | fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | |
558 | { | |
559 | return dev ? dma_mapping_error(dev, dma_addr) : 0; | |
560 | } | |
561 | ||
562 | static inline void | |
563 | fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, | |
564 | enum dma_data_direction dir) | |
565 | { | |
566 | if (dev) | |
567 | dma_unmap_single(dev, addr, size, dir); | |
568 | } | |
569 | ||
570 | static inline void | |
571 | fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, | |
572 | enum dma_data_direction dir) | |
573 | { | |
574 | if (dev) | |
575 | dma_sync_single_for_cpu(dev, addr, size, dir); | |
576 | } | |
577 | ||
578 | static inline void | |
579 | fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, | |
580 | enum dma_data_direction dir) | |
581 | { | |
582 | if (dev) | |
583 | dma_sync_single_for_device(dev, addr, size, dir); | |
584 | } | |
585 | ||
586 | /* pseudo dma_map_sg call */ | |
587 | static int | |
588 | fc_map_sg(struct scatterlist *sg, int nents) | |
589 | { | |
590 | struct scatterlist *s; | |
591 | int i; | |
592 | ||
593 | WARN_ON(nents == 0 || sg[0].length == 0); | |
594 | ||
595 | for_each_sg(sg, s, nents, i) { | |
596 | s->dma_address = 0L; | |
597 | #ifdef CONFIG_NEED_SG_DMA_LENGTH | |
598 | s->dma_length = s->length; | |
599 | #endif | |
600 | } | |
601 | return nents; | |
602 | } | |
603 | ||
604 | static inline int | |
605 | fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | |
606 | enum dma_data_direction dir) | |
607 | { | |
608 | return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); | |
609 | } | |
610 | ||
611 | static inline void | |
612 | fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | |
613 | enum dma_data_direction dir) | |
614 | { | |
615 | if (dev) | |
616 | dma_unmap_sg(dev, sg, nents, dir); | |
617 | } | |
618 | ||
619 | ||
620 | /* *********************** FC-NVME LS Handling **************************** */ | |
621 | ||
622 | static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); | |
623 | static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); | |
624 | ||
625 | ||
626 | static void | |
627 | __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl, | |
628 | struct nvmefc_ls_req_op *lsop) | |
629 | { | |
630 | struct nvmefc_ls_req *lsreq = &lsop->ls_req; | |
631 | unsigned long flags; | |
632 | ||
633 | spin_lock_irqsave(&ctrl->lock, flags); | |
634 | ||
635 | if (!lsop->req_queued) { | |
636 | spin_unlock_irqrestore(&ctrl->lock, flags); | |
637 | return; | |
638 | } | |
639 | ||
640 | list_del(&lsop->lsreq_list); | |
641 | ||
642 | lsop->req_queued = false; | |
643 | ||
644 | spin_unlock_irqrestore(&ctrl->lock, flags); | |
645 | ||
646 | fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma, | |
647 | (lsreq->rqstlen + lsreq->rsplen), | |
648 | DMA_BIDIRECTIONAL); | |
649 | ||
650 | nvme_fc_ctrl_put(ctrl); | |
651 | } | |
652 | ||
653 | static int | |
654 | __nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, | |
655 | struct nvmefc_ls_req_op *lsop, | |
656 | void (*done)(struct nvmefc_ls_req *req, int status)) | |
657 | { | |
658 | struct nvmefc_ls_req *lsreq = &lsop->ls_req; | |
659 | unsigned long flags; | |
660 | int ret; | |
661 | ||
662 | if (!nvme_fc_ctrl_get(ctrl)) | |
663 | return -ESHUTDOWN; | |
664 | ||
665 | lsreq->done = done; | |
666 | lsop->ctrl = ctrl; | |
667 | lsop->req_queued = false; | |
668 | INIT_LIST_HEAD(&lsop->lsreq_list); | |
669 | init_completion(&lsop->ls_done); | |
670 | ||
671 | lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr, | |
672 | lsreq->rqstlen + lsreq->rsplen, | |
673 | DMA_BIDIRECTIONAL); | |
674 | if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) { | |
675 | nvme_fc_ctrl_put(ctrl); | |
676 | dev_err(ctrl->dev, | |
677 | "els request command failed EFAULT.\n"); | |
678 | return -EFAULT; | |
679 | } | |
680 | lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; | |
681 | ||
682 | spin_lock_irqsave(&ctrl->lock, flags); | |
683 | ||
684 | list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list); | |
685 | ||
686 | lsop->req_queued = true; | |
687 | ||
688 | spin_unlock_irqrestore(&ctrl->lock, flags); | |
689 | ||
690 | ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport, | |
691 | &ctrl->rport->remoteport, lsreq); | |
692 | if (ret) | |
693 | lsop->ls_error = ret; | |
694 | ||
695 | return ret; | |
696 | } | |
697 | ||
698 | static void | |
699 | nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) | |
700 | { | |
701 | struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); | |
702 | ||
703 | lsop->ls_error = status; | |
704 | complete(&lsop->ls_done); | |
705 | } | |
706 | ||
707 | static int | |
708 | nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop) | |
709 | { | |
710 | struct nvmefc_ls_req *lsreq = &lsop->ls_req; | |
711 | struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; | |
712 | int ret; | |
713 | ||
714 | ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done); | |
715 | ||
716 | if (!ret) | |
717 | /* | |
718 | * No timeout/not interruptible as we need the struct | |
719 | * to exist until the lldd calls us back. Thus mandate | |
720 | * wait until driver calls back. lldd responsible for | |
721 | * the timeout action | |
722 | */ | |
723 | wait_for_completion(&lsop->ls_done); | |
724 | ||
725 | __nvme_fc_finish_ls_req(ctrl, lsop); | |
726 | ||
727 | if (ret) { | |
728 | dev_err(ctrl->dev, | |
729 | "ls request command failed (%d).\n", ret); | |
730 | return ret; | |
731 | } | |
732 | ||
733 | /* ACC or RJT payload ? */ | |
734 | if (rjt->w0.ls_cmd == FCNVME_LS_RJT) | |
735 | return -ENXIO; | |
736 | ||
737 | return 0; | |
738 | } | |
739 | ||
740 | static void | |
741 | nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl, | |
742 | struct nvmefc_ls_req_op *lsop, | |
743 | void (*done)(struct nvmefc_ls_req *req, int status)) | |
744 | { | |
745 | int ret; | |
746 | ||
747 | ret = __nvme_fc_send_ls_req(ctrl, lsop, done); | |
748 | ||
749 | /* don't wait for completion */ | |
750 | ||
751 | if (ret) | |
752 | done(&lsop->ls_req, ret); | |
753 | } | |
754 | ||
755 | /* Validation Error indexes into the string table below */ | |
756 | enum { | |
757 | VERR_NO_ERROR = 0, | |
758 | VERR_LSACC = 1, | |
759 | VERR_LSDESC_RQST = 2, | |
760 | VERR_LSDESC_RQST_LEN = 3, | |
761 | VERR_ASSOC_ID = 4, | |
762 | VERR_ASSOC_ID_LEN = 5, | |
763 | VERR_CONN_ID = 6, | |
764 | VERR_CONN_ID_LEN = 7, | |
765 | VERR_CR_ASSOC = 8, | |
766 | VERR_CR_ASSOC_ACC_LEN = 9, | |
767 | VERR_CR_CONN = 10, | |
768 | VERR_CR_CONN_ACC_LEN = 11, | |
769 | VERR_DISCONN = 12, | |
770 | VERR_DISCONN_ACC_LEN = 13, | |
771 | }; | |
772 | ||
773 | static char *validation_errors[] = { | |
774 | "OK", | |
775 | "Not LS_ACC", | |
776 | "Not LSDESC_RQST", | |
777 | "Bad LSDESC_RQST Length", | |
778 | "Not Association ID", | |
779 | "Bad Association ID Length", | |
780 | "Not Connection ID", | |
781 | "Bad Connection ID Length", | |
782 | "Not CR_ASSOC Rqst", | |
783 | "Bad CR_ASSOC ACC Length", | |
784 | "Not CR_CONN Rqst", | |
785 | "Bad CR_CONN ACC Length", | |
786 | "Not Disconnect Rqst", | |
787 | "Bad Disconnect ACC Length", | |
788 | }; | |
789 | ||
790 | static int | |
791 | nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, | |
792 | struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) | |
793 | { | |
794 | struct nvmefc_ls_req_op *lsop; | |
795 | struct nvmefc_ls_req *lsreq; | |
796 | struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; | |
797 | struct fcnvme_ls_cr_assoc_acc *assoc_acc; | |
798 | int ret, fcret = 0; | |
799 | ||
800 | lsop = kzalloc((sizeof(*lsop) + | |
801 | ctrl->lport->ops->lsrqst_priv_sz + | |
802 | sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); | |
803 | if (!lsop) { | |
804 | ret = -ENOMEM; | |
805 | goto out_no_memory; | |
806 | } | |
807 | lsreq = &lsop->ls_req; | |
808 | ||
809 | lsreq->private = (void *)&lsop[1]; | |
810 | assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) | |
811 | (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | |
812 | assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; | |
813 | ||
814 | assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; | |
815 | assoc_rqst->desc_list_len = | |
816 | cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); | |
817 | ||
818 | assoc_rqst->assoc_cmd.desc_tag = | |
819 | cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); | |
820 | assoc_rqst->assoc_cmd.desc_len = | |
821 | fcnvme_lsdesc_len( | |
822 | sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); | |
823 | ||
824 | assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); | |
825 | assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); | |
826 | /* Linux supports only Dynamic controllers */ | |
827 | assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); | |
828 | memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id, | |
829 | min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be))); | |
830 | strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, | |
831 | min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); | |
832 | strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, | |
833 | min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); | |
834 | ||
835 | lsop->queue = queue; | |
836 | lsreq->rqstaddr = assoc_rqst; | |
837 | lsreq->rqstlen = sizeof(*assoc_rqst); | |
838 | lsreq->rspaddr = assoc_acc; | |
839 | lsreq->rsplen = sizeof(*assoc_acc); | |
840 | lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | |
841 | ||
842 | ret = nvme_fc_send_ls_req(ctrl, lsop); | |
843 | if (ret) | |
844 | goto out_free_buffer; | |
845 | ||
846 | /* process connect LS completion */ | |
847 | ||
848 | /* validate the ACC response */ | |
849 | if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) | |
850 | fcret = VERR_LSACC; | |
f77fc87c | 851 | else if (assoc_acc->hdr.desc_list_len != |
e399441d JS |
852 | fcnvme_lsdesc_len( |
853 | sizeof(struct fcnvme_ls_cr_assoc_acc))) | |
854 | fcret = VERR_CR_ASSOC_ACC_LEN; | |
f77fc87c JS |
855 | else if (assoc_acc->hdr.rqst.desc_tag != |
856 | cpu_to_be32(FCNVME_LSDESC_RQST)) | |
e399441d JS |
857 | fcret = VERR_LSDESC_RQST; |
858 | else if (assoc_acc->hdr.rqst.desc_len != | |
859 | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) | |
860 | fcret = VERR_LSDESC_RQST_LEN; | |
861 | else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) | |
862 | fcret = VERR_CR_ASSOC; | |
863 | else if (assoc_acc->associd.desc_tag != | |
864 | cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) | |
865 | fcret = VERR_ASSOC_ID; | |
866 | else if (assoc_acc->associd.desc_len != | |
867 | fcnvme_lsdesc_len( | |
868 | sizeof(struct fcnvme_lsdesc_assoc_id))) | |
869 | fcret = VERR_ASSOC_ID_LEN; | |
870 | else if (assoc_acc->connectid.desc_tag != | |
871 | cpu_to_be32(FCNVME_LSDESC_CONN_ID)) | |
872 | fcret = VERR_CONN_ID; | |
873 | else if (assoc_acc->connectid.desc_len != | |
874 | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) | |
875 | fcret = VERR_CONN_ID_LEN; | |
876 | ||
877 | if (fcret) { | |
878 | ret = -EBADF; | |
879 | dev_err(ctrl->dev, | |
880 | "q %d connect failed: %s\n", | |
881 | queue->qnum, validation_errors[fcret]); | |
882 | } else { | |
883 | ctrl->association_id = | |
884 | be64_to_cpu(assoc_acc->associd.association_id); | |
885 | queue->connection_id = | |
886 | be64_to_cpu(assoc_acc->connectid.connection_id); | |
887 | set_bit(NVME_FC_Q_CONNECTED, &queue->flags); | |
888 | } | |
889 | ||
890 | out_free_buffer: | |
891 | kfree(lsop); | |
892 | out_no_memory: | |
893 | if (ret) | |
894 | dev_err(ctrl->dev, | |
895 | "queue %d connect admin queue failed (%d).\n", | |
896 | queue->qnum, ret); | |
897 | return ret; | |
898 | } | |
899 | ||
900 | static int | |
901 | nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, | |
902 | u16 qsize, u16 ersp_ratio) | |
903 | { | |
904 | struct nvmefc_ls_req_op *lsop; | |
905 | struct nvmefc_ls_req *lsreq; | |
906 | struct fcnvme_ls_cr_conn_rqst *conn_rqst; | |
907 | struct fcnvme_ls_cr_conn_acc *conn_acc; | |
908 | int ret, fcret = 0; | |
909 | ||
910 | lsop = kzalloc((sizeof(*lsop) + | |
911 | ctrl->lport->ops->lsrqst_priv_sz + | |
912 | sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); | |
913 | if (!lsop) { | |
914 | ret = -ENOMEM; | |
915 | goto out_no_memory; | |
916 | } | |
917 | lsreq = &lsop->ls_req; | |
918 | ||
919 | lsreq->private = (void *)&lsop[1]; | |
920 | conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) | |
921 | (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | |
922 | conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; | |
923 | ||
924 | conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; | |
925 | conn_rqst->desc_list_len = cpu_to_be32( | |
926 | sizeof(struct fcnvme_lsdesc_assoc_id) + | |
927 | sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); | |
928 | ||
929 | conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | |
930 | conn_rqst->associd.desc_len = | |
931 | fcnvme_lsdesc_len( | |
932 | sizeof(struct fcnvme_lsdesc_assoc_id)); | |
933 | conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); | |
934 | conn_rqst->connect_cmd.desc_tag = | |
935 | cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); | |
936 | conn_rqst->connect_cmd.desc_len = | |
937 | fcnvme_lsdesc_len( | |
938 | sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); | |
939 | conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); | |
940 | conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); | |
941 | conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); | |
942 | ||
943 | lsop->queue = queue; | |
944 | lsreq->rqstaddr = conn_rqst; | |
945 | lsreq->rqstlen = sizeof(*conn_rqst); | |
946 | lsreq->rspaddr = conn_acc; | |
947 | lsreq->rsplen = sizeof(*conn_acc); | |
948 | lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | |
949 | ||
950 | ret = nvme_fc_send_ls_req(ctrl, lsop); | |
951 | if (ret) | |
952 | goto out_free_buffer; | |
953 | ||
954 | /* process connect LS completion */ | |
955 | ||
956 | /* validate the ACC response */ | |
957 | if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) | |
958 | fcret = VERR_LSACC; | |
f77fc87c | 959 | else if (conn_acc->hdr.desc_list_len != |
e399441d JS |
960 | fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) |
961 | fcret = VERR_CR_CONN_ACC_LEN; | |
f77fc87c | 962 | else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) |
e399441d JS |
963 | fcret = VERR_LSDESC_RQST; |
964 | else if (conn_acc->hdr.rqst.desc_len != | |
965 | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) | |
966 | fcret = VERR_LSDESC_RQST_LEN; | |
967 | else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) | |
968 | fcret = VERR_CR_CONN; | |
969 | else if (conn_acc->connectid.desc_tag != | |
970 | cpu_to_be32(FCNVME_LSDESC_CONN_ID)) | |
971 | fcret = VERR_CONN_ID; | |
972 | else if (conn_acc->connectid.desc_len != | |
973 | fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) | |
974 | fcret = VERR_CONN_ID_LEN; | |
975 | ||
976 | if (fcret) { | |
977 | ret = -EBADF; | |
978 | dev_err(ctrl->dev, | |
979 | "q %d connect failed: %s\n", | |
980 | queue->qnum, validation_errors[fcret]); | |
981 | } else { | |
982 | queue->connection_id = | |
983 | be64_to_cpu(conn_acc->connectid.connection_id); | |
984 | set_bit(NVME_FC_Q_CONNECTED, &queue->flags); | |
985 | } | |
986 | ||
987 | out_free_buffer: | |
988 | kfree(lsop); | |
989 | out_no_memory: | |
990 | if (ret) | |
991 | dev_err(ctrl->dev, | |
992 | "queue %d connect command failed (%d).\n", | |
993 | queue->qnum, ret); | |
994 | return ret; | |
995 | } | |
996 | ||
997 | static void | |
998 | nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) | |
999 | { | |
1000 | struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); | |
1001 | struct nvme_fc_ctrl *ctrl = lsop->ctrl; | |
1002 | ||
1003 | __nvme_fc_finish_ls_req(ctrl, lsop); | |
1004 | ||
1005 | if (status) | |
1006 | dev_err(ctrl->dev, | |
1007 | "disconnect assoc ls request command failed (%d).\n", | |
1008 | status); | |
1009 | ||
1010 | /* fc-nvme iniator doesn't care about success or failure of cmd */ | |
1011 | ||
1012 | kfree(lsop); | |
1013 | } | |
1014 | ||
1015 | /* | |
1016 | * This routine sends a FC-NVME LS to disconnect (aka terminate) | |
1017 | * the FC-NVME Association. Terminating the association also | |
1018 | * terminates the FC-NVME connections (per queue, both admin and io | |
1019 | * queues) that are part of the association. E.g. things are torn | |
1020 | * down, and the related FC-NVME Association ID and Connection IDs | |
1021 | * become invalid. | |
1022 | * | |
1023 | * The behavior of the fc-nvme initiator is such that it's | |
1024 | * understanding of the association and connections will implicitly | |
1025 | * be torn down. The action is implicit as it may be due to a loss of | |
1026 | * connectivity with the fc-nvme target, so you may never get a | |
1027 | * response even if you tried. As such, the action of this routine | |
1028 | * is to asynchronously send the LS, ignore any results of the LS, and | |
1029 | * continue on with terminating the association. If the fc-nvme target | |
1030 | * is present and receives the LS, it too can tear down. | |
1031 | */ | |
1032 | static void | |
1033 | nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) | |
1034 | { | |
1035 | struct fcnvme_ls_disconnect_rqst *discon_rqst; | |
1036 | struct fcnvme_ls_disconnect_acc *discon_acc; | |
1037 | struct nvmefc_ls_req_op *lsop; | |
1038 | struct nvmefc_ls_req *lsreq; | |
1039 | ||
1040 | lsop = kzalloc((sizeof(*lsop) + | |
1041 | ctrl->lport->ops->lsrqst_priv_sz + | |
1042 | sizeof(*discon_rqst) + sizeof(*discon_acc)), | |
1043 | GFP_KERNEL); | |
1044 | if (!lsop) | |
1045 | /* couldn't sent it... too bad */ | |
1046 | return; | |
1047 | ||
1048 | lsreq = &lsop->ls_req; | |
1049 | ||
1050 | lsreq->private = (void *)&lsop[1]; | |
1051 | discon_rqst = (struct fcnvme_ls_disconnect_rqst *) | |
1052 | (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); | |
1053 | discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; | |
1054 | ||
1055 | discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; | |
1056 | discon_rqst->desc_list_len = cpu_to_be32( | |
1057 | sizeof(struct fcnvme_lsdesc_assoc_id) + | |
1058 | sizeof(struct fcnvme_lsdesc_disconn_cmd)); | |
1059 | ||
1060 | discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | |
1061 | discon_rqst->associd.desc_len = | |
1062 | fcnvme_lsdesc_len( | |
1063 | sizeof(struct fcnvme_lsdesc_assoc_id)); | |
1064 | ||
1065 | discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); | |
1066 | ||
1067 | discon_rqst->discon_cmd.desc_tag = cpu_to_be32( | |
1068 | FCNVME_LSDESC_DISCONN_CMD); | |
1069 | discon_rqst->discon_cmd.desc_len = | |
1070 | fcnvme_lsdesc_len( | |
1071 | sizeof(struct fcnvme_lsdesc_disconn_cmd)); | |
1072 | discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; | |
1073 | discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); | |
1074 | ||
1075 | lsreq->rqstaddr = discon_rqst; | |
1076 | lsreq->rqstlen = sizeof(*discon_rqst); | |
1077 | lsreq->rspaddr = discon_acc; | |
1078 | lsreq->rsplen = sizeof(*discon_acc); | |
1079 | lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; | |
1080 | ||
1081 | nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done); | |
1082 | ||
1083 | /* only meaningful part to terminating the association */ | |
1084 | ctrl->association_id = 0; | |
1085 | } | |
1086 | ||
1087 | ||
1088 | /* *********************** NVME Ctrl Routines **************************** */ | |
1089 | ||
1090 | ||
1091 | static int | |
1092 | nvme_fc_reinit_request(void *data, struct request *rq) | |
1093 | { | |
1094 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1095 | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | |
1096 | ||
1097 | memset(cmdiu, 0, sizeof(*cmdiu)); | |
1098 | cmdiu->scsi_id = NVME_CMD_SCSI_ID; | |
1099 | cmdiu->fc_id = NVME_CMD_FC_ID; | |
1100 | cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); | |
1101 | memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); | |
1102 | ||
1103 | return 0; | |
1104 | } | |
1105 | ||
1106 | static void | |
1107 | __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, | |
1108 | struct nvme_fc_fcp_op *op) | |
1109 | { | |
1110 | fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, | |
1111 | sizeof(op->rsp_iu), DMA_FROM_DEVICE); | |
1112 | fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, | |
1113 | sizeof(op->cmd_iu), DMA_TO_DEVICE); | |
1114 | ||
1115 | atomic_set(&op->state, FCPOP_STATE_UNINIT); | |
1116 | } | |
1117 | ||
1118 | static void | |
1119 | nvme_fc_exit_request(void *data, struct request *rq, | |
1120 | unsigned int hctx_idx, unsigned int rq_idx) | |
1121 | { | |
1122 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1123 | ||
1124 | return __nvme_fc_exit_request(data, op); | |
1125 | } | |
1126 | ||
1127 | static void | |
1128 | nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl) | |
1129 | { | |
1130 | struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; | |
1131 | int i; | |
1132 | ||
1133 | for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { | |
1134 | if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT) | |
1135 | continue; | |
1136 | __nvme_fc_exit_request(ctrl, aen_op); | |
1137 | nvme_fc_ctrl_put(ctrl); | |
1138 | } | |
1139 | } | |
1140 | ||
1141 | void | |
1142 | nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) | |
1143 | { | |
1144 | struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); | |
1145 | struct request *rq = op->rq; | |
1146 | struct nvmefc_fcp_req *freq = &op->fcp_req; | |
1147 | struct nvme_fc_ctrl *ctrl = op->ctrl; | |
1148 | struct nvme_fc_queue *queue = op->queue; | |
1149 | struct nvme_completion *cqe = &op->rsp_iu.cqe; | |
d663b69f | 1150 | __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); |
e399441d JS |
1151 | |
1152 | /* | |
1153 | * WARNING: | |
1154 | * The current linux implementation of a nvme controller | |
1155 | * allocates a single tag set for all io queues and sizes | |
1156 | * the io queues to fully hold all possible tags. Thus, the | |
1157 | * implementation does not reference or care about the sqhd | |
1158 | * value as it never needs to use the sqhd/sqtail pointers | |
1159 | * for submission pacing. | |
1160 | * | |
1161 | * This affects the FC-NVME implementation in two ways: | |
1162 | * 1) As the value doesn't matter, we don't need to waste | |
1163 | * cycles extracting it from ERSPs and stamping it in the | |
1164 | * cases where the transport fabricates CQEs on successful | |
1165 | * completions. | |
1166 | * 2) The FC-NVME implementation requires that delivery of | |
1167 | * ERSP completions are to go back to the nvme layer in order | |
1168 | * relative to the rsn, such that the sqhd value will always | |
1169 | * be "in order" for the nvme layer. As the nvme layer in | |
1170 | * linux doesn't care about sqhd, there's no need to return | |
1171 | * them in order. | |
1172 | * | |
1173 | * Additionally: | |
1174 | * As the core nvme layer in linux currently does not look at | |
1175 | * every field in the cqe - in cases where the FC transport must | |
1176 | * fabricate a CQE, the following fields will not be set as they | |
1177 | * are not referenced: | |
1178 | * cqe.sqid, cqe.sqhd, cqe.command_id | |
1179 | */ | |
1180 | ||
1181 | fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, | |
1182 | sizeof(op->rsp_iu), DMA_FROM_DEVICE); | |
1183 | ||
1184 | if (atomic_read(&op->state) == FCPOP_STATE_ABORTED) | |
d663b69f | 1185 | status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); |
62eeacb0 | 1186 | else if (freq->status) |
d663b69f | 1187 | status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); |
e399441d JS |
1188 | |
1189 | /* | |
1190 | * For the linux implementation, if we have an unsuccesful | |
1191 | * status, they blk-mq layer can typically be called with the | |
1192 | * non-zero status and the content of the cqe isn't important. | |
1193 | */ | |
1194 | if (status) | |
1195 | goto done; | |
1196 | ||
1197 | /* | |
1198 | * command completed successfully relative to the wire | |
1199 | * protocol. However, validate anything received and | |
1200 | * extract the status and result from the cqe (create it | |
1201 | * where necessary). | |
1202 | */ | |
1203 | ||
1204 | switch (freq->rcv_rsplen) { | |
1205 | ||
1206 | case 0: | |
1207 | case NVME_FC_SIZEOF_ZEROS_RSP: | |
1208 | /* | |
1209 | * No response payload or 12 bytes of payload (which | |
1210 | * should all be zeros) are considered successful and | |
1211 | * no payload in the CQE by the transport. | |
1212 | */ | |
1213 | if (freq->transferred_length != | |
1214 | be32_to_cpu(op->cmd_iu.data_len)) { | |
d663b69f | 1215 | status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); |
e399441d JS |
1216 | goto done; |
1217 | } | |
1218 | op->nreq.result.u64 = 0; | |
1219 | break; | |
1220 | ||
1221 | case sizeof(struct nvme_fc_ersp_iu): | |
1222 | /* | |
1223 | * The ERSP IU contains a full completion with CQE. | |
1224 | * Validate ERSP IU and look at cqe. | |
1225 | */ | |
1226 | if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != | |
1227 | (freq->rcv_rsplen / 4) || | |
1228 | be32_to_cpu(op->rsp_iu.xfrd_len) != | |
1229 | freq->transferred_length || | |
726a1080 | 1230 | op->rsp_iu.status_code || |
e399441d | 1231 | op->rqno != le16_to_cpu(cqe->command_id))) { |
d663b69f | 1232 | status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); |
e399441d JS |
1233 | goto done; |
1234 | } | |
1235 | op->nreq.result = cqe->result; | |
d663b69f | 1236 | status = cqe->status; |
e399441d JS |
1237 | break; |
1238 | ||
1239 | default: | |
d663b69f | 1240 | status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1); |
e399441d JS |
1241 | goto done; |
1242 | } | |
1243 | ||
1244 | done: | |
1245 | if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) { | |
1246 | nvme_complete_async_event(&queue->ctrl->ctrl, status, | |
1247 | &op->nreq.result); | |
1248 | nvme_fc_ctrl_put(ctrl); | |
1249 | return; | |
1250 | } | |
1251 | ||
d663b69f | 1252 | blk_mq_complete_request(rq, le16_to_cpu(status) >> 1); |
e399441d JS |
1253 | } |
1254 | ||
1255 | static int | |
1256 | __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, | |
1257 | struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, | |
1258 | struct request *rq, u32 rqno) | |
1259 | { | |
1260 | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | |
1261 | int ret = 0; | |
1262 | ||
1263 | memset(op, 0, sizeof(*op)); | |
1264 | op->fcp_req.cmdaddr = &op->cmd_iu; | |
1265 | op->fcp_req.cmdlen = sizeof(op->cmd_iu); | |
1266 | op->fcp_req.rspaddr = &op->rsp_iu; | |
1267 | op->fcp_req.rsplen = sizeof(op->rsp_iu); | |
1268 | op->fcp_req.done = nvme_fc_fcpio_done; | |
1269 | op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; | |
1270 | op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; | |
1271 | op->ctrl = ctrl; | |
1272 | op->queue = queue; | |
1273 | op->rq = rq; | |
1274 | op->rqno = rqno; | |
1275 | ||
1276 | cmdiu->scsi_id = NVME_CMD_SCSI_ID; | |
1277 | cmdiu->fc_id = NVME_CMD_FC_ID; | |
1278 | cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); | |
1279 | ||
1280 | op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, | |
1281 | &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); | |
1282 | if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { | |
1283 | dev_err(ctrl->dev, | |
1284 | "FCP Op failed - cmdiu dma mapping failed.\n"); | |
1285 | ret = EFAULT; | |
1286 | goto out_on_error; | |
1287 | } | |
1288 | ||
1289 | op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, | |
1290 | &op->rsp_iu, sizeof(op->rsp_iu), | |
1291 | DMA_FROM_DEVICE); | |
1292 | if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { | |
1293 | dev_err(ctrl->dev, | |
1294 | "FCP Op failed - rspiu dma mapping failed.\n"); | |
1295 | ret = EFAULT; | |
1296 | } | |
1297 | ||
1298 | atomic_set(&op->state, FCPOP_STATE_IDLE); | |
1299 | out_on_error: | |
1300 | return ret; | |
1301 | } | |
1302 | ||
1303 | static int | |
1304 | nvme_fc_init_request(void *data, struct request *rq, | |
1305 | unsigned int hctx_idx, unsigned int rq_idx, | |
1306 | unsigned int numa_node) | |
1307 | { | |
1308 | struct nvme_fc_ctrl *ctrl = data; | |
1309 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1310 | struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1]; | |
1311 | ||
1312 | return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); | |
1313 | } | |
1314 | ||
1315 | static int | |
1316 | nvme_fc_init_admin_request(void *data, struct request *rq, | |
1317 | unsigned int hctx_idx, unsigned int rq_idx, | |
1318 | unsigned int numa_node) | |
1319 | { | |
1320 | struct nvme_fc_ctrl *ctrl = data; | |
1321 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1322 | struct nvme_fc_queue *queue = &ctrl->queues[0]; | |
1323 | ||
1324 | return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); | |
1325 | } | |
1326 | ||
1327 | static int | |
1328 | nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) | |
1329 | { | |
1330 | struct nvme_fc_fcp_op *aen_op; | |
1331 | struct nvme_fc_cmd_iu *cmdiu; | |
1332 | struct nvme_command *sqe; | |
1333 | int i, ret; | |
1334 | ||
1335 | aen_op = ctrl->aen_ops; | |
1336 | for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) { | |
1337 | cmdiu = &aen_op->cmd_iu; | |
1338 | sqe = &cmdiu->sqe; | |
1339 | ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], | |
1340 | aen_op, (struct request *)NULL, | |
1341 | (AEN_CMDID_BASE + i)); | |
1342 | if (ret) | |
1343 | return ret; | |
1344 | ||
1345 | memset(sqe, 0, sizeof(*sqe)); | |
1346 | sqe->common.opcode = nvme_admin_async_event; | |
1347 | sqe->common.command_id = AEN_CMDID_BASE + i; | |
1348 | } | |
1349 | return 0; | |
1350 | } | |
1351 | ||
1352 | ||
1353 | static inline void | |
1354 | __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, | |
1355 | unsigned int qidx) | |
1356 | { | |
1357 | struct nvme_fc_queue *queue = &ctrl->queues[qidx]; | |
1358 | ||
1359 | hctx->driver_data = queue; | |
1360 | queue->hctx = hctx; | |
1361 | } | |
1362 | ||
1363 | static int | |
1364 | nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | |
1365 | unsigned int hctx_idx) | |
1366 | { | |
1367 | struct nvme_fc_ctrl *ctrl = data; | |
1368 | ||
1369 | __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); | |
1370 | ||
1371 | return 0; | |
1372 | } | |
1373 | ||
1374 | static int | |
1375 | nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, | |
1376 | unsigned int hctx_idx) | |
1377 | { | |
1378 | struct nvme_fc_ctrl *ctrl = data; | |
1379 | ||
1380 | __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); | |
1381 | ||
1382 | return 0; | |
1383 | } | |
1384 | ||
1385 | static void | |
1386 | nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size) | |
1387 | { | |
1388 | struct nvme_fc_queue *queue; | |
1389 | ||
1390 | queue = &ctrl->queues[idx]; | |
1391 | memset(queue, 0, sizeof(*queue)); | |
1392 | queue->ctrl = ctrl; | |
1393 | queue->qnum = idx; | |
1394 | atomic_set(&queue->csn, 1); | |
1395 | queue->dev = ctrl->dev; | |
1396 | ||
1397 | if (idx > 0) | |
1398 | queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; | |
1399 | else | |
1400 | queue->cmnd_capsule_len = sizeof(struct nvme_command); | |
1401 | ||
1402 | queue->queue_size = queue_size; | |
1403 | ||
1404 | /* | |
1405 | * Considered whether we should allocate buffers for all SQEs | |
1406 | * and CQEs and dma map them - mapping their respective entries | |
1407 | * into the request structures (kernel vm addr and dma address) | |
1408 | * thus the driver could use the buffers/mappings directly. | |
1409 | * It only makes sense if the LLDD would use them for its | |
1410 | * messaging api. It's very unlikely most adapter api's would use | |
1411 | * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload | |
1412 | * structures were used instead. | |
1413 | */ | |
1414 | } | |
1415 | ||
1416 | /* | |
1417 | * This routine terminates a queue at the transport level. | |
1418 | * The transport has already ensured that all outstanding ios on | |
1419 | * the queue have been terminated. | |
1420 | * The transport will send a Disconnect LS request to terminate | |
1421 | * the queue's connection. Termination of the admin queue will also | |
1422 | * terminate the association at the target. | |
1423 | */ | |
1424 | static void | |
1425 | nvme_fc_free_queue(struct nvme_fc_queue *queue) | |
1426 | { | |
1427 | if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) | |
1428 | return; | |
1429 | ||
1430 | /* | |
1431 | * Current implementation never disconnects a single queue. | |
1432 | * It always terminates a whole association. So there is never | |
1433 | * a disconnect(queue) LS sent to the target. | |
1434 | */ | |
1435 | ||
1436 | queue->connection_id = 0; | |
1437 | clear_bit(NVME_FC_Q_CONNECTED, &queue->flags); | |
1438 | } | |
1439 | ||
1440 | static void | |
1441 | __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, | |
1442 | struct nvme_fc_queue *queue, unsigned int qidx) | |
1443 | { | |
1444 | if (ctrl->lport->ops->delete_queue) | |
1445 | ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, | |
1446 | queue->lldd_handle); | |
1447 | queue->lldd_handle = NULL; | |
1448 | } | |
1449 | ||
1450 | static void | |
1451 | nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl) | |
1452 | { | |
1453 | __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); | |
1454 | blk_cleanup_queue(ctrl->ctrl.admin_q); | |
1455 | blk_mq_free_tag_set(&ctrl->admin_tag_set); | |
1456 | nvme_fc_free_queue(&ctrl->queues[0]); | |
1457 | } | |
1458 | ||
1459 | static void | |
1460 | nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) | |
1461 | { | |
1462 | int i; | |
1463 | ||
1464 | for (i = 1; i < ctrl->queue_count; i++) | |
1465 | nvme_fc_free_queue(&ctrl->queues[i]); | |
1466 | } | |
1467 | ||
1468 | static int | |
1469 | __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, | |
1470 | struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) | |
1471 | { | |
1472 | int ret = 0; | |
1473 | ||
1474 | queue->lldd_handle = NULL; | |
1475 | if (ctrl->lport->ops->create_queue) | |
1476 | ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, | |
1477 | qidx, qsize, &queue->lldd_handle); | |
1478 | ||
1479 | return ret; | |
1480 | } | |
1481 | ||
1482 | static void | |
1483 | nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) | |
1484 | { | |
1485 | struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1]; | |
1486 | int i; | |
1487 | ||
1488 | for (i = ctrl->queue_count - 1; i >= 1; i--, queue--) | |
1489 | __nvme_fc_delete_hw_queue(ctrl, queue, i); | |
1490 | } | |
1491 | ||
1492 | static int | |
1493 | nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) | |
1494 | { | |
1495 | struct nvme_fc_queue *queue = &ctrl->queues[1]; | |
17a1ec08 | 1496 | int i, ret; |
e399441d JS |
1497 | |
1498 | for (i = 1; i < ctrl->queue_count; i++, queue++) { | |
1499 | ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); | |
17a1ec08 JT |
1500 | if (ret) |
1501 | goto delete_queues; | |
e399441d JS |
1502 | } |
1503 | ||
1504 | return 0; | |
17a1ec08 JT |
1505 | |
1506 | delete_queues: | |
1507 | for (; i >= 0; i--) | |
1508 | __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); | |
1509 | return ret; | |
e399441d JS |
1510 | } |
1511 | ||
1512 | static int | |
1513 | nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) | |
1514 | { | |
1515 | int i, ret = 0; | |
1516 | ||
1517 | for (i = 1; i < ctrl->queue_count; i++) { | |
1518 | ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, | |
1519 | (qsize / 5)); | |
1520 | if (ret) | |
1521 | break; | |
1522 | ret = nvmf_connect_io_queue(&ctrl->ctrl, i); | |
1523 | if (ret) | |
1524 | break; | |
1525 | } | |
1526 | ||
1527 | return ret; | |
1528 | } | |
1529 | ||
1530 | static void | |
1531 | nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) | |
1532 | { | |
1533 | int i; | |
1534 | ||
1535 | for (i = 1; i < ctrl->queue_count; i++) | |
1536 | nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize); | |
1537 | } | |
1538 | ||
1539 | static void | |
1540 | nvme_fc_ctrl_free(struct kref *ref) | |
1541 | { | |
1542 | struct nvme_fc_ctrl *ctrl = | |
1543 | container_of(ref, struct nvme_fc_ctrl, ref); | |
1544 | unsigned long flags; | |
1545 | ||
1546 | if (ctrl->state != FCCTRL_INIT) { | |
1547 | /* remove from rport list */ | |
1548 | spin_lock_irqsave(&ctrl->rport->lock, flags); | |
1549 | list_del(&ctrl->ctrl_list); | |
1550 | spin_unlock_irqrestore(&ctrl->rport->lock, flags); | |
1551 | } | |
1552 | ||
1553 | put_device(ctrl->dev); | |
1554 | nvme_fc_rport_put(ctrl->rport); | |
1555 | ||
1556 | kfree(ctrl->queues); | |
1557 | ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); | |
1558 | nvmf_free_options(ctrl->ctrl.opts); | |
1559 | kfree(ctrl); | |
1560 | } | |
1561 | ||
1562 | static void | |
1563 | nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) | |
1564 | { | |
1565 | kref_put(&ctrl->ref, nvme_fc_ctrl_free); | |
1566 | } | |
1567 | ||
1568 | static int | |
1569 | nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) | |
1570 | { | |
1571 | return kref_get_unless_zero(&ctrl->ref); | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * All accesses from nvme core layer done - can now free the | |
1576 | * controller. Called after last nvme_put_ctrl() call | |
1577 | */ | |
1578 | static void | |
1579 | nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl) | |
1580 | { | |
1581 | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | |
1582 | ||
1583 | WARN_ON(nctrl != &ctrl->ctrl); | |
1584 | ||
1585 | /* | |
1586 | * Tear down the association, which will generate link | |
1587 | * traffic to terminate connections | |
1588 | */ | |
1589 | ||
1590 | if (ctrl->state != FCCTRL_INIT) { | |
1591 | /* send a Disconnect(association) LS to fc-nvme target */ | |
1592 | nvme_fc_xmt_disconnect_assoc(ctrl); | |
1593 | ||
1594 | if (ctrl->ctrl.tagset) { | |
1595 | blk_cleanup_queue(ctrl->ctrl.connect_q); | |
1596 | blk_mq_free_tag_set(&ctrl->tag_set); | |
1597 | nvme_fc_delete_hw_io_queues(ctrl); | |
1598 | nvme_fc_free_io_queues(ctrl); | |
1599 | } | |
1600 | ||
1601 | nvme_fc_exit_aen_ops(ctrl); | |
1602 | ||
1603 | nvme_fc_destroy_admin_queue(ctrl); | |
1604 | } | |
1605 | ||
1606 | nvme_fc_ctrl_put(ctrl); | |
1607 | } | |
1608 | ||
1609 | ||
1610 | static int | |
1611 | __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) | |
1612 | { | |
1613 | int state; | |
1614 | ||
1615 | state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); | |
1616 | if (state != FCPOP_STATE_ACTIVE) { | |
1617 | atomic_set(&op->state, state); | |
1618 | return -ECANCELED; /* fail */ | |
1619 | } | |
1620 | ||
1621 | ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, | |
1622 | &ctrl->rport->remoteport, | |
1623 | op->queue->lldd_handle, | |
1624 | &op->fcp_req); | |
1625 | ||
1626 | return 0; | |
1627 | } | |
1628 | ||
1629 | enum blk_eh_timer_return | |
1630 | nvme_fc_timeout(struct request *rq, bool reserved) | |
1631 | { | |
1632 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1633 | struct nvme_fc_ctrl *ctrl = op->ctrl; | |
1634 | int ret; | |
1635 | ||
1636 | if (reserved) | |
1637 | return BLK_EH_RESET_TIMER; | |
1638 | ||
1639 | ret = __nvme_fc_abort_op(ctrl, op); | |
1640 | if (ret) | |
1641 | /* io wasn't active to abort consider it done */ | |
1642 | return BLK_EH_HANDLED; | |
1643 | ||
1644 | /* | |
1645 | * TODO: force a controller reset | |
1646 | * when that happens, queues will be torn down and outstanding | |
1647 | * ios will be terminated, and the above abort, on a single io | |
1648 | * will no longer be needed. | |
1649 | */ | |
1650 | ||
1651 | return BLK_EH_HANDLED; | |
1652 | } | |
1653 | ||
1654 | static int | |
1655 | nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, | |
1656 | struct nvme_fc_fcp_op *op) | |
1657 | { | |
1658 | struct nvmefc_fcp_req *freq = &op->fcp_req; | |
e399441d JS |
1659 | enum dma_data_direction dir; |
1660 | int ret; | |
1661 | ||
1662 | freq->sg_cnt = 0; | |
1663 | ||
b131c61d | 1664 | if (!blk_rq_payload_bytes(rq)) |
e399441d JS |
1665 | return 0; |
1666 | ||
1667 | freq->sg_table.sgl = freq->first_sgl; | |
19e420bb CH |
1668 | ret = sg_alloc_table_chained(&freq->sg_table, |
1669 | blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); | |
e399441d JS |
1670 | if (ret) |
1671 | return -ENOMEM; | |
1672 | ||
1673 | op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); | |
19e420bb | 1674 | WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); |
e399441d JS |
1675 | dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
1676 | freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, | |
1677 | op->nents, dir); | |
1678 | if (unlikely(freq->sg_cnt <= 0)) { | |
1679 | sg_free_table_chained(&freq->sg_table, true); | |
1680 | freq->sg_cnt = 0; | |
1681 | return -EFAULT; | |
1682 | } | |
1683 | ||
1684 | /* | |
1685 | * TODO: blk_integrity_rq(rq) for DIF | |
1686 | */ | |
1687 | return 0; | |
1688 | } | |
1689 | ||
1690 | static void | |
1691 | nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, | |
1692 | struct nvme_fc_fcp_op *op) | |
1693 | { | |
1694 | struct nvmefc_fcp_req *freq = &op->fcp_req; | |
1695 | ||
1696 | if (!freq->sg_cnt) | |
1697 | return; | |
1698 | ||
1699 | fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, | |
1700 | ((rq_data_dir(rq) == WRITE) ? | |
1701 | DMA_TO_DEVICE : DMA_FROM_DEVICE)); | |
1702 | ||
1703 | nvme_cleanup_cmd(rq); | |
1704 | ||
1705 | sg_free_table_chained(&freq->sg_table, true); | |
1706 | ||
1707 | freq->sg_cnt = 0; | |
1708 | } | |
1709 | ||
1710 | /* | |
1711 | * In FC, the queue is a logical thing. At transport connect, the target | |
1712 | * creates its "queue" and returns a handle that is to be given to the | |
1713 | * target whenever it posts something to the corresponding SQ. When an | |
1714 | * SQE is sent on a SQ, FC effectively considers the SQE, or rather the | |
1715 | * command contained within the SQE, an io, and assigns a FC exchange | |
1716 | * to it. The SQE and the associated SQ handle are sent in the initial | |
1717 | * CMD IU sents on the exchange. All transfers relative to the io occur | |
1718 | * as part of the exchange. The CQE is the last thing for the io, | |
1719 | * which is transferred (explicitly or implicitly) with the RSP IU | |
1720 | * sent on the exchange. After the CQE is received, the FC exchange is | |
1721 | * terminaed and the Exchange may be used on a different io. | |
1722 | * | |
1723 | * The transport to LLDD api has the transport making a request for a | |
1724 | * new fcp io request to the LLDD. The LLDD then allocates a FC exchange | |
1725 | * resource and transfers the command. The LLDD will then process all | |
1726 | * steps to complete the io. Upon completion, the transport done routine | |
1727 | * is called. | |
1728 | * | |
1729 | * So - while the operation is outstanding to the LLDD, there is a link | |
1730 | * level FC exchange resource that is also outstanding. This must be | |
1731 | * considered in all cleanup operations. | |
1732 | */ | |
1733 | static int | |
1734 | nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, | |
1735 | struct nvme_fc_fcp_op *op, u32 data_len, | |
1736 | enum nvmefc_fcp_datadir io_dir) | |
1737 | { | |
1738 | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | |
1739 | struct nvme_command *sqe = &cmdiu->sqe; | |
1740 | u32 csn; | |
1741 | int ret; | |
1742 | ||
1743 | if (!nvme_fc_ctrl_get(ctrl)) | |
1744 | return BLK_MQ_RQ_QUEUE_ERROR; | |
1745 | ||
1746 | /* format the FC-NVME CMD IU and fcp_req */ | |
1747 | cmdiu->connection_id = cpu_to_be64(queue->connection_id); | |
1748 | csn = atomic_inc_return(&queue->csn); | |
1749 | cmdiu->csn = cpu_to_be32(csn); | |
1750 | cmdiu->data_len = cpu_to_be32(data_len); | |
1751 | switch (io_dir) { | |
1752 | case NVMEFC_FCP_WRITE: | |
1753 | cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; | |
1754 | break; | |
1755 | case NVMEFC_FCP_READ: | |
1756 | cmdiu->flags = FCNVME_CMD_FLAGS_READ; | |
1757 | break; | |
1758 | case NVMEFC_FCP_NODATA: | |
1759 | cmdiu->flags = 0; | |
1760 | break; | |
1761 | } | |
1762 | op->fcp_req.payload_length = data_len; | |
1763 | op->fcp_req.io_dir = io_dir; | |
1764 | op->fcp_req.transferred_length = 0; | |
1765 | op->fcp_req.rcv_rsplen = 0; | |
62eeacb0 | 1766 | op->fcp_req.status = NVME_SC_SUCCESS; |
e399441d JS |
1767 | op->fcp_req.sqid = cpu_to_le16(queue->qnum); |
1768 | ||
1769 | /* | |
1770 | * validate per fabric rules, set fields mandated by fabric spec | |
1771 | * as well as those by FC-NVME spec. | |
1772 | */ | |
1773 | WARN_ON_ONCE(sqe->common.metadata); | |
1774 | WARN_ON_ONCE(sqe->common.dptr.prp1); | |
1775 | WARN_ON_ONCE(sqe->common.dptr.prp2); | |
1776 | sqe->common.flags |= NVME_CMD_SGL_METABUF; | |
1777 | ||
1778 | /* | |
1779 | * format SQE DPTR field per FC-NVME rules | |
1780 | * type=data block descr; subtype=offset; | |
1781 | * offset is currently 0. | |
1782 | */ | |
1783 | sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET; | |
1784 | sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); | |
1785 | sqe->rw.dptr.sgl.addr = 0; | |
1786 | ||
1787 | /* odd that we set the command_id - should come from nvme-fabrics */ | |
1788 | WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno)); | |
1789 | ||
1790 | if (op->rq) { /* skipped on aens */ | |
1791 | ret = nvme_fc_map_data(ctrl, op->rq, op); | |
1792 | if (ret < 0) { | |
1793 | dev_err(queue->ctrl->ctrl.device, | |
1794 | "Failed to map data (%d)\n", ret); | |
1795 | nvme_cleanup_cmd(op->rq); | |
1796 | nvme_fc_ctrl_put(ctrl); | |
1797 | return (ret == -ENOMEM || ret == -EAGAIN) ? | |
1798 | BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; | |
1799 | } | |
1800 | } | |
1801 | ||
1802 | fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, | |
1803 | sizeof(op->cmd_iu), DMA_TO_DEVICE); | |
1804 | ||
1805 | atomic_set(&op->state, FCPOP_STATE_ACTIVE); | |
1806 | ||
1807 | if (op->rq) | |
1808 | blk_mq_start_request(op->rq); | |
1809 | ||
1810 | ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, | |
1811 | &ctrl->rport->remoteport, | |
1812 | queue->lldd_handle, &op->fcp_req); | |
1813 | ||
1814 | if (ret) { | |
1815 | dev_err(ctrl->dev, | |
1816 | "Send nvme command failed - lldd returned %d.\n", ret); | |
1817 | ||
1818 | if (op->rq) { /* normal request */ | |
1819 | nvme_fc_unmap_data(ctrl, op->rq, op); | |
1820 | nvme_cleanup_cmd(op->rq); | |
1821 | } | |
1822 | /* else - aen. no cleanup needed */ | |
1823 | ||
1824 | nvme_fc_ctrl_put(ctrl); | |
1825 | ||
1826 | if (ret != -EBUSY) | |
1827 | return BLK_MQ_RQ_QUEUE_ERROR; | |
1828 | ||
1829 | if (op->rq) { | |
1830 | blk_mq_stop_hw_queues(op->rq->q); | |
1831 | blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY); | |
1832 | } | |
1833 | return BLK_MQ_RQ_QUEUE_BUSY; | |
1834 | } | |
1835 | ||
1836 | return BLK_MQ_RQ_QUEUE_OK; | |
1837 | } | |
1838 | ||
1839 | static int | |
1840 | nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, | |
1841 | const struct blk_mq_queue_data *bd) | |
1842 | { | |
1843 | struct nvme_ns *ns = hctx->queue->queuedata; | |
1844 | struct nvme_fc_queue *queue = hctx->driver_data; | |
1845 | struct nvme_fc_ctrl *ctrl = queue->ctrl; | |
1846 | struct request *rq = bd->rq; | |
1847 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1848 | struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; | |
1849 | struct nvme_command *sqe = &cmdiu->sqe; | |
1850 | enum nvmefc_fcp_datadir io_dir; | |
1851 | u32 data_len; | |
1852 | int ret; | |
1853 | ||
1854 | ret = nvme_setup_cmd(ns, rq, sqe); | |
1855 | if (ret) | |
1856 | return ret; | |
1857 | ||
b131c61d | 1858 | data_len = blk_rq_payload_bytes(rq); |
e399441d JS |
1859 | if (data_len) |
1860 | io_dir = ((rq_data_dir(rq) == WRITE) ? | |
1861 | NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); | |
1862 | else | |
1863 | io_dir = NVMEFC_FCP_NODATA; | |
1864 | ||
1865 | return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); | |
1866 | } | |
1867 | ||
1868 | static struct blk_mq_tags * | |
1869 | nvme_fc_tagset(struct nvme_fc_queue *queue) | |
1870 | { | |
1871 | if (queue->qnum == 0) | |
1872 | return queue->ctrl->admin_tag_set.tags[queue->qnum]; | |
1873 | ||
1874 | return queue->ctrl->tag_set.tags[queue->qnum - 1]; | |
1875 | } | |
1876 | ||
1877 | static int | |
1878 | nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) | |
1879 | ||
1880 | { | |
1881 | struct nvme_fc_queue *queue = hctx->driver_data; | |
1882 | struct nvme_fc_ctrl *ctrl = queue->ctrl; | |
1883 | struct request *req; | |
1884 | struct nvme_fc_fcp_op *op; | |
1885 | ||
1886 | req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); | |
1887 | if (!req) { | |
1888 | dev_err(queue->ctrl->ctrl.device, | |
1889 | "tag 0x%x on QNum %#x not found\n", | |
1890 | tag, queue->qnum); | |
1891 | return 0; | |
1892 | } | |
1893 | ||
1894 | op = blk_mq_rq_to_pdu(req); | |
1895 | ||
1896 | if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && | |
1897 | (ctrl->lport->ops->poll_queue)) | |
1898 | ctrl->lport->ops->poll_queue(&ctrl->lport->localport, | |
1899 | queue->lldd_handle); | |
1900 | ||
1901 | return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); | |
1902 | } | |
1903 | ||
1904 | static void | |
1905 | nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx) | |
1906 | { | |
1907 | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); | |
1908 | struct nvme_fc_fcp_op *aen_op; | |
1909 | int ret; | |
1910 | ||
1911 | if (aer_idx > NVME_FC_NR_AEN_COMMANDS) | |
1912 | return; | |
1913 | ||
1914 | aen_op = &ctrl->aen_ops[aer_idx]; | |
1915 | ||
1916 | ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, | |
1917 | NVMEFC_FCP_NODATA); | |
1918 | if (ret) | |
1919 | dev_err(ctrl->ctrl.device, | |
1920 | "failed async event work [%d]\n", aer_idx); | |
1921 | } | |
1922 | ||
1923 | static void | |
1924 | nvme_fc_complete_rq(struct request *rq) | |
1925 | { | |
1926 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); | |
1927 | struct nvme_fc_ctrl *ctrl = op->ctrl; | |
77f02a7a | 1928 | int state; |
e399441d JS |
1929 | |
1930 | state = atomic_xchg(&op->state, FCPOP_STATE_IDLE); | |
1931 | ||
1932 | nvme_cleanup_cmd(rq); | |
e399441d | 1933 | nvme_fc_unmap_data(ctrl, rq, op); |
77f02a7a | 1934 | nvme_complete_rq(rq); |
e399441d JS |
1935 | nvme_fc_ctrl_put(ctrl); |
1936 | ||
e399441d JS |
1937 | } |
1938 | ||
f363b089 | 1939 | static const struct blk_mq_ops nvme_fc_mq_ops = { |
e399441d JS |
1940 | .queue_rq = nvme_fc_queue_rq, |
1941 | .complete = nvme_fc_complete_rq, | |
1942 | .init_request = nvme_fc_init_request, | |
1943 | .exit_request = nvme_fc_exit_request, | |
1944 | .reinit_request = nvme_fc_reinit_request, | |
1945 | .init_hctx = nvme_fc_init_hctx, | |
1946 | .poll = nvme_fc_poll, | |
1947 | .timeout = nvme_fc_timeout, | |
1948 | }; | |
1949 | ||
f363b089 | 1950 | static const struct blk_mq_ops nvme_fc_admin_mq_ops = { |
e399441d JS |
1951 | .queue_rq = nvme_fc_queue_rq, |
1952 | .complete = nvme_fc_complete_rq, | |
1953 | .init_request = nvme_fc_init_admin_request, | |
1954 | .exit_request = nvme_fc_exit_request, | |
1955 | .reinit_request = nvme_fc_reinit_request, | |
1956 | .init_hctx = nvme_fc_init_admin_hctx, | |
1957 | .timeout = nvme_fc_timeout, | |
1958 | }; | |
1959 | ||
1960 | static int | |
1961 | nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl) | |
1962 | { | |
1963 | u32 segs; | |
1964 | int error; | |
1965 | ||
1966 | nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH); | |
1967 | ||
1968 | error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], | |
1969 | NVME_FC_AQ_BLKMQ_DEPTH, | |
1970 | (NVME_FC_AQ_BLKMQ_DEPTH / 4)); | |
1971 | if (error) | |
1972 | return error; | |
1973 | ||
1974 | memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); | |
1975 | ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; | |
1976 | ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH; | |
1977 | ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ | |
1978 | ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; | |
1979 | ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + | |
1980 | (SG_CHUNK_SIZE * | |
1981 | sizeof(struct scatterlist)) + | |
1982 | ctrl->lport->ops->fcprqst_priv_sz; | |
1983 | ctrl->admin_tag_set.driver_data = ctrl; | |
1984 | ctrl->admin_tag_set.nr_hw_queues = 1; | |
1985 | ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; | |
1986 | ||
1987 | error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); | |
1988 | if (error) | |
1989 | goto out_free_queue; | |
1990 | ||
1991 | ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); | |
1992 | if (IS_ERR(ctrl->ctrl.admin_q)) { | |
1993 | error = PTR_ERR(ctrl->ctrl.admin_q); | |
1994 | goto out_free_tagset; | |
1995 | } | |
1996 | ||
1997 | error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, | |
1998 | NVME_FC_AQ_BLKMQ_DEPTH); | |
1999 | if (error) | |
2000 | goto out_cleanup_queue; | |
2001 | ||
2002 | error = nvmf_connect_admin_queue(&ctrl->ctrl); | |
2003 | if (error) | |
2004 | goto out_delete_hw_queue; | |
2005 | ||
2006 | error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); | |
2007 | if (error) { | |
2008 | dev_err(ctrl->ctrl.device, | |
2009 | "prop_get NVME_REG_CAP failed\n"); | |
2010 | goto out_delete_hw_queue; | |
2011 | } | |
2012 | ||
2013 | ctrl->ctrl.sqsize = | |
2014 | min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); | |
2015 | ||
2016 | error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); | |
2017 | if (error) | |
2018 | goto out_delete_hw_queue; | |
2019 | ||
2020 | segs = min_t(u32, NVME_FC_MAX_SEGMENTS, | |
2021 | ctrl->lport->ops->max_sgl_segments); | |
2022 | ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9); | |
2023 | ||
2024 | error = nvme_init_identify(&ctrl->ctrl); | |
2025 | if (error) | |
2026 | goto out_delete_hw_queue; | |
2027 | ||
2028 | nvme_start_keep_alive(&ctrl->ctrl); | |
2029 | ||
2030 | return 0; | |
2031 | ||
2032 | out_delete_hw_queue: | |
2033 | __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); | |
2034 | out_cleanup_queue: | |
2035 | blk_cleanup_queue(ctrl->ctrl.admin_q); | |
2036 | out_free_tagset: | |
2037 | blk_mq_free_tag_set(&ctrl->admin_tag_set); | |
2038 | out_free_queue: | |
2039 | nvme_fc_free_queue(&ctrl->queues[0]); | |
2040 | return error; | |
2041 | } | |
2042 | ||
2043 | /* | |
2044 | * This routine is used by the transport when it needs to find active | |
2045 | * io on a queue that is to be terminated. The transport uses | |
2046 | * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke | |
2047 | * this routine to kill them on a 1 by 1 basis. | |
2048 | * | |
2049 | * As FC allocates FC exchange for each io, the transport must contact | |
2050 | * the LLDD to terminate the exchange, thus releasing the FC exchange. | |
2051 | * After terminating the exchange the LLDD will call the transport's | |
2052 | * normal io done path for the request, but it will have an aborted | |
2053 | * status. The done path will return the io request back to the block | |
2054 | * layer with an error status. | |
2055 | */ | |
2056 | static void | |
2057 | nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) | |
2058 | { | |
2059 | struct nvme_ctrl *nctrl = data; | |
2060 | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | |
2061 | struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); | |
2062 | int status; | |
2063 | ||
2064 | if (!blk_mq_request_started(req)) | |
2065 | return; | |
2066 | ||
2067 | /* this performs an ABTS-LS on the FC exchange for the io */ | |
2068 | status = __nvme_fc_abort_op(ctrl, op); | |
2069 | /* | |
2070 | * if __nvme_fc_abort_op failed: io wasn't active to abort | |
2071 | * consider it done. Assume completion path already completing | |
2072 | * in parallel | |
2073 | */ | |
2074 | if (status) | |
2075 | /* io wasn't active to abort consider it done */ | |
2076 | /* assume completion path already completing in parallel */ | |
2077 | return; | |
2078 | } | |
2079 | ||
2080 | ||
2081 | /* | |
2082 | * This routine stops operation of the controller. Admin and IO queues | |
2083 | * are stopped, outstanding ios on them terminated, and the nvme ctrl | |
2084 | * is shutdown. | |
2085 | */ | |
2086 | static void | |
2087 | nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl) | |
2088 | { | |
2089 | /* | |
2090 | * If io queues are present, stop them and terminate all outstanding | |
2091 | * ios on them. As FC allocates FC exchange for each io, the | |
2092 | * transport must contact the LLDD to terminate the exchange, | |
2093 | * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() | |
2094 | * to tell us what io's are busy and invoke a transport routine | |
2095 | * to kill them with the LLDD. After terminating the exchange | |
2096 | * the LLDD will call the transport's normal io done path, but it | |
2097 | * will have an aborted status. The done path will return the | |
2098 | * io requests back to the block layer as part of normal completions | |
2099 | * (but with error status). | |
2100 | */ | |
2101 | if (ctrl->queue_count > 1) { | |
2102 | nvme_stop_queues(&ctrl->ctrl); | |
2103 | blk_mq_tagset_busy_iter(&ctrl->tag_set, | |
2104 | nvme_fc_terminate_exchange, &ctrl->ctrl); | |
2105 | } | |
2106 | ||
2107 | if (ctrl->ctrl.state == NVME_CTRL_LIVE) | |
2108 | nvme_shutdown_ctrl(&ctrl->ctrl); | |
2109 | ||
2110 | /* | |
2111 | * now clean up the admin queue. Same thing as above. | |
2112 | * use blk_mq_tagset_busy_itr() and the transport routine to | |
2113 | * terminate the exchanges. | |
2114 | */ | |
2115 | blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); | |
2116 | blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, | |
2117 | nvme_fc_terminate_exchange, &ctrl->ctrl); | |
2118 | } | |
2119 | ||
2120 | /* | |
2121 | * Called to teardown an association. | |
2122 | * May be called with association fully in place or partially in place. | |
2123 | */ | |
2124 | static void | |
2125 | __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl) | |
2126 | { | |
2127 | nvme_stop_keep_alive(&ctrl->ctrl); | |
2128 | ||
2129 | /* stop and terminate ios on admin and io queues */ | |
2130 | nvme_fc_shutdown_ctrl(ctrl); | |
2131 | ||
2132 | /* | |
2133 | * tear down the controller | |
2134 | * This will result in the last reference on the nvme ctrl to | |
2135 | * expire, calling the transport nvme_fc_free_nvme_ctrl() callback. | |
2136 | * From there, the transport will tear down it's logical queues and | |
2137 | * association. | |
2138 | */ | |
2139 | nvme_uninit_ctrl(&ctrl->ctrl); | |
2140 | ||
2141 | nvme_put_ctrl(&ctrl->ctrl); | |
2142 | } | |
2143 | ||
2144 | static void | |
2145 | nvme_fc_del_ctrl_work(struct work_struct *work) | |
2146 | { | |
2147 | struct nvme_fc_ctrl *ctrl = | |
2148 | container_of(work, struct nvme_fc_ctrl, delete_work); | |
2149 | ||
2150 | __nvme_fc_remove_ctrl(ctrl); | |
2151 | } | |
2152 | ||
2153 | static int | |
2154 | __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl) | |
2155 | { | |
2156 | if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) | |
2157 | return -EBUSY; | |
2158 | ||
2159 | if (!queue_work(nvme_fc_wq, &ctrl->delete_work)) | |
2160 | return -EBUSY; | |
2161 | ||
2162 | return 0; | |
2163 | } | |
2164 | ||
2165 | /* | |
2166 | * Request from nvme core layer to delete the controller | |
2167 | */ | |
2168 | static int | |
2169 | nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl) | |
2170 | { | |
2171 | struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); | |
2172 | struct nvme_fc_rport *rport = ctrl->rport; | |
2173 | unsigned long flags; | |
2174 | int ret; | |
2175 | ||
2176 | spin_lock_irqsave(&rport->lock, flags); | |
2177 | ret = __nvme_fc_del_ctrl(ctrl); | |
2178 | spin_unlock_irqrestore(&rport->lock, flags); | |
2179 | if (ret) | |
2180 | return ret; | |
2181 | ||
2182 | flush_work(&ctrl->delete_work); | |
2183 | ||
2184 | return 0; | |
2185 | } | |
2186 | ||
2187 | static int | |
2188 | nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl) | |
2189 | { | |
2190 | return -EIO; | |
2191 | } | |
2192 | ||
2193 | static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { | |
2194 | .name = "fc", | |
2195 | .module = THIS_MODULE, | |
2196 | .is_fabrics = true, | |
2197 | .reg_read32 = nvmf_reg_read32, | |
2198 | .reg_read64 = nvmf_reg_read64, | |
2199 | .reg_write32 = nvmf_reg_write32, | |
2200 | .reset_ctrl = nvme_fc_reset_nvme_ctrl, | |
2201 | .free_ctrl = nvme_fc_free_nvme_ctrl, | |
2202 | .submit_async_event = nvme_fc_submit_async_event, | |
2203 | .delete_ctrl = nvme_fc_del_nvme_ctrl, | |
2204 | .get_subsysnqn = nvmf_get_subsysnqn, | |
2205 | .get_address = nvmf_get_address, | |
2206 | }; | |
2207 | ||
2208 | static int | |
2209 | nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) | |
2210 | { | |
2211 | struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | |
2212 | int ret; | |
2213 | ||
2214 | ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); | |
2215 | if (ret) { | |
2216 | dev_info(ctrl->ctrl.device, | |
2217 | "set_queue_count failed: %d\n", ret); | |
2218 | return ret; | |
2219 | } | |
2220 | ||
2221 | ctrl->queue_count = opts->nr_io_queues + 1; | |
2222 | if (!opts->nr_io_queues) | |
2223 | return 0; | |
2224 | ||
2225 | dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", | |
2226 | opts->nr_io_queues); | |
2227 | ||
2228 | nvme_fc_init_io_queues(ctrl); | |
2229 | ||
2230 | memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); | |
2231 | ctrl->tag_set.ops = &nvme_fc_mq_ops; | |
2232 | ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; | |
2233 | ctrl->tag_set.reserved_tags = 1; /* fabric connect */ | |
2234 | ctrl->tag_set.numa_node = NUMA_NO_NODE; | |
2235 | ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; | |
2236 | ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + | |
2237 | (SG_CHUNK_SIZE * | |
2238 | sizeof(struct scatterlist)) + | |
2239 | ctrl->lport->ops->fcprqst_priv_sz; | |
2240 | ctrl->tag_set.driver_data = ctrl; | |
2241 | ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; | |
2242 | ctrl->tag_set.timeout = NVME_IO_TIMEOUT; | |
2243 | ||
2244 | ret = blk_mq_alloc_tag_set(&ctrl->tag_set); | |
2245 | if (ret) | |
2246 | return ret; | |
2247 | ||
2248 | ctrl->ctrl.tagset = &ctrl->tag_set; | |
2249 | ||
2250 | ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); | |
2251 | if (IS_ERR(ctrl->ctrl.connect_q)) { | |
2252 | ret = PTR_ERR(ctrl->ctrl.connect_q); | |
2253 | goto out_free_tag_set; | |
2254 | } | |
2255 | ||
2256 | ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); | |
2257 | if (ret) | |
2258 | goto out_cleanup_blk_queue; | |
2259 | ||
2260 | ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); | |
2261 | if (ret) | |
2262 | goto out_delete_hw_queues; | |
2263 | ||
2264 | return 0; | |
2265 | ||
2266 | out_delete_hw_queues: | |
2267 | nvme_fc_delete_hw_io_queues(ctrl); | |
2268 | out_cleanup_blk_queue: | |
2269 | nvme_stop_keep_alive(&ctrl->ctrl); | |
2270 | blk_cleanup_queue(ctrl->ctrl.connect_q); | |
2271 | out_free_tag_set: | |
2272 | blk_mq_free_tag_set(&ctrl->tag_set); | |
2273 | nvme_fc_free_io_queues(ctrl); | |
2274 | ||
2275 | /* force put free routine to ignore io queues */ | |
2276 | ctrl->ctrl.tagset = NULL; | |
2277 | ||
2278 | return ret; | |
2279 | } | |
2280 | ||
2281 | ||
2282 | static struct nvme_ctrl * | |
2283 | __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, | |
2284 | struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) | |
2285 | { | |
2286 | struct nvme_fc_ctrl *ctrl; | |
2287 | unsigned long flags; | |
2288 | int ret, idx; | |
2289 | bool changed; | |
2290 | ||
2291 | ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); | |
2292 | if (!ctrl) { | |
2293 | ret = -ENOMEM; | |
2294 | goto out_fail; | |
2295 | } | |
2296 | ||
2297 | idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); | |
2298 | if (idx < 0) { | |
2299 | ret = -ENOSPC; | |
2300 | goto out_free_ctrl; | |
2301 | } | |
2302 | ||
2303 | ctrl->ctrl.opts = opts; | |
2304 | INIT_LIST_HEAD(&ctrl->ctrl_list); | |
2305 | INIT_LIST_HEAD(&ctrl->ls_req_list); | |
2306 | ctrl->lport = lport; | |
2307 | ctrl->rport = rport; | |
2308 | ctrl->dev = lport->dev; | |
2309 | ctrl->state = FCCTRL_INIT; | |
2310 | ctrl->cnum = idx; | |
2311 | ||
2312 | ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); | |
2313 | if (ret) | |
2314 | goto out_free_ida; | |
2315 | ||
2316 | get_device(ctrl->dev); | |
2317 | kref_init(&ctrl->ref); | |
2318 | ||
2319 | INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work); | |
2320 | spin_lock_init(&ctrl->lock); | |
2321 | ||
2322 | /* io queue count */ | |
2323 | ctrl->queue_count = min_t(unsigned int, | |
2324 | opts->nr_io_queues, | |
2325 | lport->ops->max_hw_queues); | |
2326 | opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */ | |
2327 | ctrl->queue_count++; /* +1 for admin queue */ | |
2328 | ||
2329 | ctrl->ctrl.sqsize = opts->queue_size - 1; | |
2330 | ctrl->ctrl.kato = opts->kato; | |
2331 | ||
2332 | ret = -ENOMEM; | |
2333 | ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue), | |
2334 | GFP_KERNEL); | |
2335 | if (!ctrl->queues) | |
2336 | goto out_uninit_ctrl; | |
2337 | ||
2338 | ret = nvme_fc_configure_admin_queue(ctrl); | |
2339 | if (ret) | |
2340 | goto out_uninit_ctrl; | |
2341 | ||
2342 | /* sanity checks */ | |
2343 | ||
e399441d JS |
2344 | /* FC-NVME does not have other data in the capsule */ |
2345 | if (ctrl->ctrl.icdoff) { | |
2346 | dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", | |
2347 | ctrl->ctrl.icdoff); | |
2348 | goto out_remove_admin_queue; | |
2349 | } | |
2350 | ||
2351 | /* FC-NVME supports normal SGL Data Block Descriptors */ | |
2352 | ||
2353 | if (opts->queue_size > ctrl->ctrl.maxcmd) { | |
2354 | /* warn if maxcmd is lower than queue_size */ | |
2355 | dev_warn(ctrl->ctrl.device, | |
2356 | "queue_size %zu > ctrl maxcmd %u, reducing " | |
2357 | "to queue_size\n", | |
2358 | opts->queue_size, ctrl->ctrl.maxcmd); | |
2359 | opts->queue_size = ctrl->ctrl.maxcmd; | |
2360 | } | |
2361 | ||
2362 | ret = nvme_fc_init_aen_ops(ctrl); | |
2363 | if (ret) | |
2364 | goto out_exit_aen_ops; | |
2365 | ||
2366 | if (ctrl->queue_count > 1) { | |
2367 | ret = nvme_fc_create_io_queues(ctrl); | |
2368 | if (ret) | |
2369 | goto out_exit_aen_ops; | |
2370 | } | |
2371 | ||
2372 | spin_lock_irqsave(&ctrl->lock, flags); | |
2373 | ctrl->state = FCCTRL_ACTIVE; | |
2374 | spin_unlock_irqrestore(&ctrl->lock, flags); | |
2375 | ||
2376 | changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); | |
2377 | WARN_ON_ONCE(!changed); | |
2378 | ||
2379 | dev_info(ctrl->ctrl.device, | |
c7034898 JS |
2380 | "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", |
2381 | ctrl->cnum, ctrl->ctrl.opts->subsysnqn); | |
e399441d JS |
2382 | |
2383 | kref_get(&ctrl->ctrl.kref); | |
2384 | ||
2385 | spin_lock_irqsave(&rport->lock, flags); | |
2386 | list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); | |
2387 | spin_unlock_irqrestore(&rport->lock, flags); | |
2388 | ||
2389 | if (opts->nr_io_queues) { | |
2390 | nvme_queue_scan(&ctrl->ctrl); | |
2391 | nvme_queue_async_events(&ctrl->ctrl); | |
2392 | } | |
2393 | ||
2394 | return &ctrl->ctrl; | |
2395 | ||
2396 | out_exit_aen_ops: | |
2397 | nvme_fc_exit_aen_ops(ctrl); | |
2398 | out_remove_admin_queue: | |
2399 | /* send a Disconnect(association) LS to fc-nvme target */ | |
2400 | nvme_fc_xmt_disconnect_assoc(ctrl); | |
2401 | nvme_stop_keep_alive(&ctrl->ctrl); | |
2402 | nvme_fc_destroy_admin_queue(ctrl); | |
2403 | out_uninit_ctrl: | |
2404 | nvme_uninit_ctrl(&ctrl->ctrl); | |
2405 | nvme_put_ctrl(&ctrl->ctrl); | |
2406 | if (ret > 0) | |
2407 | ret = -EIO; | |
2408 | /* exit via here will follow ctlr ref point callbacks to free */ | |
2409 | return ERR_PTR(ret); | |
2410 | ||
2411 | out_free_ida: | |
2412 | ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); | |
2413 | out_free_ctrl: | |
2414 | kfree(ctrl); | |
2415 | out_fail: | |
2416 | nvme_fc_rport_put(rport); | |
2417 | /* exit via here doesn't follow ctlr ref points */ | |
2418 | return ERR_PTR(ret); | |
2419 | } | |
2420 | ||
2421 | enum { | |
2422 | FCT_TRADDR_ERR = 0, | |
2423 | FCT_TRADDR_WWNN = 1 << 0, | |
2424 | FCT_TRADDR_WWPN = 1 << 1, | |
2425 | }; | |
2426 | ||
2427 | struct nvmet_fc_traddr { | |
2428 | u64 nn; | |
2429 | u64 pn; | |
2430 | }; | |
2431 | ||
2432 | static const match_table_t traddr_opt_tokens = { | |
2433 | { FCT_TRADDR_WWNN, "nn-%s" }, | |
2434 | { FCT_TRADDR_WWPN, "pn-%s" }, | |
2435 | { FCT_TRADDR_ERR, NULL } | |
2436 | }; | |
2437 | ||
2438 | static int | |
2439 | nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf) | |
2440 | { | |
2441 | substring_t args[MAX_OPT_ARGS]; | |
2442 | char *options, *o, *p; | |
2443 | int token, ret = 0; | |
2444 | u64 token64; | |
2445 | ||
2446 | options = o = kstrdup(buf, GFP_KERNEL); | |
2447 | if (!options) | |
2448 | return -ENOMEM; | |
2449 | ||
2450 | while ((p = strsep(&o, ":\n")) != NULL) { | |
2451 | if (!*p) | |
2452 | continue; | |
2453 | ||
2454 | token = match_token(p, traddr_opt_tokens, args); | |
2455 | switch (token) { | |
2456 | case FCT_TRADDR_WWNN: | |
2457 | if (match_u64(args, &token64)) { | |
2458 | ret = -EINVAL; | |
2459 | goto out; | |
2460 | } | |
2461 | traddr->nn = token64; | |
2462 | break; | |
2463 | case FCT_TRADDR_WWPN: | |
2464 | if (match_u64(args, &token64)) { | |
2465 | ret = -EINVAL; | |
2466 | goto out; | |
2467 | } | |
2468 | traddr->pn = token64; | |
2469 | break; | |
2470 | default: | |
2471 | pr_warn("unknown traddr token or missing value '%s'\n", | |
2472 | p); | |
2473 | ret = -EINVAL; | |
2474 | goto out; | |
2475 | } | |
2476 | } | |
2477 | ||
2478 | out: | |
2479 | kfree(options); | |
2480 | return ret; | |
2481 | } | |
2482 | ||
2483 | static struct nvme_ctrl * | |
2484 | nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) | |
2485 | { | |
2486 | struct nvme_fc_lport *lport; | |
2487 | struct nvme_fc_rport *rport; | |
2488 | struct nvmet_fc_traddr laddr = { 0L, 0L }; | |
2489 | struct nvmet_fc_traddr raddr = { 0L, 0L }; | |
2490 | unsigned long flags; | |
2491 | int ret; | |
2492 | ||
2493 | ret = nvme_fc_parse_address(&raddr, opts->traddr); | |
2494 | if (ret || !raddr.nn || !raddr.pn) | |
2495 | return ERR_PTR(-EINVAL); | |
2496 | ||
2497 | ret = nvme_fc_parse_address(&laddr, opts->host_traddr); | |
2498 | if (ret || !laddr.nn || !laddr.pn) | |
2499 | return ERR_PTR(-EINVAL); | |
2500 | ||
2501 | /* find the host and remote ports to connect together */ | |
2502 | spin_lock_irqsave(&nvme_fc_lock, flags); | |
2503 | list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { | |
2504 | if (lport->localport.node_name != laddr.nn || | |
2505 | lport->localport.port_name != laddr.pn) | |
2506 | continue; | |
2507 | ||
2508 | list_for_each_entry(rport, &lport->endp_list, endp_list) { | |
2509 | if (rport->remoteport.node_name != raddr.nn || | |
2510 | rport->remoteport.port_name != raddr.pn) | |
2511 | continue; | |
2512 | ||
2513 | /* if fail to get reference fall through. Will error */ | |
2514 | if (!nvme_fc_rport_get(rport)) | |
2515 | break; | |
2516 | ||
2517 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
2518 | ||
2519 | return __nvme_fc_create_ctrl(dev, opts, lport, rport); | |
2520 | } | |
2521 | } | |
2522 | spin_unlock_irqrestore(&nvme_fc_lock, flags); | |
2523 | ||
2524 | return ERR_PTR(-ENOENT); | |
2525 | } | |
2526 | ||
2527 | ||
2528 | static struct nvmf_transport_ops nvme_fc_transport = { | |
2529 | .name = "fc", | |
2530 | .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, | |
2531 | .allowed_opts = NVMF_OPT_RECONNECT_DELAY, | |
2532 | .create_ctrl = nvme_fc_create_ctrl, | |
2533 | }; | |
2534 | ||
2535 | static int __init nvme_fc_init_module(void) | |
2536 | { | |
c0e4a6f5 SG |
2537 | int ret; |
2538 | ||
e399441d JS |
2539 | nvme_fc_wq = create_workqueue("nvme_fc_wq"); |
2540 | if (!nvme_fc_wq) | |
2541 | return -ENOMEM; | |
2542 | ||
c0e4a6f5 SG |
2543 | ret = nvmf_register_transport(&nvme_fc_transport); |
2544 | if (ret) | |
2545 | goto err; | |
2546 | ||
2547 | return 0; | |
2548 | err: | |
2549 | destroy_workqueue(nvme_fc_wq); | |
2550 | return ret; | |
e399441d JS |
2551 | } |
2552 | ||
2553 | static void __exit nvme_fc_exit_module(void) | |
2554 | { | |
2555 | /* sanity check - all lports should be removed */ | |
2556 | if (!list_empty(&nvme_fc_lport_list)) | |
2557 | pr_warn("%s: localport list not empty\n", __func__); | |
2558 | ||
2559 | nvmf_unregister_transport(&nvme_fc_transport); | |
2560 | ||
2561 | destroy_workqueue(nvme_fc_wq); | |
2562 | ||
2563 | ida_destroy(&nvme_fc_local_port_cnt); | |
2564 | ida_destroy(&nvme_fc_ctrl_cnt); | |
2565 | } | |
2566 | ||
2567 | module_init(nvme_fc_init_module); | |
2568 | module_exit(nvme_fc_exit_module); | |
2569 | ||
2570 | MODULE_LICENSE("GPL v2"); |